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Cover times, blanket times, and
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Abstract

We exhibit a strong connection between cover times of graphs, Gaussian
processes, and Talagrand’s theory of majorizing measures. In particular,
we show that the cover time of any graph G is equivalent, up to universal
constants, to the square of the expected maximum of the Gaussian free
field on G, scaled by the number of edges in G.

This allows us to resolve a number of open questions. We give a de-
terministic polynomial-time algorithm that computes the cover time to
within an O(1) factor for any graph, answering a question of Aldous and
Fill (1994). We also positively resolve the blanket time conjectures of Win-
kler and Zuckerman (1996), showing that for any graph, the blanket and
cover times are within an O(1) factor. The best previous approximation
factor for both these problems was O((loglogn)?) for n-vertex graphs, due
to Kahn, Kim, Lovdsz, and Vu (2000).
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1. Introduction

Let G = (V,E) be a finite, connected graph, and consider the simple
random walk on G. Writing 7., for the first time at which every vertex of
G has been visited, let E,7.ov denote the expectation of this quantity when
the random walk is started at some vertex v € V. The following fundamental
parameter is known as the cover time of G:

(1) teov (G) = Iq?ea\ii EyTeov-

We refer to the books [5], [36] and the survey [37] for relevant background
material.

We also recall the discrete Gaussian free field (GFF) on the graph G. This
is a centered Gaussian process {1, }yev with 7,, = 0 for some fixed vy € V.
The process is characterized by the relation E (1, — 1,)? = Reg(u,v) for all
u,v € V, where R.g denotes the effective resistance on G. Equivalently, the
covariances E(n,mn,) are given by the Green kernel of the random walk killed
at vg. (We refer to Sections 1.2 and 1.3 for background on electrical networks
and Gaussian processes.)

The next theorem represents one of the primary connections put forward
in this work. We use the notation = to denote equivalence up to a universal
constant factor.

THEOREM 1.1. For any finite, connected graph G = (V, E), we have

2
teoe (G) = || (Emaxn, )
where {ny bvey s the Gaussian free field on G.

The utility of such a characterization will become clear soon. Despite
being an intensively studied parameter of graphs, a number of basic questions
involving the cover time have remained open. We now highlight two of these,
whose resolution we discuss subsequently.
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The blanket time. For a node v € V, let 7(v) = dg‘g}gT) denote the station-
ary measure of the random walk, and let NV,(¢) be a random variable denoting
the number of times the random walk has visited v up to time ¢. Now define

7 (0) to be the first time ¢ > 1 at which
(2) Ny(t) = dtn(v)

holds for all v € V. In other words, 7)() is the first time at which all nodes
have been visited at least a § fraction as much as we expect at stationarity.
Using the same notation as in (1), define the d-blanket time as

(3) to(G,0) = max Ey 51 (6)-

Clearly for § € (0,1), we have t},(G,0) > tcov(G). Winkler and Zuckerman
[54] made the following conjecture.

CONJECTURE 1.1. For every 0 < § < 1, there exists a C such that for
every graph G, one has

th1(G,0) < C - teoy(G).
In other words, for every fized § € (0,1), one has teov(G) = tp)(G, 9).

Kahn, Kim, Lovdsz, and Vu [30] showed that for every fixed ¢ € (0,1), one
can take C < (loglogn)? for n-node graphs, but whether there is a universal
constant, independent of n, remained open for every value of § > 0.

In order to bound (G, §), we introduce the following stronger notion.
Let m,1(0) be the first time ¢ > 1 such that for every u,v € V, we have

Nu(t)/m(u)

No(t)/m(v) =
i.e., the first time at which all the values { Ny (t)/7(u)}uev are within a factor
of 6. As in [30], we define the strong d-blanket time as

tbl(G, 5) = Iilzlea\;{ EUTbl((S).

Clearly one has t,(G, 6) < t,1(G, 9) for every 6 € (0,1).
The second question we highlight is computational in nature.

QUESTION 1.2 ([5], [30]). Is there a deterministic, polynomial-time algo-
rithm that approzimates teoy(G) within a constant factor?

In other words, is there a quantity A(G) that can be computed determin-
istically, in polynomial-time in |V, such that A(G) < teov(G). It is crucial
that one asks for a deterministic procedure, since a randomized algorithm can
simply simulate the chain, and output the empirical mean of the observed
times at which the graph is first covered. This is guaranteed to produce an
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accurate estimate with high probability in polynomial time, since the mean
and standard deviation of 7.,y are O(|V|?) [6].

A result of Matthews [43] can be used to produce a determinisically com-
putable bound that is within a log|V| factor of t.oy(G). Subsequently, [30]
showed how one could compute a bound that lies within an O((loglog [V])?)
factor of the cover time.

Before we state our main theorem and resolve the preceding questions, we
briefly review the o functional from Talagrand’s theory of majorizing measures
[48], [50].

Majorizing measures and Gaussian processes. Consider a compact metric
space (X,d). Let My = 1 and M} = 22" for k > 1. For a partition P of X
and an element x € X, we will write P(z) for the unique S € P containing x.
An admissible sequence {Ag}r>o of partitions of X is such that Agiq is a
refinement of Ay for k > 0, and |Ag| < M, for all n > 0. Talagrand defines
the functional
(4) 72(X,d) = inf sup Y 2" *diam(A (),

zeX k>0
where the infimum is over all admissible sequences {Ay}.

Consider now a Gaussian process {7; };c; over some index set I. This is a
stochastic process such that every finite linear combination of random variables
is normally distributed. For the purposes of the present paper, one may assume
that I is finite. We will assume that all Gaussian processes are centered, i.e.,
E(n;) = 0 for all ¢ € I. The index set I carries a natural metric which assigns,
fori,j €1,

(5) d(i, j) = \JEn; —nj|*.

The following result constitutes a primary consequence of the majorizing mea-
sures theory.

THEOREM (MM) (Majorizing measures theorem [48]). For any centered
Gaussian process {n; }icr,
vo(I,d) < Esup{n; :i€1}.
We remark that the upper bound of the preceding theorem, i.e.,
Esup{n; :i € I} < Cv2(I,d)

for some constant C, goes back to work of Fernique [24], [25]. Fernique for-
mulated this result in the language of measures (from whence the name “ma-
jorizing measures” arises), while the formulation of 5 given in (4) is due to
Talagrand. The fact that the two notions are related is nontrivial; we refer to
[50, §2] for a thorough discussion of the connection between them.
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Commute times, hitting times, and cover times. In order to relate the
majorizing measure theory to cover times of graphs, we recall the following
natural metric. For any two nodes u,v € V, use H(u, v) to denote the ezpected
hitting time from wu to v, i.e., the expected time for a random walk started at
u to hit v. The expected commute time between two nodes u,v € V is then

defined by

(6) k(u,v) = H(u,v) + H(v,u).

It is immediate that x(u,v) is a metric on any finite, connected graph. A
well-known fact [11] is that k(u,v) = 2|E| Reg(u,v), where Reg(u,v) is the
effective resistance between u and v, when G is considered as an electrical

network with unit conductances on the edges. We now restate our main result
in terms of majorizing measures. For a metric d, we write v/d for the distance

Vd(u,v) = /d(u,v).
THEOREM 1.2 (Cover times, blanket times, and majorizing measures).
For any graph G = (V, E) and any 0 < § < 1, we have
2 2
teov(G) = [VZ(V» \/E)] = |E|- [72(‘/7 Vv Reff)] = th1(G, 6),
where <5 denotes equivalence up to a constant depending on 9.

Clearly this yields a positive resolution to Conjecture 1.1. Moreover, we
prove the preceding theorem in the setting of general finite-state, reversible
Markov chains. See Theorem 1.9 for a statement of our most general theorem.

We now address some additional consequences of the main theorem. First,
observe that by combining Theorem 1.2 with Theorem (MM), we obtain The-
orem 1.1.

THEOREM 1.3 (Cover times and the Gaussian free field). For any graph
G = (V,E) and any 0 < 6 < 1, we have
2
teon(G) = B| (Emaxn, ) =5 tn(G,5),
where {ny} is the Gaussian free field on G.

In fact, in Section 2.2, we exhibit the following strong asymptotic upper
bound.

THEOREM 1.4. For every graph G = (V, E), if tnit(G) denotes the maxi-
mal hitting time in G and {n, }vev is the Gaussian free field on G, then

thit(G) ( )2
tew(G) < |14+ C |E|-(Esupn, | ,
( ) ( tcov(G) ’ ‘ 'UG\I/”7

where C' > 0 is a universal constant.
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In Section 3, we prove the following theorem which, in conjunction with
Theorem 1.2, resolves Question 1.2.

THEOREM 1.5. Let (X,d) be a finite metric space, with n = |X|. If, for
any two points x,y € X, one can deterministically compute d(x,y) in time
polynomial in n, then one can deterministically compute a number A(X,d) in
polynomial time, for which

A(X, d) = 72(X, d).

A “comparison theorem” follows immediately from Theorem 1.2, and the
fact that y2(X,d) < Lya(X,d’) whenever d < Ld' (see (4)).

THEOREM 1.6 (Comparison theorem for cover times). Suppose G and G’
are two graphs on the same set of nodes V', and kg and kg are the distances
induced by respective commute times. If there exists a number L > 1 such that
kG(u,v) < L+ kg (u,v) for all u,v € V', then

tcov(G) < O(L) : tcov(G/)-

Finally, our work implies that there is an extremely simple randomized
algorithm for computing the cover time of a graph, up to constant factors. To
this end, consider a graph G = (V, E) whose vertex set we take to be V =
{1,2,...,n}. Let D be the diagonal degree matrix, i.e., such that D;; = deg(i)
and D;; = 0 for ¢ # j, and let A be the adjacency matrix of G. We define the
following normalized Laplacian:

D—-A
tr(D)

Lg =

Let Lg denote the Moore-Penrose pseudoinverse of L. Note that both Lg
and LJCS are positive semi-definite. We have the following characterization.

THEOREM 1.7. For any connected graph G, it holds that

(@) = E [VTE ][

where g = (g1,...,9n) is an n-dimensional Gaussian, i.e., such that {g;} are
independent and identically distributed (i.i.d.) N(0,1) random variables.

The preceding theorem yields an O(n*)-time randomized algorithm for
approximating teov(G), where w € [2,2.376) is the best-possible exponent for
matrix multiplication [13]. Using the linear-system solvers of Spielman and
Teng [47] (see also [45]), along with ideas from Spielman and Srivistava [46],
we present an algorithm that runs in near-linear time in the number of edges

of G.
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THEOREM 1.8 (Near-linear time randomized algorithm). There is a ran-
domized algorithm that, given an m-edge connected graph G = (V, E), runs
in time O(m(logm)°M) and outputs a number A(G) such that te(G) =
E[A(G)] = (E[A(G)*])"/?.

1.1. Related work. Cover times of finite graphs have been studied for over
30 years. We refer to [5], [37], [36] for the basic theory. Works of Feige showed
that the cover time for any n-node graph is at least (1 — o(1))nlogn [22] and
at most 4n3/27 [21]. Both of these bounds are asymptotically tight, with the
tight example for the lower bound given by the complete graph on n nodes.

The connection between cover times, commute times, and the theory of
electrical networks was laid out in [11]. In general, the electrical viewpoint
provides a powerful methodology for analyzing random walks (see, for example,
[15], [53], [39]). Indeed, this point of view will be central to the present work.

A fundamental bound of Matthews [43] shows that

teov(G) < (maX H(u, U)) (1+logn),

u,veV
where we recall that H (u, v) is the expected hitting time from u to v. Using the
straightforward lower bound oy (G) > maxy wev H(u,v), this fact provides a
deterministic O(logn)-approximation to tey(G) in n-node graphs.
Matthews also proved the lower bound,

> i —1).
(7) teov(G) > max <ur£;gSH(u7v))log(5! 1)

In [30], it is shown that taking the maximum of the lower bound in (7) and
the maximal hitting time max, ,ev H (u,v) is an O((log log n)?)-approximation
for teov. Recently, Feige and Zeitouni [23] have shown that on trees, one can
obtain a very strong bound: For every € > 0, there is a (1 + ¢)-approximation
obtainable by a deterministic, polynomial-time algorithm.

The cover time has also been studied for many specific families of graphs.
Kahn, Linial, Nisan, and Saks [31] established an O(n?) upper bound for regu-
lar graphs. Broder and Karlin [9] proved that the cover time of constant-degree
expander graphs is O(nlogn). For planar graphs of maximum degree d, Jonas-
son and Schramm [29] showed that the cover time is at least cyn(logn)? and
at most 6n2. The order of the cover time on lattices was determined by Aldous
[2] and Zuckerman [55]. The latter paper also calculated the order of the cover
time on regular trees.

Furthermore, for a few families of specific examples, the asymptotics of
the cover time have been calculated more precisely. These include the work
of Aldous [3] for regular trees, Dembo, Peres, Rosen, and Zeitouni [14] for
the 2-dimensional discrete torus, and Cooper and Frieze [12] for the giant
component of various random graphs.



1416 JIAN DING, JAMES R. LEE, and YUVAL PERES

Finally, we remark on an upper bound of Barlow, Ding, Nachmias, and
Peres [7] that was part of the motivation for the present work. Consider a
connected graph G = (V, E) and the metric space (V, k), where we recall the
commute distance from (6). For each h € Z, let A, C V be a set of minimal
size whose 2-neighborhood (in the metric ) covers V. Then

2

(8) teov(G) <O(1) - | 3 22 /log | 4]

heZ

It turns out that this upper bound is tight (up to a universal constant) for
a number of concrete examples with approximately “homogeneous” geometry.
(We refer to [7] for examples, mostly related to various random graphs arising
from percolation.) For instance, the results of the present paper imply that
the right-hand side of (8) is equivalent to tcov(G) for any vertex-transitive
graph G. Furthermore, the formula (8) resembles the appearance of the Dudley
integral [16], which gives a tight bound for Gaussian processes with stationary
increments. This suggests, in particular, a connection between the cover time
of graphs and majorizing measures.

1.2. Preliminaries. To begin, we introduce some fundamental notions from
random walks and electrical networks.

Electrical networks and random walks. A network is a finite, undirected
graph G = (V, E), together with a set of nonnegative conductances {cz, :
x,y € V} supported exactly on the edges of G, ie., ¢y >0 <= zy € FE.
The conductances are symmetric so that c;y = ¢y, for all z,y € V. We will
write ¢; = > ey Coy and C = Y ¢y ¢, for the total conductance. We will often
use the notation G(V') for a network on the vertex set V. In this case, the
associated conductances are implicit. In the few cases when there are multiple
networks under consideration simultaneously, we will use the notation cfy
refer to the conductances in G.

Associated to such a network is the canonical discrete time random walk

to

on G, whose transition probabilities are given by py = cay/cy for all z,y € V.
It is easy to see that this defines the transition matrix of a reversible Markov
chain on V' and that every finite-state, reversible Markov chain arises in this
way (see [5, §3.2]). The stationary measure of a vertex is precisely 7(x) = ¢, /C.

Associated to such an electrical network are the classical quantities Ceg,
Reg : V xV — Ry which are referred to, respectively, as the effective conduc-
tance and effective resistance between pairs of nodes. We refer to [36, Ch. 9]
for a discussion of the connection between electrical networks and the corre-
sponding random walk. For now, it is useful to keep in mind the following
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fact [11]: For any z,y € V,

(9) Reff(x>y) = H(% y)7

where the commute time « is defined as before (6).

For convenience, we will work exclusively with continuous-time Markov
chains, where the transition rates between nodes are given by the probabilities
Pzy from the discrete chain. One way to realize the continuous-time chain is
by making jumps according to the discrete-time chain, where the times spent
between jumps are i.i.d. exponential random variables with mean 1. We refer
to these random variables as the holding times. See [5, Ch. 2| for background
and relevant definitions.

Cover times, local times, and blanket times. We will now define various
stopping times for the continuous-time random walk. First, we observe that
if 7—();VOV
every node of GG, then for every vertex v,

*
EU Teov

is the first time at which the continuous-time random walk has visited

= EyTeovs

where we recall that the latter quantity refers to the discrete-time chain. Thus
we may also define the cover time with respect to the continuous-time chain,
i.e., teov(G) = maxyey E, 72,

In fact, it will be far more convenient to work with the cover and return
time defined as follows. Let {X;}ic[0,o) be the continuous-time chain, and

define
(10) T =1inf {t > 75 Xy = Xo}.

cov

For concreteness, we define the cover and return time of G as

to (G = B, 75
(@) =g

cov cov?

but the following fact shows that the choice of initial vertex is not of great
importance for us (see [5, Ch. 5, Lemma 25]),

1 \
(11) Steon (G) < teov (G) < 1o (G) < Bmin By,

2 cov cov cov*

For a vertex v € V and time ¢, we define the local time L} by

1 t
(12) P== /0 1(x,_uyds,

where we recall that ¢, = Y ,cv cuw. For 6 € (0,1), we define 7;(5) as the first
time ¢ > 0 at which

Furthermore, the continuous-time strong d-blanket time is defined to be
(13) w1(G,0) = max E,7(9).
veV
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Asymptotic notation. For expressions A and B, we will use the notation
A < B to denote that A < C'- B for some constant C' > 0. If we wish to stress
that the constant C' depends on some parameter, e.g., C' = C(p), we will use
the notation A S, B. We use A < B to denote the conjunction A < B and
B < A, and we use the notation A =, B similarly.

1.3. Outline. We first state our main theorem in full generality. We use
only the language of effective resistances, since this is most natural in the
context to follow.

THEOREM 1.9. For any network G = (V,E) and any 0 < § < 1,
tCOV(G [’72 V, \/ ] =5 tbl G 5) =s t (G75)7

where C 1is the total conductance of G.

We now present an overview of our main arguments, and layout the orga-
nization of the paper.

Hints of a connection. First, it may help the reader to have some intuition
about why cover times should be connected to the Gaussian processes and
particularly the theory of majorizing measures.

A first hint goes back to work of Aldous [1], where it is shown that the
hitting times of Markov chains are approximately distributed as exponential
random variables. It is well known that an exponential variable can be repre-
sented as the sum of the squares of two Gaussians. Observing that the cover
time is just the maximum of all the hitting times, one might hope that the
cover time can be related to the maximum of a family of Gaussians.

This point of view is strengthened by some quantitative similarities. Let
{mi}icr be a centered Gaussian process, and let d(i, j) be the natural metric on
I from (5). The following two lemmas are central to the proof of the majorizing
measures theorem (Theorem (MM)). We refer to [35] [50] for their utility in
the majorizing measures theory. The next lemma follows directly from the
definition of the Gaussian density; see, for instance, [42, Lemma 5.1.3, Eq.
(5.18)].

LEMMA 1.10 (Gaussian concentration). For every i,j € I, and a > 0,

P(ni —n; > a) <exp (W) :

The next result can be found in [35, Thm. 3.18].

LEMMA 1.11 (Sudakov minoration). For every o > 0, If I' C I is such
that i,j € I' and i # j implies d(i,j) > «, then

Esupm 2 ay/log|I'|.
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Now, let G = (V, E) be a network, and consider the associated continuous-
time random walk {X;} with local times L}. We define also the inverse local
times 7V(t) = inf{s : LY > t}. An analog of the following lemma was proved in
[30] for the discrete-time chain; the continuous-time version can be similarly
proved, though we will not do so here, as it will not be used in the arguments
to come. In interpreting the next lemma, it helps to recall that LY, 0= t.

LEMMA 1.12 (Concentration for local times). For all u,v € V and any
a>0andt >0, we have
u v —042
Py (qu(t) —Liugy 2 O‘) < exp (%Reff(u,v)> )
where P, denotes the measure for the random walk started at u.

Thus local times satisfy sub-Gaussian concentration, where now the dis-
tance d is replaced by 1/t - Reg. On the other side, the classical bound of
Matthews [43] provides an analog to Lemma 1.11.

LEMMA 1.13 (Matthews bound). For every a > 0, if V! C V is such that
u,v € V' and u # v implies H(u,v) > «, then

teov(G) = alog(|V'] —1).

Of course the similar structure of these lemmas offers no formal connec-
tion, but merely a hint that something deeper may be happening. We now
discuss a far more concrete connection between local times and Gaussian pro-
cesses.

The isomorphism theorems. The distribution of the local times for a Borel
right process can be fully characterized by certain associated Gaussian pro-
cesses; results of this flavor go by the name of Isomorphism Theorems. Several
versions have been developed by Ray [44] and Knight [33], Dynkin [18], [17],
Marcus and Rosen [40], [41], Eisenbaum [19], and Eisenbaum, Kaspi, Marcus,
Rosen, and Shi [20]. In what follows, we present the second Ray-Knight theo-
rem in the special case of a continuous-time random walk. It first appeared in
[20]; see also Theorem 8.2.2 of the book by Marcus and Rosen [42] (which con-
tains a wealth of information on the connection between local times and Gauss-
ian processes). It is easy to verify that the continuous-time random walk on a
connected graph is indeed a recurrent strongly symmetric Borel right process.

THEOREM 1.14 (Generalized Second Ray-Knight Isomorphism Theorem).
Fix vg € V' and define the inverse local time

(14) 7(t) = inf{s: L > t}.

Let Ty be the hitting time to vo, and let Ty, (z,y) = E.(L%,). Denote by
n=A{ns:x € V} a mean zero Gaussian process with covariance I'y,(z,y).
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Let Py, and P, be the measures on the processes { L7, } and {n.}, respectively.
Then under the measure Py, x Py, for anyt > 0,

1 aw [1

Thus to every continuous-time random walk, we can associate a Gaussian
process {1y }yey. As discussed in Section 2.4, we have the relationship d(u,v) =
Ret(u,v), where d(u,v) = \/E|n, — ny|?. In particular, the process {n, },ev
is the Gaussian free field on the network G.
Using the Isomorphism Theorem in conjunction with concentration bounds
for Gaussian processes, we already have enough machinery to prove the follow-
ing upper bound in Section 2.1:

(16)  teon(G) < tn(G.0) S5 C (V. )] = € [ra(Vi VRer)]

We also show how to prove a matching lower bound in terms of 79, but
for a slightly different notion of “blanket time.”

Thus (16) proves the first half of Theorem 1.9. The lower bound for cover
times quite a bit more difficult to prove. Of course, the cover and return time
relates to the event {Elv : Lﬁ(t) = 0}, and unfortunately the correspondence
(15) seems too coarse to provide lower bounds on the probability of this event
directly.

To this end, we need to show that for the right value of £ in Theorem 1.14,
we often have 7, ~ —/2t for some = € V. The main difficulty is that we will
have to show that there is often a vertex x € V with |n, + v/2t| being much
smaller than the standard deviation of 7,. In doing so, we will use the full
power of the majorizing measures theory, as well as the special structure of the
Gaussian processes arising from the Isomorphism Theorem.

The discrete Gaussian free field and a tree-like subprocess. In Section 2.4
(see (35)), we recall that the Gaussian processes arising from the Isomorphism
Theorem are not arbitrary, but correspond to the Gaussian free field (GFF)
associated with G. Special properties of such processes will be essential to our
proof of Theorem 1.9. In particular, if we use Reg (v, S) to denote the effective
resistance between a point v and a set of vertices S C V, then we have the
relationship

(17> \V Reff(”? S) = diStL2 (77717 afF<{77w}w€S))7

where aff(-) denotes the affine hull and dist; > is the L? distance in the Hilbert
space underlying the process {n,},cy. In Section 2.3, we prove a number of
properties of the effective resistance metric (e.g., Foster’s network theorem);
combined with (17), this yields some properties unique to processes arising

from a GFF.
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Next, in Section 3, we recall that one of the primary components of the
majorizing measures theory is that every Gaussian process {n;};c; contains a
“tree like” subprocess that controls Esup,c; ;. After a preprocessing step that
ensures our trees have a number of additional features, we use the structure
of the GFF to select a representative subtree with very strong independence
properties that will be essential to our analysis of cover times.

Restructuring the randomness and a percolation argument. The majoriz-
ing measures theory is designed to control the first moment E sup;c;7; of the
supremum of Gaussian process. In analyzing (15) to prove a lower bound on
the cover times, we actually need to employ a variant of the second moment
method. The need for this, and a detailed discussion of how it proceeds, are
presented at the beginning of Section 4.

Towards this end, we want to associate events to the leaves of our “tree
like” subprocess that can be thought of as “open events” in a percolation
process on the tree. For general trees, it is known that the second moment
method gives accurate estimates for the probability of having an open path
to a leaf [38]. While our trees are not regular, they are “regularized” by the
majorizing measure, and we do a somewhat standard analysis of such a process
in Section 4.3.

The real difficulty involves setting up the right filtration on the probability
space corresponding to our tree so that the percolation argument yields the
desired control on the cover times. This requires a delicate definition of the
events associated to each edge, and the ensuing analysis forms the technical
core of our argument in Section 4.

Algorithmic issues. In order to complete the proof of Theorem 1.5 and
thus resolve Question 1.2, we present a deterministic algorithm that computes
an approximation to y2(X, d) for any metric space (X, d). This is achieved in
Section 3.3. While the algorithm is fairly elementary to describe, its analysis
requires a number of tools from the majorizing measures theory.

We remark that, in combination with Theorem 1.9, this yields the follow-
ing result.

THEOREM 1.15. For any finite-state, reversible Markov chain presented
as a network G = (V, E) with given conductances {czy}, there is a determinis-
tic, polynomial-time algorithm that computes a value A(G) such that

A(G) < teov(Q).

Observe that for general reversible chains, the cover time is not necessarily
bounded by a polynomial in |V, and thus even randomized simulation of the
chain does not yield a polynomial-time algorithm for approximating teoy(G).
Finally, in Section 4.5, we prove Theorems 1.7 and 1.8 in the setting of arbitrary
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reversible Markov chains, leading to a near-linear time randomized algorithm
for computing cover times.

2. Gaussian processes and local times

We now discuss properties of the Gaussian processes arising from the iso-
morphism theorem (Theorem 1.14). In Section 2.1, we show that the isomor-
phism theorem, combined with concentration properties of Gaussian processes,
is already enough to get strong control on blanket times and related quantities.

In Section 2.3, we prove some geometric properties of the resistance metric
on networks that will be crucial to our work on the cover time in Sections 3
and 4. Finally, in Section 2.4, we recall the definition of the Gaussian free field
and show how the geometry of such a process relates to the geometry of the
underlying resistance metric.

2.1. The blanket time. We first remark that the covariance matrix of the
Gaussian process arising from the isomorphism theorem can be calculated ex-
plicitly in terms of the resistance metric on the network G(V'). Throughout
this section, the process {1, }.cy refers to the one resulting from Theorem 1.14
with vg € V some fixed (but arbitrary) vertex, 7(¢) refers to the inverse local
time defined in (14), and T} is the hitting time to vg.

LEMMA 2.1. For every x,y € V,
Fvo(xay) = Ex(Lg“O) = %(Reﬂ"(xﬂ)O) + Reff(”an) - Reff(xa y))
In particular,
E (773[: - ny)Q = Reff(xv y)-

Proof. To prove the lemma, we use the cycle identity for hitting times
(see, e.g., [36, Lemma 10.10]), which asserts that

(18> H(.Z', UO) + H<U07 y) + H(y7 x) = H(CL‘, y) + H(ya UU) + H(Uo, x)
Averaging both sides of (18) and recalling (9) yields
C
H(l’, UO) + H(”Oa y) + H(ya LE) = 5 [Reﬁ(x, UO) + Reff(”Ov y) + Reff('xa y)] .

Now, we subtract CReg(x,y) = H(x,y) + H(y,x) from both sides, giving

H(z,v0) + H(vo,y) — H(z,y) = g [Regt(x,v0, ) + Regt(v0,y) — Reg(z,y)] .

Finally, we conclude using the identity (see, e.g., [5, Ch. 2., Lemma 9]):

Ba(Lh,) = 5 (H(z,w) + H(vo,) — H(z,y)). 0
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We now relate the blanket time of the random walk to the expected supre-
mum of its associated Gaussian process. The following is a central facet of the
theory of concentration of measure; see, for example, [34, Thm. 7.1, eq. (7.4)].

LEMMA 2.2. Consider a Gaussian process {n, : x € V'}, and define o =
sup ey (E(n2))Y2. Then for a > 0,

“

We are now ready to establish the upper bound on the strong blanket time
t51(G,0) for any fixed 0 < § < 1. Note that this will naturally yield an upper
bound on ().

supn, — E sup n,
zeV zeV

> a) < 2exp(—a?/20?).

THEOREM 2.3. Consider a network G(V) and its total conductance C =
Y wev Cz. For any fized 0 < § < 1, the blanket time t3(G,0) of the random
walk on G(V') satisfies

2
51(G,60) Ss C- <E sup m) ,

zeV
where {ng} is the associated Gaussian process from Theorem 1.14.

Proof. We first prove that for some As > 0,

2
(19) th(0) < AsC ((E sup m) + supE(?ﬁ)) :

zeV zeV

Fix a vertex vy € V, and consider the local times {Lf(t) :x € V}, where

for t > 0, we write 7(t) = inf{s : L > t}. Let 0 = sup,cy VE(n2) and
A =Esup, n,.

Use {nX} to denote the copy of the Gaussian process corresponding to the
left-hand side of (15), and use {7} to denote the i.i.d. process corresponding
to the right-hand side. Fix 8 > 0, and set t = t(3) = B(A% + ¢?). By
Theorem 1.14, we get that

P (ngn Ligy < f&) <P <irzlf %(nﬁ N +2\/5t)
+P (sup %(nﬁ)Q > ! _2\/St) )

Therefore,

P (mxm Lf(t) < \/St) <P (igf nf < —a5\/f> +P (sup ]n;f\ > bgﬂ) ,
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where a5 = v2—1/1+ /6 and bs = \/1 — /4. Applying Lemma 2.2, we obtain
that if 8 > By(0) for some Fy(d) > 0, then
(20) P (Hlxln LIy < \/5t> < Gexp(—s),
where 75 = £(a3 A b?). On the other hand, we have

P (mngf(t) > t/\/g) <P (max (n + V2t)? t/\/:S)

=P (maxnz a5\[>

where aj = \/1/75 — 1. Applying Lemma 2.2 again for 8 > 5y(J), we get that
(21) P (max L2 > t/v/3) < 2exp(—58),

where ~§ = (ag)2/2. Note that assuming min, Lf(t) > /6t and max, Lf(t) <
t/V/3, we have 7(t) = 32, L7y < Ct/V/s as well as min, , Lf@)/L‘Z(t) >6. It
then follows that 774 < 7(t) < Ct/v/d. Therefore, we can deduce that

{Tbl Ct/\[} {mmLm \/t} U {maxL t/\[}
Combined with (20) and (21), it yields that

P(r5y = Ct/V5) < 6exp(—s3) + 2exp(—758).

It then follows that ¢, < AsC(A? + 02) for some As > 0 which depends only
on 9§, establishing (19).
It remains to prove that ¢ = O(A). To this end, let z* be such that
En2. = o%. We have
o
Nz

This completes the proof for the continuous-time case. U

(22) A > Emax(ny,, Nz+) = Emax(0,17,+) =

Remark 1. An interesting question is the asymptotic behavior of §-blanket
time as 0 — 1, namely the dependence on ¢ of As in (19). As implied in the
proof, we can see that

~ 75%-
Y v~ (1—0)

These asymptotics are tight for the complete graph; see e.g., [54, Cor. 2].

—_
_|_
—_

We next extend the proof of the preceding theorem to the case of the
discrete-time random walk. The following lemma contains the main estimate
required for this extension.
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LEMMA 2.4. Let G(V) be a network, and write vo = v2(V,/Resr). Then
for all u > 16, we have

Z e—u~cv'y§ 5 e—u/S'
veV

Proof. By definition of the 5 functional, we can choose a sequence of
partitions Aj, with [Ay| < 22" such that

1
Yo = fsupz2k/2d|am(Ak( ))-
2 veV 59

For v € V, let ky, = min{k : {v} € Ai}. It is clear that Reg(u,v) > 1/¢, for
all u # v, and hence (diam(Ay, _1(v)))? = 1/c,. Therefore, we see that

Z e—u~cU7§ _ i Z e—u~cv7§ < i 22k+1€—u2k/4 5 e—u/S’

veV k=0 v:ky,=k+1 k=1
completing the proof. O

THEOREM 2.5. Consider a network G(V') and its total conductance C =
Swev Cz. For any fired 0 < § < 1, the discrete blanket time t,)(G,0) of the
random walk on on G(V') satisfies

2
th(G,0) S5 C - (E sup T]x> ,

eV
where {n,} is the associated Gaussian process from Theorem 1.14.

Proof. We now consider the embedded discrete-time random walk of the
continuous-time counterpart (i.e., the corresponding jump chain; see [5, Ch. 2]).
Let N} be such that ¢, - N} is the number of visits to vertex v up to continuous
time t; i.e., VY is a discrete-time analog of the local time L.

Fix a vertex vg € V, and consider the local times {Lf(t) cx € V). Let

o = sup,cy \/E(n2) and A = Esup, 7,. Again, set t = (A + o2).

Let 11(d) denote the first time at which N > % for every x € V. As-
suming that min, N7, > > 6Y* and max, NIy < t/63/4, we have 7(t) =
S e e N%, < Ct/6%* and thus ming N2 T = d7(t)/C. Tt then follows that
Th1(6) < ( ) < Ct/83/4. Therefore, we deduce that

{Tbl(a) > 5354} < {min N2y < Y4} {max N2y > 1/5%1}

Therefore, we have
Ct
P (Tbl(é) > m) <P (mlnL < Vot or maxL t/\[)

+P(Vm:\f5t< o t/\[|m1n 0 5/tor maXN W =t/o /4)
Note that we have already bounded the first term in (20) and (21).
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The second term can be bounded by a simple application of a large devi-
ation inequality on the sum of i.i.d. exponential variables. Precisely,
SOP(Vot < Ly <t/VO | Ny <6V or Ny > t/6%%) <3 emtorcst
eV eV
for some constant as > 0 depending only on 4. Recall that Theorem (MM)
implies Esup, 1, < 72(V, vReg). By (22), we see that o < v/27A. Altogether,
we get that t < A? <z [12(V, @)]2. Applying Lemma 2.4, we conclude that
there exists Go(d) > 0 depending only on & such that for all 5 > £o(d), we have

P(m(G, 8) > Ct/5%%) < e bF,

where by is a constant depending only on §. This immediately yields the desired
upper bound on the blanket time for the discrete-time random walk. ([l

We next exhibit a lower bound on a variation of blanket time (considered
in [30]). It is apparent that the lower bound on the cover time, which will be
proved in Section 4, is an automatic lower bound on the blanket time. In what
follows, though, we try to give a simple argument that can be regarded as a
warm up. For the convenience of analysis, we consider the following notion.
For 0 < € < 1, define

23 t11(G,e) = maxinf{s : P, (Vu,v € V : L} <2L}) > ¢ for all t > s}.
bl X ¢ ¢
we

THEOREM 2.6. Consider a network G(V) and its total conductance C =
S zev €z For any fivred 0 < e < 1, we have

2
th(G.e) 2= C- (IE sup m) :
zeV

In order to prove Theorem 2.6, we will use the next simple lemma. We
will also require this estimate in Section 4.

LEMMA 2.7. Let 7(t) be the inverse local time at vertex vy, as defined in
(14). Let C be the total conductance, and let ® = maxy yev \/ Refi(2,y). Then,
for all >0 and t > ©?/2,

Py, (17(t) < BCt) < 35.

Proof. We use P, to denote the measure on random walks started at a
vertex v € V, and we use E, similarly. Let ps = min,{P, (7(¢) < 6Ct)} for
some ¢ > 0. Using the strong Markov property, we get that for all v € V|

P, (7(t) > kdCt) < (1 — ps)*.
In particular, E,7(t) < 0Ct/ps.

By Theorem 1.14, it follows easily that E, 7(t) = Ct. Since E,7(t) >
E,, (7(t)), we deduce that ps < 6. Let u=wu(d) be such that P, (7(t) <ICt) =ps.



COVER TIMES, BLANKET TIMES, AND MAJORIZING MEASURES 1427

Let Y,Z be random variables with the law 7(¢), when the random walk is
started at u and v, respectively. Clearly,

(24) Y 74T,
where T;,, is distributed as the hitting time to vg, when then random walk is
started at w and Ty, is independent of Z.

Since Reg(u,v9) < D%, we have E,T,, < CD? (by (9)), and this yields
P.(T,, = CD?/3) < B. Using the assumption t > D?/4% and (24), we conclude
that

P(Z < 2BCt — CD?/B)

P(Y < 26Ct) + P(Ty, > CD?/B) < pag + B < 3,

as required. 0
We are now ready to establish the lower bound on ¢} (G, ¢).

Proof of Theorem 2.6. We consider the associated Gaussian process as in
the proof of Theorem 2.3. Let 0 = sup,¢y /En2 and A = Esup, 7. Observe
that the maximal hitting time is a simple lower bound on t},(G,€) up to a
constant depending only on . In light of Lemma 2.1, we see (G, ¢) 2. C-0?.
Therefore, we can assume in what follows that
(25) A% > 1001log(4/e)e 2 o>
Let t. = %AQ. By Lemma 2.2, we get

1
P ( 12‘f/ 5(775 +2t)% < log(4/€)02)

> P (| supnf — A| < \/2105(4/2) a) S
xeV

Applying Theorem 1.14, we obtain

. €
P (%&f/ L34y < 10g(4/5)02) >1- 3

By triangle inequality, we have © < 20. Recalling the assumption (25), we
can apply Lemma 2.7 and deduce that

P(7(ts) < eCty/6) < /2.
Writing ¢ty = Ct, /6, we can then obtain that

P (inf Ly < log(4/€)a?, T(t,) = to) >1-—c.
zeV

Also, we see that sup,cy L, > eA?/12 whenever 7(t,) > to. Using assumption
(25) again, we conclude that
Pyo(Fz,y e V: L >2L7 ) >1—e.

This implies that t;,(G,¢) > to, completing the proof. O
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2.2. An asymptotically strong upper bound. Finally, we show a strong up-
per bound for the asymptotics of £,y on a sequence of graphs {G,, }, assuming

thit (Gn) = 0(teov(Gn))-

THEOREM 2.8. For any graph G = (V, E) with vg € V, let tnit(G) be the
mazximal hitting time in G and let {ny}vev be the GFF on G with n,, = 0.
Then, for a universal constant C' > 0,

thit (G) ( )2
teov(G) < [1+C |E|-{Esupn, | .
( ) ( tcov(G) | ‘ vE\If)n
Proof. Theorem 2.5 asserts that
(26) teov(G) = (E max )%,

where < denotes stochastic domination. Write 02 = max, ]Eng. Note that
0% corresponds to the diameter of V in the effective resistance metric, thus
thit(G) < |E|o?. Denote by S = 3", d,n2, where d,, is the degree of vertex v. By
a generalized Holder inequality and moment estimates for Gaussian variables
(here we use that EX® = 15 for a standard Gaussian variable X), we obtain
that
ES® < Y dudyduE(mimin;,)
U,V W
< Y dudyduE(ng) PE0D) PE(nG) < 150,
UV, W
An application of Markov’s inequality then yields
15
(27) P(S > a|Elo”) < —5.
o

Write Q = Y, dyny. Clearly, @) is a centered Gaussian with variance bounded
by 4|E|?0? and therefore,

(28) P(|Q| > a|E|o) < 2e7°/3.

For 8 > 0, let t = %(Emaxv ny + Bo)?. Noting 7(t) = 3, dyL? ) and
recalling the Isomorphism theorem (Theorem 1.14), we get that

2t 1
7(t) < 2|Elt + \g|Q| +38.

Combined with (27) and (28), we deduce that

12
(29)  P(r(t) = 2|E|t + V2tB|E|o + B|E|0?) < 5+ 20758,

(B-2)
We now turn to bound the probability for 7., > 7(t). Observe that on
the event {7y > 7(t)}, there exists v € V such that L7,y = 0. It is clear that
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for all v € V, we have P(n2 > B02/2) < 2¢ P/, Since {n,}yey and {Lﬁ(t)}vev
are two independent processes, we obtain

(30) P ({reov > T(®)}\ {Bv €V : LYy + 312 < Bo?/2}) < 2e7F/4,

On the other hand, we deduce from the concentration of Gaussian processes
(Lemma 2.2) that

P (ilgf(\/ﬂ—i— m)? < 50/2) < 207778,
Applying Isomorphism theorem again and combined with (30), we get that
P(Teor > 7(t)) < 4e7P/8.
Combined with (29), it follows that
Plreoy > 2|EJt + V3B|Elo + B|E|0?) < ;2 1208 4 4o B8,
Since t = %(E max, 7, + $0)?, we can deduce that for some universal constant

Cy >0,
teov(G) < | B|(Esupn,)? + C1|E|(0? + oEsup1,).
v v

Recalling (26), we complete the proof. O

2.3. Geometry of the resistance metric. We now discuss some relevant
properties of the resistance metric on a network G(V).

Effective resistances and network reduction. For a subset S C V, define
the quotient network G/S to have vertex set (V'\ S)U{vg}, where vg is a new

vertex disjoint from V. The conductances in G/S are defined by cfy/ 5= Cay if
r,y ¢S and cyge = Y yeg Cay for x & 5.
Now, given v € V and S C V, we put
G/S
(31) Rest(v,S) 2 RS§L® (v, vs),
where the latter effective resistance is computed in G/S. For two disjoint sets
S, T CV, we define
A G/S
Re (S, T) = Reff (Us,T),
and the resistance is defined to be 0 if SNT # (. It is straightforward to
check that Reg(S,T) = Reg(T,S). The following network reduction lemma

was discovered by Campbell [10] under the name “star-mesh transformation”
(see also, e.g., [39, Ex. 2.47(d)]). We give a proof for completeness.

LEMMA 2.9. For a network G(V) and a subset V C V, there exists a
network G(V') such that for all u,v € V', we have

Cy = ¢y and ReGNH(u,v) = Reg(u,v).
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We call G(V) the reduced network. Furthermore, if V.= V \ {a}, we then
have the formula
*,T CoyCrz

32 Cys = Cyr + %, where ¢cF = .
(32) e > weVy Caw

Yz Yz

Proof. Let P be the transition kernel of the discrete-time random walk
{S:} on the network G, and let PV be the transition kernel of the induced
random walk on V'; namely, for u,v € V,

P‘7(u,v) = IP’U(T‘i/r =),

where T'f £ min{t >1:85, € A} for all A C V. In other words, PV is the
chain watched in the subset V. We observe that PV is a reversible Markov
chain on V (see, e.g., [5], [36]). It is clear that the chain PY has the same
invariant measure as that of P restricted to V up to scaling by a constant.
Therefore, there exists a (unique) network G(V) corresponding to the Markov
chain PV such that &, = ¢, for all u € V.

We next show that the effective resistances are preserved in G (XN/) To this
end, we use the following identity relating effective resistance and the random
walk (see, e.g., [39, Eq. (2.5)]):

1

33 P, (T >T,) = —,
(33) (T, ) e B (0. 0)

where T), = min{t > 0 : 5; = u}. Since PV is a watched chain on the subset
V, we sce that PY (T} > T,) = Py(T;F > T,) for all u,v € V. This yields
Rgf(u, v) = Reg(u,v). L

To prove the second half of the lemma, we let G(V') be the network defined
by (32). A straightforward calculation yields that

CaC

~ *, _ Cavlay

Cp = Cp — Coyp + E cvy‘” = Cy — Cpp + E = Cp.
yEVx yev ZZGVZ CIZ

Let PC be the transition kernel for the random walk on the network 5(‘7)
Then,

_ CugCgv

~ ~ C
PO (u,v0) = 2 = SR W

Cu Cy
On the other hand, the watched chain PV satisfies

% C C C
PV(uv) =0 4 Sz Cov
Cy Cy Zerz Ca:y

Altogether, we see that Pa(u, v) = Pv(u, v), completing the proof. O
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Well-separated sets. The following result is an important property of the
resistance metric, crucial for our analysis.

PROPOSITION 2.10. Consider a network G(V) and its associated resis-
tance metric (V, Regr). Suppose that for some subset S C V| there is a partition
S =By UByU---U By, which satisfies the following properties:

(1) Foralli=1,2,...,m and for all z,y € B;, we have Reg(x,y) < £/48.
(2) For alli # j € {1,2,...,m}, for all z € B; and y € B;, we have
<Rdﬁx7y)>fi

Then there is a subset I C {1,2,...,m} with |I| = m/2 such that for alli € I,

Reﬁ'(Bi, S \ Bi) = 8/24.
In order to prove Proposition 2.10, we need the following two ingredients.

LEMMA 2.11. Suppose the network H(W) can be partitioned into two
disjoint parts A and B such that for some € > 0, and some vertices u € A and
v € B, we have

(1) RE(u,v) > ¢, and
(2) RiL(u,x) <e/12 for allz € A, and RH.(v,x) < e/12 for all z € B.

Then, RIL(A, B) > ¢/6.

Proof. Recall that by Thomson’s Principle (see, e.g., [39, Ch. 2.4]), the
effective resistance satisfies

Ren(,y) = min€(f) , where () = 3 3~ (w)rey.
T,y

and the minimum is over all unit flows from z to y. Here, 5, = 1/czy is the
edge resistance for {x,y}.

Suppose now that R (A, B) < €/6. Then there exists a unit flow fap
from set A to set B such that £(fap) < €/6. For = € A, let g, be the amount
of flow sent out from vertex x in fap and for x € B, let g, be the amount of
flow sent in to vertex x. Note that > ,ca ¢z = 2eB e = 1.

Analogously, by assumption (2), there exist flows {fy: : © € A} and
{fwv : @ € B} such that f;, is a unit flow from x to y and £(f,y) < €/12. We
next build a flow f such that

f::fAB+'§:‘thw+'§:qLﬁv-

weA z€B
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We see that f is indeed a unit flow from u to v. Furthermore, by Cauchy-
Schwartz,

= %Zfz(xay)rxy
z,Yy
2
ery (fAB €T y + Z wauw z y + ZQZfzv €T y))

weA z€B

Zmy (fAB 2,9) + > qulaw(®y) + > qufv(w,y)>

weA z€B

=3 (5(f,43) + Z Q€ (fuw) + Z QZg(fzv)>

weA z€B
<e.

This contradicts assumption (1), completing the proof. O

LEMMA 2.12. For any network G(V), the following holds. If there is a
subset S CV and a value € > 0 such that Reg(u,v) > € for all u,v € S, then
there is a subset S" C S with |S"| > |S|/2 such that for every v € S,

Regr(v, S\ {v}) > /4.

Proof. Consider the reduced network G on the vertex set S, as defined
in Lemma 2.9. Let the new conductances be denoted ¢, for z,y € S. By
Lemma 2.9, our initial assumption that Reg(u,v) > € for all u,v € S implies

that Rgf(u,v) > ¢ for all u,v € S.
Let n = |S|. Foster’s Theorem [26] (see also [53]) states that

Z R (w,0)éyp =n—1.
u;éves

Combined with the fact that Reﬂc(u v) > €, this yields
n
Z cuv X -
u;éves €
In particular, there exists a subset S’ C S with |S’| > n/2 such that for all
vels,

> éw<

ueS\{v}

™ | =~

It follows that for every v € S’, we have C’gf(v, S\ {v}) < 4/e; hence

Rer(v, 5\ {v}) = RG:(0,5\ {v}) > /4. .
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Proof of Proposition 2.10. For each i€{1,2,...,m}, choose some v; € B;.
By assumption (2), Reg(vi,vj) > € for i # j. Thus applying Lemma 2.12, we
find a subset I C {1,2,...,m} with |I| > m/2 and such that for every i € I,
we have

(34) Reg (vi, {v1, ... om} \{vi}) > e/4.

We claim that this subset I satisfies the conclusion of the proposition.

To this end, fix i € I, and let G be the quotient network formed by gluing
{v1,...,um} \ {v;} into a single vertex 9. By (34), we have RS (v;,9) > £/4.
Now let

B= (W} uU Bj) \{vitier-
J#i
Consider any z € B with 2 # @. Then z € Bj for some j # i; hence by
assumption (1), we conclude that

R&(l‘,’ﬁ) < Reff(xavj) < 6/48.

We may now apply Lemma 2.11 to the sets B; and B in G (with respective
vertices v; and ) to conclude that

RS.(B;,B) > ¢/24.
But the preceding line immediately yields
Re(Bi, S\ B;) = /24,
finishing the proof. O
We end this section with the following simple lemma.
LEMMA 2.13. For any network G(V), if A, By, By CV are disjoint, then

Ref‘f(A> Bl) i Reff(Aa BQ)
Reff(Av Bl) + Reff(Aa BQ) ‘

Proof. By considering the quotient graph, the lemma can be reduced to
the case when A = {u}. Let {S;} be the discrete-time random walk on the
network, and define

Tp=min{t >0:5; € B} and Tg =min{t >1: 5, € B} for BC V.

Reg(A,B1UBy) >

It is clear that for a random walk started at u, we have
PU(T;— > T31UB2) < PU(TJ— > TBI) + PU(TJ > TBz)'
Combined with (33), this gives
1 1 1
< + )
Ret(u, B1 U Ba) ~ Re(u, B1)  Ret(u, B2)
yielding the desired inequality. O
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2.4. The Gaussian free field. We recall the graph Laplacian A : 2(V) —
¢%(V) defined by

Af(z) =caf( Z Coyf(y)

Consider a connected network G(V'). F1x a vertex vg € V, and consider the
random process X = {1, }yev, where n,, = 0 and X has density proportional
to

(3) exp (=51, A%)) = exp (—izcw\nu - m?) .

u,v

The process X is called the Gaussian free field (GFF) associated with G. The
next lemma is known; see, e.g., Theorem 9.20 of [28]. We include the proof for
completeness.

LEMMA 2.14. For any connected network G(V), if X = {ny}vey is the
associated GFF, then for all u,v € V|

(36) E (7y — 10)? = Reg(u, v).

Proof. From (35), and the fact that the Laplacian is positive semi-definite,
it is clear that X is a Gaussian process. Let I'y,(u,v) = E, L7, where Tj is
the hitting time for vy as in Theorem 1.14. From Lemma 2.1, we have

(37) Ty, (1, 0) = % (Rt (00, 1) + Regt (v, 0) — Rege (11, 0))

Let A and fvo, respectively, be the matrices A and I',, with the row and
column corresponding to vy removed. Appealing to (35), if we can show that
ATy, = I, it follows that I',, is the covariance matrix for . In this case,
comparing (37) to

1
E(nui) = 5 (En; + En; — E( —10)°)

and using 7,, = 0, we see that (36) follows.
In order to demonstrate AI',, = I, we consider u, v such that vy ¢ {u,v}.
Conditioning on the first step of the walk from u gives

(38) culu (1, 0) = cuBy LYy = Lgymyy + Y CuwBu L)
w

= 1{u:v} + Z Cuaw L'y (v, w).
w
On the other hand, by definition of the Laplacian,

(AT (u,v) = ey (u,v) ZCW’ v (U, W) = Ly,

where the latter equality is precisely (38). Thus AI‘UO = I, completing the
proof. O
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A geometric identity. In what follows, for a set of points Y lying in some
Hilbert space, we use aff(Y) to denote their affine hull, i.e., the closure of
iy cn > Ly € V3" a = 1} Of course, when Y contains the
origin, aff(Y’) is simply the linear span of Y.

LEMMA 2.15. For any network G(V'), if X = {ny}vev is the GFF asso-
ciated with G, then for any w € V and subset S CV,

v/ Regt (w, S) = dist 2 (1, aff ({1 }ues)) -

Proof. Since the statement of the lemma is invariant under translation,
we may assume that the GFF is defined with respect to some vg € S.
In this case, by the definition in (35), the GFF for G/S has density pro-

portional to
1
€xp _Z Z Cuv|77u - 771)‘2 + Z Cvsu’nu‘Q ;
u,v¢S ugS

i.e., the GFF on G/S is precisely the initial Gaussian process X conditioned
on the linear subspace Ag = {1, =n, =0:v € S}.
Using (31) and Lemma 2.14, we have

Re(w, S) = R ™ (w,vs) = E I — 100 |* | As| = E [Inul? | As] .

To compute the latter expectation, write n, =Y+Y”, where Y’ € span({n, }ves)
and E(YY’) = 0. It follows immediately that

dist;2 (10 afF ({1 }ues)) = VEIY?] = \/E [ ]? | As].

completing the proof. O

3. Majorizing measures

We now review the relevant parts of the majorizing measure theory. One
is encouraged to consult the book [52] for further information. In Section 1,
we saw Talagrand’s o functional. For our purposes, it will be more convenient
to work with a different value that is equivalent to the functional =9, up to
universal constants. In Section 3.2, we discuss separated trees, and prove a
number of standard properties about such objects. In Section 3.3, we present
a deterministic algorithm for computing ~2(X,d) for any finite metric space
(X,d). Finally, in Section 3.4, we specialize the theory of Gaussian processes
and trees to the case of GFFs. There, we will use the geometric properties
proved in Sections 2.3 and 2.4.

Before we begin, we attempt to give some rough intuition about the role of
trees in the majorizing measures theory. A good reference for this material is
[27]. A tree of subsets of X is a finite collection F of subsets with the property
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that for all A,B € F, either ANB =0, or AC B,or BC A. Aset Bisa
child of Ait BC A, B+ A, and

CeF, BCCCA = C=Bor(C=A.

We assume that X € F, and X is referred to as the root of the tree 7. To each
A e F, we use N(A) to denote the number of children of A. A branch of F is
a sequence A; D Ag D --- such that each Ay is a child of Ag. A branch is
maximal if it is not contained in a longer branch. We will assume additionally
that every maximal branch terminates in a singleton set {x} for z € X.

Let {1z }zex be a centered Gaussian process with X finite, and let d(zx,y)
= /E (n; — ny)?. The basic premise of the tree interpretation of the majorizing
measures theory is that one can assign a measure of “size” to any tree of subsets
in X, and this size provides a lower bound on Esup,cy 1. The majorizing
measures theorem then claims that the value of the optimal such tree is within
absolute constants of the expected supremum. The size of the tree (see (39))
can be defined using only the metric structure of (X, d), without reference to
the underlying Gaussian process. Thus much of the theorems in this section
are stated for general metric spaces.

The tree of subsets is meant to capture the structure of (X,d) at all
scales simultaneously. In general, to obtain a multi-scale lower bound on the
expected supremum of the process, one arranges so that the diameter of the
subsets decreases exponentially as one goes down the tree, and all subsets at
one level of the tree are separated by a constant fraction of their diameter (see
Definitions 3.1 and 3.8 below). This allows a certain level of independence
between different branches of the tree which is exploited in the lower bounds.
Much of this section is devoted to proving that one can construct a near-
optimal tree with a number of regularity properties that will be crucial to our
approach in Section 4.

3.1. Trees, measures, and functionals. Let (X, d) be an arbitrary metric
space.

DEFINITION 3.1. For values ¢ € N and o, 8 > 0, and r > 2, a tree of
subsets F in X is called a (q,r,a, B)-tree if to each A € F, one can associate
a number n(A) € Z such that the following three conditions are satisfied:

(1) For all children B of A, we have n(B) < n(A) —q.
(2) If B and B’ are two distinct children of A, then d(B,B') > gr™A4)~1,
(3) diam(A) < ar™A),

We will refer to a (q,r,4, %)—tree as simply a (q,r)-tree.
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The r-size of a tree of subsets F, written size,(F), is defined as the infi-
mum of

(39) S e Jlogt N(Ay)
E>1
over all possible maximal branches of F, where we use the notation log™ z =
log z for z # 0, and log™ (0) = 0.
To connect trees of subsets with the 5 functional, we recall the relation-
ship with majorizing measures. The next result is from [51, Thm. 1.1]

THEOREM 3.2. For every metric space (X,d), we have

o 1 1/2
X,d) < inf su / log —— de,
) <itsup [ (o2 )

where B(x, ) is the closed ball of radius £ about x and the infimum is over all
finitely supported probability measures on X.

We will also need the following theorem due to Talagrand (see Proposition
4.3 of [50] and also Theorem T5 of [27].) We will employ it now and also in
Section 3.3.

THEOREM 3.3. There is a value rg = 2 such that the following holds.
Let (X,d) be a finite metric space, and r > ro. Assume there is a family of
functions {p; : X — Ry i € Z} such that the following conditions hold for
some 3 > 0:

(1) pi(x) = pi—1(x) for alli € Z and z € X.
(2) If t1,t2,...,tx € B(s,17) are such that d(t;,ty) =7~ fori #4', then
@;(s) = Briy/log N +min {p; o(t;) :i=1,2,...,N}.

Under these conditions,

Y2 (X,d) Srp osup pi(x).
reX €L

The preceding two theorems allow us to present the following connection
between trees and 2. Such a connection is well known (see, e.g., [49]), but we
record the proofs here for completeness and for the precise quantitative bounds
we will use in future sections.

LEMMA 3.4. There is a value 7o > 2 such that for every finite metric
space (X, d), and every r > 1o, we have

(40) 72(X,d) <p sup{size,(F) : F is a (1,7,4, %)-tree in X}
Proof. First, for a subset S C X, let
0(S) = sup{size,(F) : Fisa (1,r4, %)—tree in X}.
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Then, for every i € Z and x € X, define
pi(z) = 0(B(z,2r")),

where B(x, R) is the closed ball of radius R about z € X. We now wish
to verify that the conditions of Theorem 3.3 hold for {¢;}. Condition (1) is
immediate.

Assume that r > 8. Given t1,tg,...,tx as in condition (2) of Theorem 3.3,
consider the set A = B(s,2r7), which has diameter bounded by 477, and the
disjoint subset sets of A given by A; = B(t;,2r/~2), which each have diameter
bounded by 47772 and which satisfy d(4;, A;) > ri71/2 for i # j. We also
have A; C A for each i € {1,...,N}.

Taking the tree of subsets with root A, n(A) = j, and children {4;}Y,,
and in each A; a tree which achieves value at least §(A;) = 0(B(t;,2r772)) =
©j—2(i), we see immediately that

©;(s) = 0(B(s,2r7)) = r?\/log N + min{p; o(t;) :i=1,2,...,N},

confirming condition (2) of Theorem 3.3. Applying the theorem, it follows that
Y2 (X7 d) ST G(X)v proving (40) U

We will need the upper bound (40) to hold for (2,r,4, %)—trees. Toward
this end, we state a version of [49, Thm 3.1]. The theorem there is only proved
fora=1and 8 = %, but it is straightforward to see that it works for all values
a, B > 0 since the proof merely proceeds by choosing an appropriate subtree
of the given tree; the values o and [ are not used.

THEOREM 3.5. For every metric space (X,d), the following holds. For
every a, B, > 0 and g € N, and for every (1,r,«, B)-tree F in X, there exists
a (q,7,, B)-tree F' in X such that

size, (F) < q - size, (F').

Combining Theorem 3.5 with Lemma 3.4 yields the following upper bound
using (2, r)-trees.

COROLLARY 3.6. There is a value o > 2 such that for every finite metric
space (X, d), and every r = ro, we have

(41) Y2(X, d) <, sup{size,(F) : F is a (2,7,4, 3)-tree in X}.
Now we move onto a lower bound on ~s.

LEMMA 3.7. There is a value 7o = 2 such that for every finite metric
space (X, d), and every r = 19, we have

v2(X,d) 2 sup{size,(F) : F is a (1,1,8, %)—tree}.
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Proof. We will show for any probability measure  on X and any (1,7, 8, %)—
tree F in X, we have

. 1 1/2
size, (F) <, sup/ <log> de.
P )y " uBe o)

The basic idea is that if Ay, As,... A are children of A, in F, then the
sets B(A;, 20r”(A) 1Y are disjoint by property (2) of Definition 3.1, where we
write B(S,R) = {x € X : d(z,S) < R}. Thus one of these sets A; has
p(B(Ay, 55" D71)) < 1/N(A).

Thus we may find a finite sequence of sets, starting with A(®) = X such
that AC*1) is a child A® and

u(BAFHD, LA =1y) < 1 /N (AD),

Since every maximal branch in a tree of subsets terminates in a singleton, the
sequence ends with some set A’ = A" = {z}. By construction, we have
/ 1
B(z, ™A1y < —
Iu’( ( 20 )) N(A/)

Thus, assuming r > 40,

1 ,mn(A)-1

(42) rA-2 logt N(ANY < [ 1)) de.

(AT —2 log u(B(x, e

By property of Definition 3.1, the intervals (r ”(A)_Q, L ”(A)_l)

for different sets A € F with x € A; thus summing (42) y1e1ds

size, (F) S n(A)=2, /log* N(A / 1/1
Ae]-'a:EA og (B(z,¢)

3.2. Separated trees. Let (X,d) be an arbitrary metric space. Consider a
finite, connected, graph-theoretic tree 7 = (V, E) (i.e., a connected, acyclic
graph) such that V' C X, with a fixed root z € V, and a mapping s : V — Z.
Abusing notation, we will sometimes use T for the vertex set of 7. For a
vertex x € T, we use T, to denote the subtree rooted at x, and we use I'(x) to
denote the set of children® of = with respect to the root z. Finally, we write
A(z) =|I'(z)|+1forall z € T.

Let £ be the set of leaves of 7. For any v € T, let P(v) = {z,...,v}
denote the set of nodes on the unique path from the root to v. For a pair of
nodes u,v € T, we use P(u,v) to denote the sequence of nodes on the unique

are disjoint

path from u to v. If w is the parent of v, we write u = p(v) and, in particular,

1Formablly, these are precisely the neighbors of x in 7 whose unique path to the root z
passes through x.
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we write z = p(z). For any such pair (7,s) and r > 2, we define the value of

(T,s) by

(43) val, (T, s) :}22 Z ) log A(v).

veEP (L)

The following definition will be central.

DEFINITION 3.8. For a value v > 2, we say that the pair (T,s) is an
r-separated tree in (X, d) if it satisfies the following conditions for all x € T
(1) For ally € T'(z), s(y) < s(x) — 2.
(2) For all u,v € I'(x), we have d(x,T,) > %rs(:ﬁ)_l and d(Ty, Ty) =
% ps(@)—1

(3) diam(7;) < 4@,

We remark that our separated tree is a slightly different version of the
(2,7)-tree introduced in the preceding section. The main difference is that the
nodes of our separated tree are point in the metric space X, whereas a node
in a (2,7)-tree is a subset of X. Our definition is tailored for the application
in Section 4.

Not surprisingly, we have a similar version of the above theorem for sep-
arated trees.

THEOREM 3.9. For some rg = 2 and every r = rg, and any metric space
(X,d), we have
supval, (T, s) =, y2(X, d),
T

where the supremum is over all r-separated trees in X.
Theorem 3.9 follows from Corollary 3.6 and the following lemma.

LEMMA 3.10. Consider r > 8 and any metric space (X,d). For any
(2,7)-tree F, there is an r-separated tree T such that size,(F) = val.(T).
Also, for any r-separated tree T, there is a (2,7)-tree F such that size,(F) >
val,(T) — rdiam(X).

Proof. We only prove the first half of the statement, since the second half
can be obtained by reversing the construction. The additive factor —r diam(X)
is due to the slight difference in the definitions of the value for a separated tree
and the size for a (2,r)-tree (see (43) and (39)).

Let F be a (2,r)-tree on (X,d). For each A € F with N(A) > 1, we
select one child ¢(A) and an arbitrary point v4 € ¢(A). We now construct the
separated tree 7. Its vertex set is a subset of {v4 : A € F}. The root of T is
vy, and its children are {vp : B is a child of X with B # ¢(X)}. In general, if
v4 is a node of T, then its children are the points {vp : B is a child of A with
B # ¢(A)}. Finally, for vq € T, we put s(va) = n(A).
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Let us first verify that 7 is an r-separated tree. Condition (1) of Defini-
tion 3.8 holds because if y is a child of v4 € T, then y = vp for some child B
of A (in F), which implies s(y) = n(B) < n(A) —2 = s(va) — 2. Secondly, if
v4 is a node with children vp,,vB,,...,vp,, then clearly by Definition 3.1,

d(va, Top,) = d(c(A), By) > — r*Ca) =1,
1
2

verifying condition (2) of Definition 3.8.

Thirdly, if z4 € T, then for any child zp of x4, we know B is a child of
A; hence

diam(T,,) < diam(B) < 4r™) = 4ps@a),

using property (3) of a g-tree. This verifies condition (3) of Definition 3.8.

Finally, observe that for every nonleaf node v4 € T, we have A(vyg) =
IT(v4)] +1 = N(A), and for leaves, we have log A(v4) = logt N(A) = 0. Tt
follows that val, (7, s) = size,(F), completing the proof. O

3.2.1. Additional structure. We now observe that we can take our sepa-
rated trees to have some additional properties. Say that an r-separated tree
(T, s) is C-regular for some C' > 1 if it satisfies, for every v € T \ L,

(44) A(v) > exp (C2r24s(z)*s(”)) .

LEMMA 3.11. ForeveryC' > 1 andr > 4, for every r-separated tree (T, s)
m X, if
val, (T, s) = 4Crs(+,

then there is a C-regular r-separated tree (T',s") in X with
val, (T, s) < val.(T",s") <val(T,s).

Proof. Consider the following operation on an r-separated tree (T, s). For
x € T\ L, consider a new r-separated tree (7', s") = ®,(T, s), which is defined
as follows. Let u be the child of x, and let S contain the remaining children
such that

(45) val, (Tu, s|7,) < val.(Ty, s|7,) for all v € S,

where 7T, is the subtree of 7 rooted at v and containing all its descendants, and
s|7, is the restriction of s on the subtree 7,. Consider the tree 7' that results
from deleting all the nodes in .S, as well as the subtrees under them, and then
contracting the edge (z,u). We also put s'(z) = s(u) and §'(y) = s(y) for all
yeT'.

As long as there is a node x € 7 \ £ that violates (44) (for the current
(T7,5")), we iterate this procedure (namely, we replace (77,s") by ®,(7",s")).
It is clear that we end with a C-regular tree (77, s"). Note that different choices
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of x at each stage will lead to different outcomes, but the following proof shows
that all of them satisfy the required condition.
It is also straightforward to verify that for any £ € £’, we have

Z ') flog Agi(v) = Z ) /log Ay(v) — Cr Z rs(v)28(2)=s(v)
”L)GPT/(Z) veEPT(£) veEPr(0)

> Z rs(v) log AT(U) . Crs(z)Jrl Z 92k, —2k
vePT(£) k=0

WV

Z )\ /log A (v) — 2053+
veEPT (L)

>val, (T, s) — 20r°3)+!
P

where in the second line we have used property (1) of Definition 3.8, in the third
line, we have used r > 4, and in the final line we have used our assumption
that val, (7, s) > 4Crs(2)+1,

It remains to prove that val.(7,s) > val, (7', s’). The issue here is that
it is possible £ C L. However, by our choice of u at each stage (as in
equation (45)), it is guaranteed that ¢ € £’ for a certain ¢ € L such that
val (T, 8) = Y vepw) %) /log A(v). This completes the proof. O

We next study the subtrees of separated trees. In what follows, we con-
tinue denoting by s|7+ the restriction of s on 7’ for 7/ C T, and we use a
subscript 7 to refer to the subtree 7".

LEMMA 3.12. For every r-separated tree (T,s), there is a subtree T' C T
such that (T, s|7+) is an r-separated tree satisfying the following conditions:
(1) val,(T,s) < val,.(T", s|7).
(2) For everyv € T'\ Ly, Api(v) = A(v).
(3) For everyv € T'\ Ly and w € L7 N Ty,

1
(46) Sy /log Agi(u) > 57"8(])(”)) log A7+ (p(v)).

u€P(v,w)

Proof. We construct the subtree 7 in the following way. We examine the
vertices of v € T in the breadth-first search order (that is, we order the vertices
such that their distances to the root are nondecreasing). If v is not deleted yet
and for some £ € LN Ty,

(47) o 0 log Ar(u) < r*P0)\/log Ar(p(v)),

ueP(v,l)
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we delete all the descendants of v. Let 7' be the subtree obtained at the end
of the process. It is clear that (77, s|7) is a separated tree, and it remains to
verify the required properties.

By the construction of our subtree 7, we see that whenever a vertex is
deleted, all its siblings are deleted. So for a node v € T\ L7+, all the children
in 7 of v are preserved in T”, yielding property (2).

Note that if v € L7\ L, there exists £ € £ N T, such that (47) holds.
Therefore, we see

Yo e logArw) = Y ) /log Ar(u)

u€P(z,v) u€P(z,v)\{v}
> 1 Z ps(u) log Ay (u) > %valr(T, s).
u€P(z,0)

This verifies property (1) (noting that the reverse inequality is trivial).

Take v € T'\ L7 and w € L7 NT,. If w € L, we see that (46) holds for v
and w since (47) does not hold for v and £ = w. (Otherwise all the descendants
of v have to be deleted and v will be a leaf node in 7".) If w ¢ L, there exists
o € LN Ty, such that

ST log Ar(u) < )\ /log Ar(p(w)).

ueP(w,lo)

Recall that (47) fails with ¢ = ¢y. Altogether, we conclude that

Z W\ Nlog A (u) = Z () log A ()

u€P(v,w) u€P(v,lo)
- Z 5 /log A7 (u)
u€P(w,lo)
1
>3 > r*)\/log A7 (u)
uw€eP(v,lo)
1
> irs(p(”))\/ log A7 (p(v)),
establishing property (3) and completing the proof. O

Finally, we observe that separated trees are stable in the following sense.

LEMMA 3.13. Fiz 0 < § < 1. Suppose that (T,s) is an r-separated tree
in X, and for every node v € V, we delete all but [§ - |I'(v)|] of its children.
Denote by T the induced tree on the connected component containing z(T).
Then (T, s|77) is an r-separated tree and

val,. (T, s) <5 val,.(T", s|77).
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Proof. 1t is clear that properties (1), (2), and (3) of separated trees are
preserved for the induced tree 77 for s|7. So (77,s) is an r-separated tree.
Furthermore, for every leaf ¢ of T,

S O log Ari(v) = Y 150y /log(1+ [6- [T(v)[])
UE’P(E) ’UG’P(()

>c(8) > ry/log(1 +|D(v)]) > c(d)val, (T, s),
veP(L)

where ¢(9) is a constant depending only on 4. It follows that val, (77, s|r) >
c(d)val,(T,s), completing the proof since the reverse direction is obvious. O

3.3. Computing an approximation to o deterministically. We now present
a deterministic algorithm for computing an approximation to ~s.

THEOREM 3.14. Let (X, d) be a finite metric space, with n = |X|. If, for
any two points x,y € X, one can compute d(x,y) in time polynomial in n,
then one can compute a number A(X,d) in polynomial time for which

A(X,d) = 7o(X, d).

Proof. Fix r>16. First, let us assume that 1<d(z,y) <rM for r£ye X
and some M € N. Fix zg € X.

Our algorithm constructs functions g, ¢1,...,0nm : X — Ry, We will
return the value A(X,d) = pr(zo). First put ¢1(x) = @o(x) =0 forall x € X.
Next, we show how to construct ¢; given <p0, Plye s Pj—1-

For z € X and r > 0, we use B(z,7) = {y € X : d(x,y) < r}. First, we
construct a maximal érﬂ ! net N; in X in the following way. Supposing that
Y1, ..., Yk have already been chosen, let yx1+1 be a point satisfying

k
1.
pj2(y41) = max {sojz(y) yex\UB (57 1)}

i=1
as long as there exists some point of X \ U, B(z, 1r7~!) remaining. For
r € X, set

9j (JJ) = ymin{k:d(a},yk)éérﬂ;l}'
Now we define ¢;(x) for x € X. Suppose that
B(.ZL', 27']) N N] = {yfpyfza ce 7yfh}a

with 1 < ¥4y < --- < ¥}, and define
L pj(x) =pj_1(x) if B(gj(x),4rj) \ B(g;(x), 1—167“j_2) is empty.
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II. Otherwise,
(48) 03(z) = max {w (v ogE + min -2l
~ l\

max(y-1(2) 2 € Bl )

Now, we verify that {goj}j]‘io satisfies the conditions of Theorem 3.3. The
monotonicity condition (1) is satisfied by construction. We will now verify
condition (2), starting with the following lemma.

LEMMA 3.15. For any j > 0, if d(s,t) <1/ and
: 1
B(gs(s),49) \ B (g5(5), 79)

is empty, then ¢;(s) = ¢;(t).

Proof. We prove this by induction on j. Clearly it holds vacuously for
j < 2. Assume that it holds for g, ¢1, . .., goj 1 and j > 2. By the condition

of the lemma and the fact that s € B(g;(s), 2r7~1), we have
1
(49) (s, 95(5)) < 1577,

which implies that B(s,2r7)\ B(s, %rj ~2) is also empty. Furthermore, we have
gj(s) = g;(t), since otherwise d(g;(s), g;(t)) > $r7~!, and we would conclude

that
, 1 . 4 .
27 2 d(gj(t),5) > dlgs(5),95(0)) — d(s,g5(5)) > 577" = 22 = i,

contradicting the fact that B(s,2r) \ B(s, £r772) is empty. It follows that
(50) B(s,2r')\ B(s,77%) =0 and B(t,2r7)\ B(t, 31/ 7?) = 0.

1 1

Since g;(s) = g;(t), we conclude that both ¢;(s) and ¢;(t) are defined by
case (I) above; hence

(51) j(s) = pj-1(s) and ¢;(t) = pj-1(t).

So we are done by induction unless B(g;(s), 4r771) \ B(g;(s), 1773 is
nonempty, in which case ¢;_1(s) and ¢;_1(t) are defined by case (II). But from
(50) and d(s, t) < 77, we see that B(t,2ri"1) = B(s,2r~1) and B(s, 3r77%) =
B(t,1r172) as well. This implies that ¢;_1(s) and ¢;_1(t) see the same maxi-
mization in (48); hence ¢;_1(s) = ¢;—1(t), and by (51) we are done. O

Now, let s,t1,...,ty € X be as in condition (2), and let B(s,2r/) N

N; {ygl,yg2,...,ygh} be such that ¢; < fo < -+ < £y If B(gj(s),4r7) \
B(gj(s), 7=ri71) is empty, then N = 1, and Lemma 3.15 implies that ¢;(s) =
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@;(t1) = @j—a(t1), where the latter inequality follows from monotonicity. Thus
we may assume that ¢;(s) is defined by case (II).

To every t;, we can associate a distinct point g;(t;) € B(s,2r?) N N;, and
by construction we have ¢;_o(g;(t;)) = wj—2(t;), since ¢;_2(yx) is decreasing
as k increases. Using this property again in conjunction with the definition
(48), we have

©i(s) = r’\/log N + min{p;_o(ys,) i =1,...,N}
> 17\/log N + min{p;_2(g;(t:;)) :i=1,...,N}
> r/\/log N + min{p;_o(t;) :i=1,...,N},

)

completing our verification of condition (2) of Theorem 3.3. Applying Theo-
rem 3.3, we see that
(52) 72(X,d) S sup pi(z) = pum(zo) = A(X, d).
reX i€Z

To prove the matching lower bound, we first build a tree 7 whose vertex
set is a subset of X x Z. The root of T is (zg,M). In general, if (x,j) is
already a vertex of 7 with j > 1, then we add children to (zx,j) according
to the maximizer of (48). If ¢;(z) = ¢j_1(2), then we make (z,j — 1) the
only child of (z,j). Otherwise, we put the nodes (y1,5 —2),..., (yn,j — 2) as
children of (z,j), where {y;} C N; are the nodes that achieve the maximum
in (48).

Let the pair (77, s) be a constructed in the following way from 7. We
replace every maximal path of the form (z, jo), (x,jo—1),..., (z,jo — k) by the
vertex x and put s(x) = jo — k. It follows immediately by construction that

(53) val,(T",s) < ear(xo) +rdiam(X, d) < ar(zo),

where the latter inequality follows from (52), since war(zo) 2 Y2 (X,d) =
diam(X,d). Note that the correction term of diam(X,d) in (53) is simply
because of the use of A(v) = [I'(v)| + 1 in the definition (43).

We next build a (1, 7,8, %)—tree F, which essentially captures the structure
of the tree 7. In general, the sets in F will be balls in X, with the node
(7,§) € T being associated with the set B(x,4r7) in F, which will have label
n(B(z,417)) = ;.

We construct the (1,7,8, 7= )-tree F recursively. The root of F is B(z,4r™)
(which is equal to X)), and we define n(B(x,4r7)) = M. In general, if F con-
tains the set B(x,477) corresponding to the node (z,j) € T, and if (x, j) has
children (y1,7 —2), (y2,5 —2),. .., (yn,7 —2) € T, we add the sets B(y;, 4r7~2)
as children of B(z,4r7) in F, with n(B(y;, 47 ~2)) = j—2. Likewise, if (2,7 —1)
is the child of (z,7), then we add the set B(z,4r7~1) as the unique child of
B(z,477) in F and put n(B(z,4r7~1)) = j — 1. We continue in this manner
until 7 is exhausted.
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We now verify that F is indeed a (1,1, 8, %)—tree. First, note that if (z,j—1)
is a child of (z,5) in T, then clearly B(z,4r~!) C B(z,4r7) since this can only
happen if d(z,z) < 1ri71. Also, if (y1,7 — 2), ..., (yn,j — 2) are the children
of (z,7), then by the construction of the maps in (48), we have d(y;,x) < 2r7;
hence B(y;,4r7~2) C B(x,4r7), recalling that » > 16. Furthermore, for i # k,
since y;, yr, € Nj, we have d(y;, yi) > %rjfl, so B(y;, 4r7=2) N B(yg, 4r772) = (),
verifying that F is indeed a tree of subsets. In fact, we have the estimate

4 (Blys, 4r972), Blyg, 4r9%)) > 29— 89972 5 97 = L),
using r > 16. This verifies that property (2) of a (l,r,l,%)—tree is satis-

fied. Furthermore, property (1) of a (1,r,8, %)—tree follows immediately by
construction. Finally, to verify property (3), note that for any set in our
tree of subsets F, corresponding to a node of the form (x,j) € T, we have
diam(B(z, 4r7)) < 87 and n(B(x,4r7)) = j.

By construction, we have

val,.(T", s) < size,.(F) + rdiam(X, d),
and Lemma 3.7 yields v2(X,d) 2 size,.(F) + diam(X,d) (using 72(X,d) 2

~

diam(X,d)). Combining this with (53) shows that
12(X,d) 2 valo (T, s) 2 enr(wo) = A(X, d).

Together with (52), this shows that y2(X, d) < A(X, d).

The only thing left is to remove the dependence of our running time on M.
But since there are at most n? distinct distances in (X,d), only O(n?) of the
maps ©o, ©1, - - -, pr are distinct. More precisely, suppose that there is no pair
u,v € X satisfying d(u,v) € [r773,r771] for some j € Z. In that case, ¢;(z) is
defined by case (I) for all z € X, and thus ¢; = ¢;_1. Obviously, we may skip
computation of the intermediate nondistinct maps. (It is easy to see which
maps to skip by precomputing the values of j such that there are u,v € X
with d(u,v) € [r773,7771.) Since there are only O(n?) nontrivial values of j,
this completes the proof. O

3.4. Tree-like properties of the Gaussian free field. Finally, we consider
how the resistance metric (and hence the Gaussian free field) allows us to obtain
trees with special properties. Consider a network G(V') and the associated
metric space (V,v/Rest). Let (T, s) be an r-separated tree in G. We say that
(T,s) is strongly r-separated if, for every nonroot node v € T, we have the
inequality

(54) VRet(0, T\ To) > %MP(”))—I,

where p(v) denotes the parent of v in T.
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LEMMA 3.16. For any network G(V) and any r > 96, let (To,s) be
an arbitrary r-separated tree on the space (V,\/Reg). Then there is an in-
duced strongly r-separated tree (T,s) such that |[T'r(v)| = |Ty(v)|/2 for all
v e T\ Ly. Furthermore,

(55) val,.(T, s) < val.(Tp, s).

Proof. Consider any nonleaf node v € Ty with children ¢y, ..., ¢, where
kE>1 If k=1,let S, = {c1}. Otherwise, we wish to apply Proposition 2.10
to the sets {7} ,. By property (2) of separated trees, we get that for all
x €Te;,y €T, with i # 7,

Reg(z,y) > (17~8<v>1>2 RO
€ ’ = 2 4 .

Combined with property (3) of separated trees, Proposition 2.10 yields that
there exists a subset S, C {c1,...,cx} with |S,| > k/2 such that for ¢ € S,,
we have
1 _ 1 1 _
Regt (T, Ty \ (Te U {w})) > Zr2(5(v) 1. i > %TZ(S(U) 1)
Applying Lemma 2.13 with A =T.,B1 = T, \ (T. U{v}) and By = {v}, we get
that

(56) Reg (Te, T \ Te) 2 2e(o)=1),

Too"
Next, consider the induced r-separated tree (7,s) that arises from deleting,
for every nonleaf node v € 7y, all the children not in S, as well as all their
descendants. It is clear that for all v € T \ L7, we have [I'r(v)| > |I'7; (v)|/2.
Lemma 3.13 then yields that

val, (T, s) < val, (7, s).
It remains to verify that (7,s) is strongly r-separated. Define Dy = 1.
For h > 1,
Dy =Dj_1 (1 —Dj_yr*").
It is straightforward to verify that Dy > 1/2 for all h > 0, since r > 2.

We now prove, by induction on the height of 7, that for every node u at
depth h > 11in T,

1
(57) V Ret (u, T\ To) = TOw(p(uD—th_l.

By the preceding remarks, this verifies (54), completing the proof of the lemma.
Let z = z(T) be the root, and let v be some child of z. Let u € T, be a
node at depth A in 7, (and hence at depth h+ 1 in 7). By (56), we have

(58) VRt (0, TNT) 2 VRt (T, T\ Te) 2 20,
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If u = v, then the preceding inequality yields (57). Otherwise, u # v, and
h>1.
By the induction hypothesis (57) applied to u and 7Ty, we have

1
(59) VBer (u, T\ Tu) > 1577 71D; .

Since u € T, is a node at depth h, we get from property (1) of a separated tree
that s(p(v)) = s(p(u)) + 2h and therefore,

(60) iTS(P(U))*th_I < p2h, 1 pSe@)-1p,

10 h 0
Now, using (58) and (59), we apply Lemma 2.13 with A = {u}, B1 =T, \ T,
and By =T \ Ty, yielding

sP@)=1p, - Lps(p()-1
Tt 0T\ T0) > 10" s
\/(ﬁrs(p(u)) 1Dp_1)? (ﬁrs(p(v))—l)2

1 1
> —pse)=-1p,
10 \/1 + (Dp_1r—2h)2
1
2 Ers(p(u))ith_l(l — Dh717’74h),
where the second transition follows from (60) and the third transition follows

from the fact that (1 +22)~1/2 > 1 — 22, This completes the proof. (]

Good trees inside the GFF. Consider a Gaussian free field {n,},ey cor-
responding to network G(V') with the associated metric space (V,d), where

d(z,y) = (E(1z —1y)*)">.

PROPOSITION 3.17. For somery = 2 and anyr > ro and C > 1, there ez-
ists a constant K = K(C,r) depending only on C' and r such that the following
holds. For an arbitrary Gaussian free field {ng}zev with v2(V,d) > K diam(V),
there exists an r-separated tree (T, s) with set of leaves L such that the following
properties hold:

(a) val,.(T,s) <, c 72(X,d).

(b) For everyv €V, dist (Th;,aff({ﬁu}uggn)) > 207" s(p(v))—

(¢) For everyv eV, A(v) > exp (02 245(2)=s(v) ) forallv e T\ L.
(d) For everyv e T\ L and w € LNT,,

ST log A(u) = —r*®W)/log A(p(v)).

ueP(v,w)

N —

We call such a tree T a C-good r-separated tree.

Proof. By definition of the GFF, we have d = v/ Reg for some network
G(V). Applying Theorem 3.9, there exists an r-separated tree (7o, sg) such
that val,.(79, so) =, 72(V, d).
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Recalling property (3) of Definition 3.8 and the assumption that vo(V, d) >
K diam(V), we can then select K large enough such that the condition of
Lemma 3.11 is satisfied for the separated tree (7p, sg). Applying Lemma 3.11,
we can get a 2C-regular separated tree (71, s1) with val,. (71, s1) =, ¢ val,. (7o, so).

At this point, using Lemma 3.16, we obtain a C-regular strongly r-sep-
arated tree (72, s2) such that val,. (72, s2) <, 72(V,d). That is to say, the tree
(T2, s2) satisfies properties (a) and (c). Furthermore, by Lemma 2.15, we see
that property (b) holds for (72, s2) because it is equivalent to the strongly
r-separated property (54).

Finally, Lemma 3.12 implies that there exists a subtree 7 C 75 with
val, (T, s2|7) =r.c val, (72, s2) such that property (d) holds for 7 and properties
(a) and (c) are preserved. (Note that by property (2) of Lemma 3.12, the
degrees of nonleaf nodes are preserved.) Observe that property (b) is preserved
by taking subtrees. Writing s = so|7, we conclude that the separated tree
(T, s) satisfies all the required properties, completing the proof. O

4. The cover time
We now turn to our main theorem.

THEOREM 4.1. For any network G(V') with total conductance C=Y",cv cq,

we have
tO

cov(G) =C [’72(‘/, @)]2 .

Combined with Theorem 2.3, this also yields a positive answer to the
strong conjecture of Winkler and Zuckerman [54].

COROLLARY 4.2. For every § € (0,1), for any network G(V') with total
conductance C =Y ey Cz,

2
ton (G) < C [72(V.V/Re)|” <5 toi(G, 0).

For the remainder of this section, we denote

(61) S =7 (V, VRest)-
It is clear that for all 0 < § < 1, we have t5 (G) < th1(G, ), and t, (G, ) s

cov

CS? by Theorem 2.3. Thus, in order to prove the preceding corollary and
Theorem 4.1, we need only show that

(62) 2 (G) > C&2.

cov
Let {W;} be the continuous-time random walk on G(V'), and let {L}},cv
be the local times, as defined in Section 2. Applying the isomorphism theorem
(Theorem 1.14) with some fixed vy € V', we have

1 w [1



COVER TIMES, BLANKET TIMES, AND MAJORIZING MEASURES 1451

for some associated Gaussian process {n;},cy. By Lemma 2.14, this process
is a Gaussian free field, and we have for every x,y € V,

(64) d(z,y) 2 \E . — 1,2 = \/Rer (2, ).

Let ® = max, yev d(x,y) be the diameter of the Gaussian process.

Proof outline. Let {£ > 0} be the event {Lf(t) > 0: a2 € V}. Consider

aset S CRY, and let Sy, and Sk be the events corresponding to the left and
right-hand sides of (63) falling into S. Our goal is to find such a set S so that
for some t =< &2, we have

(65) P(Sg) — P(SLN{L>0)) > c

for some universal constant ¢ > 0. In this case, with probability at least c,
the set of uncovered vertices {v : Lﬁ(t) = 0} is nonempty. Using the fact that
the inverse local time 7(¢) is 2 Ct with probability at least 1 — ¢/2, we will
conclude that t2 (G) > C&2.

Thus we are left to give a lower bound on P(Sg) and an upper bound
on P(Sp, N {€ > 0}). Since the structure of the local times process {Lf}
conditioned on {£ > 0} can be quite unwieldy, we will only use first moment
bounds for the latter task. Calculating a lower bound on P(Sg) will require
a significantly more delicate application of the second-moment method, but
here we will be able to exploit the full power of Gaussian processes and the
majorizing measures theory.

Before defining the set S C R, we describe it in broad terms. By (64) and
Theorem (MM), we know that for some ¢y < &2, we should have Einf,cy 7, =
—Esup,ey 1z close to —/2tp. By Lemma 2.2, we know that the standard
deviation of infyecy n, is O(®). Thus we can expect that with probability
bounded away from 0, for the right choice of t; =< &2, some value on the
right-hand side of (63) is O(D) for ¢ = to.

Now, when E sup,cy 7, >, it is intuitively true that for t=cty and € >0
small, there should be many points € V with 1, ~ —/2t. If these points
have some level of independence, then we should expect that with probability
bounded away from 0, there is some z € V with |n, — v/2t| very small (much
smaller than O(®)). Our set S will represent the existence of such a point. On
the other hand, we will argue that if all the local times {Lf(t)} are positive,
then the probability for the left-hand side to have such a low value is small.

4.1. A tree-like subprocess. First, observe that by the commute time iden-
tity, ton,

may assume that

(G) = Cmax, yev Resi(z,y) = CD?. Thus in proving Theorem 4.1, we

(66) S > KD
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for any universal constant K > 1. In particular, by an application of Proposi-
tion 3.17, we can assume the existence of an r-separated tree (7, s) in (V,d),
for some fixed r > 128, with root z = wvg, and such that for some constant
C > 1 and 0 = 6(C), properties (67), (70), (71), and (72) below are satisfied.
We will choose C sufficiently large later, independent of any other parameters.

For each u € T, let h, denote the height of u, where we order the tree so
that h, = 0, where z is the root. Recalling that £ is the set of leaves of T, for
each v € L, let

P(U) = {fv(o)afv(l)a .- '7fv(hv)}

be the set of nodes on the path from z = f,(0) to v = f,(hy), where f,(7) is
the parent of f,(i + 1), for 0 < ¢ < h. First, we can require that for every
veEL,

1
> —

(67) Oy =2 06,

where

(68) Xo(k) = @)y flog A(f, (k)

hy—1

(69) =Y xulk).
k=0

Furthermore, we can require that the tree 7 satisfies, for every v € V|

(70) hil Yoli) = C - 27 - p3(Fo@)
i=j+1

as well as

(71) A(fy(k)) > exp(C2r24F).

Finally, we require that for every v € T,

(72) distz> (o, aff({nu}ugT,)) = %rqp(v))—y

All these requirements are justified by Proposition 3.17.

The distinguishing event. For u,v € L, we let hy, be the height of the
least common ancestor of u and v. We will use deg, (v) = |['(v)| to denote the
number of children of v. Define

hu—1 Py —1

(73> My, = H deg¢(fu(k)) and My, = H degi(fu(k»'
k=0 k=0

First, we fix

1

(74) S om0,
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For every v € L, consider the events
(75) Eu(e) = {|n — e8| < 50T P 34

Instead of arguing directly about the events &,(¢), we will couple them to
leaf events of a “percolation” process on 7. In particular, in Section 4.2, we
will prove the following lemma.

LEMMA 4.3. For all v € L, there exist events &, such that the following
properties hold:

(1) & C Eule) = {Iny — e8| < 507*¢0Nmy /L

(2) P(&,) = 1m, /5.

(3) P(E, N Ey) < Mt (mamy) /5.

In Section 4.3, we will prove that for any events {&, }yer satisfying prop-
erties (2) and (3) of Lemma 4.3, we have

(76) P ( U 5u> >

uel

| =

Thus for t = %8262, we have

1 1
(77) P (Hv eV S+ V2t)? < 502r25(1’<v>>mg3/2> >3
In light of the discussion surrounding (65), the reader should think of
S = {s eRY :s, < 502r25(p(“))m;3/2 for some v € V} ,

and then (77) gives the desired lower bound on P(Sg). We now turn to an
upper bound on P(S;, N {£ > 0}). The next lemma is proved in Section 4.4.

LEMMA 4.4. Fort > 3262,

1
2, 25(p(v)) ), —3/2 il
(78) P(U{0<L:(t)<5o @)y }><16.
veL

From (78) and (77), we conclude that with probability at least 1/16, we
must have L7, = 0 for some v € V and ¢ = 12262, else (63) is violated. This
implies that

¢ 1

(79) Puy (7eov > 7(36°6%)) > £

To finish our proof of (62) and complete the proof of Theorem 4.1, we
will apply Lemma 2.7 with 8 = %. In particular, we may choose K = 96/¢ in
(66), and then applying Lemma 2.7 yields

262 1
P(r(le26?) < S <—.
(7(256) “To2 ) S 3
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Combining this with (79) yields

2x2
e“6 1
Fuo <TCC‘))V SRRT ) Z 16

In particular, 7%, > Ce?&2. This completes the proof of (62), and hence of
Theorem 4.1.

4.2. The coupling. This section is devoted to the proof of Lemma 4.3.
Toward this end, we will try to find a leaf v € L for which n, =~ ¢&. As in
Lemma 4.3(1), the level of closeness we desire is gauged according to a proper
scale, r*(P(") ag well as to the number of other leaves we expect to see at this
scale, which is represented roughly by m,, 3/4
here, and any other value in (1/2,1) would suffice.)

Our goal is to find such a leaf by starting at the root of the tree. We argue
that some of its children should be somewhat close to the target €¢&. This
closeness is achieved using the fact that, by definition of an r-separated tree,

. (The value 3/4 is not essential

the children are separated in the Gaussian distance, and thus they exhibit some
level of independence. We will continue in this manner inductively, arguing
that the children that are somewhat close to the target have their own children
that we could expect to be even closer, and so on. We aim to shrink these
windows around the target more and more so that they are small enough once
we reach the leaves. There are a number of difficulties involved in executing
this scheme. In particular, conditioning on the exact values of the children of
the root could determine the entire process, making future levels moot. Thus
we must first select a careful filtering that allows us to reserve some randomness
for later levels. This is done in Section 4.2.1.

Furthermore, the intermediate targets have to be arranged according to
the variances along the root-leaf paths in our tree. This corresponds to the
fact that, although we have a uniform lower bound on each o, (from (67)), the
summation defining the o,’s could put different weights on the various levels
(recall (69)). The targets also have to take into account random “noise” from
the filter described above, and thus the targets themselves must be random.
This “window analysis” is performed in Section 4.2.2.

4.2.1. Restructuring the randomness. We know that n, = 0, since z = vg
is the root of 7 (and the starting point of the associated random walk). Fix a
depth-first ordering of 7. (One starts at the root and explores as far as possible
along each branch before backtracking.) Write u < v if u is explored before v,
and v < v if u < vor u=wv. For u # z, we write u~ for the vertex preceding
u in the DFS order. Let F = span({n;:z € T}). For a node v € T, let
Fy = span({ny fu=<v) and F, = span({ny fu<wv). We next associate a centered
Gaussian process {&; : x € T} to {n, : € T} in the following inductive way.
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Define &, = 0. Now, assuming we have defined &, for u < v, we define &, by
writing
Ny = Gu + o,
where ¢, € F,- and §, L F,-. Observe that, by construction, {&, },<, forms
an orthogonal basis in L? for F,.
Applying (72), we have for all u € T,

(80) [€ull2 = distrz (M, span ({1w fw<u))

1
dIStL2 (77U7 Span ({HIU}w%%)) 20 S( (u)) ?

where we used the fact that the span and the affine hull are the same since
&, =0. For v € L, define the subspaces

For=span ({&u : fu(k) < u = fu(k+1)}),
F ok = Span ({&u : fu(k) <u =< fu(k+1)}).
For 0 < k < hy — 1, define inductively 7, 0 = 0 and
(81) Tok+1 = Tok + Projz, , (Mv)-

Note that the subspaces {]:v,k} wlo are mutually orthogonal, and together they
span J,. Thus,

(82) ﬁv,hv = M-
Furthermore, by the definition of the subspace F, j, we can decompose
(83) 7711,16-"-1 - ﬁv,k = 51),19 + év,ka

where fv,k € F,, and év,k L F, .- The next lemma states that évyk has at least

comparable variance to (y k-

LEMMA 4.5. For everyv € L and k =0,1,...,h, — 1, we have the esti-
mates

(50 ], < 8100
and
(85) 64 rS(fo(k))— Hg k” ] ps(fu(k))
Proof. Writing the telescoping sum,
hy—1
o = Z Nfo(i+1) = Mfu ()

§=0

we see that
—1 hu_l

Z anv G+1) — Nfu @ H2 < Z 47“S(fU(J)) < 87rf s(folk ))a
i=k

(86) HprOJf L ()
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where we used properties (1) and (3) of the separated tree and have assumed
r > 2.
Thus by orthogonality and (83), we have

< 8 rs(fv(k))’

5v,kH2 < o k+1 — Toklly = Hprojfmk(%) )

and precisely the same conclusion holds for éuk.
Next, we establish a lower bound on ||&, x||2. From (81) and (83),

(87) év,k = pl"Oj]:U’k (1) — pI‘Oj]_-;k (7w)
hy—1
= > (PYOJf e (0741 = () = Projz- (Mg, (1) = 15, (j>))
j=k ’
= |Projx, , (g, (k1) = Nfu(k) — PrOIz— (M7, (k1) — nfv(k))}
hy—1

+ 2 (prOJ}" W (08,4 — nfv(j))—projf;k(nfv<j+1>—ﬁfvu)))-
j=k+1 ’

Observe that the term in brackets is precisely
pl”OJ]E k(nfv(k+1)) - PrOjf;k(ﬁfU(Hl)) = ffv(k+1)

since 7y, (k) L Fu k. In particular, we arrive at

hy—1
év,kH2 2 Hffv(k:-i-l)H2 - 'zk;rl anv(j-i-l) - 77fv(j)H2

rs s(fo(k))—1 _ 27~5(fv(k+1))
ST _ o (i (k)=2
r5(fo(k)—

\YARVARVY,
m\H g\H g\H

where in the second line we have used (80) and properties (1) and (2) of the
separated tree and in the final line we have used r > 128. O

4.2.2. Defining the events &,. Recall that our goal now is to find many
leaves v € L with n, ~ ¢&. Now, writing

hy—1 hy—1
T = Z PrOj]-‘v’k () = Z (Cv,k + gv,k)a
k=0 k=0

our “ideal” goal would be to hit a window around the target by getting the
kth term of this sum close to

o(k
ay (k) 2 GX ( )7
Oy
for k =0,1,...,h, — 1. We will use the variance of the év,k variables (recall

Lemma 4.5) to lower bound the probability that some points get closer to the
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desired target. On the other hand, we will treat the fv,k variables as noise that
has to be bounded in absolute value.

This noise cannot always be countered in a single level, but it can be
countered on average along the path to the leaf; this is the content of (70).
We will amortize this cost over future targets as follows. Let b,(0) = 0 and for
k=0,1,..., h, — 2, define

pv(k) = év,k + gv,k - av(k) + bv<k)7
k
bk 4 1 xolkt1)
(k+1)= ZO ?;Lllxu()p()

Clearly p,(0) = Cu.0 + Ev0 — ay(0) represents how much we miss our first
target. A similar fact holds for the final target, as the next lemma argues; in
between, the errors are spread out proportional to the contribution to val,. (7, s)
for each of the the remaining levels (represented by the y, (k) values). Here
by (k) represents the error that is meant to be absorbed in the kth level.

LEMMA 4.6. For every v € L,
po(hy —1) =1n, — 6.
Proof. We have

hy—2 hy—2 k

) X nkn=33 ’,‘;’_’i“ puli)
k=0 k=0

=0 ( i+1 Xv(e)
:hU—Z hy—2 Xv(k+1) hy—2

puli) Y N Po(i).
=0 k=i ZZUH}I ( ) 1=0
Also note that
hy—1 hy—1 B B hy—1
Z po(k) = Z (Cv,k + &k — ay(k) +by(k)) = ny — & + Z by (k)
k=0 k=0 k=0

Combined with b,(0) = 0 and (88), it follows that p,(h, — 1) = n, — 6,
completing the proof. O

We now define the events

Ay (k) = < efxo(k)},
By(k) = {!pv( )| < wy(K)},

where, for 0 < k < hy — 2, wy (k) is selected so that

(89) P (Bo(k) | Go + bu(k)) = degy (fu(k)) /",
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We emphasize that the window w, (k) is not deterministic. And, for k = h,—1,
we select w, (k) so that

(90) P(By (k) | ok + bu(k)) = degy (fuo(k) ™/ ¥m >/,

Remark 2. Here, w,(k) can be thought to represent the window size
around the random target. The value of w, (k) is chosen to make the probabil-
ities in (89) and (90) exact, allowing us to couple seamlessly to the percolation
process in Section 4.3. The key fact, proved in Lemma 4.7, is that the win-
dow sizes actually satisfy a deterministic upper bound, assuming that all the
“good” events on the path from the root to f,(k) occurred. Thus one should
think of the true window size as the bounds specified in (94) and (95), while
the random value is for the purpose of the coupling.

For 0 < k </ < hy, —1, define
l V4
(91) Ay(k,0) = () Au(i) and By(k,0) = ) By(i).
i=k i=k

Since &, € o(Fur \ Fox) (see, e.g., (87)), we see that the event B,(k) is

conditionally independent of o(F ) given the value of ¢, x + b,(k). This

fo(k+1)
implies that for all events & € a(f;)(kﬂ)) such that & N.A,(0,k)NB,(0,k—1)
# 0,

(92)  P(Bu(k) | Au(0,k), Bu(0,k — 1), &)

B {deg¢(fv(k))_1/8, i0<k<hy—1,

B degi(fv(k))*l/gmgg/zl7 if k=h,— 1.
Finally, for v € L, we define the event

(93) Ev = Ap(0,hy — 1) N By (0, hy — 1).

Window analysis. We will now show that our final window wy(h, — 1) is
small enough. Observe that our choice of w, (k) is not deterministic. Never-
theless, we will give an absolute upper bound. The bound is essentially the
natural one: For any node u in the tree, and any child v of u, the standard de-
viation of 1, — 1, is O(r*®)). This follows from property (3) of the r-separated
tree (recall Definition 3.8).

LEMMA 4.7. For every v € L and k = 0,1,...,hy — 2, if A,(0,k) and
B,(0,k — 1) hold, then

(94) wy (k) < 50 75,
Furthermore, if Ay(0, hy, — 1) and B, (0, hy, — 2) hold, then
(95) wy(hy — 1) < 50 pS(fo(ho=1)) m;3/4.
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Proof. For k =0, we have p,(0) = {0 + £v.0 — a,(0). By (67), we have
(96)  ay(0) = e6xu(0)/0 < Oexu(0) = =r*O) /log A(£,(0)).
Furthermore, from Lemma 4.5, we know that for all k > 0
(97) Lyps(fo®) Hf k” < 8ps(fu(k))

Now, consider a value w > 0 such that
(98) w < ay(0) + e0x,(0) < 20er* () \/log A(£,(0)).
Using (97) and recalling the Gaussian density, we have
(99)

P (Ipo(0)] < w [ Av(0)) = P (low(0)| < w | {oo = —€0xu(0))

=P (|&.0 — au(0) — £0x0(0)] < w)
1

w
2—%27r 87"5 o) P (—%(1285r9)2log A(fv(O)))

1 (128¢r6)2
= LT ey AU(0) 2

Recalling the assumption (71), we have \/log A(f,(0)) > Cr > 16y/2721%
by choosing C large enough. In particular,

e0x,(0) > (16v27m2'00r)r* o) = 161/27ys(v ()

recalling (74). Thus setting w = 16y/27r5(/+(0) satisfies (98), and applying
(99), we have

1
P (lou(0)] < 16v2mr* 0O | A4,(0)) > A(f,(0)" 2025 > degy (£,(0) 7,
where we have used 3 (128er6)? = 135, and A(f,(0)) > 16 from (71). Therefore,
wy(0) < 16v/2mr° (fo(0)) < 50 rS(fv(O))7

recalling the definition of w,(0) from (89).
Now suppose that (94) holds for all k¥ < ¢ < h,, — 2, and consider the case
k =€+ 1. If the events {B,(j) : 0 < j < £} hold, then

o] < wy(f) < 500D,

where the first inequality is from the definition of B,(j) and the second is from
the induction hypothesis. Using (70), it follows that

k—1
(100) AOED —hff’“) po(i)] < Zxe(h).
=0 /= H—l ( )
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Recall that p, (k) = Cox + Euk — au(k) + by(k). Similar to the k = 0 case,
we obtain that for

0<w< 20ers(Fv (k) log A(fu(k)),

we have

P (o (k)] < w | Ay(i), By(i) for all 0 < i < k, Ay(k))

- 2
> P ( [~ aull) — () ~ )] < w)
]. w 1 2 —1\2
>-- - —3(128r)*(e0+C~1)*
~ 2 \/27r8r5(fv(k))A<fv(k)) i

Now, by choosing C' > 1024r, and recalling (74), we see that

1 1
—(1287) (e + C7H2 < —.
5 (128)(e0+ C71)* < o

Since A(fy(k)) > 16 (again, by (71)), we conclude that

P (1pu(k)| < 16v2ar P E) | A, (3), B, (i) for all 0 < i < k, Ay(k))
> deg, (fo(k)) V5.
This implies w, (k) < 16v/2rrsFv(#) < 50 75(+(%))  where we recall once again

the definition of w, (k) from (89). An almost identical argument yields that
W (hy — 1) < 50 #$Uolho=1)) -3/, .

The next lemma states that the events &, as defined in (93) satisfy re-
quirement (1) of Lemma 4.3.

LEmMA 4.8. If €, occurs, then

7y — €S| < wy(hy — 1) < 5075 ooy =3/4,

Proof. This follows directly from Lemma 4.6, the identity (82), and the
definition of B, (k). O

The first moment. We now give lower bounds on the probability of the
event &,.

LEMMA 4.9. For every v € L,
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Proof. We have

(101)
hﬁlp k) | Ay(0, k — 1), By(0, k — 1))
'IP)( U( ) ‘ Av(ov k)’BU(O’k - 1))
hy—1 hy—1
=m i“’/‘*Hdegi (fo(k VSHP k) | Ay(0,k — 1), B,(0,k — 1))
=m,* [ P(A(k)),
k=0

where the third line follows from (92) and the fourth line from the fact that
Ay (k) is independent of {A,(4), B,(i) : 0 < i < k}.
Using (84), we have

SC2
P(A,(k)) 1—— - | d
(Aul) V2m /GXU(k b ( 1287”23(fv(k))> o
> 1 - 2A(f, (k)" m""

>1-— zexp( 1282 20024k)

where we have used (71), the definition of £ (74), and

Xo(k) = U Jlog A(f, (k).
Clearly by choosing C' a large enough constant, we have

hy—1 1
I B Ak > 5.
k=0
completing the proof. ([l
The second moment. Finally, we bound the probability of £,NE, for u # v.
LEMMA 4.10. For every u,v € L,
P(E, NEY) < mB(mym,) 78,

Proof. Assume, without loss of generality, that u < v € L. It is clear from
(101) that P(&,) < m;7/8 Also, we have

P<gv ‘ gu) < P(Av«)? hv - 1)7811(07 hu - 1) | gu)
hy—1
< [ P(Bu(k) | Eu, As(0, k), By(0,k — 1)).
k huv
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Now recall that &, € o(F; o, 1)) Co(Fp g y) for all k > hy,. By (92), we
obtain

hy—1

H P ’ guaAv(O k) Bv((),k - 1))

k=huv

= deg) (folhy —1))73/* T deg,(fo(k))™® = mLEm, /5.
k:huv

Altogether, we conclude that
P(E,NEy) = P(E)P(Ey | Eu) < mYE(mymy,)”T/8,
as required. O

The main coupling lemma, Lemma 4.3, is an immediately corollary of
Lemmas 4.8, 4.9, and 4.10.

4.3. Tree-like percolation. Lemma 4.11 below yields (76). Its proof is a
variant on the well-known second moment method for percolation in trees (see
[38]). First, we define a measure v on £ via v(u) = my'. Observe that v is a
probability measure on L, i.e.,

(102) > v(u)=1.
uel

To see this, construct a unit flow from the root to the leaves, where each nonleaf
node splits its incoming flow equally among its children. Clearly the amount
that reaches a leaf u is precisely v(u).

LEMMA 4.11. Suppose that to each v € L, we associate an event &, such
that the following bounds hold:

(1) P(&) = imy™/® for allv e L.
(2) P(E,NEy) < mz%s(mumv) /8 for all u,v € L.
Define Z =Y er mu 28 1g,. Then,

P(Z>0)>

oo\r—‘

Proof. By assumption (1),
1
EZ)Zimqjl/S —7/8 Zm
ueLl uEE
where the last equality follows from (102).

By assumption (2), we have

EZ? = 3 (myme) VEP(E,NE) < S miB(mymy) ™!
u,veL u,veL
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In order to estimate the second moment, we first fix « and sum over v. To be
more precise, let

Ly(u) ={v € L: hyy = h},
where we recall that h, is the height of a node u and h,, is the height of the

least-common ancestor of v and v.
We can then partition £ = (>0 £ (u) and obtain, for every u € L,

hy h—1
S miSmy Z ST omiBmgt =3 [ degy (fu(@)VE ST myt
veL h=0veLy(u) h=0 i=0 veLly(u)
hy h—1
=S 1T deg, (£u(0)YBv(Ln(w)).
h=0 1=0

Recalling the flow representation of the measure v, we see that

d ” -1 h—1
V([’h(u)) - ejég(f fu H deg 8L fu

Therefore,

b deg (fu(h)) — 1=t
m1/8 _ 1 deg, (fu () —-7/8
& et = 2 Sy L

hy h—1

<[] degy (fu®) " <2,

£=0 i=0

where the last transition follows from (71) for C' chosen sufficiently large. Ap-
plying the second moment method, we deduce that

(E2)’ _ 1

EZz2 7§’
completing the proof. O

P(Z>0)>

4.4. The local times. We now prove Lemma 4.4 in order to the complete
the analysis of the left-hand side of (63).

LEMMA 4.12. Consider the local times Lg(t) as defined in Theorem 1.14.
Forv e L, define

Ey = {0 < L2(t) < 507 - p2o (o=, 78/24

f(Us) <

Then, for anyt > 0,
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Proof. Note that the random walk is at vertex vy at time 7(t). Hence,
given that Lﬁ(t) > 0, the random walk contains at least one excursion that
starts at v and ends at vg. Therefore, given that Lg(t) > 0, we see Cng(t)
stochastically dominates the random variable

Ty,
L:/ 1(x,—ydt,
0

where X; is a random walk on the network started at v and T, is the hitting
time to vg.

By definition, every time the random walk hits v, it takes an exponential
time for the walk to leave. Also, the probability that the random walk would
hit vy before returning to v can be related to the effective resistance (see, for
example, [39]). Formally, when the random walk W; is at vertex v, it will
wait until the Poisson clock ¢ with rate 1 rings and then move to a neighbor
(possibly v itself) selected proportional to the edge conductance. Define

T,) =min{t > o : X; = v}.
Then we have the continuous-time version of (33):
1

CvReff(Uy UO) '
By the strong Markov property, L follows the law of the sum of a geometric

P, (T, > T,,) =

number of i.i.d. exponential variables. Thus L follows the law of an exponential
variable with EL = ¢, Reg (v, v0).

Recalling property (72) of our separated tree T, we see that

Regi(v,v0) = E(ny — 10)? > 27 10p2fe(ho=1) =2,
Thus,
P(0 < LY < 502 . p25(folho=0))=3/2y < P(L < ¢, - 502 - p25(Foho=1))y—3/2)
502 . T2S(fv(hv*1))m;3/2
Reff(vv UO)

<211 .502. 2 m;3/2

Lo
6

N

<
where the last transition using (71) for C' chosen large enough and m, >
exp(C?r?).
Therefore, we conclude that
]P) U (C:’ < i Z mil = i
Y] T 16 Y16
veL

where we used, from (102), the fact that ", m, ! = 1, completing the proof.
U
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4.5. Additional applications. We now prove a generalization of Theorem 1.7.

Suppose that V = {1,2,...,n}, and let G(V') be a network with conductances
{cij}. We define real, symmetric n x n matrices D and A by

Ci, i = j7
Dij= .
0, otherwise,

We write

(103) Lo =

and Lg for the pseudoinverse of L.

THEOREM 4.13. For any connected network G(V'),

2
ten(@) =< E [VIG g
where g = (g1, ..., 9n) is a standard n-dimensional Gaussian.

Proof. If k denotes the commute time in G, then the following formula is
well known (see, e.g., [32]):
K(i,§) = (e — ej, L (ei — €5)),

where {e1,...,e,} are the standard basis vectors in R"™. Using the fact that
Lg is self-adjoint and positive semi-definite, this yields

2
k(i,J) = H\/Lg ei — /L ejH .

Let ¢ = (91,..-,9n) € R"™ be a standard n-dimensional Gaussian, and
consider the Gaussian processes {n; : i = 1,...,n} where n; = <g, \/Lg e7;>.
One verifies that for all 4,5 € V,

2
Elni —nl* = |VE&(ei — )| = m(i.j);
thus by Theorem (MM),

(104) 72(V, /%) < Emaxn; = Emax (g, /L ;)
eV eV
s (VEG ) =2 |VETo] .

By Theorem 1.9, [v2(V, v/&)]* =< teov(G). Finally, one can use Lemma 2.2 to

conclude that , ,
(&[vics|.) =& [vViéd, . .
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THEOREM 4.14. There is a randomized algorithm that, given any con-
nected network G(V'), with m=|{(x,y) : czy #0}|, runs in time O(m(logm)°™)
and outputs a number A(G) such that teoy(G) < E[A(G)] < (E [A(G)?])'/2.

Proof. In [46, §4], it is shown how to compute a kxn matrix Z, in expected

time O(m(logm)°M), with & = O(logn), and such that for every i,j € V,
(105) ki, §) < |1 Z(ei — ) |* < 2w(i, j).
We can associate the Gaussian processes {n;}icv, where 17, = (g, Ze;) and g
is a standard k-dimensional Gaussian. Letting d(i,j) = /E |n; — n;|?, we see
from (105) that v/k < d < V/2k; therefore, vo(V, /) < 2(V,d). It follows
(see (104)) that

2
E HZgHio =K H\/LiggHoo = teov(G),
where the last equivalence is the content of Theorem 4.13.
The output of our algorithm is thus A(G) = || Zg||%,, where g is a standard
k-dimensional Gaussian vector. The fact that E[A(G)] =< (E[A(G)?])'/? follows
from Lemma 2.2. ]

5. Open problems and further discussion

We now present two open questions that arise naturally from the present
work. The first question concerns obtaining a better deterministic approxima-
tion to the cover time.

QUESTION 5.1. Is there, for any € > 0, a deterministic, polynomial-time
algorithm that approzimates teoy(G) up to a (1 + €) factor?

Note that the preceding question has been solved by Feige and Zeitouni
[23] in the case of trees.

The second question involves concentration of 7., around its expected
tcov(Gn)

thit (Gn)
the maximal hitting time, Aldous [4] proves that % converges to 1 in

probability. We ask whether it is possible to obtain sharper concentration.

value. Under the assumption that lim, = oo, where tp;; denotes

QUESTION 5.2. Is the standard deviation of Tcoy bounded by the mazximal
hitting time tny? Furthermore, does % exhibit an exponential decay with
constant rate?

It is interesting to consider the extent to which Theorem 2.8 is sharp.
Consider a family of graphs {G,}. We point out that the asymptotic formula,

2
(106) teov (Gn) ~ [B(Gy)| - (Esupn, ),
veV

holds for both the family of complete graphs and the family of regular trees,
where we write a,, ~ b, for lima, /b, = 1 and E(G,) denotes the set of edges



COVER TIMES, BLANKET TIMES, AND MAJORIZING MEASURES 1467

in G,,. Here, {n,} is the GFF associated to G,, with n,, = 0 for some fixed
vertex vg.

To see this, note that the GFF on the n-vertex complete graph satisfies
Varn, = % and E(n,n,) = % for vy ¢ {u,v}. Therefore, we can write 7, = £+&,
for every v # wvg, where £ and all {{,},eyv are i.i.d. Gaussian variables with
variance % It is now clear that Esup,n, ~ y/2logn/n. Combined with the
facts that teov(Gp) ~ nlogn and |E(G,)| = "(nQ_l), this confirms (106) for
complete graphs.

Fix b > 2, and consider a regular b-ary tree T,, of height m with n =
bmer_lf L vertices. It is shown in [3] that teoy(Tin) ~ 2mnlogn. On the other
hand, Biggins [8] proved that the corresponding GFF satisfies Esup,n, ~
V2mlogn . Since the number of edges in Ty, is n — 1, we infer that (106) holds

for regular trees. It is clearly very interesting to understand the generality
under which (106) holds.
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