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Vinogradov’s mean value theorem
via efficient congruencing

By Trevor D. Wooley

Abstract

We obtain estimates for Vinogradov’s integral that for the first time

approach those conjectured to be the best possible. Several applications of

these new bounds are provided. In particular, the conjectured asymptotic

formula in Waring’s problem holds for sums of s kth powers of natural

numbers whenever s > 2k2 + 2k − 3.

1. Introduction

Exponential sums of large degree play a prominent role in the analysis

of problems spanning the analytic theory of numbers, and in consequence the

estimation of their mean values is of central significance. Some seventy-five

years ago, I. M. Vinogradov [32] obtained new estimates for such mean values

by exploiting the translation-dilation invariance of associated systems of Dio-

phantine equations. Thereby, he was able to derive powerful new estimates for

exponential sums going well beyond those made available via the differencing

methods of Weyl and van der Corput. Decisive progress followed in such topics

as Waring’s problem, the zero-free region for the Riemann zeta function and

the distribution modulo 1 of polynomial sequences (see [33], [34] and [35]).

Following a decade or so of technical improvement, Vinogradov’s mean value

theorem evolved into a form little different from that familiar to present day

workers, one which for problems of degree d falls short of the strength expected

by a factor of order log d. In this paper we obtain significant improvements in

estimates associated with Vinogradov’s mean value theorem, coming within a

stone’s throw of the sharpest possible bounds. As we explain in due course,

progress of a similar scale may now be realised in numerous allied problems.

In order to describe our conclusions, we must introduce some notation.

When k is a natural number and α ∈ Rk, we consider the exponential sum

(1.1) fk(α;X) =
∑

16x6X

e(α1x+ · · ·+ αkx
k),
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where e(z) denotes e2πiz. It follows from orthogonality that, for natural num-

bers s, the mean value

(1.2) Js,k(X) =

∫
[0,1)k

|fk(α;X)|2s dα

counts the number of integral solutions of the system of equations

(1.3) xj1 + · · ·+ xjs = yj1 + · · ·+ yjs (1 6 j 6 k),

with 1 6 xi, yi 6 X (1 6 i 6 s). Motivated by a heuristic application of the

circle method, it is widely expected that whenever ε > 0, one should have1

(1.4) Js,k(X)� Xε(Xs +X2s− 1
2
k(k+1)).

Indeed, the discussion surrounding [30, eq. (7.5)] supplies an ε-free version of

such a conjecture for k > 2. The corresponding lower bound

(1.5) Js,k(X)� Xs +X2s− 1
2
k(k+1),

meanwhile, is easily established (see [30, eq. (7.4)]). The main conclusion of

this paper, the proof of which we complete in Section 7, is that the estimate

(1.4) holds whenever s > k(k + 1).

Theorem 1.1. Suppose that s and k are natural numbers with k > 2 and

s > k(k + 1). Then for each ε > 0, one has Js,k(X)� X2s− 1
2
k(k+1)+ε.

If valid, the conjectured bound (1.4) would imply a conclusion of the

same shape as that of Theorem 1.1, provided only that s > 1
2k(k+ 1). In some

sense, therefore, Theorem 1.1 comes within a factor 2 of the best possible

result of its type. For additive Diophantine systems of large degree k, this is

the first occasion on which a conclusion so close to the best possible has been

established, for in all previous results one misses the conjectured bounds by a

factor of order log k.

A comparison with previous results on Vinogradov’s mean value theorem

deserves a discussion in two parts. The original method of Vinogradov [32]

for estimating Js,k(X) was refined by means of the p-adic argument of Linnik

[19] and achieved its most polished form in the work of Karatsuba [18] and

Stechkin [26]. Thus, for each natural number s with s > k, one has a bound

of the shape

(1.6) Js,k(X) 6 D(s, k)X2s− 1
2
k(k+1)+ηs,k ,

where D(s, k) is independent of X and ηs,k = 1
2k

2(1 − 1/k)[s/k] 6 k2e−s/k
2
.

For large integers k, the exponent ηs,k is appreciably smaller than 1/k as soon

1Here and throughout, implicit constants in Vinogradov’s notation � and � depend at

most on s, k and ε, unless otherwise indicated.
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as s > 3k2(log k + log log k). When s is sufficiently large in terms of k, this

observation permits the proof of an asymptotic formula of the shape

(1.7) Js,k(X) ∼ C(s, k)X2s− 1
2
k(k+1),

wherein C(s, k) is a positive number depending at most on s and k. Note

that the positivity of C(s, k) is a consequence of the lower bound (1.5). Let

V (k) denote the least natural number s for which the anticipated relation (1.7)

holds. Then this classical version of Vinogradov’s mean value theorem leads

to the upper bound V (k) 6 3k2(log k +O(log log k)) (see [30, Th. 7.4]).

The author’s thesis work [36], [37] on repeated efficient differencing meth-

ods led to sizeable improvements in the conclusions reported in the last para-

graph. Roughly speaking, the upper bound (1.6) was established with ηs,k ≈
k2e−2s/k2 for s 6 k2 log k and with ηs,k ≈ (log k)4e−3s/(2k2) for s > k2 log k (see

[37, Th. 1.2] for a precise statement). In the range critical in applications, the

rate of decay of ηs,k with respect to s stemming from this progress is twice that

previously available. As a consequence of these developments, we established

that V (k) 6 k2(log k + 2 log log k + O(1)) (see [42, Th. 3]). We are now able

to improve matters significantly.

Define the singular series

(1.8) S(s, k) =
∞∑
q=1

q∑
a1=1

· · ·
q∑

ak=1

(a1,...,ak,q)=1

∣∣∣∣q−1
q∑
r=1

e((a1r + · · ·+ akr
k)/q)

∣∣∣∣2s

and the singular integral

(1.9) J(s, k) =

∫
Rk

∣∣∣∣∫ 1

0
e(β1γ + · · ·+ βkγ

k) dγ

∣∣∣∣2s dβ.

It transpires that the positive number C(s, k) occurring in the putative asymp-

totic formula (1.7) is then given by C(s, k) = S(s, k)J(s, k). In Section 9 we

establish the asymptotic formula (1.7) for s > k2 + k + 1.

Theorem 1.2. When k > 3, one has V (k) 6 k2 + k + 1.

The lower bound (1.5) implies that the asymptotic formula (1.7) cannot

hold for s < 1
2k(k+1). The condition on s imposed in Theorem 1.2 is therefore

only a factor 2 away from the best possible conclusion of its type.

The estimate recorded in Theorem 1.1 also leads to improvements in avail-

able bounds relating to Tarry’s problem. When h, k and s are positive integers

with h > 2, consider the Diophantine system

(1.10)
s∑
i=1

xji1 =
s∑
i=1

xji2 = . . . =
s∑
i=1

xjih (1 6 j 6 k).
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Let W (k, h) denote the least natural number s having the property that the

simultaneous equations (1.10) possess an integral solution x with

s∑
i=1

xk+1
iu 6=

s∑
i=1

xk+1
iv (1 6 u < v 6 h).

The problem of estimating W (k, h) was investigated extensively by E. M.

Wright and L.-K. Hua (see [14], [15], [44]), and very recently upper bounds for

W (k, h) have played a role in work of Croot and Hart [8] on the sum-product

conjecture. L.-K. Hua was able to show that W (k, h) 6 k2(log k + O(1)) for

h > 2, a conclusion improved by the present author when h = 2 with the

bound W (k, 2) 6 1
2k

2(log k + log log k + O(1)) (see [42, Th. 1]). We improve

both estimates in Section 9.

Theorem 1.3. When h and k are natural numbers with h > 2 and k > 2,

one has W (k, h) 6 k2 + k − 2.

For small values of k, although nothing explicit appears to be available in

the literature, some improvement would appear to be possible. It is a simple

exercise to show that W (2, h) = 3 for h > 2, for example, and the methods

of Section 9 of this paper combine with the estimates of [17, Chap. V.5] to

confirm that 4 6W (3, h) 6 8. On the other hand, explicit numerical examples

are available2 that may be applied to show that W (k, 2) = k+1 for 2 6 k 6 10

and k = 12.

Next we discuss the asymptotic formula in Waring’s problem. When s and

k are natural numbers, we denote by Rs,k(n) the number of representations

of the natural number n as the sum of s kth powers of positive integers. A

heuristic application of the circle method suggests that for k > 3 and s > k+1,

one should have

(1.11) Rs,k(n) =
Γ(1 + 1/k)s

Γ(s/k)
Ss,k(n)ns/k−1 + o(ns/k−1),

where

(1.12) Ss,k(n) =
∞∑
q=1

q∑
a=1

(a,q)=1

(
q−1

q∑
r=1

e(ark/q)
)s
e(−na/q).

Under modest congruence conditions, one has 1� Ss,k(n)� nε, and thus the

conjectural relation (1.11) may be interpreted as an honest asymptotic formula

(see [30, §§4.3, 4.5 and 4.6] for details). Let ‹G(k) denote the least integer t

with the property that, for all s > t, and all sufficiently large natural numbers

2See the website http://euler.free.fr/eslp/eslp.htm.
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n, one has the asymptotic formula (1.11). As a consequence of Theorem 1.1,

we derive the new upper bound for ‹G(k) presented in the following theorem.

Theorem 1.4. When k > 2, one has ‹G(k) 6 2k2 + 2k − 3.

The first to obtain a bound for ‹G(k) were Hardy and Littlewood [11], who

established the bound ‹G(k) 6 (k− 2)2k−1 + 5. The sharpest bounds currently

available for smaller values of k are ‹G(k) 6 2k (k = 3, 4, 5), due to Vaughan

[28], [29], and ‹G(k) 6 7
82k (k > 6), due to Boklan [5]. For larger values of k, the

story begins with Vinogradov [32], who showed that ‹G(k) 6 183k9(log k+ 1)2.

By 1949, Hua [16] had shown that ‹G(k) 6 (4+o(1))k2 log k. This upper bound

was improved first by the author [37] to ‹G(k) 6 (2 + o(1))k2 log k, and most

recently by Ford [9] to ‹G(k) 6 (1 + o(1))k2 log k. The latter two authors,

Parsell [23], and most recently Boklan and Wooley [6], have also computed

explicit upper bounds for ‹G(k) when k 6 20. In particular, one has the bounds‹G(7) 6 112, ‹G(8) 6 224 due to Boklan [5], and ‹G(9) 6 365, ‹G(10) 6 497,‹G(11) 6 627, ‹G(12) 6 771, ‹G(13) 6 934, ‹G(14) 6 1112, ‹G(15) 6 1307,‹G(16) 6 1517, ‹G(17) 6 1747, ‹G(18) 6 1992, ‹G(19) 6 2255, ‹G(20) 6 2534 due

to Boklan and Wooley [6]. The conclusion of Theorem 1.4 supersedes all of

these previous results for k > 7, establishing that ‹G(7) 6 109, ‹G(8) 6 141,‹G(9) 6 177, . . . , ‹G(20) 6 837. Furthermore, the strength of Theorem 1.1

opens new possibilities for transforming estimates for Js,k(X) into bounds for

auxiliary mean values suitable for investigating Waring’s problem. This is a

matter that we shall pursue further elsewhere (see [43]).

We turn next to estimates of Weyl type for exponential sums. Here we

present conclusions of two types, one applicable to exponential sums fk(α;X)

defined by (1.1) wherein a single coefficient αj is poorly approximable and a

second applicable when α is poorly approximable as a k-tuple.

Theorem 1.5. Let k be an integer with k > 2, and let α ∈ Rk. Suppose

that there exists a natural number j with 2 6 j 6 k such that, for some a ∈ Z
and q ∈ N with (a, q) = 1, one has |αj − a/q| 6 q−2 and q 6 Xj . Then one

has

fk(α;X)� X1+ε(q−1 +X−1 + qX−j)σ(k),

where σ(k)−1 = 2k(k − 1).

We remark that the factor Xε in the conclusion of Theorem 1.5 may be

replaced by log(2X) if one increases σ(k)−1 from 2k(k − 1) to 2k2 − 2k + 1.

Theorem 1.6. Let k be an integer with k > 2, and let τ and δ be real

numbers with τ−1 > 4k(k−1) and δ > kτ . Suppose that X is sufficiently large

in terms of k, δ and τ , and further that |fk(α;X)| > X1−τ . Then there exist

integers q, a1, . . . , ak such that 1 6 q 6 Xδ and |qαj − aj | 6 Xδ−j (1 6 j 6 k).
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The conclusion of Theorem 1.5 may be compared, for smaller exponents k,

with Weyl’s inequality (see [30, Lemma 2.4]). The latter provides an estimate

of the same shape as that of Theorem 1.5 in the special case j = k, with

the exponent 2k−1 in place of 2k(k − 1). The conclusion of Theorem 1.5 is

therefore superior to Weyl’s inequality for k > 8. Subject to the condition

k > 6, Heath-Brown [12] has shown that whenever there exist a ∈ Z and q ∈ N
with (a, q) = 1 and |α− a/q| 6 q−2, then one has

(1.13)
∑

16x6X

e(αxk)� X1− 8
3

2−k+ε(X3q−1 + 1 + qX3−k)
4
3

2−k
.

With the same conditions on α, Robert and Sargos [24, Th. 4 et Lemme 7]

have shown that for k > 8, one has

(1.14)
∑

16x6X

e(αxk)� X1−3·2−k+ε(X4q−1 + 1 + qX4−k)
8
5

2−k
.

When k > 9, our conclusions in these special situations are superior to those

of Heath-Brown, and those of Robert and Sargos, even for the restricted set of

α for which either (1.13) or (1.14) prove superior to Weyl’s inequality. Finally,

the methods of Vinogradov yield results of the type provided by Theorem 1.5

with the exponent 2k(k − 1) replaced by (C + o(1))k2 log k for suitable values

of C. For example, Linnik [19] obtained the permissible value C = 22400,

Hua [16] obtained C = 4, and the sharpest bound available hitherto, due to

the author [41], is tantamount to C = 3/2. We note also that Wooley [37],

Ford [9], Parsell [23], and most recently Boklan and Wooley [6], have computed

explicit upper bounds for σ(k) when k 6 20. The conclusion of Theorem 1.5 is

superior to these earlier numerical conclusions in all cases and is transparently

sharper for larger values of k by a factor asymptotically of order log k. Similar

comments apply to the conclusion of Theorem 1.6, a suitable reference to earlier

work being [3, Chaps. 4 and 5].

Our final result concerns the distribution modulo 1 of polynomial se-

quences. Here, we write ‖θ‖ for min
y∈Z
|θ − y|.

Theorem 1.7. Let k be an integer with k > 2, and define τ(k) by τ(k)−1

= 4k(k − 1). Then whenever α ∈ Rk and N is sufficiently large in terms of k

and ε, one has

min
16n6N

‖α1n+ α2n
2 + · · ·+ αkn

k‖ < N ε−τ(k).

For comparison, R. C. Baker [3, Th. 4.5] provides a similar conclusion in

which the exponent 4k(k − 1) is replaced by (8 + o(1))k2 log k, a conclusion

subsequently improved by the author to (4 + o(1))k2 log k (see [37, Cor. 1.3]).

For smaller values of k, meanwhile, a conclusion similar to that of Theorem 1.7
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is delivered by [3, Th. 5.2], but with the exponent 2k−1 in place of 4k(k − 1).

The conclusion of Theorem 1.7 is superior to these earlier results for k > 10.

Given the scale of the improvement in estimates made available via The-

orem 1.1, it is natural to enquire whether it is now possible to derive visible

improvements in the zero-free region for the Riemann zeta function. The esti-

mate supplied by Theorem 1.1 has the shape Js,k(X) 6 D(k, ε)X2s− 1
2
k(k+1)+ε

for s > k(k + 1), and the nature of the quantity D(k, ε) plays a critical role

in determining the rate of growth of |ζ(σ + it)| with respect to t when σ is

close to 1. It seems clear that, while some numerical improvement will be

made available via the methods underlying Theorem 1.1, such improvements

will not lead to asymptotically significant improvements in the zero-free region.

We refer the reader to the work of Ford [10] for a discussion of recent numerical

improvements to which our new results may be expected to contribute.

The arguments that underly our proof of Theorem 1.1, which in a nod to

the earlier use of efficient differencing we refer to loosely as efficient congru-

encing methods, change little when the setting for Vinogradov’s mean value

theorem is shifted from Z to the ring of integers of a number field. A significant

feature of our estimates in this respect is that when s > k(k + 1), one is at

most a factor Xε away from the truth. In common with Birch’s application

[4] of Hua’s lemma in number fields, this aspect of our estimates makes them

robust to variation in the degree of the field extension, since the strength of

corresponding Weyl-type estimates for exponential sums no longer plays a sig-

nificant role in applications. Thus, in any number field, one is able to establish

the validity of the Hasse Principle, and of Weak Approximation, for diagonal

equations of degree d in 2d2 + 2d + 1 or more variables, and moreover one

is able to obtain the expected density of rational solutions of such equations.

Hitherto, such a conclusion was available via the methods of Birch [4] only for

diagonal forms of degree d in 2d + 1 or more variables. In a similar manner,

the robustness of the efficient congruencing method permits conclusions to be

drawn over function fields, such as Fq(t), matching in strength what is to be

found within this paper. We intend to record the consequences of our methods

for such problems in forthcoming work.

Finally, the efficient congruencing operation may be applied with success

in a number of multidimensional problems related to Vinogradov’s mean value

theorem. Thus, the work of Arkhipov, Chubarikov and Karatsuba, and Parsell,

on exponential sums in many variables (see [2] and [22], for example) may be

improved in a manner no less dramatic than can be seen in the context of the

version of Vinogradov’s mean value theorem described within this paper. This

again is a topic to which we intend to return elsewhere.

The methods underlying our proof of Theorem 1.1 are complicated by the

need to control nonsingularity constraints modulo various powers of a prime,
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and this control must be exercised within an iterative process a step ahead

of its application. This and other complicating factors obscure the key ideas

of our argument, and so we have taken the liberty of providing, in Section 2

below, a sketch of the fundamental efficient congruencing process. The reader

will also find there an outline of the classical approach of Vinogradov, together

with the repeated efficient differencing process. Next, in Section 3, we prepare

the notation and basic notions required in our subsequent deliberations. The

concern of Section 4 is an estimate for a system of basic congruences, and

Section 5 describes the conditioning process required to guarantee appropriate

nonsingularity conditions in subsequent steps of the efficient congruencing ar-

gument. In Section 6 we discuss the efficient congruencing process itself. We

combine these tools in Section 7 with an account of the iterative process, ulti-

mately delivering Theorem 1.1. In Section 8 we turn to our first applications,

with the proof of Theorems 1.5, 1.6 and 1.7. Next, in Section 9, we consider

Tarry’s problem, and establish Theorems 1.2 and 1.3. Finally, in Section 10,

we consider the asymptotic formula in Waring’s problem and establish The-

orem 1.4. We finish in Section 11 by describing a heuristic argument that

implies essentially the best possible bound of the shape (1.4).

The author is grateful to the two referees of this paper for useful comments.

2. A sketch of the efficient congruencing process

Our goal in this section is to offer an indication of the strategy underlying

the efficient congruencing process key to our new bounds. At the same time,

it is expedient to introduce some notation of use throughout this paper. In

what follows, the letter k denotes a fixed integer exceeding 1, the letter s

will be a positive integer and ε denotes a sufficiently small positive number.

We take X to be a large real number depending at most on k, s and ε, unless

otherwise indicated. In an effort to simplify our analysis, we adopt the following

convention concerning the number ε. Whenever ε appears in a statement,

either implicitly or explicitly, we assert that the statement holds for each ε >

0. Note that the “value” of ε may consequently change from statement to

statement. Finally, we make use of vector notation in a slightly unconventional

manner. Thus, we may write a 6 z 6 b to denote that a 6 zi 6 b for 1 6 i 6 t,
we may write z ≡ w (mod p) to denote that zi ≡ wi (mod p) (1 6 i 6 t),

or on occasion z ≡ ξ (mod p) to denote that zi ≡ ξ (mod p) (1 6 i 6 t).

Confusion should not arise if the reader interprets similar statements in like

manner.

We take this opportunity to highlight our use of an important convention

throughout Sections 2–7 and Section 11. Since k is considered fixed, we usually

find it convenient to drop explicit mention of k from the exponential sum

fk(α;X) and its mean value Js,k(X), defined in (1.1) and (1.2), respectively.
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Although potentially a source of confusion, this manoeuvre removes clutter

from notation already burdened by other complexities.

We refer to the exponent λs as permissible when, for each positive number

ε, and for any real number X sufficiently large in terms of s, k and ε, one

has Js(X) � Xλs+ε. Define λ∗s to be the infimum of the set of exponents λs
permissible for s and k, and then put ηs = λ∗s−2s+ 1

2k(k+1). Thus, whenever

X is sufficiently large in terms of s, k and ε, one has

(2.1) Js(X)� Xλ∗s+ε,

where

(2.2) λ∗s = 2s− 1
2k(k + 1) + ηs.

Note that, in view of the lower bound (1.5) and the trivial estimate Js(X) 6
X2s, one has 0 6 ηs 6 1

2k(k+ 1) for s ∈ N. Vinogradov’s method employs the

translation-dilation invariance of the system (1.3) to bound ηs+k in terms of

ηs by efficiently engineering a strong congruence condition on the variables.

After Linnik [19], the classical approach to Vinogradov’s mean value the-

orem imposes an initial congruence condition on the variables of the system

(1.3) by dividing into congruence classes modulo p for a suitably chosen prime

p. Let θ be a positive number with 0 < θ 6 1/k, and consider a prime num-

ber p with Xθ < p 6 2Xθ. The existence of such a prime is guaranteed by

the Prime Number Theorem, or indeed by weaker results such as Bertrand’s

Postulate. Next, when c and ξ are nonnegative integers, and α ∈ [0, 1)k, define

(2.3) fc(α; ξ) =
∑

16x6X
x≡ξ (mod pc)

e(ψ(x;α)),

where

(2.4) ψ(x;α) = α1x+ α2x
2 + · · ·+ αkx

k.

An application of Hölder’s inequality now leads from (1.1) to the bound

(2.5) |f(α;X)|2s =

∣∣∣∣ p
c∑

ξ=1

∑
16x6X

x≡ξ (mod pc)

e(ψ(x;α))

∣∣∣∣2s 6 (pc)2s−1
pc∑
ξ=1

|fc(α; ξ)|2s.

Let us focus now on the mean value Js+k(X) defined via (1.2). In order

to save clutter, when G : [0, 1)k → C is measurable, we write∮
G(α) dα =

∫
[0,1)k

G(α) dα.

On substituting (2.5) into the analogue of (1.2) with s replaced by s + k, we

find that

(2.6) Js+k(X)� X2sθ max
16ξ6p

∮
|f(α;X)2kf1(α; ξ)2s|dα.
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The mean value on the right-hand side of (2.6) counts the number of integral

solutions of the system

(2.7)
k∑
i=1

(xji − y
j
i ) =

s∑
l=1

((pul + ξ)j − (pvl + ξ)j) (1 6 j 6 k),

with 1 6 x,y 6 X and (1 − ξ)/p 6 u,v 6 (X − ξ)/p. But, as a consequence

of the Binomial Theorem, the validity of the equations (2.7) implies that

(2.8)
k∑
i=1

((xi − ξ)j − (yi − ξ)j) = pj
s∑
l=1

(ujl − v
j
l ) (1 6 j 6 k),

whence

(2.9)
k∑
i=1

(xi − ξ)j ≡
k∑
i=1

(yi − ξ)j (mod pj) (1 6 j 6 k).

The congruences (2.9) provide the efficient congruence condition men-

tioned earlier, with the artificial condition modulo p imposed via (2.5) con-

verted into a system of congruence conditions modulo pj for 1 6 j 6 k, as

opposed merely to a system of congruence conditions modulo p. Suppose that

x is well-conditioned, by which we mean that x1, . . . , xk lie in distinct congru-

ence classes modulo p. Then, given an integral k-tuple n, the solutions of the

system
k∑
i=1

(xi − ξ)j ≡ nj (mod p) (1 6 j 6 k),

with 1 6 x 6 p, may be lifted uniquely to solutions of the system

k∑
i=1

(xi − ξ)j ≡ nj (mod pk) (1 6 j 6 k),

with 1 6 x 6 pk. In this way, the congruences (2.9) essentially imply that

(2.10) x ≡ y (mod pk),

provided that we inflate our estimates by the combinatorial factor k! to account

for the multiplicity of solutions modulo p, together with a factor p
1
2
k(k−1) to

account for solutions introduced as one considers for a fixed n′ the possible

choices for n (mod pk) with nj ≡ n′j (mod pj) (1 6 j 6 k).

In the classical argument, one chooses θ = 1/k, so that pk > X. Since 1 6
x,y 6 X, one is then forced to conclude from the congruential condition (2.10)

that x = y, and in (2.8) this in turn implies that

s∑
l=1

(ujl − v
j
l ) = 0 (1 6 j 6 k).
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The number of solutions of this system with (1 − ξ)/p 6 u,v 6 (X − ξ)/p is

readily seen to be O(Js(X/p)), and thus the corresponding number of solutions

of (2.8) with x = y is O(XkJs(X/p)). Thus, in view of (2.1), one obtains

Js+k(X)� (Xθ)2s+ 1
2
k(k−1)XkJs(X/p)� (Xθ)2s+ 1

2
k(k−1)Xk(X1−θ)λ

∗
s+ε.

Since θ = 1/k, it follows from (2.2) that λ∗s+k 6 2(s + k) − 1
2k(k + 1) + ηs+k,

with ηs+k 6 ηs(1− 1/k). On recalling the estimate Jk(X) 6 k!Xk, stemming

from Newton’s formulae, the classical bound (1.6) with ηs = 1
2k

2(1− 1/k)[s/k]

follows by induction.

Suppose now that we take θ < 1/k, and interpret the condition (2.10)

by defining the k-tuple h by means of the relation h = (x − y)p−k, so that

x = y + hpk. On substituting into (2.8), we obtain the new system

(2.11)
k∑
i=1

Ψj(yi, hi, p) =
s∑
l=1

(ujl − v
j
l ) (1 6 j 6 k),

where

Ψj(y, h, p) = p−j((y + hpk − ξ)j − (y − ξ)j) (1 6 j 6 k).

The number of solutions of the system (2.11) subject to the associated con-

ditions 1 6 y 6 X, |h| 6 Xp−k and (1 − ξ)/p 6 u,v 6 (X − ξ)/p, may

be reinterpreted by means of an associated mean value of exponential sums.

An application of Schwarz’s inequality3 bounds this mean value in terms of

Js(X/p) and a new mean value that counts integral solutions of the system

(2.12)
k∑
i=1

(Ψj(xi, h, p)−Ψj(yi, h, p)) =
s∑
l=1

(ujl − v
j
l ) (1 6 j 6 k),

with variables satisfying similar conditions to those above. We now have the

option of repeating the process of imposing an efficient congruence condition

on x and y, much as before, by pushing the variables u and v into congruence

classes modulo a suitable new prime number $. In this way, one may estimate

Js+k(X) by iteratively bounding the number of solutions of a system of type

(2.12) by a similar one, wherein the polynomial Ψj(z) = Ψj(z, h, p) is replaced

for 1 6 j 6 k by one of the shape Φj(z, g,$) = $−j(Ψj(z + g$k) − Ψj(z)).

This repeated efficient differencing process, so-called owing to its resemblance

to classical Weyl differencing, delivers the more efficient choice of parameter

θ ≈ k/(k2 + ηs). In the most important range for s, one obtains an estimate

roughly of the shape ηs+k 6 ηs(1−2k/(k2 +ηs)), and this yields ηs ≈ k2e−2s/k2

(see [37] for details).

3At the prompting of one of the referees, we point out that less pedantic readers may prefer

to refer to this inequality as the Cauchy-Schwarz inequality, or arguably more precisely as

Bunyakovsky’s inequality.
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The strategy underlying Vinogradov’s method, as seen in both its classical

and repeated efficient differencing formulations, is that of transforming an

initial congruence condition into a differencing step, with the ultimate aim

in (2.7), and its variants such as (2.12), of forcing 2k variables to obey a

diagonal condition. In this paper we instead view Vinogradov’s method as

an efficient generator of congruence conditions. Thus, the initial condition

modulo p amongst 2s variables underlying the mean value Js+k(X) efficiently

generates the stronger condition modulo pk visible in (2.10). Our strategy now

is to exploit this condition so as to push 2s variables into the same congruence

class modulo pk within a new mean value and efficiently extract from this a

fresh congruence condition modulo pk
2
. By repeating this process, one extracts

successively stronger congruence conditions, and these may be expected to

yield successively stronger mean value estimates.

There is a critical detail concerning which we have, thus far, remained

silent. We supposed in advance of (2.10) that the k-tuple x was well-con-

ditioned, and indeed similar assumptions must be made at each point of the

repeated efficient differencing process. There are several possible approaches to

the challenge of ensuring this well-conditioning of variables, the most straight-

forward being to preselect the prime so that the bulk of solutions are well-

conditioned (see [38] for a transparent application of this idea). The problem

of ensuring well-conditioning causes considerable difficulty in the analysis of

the efficient congruencing argument in this paper, for our prime is fixed, once

and for all, at the outset of our argument. For now we ignore this complication

so as to better expose the underlying ideas.

We now outline the repeated efficient congruencing argument. In the first

instance, we take 0 < θ 6 1/k2. Observe that, in view of the condition (2.10),

one may derive from (2.7) the upper bound

Js+k(X)� (Xθ)2s+ 1
2
k(k−1) max

16ξ6p

∮ ( pk∑
η=1

|fk(α; η)|2
)k
|f1(α; ξ)|2s dα.

By Hölder’s inequality, therefore, one sees that

(2.13) Js+k(X)� (Xθ)2s+ 1
2
k(k−1)(Xkθ)k max

16ξ6p
max

16η6pk
I(ξ, η),

where

I(ξ, η) =

∮
|fk(α; η)2kf1(α; ξ)2s|dα.

A further application of Hölder’s inequality shows that

(2.14) I(ξ, η) 6
(∮
|f1(α; ξ)|2s+2k dα

)1−k/s(∮
|f1(α; ξ)2kfk(α; η)2s| dα

)k/s
.

Notice that in the second mean value on the right-hand side of (2.14), there is

a reversal of rôles of the generating functions f1(α; ξ) and fk(α; η) as compared
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to the corresponding mean value defining I(ξ, η). As we explain below, it is

this manoeuvre that permits repeated application of the congruencing step.

The first integral on the right-hand side of (2.14) counts the number of

integral solutions of the system

s+k∑
i=1

((pui + ξ)j − (pvi + ξ)j) = 0 (1 6 j 6 k),

with (1 − ξ)/p 6 u,v 6 (X − ξ)/p. An application of the Binomial Theo-

rem shows this to be O(Js+k(X/p)). By orthogonality, meanwhile, the second

integral is bounded above by the number of solutions of the system

(2.15)
k∑
i=1

(xji − y
j
i ) =

s∑
l=1

((pkul + η)j − (pkvl + η)j) (1 6 j 6 k),

with 1 6 x,y 6 X, x ≡ y ≡ ξ (mod p) and (1 − η)/pk 6 u,v 6 (X − η)/pk.

As in the classical treatment sketched above, it follows as a consequence of the

Binomial Theorem that the validity of the equations (2.15) implies that

k∑
i=1

((xi − η)j − (yi − η)j) = pjk
s∑
l=1

(ujl − v
j
l ) (1 6 j 6 k),

whence

(2.16)
k∑
i=1

(xi − η)j ≡
k∑
i=1

(yi − η)j (mod pjk) (1 6 j 6 k).

The system (2.16) provides an even more efficient congruence condition

than that offered by (2.9), tempered with a slightly diminished return stem-

ming from the fact that the xi and yi all lie in the common congruence class ξ

modulo p. On the face of it, the latter unequivocally prevents these variables

being well-conditioned. However, let us assume for now that x1, . . . , xk are

distinct modulo p2, and likewise y1, . . . , yk. It transpires that on this occa-

sion, one may lift solutions modulo p2 to solutions modulo pk
2
. Indeed, the

congruences (2.16) essentially imply that

(2.17) x ≡ y (mod pk
2
),

provided that one inserts a compensating factor k!(pk+1)
1
2
k(k−1) into the con-

comitant estimates. At this point one could repeat the whole process, employ-

ing (2.17) to engineer a fresh congruence condition modulo pk
3
, then modulo

pk
4
, and so on. However, in order to illuminate this efficient congruencing argu-

ment, we examine instead the consequences of the assumption that θ = 1/k2.

In such circumstances, one has pk
2
> X, and so it follows from (2.17) that
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x = y. Since x ≡ y ≡ ξ (mod p), the number of possible choices for x and y

is O((X/p)k). Substituting into (2.15), we deduce that∮
|f1(α; ξ)2kfk(α; η)2s| dα� (Xθ)

1
2
k(k2−1)(X1−θ)k

∮
|fk(α; η)|2s dα(2.18)

� (Xθ)
1
2
k(k2−1)(X1−θ)kJs(X/p

k).

If we now substitute (2.18) into (2.14), we obtain

I(ξ, η)� (Js+k(X/p))
1−k/s

(
(Xθ)

1
2
k(k2−1)(X1−θ)kJs(X/p

k)
)k/s

,

whence, in view of (2.1), it follows from (2.13) that

Js+k(X)�
(
(Xθ)2s+2k− 1

2
k(k+1)(X1−θ)λ

∗
s+k+ε

)1−k/s

×
(
(Xθ)2ks− 1

2
k(k+1)+2k+ 1

2
k(k2−1)(X1−θ)k(X1−kθ)λ

∗
s+ε
)k/s

.

Consequently, from (2.2) we discern the upper bound

Js+k(X)� (Xηs+k(1−θ))1−k/s
Ä
X−k+k3θ(Xηs(1−kθ))

äk/s
X2s+2k− 1

2
k(k+1)+ε.

Recall that θ = 1/k2. Since λ∗s+k = 2s + 2k − 1
2k(k + 1) + ηs+k is an infimal

exponent, it follows that for a sequence of values of X tending to ∞, one has

Xηs+k−ε � Xε(X1−1/k2)(1−k/s)ηs+k(X1−1/k)(k/s)ηs ,

whence for each positive number ε, one has

ηs+k 6 (1− k/s)(1− 1/k2)ηs+k + (k/s)(1− 1/k)ηs + ε.

Noting again the infimal definition of λ∗s+k, we therefore deduce that

(2.19) ηs+k 6
(1− 1/k)ηs

1 + (s/k − 1)(1/k2)
.

Provided that s is no larger than about k5/2, a modest computation leads

from the iterative relation (2.19) to the upper bound

ηs+k 6 (1− s/k3)ηs 6 e
−s/k3ηs.

One therefore sees that ηs is no larger than about k2e−
1
2

(s/k2)2 . By comparison

with the classical bound ηs 6 k2e−s/k
2

mentioned following (1.6), one has

considerable additional decay in the upper bound for ηs as soon as s is a

little larger than k2. Indeed, even an estimate of this quality would establish,

for example, that ‹G(k) � k2(log k)1/2, greatly improving the bound ‹G(k) 6
(1 + o(1))k2 log k due to Ford [9].

For each natural number N , the pursuit of an N -fold repeated efficient

congruencing process delivers bounds with the approximate shape

ηs+k 6
ηs

1 + (s/k)N (1/kN+1)
.
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When s > k2, it is apparent that the upper bound on the right-hand side here

converges to zero as N goes to infinity. Such a bound comes close to delivering

Theorem 1.1. Two serious obstructions remain. The first is the removal of the

assumption throughout that variables are suitably well-conditioned whenever

this is essential. Since our auxiliary prime number p is fixed, once and for all,

at the opening of our argument, we are forced to engineer well-conditioning

directly using this single prime p. Such has the potential to weaken sub-

stantially our conclusions, and we are forced to consider a complex iterative

process rather difficult to control. The second obstruction is less severe. The

condition s > k2 must be replaced by s = k2, and owing to the possibility of

ill-conditioned solutions, a direct approach would be successful, at best, only

when s > k2 + k. Once again, therefore, we are forced to negotiate delicate

issues associated with a complex iterative process.

3. Preliminary manoeuvres

We begin in this section with some notation and definitions of use in our

subsequent discussion. Let k be a fixed integer with k > 2, and let δ be a

small positive number. We consider a natural number u with u > k, and we

put s = uk. Our goal is to show that λ∗s+k = 2(s + k) − 1
2k(k + 1), whence

ηs+k = 0. In view of the infimal definition of λ∗s+k, there exists a sequence of

natural numbers (Xn)∞n=1, tending to infinity, with the property that

(3.1) Js+k(Xn) > X
λ∗s+k−δ
n (n ∈ N).

Provided that Xn is sufficiently large, we have also for Xδ2
n < Y 6 Xn the

corresponding upper bounds

(3.2) Jt(Y ) < Y λ∗t +δ (t = s, s+ k).

Notice that when s > k2, the trivial inequality |f(α;X)| 6 X leads from (1.2)

to the upper bound

Js+k(X) 6 X2(s−k2)
∮
|f(α;X)|2k(k+1) dα 6 X2(s−k2)Jk(k+1)(X).

It then follows from the above discussion that whenever s > k2, one has ηs+k 6
ηk(k+1). With an eye toward future applications, we shall continue to consider

general values of s with s > k2 until the very climax of the proof of Theorem 1.1,

and only at that point specialise to the situation with s = k2. As we have just

shown, the desired conclusion when s > k2 is an easy consequence of this

special case. Finally, we take N to be a natural number sufficiently large in

terms of s and k, and we put θ = 1
2(k/s)N+1. Note that we are at liberty to

take δ to be a positive number with δ < (Ns)−3N , so that δ is in particular

small compared to θ. We focus now on a fixed element X = Xn of the sequence
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(Xn), which we may assume to be sufficiently large in terms of s, k, N and δ,

and put M = Xθ. Thus we have Xδ < M1/N .

Let p be a fixed prime number with M < p 6 2M to be chosen in due

course. That such a prime exists is a consequence of the Prime Number Theo-

rem. We will find it necessary to consider well-conditioned k-tuples of integers

belonging to distinct congruence classes modulo a suitable power of p. Denote

by Ξc(ξ) the set of k-tuples (ξ1, . . . , ξk), with

1 6 ξi 6 p
c+1 and ξi ≡ ξ (mod pc) (1 6 i 6 k),

and satisfying the property that ξi ≡ ξj (mod pc+1) for no i and j with 1 6
i < j 6 k. In addition, write Σk = {1,−1}k, and consider an element σ of Σk.

Recalling the definition (2.3), we then put

(3.3) Fσ
c (α; ξ) =

∑
ξ∈Ξc(ξ)

k∏
i=1

fc+1(σiα; ξi).

Two mixed mean values play leading roles in our arguments. When a and

b are nonnegative integers, and σ, τ ∈ Σk, we define

(3.4) Iσa,b(X; ξ, η) =

∮
|Fσ
a (α; ξ)2fb(α; η)2s| dα

and

(3.5) Kσ,τ
a,b (X; ξ, η) =

∮
|Fσ
a (α; ξ)2Fτ

b (α; η)2u|dα.

It is convenient then to put

(3.6) Ia,b(X) = max
16ξ6pa

max
16η6pb

max
σ∈Σk

Iσa,b(X; ξ, η)

and

(3.7) Ka,b(X) = max
16ξ6pa

max
16η6pb

max
σ,τ∈Σk

Kσ,τ
a,b (X; ξ, η).

Notice here that these mean values depend on our choice of p. However, since

we will shortly fix this choice of p once and for all, we suppress mention of this

prime when referring to Ia,b(X) and Ka,b(X).

Our arguments are simplified considerably by making transparent the re-

lationship between various mean values on the one hand and the anticipated

magnitude of these mean values on the other. Of course, such a concept may

not be well defined, and so we indicate in what follows quite concretely what

is intended. We define the normalised magnitude of a mean value M relative

to its anticipated size M∗ to be M/M∗, a quantity we denote by [[M]]. In

particular, we define

(3.8) [[Jt(X)]] =
Jt,k(X)

X2t− 1
2
k(k+1)

(t = s, s+ k),
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and when 0 6 a < b, we define

[[Ia,b(X)]] =
Ia,b(X)

(X/M b)2s(X/Ma)2k− 1
2
k(k+1)

,

[[Ka,b(X)]] =
Ka,b(X)

(X/M b)2s(X/Ma)2k− 1
2
k(k+1)

.(3.9)

Note that the lower bound (3.1) implies that

(3.10) [[Js+k(X)]] > Xηs+k−δ

while the upper bound (3.2) ensures that, whenever Xδ2 < Y 6 X, one has

(3.11) [[Jt(Y )]] < Y ηt+δ (t = s, s+ k).

Mean values of the exponential sum fc(α; ξ) are easily bounded by ex-

ploiting the translation-dilation invariance of the solution sets of the system of

equations (1.3). The argument is relatively familiar, though we provide details

for the sake of completeness.

Lemma 3.1. Suppose that c is a nonnegative integer with cθ 6 1. Then

for each natural number t, one has

(3.12) max
16ξ6pc

∮
|fc(α; ξ)|2t dα�t Jt(X/M

c).

Proof. Let ξ be an integer with 1 6 ξ 6 pc. From the definition (2.3) of

the exponential sum fc(α; ξ), one has

fc(α; ξ) =
∑

(1−ξ)/pc6y6(X−ξ)/pc
e(ψ(pcy + ξ;α)),

in which ψ(z;α) is given by (2.4). By orthogonality, therefore, one finds that

the integral on the left-hand side of (3.12) counts the number of integral solu-

tions of the system of equations

(3.13)
t∑
i=1

(pcyi + ξ)j =
t∑
i=1

(pczi + ξ)j (1 6 j 6 k),

with 0 6 y, z 6 (X − ξ)/pc. An application of the Binomial Theorem shows

that the pair y, z satisfies (3.13) if and only if it satisfies the system

t∑
i=1

yji =
t∑
i=1

zji (1 6 j 6 k).
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Thus, on considering the underlying Diophantine system and recalling (1.1)

and (1.2), we find that∮
|fc(α; ξ)|2t dα 6

∮
|1 + f(α;X/pc)|2t dα

�t 1 +

∮
|f(α;X/pc)|2t dα

= 1 + Jt(X/p
c).

The desired conclusion follows on noting that diagonal solutions alone ensure

that Jt(X/M
c) > 1. �

Our next preparatory manoeuvre concerns the initiation of the iterative

procedure, and it is here that we fix our choice for p. It is convenient here and

elsewhere to write 1 for the k-tuple (1, . . . , 1).

Lemma 3.2. There exists a prime number p with M < p 6 2M for which

Js+k(X)�M2sI0,1(X).

Proof. The quantity Js+k(X) counts the number of integral solutions of

the system
s+k∑
i=1

(xji − y
j
i ) = 0 (1 6 j 6 k),

with 1 6 x,y 6 X. Let T0 denote the number of such solutions in which xi =

xj for some i and j with 1 6 i < j 6 k, and let T1 denote the corresponding

number of solutions with xi = xj for no i and j with 1 6 i < j 6 k.

On considering the underlying Diophantine system, one finds that

T0 �
∮
f(2α;X)f(α;X)s+k−2f(−α;X)s+k dα,

whence by Hölder’s inequality, it follows that

T0 �
(∮
|f(α;X)|2s+2k dα

)1−1/(s+k)(∮
|f(2α;X)|2s+2k dα

)1/(2s+2k)
.

Thus, by a change of variables, we obtain the upper bound

(3.14) T0 � (Js+k(X))1−1/(2s+2k).

Consider next a solution x,y counted by T1. Write

∆(x) =
∏

16i<j6k

|xi − xj |,

and note that 0 < ∆(x) < Xk(k−1). Let P denote any set of [k3/θ] + 1 distinct

prime numbers with M < p 6 2M . Such a set exists by the Prime Number

Theorem. It follows that∏
p∈P

p > Mk3/θ = Xk3 > ∆(x),
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and hence at least one of the elements of P does not divide ∆(x). In particular,

there exists a prime p ∈ P for which xi ≡ xj (mod p) for no i and j with 1 6
i < j 6 k. On considering the underlying Diophantine system, we therefore

see that

T1 �
∑
p∈P

∮
F1

0(α; 0)f(α;X)sf(−α;X)s+k dα.

Therefore, as a consequence of Schwarz’s inequality, one finds that

T1 � max
p∈P

(∮
|F1

0(α; 0)2f(α;X)2s|dα
)1/2(∮

|f(α;X)|2s+2k dα
)1/2

= max
p∈P

(∮
|F1

0(α; 0)2f0(α; 0)2s| dα
)1/2Ä

Js+k(X)
)1/2

.

In this way, we deduce that a prime number p with M < p 6 2M exists for

which

(3.15) T1 � (I0,0(X))1/2(Js+k(X))1/2.

On recalling that Js+k(X) = T0 + T1, we find from (3.14) and (3.15) that

(3.16) Js+k(X)� 1 + I0,0(X)� I0,0(X).

Next, we split the summation in the definition (2.3) of f0(α; 0) into arith-

metic progressions modulo p. Thus we obtain

f0(α; 0) =
p∑
ξ=1

f1(α; ξ),

whence by Hölder’s inequality one has

|f0(α; 0)|2s 6 p2s−1
p∑
ξ=1

|f1(α; ξ)|2s.

It therefore follows from (3.4) and (3.6) that

(3.17) I0,0(X)�M2s max
16ξ6p

max
σ∈Σk

∮
|Fσ

0 (α; 0)2f1(α; ξ)2s| dα 6M2sI0,1(X).

The conclusion of the lemma is obtained by substituting (3.17) into (3.16). �

We now fix the prime number p, once and for all, so that the upper bound

Js+k(X)�M2sI0,1(X) holds.

4. The auxiliary system of congruences

The efficient congruencing process delivers a strong congruence condition

on a subset of variables. In order to be useful in further congruencing activities,

this condition must be converted into a restriction of certain variables to higher

level arithmetic progressions. It is to this task that we attend in the present

section.
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When σ ∈ Σk, denote by Bσa,b(m; ξ, η) the set of solutions of the system

of congruences

(4.1)
k∑
i=1

σi(zi − η)j ≡ mj (mod pjb) (1 6 j 6 k),

with 1 6 z 6 pkb and z ≡ ξ (mod pa+1) for some ξ ∈ Ξa(ξ).

Lemma 4.1. Suppose that a and b are nonnegative integers with b > a.

Then

max
16ξ6pa

max
16η6pb

max
σ∈Σk

card
Ä
Bσa,b(m; ξ, η)

ä
6 k!p

1
2
k(k−1)(a+b).

Proof. Consider fixed integers a and b with 0 6 a < b, a fixed k-tuple

σ ∈ Σk, and fixed integers ξ and η with 1 6 ξ 6 pa and 1 6 η 6 pb. Denote

by D1(n) the set of solutions of the system of congruences

(4.2)
k∑
i=1

σi(zi − η)j ≡ nj (mod pkb) (1 6 j 6 k),

with 1 6 z 6 pkb and z ≡ ξ (mod pa+1) for some ξ ∈ Ξa(ξ). Then it follows

from (4.1) that we have

card(Bσa,b(m; ξ, η)) =
∑

n1≡m1 (mod pb)

16n16pkb

. . .
∑

nk≡mk (mod pkb)

16nk6pkb

card(D1(n)).

Counting the number of k-tuples n with 1 6 n 6 pkb for which nj ≡ mj

(mod pjb) (1 6 j 6 k), therefore, we see that

(4.3) card(Bσa,b(m; ξ, η)) 6 p
1
2
k(k−1)b max

16n6pkb
card(D1(n)).

We now examine the system (4.2). We begin by rewriting each variable zi
in the shape zi = payi+ξ. In view of the hypothesis that z ≡ ξ (mod pa+1) for

some ξ ∈ Ξa(ξ), we find that the k-tuple y satisfies the condition that yi ≡ yj
(mod p) for no i and j with 1 6 i < j 6 k. With this substitution in (4.2), we

find by the Binomial Theorem that the set of solutions D1(n) is in bijective

correspondence with the set of solutions of the system of congruences

(4.4)
j∑
l=0

Ç
j

l

å
(ξ − η)j−lpla

k∑
i=1

σiy
l
i ≡ nj (mod pkb) (1 6 j 6 k),

with 1 6 y 6 pkb−a and yi ≡ yj (mod p) for no i and j with 1 6 i < j 6 k.

Let y = w be any solution of this system, if indeed a solution exists. Then it

follows from (4.4) that all other solutions y satisfy the system of congruences

(4.5)
j∑
l=0

Ç
j

l

å
(ξ − η)j−lpla

k∑
i=1

σi(y
l
i − wli) ≡ 0 (mod pkb) (1 6 j 6 k).
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By taking linear combinations of the congruences here, we find that the system

(4.5) is equivalent to the new system

k∑
i=1

σiy
j
i ≡

k∑
i=1

σiw
j
i (mod pkb−ja) (1 6 j 6 k).

Next, we write D2(u) for the set of solutions of the system of congruences

k∑
i=1

σiy
j
i ≡ uj (mod pkb−ja) (1 6 j 6 k),

with 1 6 y 6 pkb−a and yi ≡ yj (mod p) for no i and j with 1 6 i < j 6 k.

Then it follows from our discussion thus far that

(4.6) card(D1(n)) 6 max
16u6pkb−a

card(D2(u)).

Denote by D3(v) the set of solutions of the system of congruences

(4.7)
k∑
i=1

σiy
j
i ≡ vj (mod pkb−a) (1 6 j 6 k),

with 1 6 y 6 pkb−a and yi ≡ yj (mod p) for no i and j with 1 6 i < j 6 k.

Then we have

card(D2(u)) 6
∑

v1≡u1 (mod pkb−a)

16v16pkb−a

. . .
∑

vk≡uk (mod pkb−ka)

16vk6pkb−a

card(D3(v)).

Counting the number of k-tuples v with 1 6 v 6 pkb−a for which vj ≡ uj
(mod pkb−ja) (1 6 j 6 k), therefore, we deduce that

card(D2(u)) 6 p
1
2
k(k−1)a max

16v6pkb−a
card(D3(v)).

Consequently, in combination with (4.3) and (4.6), we have shown thus far

that

(4.8) card(Bσa,b(m; ξ, η)) 6 p
1
2
k(k−1)(a+b) max

16v6pkb−a
card(D3(v)).

Suppose now that y = z is any solution of (4.7) belonging to D3(v), if one

exists. Then all other solutions y satisfy the system

k∑
i=1

σiy
j
i ≡

k∑
i=1

σiz
j
i (mod pkb−a) (1 6 j 6 k).

Let I denote the set of indices i with 1 6 i 6 k for which σi = 1, and let J
denote the corresponding set of indices for which σi = −1. Then this system

of congruences is equivalent to the new system∑
i∈I

yji +
∑
l∈J

zjl ≡
∑
i∈I

zji +
∑
l∈J

yjl (mod pkb−a) (1 6 j 6 k).
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We are at liberty to assume that p > k. Consequently, from Newton’s formulae

relating the sums of powers of the roots of a polynomial with its coefficients,

we find that∏
i∈I

(t− yi)
∏
l∈J

(t− zl) ≡
∏
j∈I

(t− zj)
∏
m∈J

(t− ym) (mod pkb−a).

But zl ≡ zm (mod p) for no l and m with 1 6 l < m 6 k. Then for each j

with j ∈ I, by putting t = zj we deduce that∏
i∈I

(zj − yi)
∏
l∈J

(zj − zl) ≡ 0 (mod pkb−a),

whence for some i with i ∈ I, one has yi ≡ zj (mod pkb−a). Similarly, for

each l with l ∈ J , we deduce that for some m with m ∈ J , one has ym ≡ zl
(mod pkb−a). It follows that the sets {y1, . . . , yk} and {z1, . . . , zk} are mutually

congruent modulo pkb−a, whence card(D3(v)) 6 k!. The conclusion of the

lemma now follows at once from (4.8). �

5. The conditioning process

The mean value Iσa,b(X; ξ, η), defined via (3.4), is already in a form suitable

for the extraction of an efficient congruence. Unfortunately, however, one

would be poorly positioned to extract the next efficient congruence following

the one at hand were one not to plan ahead by conditioning the auxiliary

variables encoded by the exponential sum fb(α; η). In this section we show

that the factor fb(α; η)2s occurring in (3.4) can, in essence, be replaced by

the conditioned factor Fτ
b (α; η)2u. The latter involves k-tuples of variables in

residue classes distinct modulo pb+1 and is suitable for subsequent congruencing

operations.

Lemma 5.1. Let a and b be integers with b > a > 0. Then one has

Ia,b(X)� Ka,b(X) +Mk−1Ia,b+1(X).

Proof. Consider fixed integers ξ and η with 1 6 ξ 6 pa and 1 6 η 6 pb, and

a k-tuple σ ∈ Σk. Then on considering the underlying Diophantine system,

one finds from (3.4) that Iσa,b(X; ξ, η) counts the number of integral solutions

of the system

(5.1)
k∑
i=1

σi(x
j
i − y

j
i ) =

s∑
l=1

(vjl − w
j
l ) (1 6 j 6 k),

with

1 6 x,y,v,w 6 X, v ≡ w ≡ η (mod pb)

and satisfying the property that there exist ξ, ζ ∈ Ξa(ξ) for which

x ≡ ξ (mod pa+1) and y ≡ ζ (mod pa+1).
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Let T1 denote the number of integral solutions x,y,v,w of the system (5.1),

counted by Iσa,b(X; ξ, η), in which the 2s integers v1, . . . , vs and w1, . . . , ws
together lie in at most k − 1 distinct residue classes modulo pb+1, and let T2

denote the corresponding number of solutions in which the 2s integers v1, . . . , vs
and w1, . . . , ws together occupy at least k distinct residue classes modulo pb+1.

Then we have

Iσa,b(X; ξ, η) 6 T1 + T2.

On considering the underlying Diophantine system, it is apparent that

T1 �
∑

16η1,...,ηk−16pb+1

η≡η (mod pb)

∑
06e62s

∮
|Fσ
a (α; ξ)2fb+1(α; η1)e1 . . . fb+1(α; ηk−1)ek−1 |dα,

in which the summation over e is subject to the condition

e1 + e2 + · · ·+ ek−1 = 2s.

In view of the elementary inequality

|z1 · · · zn| 6 |z1|n + · · ·+ |zn|n,

we find that

|fb+1(α; η1)e1 · · · fb+1(α; ηk−1)ek−1 | 6
k−1∑
i=1

|fb+1(α; ηi)|2s.

Thus we deduce that

T1 �
∑

16η1,...,ηk−16pb+1

η≡η (mod pb)

k−1∑
i=1

∮
|Fσ
a (α; ξ)2fb+1(α; ηi)

2s|dα(5.2)

� pk−1 max
16η06pb+1

Iσa,b+1(X; ξ, η0).

We turn our attention next to the solutions x,y,v,w counted by T2. The

2s integers v1, . . . , vs and w1, . . . , ws now together contain at least k distinct

residue classes modulo pb+1. By relabelling variables if necessary, therefore,

there is no loss of generality in supposing that v1, . . . , vk lie in distinct residue

classes modulo pb+1. We emphasise here that, not only the indices of the

elements vi may need adjustment in this relabelling process, but also certain

elements wj may need to be renamed as one of the new integers v1, . . . , vk. In

the former cases, the associated signs indexed by τi will be +1, and in the latter

cases they will be −1. On considering the underlying Diophantine system, we

thus deduce that for some τ ∈ Σk, one has

T2 �
∮
|Fσ
a (α; ξ)|2Fτ

b (α; η)fb(α; η)s−r+fb(−α; η)s−r− dα.
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Here, we have written r+ for the number of the coordinates of τ that are +1

and r− for the number that are −1. Thus, in particular, one has r+ + r− = k.

On recalling that s = uk, an application of Hölder’s inequality leads from here

to the bound

T2 �
(∮
|Fσ
a (α; ξ)2Fτ

b (α; η)2u| dα
)1/(2u)(∮

|Fσ
a (α; ξ)2fb(α; η)2s|dα

)1−1/(2u)
.

Hence, in view of the definitions (3.4) and (3.5), we arrive at the estimate

(5.3) T2 � (Kσ,τ
a,b (X; ξ, η))1/(2u)(Iσa,b(X; ξ, η))1−1/(2u).

Combining (5.2) and (5.3), and recalling (3.6) and (3.7), we deduce that

Ia,b(X)�Mk−1Ia,b+1(X) + (Ka,b(X))1/(2u)(Ia,b(X))1−1/(2u).

The conclusion of the lemma now follows on disentangling this inequality. �

Repeated application of Lemma 5.1 shows that whenever a, b and H are

nonnegative integers with b > a > 0, then

(5.4) Ia,b(X)�
H−1∑
h=0

Mh(k−1)Ka,b+h(X) +MH(k−1)Ia,b+H(X).

Since for large values of H, quantities of the type Ia,b+H(X) are an irritant to

our argument, we show in the next lemma that values of H exceeding 1
2(b− a)

are harmless.

Lemma 5.2. Let a, b and H be nonnegative integers with

0 < 1
2(b− a) 6 H 6 θ−1 − b.

Then one has

MH(k−1)Ia,b+H(X)�M−H/2(X/M b)2s(X/Ma)2k− 1
2
k(k+1)+ηs+k .

Proof. On considering the underlying Diophantine systems, it follows from

(3.3) and (3.4) that when 1 6 ξ 6 pa and 1 6 η 6 pb+H , and σ ∈ Σk, one has

Iσa,b+H(X; ξ, η) 6
∮
|fa(α; ξ)2kfb+H(α; η)2s|dα.

Then an application of Hölder’s inequality in combination with Lemma 3.1

leads to the upper bound

Iσa,b+H(X; ξ, η) 6
(∮
|fa(α; ξ)|2s+2k dα

)k/(s+k)(∮
|fb+H(α; η)|2s+2k dα

)s/(s+k)

� (Js+k(X/M
a))k/(s+k)(Js+k(X/M

b+H))s/(s+k).

Consequently, in view of (3.2), we have

Ia,b+H(X)� ((X/Ma)k/(s+k)(X/M b+H)s/(s+k))2s+2k− 1
2
k(k+1)+ηs+k+δ(5.5)

� Xδ(X/Ma)2k− 1
2
k(k+1)+ηs+k(X/M b)2sΥ,
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where

Υ = (M b−a+H)
1
2
k(k+1)s/(s+k)M−2sH .

But when s > k2 and H > 1
2(b− a), one has

s

s+ k

Ä
2(s+ k)− 1

2k(k + 1)
ä
H >

s

s+ k

Ä
3
2k(k + 1)

ä
H

>
s

s+ k

Ä
1
2k(k + 1)

ä
(b− a) + 1

2k
2H.

Thus we see that for k > 2, one has

MH(k−1)Υ 6MH(k−1− 1
2
k2) 6M−H ,

whence

XδMH(k−1)Υ 6M−H/2.

The conclusion of the lemma follows on substituting this estimate into (5.5).

�

Combining Lemma 5.2 with the upper bound (5.4), we may conclude as

follows. Here, as usual, when β ∈ R, we write dβe for the least integer no

smaller than β.

Lemma 5.3. Let a and b be integers with 0 6 a < b, and put H =

d1
2(b − a)e. Suppose that b + H 6 θ−1. Then there exists an integer h with

0 6 h < H having the property that

Ia,b(X)�Mh(k−1)Ka,b+h(X) +M−H/2(X/M b)2s(X/Ma)2k− 1
2
k(k+1)+ηs+k .

By making use of the special case of Lemma 5.3 in which a = 0 and b = 1,

we are able to refine Lemma 3.2 into a form more directly applicable.

Lemma 5.4. One has Js+k(X)�M2sK0,1(X).

Proof. Observe first that when a = 0 and b = 1, then d1
2(b − a)e = 1.

Thus we deduce from Lemma 5.3 that

I0,1(X)� K0,1(X) +M−1/2(X/M)2sX2k− 1
2
k(k+1)+ηs+k .

Since we may suppose that M1/2 > X4δ, it follows from Lemma 3.2 that

Js+k(X)�M2sI0,1(X)�M2sK0,1(X) +X2s+2k− 1
2
k(k+1)+ηs+k−2δ.

But in view of (3.10), we have

Js+k(X)� X2s+2k− 1
2
k(k+1)+ηs+k−δ,

and hence we arrive at the upper bound

Js+k(X)�M2sK0,1(X) +X−δJs+k(X).

The conclusion of the lemma follows on disentangling this inequality. �
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6. The efficient congruencing step

The mean value Ka,b(X) contains a powerful latent congruence condition.

Our task in this section is to convert this condition into one that may be

exploited by means of an iterative procedure.

Lemma 6.1. Suppose that a and b are integers with 0 6 a < b 6 θ−1.

Then one has

Ka,b(X)�M
1
2
k(k−1)(b+a)(Mkb−a)k

Ä
Js+k(X/M

b)
ä1−k/s

(Ib,kb(X))k/s .

Proof. Consider fixed integers ξ and η with 1 6 ξ 6 pa and 1 6 η 6 pb,

and k-tuples σ, τ ∈ Σk. Then on considering the underlying Diophantine

system, one finds from (3.5) that Kσ,τ
a,b (X; ξ, η) counts the number of integral

solutions of the system

(6.1)
k∑
i=1

σi(x
j
i − y

j
i ) =

u∑
l=1

k∑
m=1

τm(vjlm − w
j
lm) (1 6 j 6 k),

in which, for some ξ, ζ ∈ Ξa(ξ), one has

1 6 x,y 6 X, x ≡ ξ (mod pa+1) and y ≡ ζ (mod pa+1),

and for 1 6 l 6 u, for some ηl,νl ∈ Ξb(η), one has

1 6 vl,wl 6 X, vl ≡ ηl (mod pb+1) and wl ≡ νl (mod pb+1).

By applying the Binomial Theorem, we see that the system (6.1) is equivalent

to the new system of equations

(6.2)
k∑
i=1

σi((xi−η)j− (yi−η)j) =
u∑
l=1

k∑
m=1

τm((vlm−η)j− (wlm−η)j) (1 6 j 6 k).

But in any solution x,y,v,w counted by Kσ,τ
a,b (X; ξ, η), one has v ≡ w ≡ η

(mod pb). We therefore deduce from (6.2) that

(6.3)
k∑
i=1

σi(xi − η)j ≡
k∑
i=1

σi(yi − η)j (mod pjb) (1 6 j 6 k).

Recall the notation from the preamble to Lemma 4.1, and write

Gσ
a,b(α; ξ, η; m) =

∑
ζ∈Bσ

a,b
(m;ξ,η)

k∏
i=1

fkb(σiα; ζi).

Then on considering the underlying Diophantine system, it follows from (6.1)

and (6.3) that

(6.4) Kσ,τ
a,b (X; ξ, η) =

pb∑
m1=1

· · ·
pkb∑
mk=1

∮
|Gσ

a,b(α; ξ, η; m)2Fτ
b (α; η)2u| dα.
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An application of Cauchy’s inequality in combination with Lemma 4.1 yields

the upper bound

|Gσ
a,b(α; ξ, η; m)|2 6 card(Bσa,b(m; ξ, η))

∑
ζ∈Bσ

a,b
(m;ξ,η)

k∏
i=1

|fkb(α; ζi)|2(6.5)

�M
1
2
k(k−1)(a+b)

∑
ζ∈Bσ

a,b
(m;ξ,η)

k∏
i=1

|fkb(α; ζi)|2.

Next, on substituting (6.5) into (6.4) and considering the underlying Diophan-

tine system, we deduce that

(6.6)

Kσ,τ
a,b (X; ξ, η)�M

1
2
k(k−1)(a+b)

∑
16ζ6pkb

ζ≡ξ (mod pa)

∮ ( k∏
i=1

|fkb(α; ζi)|2
)
|Fτ
b (α; η)|2u dα.

Notice that the utility of the conditioning of the two initial blocks of k variables

in (6.1) has now expired, and indeed in (6.6) this conditioning is abandoned

without ill consequences for the argument to follow.

Observe next that by Hölder’s inequality, one has

∑
16ζ6pkb

ζ≡ξ (mod pa)

k∏
i=1

|fkb(α; ζi)|2 =
( ∑

16ζ6pkb

ζ≡ξ (mod pa)

|fkb(α; ζ)|2
)k

6 (pkb−a)k−1
∑

16ζ6pkb

ζ≡ξ (mod pa)

|fkb(α; ζ)|2k.

Then it follows from (6.6) that

(6.7)

Kσ,τ
a,b (X; ξ, η)�M

1
2
k(k−1)(a+b)(Mkb−a)k max

16ζ6pkb

∮
|fkb(α; ζ)2kFτ

b (α; η)2u| dα.

On recalling that s = uk, an application of Hölder’s inequality supplies the

bound

(6.8)

∮
|fkb(α; ζ)2kFτ

b (α; η)2u|dα 6 U1−k/s
1 U

k/s
2 ,

where

U1 =

∮
|Fτ
b (α; η)|2u+2 dα

and

U2 =

∮
|Fτ
b (α; η)2fkb(α; ζ)2s| dα.
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On considering the underlying Diophantine system, it follows from Lemma 3.1

that

U1 6
∮
|fb(α; η)|2s+2k dα� Js+k(X/M

b).

Thus, on recalling the definition (3.4), we find that∮
|fkb(α; ζ)2kFτ

b (α; η)2u|dα� (Js+k(X/M
b))1−k/s(Iτb,kb(X; η, ζ))k/s

� (Js+k(X/M
b))1−k/s(Ib,kb(X))k/s.

Finally, on substituting the latter estimate into (6.7), the conclusion of the

lemma is immediate. �

Before proceeding further, we pause to extract a crude but simple bound

for Ka,b(X) of value when b is large.

Lemma 6.2. Suppose that a and b are integers with 0 6 a < b 6 θ−1.

Then
[[Ka,b(X)]]� Xηs+k+δ(M b−a)

1
2
k(k+1).

Proof. Consider fixed integers ξ and η with 1 6 ξ 6 pa and 1 6 η 6 pb,

and k-tuples σ, τ ∈ Σk. On considering the underlying Diophantine system

and applying Hölder’s inequality, we deduce from (3.5) that

Kσ,τ
a,b (X; ξ, η) 6

∮
|fa(α; ξ)2kfb(α; η)2s|dα

6
(∮
|fa(α; ξ)|2s+2k dα

)k/(s+k)(∮
|fb(α; η)|2s+2k dα

)s/(s+k)
.

In view of the hypothesis b 6 θ−1, we therefore deduce from Lemma 3.1 that

Ka,b(X)�(Js+k(X/M
a))k/(s+k)(Js+k(X/M

b))s/(s+k).

Consequently, on recalling (3.9) and (3.11), it follows that

[[Ka,b(X)]]�
Xδ
Ä
(X/Ma)k/(s+k)(X/M b)s/(s+k)

ä2s+2k− 1
2
k(k+1)+ηs+k

(X/M b)2s(X/Ma)2k− 1
2
k(k+1)

� Xηs+k+δ(M b−a)
1
2
k(k+1)s/(s+k).

The conclusion of the lemma is now immediate. �

By substituting the estimate supplied by Lemma 5.3 into the conclusion

of Lemma 6.1, we obtain the basic iterative relation.

Lemma 6.3. Suppose that a and b are integers with 0 6 a < b 6 2
3(kθ)−1.

Put H = d1
2(k − 1)be. Then there exists an integer h, with 0 6 h < H , having
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the property that

[[Ka,b(X)]]�XδM−7kh/4(X/M b)ηs+k(1−k/s)[[Kb,kb+h(X)]]k/s

+M−kH/(3s)(X/M b)ηs+k .

Proof. On recalling (3.9), it follows from Lemma 6.1 that

(6.9)

[[Ka,b(X)]]� (M b)2s(Ma)2k− 1
2
k(k+1)M

1
2
k(k−1)(b+a)(Mkb−a)kT

1−k/s
1 T

k/s
2 ,

where

T1 =
Js+k(X/M

b)

X2s+2k− 1
2
k(k+1)

and T2 =
Ib,kb(X)

X2s+2k− 1
2
k(k+1)

.

But in view of (3.2), one has

(6.10) T1 � (M−b)2s+2k− 1
2
k(k+1)(X/M b)ηs+k+δ.

Write H = d1
2(k − 1)be, and note that the hypotheses of the statement of the

lemma ensure that

kb+H 6 kb+ 1
2(k − 1)b+ 1

2 6
3
2kb 6 θ

−1.

Consequently, it follows from Lemma 5.3 that there exists an integer h with

0 6 h < H having the property that

T2 �
Mh(k−1)Kb,kb+h(X)

X2s+2k− 1
2
k(k+1)

+
M−H/2(X/M b)ηs+k

(Mkb)2s(M b)2k− 1
2
k(k+1)

.

On recalling (3.9), we therefore see that

(6.11) T2 � (M−kb)2s(M−b)2k− 1
2
k(k+1)Ω,

in which we have written

Ω = M−(2s−k+1)h[[Kb,kb+h(X)]] +M−H/2(X/M b)ηs+k .

Substituting (6.10) and (6.11) into (6.9), we deduce that

[[Ka,b(X)]]�Mω(a,b)(X/M b)(1−k/s)(ηs+k+δ)Ωk/s,

in which we have written

ω(a, b) = 2sb+ (2k − 1
2k(k + 1))a+ 1

2k(k − 1)(b+ a) + k(kb− a)

− (1− k/s)(2s+ 2k − 1
2k(k + 1))b− (2skb+ (2k − 1

2k(k + 1))b)k/s.

A modicum of computation reveals that ω(a, b) = 0, and thus we may infer

that

[[Ka,b(X)]]� (M−H/2)k/s(X/M b)ηs+k+δ(1−k/s)

+XδM−(2s−k+1)hk/s(X/M b)ηs+k(1−k/s)[[Kb,kb+h(X)]]k/s.
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The conclusion of the lemma follows on noting that δ may be assumed small

enough that (X/M b)δ(1−k/s) � MkH/(6s), and further that the assumptions

s > k2 and k > 2 together imply that 2s− k + 1 > 7
4s. �

7. The iterative process

The estimate supplied by Lemma 5.4 bounds Js+k(X) in terms of K0,1(X),

and Lemma 6.3 relates Ka,b(X), for b > a > 0, to Kb,kb+h(X) for some integer

h with 0 6 h 6 1
2(k − 1)b. By repeatedly applying Lemma 6.3, therefore, we

are able to bound Js+k(X) in terms of the quantity Kc,d(X), with c and d

essentially as large as we please. Unfortunately, this process is not particularly

simple to control, largely owing to the possibility that at any point in our

iteration, a value of h in the expression Kb,kb+h(X) may be forced upon us with

h > 0. This defect in our procedure may accelerate us too rapidly towards the

final step of the iteration. Our goal in this section, therefore, is to control the

iterative process at a fine enough level that its potential is not substantially

eroded.

Lemma 7.1. Suppose that a and b are integers with 0 6 a < b 6 2
3(kθ)−1.

Suppose, in addition, that there exist nonnegative numbers ψ, c and γ, with

c 6 (2s/k)N , for which

(7.1) Xηs+k(1+ψθ) � XcδM−γ [[Ka,b(X)]].

Then, for some nonnegative integer h with h 6 1
2(k − 1)b, one has

Xηs+k(1+ψ′θ) � Xc′δM−γ
′
[[Ka′,b′(X)]],

where

ψ′ = (s/k)ψ + (s/k − 1)b, c′ = (s/k)(c+ 1), γ′ = (s/k)γ + 7
4sh,

a′ = b and b′ = kb+ h.

Proof. Since we may suppose that c 6 (2s/k)N and δ < (Ns)−3N , we have

cδ < s−2N/3 < θ/(3s),

and hence Xcδ < M1/(3s). In addition, one has M1/(3s) > Xδ. Consequently, it

follows from Lemma 6.3 that there exists an integer h with 0 6 h < d1
2(k−1)be

with the property that

[[Ka,b(X)]]�M−k/(3s)Xηs+k +XδM−7kh/4(X/M b)(1−k/s)ηs+k [[Kb,kb+h(X)]]k/s.

In view of the hypothesised upper bound (7.1), therefore, we deduce that

Xηs+k(1+ψθ)�Xηs+k−δ+X(c+1)δM−γ−7kh/4(X/M b)(1−k/s)ηs+k [[Kb,kb+h(X)]]k/s,

whence

Xηs+k(k/s+(ψ+(1−k/s)b)θ) � X(c+1)δM−γ−7kh/4[[Kb,kb+h(X)]]k/s.
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The conclusion of the lemma follows on raising left- and right-hand sides here

to the power s/k. �

Repeated application of Lemma 7.1 provides a series of upper bounds for

ηs+k. What remains is to ensure that the upper bound b 6 2
3(kθ)−1, required

by the hypotheses of the lemma, does not preclude the possibility of making

many iterations.

Lemma 7.2. Whenever s > k2, one has ηs+k = 0.

Proof. In the final moments of our proof, we find it convenient to restrict

s to be k2. However, our argument is made more illuminating by avoiding this

restriction in the opening stages. We may suppose that ηs+k > 0, for otherwise

there is nothing to prove. We begin by defining three sequences (an), (bn), (hn)

of nonnegative integers for 0 6 n 6 N . We put a0 = 0 and b0 = 1. Then,

when 0 6 n < N , we fix any integer hn with 0 6 hn 6 1
2(k − 1)bn, and then

define

(7.2) an+1 = bn and bn+1 = kbn + hn.

Next we define the auxiliary sequences (ψn), (cn), (γn) of nonnegative real

numbers for 0 6 n 6 N by putting ψ0 = 0, c0 = 1, γ0 = 0. Then, for

0 6 n < N , we define

ψn+1 = (s/k)ψn + (s/k − 1)bn,(7.3)

cn+1 = (s/k)(cn + 1),(7.4)

γn+1 = (s/k)γn + 7
4shn.(7.5)

Notice here that an inductive argument readily confirms that for 0 6 n 6 N ,

one has

cn =
2s− k
s− k

( s
k

)n
− s

s− k
6
(
2 +

1

k − 1

)( s
k

)n
6 3(s/k)n.

We claim that a choice may be made for the sequence (hn) in such a manner

that for 0 6 n 6 N , one has

(7.6) bn < 2(s/k)n

and

(7.7) Xηs+k(1+ψnθ) � XcnδM−γn [[Kan,bn(X)]].

When n = 0, the validity of the relation (7.6) follows by definition, whilst (7.7)

is immediate from (3.9), (3.10) and Lemma 5.4, since the latter together imply

that

Xηs+k−δ < [[Js+k(X)]]� [[K0,1(X)]].
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We prepare the ground for the treatment of larger indices n with a pre-

liminary discussion of the recurrence relations (7.2) to (7.5). Observe first that

when m > 0, one has

γm+1 − 7
4k

2bm+1 > γm+1 − 7
4sbm+1 = (s/k)(γm − 7

4k
2bm).

But γ0− 7
4k

2b0 = −7
4k

2, and so it follows by induction that when 0 6 m 6 N ,

one has

(7.8) γm > 7
4k

2(bm − (s/k)m).

Suppose now that the desired conclusions (7.6) and (7.7) have been es-

tablished for the index n < N . Then as a consequence of (7.6) one has

kbnθ < k(s/k)n−N−1 < 2
3 , whence bn < 2

3(kθ)−1. We may therefore apply

Lemma 7.1 to deduce from (7.7) that there exists a nonnegative integer h,

with h 6 1
2(k − 1)bn, for which one has the upper bound

(7.9) Xηs+k(1+ψ′θ) � Xc′δM−γ
′
[[Ka′,b′(X)]],

where

(7.10) a′ = bn = an+1, b′ = kbn + h,

ψ′ = (s/k)ψn + (s/k − 1)bn = ψn+1,

c′ = (s/k)(cn + 1) = cn+1,

γ′ = (s/k)γn + 7
4sh.(7.11)

Let us suppose, if possible, that b′ > 2(s/k)n+1. The relations (7.10) and

(7.11) then combine with (7.8) to show that

γ′ = (s/k)γn + 7
4s(b

′ − kbn)(7.12)

> (s/k)(γn − 7
4k

2bn) + 7
4k

2b′

> 7
4k

2(b′ − (s/k)n+1) > 7
8k

2b′.

But b′ = kbn + h 6 3
2kbn < θ−1, and so it follows from Lemma 6.2 that

(7.13) [[Ka′,b′(X)]]� Xηs+k+δ(M b′)
1
2
k(k+1).

Thus, on substituting (7.12) and (7.13) into (7.9), we arrive at the upper bound

Xηs+k(1+ψn+1θ) � Xηs+k+(cn+1+1)δ(M b′)
1
2
k(k+1)− 7

8
k2 .

We now recall that cn+1 6 3(s/k)n+1 and thus confirm thatX(cn+1+1)δ < M1/2.

In this way, we obtain the upper bound Xηs+kψn+1θ �M−1/2. Since ψn+1 and

θ are both positive, we are forced to conclude that ηs+k < 0, contradicting

our opening hypothesis. The assumption that b′ > 2(s/k)n+1 is therefore

untenable, and so we must in fact have b′ < 2(s/k)n+1. We take hn to be the

integer h at hand, so that b′ = bn+1 and γ′ = γn+1, and thereby we obtain the
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desired conclusion that (7.6) and (7.7) hold with n replaced by n + 1. This

completes the present inductive step.

At this point, we have confirmed the validity of the relations (7.6) and

(7.7) for 0 6 n 6 N . We next bound the sequences occurring in (7.7) so as

to extract a suitable conclusion. The bound cn 6 3(s/k)n has already been

confirmed, and the lower bound γn > 0 already suffices for our purposes at

this stage. In addition, the relation (7.2) plainly implies that bn > kn, whence

from (7.3) we deduce that for s > k2, one has

ψn+1 > kψn + (k − 1)kn,

and by induction this delivers the lower bound ψn > n(k − 1)kn−1. Finally,

we find from (7.6) that bNθ < k/s < 1, whence bN < θ−1. Making use of

Lemma 6.2, therefore, we find from (7.7) that

(7.14) Xηs+k(1+ψNθ) � Xηs+k+(cN+1)δ(M bN )
1
2
k(k+1) � Xηs+k+k2 .

But since θ = 1
2(k/s)N+1, it follows that

ηs+k 6
k2

ψNθ
6

2k2(s/k)N+1

N(k − 1)kN−1
.

It is at this point only that we restrict s to be k2, and thus we obtain the upper

bound ηk(k+1) 6 2k4/N . But we are at liberty to take N as large as we please

in terms of k, and thus ηk(k+1) can be made arbitrarily small. We are therefore

forced to conclude that in fact ηk(k+1) = 0. But then, as in the discussion of

the opening paragraph of Section 3, we may conclude that ηs = 0 whenever

s > k(k + 1). This completes the proof of the lemma. �

We have now reached the crescendo of this opus, for in view of (2.1) and

(2.2), the conclusion of Lemma 7.2 already establishes Theorem 1.1.

A perusal of the proof of Lemma 7.2 might give the impression that it

is critical to the success of our iterative process that s = k2, and that the

method is inherently unstable. This notion is, however, mistaken. If one were

to have s > 3
2k

2, then one easily reaches the conclusion that ηs+k = 0 simply

by comparing the rates of growth of ψn and bn in the above argument. Such a

procedure can also be adapted, with care, to the range s > 5
4k

2. It is only when

k2 6 s 6 5
4k

2 that the behaviour of the sequences (bn) and (ψn), depending

as they do on (hn), become so difficult to control. The restriction to the case

s = k2 should, therefore, be seen rather as a simplifying manoeuvre rather

than an inescapable mandate.

8. Estimates of Weyl type

The derivation of our upper bounds for Weyl sums, and the application of

these estimates to analyse the distribution of polynomials modulo 1, is easily
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accomplished by applying Theorem 1.1 within results familiar from the litera-

ture. We are therefore concise in our discussion of the associated arguments.

The proof of Theorem 1.5. With the hypotheses of the statement of The-

orem 1.5, it follows from [30, Th. 5.2] that for each natural number s, one

has

fk(α;X)� (Js,k−1(2X)X
1
2
k(k−1)(q−1 +X−1 + qX−j))1/(2s) log(2X).

But from Theorem 1.1 it follows that when s = k(k − 1), one has

Js,k−1(2X)� X2s− 1
2
k(k−1)+ε,

and thus

fk(α;X)� X1+ε(q−1 +X−1 + qX−j)1/(2k(k−1)).

As we shall find in Section 9 below, when s > k2 − k + 1, one has also the

ε-free upper bound Js,k−1(X)� X2s− 1
2
k(k−1), and in like manner this delivers

the estimate

fk(α;X)� X(q−1 +X−1 + qX−j)1/(2k2−2k+2) log(2X). �

The proof of Theorem 1.6. One may establish Theorem 1.6 by applying

the argument underlying the proofs of [3, Ths. 4.3 and 4.4]. Let ε be a suffi-

ciently small positive number. We begin by fixing τ to be a positive number

with τ 6 1/(4k(k − 1))− ε and then put A = X1−τ . Observe next that Theo-

rem 1.1 shows that one may replace θ by ε in the case l = k of [3, Th. 4.3]. In

this way, we find that the hypotheses of the statement of Theorem 1.6 imply

that there exist coprime pairs of integers qj , bj (2 6 j 6 k) such that

qj > 1, |qjαj − bj | 6 Xε−j(X/A)2k(k−1) (2 6 j 6 k)

and such that the least common multiple q0 of q2, . . . , qk satisfies

q0 6 X
ε(X/A)2k(k−1).

Notice here that

Xε(X/A)2k(k−1) 6 Xε(Xτ )2k(k−1) 6 X
1
2
−3ε.

Write r for q0 and vj for bjq0/qj (2 6 j 6 k). Then one has

|rαj − vj | 6 X2ε−j(X/A)4k(k−1) 6 X1−j/(4k4) (2 6 j 6 k).

Next, denote by d the greatest common divisor d = (r, v2, . . . , vk). Then,

with the hypotheses of the statement of Theorem 1.6, it is a consequence of

[3, Lemma 4.6] that there is a natural number t with t 6 2k2 such that

trd−1 6 (X/A)kX3kε,

t|rαj − vj |d−1 6 (X/A)kX3kε−j (2 6 j 6 k),

‖trd−1α1‖ 6 (X/A)kX3kε−1.
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But (X/A)k = Xkτ , and so whenever δ > kτ + 3kε, one may conclude that

there exist integers q, a1, . . . , ak such that

1 6 q 6 Xδ and |qαj − aj | 6 Xδ−j (1 6 j 6 k).

Since we have supposed ε to be sufficiently small, the same conclusion follows

whenever δ > kτ , and so the proof of Theorem 1.6 is complete. �

The proof of Theorem 1.7. We may apply the argument of the proof of

[3, Th. 4.4], substituting the modifications available from Theorem 1.6 above

and its proof. Let δ be a positive number. Suppose that P � X and

(MXP−1)4k(k−1) 6 X1−δ. Then we find that when

M∑
m=1

|fk(mα;X)| > P,

then there exist integers y, u1, . . . , uk such that

1 6 y 6M(MXP−1)kXε and |yαj − uj | 6 (MXP−1)kXε−j (1 6 j 6 k).

From here, as in the proof of [3, Th. 4.5], the remaining part of our argument

is straightforward. If one has

(8.1) min
16n6X

‖α1n+ · · ·+ αkn
k‖ > Xδ−τ(k),

then with M = [Xτ(k)−δ] + 1, one obtains the lower bound

M∑
m=1

|fk(mα;X)| > 1
6X.

The above discussion then shows that there exists a natural number y such

that

y �Mk+1Xε � X(k+1)τ(k)+ε and ‖yαj‖ � Xkτ(k)−j+ε (1 6 j 6 k).

Thus we find that y 6 X and that

‖α1y + · · ·+ αky
k‖ 6

k∑
j=1

Xj−1‖yαj‖ � Xkτ(k)−1+ε < X−τ(k).

This upper bound contradicts our earlier hypothesis (8.1), and thus we are

forced to conclude that

min
16n6X

‖α1n+ · · ·+ αkn
k‖ 6 Xδ−τ(k).

This completes the proof of Theorem 1.7. �
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9. Tarry’s problem, and related topics

Our discussion of Tarry’s problem follows a familiar path. Let s be a

natural number with s 6 k3, and define ρ(h) to be the number of integral

solutions of the system of equations
s∑
i=1

xji = hj (1 6 j 6 k),

with 1 6 x 6 X. In addition, let σ(g) denote the number of integral solutions

of the system of equations
s∑
i=1

xji = gj (1 6 j 6 k + 1),

with 1 6 x 6 X. Observe that

ρ(h) =
∑

16gk+16sXk+1

σ(h, gk+1).

Consequently, if for all values of h one were to have σ(h, gk+1) 6= 0 only for a

set A(h) of values of gk+1 of cardinality at most t, then it would follow from

Cauchy’s inequality that

ρ(h)2 6
( ∑

16gk+16sXk+1

gk+1∈A(h)

σ(h, gk+1)
)2
6 card(A(h))

∑
16gk+16sXk+1

σ(h, gk+1)2.

If such were the case, then one would have

Js,k(X) =
∑

16h16sX

· · ·
∑

16hk6sXk

ρ(h)2

6 t
∑

16h16sX

· · ·
∑

16hk6sXk

∑
16gk+16sXk+1

σ(h, gk+1)2 = tJs,k+1(X).

What we have shown is that when X is sufficiently large, and Js,k(X) >

tJs,k+1(X), then there exists a choice of h such that there are more than t

choices for gk+1 with σ(h, gk+1) > 0. There therefore exists a solution of the

system
s∑
i=1

xji1 =
s∑
i=1

xji2 = . . . =
s∑
i=1

xjit (1 6 j 6 k),

in which the sums
∑s
i=1 x

k+1
il (1 6 l 6 t) take distinct values. We have therefore

shown that whenever

(9.1) Js,k(X) > tJs,k+1(X),

then W (k, t) 6 s.
We seek to establish that for some positive number δ, one has

(9.2) Js,k+1(X)� X2s− 1
2
k(k+1)−δ.
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In view of the lower bound (1.5), an estimate of this quality suffices to establish

(9.1). But from Theorem 1.1, one has

Js,k+1(X)� X2s− 1
2

(k+1)(k+2)+ε

whenever s > (k + 1)(k + 2). Moreover, the estimate

Jk+2,k+1(X)� Xk+2

follows from [31], and indeed earlier results would suffice here. By interpolating

via Hölder’s inequality, therefore, we find that when s is an integer with k+2 6
s 6 (k + 1)(k + 2), then

Js,k+1(X)� X2s− 1
2

(k+1)(k+2)+ηs+ε,

where

ηs = ((k + 1)(k + 2)− s)
Ç 1

2(k + 1)(k + 2)− (k + 2)

(k + 1)(k + 2)− (k + 2)

å
= 1

2(1− 1/k)((k + 1)(k + 2)− s).

It follows that the condition (9.2) is satisfied whenever

1
2(1− 1/k)((k + 1)(k + 2)− s) < k + 1,

or equivalently,

(k + 1)(k + 2)− s < 2k

Å
k + 1

k − 1

ã
= 2k + 4 +

4

k − 1
.

We deduce that (9.2) holds whenever s > (k + 1)(k + 2) − 2k − 4, and hence

W (k, t) 6 k2 + k − 2. This completes the proof of Theorem 1.3.

There may be some scope for improvement in the upper bound presented

in Theorem 1.3 by exploiting the sharpest bounds available from Vinogradov’s

mean value theorem for smaller moments (see [37], [39], [10] and [6]). In this

way, one might hope to improve even the coefficient of k in the upper bound

for W (k, h), though not that of k2. Of course, in the low degree cases in which

k 6 4, the above proof of Theorem 1.3 already yields W (k, t) 6 k2 + k − 3.

However, stronger conclusions are available in such circumstances.

The proof of Theorem 1.2. Let s and k be natural numbers with k > 3

and s > k2 + k + 1, and let X be a positive number sufficiently large in

terms of s and k. We follow the argument of the proof of [42, Th. 3]. When

1 6 q 6 X1/k, 1 6 aj 6 q (1 6 j 6 k) and (q, a1, . . . , ak) = 1, define the major

arc M(q,a) by

M(q,a) = {α ∈ [0, 1)k : |qαj − aj | 6 X1/k−j (1 6 j 6 k)}.
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It is not hard to check that the arcs M(q,a) are disjoint. Let M denote the

union of the major arcs M(q,a) with q and a as above, and define the minor

arcs m by m = [0, 1)k \M. Then from (1.2), we have

(9.3) Js,k(X) =

∫
M
|f(α;X)|2s dα +

∫
m
|f(α;X)|2s dα.

We first bound the contribution of the minor arcs. As a consequence of

Theorem 1.6, one finds that

sup
α∈m
|f(α;X)| 6 X1−τ+ε,

where τ−1 = 4k(k − 1). Then it follows from Theorem 1.1 that∫
m
|f(α;X)|2s dα�

Å
sup
α∈m
|f(α;X)|

ã2s−2k2−2k ∮
|f(α;X)|2k2+2k dα(9.4)

� (X1−τ+ε)2s−2k2−2kX
3
2
k(k+1)+ε

� X2s− 1
2
k(k+1)−1/(3k2).

Next we discuss the major arc contribution. When α ∈ M(q,a) ⊆ M,

write

V (α; q,a) = q−1S(q,a)I(α− a/q;X),

where

S(q,a) =
q∑
r=1

e((a1r + · · ·+ akr
k)/q)

and

I(β;X) =

∫ X

0
e(β1γ + · · ·+ βkγ

k) dγ.

In addition, define the function V (α) to be V (α; q,a) when α ∈M(q,a) ⊆M

and to be zero otherwise. Then the argument concluding [42, §3] shows that∫
M
|f(α;X)|2s dα−

∫
M
|V (α)|2s dα(9.5)

� X1+2/k
(∮
|f(α;X)|2s−2 dα +

∮
|V (α)|2s−2 dα

)
.

When α ∈ M(q,a) ⊆ M, one has (q, a1, . . . , ak) = 1 and |qαj − aj | 6
X1/k−j (1 6 j 6 k). Then it follows from [30, Ths. 7.1 and 7.3] that when

α ∈M(q,a) ⊆M, one has

V (α)� Xqε(q + |qα1 − a1|X + · · ·+ |qαk − ak|Xk)−1/k.

Consequently, one finds that when t > 1
2k(k + 1), one has∫

M
|V (α)|2t dα� X2tWZ,
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where

W =
∑

16q6X1/k

q∑
a1=1

· · ·
q∑

ak=1

(qε−1/k)2t

and

Z =
k∏
j=1

∫ X1/k−j

0
(1 + βjX

j)−2t/k2 dβj .

But since 2t > k(k + 1), we obtain the upper bounds

(9.6) W � X1/(3k)
∞∑
q=1

q−5/4 � X1/(3k)

and

(9.7) Z �
k∏
j=1

∫ ∞
0

(1 + βjX
j)−1−1/k dβj � X−

1
2
k(k+1).

Thus, in particular, we deduce that when s > k2 + k + 1, then∫
M
|V (α)|2s−2 dα� X2s−2− 1

2
k(k+1)+1/(3k).

In combination with Theorem 1.1, this leads from (9.5) to the asymptotic

relation

(9.8)

∫
M
|f(α;X)|2s dα−

∫
M
|V (α)|2s dα� X2s− 1

2
k(k+1)−1/(3k).

The argument employed in deriving (9.6) and (9.7) is readily adapted to

show that the singular series S(s, k) defined in (1.8), and the singular integral

J(s, k) defined in (1.9), both converge absolutely, and that∫
M
|V (α)|2s dα = S(s, k)J(s, k) +O(X2s− 1

2
k(k+1)−1/(3k)).

The asymptotic formula claimed implicitly in Theorem 1.2 now follows by

substituting (9.4) and (9.8) into (9.3). This completes the proof of Theo-

rem 1.2. �

As essentially was observed by Vaughan, one must have both S(s, k)� 1

and J(s, k) � 1 (see the conclusion of [30, §7.3]). For otherwise one would

have ∮
|f(α;X)|2s dα = o(X2s− 1

2
k(k+1)),

which contradicts the elementary lower bound (1.5).

An argument similar to that employed in the proof of Theorem 1.2 delivers

an asymptotic formula for the number of solutions of a more general diagonal
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Diophantine system. When s and k are natural numbers, and aij are integers

for 1 6 i 6 k and 1 6 j 6 s, we write

φi(x) =
s∑
j=1

aijx
i
j (1 6 i 6 k),

and we consider the Diophantine system

(9.9) φi(x) = 0 (1 6 i 6 k).

We write N(B) for the number of integral solutions of the system (9.9) with

|x| 6 B. We next define the (formal) real and p-adic densities associated with

the system (9.9), and here we follow Schmidt [25]. When L > 0, define

λL(η) =

L(1− L|η|), when |η| 6 L−1,

0, otherwise.

We then put

µL =

∫
|ξ|61

k∏
i=1

λL(φi(ξ)) dξ.

The limit σ∞ = limL→∞ µL, when it exists, is called the real density. Mean-

while, given a natural number q, we write

M(q) = card{x ∈ (Z/qZ)s : φi(x) ≡ 0 (mod q) (1 6 i 6 k)}.

For each prime number p, we then put

σp = lim
H→∞

pH(k−s)M(pH),

provided that this limit exists, and refer to σp as the p-adic density.

Theorem 9.1. Let s and k be natural numbers with k > 3 and s >
2k2 + 2k + 1. Suppose that aij (1 6 i 6 k, 1 6 j 6 s) are nonzero integers.

Suppose, in addition, that the system of equations (9.9) possess nonsingular

real and p-adic solutions for each prime number p. Then one has

N(B) ∼ σ∞
(∏
p

σp
)
Bs− 1

2
k(k+1).

In particular, the system (9.9) satisfies the Hasse Principle.

We will not offer any details of the proof here, the argument following

in most respects that of the proof of Theorem 1.2. We note only that the

system (9.9), if singular, is easily shown to have a singular locus of affine

dimension at most k − 1, which is harmless in the analysis. We note also that

the restriction that aij 6= 0 (1 6 i 6 k, 1 6 j 6 s) may be largely removed

by elaborating on the basic argument. We emphasise that the most striking

feature of Theorem 9.1 is that such a conclusion cannot possibly hold when

s < 1
2k(k+1). Thus, for the very first time for a system of diagonal equations of
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higher degree, we have an asymptotic formula in which the number of variables

is just four times the best possible result. Hitherto, the number of variables

required to achieve a successful analysis would be roughly 2 log k times the

best possible result, a factor which becomes arbitrarily large as k increases.

We turn our attention next to the Hilbert-Kamke problem, a generali-

sation of Waring’s problem considered first by Hilbert [13]. When n1, . . . , nk
are natural numbers, let Rs,k(n) denote the number of solutions in natural

numbers x of the system of equations

(9.10)
s∑
i=1

xji = nj (1 6 j 6 k).

Put

X = max
16j6k

n
1/j
j ,

and then write

Js,k(n) =

∫
Rk
I(β; 1)se(−β1n1/X − · · · − βknk/Xk) dβ

and

Ss,k(n) =
∞∑
q=1

∑
16a6q

(q,a1,...,ak)=1

(q−1S(q,a))se(−(a1n1 + · · ·+ aknk)/q).

The local solubility conditions associated with the system (9.10) are quite

subtle, and we refer the reader to [1] for a discussion of the conditions under

which real and p-adic solutions may be expected to exist for the system (9.10).

It is easy to see, however, that the conditions

n
j/k
k 6 nj 6 s

1−j/kn
j/k
k (1 6 j 6 k)

are needed. One also finds that p-adic solubility is not assured without at least

2k variables.

Theorem 9.2. Let s and k be natural numbers with k > 3 and s >
2k2 +2k+1. Suppose that the natural numbers n1, . . . , nk are sufficiently large

in terms of s and k. Put X = max16j6k n
1/j
j . Suppose, in addition, that the

system (9.10) has nonsingular real and p-adic solutions. Then one has

Rs,k(n) = Js,k(n)Ss,k(n)Xs− 1
2
k(k+1) + o(Xs− 1

2
k(k+1)).

We refer the reader to [1], [20], [21] for the many details associated with a

successful treatment of this problem. The technology available at the time of

writing of the latter papers made necessary the constraint s > (4+o(1))k2 log k

in place of the lower bound s > 2k2 + 2k+ 1 in Theorem 9.2. Our observation

here is that a successful local-global analysis is now available via the circle
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method when the number of variables grows like 2k2 + 2k+ 1, only a factor of

4 away from what is likely to be best possible.

10. The asymptotic formula in Waring’s problem

The proof of Theorem 1.4 would be routine were our goal the less precise

bound ‹G(k) 6 2k2 + 2k + 1. Saving four additional variables requires some

discussion that hints at possible new strategies for transforming estimates for

Js,k(X) into upper bounds for ‹G(k). En route, we also improve some old

estimates of Hua [17].

Write

g(α) =
∑

16x6X

e(αxk),

and when s ∈ N, define

Is(X) =

∫ 1

0
|g(α)|2s dα.

Then on considering the underlying Diophantine system, one has

Is(X) =
∑

|h1|6sX
· · ·

∑
|hk−1|6sXk−1

∮
|f(α;X)|2se(−h1α1 − · · · − hk−1αk−1) dα

� X
1
2
k(k−1)

∮
|f(α;X)|2s dα = X

1
2
k(k−1)Js,k(X).

Thus we obtain the classical bound

(10.1) Is(X)� X2s−k+ηs+ε.

Ford [9] obtained a bound potentially sharper, valid for each natural num-

ber m with 1 6 m 6 k, and s > 1
2m(m− 1), which is tantamount to

Is(X)� X2s−k+η∗s,m+ε,

where η∗s,m = 1
mηs− 1

2
m(m−1). A little later, this conclusion was obtained in-

dependently by Ustinov [27]. Owing to the efficiency of Theorem 1.1, this

estimate proves to be no sharper than that provided by (10.1), at least in ap-

plications to the asymptotic formula in Waring’s problem. Instead we offer

a very modest refinement of (10.1). The idea underlying this refinement is

related to one first shown to the author by Bob Vaughan in the first year of

the author’s Ph.D. studies, in 1988.

Lemma 10.1. For each natural number s, one has

Is(X)� Xε(X2s−k−1+ηs,k +X2s−k+ηs,k−1).
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Proof. Define the exponential sum F (β) = Fk(β;X) by

F (β) =
∑

16x6X

e(βkx
k + βk−2x

k−2 + · · ·+ β1x).

Thus, to be precise, the argument of the exponentials in F (β) is a polynomial

of degree k in which the coefficient of the monomial of degree k − 1 is zero.

Also, define Υk(X;h) to be the number of integral solutions of the Diophantine

system

s∑
i=1

(xji − y
j
i ) = 0 (1 6 j 6 k, j 6= k − 1),(10.2)

s∑
i=1

(xk−1
i − yk−1

i ) = h,

with 1 6 x,y 6 X. Then on considering the underlying Diophantine system,

one finds that

(10.3)

∮
|F (β)|2s dβ =

∑
|h|6sXk−1

Υk(X;h).

By applying an integer shift z to the variables in the system (10.2), we

find that Υk(X;h) counts the number of integral solutions of the Diophantine

system

s∑
i=1

((xi − z)j − (yi − z)j) = 0 (1 6 j 6 k, j 6= k − 1),

s∑
i=1

((xi − z)k−1 − (yi − z)k−1) = h,

with 1 + z 6 x,y 6 X + z. But by applying the Binomial Theorem, we find

that x,y satisfies this system of equations if and only if

s∑
i=1

(xji − y
j
i ) = 0 (1 6 j 6 k − 2)(10.4)

s∑
i=1

(xk−1
i − yk−1

i ) = h,

s∑
i=1

(xki − yki ) = khz.

If we restrict the shifts z to lie in the interval 1 6 z 6 X, then we see that an

upper bound for Υk(X;h) is given by the number of integral solutions of the

system (10.4) with 1 6 x,y 6 2X. On considering the underlying Diophantine

system, we therefore deduce from (10.3) that for each integer z with 1 6 z 6 X,
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one has∮
|F (β)|2s dβ 6

∑
|h|6sXk−1

∮
|f(α; 2X)|2se(−(kzαk + αk−1)h) dα.

Hence

∮
|F (β)|2s dβ � X−1

∑
16z6X

∮
|f(α; 2X)|2s min{Xk−1, ‖kzαk + αk−1‖−1} dα

(10.5)

= X−1
∮
|f(α; 2X)|2sΨ(αk, αk−1) dα,

where we have written

Ψ(αk, αk−1) =
∑

16z6X

min{Xk−1, ‖kzαk + αk−1‖−1}.

Suppose that αk ∈ R and that b ∈ Z and r ∈ N satisfy (b, r) = 1 and

|αk − b/r| 6 r−2. Then it follows from [3, Lemma 3.2]4 that

Ψ(αk, αk−1)� (Xk−1 + r log(2r))(X/r + 1)(10.6)

� Xk(X−1 + r−1 + rX−k)(log(2r)).

Applying a standard transference principle (compare Exercise 2 of [30, §2.8]),

it follows that

(10.7) Ψ(αk, αk−1)� Xk+ε(X−1+(r+Xk|rαk−b|)−1+(r+Xk|rαk−b|)X−k).

We now return to consider the relation (10.5). Let m denote the set of real

numbers α ∈ [0, 1) having the property that whenever q ∈ N and ‖qα‖ 6 X1−k,

then q > X. Also, let M denote the complementary set [0, 1)\m. By Dirichlet’s

theorem on Diophantine approximation, whenever αk ∈ m, there exists q ∈ N
with q 6 Xk−1 such that ‖qαk‖ 6 X1−k. From the definition of m, one must

have q > X, and hence it follows from (10.6) that

sup
αk∈m

Ψ(αk, αk−1)� Xk−1+ε.

Thus we deduce from (1.2) that∫
m×[0,1)k−1

|f(α; 2X)|2sΨ(αk, αk−1) dα� Xk−1+ε
∮
|f(α; 2X)|2s dα

� Xk−1+εJs,k(2X).

4We note that the strict inequality |αk − b/r| < r−2 imposed by Baker is unnecessary in

the proof of [3, Lemma 3.2]
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Substituting this conclusion into (10.5), we see that∮
|F (β)|2s dβ �Xk−2+εJs,k(2X)(10.8)

+X−1
∫
M×[0,1)k−1

|f(α; 2X)|2sΨ(αk, αk−1) dα.

Let M(q, a) denote the set of real numbers αk ∈ [0, 1) with |qαk − a| 6
X1−k. Then M is the union of the sets M(q, a) with 0 6 a 6 q 6 X and

(a, q) = 1. From (10.7) it follows that when αk ∈M(q, a) ⊆M, one has

Ψ(αk, αk−1)� Xk−1+ε +Xk+ε(q +Xk|qαk − a|)−1.

Define the function Φ(θ) for θ ∈M by putting

Φ(θ) = (q +Xk|qθ − a|)−1

when θ ∈M(q, a) ⊆M. Then we deduce from (10.8) that

(10.9)

∮
|F (β)|2s dβ � Xk−2+εJs,k(2X) +Xk−1+εT ,

where

T =

∫
M

Φ(αk)

∮
|f(β, αk; 2X)|2s dβ dαk.

From Brüdern [7, Lemma 2], we find that∫
M

Φ(αk)|f(β, αk; 2X)|2s dαk

� Xε−k
(
X

∫ 1

0
|f(β, αk; 2X)|2s dαk + |f(β, 0; 2X)|2s

)
,

and hence

T � Xε−k
(
X

∮
|fk(α; 2X)|2s dα +

∮
|fk−1(β; 2X)|2s dβ

)
� Xε−k(XJs,k(2X) + Js,k−1(2X)).

Consequently, from (10.9) we conclude that

(10.10)

∮
|F (β)|2s dβ � Xk−2+εJs,k(2X) +Xε−1Js,k−1(2X).

Next we observe that, on considering the underlying Diophantine system,

one has

Is(X) =
∑

|h1|6sX
· · ·

∑
|hk−2|6sXk−2

R(X; h),
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where R(X; h) denotes the number of integral solutions of the system

s∑
i=1

(xji − y
j
i ) = hj (1 6 j 6 k − 2),

s∑
i=1

(xki − yki ) = 0,

with 1 6 x,y 6 X. Thus, again considering the underlying Diophantine

system, we obtain the upper bound

Is(X)�
∑

|h1|6sX
· · ·

∑
|hk−2|6sXk−2

∮
|F (β)|2se(−β1h1 − · · · − βk−2hk−2) dβ

� X
1
2

(k−1)(k−2)
∮
|F (β)|2s dβ.

In view of (10.10), we therefore arrive at the estimate

Is(X)� X
1
2

(k+1)(k−2)+εJs,k(2X) +X
1
2

(k−1)(k−2)−1+εJs,k−1(2X)

� X2s−k−1+ηs,k+ε +X2s−k+ηs,k−1+ε.

This completes the proof of the lemma. �

From Theorem 1.1, we have ηs,k−1 = 0 for s > k(k − 1). By Hölder’s

inequality, moreover, one finds from Theorem 1.1 that∮
|fk(α;X)|2k2+2k−4 dα 6

(∮
|fk(α;X)|2k2+2k dα

)1−2/(k2+k)

�
(
X

3
2

(k2+k)+ε
)1−2/(k2+k)

� X
3
2

(k2+k)−3+ε.

Consequently, one has ηs,k 6 1 for s > k2 + k − 2. Then by Lemma 10.1, we

obtain the following corollary to Theorem 1.1.

Corollary 10.2. When s > k2 + k − 2, one has Is(X)� X2s−k+ε.

Having prepared the ground, the proof of Theorem 1.4 is now swift. Con-

sider a large integer n, put X = [n1/k] and recall the definition of the sets of

arcs m and M from the proof of Lemma 10.1. From Corollary 10.2 and Weyl’s

inequality (see [30, Lemma 2.4]), one finds that when t > 2k2 + 2k−3, one has∫
m
g(α)te(−nα) dα�

Å
sup
α∈m
|g(α)|

ãt−(2k2+2k−4) ∫ 1

0
|g(α)|2k2+2k−4 dα

� (X1−21−k+ε)t−(2k2+2k−4)X(2k2+2k−4)−k

� Xt−k−2−k
.
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Notice here, of course, that we could have employed the conclusion of Theo-

rem 1.5 in place of Weyl’s inequality. Meanwhile, the methods of [30, §4.4]

show that, under the same conditions on t, one has∫
M
g(α)te(−nα) dα ∼ Γ(1 + 1/k)t

Γ(t/k)
St,k(n)nt/k−1 + o(nt/k−1),

where St,k(n) is defined as in (1.12). Thus we deduce that for t > 2k2 +2k−3,

one has

Rt,k(n) =

∫
M
g(α)te(−nα) dα+

∫
m
g(α)te(−nα) dα

=
Γ(1 + 1/k)t

Γ(t/k)
St,k(n)nt/k−1 + o(nt/k−1),

whence ‹G(k) 6 2k2 + 2k − 3. This completes the proof of Theorem 1.4.

We take this opportunity to point out that L.-K. Hua investigated the

problem of bounding the least integer Ck such that, whenever s > Ck, one has∮
|fk(α;X)|s dα� Xs− 1

2
k(k+1)+ε,

and likewise the least integer Sk such that, whenever s > Sk, one has∮
|Fk(β;X)|s dβ � Xs− 1

2
(k2−k+2)+ε,

pursuing in particular the situation for smaller values of k. His arguments in-

volve a clever application of Weyl differencing in a style that we would describe

in the single equation situation as underlying Hua’s lemma. In Chapter 5 of

[17], one finds tables recording the upper bounds

C3 6 16, C4 6 46, C5 6 110, . . .

and

S3 6 10, S4 6 32, S5 6 86, . . . .

The conclusion of Theorem 1.1 shows that Ck 6 2k(k + 1), an upper bound

superior to the conclusions of Hua for k > 4. Meanwhile, as a consequence

of the estimate (10.10), one obtains the estimate contained in the following

theorem.

Theorem 10.3. Suppose that k > 3 and s > k2 + k − 2. Then one has∮
|Fk(β;X)|2s dβ � X2s− 1

2
(k2−k+2)+ε.

Proof. The discussion leading to Corollary 10.2 shows that ηs,k−1 = 0 for

s > k(k−1) and ηs,k 6 1 for s > k2 +k−2. The desired conclusion is therefore

immediate from (3.8), (3.11) and (10.10). �

Thus we have Sk 6 2k2 +2k−4, an upper bound superior to those of Hua

for k > 5.



1622 TREVOR D. WOOLEY

11. A heuristic argument

We take the opportunity in this section to discuss a heuristic argument

that delivers the bound

(11.1) Js+k(X)� X2s+2k− 1
2
k(k+1)+ε

for s > 1
2k(k+1). In view of the lower bound (1.5), of course, the bound (11.1)

cannot hold for s+k < 1
2k(k+ 1), so is in a strong sense close to best possible.

Our starting point is a heuristic interpretation of Lemma 6.1. In the course

of the proof of Lemma 6.1, a critical role is played by the interpretation of the

system of equations (6.1) by means of the implied congruences (6.3). In some

sense, for each fixed choice of y in (6.3), the conclusion of Lemma 4.1 indicates

that there are at most k!p
1
2
k(k−1)(a+b) possible choices for x with 1 6 x 6 pkb

and x ≡ ξ (mod pa+1) for some ξ ∈ Ξa(ξ). This is transformed via Cauchy’s

inequality into the statement that, with a compensating factor k!p
1
2
k(k−1)(a+b),

the variables in (6.1) are constrained by the additional congruence relations

x ≡ y (mod pkb). Such an interpretation is embodied in the relation (6.6).

An alternative interpretation, which we emphasise is heuristic in nature

and not a statement of fact, is that, by relabelling variables if necessary,

the congruences (6.3) essentially amount in (6.1) to the constraint xj ≡ yj

(mod pjb) (1 6 j 6 k), with an additional compensating factor of k!p
1
2
k(k−1)a.

Indeed, one can prove the initial statement that xj ≡ yj (mod pb) (1 6 j 6 k)

with precisely this compensating factor. Then, by fixing the variables x1, y1,

and considering the system (6.3) with 2 6 j 6 k, one might suppose that a cor-

responding constraint xj ≡ yj (mod p2b) (2 6 j 6 k) might be imposed. Then,

by fixing the variables x2, y2, and considering the system (6.3) with 3 6 j 6 k,

one seeks a corresponding constraint xj ≡ yj (mod p3b) (3 6 j 6 k), and so

on. Such a heuristic implies a new relation to replace (6.6) of the shape

Kσ,τ
a,b (X; ξ, η)�M

1
2
k(k−1)a

∑
16ζ16pb

ζ1≡ξ (mod pa)

· · ·
∑

16ζk6pkb

ζk≡ξ (mod pa)

I(ζ),

where

I(ζ) =

∮ ( k∏
i=1

|fib(α; ζi)|2
)
|Fτ
b (α; η)|2u dα.

Such an assertion at least carries the weight of correctly accounting for the

number of available residue classes, though of course one cannot hope for the

implied degree of independence to be true in anything but an average sense.

From here, an application of Hölder’s inequality leads to the bound

(11.2) Kσ,τ
a,b (X; ξ, η)�M

1
2
k(k−1)a

( k∏
i=1

M ib−aΘib,b(X; η)1/k
)
,
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where

Θc,b(X; η) = max
16ζ6pc

∮
|fc(α; ζ)2kFτ

b (α; η)2u| dα.

A further application of Hölder’s inequality shows as in (6.8) that

Θc,b(X; η)� (Js+k(X/M
b))1−k/s(Ib,c(X))k/s,

and thus we find from (11.2) that

Ka,b(X)�M
1
2
k(k−1)(a+b)+k(b−a)(Js+k(X/M

b))1−k/s
k∏
i=1

(Ib,ib(X))1/s.

Each mean value Ib,ib(X) may be conditioned via Lemma 5.3, and thus one

deduces as in Lemma 6.3 that there exist integers h1, . . . , hk, none too large in

terms of b, with the property that

[[Ka,b(X)]]�M−k/(3s)(X/M b)ηs+k

+Xδ(X/M b)ηs+k(1−k/s)
k∏
i=1

M−7hi/4[[Kb,ib+hi(X)]]1/s.(11.3)

It is (11.3) that represents the critical step in our iteration. Starting from

the relation

Xηs+k−δ < [[Js+k(X)]]� [[K0,1(X)]],

one may apply (11.3) successively to bound Xηs+k−δ in terms first of the k

expressions of the shape [[K1,i+hi(X)]] (1 6 i 6 k), then of k2 expressions of the

shape [[Kb,jb+h′j
(X)]] (1 6 j 6 k), in which b takes values i+hi (1 6 i 6 k), and

so on. This iteration may be analysed in a manner very similar to that used in

the proof of Lemma 7.2, though the complexity is now increased substantially.

The important feature is the number of iterations taken before the exponents

ib+ hi occurring in (11.3) become large in terms of θ. In the argument of the

proof of Lemma 7.2, one finds that at the nth iteration, the relevant exponents

have size roughly kn. From the relation (11.3), one obtains an explosively

growing tree of chains of relations, with the exponents bn increasing from one

step to the next by a factor close to 1, 2, . . . , k − 1 or k. When one considers

the set of all chains, one finds that almost all possible chains have the property

that the exponent bn grows on average like (1
2(k + 1))n. In order to see this,

observe that if l1, . . . , ln are the factors at each step of one possible chain, then

by the Arithmetic-Geometric Mean inequality, one has

l1 · · · ln 6
( l1 + · · ·+ ln

n

)n
.

If one randomly chooses l1, . . . , ln from {1, 2, . . . , k} with equal probability,

then almost all values of (l1 + · · · + ln)/n will be concentrated towards the

mean of {1, 2, . . . , k}, which is 1
2(k + 1). This is a consequence of the Central

Limit Theorem. In this way, one sees that the number of steps permitted
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before the iteration begins to exhaust its usefulness is roughly N if we take

θ = 1
2((k + 1)/2)−N−1 at the outset in place of θ = 1

2k
−N−1. Note that the

latter is indeed the value that we chose for θ in Section 3 when s = k2.

We are led now to a relation of similar shape to (7.14), but replaced now

by

(11.4) Xηs+k(1+(s/k−1)(s/k)N−1θ) � Xηs+k+k2 .

Note here that we have made use of the growth rate of the exponents ψn from

Section 7, with scale factor s/k. Thus, when s > 1
2k(k+ 1), since now we have

θ = 1
2((k + 1)/2)−N−1, we find that

(s/k − 1)(s/k)N−1θ �
( s

k(k + 1)/2

)N
,

which tends to infinity as N tends to infinity. In particular, on taking N

sufficiently large, the relation (11.4) implies that ηs+k = 0.

The above heuristic shows that when s > 1
2k(k + 1), then one has

(11.5) Js+k(X)� X2s+2k− 1
2
k(k+1)+ε.

One might complain that this fails to prove that the relation (11.5) holds for

s = 1
2k(k + 1). Apart from anything else, on the face of it, the integer s needs

to be a multiple of k in our treatment, so that one may need to require that

s > 1
2k(k + 3). But this issue may be circumvented. For this, one reinterprets

the methods of this paper in the form of fractional moments of exponential

sums along the lines of the author’s work [40] on breaking classical convexity

in Waring’s problem. This was, in fact, the author’s original approach to

Theorem 1.1 and feasible with sufficient effort. Such would permit the proof

of (11.5) with s = 1
2k(k + 1) + ν for any positive number ν. But then an

application of Hölder’s inequality shows that (11.5) holds with s = 1
2k(k + 1)

with the positive number ε bounded above by ν. Taking ν sufficiently small

completes the heuristic proof.

A final word is in order concerning the value of such a heuristic argument.

A more sweeping heuristic of classical nature asserts that one should expect

square-root cancellation in fk(α;X) when one subtracts the expected major arc

approximation, and this leads to the conjectured estimate (11.5) for s + k >
1
2k(k + 1). This amounts to the assumption of very significant global rigid

structure within the mean value Js+k(X). Our heuristic in this section also

amounts to a structural assumption, but now of a rather weak congruential

variety. This is, most assuredly, an unproven assumption, but a relatively

modest one of local type. Thus one can say, at least, that the conjectured

estimate (11.5) for s > 1
2k(k+1) now rests on only a relatively mild assumption.
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