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Cover times, blanket times, and
majorizing measures

By Jian Ding, James R. Lee, and Yuval Peres

Abstract

We exhibit a strong connection between cover times of graphs, Gaussian

processes, and Talagrand’s theory of majorizing measures. In particular,

we show that the cover time of any graph G is equivalent, up to universal

constants, to the square of the expected maximum of the Gaussian free

field on G, scaled by the number of edges in G.

This allows us to resolve a number of open questions. We give a de-

terministic polynomial-time algorithm that computes the cover time to

within an O(1) factor for any graph, answering a question of Aldous and

Fill (1994). We also positively resolve the blanket time conjectures of Win-

kler and Zuckerman (1996), showing that for any graph, the blanket and

cover times are within an O(1) factor. The best previous approximation

factor for both these problems was O((log log n)2) for n-vertex graphs, due

to Kahn, Kim, Lovász, and Vu (2000).
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1. Introduction

Let G = (V,E) be a finite, connected graph, and consider the simple

random walk on G. Writing τcov for the first time at which every vertex of

G has been visited, let Evτcov denote the expectation of this quantity when

the random walk is started at some vertex v ∈ V . The following fundamental

parameter is known as the cover time of G:

(1) tcov(G) = max
v∈V

Evτcov.

We refer to the books [5], [36] and the survey [37] for relevant background

material.

We also recall the discrete Gaussian free field (GFF) on the graph G. This

is a centered Gaussian process {ηv}v∈V with ηv0 = 0 for some fixed v0 ∈ V .

The process is characterized by the relation E (ηu − ηv)2 = Reff(u, v) for all

u, v ∈ V , where Reff denotes the effective resistance on G. Equivalently, the

covariances E(ηuηv) are given by the Green kernel of the random walk killed

at v0. (We refer to Sections 1.2 and 1.3 for background on electrical networks

and Gaussian processes.)

The next theorem represents one of the primary connections put forward

in this work. We use the notation � to denote equivalence up to a universal

constant factor.

Theorem 1.1. For any finite, connected graph G = (V,E), we have

tcov(G) � |E|
Å
Emax
v∈V

ηv

ã2

,

where {ηv}v∈V is the Gaussian free field on G.

The utility of such a characterization will become clear soon. Despite

being an intensively studied parameter of graphs, a number of basic questions

involving the cover time have remained open. We now highlight two of these,

whose resolution we discuss subsequently.
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The blanket time. For a node v ∈ V , let π(v) = deg(v)
2|E| denote the station-

ary measure of the random walk, and let Nv(t) be a random variable denoting

the number of times the random walk has visited v up to time t. Now define

τ◦bl(δ) to be the first time t > 1 at which

(2) Nv(t) > δt π(v)

holds for all v ∈ V . In other words, τ◦bl(δ) is the first time at which all nodes

have been visited at least a δ fraction as much as we expect at stationarity.

Using the same notation as in (1), define the δ-blanket time as

(3) t◦bl(G, δ) = max
v∈V

Evτ◦bl(δ).

Clearly for δ ∈ (0, 1), we have t◦bl(G, δ) > tcov(G). Winkler and Zuckerman

[54] made the following conjecture.

Conjecture 1.1. For every 0 < δ < 1, there exists a C such that for

every graph G, one has

t◦bl(G, δ) 6 C · tcov(G).

In other words, for every fixed δ ∈ (0, 1), one has tcov(G) � t◦bl(G, δ).

Kahn, Kim, Lovász, and Vu [30] showed that for every fixed δ ∈ (0, 1), one

can take C � (log log n)2 for n-node graphs, but whether there is a universal

constant, independent of n, remained open for every value of δ > 0.

In order to bound t◦bl(G, δ), we introduce the following stronger notion.

Let τbl(δ) be the first time t > 1 such that for every u, v ∈ V , we have

Nu(t)/π(u)

Nv(t)/π(v)
> δ,

i.e., the first time at which all the values {Nu(t)/π(u)}u∈V are within a factor

of δ. As in [30], we define the strong δ-blanket time as

tbl(G, δ) = max
v∈V

Evτbl(δ).

Clearly one has t◦bl(G, δ) 6 tbl(G, δ) for every δ ∈ (0, 1).

The second question we highlight is computational in nature.

Question 1.2 ([5], [30]). Is there a deterministic, polynomial-time algo-

rithm that approximates tcov(G) within a constant factor?

In other words, is there a quantity A(G) that can be computed determin-

istically, in polynomial-time in |V |, such that A(G) � tcov(G). It is crucial

that one asks for a deterministic procedure, since a randomized algorithm can

simply simulate the chain, and output the empirical mean of the observed

times at which the graph is first covered. This is guaranteed to produce an
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accurate estimate with high probability in polynomial time, since the mean

and standard deviation of τcov are O(|V |3) [6].

A result of Matthews [43] can be used to produce a determinisically com-

putable bound that is within a log |V | factor of tcov(G). Subsequently, [30]

showed how one could compute a bound that lies within an O((log log |V |)2)

factor of the cover time.

Before we state our main theorem and resolve the preceding questions, we

briefly review the γ2 functional from Talagrand’s theory of majorizing measures

[48], [50].

Majorizing measures and Gaussian processes. Consider a compact metric

space (X, d). Let M0 = 1 and Mk = 22k for k > 1. For a partition P of X

and an element x ∈ X, we will write P (x) for the unique S ∈ P containing x.

An admissible sequence {Ak}k>0 of partitions of X is such that Ak+1 is a

refinement of Ak for k > 0, and |Ak| 6 Mk for all n > 0. Talagrand defines

the functional

(4) γ2(X, d) = inf sup
x∈X

∑
k>0

2k/2diam(Ak(x)),

where the infimum is over all admissible sequences {Ak}.
Consider now a Gaussian process {ηi}i∈I over some index set I. This is a

stochastic process such that every finite linear combination of random variables

is normally distributed. For the purposes of the present paper, one may assume

that I is finite. We will assume that all Gaussian processes are centered, i.e.,

E(ηi) = 0 for all i ∈ I. The index set I carries a natural metric which assigns,

for i, j ∈ I,

(5) d(i, j) =
»
E |ηi − ηj |2.

The following result constitutes a primary consequence of the majorizing mea-

sures theory.

Theorem (MM) (Majorizing measures theorem [48]). For any centered

Gaussian process {ηi}i∈I ,

γ2(I, d) � E sup {ηi : i ∈ I} .

We remark that the upper bound of the preceding theorem, i.e.,

E sup {ηi : i ∈ I} 6 Cγ2(I, d)

for some constant C, goes back to work of Fernique [24], [25]. Fernique for-

mulated this result in the language of measures (from whence the name “ma-

jorizing measures” arises), while the formulation of γ2 given in (4) is due to

Talagrand. The fact that the two notions are related is nontrivial; we refer to

[50, §2] for a thorough discussion of the connection between them.
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Commute times, hitting times, and cover times. In order to relate the

majorizing measure theory to cover times of graphs, we recall the following

natural metric. For any two nodes u, v ∈ V , use H(u, v) to denote the expected

hitting time from u to v, i.e., the expected time for a random walk started at

u to hit v. The expected commute time between two nodes u, v ∈ V is then

defined by

(6) κ(u, v) = H(u, v) +H(v, u).

It is immediate that κ(u, v) is a metric on any finite, connected graph. A

well-known fact [11] is that κ(u, v) = 2|E|Reff(u, v), where Reff(u, v) is the

effective resistance between u and v, when G is considered as an electrical

network with unit conductances on the edges. We now restate our main result

in terms of majorizing measures. For a metric d, we write
√
d for the distance√

d(u, v) =
»
d(u, v).

Theorem 1.2 (Cover times, blanket times, and majorizing measures).

For any graph G = (V,E) and any 0 < δ < 1, we have

tcov(G) �
î
γ2(V,

√
κ)
ó2

= |E| ·
î
γ2(V,

√
Reff)

ó2 �δ tbl(G, δ),

where �δ denotes equivalence up to a constant depending on δ.

Clearly this yields a positive resolution to Conjecture 1.1. Moreover, we

prove the preceding theorem in the setting of general finite-state, reversible

Markov chains. See Theorem 1.9 for a statement of our most general theorem.

We now address some additional consequences of the main theorem. First,

observe that by combining Theorem 1.2 with Theorem (MM), we obtain The-

orem 1.1.

Theorem 1.3 (Cover times and the Gaussian free field). For any graph

G = (V,E) and any 0 < δ < 1, we have

tcov(G) � |E|
Å
Emax
v∈V

ηv

ã2

�δ tbl(G, δ),

where {ηv} is the Gaussian free field on G.

In fact, in Section 2.2, we exhibit the following strong asymptotic upper

bound.

Theorem 1.4. For every graph G = (V,E), if thit(G) denotes the maxi-

mal hitting time in G and {ηv}v∈V is the Gaussian free field on G, then

tcov(G) 6

(
1 + C

√
thit(G)

tcov(G)

)
· |E| ·

Ç
E sup
v∈V

ηv

å2

,

where C > 0 is a universal constant.
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In Section 3, we prove the following theorem which, in conjunction with

Theorem 1.2, resolves Question 1.2.

Theorem 1.5. Let (X, d) be a finite metric space, with n = |X|. If, for

any two points x, y ∈ X , one can deterministically compute d(x, y) in time

polynomial in n, then one can deterministically compute a number A(X, d) in

polynomial time, for which

A(X, d) � γ2(X, d).

A “comparison theorem” follows immediately from Theorem 1.2, and the

fact that γ2(X, d) 6 Lγ2(X, d′) whenever d 6 Ld′ (see (4)).

Theorem 1.6 (Comparison theorem for cover times). Suppose G and G′

are two graphs on the same set of nodes V , and κG and κG′ are the distances

induced by respective commute times. If there exists a number L > 1 such that

κG(u, v) 6 L · κG′(u, v) for all u, v ∈ V , then

tcov(G) 6 O(L) · tcov(G′).

Finally, our work implies that there is an extremely simple randomized

algorithm for computing the cover time of a graph, up to constant factors. To

this end, consider a graph G = (V,E) whose vertex set we take to be V =

{1, 2, . . . , n}. Let D be the diagonal degree matrix, i.e., such that Dii = deg(i)

and Dij = 0 for i 6= j, and let A be the adjacency matrix of G. We define the

following normalized Laplacian:

LG =
D −A
tr(D)

.

Let L+
G denote the Moore-Penrose pseudoinverse of LG. Note that both LG

and L+
G are positive semi-definite. We have the following characterization.

Theorem 1.7. For any connected graph G, it holds that

tcov(G) � E
∥∥∥»L+

G g
∥∥∥2

∞
,

where g = (g1, . . . , gn) is an n-dimensional Gaussian, i.e., such that {gi} are

independent and identically distributed (i.i.d.) N(0, 1) random variables.

The preceding theorem yields an O(nω)-time randomized algorithm for

approximating tcov(G), where ω ∈ [2, 2.376) is the best-possible exponent for

matrix multiplication [13]. Using the linear-system solvers of Spielman and

Teng [47] (see also [45]), along with ideas from Spielman and Srivistava [46],

we present an algorithm that runs in near-linear time in the number of edges

of G.
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Theorem 1.8 (Near-linear time randomized algorithm). There is a ran-

domized algorithm that, given an m-edge connected graph G = (V,E), runs

in time O(m(logm)O(1)) and outputs a number A(G) such that tcov(G) �
E [A(G)] � (E

[
A(G)2

]
)1/2.

1.1. Related work. Cover times of finite graphs have been studied for over

30 years. We refer to [5], [37], [36] for the basic theory. Works of Feige showed

that the cover time for any n-node graph is at least (1− o(1))n log n [22] and

at most 4n3/27 [21]. Both of these bounds are asymptotically tight, with the

tight example for the lower bound given by the complete graph on n nodes.

The connection between cover times, commute times, and the theory of

electrical networks was laid out in [11]. In general, the electrical viewpoint

provides a powerful methodology for analyzing random walks (see, for example,

[15], [53], [39]). Indeed, this point of view will be central to the present work.

A fundamental bound of Matthews [43] shows that

tcov(G) 6
Å

max
u,v∈V

H(u, v)

ã
(1 + log n),

where we recall that H(u, v) is the expected hitting time from u to v. Using the

straightforward lower bound tcov(G) > maxu,v∈V H(u, v), this fact provides a

deterministic O(log n)-approximation to tcov(G) in n-node graphs.

Matthews also proved the lower bound,

(7) tcov(G) > max
S⊆V

Å
min
u6=v∈S

H(u, v)

ã
log(|S| − 1).

In [30], it is shown that taking the maximum of the lower bound in (7) and

the maximal hitting time maxu,v∈V H(u, v) is an O((log log n)2)-approximation

for tcov. Recently, Feige and Zeitouni [23] have shown that on trees, one can

obtain a very strong bound: For every ε > 0, there is a (1 + ε)-approximation

obtainable by a deterministic, polynomial-time algorithm.

The cover time has also been studied for many specific families of graphs.

Kahn, Linial, Nisan, and Saks [31] established an O(n2) upper bound for regu-

lar graphs. Broder and Karlin [9] proved that the cover time of constant-degree

expander graphs is O(n log n). For planar graphs of maximum degree d, Jonas-

son and Schramm [29] showed that the cover time is at least cd n(log n)2 and

at most 6n2. The order of the cover time on lattices was determined by Aldous

[2] and Zuckerman [55]. The latter paper also calculated the order of the cover

time on regular trees.

Furthermore, for a few families of specific examples, the asymptotics of

the cover time have been calculated more precisely. These include the work

of Aldous [3] for regular trees, Dembo, Peres, Rosen, and Zeitouni [14] for

the 2-dimensional discrete torus, and Cooper and Frieze [12] for the giant

component of various random graphs.
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Finally, we remark on an upper bound of Barlow, Ding, Nachmias, and

Peres [7] that was part of the motivation for the present work. Consider a

connected graph G = (V,E) and the metric space (V, κ), where we recall the

commute distance from (6). For each h ∈ Z, let Ah ⊆ V be a set of minimal

size whose 2h-neighborhood (in the metric κ) covers V . Then

(8) tcov(G) 6 O(1) ·

Ñ∑
h∈Z

2h/2
»

log |Ah|

é2

.

It turns out that this upper bound is tight (up to a universal constant) for

a number of concrete examples with approximately “homogeneous” geometry.

(We refer to [7] for examples, mostly related to various random graphs arising

from percolation.) For instance, the results of the present paper imply that

the right-hand side of (8) is equivalent to tcov(G) for any vertex-transitive

graph G. Furthermore, the formula (8) resembles the appearance of the Dudley

integral [16], which gives a tight bound for Gaussian processes with stationary

increments. This suggests, in particular, a connection between the cover time

of graphs and majorizing measures.

1.2. Preliminaries. To begin, we introduce some fundamental notions from

random walks and electrical networks.

Electrical networks and random walks. A network is a finite, undirected

graph G = (V,E), together with a set of nonnegative conductances {cxy :

x, y ∈ V } supported exactly on the edges of G, i.e., cxy > 0 ⇐⇒ xy ∈ E.

The conductances are symmetric so that cxy = cyx for all x, y ∈ V . We will

write cx =
∑
y∈V cxy and C =

∑
x∈V cx for the total conductance. We will often

use the notation G(V ) for a network on the vertex set V . In this case, the

associated conductances are implicit. In the few cases when there are multiple

networks under consideration simultaneously, we will use the notation cGxy to

refer to the conductances in G.

Associated to such a network is the canonical discrete time random walk

on G, whose transition probabilities are given by pxy = cxy/cx for all x, y ∈ V .

It is easy to see that this defines the transition matrix of a reversible Markov

chain on V and that every finite-state, reversible Markov chain arises in this

way (see [5, §3.2]). The stationary measure of a vertex is precisely π(x) = cx/C.
Associated to such an electrical network are the classical quantities Ceff ,

Reff : V ×V → R>0 which are referred to, respectively, as the effective conduc-

tance and effective resistance between pairs of nodes. We refer to [36, Ch. 9]

for a discussion of the connection between electrical networks and the corre-

sponding random walk. For now, it is useful to keep in mind the following
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fact [11]: For any x, y ∈ V ,

(9) Reff(x, y) =
κ(x, y)

C
,

where the commute time κ is defined as before (6).

For convenience, we will work exclusively with continuous-time Markov

chains, where the transition rates between nodes are given by the probabilities

pxy from the discrete chain. One way to realize the continuous-time chain is

by making jumps according to the discrete-time chain, where the times spent

between jumps are i.i.d. exponential random variables with mean 1. We refer

to these random variables as the holding times. See [5, Ch. 2] for background

and relevant definitions.

Cover times, local times, and blanket times. We will now define various

stopping times for the continuous-time random walk. First, we observe that

if τ?cov is the first time at which the continuous-time random walk has visited

every node of G, then for every vertex v,

Evτ?cov = Evτcov,

where we recall that the latter quantity refers to the discrete-time chain. Thus

we may also define the cover time with respect to the continuous-time chain,

i.e., tcov(G) = maxv∈V Evτ?cov.

In fact, it will be far more convenient to work with the cover and return

time defined as follows. Let {Xt}t∈[0,∞) be the continuous-time chain, and

define

(10) τ�cov = inf {t > τ?cov : Xt = X0} .
For concreteness, we define the cover and return time of G as

t�cov(G) = max
v∈V

Evτ�cov,

but the following fact shows that the choice of initial vertex is not of great

importance for us (see [5, Ch. 5, Lemma 25]),

(11)
1

2
t�cov(G) 6 tcov(G) 6 t�cov(G) 6 3 min

v∈V
Evτ�cov.

For a vertex v ∈ V and time t, we define the local time Lvt by

(12) Lvt =
1

cv

∫ t

0
1{Xs=v}ds,

where we recall that cv =
∑
u∈V cuv. For δ ∈ (0, 1), we define τ?bl(δ) as the first

time t > 0 at which

min
u,v∈V

Lut
Lvt
> δ.

Furthermore, the continuous-time strong δ-blanket time is defined to be

(13) t?bl(G, δ) = max
v∈V

Evτ?bl(δ).
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Asymptotic notation. For expressions A and B, we will use the notation

A . B to denote that A 6 C ·B for some constant C > 0. If we wish to stress

that the constant C depends on some parameter, e.g., C = C(p), we will use

the notation A .p B. We use A � B to denote the conjunction A . B and

B . A, and we use the notation A �p B similarly.

1.3. Outline. We first state our main theorem in full generality. We use

only the language of effective resistances, since this is most natural in the

context to follow.

Theorem 1.9. For any network G = (V,E) and any 0 < δ < 1,

tcov(G) � C
î
γ2(V,

√
Reff)

ó2 �δ tbl(G, δ) �δ t?bl(G, δ),

where C is the total conductance of G.

We now present an overview of our main arguments, and layout the orga-

nization of the paper.

Hints of a connection. First, it may help the reader to have some intuition

about why cover times should be connected to the Gaussian processes and

particularly the theory of majorizing measures.

A first hint goes back to work of Aldous [1], where it is shown that the

hitting times of Markov chains are approximately distributed as exponential

random variables. It is well known that an exponential variable can be repre-

sented as the sum of the squares of two Gaussians. Observing that the cover

time is just the maximum of all the hitting times, one might hope that the

cover time can be related to the maximum of a family of Gaussians.

This point of view is strengthened by some quantitative similarities. Let

{ηi}i∈I be a centered Gaussian process, and let d(i, j) be the natural metric on

I from (5). The following two lemmas are central to the proof of the majorizing

measures theorem (Theorem (MM)). We refer to [35] [50] for their utility in

the majorizing measures theory. The next lemma follows directly from the

definition of the Gaussian density; see, for instance, [42, Lemma 5.1.3, Eq.

(5.18)].

Lemma 1.10 (Gaussian concentration). For every i, j ∈ I , and α > 0,

P (ηi − ηj > α) 6 exp

Ç
−α2

2 d(i, j)2

å
.

The next result can be found in [35, Thm. 3.18].

Lemma 1.11 (Sudakov minoration). For every α > 0, If I ′ ⊆ I is such

that i, j ∈ I ′ and i 6= j implies d(i, j) > α, then

E sup
i∈I′

ηi & α
»

log |I ′|.
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Now, let G = (V,E) be a network, and consider the associated continuous-

time random walk {Xt} with local times Lvt . We define also the inverse local

times τv(t) = inf{s : Lvs > t}. An analog of the following lemma was proved in

[30] for the discrete-time chain; the continuous-time version can be similarly

proved, though we will not do so here, as it will not be used in the arguments

to come. In interpreting the next lemma, it helps to recall that Luτu(t) = t.

Lemma 1.12 (Concentration for local times). For all u, v ∈ V and any

α > 0 and t > 0, we have

Pu
Ä
Luτu(t) − L

v
τu(t) > α

ä
6 exp

Ç
−α2

4tReff(u, v)

å
,

where Pu denotes the measure for the random walk started at u.

Thus local times satisfy sub-Gaussian concentration, where now the dis-

tance d is replaced by
√
t ·Reff . On the other side, the classical bound of

Matthews [43] provides an analog to Lemma 1.11.

Lemma 1.13 (Matthews bound). For every α > 0, if V ′ ⊆ V is such that

u, v ∈ V ′ and u 6= v implies H(u, v) > α, then

tcov(G) > α log(|V ′| − 1).

Of course the similar structure of these lemmas offers no formal connec-

tion, but merely a hint that something deeper may be happening. We now

discuss a far more concrete connection between local times and Gaussian pro-

cesses.

The isomorphism theorems. The distribution of the local times for a Borel

right process can be fully characterized by certain associated Gaussian pro-

cesses; results of this flavor go by the name of Isomorphism Theorems. Several

versions have been developed by Ray [44] and Knight [33], Dynkin [18], [17],

Marcus and Rosen [40], [41], Eisenbaum [19], and Eisenbaum, Kaspi, Marcus,

Rosen, and Shi [20]. In what follows, we present the second Ray-Knight theo-

rem in the special case of a continuous-time random walk. It first appeared in

[20]; see also Theorem 8.2.2 of the book by Marcus and Rosen [42] (which con-

tains a wealth of information on the connection between local times and Gauss-

ian processes). It is easy to verify that the continuous-time random walk on a

connected graph is indeed a recurrent strongly symmetric Borel right process.

Theorem 1.14 (Generalized Second Ray-Knight Isomorphism Theorem).

Fix v0 ∈ V and define the inverse local time

(14) τ(t) = inf{s : Lv0s > t}.

Let T0 be the hitting time to v0, and let Γv0(x, y) = Ex(LyT0). Denote by

η = {ηx : x ∈ V } a mean zero Gaussian process with covariance Γv0(x, y).



1420 JIAN DING, JAMES R. LEE, and YUVAL PERES

Let Pv0 and Pη be the measures on the processes {LxT0} and {ηx}, respectively.

Then under the measure Pv0 × Pη , for any t > 0,

(15)

ß
Lxτ(t) +

1

2
η2
x : x ∈ V

™
law
=

ß
1

2
(ηx +

√
2t)2 : x ∈ V

™
.

Thus to every continuous-time random walk, we can associate a Gaussian

process {ηv}v∈V . As discussed in Section 2.4, we have the relationship d(u, v) =»
Reff(u, v), where d(u, v) =

»
E |ηu − ηv|2. In particular, the process {ηv}v∈V

is the Gaussian free field on the network G.

Using the Isomorphism Theorem in conjunction with concentration bounds

for Gaussian processes, we already have enough machinery to prove the follow-

ing upper bound in Section 2.1:

(16) tcov(G) 6 tbl(G, δ) .δ C [γ2(V, d)]2 = C
î
γ2(V,

√
Reff)

ó2
.

We also show how to prove a matching lower bound in terms of γ2, but

for a slightly different notion of “blanket time.”

Thus (16) proves the first half of Theorem 1.9. The lower bound for cover

times quite a bit more difficult to prove. Of course, the cover and return time

relates to the event
¶
∃v : Lvτ(t) = 0

©
, and unfortunately the correspondence

(15) seems too coarse to provide lower bounds on the probability of this event

directly.

To this end, we need to show that for the right value of t in Theorem 1.14,

we often have ηx ≈ −
√

2t for some x ∈ V . The main difficulty is that we will

have to show that there is often a vertex x ∈ V with |ηx +
√

2t| being much

smaller than the standard deviation of ηx. In doing so, we will use the full

power of the majorizing measures theory, as well as the special structure of the

Gaussian processes arising from the Isomorphism Theorem.

The discrete Gaussian free field and a tree-like subprocess. In Section 2.4

(see (35)), we recall that the Gaussian processes arising from the Isomorphism

Theorem are not arbitrary, but correspond to the Gaussian free field (GFF)

associated with G. Special properties of such processes will be essential to our

proof of Theorem 1.9. In particular, if we use Reff(v, S) to denote the effective

resistance between a point v and a set of vertices S ⊆ V , then we have the

relationship

(17)
»
Reff(v, S) = distL2(ηv, aff({ηw}w∈S)),

where aff(·) denotes the affine hull and distL2 is the L2 distance in the Hilbert

space underlying the process {ηv}v∈V . In Section 2.3, we prove a number of

properties of the effective resistance metric (e.g., Foster’s network theorem);

combined with (17), this yields some properties unique to processes arising

from a GFF.
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Next, in Section 3, we recall that one of the primary components of the

majorizing measures theory is that every Gaussian process {ηi}i∈I contains a

“tree like” subprocess that controls E supi∈I ηi. After a preprocessing step that

ensures our trees have a number of additional features, we use the structure

of the GFF to select a representative subtree with very strong independence

properties that will be essential to our analysis of cover times.

Restructuring the randomness and a percolation argument. The majoriz-

ing measures theory is designed to control the first moment E supi∈I ηi of the

supremum of Gaussian process. In analyzing (15) to prove a lower bound on

the cover times, we actually need to employ a variant of the second moment

method. The need for this, and a detailed discussion of how it proceeds, are

presented at the beginning of Section 4.

Towards this end, we want to associate events to the leaves of our “tree

like” subprocess that can be thought of as “open events” in a percolation

process on the tree. For general trees, it is known that the second moment

method gives accurate estimates for the probability of having an open path

to a leaf [38]. While our trees are not regular, they are “regularized” by the

majorizing measure, and we do a somewhat standard analysis of such a process

in Section 4.3.

The real difficulty involves setting up the right filtration on the probability

space corresponding to our tree so that the percolation argument yields the

desired control on the cover times. This requires a delicate definition of the

events associated to each edge, and the ensuing analysis forms the technical

core of our argument in Section 4.

Algorithmic issues. In order to complete the proof of Theorem 1.5 and

thus resolve Question 1.2, we present a deterministic algorithm that computes

an approximation to γ2(X, d) for any metric space (X, d). This is achieved in

Section 3.3. While the algorithm is fairly elementary to describe, its analysis

requires a number of tools from the majorizing measures theory.

We remark that, in combination with Theorem 1.9, this yields the follow-

ing result.

Theorem 1.15. For any finite-state, reversible Markov chain presented

as a network G = (V,E) with given conductances {cxy}, there is a determinis-

tic, polynomial-time algorithm that computes a value A(G) such that

A(G) � tcov(G).

Observe that for general reversible chains, the cover time is not necessarily

bounded by a polynomial in |V |, and thus even randomized simulation of the

chain does not yield a polynomial-time algorithm for approximating tcov(G).

Finally, in Section 4.5, we prove Theorems 1.7 and 1.8 in the setting of arbitrary
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reversible Markov chains, leading to a near-linear time randomized algorithm

for computing cover times.

2. Gaussian processes and local times

We now discuss properties of the Gaussian processes arising from the iso-

morphism theorem (Theorem 1.14). In Section 2.1, we show that the isomor-

phism theorem, combined with concentration properties of Gaussian processes,

is already enough to get strong control on blanket times and related quantities.

In Section 2.3, we prove some geometric properties of the resistance metric

on networks that will be crucial to our work on the cover time in Sections 3

and 4. Finally, in Section 2.4, we recall the definition of the Gaussian free field

and show how the geometry of such a process relates to the geometry of the

underlying resistance metric.

2.1. The blanket time. We first remark that the covariance matrix of the

Gaussian process arising from the isomorphism theorem can be calculated ex-

plicitly in terms of the resistance metric on the network G(V ). Throughout

this section, the process {ηx}x∈V refers to the one resulting from Theorem 1.14

with v0 ∈ V some fixed (but arbitrary) vertex, τ(t) refers to the inverse local

time defined in (14), and T0 is the hitting time to v0.

Lemma 2.1. For every x, y ∈ V ,

Γv0(x, y) = Ex(LyT0) = 1
2(Reff(x, v0) +Reff(v0, y)− Reff(x, y)).

In particular,

E (ηx − ηy)2 = Reff(x, y).

Proof. To prove the lemma, we use the cycle identity for hitting times

(see, e.g., [36, Lemma 10.10]), which asserts that

(18) H(x, v0) +H(v0, y) +H(y, x) = H(x, y) +H(y, v0) +H(v0, x).

Averaging both sides of (18) and recalling (9) yields

H(x, v0) +H(v0, y) +H(y, x) =
C
2

[Reff(x, v0) +Reff(v0, y) +Reff(x, y)] .

Now, we subtract CReff(x, y) = H(x, y) +H(y, x) from both sides, giving

H(x, v0) +H(v0, y)−H(x, y) =
C
2

[Reff(x, v0, ) +Reff(v0, y)−Reff(x, y)] .

Finally, we conclude using the identity (see, e.g., [5, Ch. 2., Lemma 9]):

Ex(LyT0) =
1

C
(H(x, v0) +H(v0, y)−H(x, y)) . �
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We now relate the blanket time of the random walk to the expected supre-

mum of its associated Gaussian process. The following is a central facet of the

theory of concentration of measure; see, for example, [34, Thm. 7.1, eq. (7.4)].

Lemma 2.2. Consider a Gaussian process {ηx : x ∈ V }, and define σ =

supx∈V (E(η2
x))1/2. Then for α > 0,

P
Ç∣∣∣∣∣sup

x∈V
ηx − E sup

x∈V
ηx

∣∣∣∣∣ > α

å
6 2 exp(−α2/2σ2).

We are now ready to establish the upper bound on the strong blanket time

t?bl(G, δ) for any fixed 0 < δ < 1. Note that this will naturally yield an upper

bound on tbl(δ).

Theorem 2.3. Consider a network G(V ) and its total conductance C =∑
x∈V cx. For any fixed 0 < δ < 1, the blanket time t?bl(G, δ) of the random

walk on G(V ) satisfies

t?bl(G, δ) .δ C ·
Ç
E sup
x∈V

ηx

å2

,

where {ηx} is the associated Gaussian process from Theorem 1.14.

Proof. We first prove that for some Aδ > 0,

(19) t?bl(δ) 6 AδC
(Ç

E sup
x∈V

ηx

å2

+ sup
x∈V

E (η2
x)

)
.

Fix a vertex v0 ∈ V , and consider the local times {Lxτ(t) : x ∈ V }, where

for t > 0, we write τ(t) = inf{s : Lv0s > t}. Let σ = supx∈V
»
E(η2

x) and

Λ = E supx ηx.

Use {ηLx } to denote the copy of the Gaussian process corresponding to the

left-hand side of (15), and use {ηRx } to denote the i.i.d. process corresponding

to the right-hand side. Fix β > 0, and set t = t(β) = β(Λ2 + σ2). By

Theorem 1.14, we get that

P
(
min
x
Lxτ(t) 6

√
δt
)
6 P

Ç
inf
x

1

2
(ηRx +

√
2t)2 6

1 +
√
δ

2
t

å
+ P
Ç

sup
x

1

2
(ηLx )2 >

1−
√
δ

2
t

å
.

Therefore,

P
(
min
x
Lxτ(t) 6

√
δt
)
6 P

(
inf
x
ηRx 6 −aδ

√
t
)

+ P
Å

sup
x
|ηLx | > bδ

√
t

ã
,
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where aδ =
√

2−
»

1 +
√
δ and bδ =

»
1−
√
δ. Applying Lemma 2.2, we obtain

that if β > β0(δ) for some β0(δ) > 0, then

(20) P
(
min
x
Lxτ(t) 6

√
δt
)
6 6 exp(−γδβ),

where γδ = 1
2(a2

δ ∧ b2δ). On the other hand, we have

P
(
max
x

Lxτ(t) > t/
√
δ
)
6 P

Å
max
x

1

2
(ηRx +

√
2t)2 > t/

√
δ

ã
= P

(
max
x

ηx > a
′
δ

√
t
)
,

where a′δ =
»

1/δ − 1. Applying Lemma 2.2 again for β > β0(δ), we get that

(21) P
(
max
x

Lxτ(t) > t/
√
δ
)
6 2 exp(−γ′δβ),

where γ′δ = (a′δ)
2/2. Note that assuming minx L

x
τ(t) >

√
δt and maxx L

x
τ(t) 6

t/
√
δ, we have τ(t) =

∑
x cxL

x
τ(t) 6 Ct/

√
δ as well as minx,y L

x
τ(t)/L

y
τ(t) > δ. It

then follows that τ?bl 6 τ(t) 6 Ct/
√
δ. Therefore, we can deduce that¶

τ?bl > Ct/
√
δ
©
⊂
{

min
x
Lxτ(t) 6

√
δt
}⋃{

max
x

Lxτ(t) > t/
√
δ
}
.

Combined with (20) and (21), it yields that

P(τ?bl > Ct/
√
δ) 6 6 exp(−γδβ) + 2 exp(−γ′δβ).

It then follows that t?bl 6 AδC(Λ2 + σ2) for some Aδ > 0 which depends only

on δ, establishing (19).

It remains to prove that σ = O(Λ). To this end, let x∗ be such that

Eη2
x∗ = σ2. We have

(22) Λ > Emax(ηv0 , ηx∗) = Emax(0, ηx∗) =
σ√
2π
.

This completes the proof for the continuous-time case. �

Remark 1. An interesting question is the asymptotic behavior of δ-blanket

time as δ → 1, namely the dependence on δ of Aδ in (19). As implied in the

proof, we can see that

Aδ .
1

γδ
+

1

γ′δ
.

1

(1− δ)2
.

These asymptotics are tight for the complete graph; see e.g., [54, Cor. 2].

We next extend the proof of the preceding theorem to the case of the

discrete-time random walk. The following lemma contains the main estimate

required for this extension.
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Lemma 2.4. Let G(V ) be a network, and write γ2 = γ2(V,
√
Reff). Then

for all u > 16, we have ∑
v∈V

e−u·cvγ
2
2 . e−u/8.

Proof. By definition of the γ2 functional, we can choose a sequence of

partitions Ak with |Ak| 6 22k such that

γ2 >
1

2
sup
v∈V

∑
k>0

2k/2diam(Ak(v)).

For v ∈ V , let kv = min{k : {v} ∈ Ak}. It is clear that Reff(u, v) > 1/cv for

all u 6= v, and hence (diam(Akv−1(v)))2 > 1/cv. Therefore, we see that∑
v∈V

e−u·cvγ
2
2 =

∞∑
k=0

∑
v:kv=k+1

e−u·cvγ
2
2 6

∞∑
k=1

22k+1
e−u2k/4 . e−u/8,

completing the proof. �

Theorem 2.5. Consider a network G(V ) and its total conductance C =∑
x∈V cx. For any fixed 0 < δ < 1, the discrete blanket time tbl(G, δ) of the

random walk on on G(V ) satisfies

tbl(G, δ) .δ C ·
Ç
E sup
x∈V

ηx

å2

,

where {ηx} is the associated Gaussian process from Theorem 1.14.

Proof. We now consider the embedded discrete-time random walk of the

continuous-time counterpart (i.e., the corresponding jump chain; see [5, Ch. 2]).

Let Nv
t be such that cv ·Nv

t is the number of visits to vertex v up to continuous

time t; i.e., Nv
t is a discrete-time analog of the local time Lvt .

Fix a vertex v0 ∈ V , and consider the local times {Lxτ(t) : x ∈ V }. Let

σ = supx∈V
»
E(η2

x) and Λ = E supx ηx. Again, set t = β(Λ2 + σ2).

Let τbl(δ) denote the first time at which Nx
t >

δt
C for every x ∈ V . As-

suming that minxN
x
τ(t) > δ1/4t and maxxN

x
τ(t) 6 t/δ3/4, we have τ(t) =∑

x cxN
x
τ(t) 6 Ct/δ

3/4 and thus minxN
x
τ(t) > δτ(t)/C. It then follows that

τbl(δ) 6 τ(t) 6 Ct/δ3/4. Therefore, we deduce thatß
τbl(δ) >

Ct
δ3/4

™
⊂
{

min
x
Nx
τ(t) 6 δ

1/4t
}⋃{

max
x

Nx
τ(t) > t/δ

3/4
}
.

Therefore, we have

P
Å
τbl(δ) >

Ct
δ3/4

ã
6 P

(
min
x
Lxτ(t) 6

√
δt or max

x
Lxτ(t) > t/

√
δ
)

+ P
(
∀x :
√
δt 6 Lxτ(t) 6 t/

√
δ | min

x
Nx
τ(t) 6 δ

1/4t or max
x

Nx
τ(t) > t/δ

3/4
)
.

Note that we have already bounded the first term in (20) and (21).



1426 JIAN DING, JAMES R. LEE, and YUVAL PERES

The second term can be bounded by a simple application of a large devi-

ation inequality on the sum of i.i.d. exponential variables. Precisely,∑
x∈V

P
Ä√

δt 6 Lxτ(t) 6 t/
√
δ | Nx

τ(t) 6 δ
1/4t or Nx

τ(t) > t/δ
3/4
ä
.
∑
x∈V

e−ãδ·cxt

for some constant ãδ > 0 depending only on δ. Recall that Theorem (MM)

implies E supx ηx � γ2(V,
√
Reff). By (22), we see that σ 6

√
2πΛ. Altogether,

we get that t � Λ2 �β
[
γ2(V,

√
Reff)

]2
. Applying Lemma 2.4, we conclude that

there exists β̃0(δ) > 0 depending only on δ such that for all β > β̃0(δ), we have

P(τbl(G, δ) > Ct/δ3/4) . e−b̃δβ,

where b̃δ is a constant depending only on δ. This immediately yields the desired

upper bound on the blanket time for the discrete-time random walk. �

We next exhibit a lower bound on a variation of blanket time (considered

in [30]). It is apparent that the lower bound on the cover time, which will be

proved in Section 4, is an automatic lower bound on the blanket time. In what

follows, though, we try to give a simple argument that can be regarded as a

warm up. For the convenience of analysis, we consider the following notion.

For 0 < ε < 1, define

(23) t∗bl(G, ε) = max
w∈V

inf{s : Pw(∀u, v ∈ V : Lut 6 2Lvt ) > ε for all t > s}.

Theorem 2.6. Consider a network G(V ) and its total conductance C =∑
x∈V cx. For any fixed 0 < ε < 1, we have

t∗bl(G, ε) &ε C ·
Ç
E sup
x∈V

ηx

å2

.

In order to prove Theorem 2.6, we will use the next simple lemma. We

will also require this estimate in Section 4.

Lemma 2.7. Let τ(t) be the inverse local time at vertex v0, as defined in

(14). Let C be the total conductance, and let D = maxx,y∈V
»
Reff(x, y). Then,

for all β > 0 and t > D2/β2,

Pv0 (τ(t) 6 βCt) 6 3β.

Proof. We use Pv to denote the measure on random walks started at a

vertex v ∈ V , and we use Ev similarly. Let pδ = minv{Pv (τ(t) 6 δCt)} for

some δ > 0. Using the strong Markov property, we get that for all v ∈ V ,

Pv(τ(t) > kδCt) 6 (1− pδ)k.

In particular, Evτ(t) 6 δCt/pδ.
By Theorem 1.14, it follows easily that Ev0τ(t) = Ct. Since Evτ(t) >

Ev0(τ(t)), we deduce that pδ 6 δ. Let u=u(δ) be such that Pu (τ(t)6δCt)=pδ.
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Let Y, Z be random variables with the law τ(t), when the random walk is

started at u and v0, respectively. Clearly,

(24) Y
law
= Z + Tv0 ,

where Tv0 is distributed as the hitting time to v0, when then random walk is

started at u and Tv0 is independent of Z.

Since Reff(u, v0) 6 D2, we have EuTv0 6 CD2 (by (9)), and this yields

Pu(Tv0 > CD2/β) 6 β. Using the assumption t > D2/β2 and (24), we conclude

that

P(Z 6 βCt) 6 P(Z 6 2βCt− CD2/β)

6 P(Y 6 2βCt) + P(Tv0 > CD2/β) 6 p2β + β 6 3β,

as required. �

We are now ready to establish the lower bound on t∗bl(G, ε).

Proof of Theorem 2.6. We consider the associated Gaussian process as in

the proof of Theorem 2.3. Let σ = supx∈V
»
Eη2

x and Λ = E supx ηx. Observe

that the maximal hitting time is a simple lower bound on t∗bl(G, ε) up to a

constant depending only on ε. In light of Lemma 2.1, we see t∗bl(G, ε) &ε C ·σ2.

Therefore, we can assume in what follows that

(25) Λ2 > 100 log(4/ε)ε−2 σ2.

Let t∗ = 1
2Λ2. By Lemma 2.2, we get

P
Å

inf
x∈V

1

2
(ηRx +

√
2t∗)

2 6 log(4/ε)σ2
ã

> P
Ç
| sup
x∈V

ηRx − Λ| 6
»

2 log(4/ε)σ

å
> 1− ε

2
.

Applying Theorem 1.14, we obtain

P
Å

inf
x∈V

Lxτ(t∗) 6 log(4/ε)σ2
ã
> 1− ε

2
.

By triangle inequality, we have D 6 2σ. Recalling the assumption (25), we

can apply Lemma 2.7 and deduce that

P(τ(t∗) 6 εCt∗/6) 6 ε/2.

Writing t0 = εCt∗/6, we can then obtain that

P
Å

inf
x∈V

Lxt0 6 log(4/ε)σ2, τ(t∗) > t0

ã
> 1− ε.

Also, we see that supx∈V L
x
t0 > εΛ

2/12 whenever τ(t∗) > t0. Using assumption

(25) again, we conclude that

Pv0(∃x, y ∈ V : Lxt0 > 2Lyt0) > 1− ε.

This implies that t∗bl(G, ε) > t0, completing the proof. �
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2.2. An asymptotically strong upper bound. Finally, we show a strong up-

per bound for the asymptotics of tcov on a sequence of graphs {Gn}, assuming

thit(Gn) = o(tcov(Gn)).

Theorem 2.8. For any graph G = (V,E) with v0 ∈ V , let thit(G) be the

maximal hitting time in G and let {ηv}v∈V be the GFF on G with ηv0 = 0.

Then, for a universal constant C > 0,

tcov(G) 6

(
1 + C

√
thit(G)

tcov(G)

)
· |E| ·

Ç
E sup
v∈V

ηv

å2

.

Proof. Theorem 2.5 asserts that

(26) tcov(G) � (Emax
v
ηv)

2,

where � denotes stochastic domination. Write σ2 = maxv Eη2
v . Note that

σ2 corresponds to the diameter of V in the effective resistance metric, thus

thit(G) � |E|σ2. Denote by S =
∑
v dvη

2
v , where dv is the degree of vertex v. By

a generalized Hölder inequality and moment estimates for Gaussian variables

(here we use that EX6 = 15 for a standard Gaussian variable X), we obtain

that

ES3 6
∑
u,v,w

dudvdwE(η2
uη

2
vη

2
w)

6
∑
u,v,w

dudvdwE(η6
u)1/3E(η6

v)
1/3E(η6

w)1/3 6 15|E|3σ6.

An application of Markov’s inequality then yields

(27) P(S > α|E|σ2) 6
15

α3
.

Write Q =
∑
v dvηv. Clearly, Q is a centered Gaussian with variance bounded

by 4|E|2σ2 and therefore,

(28) P(|Q| > α|E|σ) 6 2e−α
2/8.

For β > 0, let t = 1
2(Emaxv ηv + βσ)2. Noting τ(t) =

∑
v dvL

v
τ(t) and

recalling the Isomorphism theorem (Theorem 1.14), we get that

τ(t) � 2|E|t+

√
2t

2
|Q|+ 1

2
S.

Combined with (27) and (28), we deduce that

(29) P(τ(t) > 2|E|t+
√

2tβ|E|σ + β|E|σ2) 6
12

(β − 2)2
+ 2e−β

2/8.

We now turn to bound the probability for τcov > τ(t). Observe that on

the event {τcov > τ(t)}, there exists v ∈ V such that Lvτ(t) = 0. It is clear that
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for all v ∈ V , we have P(η2
v > βσ

2/2) 6 2e−β/4. Since {ηv}v∈V and {Lvτ(t)}v∈V
are two independent processes, we obtain

(30) P
Ä
{τcov > τ(t)} \

¶
∃v ∈ V : Lvτ(t) + 1

2η
2
v < βσ2/2

©ä
6 2e−β/4.

On the other hand, we deduce from the concentration of Gaussian processes

(Lemma 2.2) that

P
(
inf
v

(
√

2t+ ηv)
2 6 βσ/2

)
6 2e−β/8.

Applying Isomorphism theorem again and combined with (30), we get that

P(τcov > τ(t)) 6 4e−β/8.

Combined with (29), it follows that

P(τcov > 2|E|t+
√

2tβ|E|σ + β|E|σ2) 6
15

β3
+ 2e−β

2/8 + 4e−β/8.

Since t = 1
2(Emaxv ηv + βσ)2, we can deduce that for some universal constant

C1 > 0,

tcov(G) 6 |E|(E sup
v
ηv)

2 + C1|E|(σ2 + σE sup
v
ηv).

Recalling (26), we complete the proof. �

2.3. Geometry of the resistance metric. We now discuss some relevant

properties of the resistance metric on a network G(V ).

Effective resistances and network reduction. For a subset S ⊆ V , define

the quotient network G/S to have vertex set (V \S)∪{vS}, where vS is a new

vertex disjoint from V . The conductances in G/S are defined by c
G/S
xy = cxy if

x, y /∈ S and cvSx =
∑
y∈S cxy for x /∈ S.

Now, given v ∈ V and S ⊆ V , we put

(31) Reff(v, S)
4
= R

G/S
eff (v, vS),

where the latter effective resistance is computed in G/S. For two disjoint sets

S, T ⊆ V , we define

Reff(S, T )
4
= R

G/S
eff (vS , T ),

and the resistance is defined to be 0 if S ∩ T 6= ∅. It is straightforward to

check that Reff(S, T ) = Reff(T, S). The following network reduction lemma

was discovered by Campbell [10] under the name “star-mesh transformation”

(see also, e.g., [39, Ex. 2.47(d)]). We give a proof for completeness.

Lemma 2.9. For a network G(V ) and a subset ‹V ⊂ V , there exists a

network G̃(Ṽ ) such that for all u, v ∈ ‹V , we have

c̃v = cv and RG̃eff(u, v) = Reff(u, v).
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We call ‹G(‹V ) the reduced network. Furthermore, if ‹V = V \ {x}, we then

have the formula

(32) c̃yz = cyz + c∗,xyz , where c∗,xyz =
cxycxz∑
w∈Vx cxw

.

Proof. Let P be the transition kernel of the discrete-time random walk

{St} on the network G, and let P Ṽ be the transition kernel of the induced

random walk on ‹V ; namely, for u, v ∈ ‹V ,

P Ṽ (u, v) = Pu(T+

Ṽ
= v),

where T+
A
4
= min{t > 1 : St ∈ A} for all A ⊆ V . In other words, P Ṽ is the

chain watched in the subset ‹V . We observe that P Ṽ is a reversible Markov

chain on ‹V (see, e.g., [5], [36]). It is clear that the chain P Ṽ has the same

invariant measure as that of P restricted to ‹V , up to scaling by a constant.

Therefore, there exists a (unique) network ‹G(‹V ) corresponding to the Markov

chain P Ṽ such that c̃u = cu for all u ∈ ‹V .

We next show that the effective resistances are preserved in ‹G(‹V ). To this

end, we use the following identity relating effective resistance and the random

walk (see, e.g., [39, Eq. (2.5)]):

(33) Pv(T+
v > Tu) =

1

cvReff(u, v)
,

where Tu = min{t > 0 : St = u}. Since P Ṽ is a watched chain on the subset‹V , we see that PṼv (T+
v > Tu) = Pv(T+

v > Tu) for all u, v ∈ ‹V . This yields

RG̃eff(u, v) = Reff(u, v).

To prove the second half of the lemma, we let ‹G(‹V ) be the network defined

by (32). A straightforward calculation yields that

c̃v = cv − cxv +
∑
y∈Vx

c∗,xvy = cv − cxv +
∑
y∈Vx

cxvcxy∑
z∈Vx cxz

= cv.

Let P G̃ be the transition kernel for the random walk on the network ‹G(‹V ).

Then,

P G̃(u, v) =
c̃uv
c̃u

=
cuv + cuxcxv∑

y∈Vx cxy

cu
.

On the other hand, the watched chain P Ṽ satisfies

P Ṽ (u, v) =
cuv
cu

+
cux
cu

cxv∑
y∈Vx cxy

.

Altogether, we see that P G̃(u, v) = P Ṽ (u, v), completing the proof. �
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Well-separated sets. The following result is an important property of the

resistance metric, crucial for our analysis.

Proposition 2.10. Consider a network G(V ) and its associated resis-

tance metric (V,Reff). Suppose that for some subset S ⊆ V , there is a partition

S = B1 ∪B2 ∪ · · · ∪Bm which satisfies the following properties :

(1) For all i = 1, 2, . . . ,m and for all x, y ∈ Bi, we have Reff(x, y) 6 ε/48.

(2) For all i 6= j ∈ {1, 2, . . . ,m}, for all x ∈ Bi and y ∈ Bj , we have

Reff(x, y) > ε.

Then there is a subset I ⊆ {1, 2, . . . ,m} with |I| > m/2 such that for all i ∈ I ,

Reff(Bi, S \Bi) > ε/24.

In order to prove Proposition 2.10, we need the following two ingredients.

Lemma 2.11. Suppose the network H(W ) can be partitioned into two

disjoint parts A and B such that for some ε > 0, and some vertices u ∈ A and

v ∈ B, we have

(1) RHeff(u, v) > ε, and

(2) RHeff(u, x) 6 ε/12 for all x ∈ A, and RHeff(v, x) 6 ε/12 for all x ∈ B.

Then, RHeff(A,B) > ε/6.

Proof. Recall that by Thomson’s Principle (see, e.g., [39, Ch. 2.4]), the

effective resistance satisfies

Reff(x, y) = min
f
E(f) , where E(f) =

1

2

∑
x,y

f2(x, y)rxy ,

and the minimum is over all unit flows from x to y. Here, rxy = 1/cxy is the

edge resistance for {x, y}.
Suppose now that RHeff(A,B) < ε/6. Then there exists a unit flow fAB

from set A to set B such that E(fAB) < ε/6. For x ∈ A, let qx be the amount

of flow sent out from vertex x in fAB and for x ∈ B, let qx be the amount of

flow sent in to vertex x. Note that
∑
x∈A qx =

∑
x∈B qx = 1.

Analogously, by assumption (2), there exist flows {fux : x ∈ A} and

{fxv : x ∈ B} such that fxy is a unit flow from x to y and E(fxy) 6 ε/12. We

next build a flow f such that

f = fAB +
∑
w∈A

qwfuw +
∑
z∈B

qzfzv .
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We see that f is indeed a unit flow from u to v. Furthermore, by Cauchy-

Schwartz,

E(f) =
1

2

∑
x,y

f2(x, y)rxy

=
1

2

∑
x,y

rxy

(
fAB(x, y) +

∑
w∈A

qwfuw(x, y) +
∑
z∈B

qzfzv(x, y)

)2

6
3

2

∑
x,y

rxy

(
f2
AB(x, y) +

∑
w∈A

qwf
2
uw(x, y) +

∑
z∈B

qzf
2
zv(x, y)

)

= 3

(
E(fAB) +

∑
w∈A

qwE(fuw) +
∑
z∈B

qzE(fzv)

)
< ε .

This contradicts assumption (1), completing the proof. �

Lemma 2.12. For any network G(V ), the following holds. If there is a

subset S ⊆ V and a value ε > 0 such that Reff(u, v) > ε for all u, v ∈ S, then

there is a subset S′ ⊆ S with |S′| > |S|/2 such that for every v ∈ S′,

Reff(v, S \ {v}) > ε/4.

Proof. Consider the reduced network ‹G on the vertex set S, as defined

in Lemma 2.9. Let the new conductances be denoted c̃xy for x, y ∈ S. By

Lemma 2.9, our initial assumption that Reff(u, v) > ε for all u, v ∈ S implies

that RG̃eff(u, v) > ε for all u, v ∈ S.

Let n = |S|. Foster’s Theorem [26] (see also [53]) states that

1

2

∑
u6=v∈S

RG̃eff(u, v)c̃u,v = n− 1.

Combined with the fact that RG̃eff(u, v) > ε, this yields

1

2

∑
u6=v∈S

c̃uv 6
n

ε
.

In particular, there exists a subset S′ ⊆ S with |S′| > n/2 such that for all

v ∈ S′, ∑
u∈S\{v}

c̃uv 6
4

ε
.

It follows that for every v ∈ S′, we have CG̃eff(v, S \ {v}) 6 4/ε; hence

Reff(v, S \ {v}) = RG̃eff(v, S \ {v}) > ε/4. �
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Proof of Proposition 2.10. For each i∈{1, 2, . . . ,m}, choose some vi∈Bi.
By assumption (2), Reff(vi, vj) > ε for i 6= j. Thus applying Lemma 2.12, we

find a subset I ⊆ {1, 2, . . . ,m} with |I| > m/2 and such that for every i ∈ I,

we have

(34) Reff(vi, {v1, . . . , vm} \ {vi}) > ε/4 .

We claim that this subset I satisfies the conclusion of the proposition.

To this end, fix i ∈ I, and let G̃ be the quotient network formed by gluing

{v1, . . . , vm} \ {vi} into a single vertex ṽ. By (34), we have RG̃eff(vi, ṽ) > ε/4.

Now let

B̃ =

Ñ
{ṽ} ∪

⋃
j 6=i

Bj

é
\ {vi}i∈I .

Consider any x ∈ B̃ with x 6= ṽ. Then x ∈ Bj for some j 6= i; hence by

assumption (1), we conclude that

RG̃eff(x, ṽ) 6 Reff(x, vj) 6 ε/48 .

We may now apply Lemma 2.11 to the sets Bi and B̃ in G̃ (with respective

vertices vi and ṽ) to conclude that

RG̃eff(Bi, B̃) > ε/24 .

But the preceding line immediately yields

Reff(Bi, S \Bi) > ε/24,

finishing the proof. �

We end this section with the following simple lemma.

Lemma 2.13. For any network G(V ), if A,B1, B2 ⊆ V are disjoint, then

Reff(A,B1 ∪B2) >
Reff(A,B1) ·Reff(A,B2)

Reff(A,B1) +Reff(A,B2)
.

Proof. By considering the quotient graph, the lemma can be reduced to

the case when A = {u}. Let {St} be the discrete-time random walk on the

network, and define

TB = min{t > 0 : St ∈ B} and T+
B = min{t > 1 : St ∈ B} for B ⊆ V.

It is clear that for a random walk started at u, we have

Pu(T+
u > TB1∪B2) 6 Pu(T+

u > TB1) + Pu(T+
u > TB2).

Combined with (33), this gives

1

Reff(u,B1 ∪B2)
6

1

Reff(u,B1)
+

1

Reff(u,B2)
,

yielding the desired inequality. �
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2.4. The Gaussian free field. We recall the graph Laplacian ∆ : `2(V )→
`2(V ) defined by

∆f(x) = cxf(x)−
∑
y

cxyf(y).

Consider a connected networkG(V ). Fix a vertex v0 ∈ V , and consider the

random process X = {ηv}v∈V , where ηv0 = 0 and X has density proportional

to

(35) exp

Å
−1

2
〈X ,∆X〉

ã
= exp

(
−1

4

∑
u,v

cuv|ηu − ηv|2
)
.

The process X is called the Gaussian free field (GFF) associated with G. The

next lemma is known; see, e.g., Theorem 9.20 of [28]. We include the proof for

completeness.

Lemma 2.14. For any connected network G(V ), if X = {ηv}v∈V is the

associated GFF, then for all u, v ∈ V ,

(36) E (ηu − ηv)2 = Reff(u, v).

Proof. From (35), and the fact that the Laplacian is positive semi-definite,

it is clear that X is a Gaussian process. Let Γv0(u, v) = EuLvT0 , where T0 is

the hitting time for v0 as in Theorem 1.14. From Lemma 2.1, we have

(37) Γv0(u, v) =
1

2
(Reff(v0, u) +Reff(v0, v)−Reff(u, v)) .

Let ‹∆ and Γ̃v0 , respectively, be the matrices ∆ and Γv0 with the row and

column corresponding to v0 removed. Appealing to (35), if we can show that‹∆Γ̃v0 = I, it follows that Γv0 is the covariance matrix for X . In this case,

comparing (37) to

E(ηuηv) =
1

2

Ä
Eη2

u + Eη2
v − E(ηu − ηv)2

ä
and using ηv0 = 0, we see that (36) follows.

In order to demonstrate ‹∆Γ̃v0 = I, we consider u, v such that v0 /∈ {u, v}.
Conditioning on the first step of the walk from u gives

cuΓv0(u, v) = cuEuLvT0 = 1{u=v} +
∑
w

cuwEwLvT0(38)

= 1{u=v} +
∑
w

cuwΓv0(v, w).

On the other hand, by definition of the Laplacian,

(∆Γv0)(u, v) = cuΓv0(u, v)−
∑
w

cuwΓv0(v, w) = 1{u=v},

where the latter equality is precisely (38). Thus ‹∆Γ̃v0 = I, completing the

proof. �
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A geometric identity. In what follows, for a set of points Y lying in some

Hilbert space, we use aff(Y ) to denote their affine hull, i.e., the closure of

{∑n
i=1 αiyi : n > 1, yi ∈ Y,

∑n
i=1 αi = 1}. Of course, when Y contains the

origin, aff(Y ) is simply the linear span of Y .

Lemma 2.15. For any network G(V ), if X = {ηv}v∈V is the GFF asso-

ciated with G, then for any w ∈ V and subset S ⊆ V ,»
Reff(w, S) = distL2 (ηw, aff({ηu}u∈S)) .

Proof. Since the statement of the lemma is invariant under translation,

we may assume that the GFF is defined with respect to some v0 ∈ S.

In this case, by the definition in (35), the GFF for G/S has density pro-

portional to

exp

Ñ
−1

4

Ñ∑
u,v /∈S

cuv|ηu − ηv|2 +
∑
u/∈S

cvSu|ηu|
2

éé
;

i.e., the GFF on G/S is precisely the initial Gaussian process X conditioned

on the linear subspace AS = {ηv = ηv0 = 0 : v ∈ S}.
Using (31) and Lemma 2.14, we have

Reff(w, S) = R
G/S
eff (w, vS) = E

[
|ηw − ηv0 |2

∣∣∣AS] = E
[
|ηw|2

∣∣∣AS] .
To compute the latter expectation, write ηw=Y+Y ′, where Y ′∈ span({ηv}v∈S)

and E(Y Y ′) = 0. It follows immediately that

distL2 (ηw, aff({ηu}u∈S)) =
»
E[Y 2] =

…
E
[
|ηw|2

∣∣∣AS],
completing the proof. �

3. Majorizing measures

We now review the relevant parts of the majorizing measure theory. One

is encouraged to consult the book [52] for further information. In Section 1,

we saw Talagrand’s γ2 functional. For our purposes, it will be more convenient

to work with a different value that is equivalent to the functional γ2, up to

universal constants. In Section 3.2, we discuss separated trees, and prove a

number of standard properties about such objects. In Section 3.3, we present

a deterministic algorithm for computing γ2(X, d) for any finite metric space

(X, d). Finally, in Section 3.4, we specialize the theory of Gaussian processes

and trees to the case of GFFs. There, we will use the geometric properties

proved in Sections 2.3 and 2.4.

Before we begin, we attempt to give some rough intuition about the role of

trees in the majorizing measures theory. A good reference for this material is

[27]. A tree of subsets of X is a finite collection F of subsets with the property
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that for all A,B ∈ F , either A ∩ B = ∅, or A ⊆ B, or B ⊆ A. A set B is a

child of A if B ⊆ A, B 6= A, and

C ∈ F , B ⊆ C ⊆ A =⇒ C = B or C = A.

We assume that X ∈ F , and X is referred to as the root of the tree F . To each

A ∈ F , we use N(A) to denote the number of children of A. A branch of F is

a sequence A1 ⊃ A2 ⊃ · · · such that each Ak+1 is a child of Ak. A branch is

maximal if it is not contained in a longer branch. We will assume additionally

that every maximal branch terminates in a singleton set {x} for x ∈ X.

Let {ηx}x∈X be a centered Gaussian process with X finite, and let d(x, y)

=
»
E (ηx − ηy)2. The basic premise of the tree interpretation of the majorizing

measures theory is that one can assign a measure of “size” to any tree of subsets

in X, and this size provides a lower bound on E supx∈X ηx. The majorizing

measures theorem then claims that the value of the optimal such tree is within

absolute constants of the expected supremum. The size of the tree (see (39))

can be defined using only the metric structure of (X, d), without reference to

the underlying Gaussian process. Thus much of the theorems in this section

are stated for general metric spaces.

The tree of subsets is meant to capture the structure of (X, d) at all

scales simultaneously. In general, to obtain a multi-scale lower bound on the

expected supremum of the process, one arranges so that the diameter of the

subsets decreases exponentially as one goes down the tree, and all subsets at

one level of the tree are separated by a constant fraction of their diameter (see

Definitions 3.1 and 3.8 below). This allows a certain level of independence

between different branches of the tree which is exploited in the lower bounds.

Much of this section is devoted to proving that one can construct a near-

optimal tree with a number of regularity properties that will be crucial to our

approach in Section 4.

3.1. Trees, measures, and functionals. Let (X, d) be an arbitrary metric

space.

Definition 3.1. For values q ∈ N and α, β > 0, and r > 2, a tree of

subsets F in X is called a (q, r, α, β)-tree if to each A ∈ F , one can associate

a number n(A) ∈ Z such that the following three conditions are satisfied :

(1) For all children B of A, we have n(B) 6 n(A)− q.
(2) If B and B′ are two distinct children of A, then d(B,B′) > β rn(A)−1.

(3) diam(A) 6 α rn(A).

We will refer to a (q, r, 4, 1
2)-tree as simply a (q, r)-tree.
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The r-size of a tree of subsets F , written sizer(F), is defined as the infi-

mum of

(39)
∑
k>1

rn(Ak)
»

log+N(Ak)

over all possible maximal branches of F , where we use the notation log+ x =

log x for x 6= 0, and log+(0) = 0.

To connect trees of subsets with the γ2 functional, we recall the relation-

ship with majorizing measures. The next result is from [51, Thm. 1.1]

Theorem 3.2. For every metric space (X, d), we have

γ2(X, d) � inf sup
x∈X

∫ ∞
0

Ç
log

1

µ(B(x, ε))

å1/2

dε,

where B(x, ε) is the closed ball of radius ε about x and the infimum is over all

finitely supported probability measures on X .

We will also need the following theorem due to Talagrand (see Proposition

4.3 of [50] and also Theorem T5 of [27].) We will employ it now and also in

Section 3.3.

Theorem 3.3. There is a value r0 > 2 such that the following holds.

Let (X, d) be a finite metric space, and r > r0. Assume there is a family of

functions {ϕi : X → R+ : i ∈ Z} such that the following conditions hold for

some β > 0:

(1) ϕi(x) > ϕi−1(x) for all i ∈ Z and x ∈ X .

(2) If t1, t2, . . . , tN ∈ B(s, rj) are such that d(ti, ti′) > rj−1 for i 6= i′, then

ϕj(s) > βr
j
√

logN + min {ϕj−2(ti) : i = 1, 2, . . . , N} .

Under these conditions,

γ2(X, d) .r,β sup
x∈X,i∈Z

ϕi(x).

The preceding two theorems allow us to present the following connection

between trees and γ2. Such a connection is well known (see, e.g., [49]), but we

record the proofs here for completeness and for the precise quantitative bounds

we will use in future sections.

Lemma 3.4. There is a value r0 > 2 such that for every finite metric

space (X, d), and every r > r0, we have

(40) γ2(X, d) .r sup{sizer(F) : F is a (1, r, 4, 1
2)-tree in X}.

Proof. First, for a subset S ⊆ X, let

θ(S) = sup{sizer(F) : F is a (1, r, 4, 1
2)-tree in X}.
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Then, for every i ∈ Z and x ∈ X, define

ϕi(x) = θ(B(x, 2ri)),

where B(x,R) is the closed ball of radius R about x ∈ X. We now wish

to verify that the conditions of Theorem 3.3 hold for {ϕi}. Condition (1) is

immediate.

Assume that r > 8. Given t1, t2, . . . , tN as in condition (2) of Theorem 3.3,

consider the set A = B(s, 2rj), which has diameter bounded by 4rj , and the

disjoint subset sets of A given by Ai = B(ti, 2r
j−2), which each have diameter

bounded by 4rj−2 and which satisfy d(Ai, Aj) > rj−1/2 for i 6= j. We also

have Ai ⊆ A for each i ∈ {1, . . . , N}.
Taking the tree of subsets with root A, n(A) = j, and children {Ai}Ni=1,

and in each Ai a tree which achieves value at least θ(Ai) = θ(B(ti, 2r
j−2)) =

ϕj−2(i), we see immediately that

ϕj(s) = θ(B(s, 2rj)) > rj
√

logN + min{ϕj−2(ti) : i = 1, 2, . . . , N},

confirming condition (2) of Theorem 3.3. Applying the theorem, it follows that

γ2(X, d) .r θ(X), proving (40). �

We will need the upper bound (40) to hold for (2, r, 4, 1
2)-trees. Toward

this end, we state a version of [49, Thm 3.1]. The theorem there is only proved

for α = 1 and β = 1
2 , but it is straightforward to see that it works for all values

α, β > 0 since the proof merely proceeds by choosing an appropriate subtree

of the given tree; the values α and β are not used.

Theorem 3.5. For every metric space (X, d), the following holds. For

every α, β, r > 0 and q ∈ N, and for every (1, r, α, β)-tree F in X , there exists

a (q, r, α, β)-tree F ′ in X such that

sizer(F) . q · sizer(F ′).

Combining Theorem 3.5 with Lemma 3.4 yields the following upper bound

using (2, r)-trees.

Corollary 3.6. There is a value r0 > 2 such that for every finite metric

space (X, d), and every r > r0, we have

(41) γ2(X, d) .r sup{sizer(F) : F is a (2, r, 4, 1
2)-tree in X}.

Now we move onto a lower bound on γ2.

Lemma 3.7. There is a value r0 > 2 such that for every finite metric

space (X, d), and every r > r0, we have

γ2(X, d) & sup{sizer(F) : F is a (1, r, 8, 1
6)-tree}.
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Proof. We will show for any probability measure µ onX and any (1, r, 8, 1
6)-

tree F in X, we have

sizer(F) .r sup
x∈X

∫ ∞
0

Ç
log

1

µ(B(x, ε))

å1/2

dε.

The basic idea is that if A1, A2, . . . Ak are children of A, in F , then the

sets B(Ai,
1
20r

n(A)−1) are disjoint by property (2) of Definition 3.1, where we

write B(S,R) = {x ∈ X : d(x, S) 6 R}. Thus one of these sets Ai has

µ(B(Ai,
1
20r

n(A)−1)) 6 1/N(A).

Thus we may find a finite sequence of sets, starting with A(0) = X such

that A(i+1) is a child A(i) and

µ(B(A(i+1), 1
20r

n(A(i))−1)) 6 1/N(A(i)).

Since every maximal branch in a tree of subsets terminates in a singleton, the

sequence ends with some set A′ = A(h) = {x}. By construction, we have

µ(B(x, 1
20r

n(A′)−1)) 6
1

N(A′)
.

Thus, assuming r > 40,

(42) rn(A′)−2
»

log+N(A′) 6
∫ 1

20
rn(A

′)−1

rn(A
′)−2

 
1

logµ(B(x, ε))
dε.

By property of Definition 3.1, the intervals (rn(A)−2, 1
20r

n(A)−1) are disjoint

for different sets A ∈ F with x ∈ A; thus summing (42) yields

sizer(F) .r
∑

A∈F :x∈A
rn(A)−2

»
log+N(A) 6

∫ ∞
0

 
1

logµ(B(x, ε))
dε. �

3.2. Separated trees. Let (X, d) be an arbitrary metric space. Consider a

finite, connected, graph-theoretic tree T = (V,E) (i.e., a connected, acyclic

graph) such that V ⊆ X, with a fixed root z ∈ V , and a mapping s : V → Z.

Abusing notation, we will sometimes use T for the vertex set of T . For a

vertex x ∈ T , we use Tx to denote the subtree rooted at x, and we use Γ(x) to

denote the set of children1 of x with respect to the root z. Finally, we write

∆(x) = |Γ(x)|+ 1 for all x ∈ T .

Let L be the set of leaves of T . For any v ∈ T , let P(v) = {z, . . . , v}
denote the set of nodes on the unique path from the root to v. For a pair of

nodes u, v ∈ T , we use P(u, v) to denote the sequence of nodes on the unique

path from u to v. If u is the parent of v, we write u = p(v) and, in particular,

1Formally, these are precisely the neighbors of x in T whose unique path to the root z

passes through x.
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we write z = p(z). For any such pair (T , s) and r > 2, we define the value of

(T , s) by

(43) valr(T , s) = inf
`∈L

∑
v∈P(`)

rs(v)
»

log ∆(v).

The following definition will be central.

Definition 3.8. For a value r > 2, we say that the pair (T , s) is an

r-separated tree in (X, d) if it satisfies the following conditions for all x ∈ T :

(1) For all y ∈ Γ(x), s(y) 6 s(x)− 2.

(2) For all u, v ∈ Γ(x), we have d(x, Tu) > 1
2 r

s(x)−1 and d(Tu, Tv) >
1
2 r

s(x)−1.

(3) diam(Tx) 6 4rs(x).

We remark that our separated tree is a slightly different version of the

(2, r)-tree introduced in the preceding section. The main difference is that the

nodes of our separated tree are point in the metric space X, whereas a node

in a (2, r)-tree is a subset of X. Our definition is tailored for the application

in Section 4.

Not surprisingly, we have a similar version of the above theorem for sep-

arated trees.

Theorem 3.9. For some r0 > 2 and every r > r0, and any metric space

(X, d), we have

sup
T

valr(T , s) �r γ2(X, d),

where the supremum is over all r-separated trees in X .

Theorem 3.9 follows from Corollary 3.6 and the following lemma.

Lemma 3.10. Consider r > 8 and any metric space (X, d). For any

(2, r)-tree F , there is an r-separated tree T such that sizer(F) = valr(T ).

Also, for any r-separated tree T , there is a (2, r)-tree F such that sizer(F) >
valr(T )− r diam(X).

Proof. We only prove the first half of the statement, since the second half

can be obtained by reversing the construction. The additive factor −r diam(X)

is due to the slight difference in the definitions of the value for a separated tree

and the size for a (2, r)-tree (see (43) and (39)).

Let F be a (2, r)-tree on (X, d). For each A ∈ F with N(A) > 1, we

select one child c(A) and an arbitrary point vA ∈ c(A). We now construct the

separated tree T . Its vertex set is a subset of {vA : A ∈ F}. The root of T is

vX , and its children are {vB : B is a child of X with B 6= c(X)}. In general, if

vA is a node of T , then its children are the points {vB : B is a child of A with

B 6= c(A)}. Finally, for vA ∈ T , we put s(vA) = n(A).
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Let us first verify that T is an r-separated tree. Condition (1) of Defini-

tion 3.8 holds because if y is a child of vA ∈ T , then y = vB for some child B

of A (in F), which implies s(y) = n(B) 6 n(A) − 2 = s(vA) − 2. Secondly, if

vA is a node with children vB1 , vB2 , . . . , vBk , then clearly by Definition 3.1,

d(vA, TvBi ) > d(c(A), Bi) >
1

2
rs(vA)−1,

d(TvBi , TvBj ) > d(Bi, Bj) >
1

2
rs(vA)−1,

verifying condition (2) of Definition 3.8.

Thirdly, if xA ∈ T , then for any child xB of xA, we know B is a child of

A; hence

diam(TxB ) 6 diam(B) 6 4rn(A) = 4rs(xA),

using property (3) of a q-tree. This verifies condition (3) of Definition 3.8.

Finally, observe that for every nonleaf node vA ∈ T , we have ∆(vA) =

|Γ(vA)| + 1 = N(A), and for leaves, we have log ∆(vA) = log+N(A) = 0. It

follows that valr(T , s) = sizer(F), completing the proof. �

3.2.1. Additional structure. We now observe that we can take our sepa-

rated trees to have some additional properties. Say that an r-separated tree

(T , s) is C-regular for some C > 1 if it satisfies, for every v ∈ T \ L,

(44) ∆(v) > exp
Ä
C2r24s(z)−s(v)

ä
.

Lemma 3.11. For every C > 1 and r > 4, for every r-separated tree (T , s)
in X , if

valr(T , s) > 4Crs(z)+1,

then there is a C-regular r-separated tree (T ′, s′) in X with

1
2valr(T , s) 6 valr(T ′, s′) 6 valr(T , s).

Proof. Consider the following operation on an r-separated tree (T , s). For

x ∈ T \L, consider a new r-separated tree (T ′, s′) = Φx(T , s), which is defined

as follows. Let u be the child of x, and let S contain the remaining children

such that

(45) valr(Tu, s|Tu) 6 valr(Tv, s|Tv) for all v ∈ S,

where Tu is the subtree of T rooted at u and containing all its descendants, and

s|Tu is the restriction of s on the subtree Tu. Consider the tree T ′ that results

from deleting all the nodes in S, as well as the subtrees under them, and then

contracting the edge (x, u). We also put s′(x) = s(u) and s′(y) = s(y) for all

y ∈ T ′.
As long as there is a node x ∈ T \ L that violates (44) (for the current

(T ′, s′)), we iterate this procedure (namely, we replace (T ′, s′) by Φx(T ′, s′)).
It is clear that we end with a C-regular tree (T ′, s′). Note that different choices
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of x at each stage will lead to different outcomes, but the following proof shows

that all of them satisfy the required condition.

It is also straightforward to verify that for any ` ∈ L′, we have∑
v∈PT ′ (`)

rs
′(v)
»

log ∆T ′(v)>
∑

v∈PT (`)

rs(v)
»

log ∆T (v)− Cr
∑

v∈PT (`)

rs(v)2s(z)−s(v)

>
∑

v∈PT (`)

rs(v)
»

log ∆T (v)− Crs(z)+1
∞∑
k=0

22kr−2k

>
∑

v∈PT (`)

rs(v)
»

log ∆T (v)− 2Crs(z)+1

> valr(T , s)− 2Crs(z)+1

> 1
2valr(T , s),

where in the second line we have used property (1) of Definition 3.8, in the third

line, we have used r > 4, and in the final line we have used our assumption

that valr(T , s) > 4Crs(z)+1.

It remains to prove that valr(T , s) > valr(T ′, s′). The issue here is that

it is possible L′ ( L. However, by our choice of u at each stage (as in

equation (45)), it is guaranteed that ` ∈ L′ for a certain ` ∈ L such that

valr(T , s) =
∑
v∈P(`) r

s(v)
»

log ∆(v). This completes the proof. �

We next study the subtrees of separated trees. In what follows, we con-

tinue denoting by s|T ′ the restriction of s on T ′ for T ′ ⊆ T , and we use a

subscript T ′ to refer to the subtree T ′.

Lemma 3.12. For every r-separated tree (T , s), there is a subtree T ′ ⊆ T
such that (T ′, s|T ′) is an r-separated tree satisfying the following conditions :

(1) valr(T , s) � valr(T ′, s|T ′).
(2) For every v ∈ T ′ \ LT ′ , ∆T ′(v) = ∆(v).

(3) For every v ∈ T ′ \ LT ′ and w ∈ LT ′ ∩ Tv ,

(46)
∑

u∈P(v,w)

rs(u)
»

log ∆T ′(u) >
1

2
rs(p(v))

»
log ∆T ′(p(v)).

Proof. We construct the subtree T ′ in the following way. We examine the

vertices of v ∈ T in the breadth-first search order (that is, we order the vertices

such that their distances to the root are nondecreasing). If v is not deleted yet

and for some ` ∈ L ∩ Tv,

(47)
∑

u∈P(v,`)

rs(u)
»

log ∆T (u) 6 rs(p(v))
»

log ∆T (p(v)),
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we delete all the descendants of v. Let T ′ be the subtree obtained at the end

of the process. It is clear that (T ′, s|T ′) is a separated tree, and it remains to

verify the required properties.

By the construction of our subtree T ′, we see that whenever a vertex is

deleted, all its siblings are deleted. So for a node v ∈ T ′ \ LT ′ , all the children

in T of v are preserved in T ′, yielding property (2).

Note that if v ∈ LT ′ \ L, there exists ` ∈ L ∩ Tv such that (47) holds.

Therefore, we see∑
u∈P(z,v)

rs(u)
»

log ∆T ′(u) =
∑

u∈P(z,v)\{v}
rs(u)

»
log ∆T (u)

>
1

2

∑
u∈P(z,`)

rs(u)
»

log ∆T (u) >
1

2
valr(T , s).

This verifies property (1) (noting that the reverse inequality is trivial).

Take v ∈ T ′ \LT ′ and w ∈ LT ′ ∩Tv. If w ∈ L, we see that (46) holds for v

and w since (47) does not hold for v and ` = w. (Otherwise all the descendants

of v have to be deleted and v will be a leaf node in T ′.) If w 6∈ L, there exists

`0 ∈ L ∩ Tw such that∑
u∈P(w,`0)

rs(u)
»

log ∆T (u) 6 rs(p(w))
»

log ∆T (p(w)).

Recall that (47) fails with ` = `0. Altogether, we conclude that∑
u∈P(v,w)

rs(u)
»

log ∆T ′(u) =
∑

u∈P(v,`0)

rs(u)
»

log ∆T (u)

−
∑

u∈P(w,`0)

rs(u)
»

log ∆T (u)

>
1

2

∑
u∈P(v,`0)

rs(u)
»

log ∆T (u)

>
1

2
rs(p(v))

»
log ∆T (p(v)),

establishing property (3) and completing the proof. �

Finally, we observe that separated trees are stable in the following sense.

Lemma 3.13. Fix 0 < δ < 1. Suppose that (T , s) is an r-separated tree

in X , and for every node v ∈ V , we delete all but dδ · |Γ(v)|e of its children.

Denote by T ′ the induced tree on the connected component containing z(T ).

Then (T ′, s|T ′) is an r-separated tree and

valr(T , s) �δ valr(T ′, s|T ′).



1444 JIAN DING, JAMES R. LEE, and YUVAL PERES

Proof. It is clear that properties (1), (2), and (3) of separated trees are

preserved for the induced tree T ′ for s|T ′ . So (T ′, s) is an r-separated tree.

Furthermore, for every leaf ` of T ′,∑
v∈P(`)

rs(v)
»

log ∆T ′(v) >
∑

v∈P(`)

rs(v)
»

log(1 + dδ · |Γ(v)|e)

> c(δ)
∑

v∈P(`)

rs(v)
»

log(1 + |Γ(v)|) > c(δ)valr(T , s),

where c(δ) is a constant depending only on δ. It follows that valr(T ′, s|T ′) >
c(δ)valr(T , s), completing the proof since the reverse direction is obvious. �

3.3. Computing an approximation to γ2 deterministically. We now present

a deterministic algorithm for computing an approximation to γ2.

Theorem 3.14. Let (X, d) be a finite metric space, with n = |X|. If, for

any two points x, y ∈ X , one can compute d(x, y) in time polynomial in n,

then one can compute a number A(X, d) in polynomial time for which

A(X, d) � γ2(X, d).

Proof. Fix r>16. First, let us assume that 16d(x, y)6rM for x 6=y∈X
and some M ∈ N. Fix x0 ∈ X.

Our algorithm constructs functions ϕ0, ϕ1, . . . , ϕM : X → R+. We will

return the value A(X, d) = ϕM (x0). First put ϕ1(x) = ϕ0(x) = 0 for all x ∈ X.

Next, we show how to construct ϕj given ϕ0, ϕ1, . . . , ϕj−1.

For x ∈ X and r > 0, we use B(x, r)
4
= {y ∈ X : d(x, y) 6 r}. First, we

construct a maximal 1
3r
j−1 net Nj in X in the following way. Supposing that

y1, . . . , yk have already been chosen, let yk+1 be a point satisfying

ϕj−2(yk+1) = max

{
ϕj−2(y) : y ∈ X \

k⋃
i=1

B

Å
x,

1

3
rj−1

ã}
as long as there exists some point of X \ ⋃ki=1B(x, 1

3r
j−1) remaining. For

x ∈ X, set

gj(x) = ymin{k:d(x,yk)6 1
3
rj−1}.

Now we define ϕj(x) for x ∈ X. Suppose that

B(x, 2rj) ∩Nj = {y`1 , y`2 , . . . , y`h},

with `1 6 `2 6 · · · 6 `h, and define

I. ϕj(x) = ϕj−1(x) if B(gj(x), 4rj) \B(gj(x), 1
16r

j−2) is empty.
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II. Otherwise,

ϕj(x) = max

®
max
k6h

Å
rj
√

log k + min
i6k

ϕj−2(y`i)

ã
,(48)

max{ϕj−1(z) : z ∈ B(x, 1
3r
j−1)}

´
.

Now, we verify that {ϕj}Mj=0 satisfies the conditions of Theorem 3.3. The

monotonicity condition (1) is satisfied by construction. We will now verify

condition (2), starting with the following lemma.

Lemma 3.15. For any j > 0, if d(s, t) 6 rj and

B(gj(s), 4r
j) \B

Å
gj(s),

1

16
rj−2

ã
is empty, then ϕj(s) = ϕj(t).

Proof. We prove this by induction on j. Clearly it holds vacuously for

j 6 2. Assume that it holds for ϕ0, ϕ1, . . . , ϕj−1 and j > 2. By the condition

of the lemma and the fact that s ∈ B(gj(s),
1
3r
j−1), we have

(49) d(s, gj(s)) 6
1

16
rj−2,

which implies that B(s, 2rj)\B(s, 1
8r
j−2) is also empty. Furthermore, we have

gj(s) = gj(t), since otherwise d(gj(s), gj(t)) > 1
3r
j−1, and we would conclude

that

2rj > d(gj(t), s) > d(gj(s), gj(t))− d(s, gj(s)) >
1

3
rj−1 − 1

16
rj−2 >

1

8
rj−1,

contradicting the fact that B(s, 2rj) \B(s, 1
8r
j−2) is empty. It follows that

(50) B(s, 2rj) \B(s, 1
8r
j−2) = ∅ and B(t, 2rj) \B(t, 1

8r
j−2) = ∅.

Since gj(s) = gj(t), we conclude that both ϕj(s) and ϕj(t) are defined by

case (I) above; hence

(51) ϕj(s) = ϕj−1(s) and ϕj(t) = ϕj−1(t).

So we are done by induction unless B(gj(s), 4r
j−1) \ B(gj(s),

1
16r

j−3) is

nonempty, in which case ϕj−1(s) and ϕj−1(t) are defined by case (II). But from

(50) and d(s, t) 6 rj , we see that B(t, 2rj−1) = B(s, 2rj−1) and B(s, 1
3r
j−2) =

B(t, 1
3r
j−2) as well. This implies that ϕj−1(s) and ϕj−1(t) see the same maxi-

mization in (48); hence ϕj−1(s) = ϕj−1(t), and by (51) we are done. �

Now, let s, t1, . . . , tN ∈ X be as in condition (2), and let B(s, 2rj) ∩
Nj = {y`1 , y`2 , . . . , y`h} be such that `1 6 `2 6 · · · 6 `h. If B(gj(s), 4r

j) \
B(gj(s),

1
16r

j−1) is empty, then N = 1, and Lemma 3.15 implies that ϕj(s) =
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ϕj(t1) > ϕj−2(t1), where the latter inequality follows from monotonicity. Thus

we may assume that ϕj(s) is defined by case (II).

To every ti, we can associate a distinct point gj(ti) ∈ B(s, 2rj) ∩Nj , and

by construction we have ϕj−2(gj(ti)) > ϕj−2(ti), since ϕj−2(yk) is decreasing

as k increases. Using this property again in conjunction with the definition

(48), we have

ϕj(s) > r
j
√

logN + min{ϕj−2(y`i) : i = 1, . . . , N}

> rj
√

logN + min{ϕj−2(gj(ti)) : i = 1, . . . , N}

> rj
√

logN + min{ϕj−2(ti) : i = 1, . . . , N},

completing our verification of condition (2) of Theorem 3.3. Applying Theo-

rem 3.3, we see that

(52) γ2(X, d) . sup
x∈X,i∈Z

ϕi(x) = ϕM (x0) = A(X, d).

To prove the matching lower bound, we first build a tree T whose vertex

set is a subset of X × Z. The root of T is (x0,M). In general, if (x, j) is

already a vertex of T with j > 1, then we add children to (x, j) according

to the maximizer of (48). If ϕj(x) = ϕj−1(z), then we make (z, j − 1) the

only child of (x, j). Otherwise, we put the nodes (y1, j − 2), . . . , (yh, j − 2) as

children of (x, j), where {yi} ⊆ Nj are the nodes that achieve the maximum

in (48).

Let the pair (T ′, s) be a constructed in the following way from T . We

replace every maximal path of the form (x, j0), (x, j0−1), . . . , (x, j0−k) by the

vertex x and put s(x) = j0 − k. It follows immediately by construction that

(53) valr(T ′, s) . ϕM (x0) + r diam(X, d) . ϕM (x0),

where the latter inequality follows from (52), since ϕM (x0) & γ2(X, d) &
diam(X, d). Note that the correction term of diam(X, d) in (53) is simply

because of the use of ∆(v) = |Γ(v)|+ 1 in the definition (43).

We next build a (1, r, 8, 1
16)-tree F , which essentially captures the structure

of the tree T . In general, the sets in F will be balls in X, with the node

(x, j) ∈ T being associated with the set B(x, 4rj) in F , which will have label

n(B(x, 4rj)) = j.

We construct the (1, r,8, 1
16)-tree F recursively. The root of F isB(x0,4r

M )

(which is equal to X), and we define n(B(x, 4rj)) = M . In general, if F con-

tains the set B(x, 4rj) corresponding to the node (x, j) ∈ T , and if (x, j) has

children (y1, j− 2), (y2, j− 2), . . . , (yh, j− 2) ∈ T , we add the sets B(yi, 4r
j−2)

as children of B(x, 4rj) in F , with n(B(yi, 4r
j−2)) = j−2. Likewise, if (z, j−1)

is the child of (x, j), then we add the set B(z, 4rj−1) as the unique child of

B(x, 4rj) in F and put n(B(z, 4rj−1)) = j − 1. We continue in this manner

until T is exhausted.



COVER TIMES, BLANKET TIMES, AND MAJORIZING MEASURES 1447

We now verify that F is indeed a (1, r, 8, 1
6)-tree. First, note that if (z, j−1)

is a child of (x, j) in T , then clearly B(z, 4rj−1) ⊆ B(x, 4rj) since this can only

happen if d(x, z) 6 1
3r
j−1. Also, if (y1, j − 2), . . . , (yh, j − 2) are the children

of (x, j), then by the construction of the maps in (48), we have d(yi, x) 6 2rj ;

hence B(yi, 4r
j−2) ⊆ B(x, 4rj), recalling that r > 16. Furthermore, for i 6= k,

since yi, yk ∈ Nj , we have d(yi, yk) >
1
3r
j−1, so B(yi, 4r

j−2)∩B(yk, 4r
j−2) = ∅,

verifying that F is indeed a tree of subsets. In fact, we have the estimate

d
Ä
B(yi, 4r

j−2), B(yk, 4r
j−2)
ä
>

1

3
rj−1 − 8rj−2 >

1

6
rj−1 =

1

6
rn(B(x,4rj))−1,

using r > 16. This verifies that property (2) of a (1, r, 1, 1
6)-tree is satis-

fied. Furthermore, property (1) of a (1, r, 8, 1
6)-tree follows immediately by

construction. Finally, to verify property (3), note that for any set in our

tree of subsets F , corresponding to a node of the form (x, j) ∈ T , we have

diam(B(x, 4rj)) 6 8rj and n(B(x, 4rj)) = j.

By construction, we have

valr(T ′, s) . sizer(F) + r diam(X, d),

and Lemma 3.7 yields γ2(X, d) & sizer(F) + diam(X, d) (using γ2(X, d) &
diam(X, d)). Combining this with (53) shows that

γ2(X, d) & valr(T ′, s) & ϕM (x0) = A(X, d).

Together with (52), this shows that γ2(X, d) � A(X, d).

The only thing left is to remove the dependence of our running time on M .

But since there are at most n2 distinct distances in (X, d), only O(n2) of the

maps ϕ0, ϕ1, . . . , ϕM are distinct. More precisely, suppose that there is no pair

u, v ∈ X satisfying d(u, v) ∈ [rj−3, rj+1] for some j ∈ Z. In that case, ϕj(x) is

defined by case (I) for all x ∈ X, and thus ϕj ≡ ϕj−1. Obviously, we may skip

computation of the intermediate nondistinct maps. (It is easy to see which

maps to skip by precomputing the values of j such that there are u, v ∈ X

with d(u, v) ∈ [rj−3, rj+1].) Since there are only O(n2) nontrivial values of j,

this completes the proof. �

3.4. Tree-like properties of the Gaussian free field. Finally, we consider

how the resistance metric (and hence the Gaussian free field) allows us to obtain

trees with special properties. Consider a network G(V ) and the associated

metric space (V,
√
Reff). Let (T , s) be an r-separated tree in G. We say that

(T , s) is strongly r-separated if, for every nonroot node v ∈ T , we have the

inequality

(54)
»
Reff(v, T \ Tv) >

1

20
rs(p(v))−1,

where p(v) denotes the parent of v in T .
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Lemma 3.16. For any network G(V ) and any r > 96, let (T0, s) be

an arbitrary r-separated tree on the space (V,
√
Reff). Then there is an in-

duced strongly r-separated tree (T , s) such that |ΓT (v)| > |ΓT0(v)|/2 for all

v ∈ T \ LT . Furthermore,

(55) valr(T , s) � valr(T0, s).

Proof. Consider any nonleaf node v ∈ T0 with children c1, . . . , ck, where

k > 1. If k = 1, let Sv = {c1}. Otherwise, we wish to apply Proposition 2.10

to the sets {Tci}ki=1. By property (2) of separated trees, we get that for all

x ∈ Tci , y ∈ Tcj with i 6= j,

Reff(x, y) >
Å

1

2
rs(v)−1

ã2

=
1

4
r2(s(v)−1).

Combined with property (3) of separated trees, Proposition 2.10 yields that

there exists a subset Sv ⊆ {c1, . . . , ck} with |Sv| > k/2 such that for c ∈ Sv,
we have

Reff (Tc, Tv \ (Tc ∪ {v})) >
1

4
r2(s(v)−1) · 1

24
>

1

96
r2(s(v)−1).

Applying Lemma 2.13 with A = Tc, B1 = Tv \ (Tc ∪ {v}) and B2 = {v}, we get

that

(56) Reff (Tc, Tv \ Tc) >
1

100
r2(s(v)−1).

Next, consider the induced r-separated tree (T , s) that arises from deleting,

for every nonleaf node v ∈ T0, all the children not in Sv as well as all their

descendants. It is clear that for all v ∈ T \ LT , we have |ΓT (v)| > |ΓT0(v)|/2.

Lemma 3.13 then yields that

valr(T , s) � valr(T0, s).

It remains to verify that (T , s) is strongly r-separated. Define D0 = 1.

For h > 1,

Dh = Dh−1

Ä
1−D2

h−1r
−4h
ä
.

It is straightforward to verify that Dh > 1/2 for all h > 0, since r > 2.

We now prove, by induction on the height of T , that for every node u at

depth h > 1 in T ,

(57)
»
Reff (u, T \ Tu) >

1

10
rs(p(u))−1Dh−1.

By the preceding remarks, this verifies (54), completing the proof of the lemma.

Let z = z(T ) be the root, and let v be some child of z. Let u ∈ Tv be a

node at depth h in Tv (and hence at depth h+ 1 in T ). By (56), we have

(58)
»
Reff (u, T \ Tv) >

»
Reff (Tv, T \ Tv) >

1

10
rs(p(v))−1.
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If u = v, then the preceding inequality yields (57). Otherwise, u 6= v, and

h > 1.

By the induction hypothesis (57) applied to u and Tv, we have

(59)
»
Reff (u, Tv \ Tu) >

1

10
rs(p(u))−1Dh−1.

Since u ∈ Tv is a node at depth h, we get from property (1) of a separated tree

that s(p(v)) > s(p(u)) + 2h and therefore,

(60)
1

10
rs(p(u))−1Dh−1 6 r

−2h · 1

10
rs(p(v))−1Dh−1.

Now, using (58) and (59), we apply Lemma 2.13 with A = {u}, B1 = Tv \ Tu
and B2 = T \ Tv, yielding»

Reff (u, T \ Tu) >
1
10r

s(p(u))−1Dh−1 · 1
10r

s(p(v))−1»
( 1

10r
s(p(u))−1Dh−1)2 + ( 1

10r
s(p(v))−1)2

>
1

10
rs(p(u))−1Dh−1

1»
1 + (Dh−1r−2h)2

>
1

10
rs(p(u))−1Dh−1(1−D2

h−1r
−4h),

where the second transition follows from (60) and the third transition follows

from the fact that (1 + x2)−1/2 > 1− x2. This completes the proof. �

Good trees inside the GFF. Consider a Gaussian free field {ηx}x∈V cor-

responding to network G(V ) with the associated metric space (V, d), where

d(x, y) = (E(ηx − ηy)2)1/2.

Proposition 3.17. For some r0 > 2 and any r > r0 and C > 1, there ex-

ists a constant K = K(C, r) depending only on C and r such that the following

holds. For an arbitrary Gaussian free field {ηx}x∈V with γ2(V, d) > K diam(V ),

there exists an r-separated tree (T , s) with set of leaves L such that the following

properties hold :

(a) valr(T , s) �r,C γ2(X, d).

(b) For every v ∈ V , distL2 (ηv, aff({ηu}u/∈Tv)) >
1
20r

s(p(v))−1.

(c) For every v ∈ V , ∆(v) > exp
Ä
C2r24s(z)−s(v)

ä
for all v ∈ T \ L.

(d) For every v ∈ T \ L and w ∈ L ∩ Tv ,∑
u∈P(v,w)

rs(u)
»

log ∆(u) >
1

2
rs(p(v))

»
log ∆(p(v)).

We call such a tree T a C-good r-separated tree.

Proof. By definition of the GFF, we have d =
√
Reff for some network

G(V ). Applying Theorem 3.9, there exists an r-separated tree (T0, s0) such

that valr(T0, s0) �r γ2(V, d).
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Recalling property (3) of Definition 3.8 and the assumption that γ2(V, d) >
K diam(V ), we can then select K large enough such that the condition of

Lemma 3.11 is satisfied for the separated tree (T0, s0). Applying Lemma 3.11,

we can get a 2C-regular separated tree (T1, s1) with valr(T1, s1)�r,C valr(T0, s0).

At this point, using Lemma 3.16, we obtain a C-regular strongly r-sep-

arated tree (T2, s2) such that valr(T2, s2) �r γ2(V, d). That is to say, the tree

(T2, s2) satisfies properties (a) and (c). Furthermore, by Lemma 2.15, we see

that property (b) holds for (T2, s2) because it is equivalent to the strongly

r-separated property (54).

Finally, Lemma 3.12 implies that there exists a subtree T ⊆ T2 with

valr(T , s2|T ) �r,C valr(T2, s2) such that property (d) holds for T and properties

(a) and (c) are preserved. (Note that by property (2) of Lemma 3.12, the

degrees of nonleaf nodes are preserved.) Observe that property (b) is preserved

by taking subtrees. Writing s = s2|T , we conclude that the separated tree

(T , s) satisfies all the required properties, completing the proof. �

4. The cover time

We now turn to our main theorem.

Theorem 4.1. For any network G(V ) with total conductance C=
∑
x∈V cx,

we have
t�cov(G) � C

î
γ2(V,

√
Reff)

ó2
.

Combined with Theorem 2.3, this also yields a positive answer to the

strong conjecture of Winkler and Zuckerman [54].

Corollary 4.2. For every δ ∈ (0, 1), for any network G(V ) with total

conductance C =
∑
x∈V cx,

t�cov(G) � C
î
γ2(V,

√
Reff)

ó2 �δ tbl(G, δ).

For the remainder of this section, we denote

(61) S = γ2(V,
√
Reff).

It is clear that for all 0 < δ < 1, we have t�cov(G) 6 tbl(G, δ), and tbl(G, δ) .δ
CS2 by Theorem 2.3. Thus, in order to prove the preceding corollary and

Theorem 4.1, we need only show that

(62) t�cov(G) & CS2.

Let {Wt} be the continuous-time random walk on G(V ), and let {Lvt }v∈V
be the local times, as defined in Section 2. Applying the isomorphism theorem

(Theorem 1.14) with some fixed v0 ∈ V , we have

(63)

ß
Lxτ(t) +

1

2
η2
x : x ∈ V

™
law
=

ß
1

2
(ηx +

√
2t)2 : x ∈ V

™
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for some associated Gaussian process {ηx}x∈V . By Lemma 2.14, this process

is a Gaussian free field, and we have for every x, y ∈ V ,

(64) d(x, y)
4
=
»
E |ηx − ηy|2 =

»
Reff(x, y).

Let D = maxx,y∈V d(x, y) be the diameter of the Gaussian process.

Proof outline. Let {L > 0} be the event {Lxτ(t) > 0 : x ∈ V }. Consider

a set S ⊆ RV , and let SL and SR be the events corresponding to the left and

right-hand sides of (63) falling into S. Our goal is to find such a set S so that

for some t � S2, we have

(65) P(SR)− P(SL ∩ {L > 0}) > c

for some universal constant c > 0. In this case, with probability at least c,

the set of uncovered vertices {v : Lvτ(t) = 0} is nonempty. Using the fact that

the inverse local time τ(t) is & Ct with probability at least 1 − c/2, we will

conclude that t�cov(G) & CS2.

Thus we are left to give a lower bound on P(SR) and an upper bound

on P(SL ∩ {L > 0}). Since the structure of the local times process {Lxt }
conditioned on {L > 0} can be quite unwieldy, we will only use first moment

bounds for the latter task. Calculating a lower bound on P(SR) will require

a significantly more delicate application of the second-moment method, but

here we will be able to exploit the full power of Gaussian processes and the

majorizing measures theory.

Before defining the set S ⊆ RV , we describe it in broad terms. By (64) and

Theorem (MM), we know that for some t0 � S2, we should have E infx∈V ηx =

−E supx∈V ηx close to −
√

2t0. By Lemma 2.2, we know that the standard

deviation of infx∈V ηx is O(D). Thus we can expect that with probability

bounded away from 0, for the right choice of t0 � S2, some value on the

right-hand side of (63) is O(D) for t = t0.

Now, when E supx∈V ηx�D, it is intuitively true that for t=εt0 and ε>0

small, there should be many points x ∈ V with ηx ≈ −
√

2t. If these points

have some level of independence, then we should expect that with probability

bounded away from 0, there is some x ∈ V with |ηx −
√

2t| very small (much

smaller than O(D)). Our set S will represent the existence of such a point. On

the other hand, we will argue that if all the local times {Lxτ(t)} are positive,

then the probability for the left-hand side to have such a low value is small.

4.1. A tree-like subprocess. First, observe that by the commute time iden-

tity, t�cov(G) > Cmaxx,y∈V Reff(x, y) = CD2. Thus in proving Theorem 4.1, we

may assume that

(66) S > KD
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for any universal constant K > 1. In particular, by an application of Proposi-

tion 3.17, we can assume the existence of an r-separated tree (T , s) in (V, d),

for some fixed r > 128, with root z = v0, and such that for some constant

C > 1 and θ = θ(C), properties (67), (70), (71), and (72) below are satisfied.

We will choose C sufficiently large later, independent of any other parameters.

For each u ∈ T , let hu denote the height of u, where we order the tree so

that hz = 0, where z is the root. Recalling that L is the set of leaves of T , for

each v ∈ L, let

P(v) = {fv(0), fv(1), . . . , fv(hv)}
be the set of nodes on the path from z = fv(0) to v = fv(hv), where fv(i) is

the parent of fv(i + 1), for 0 6 i < h. First, we can require that for every

v ∈ L,

(67) σv >
1

θ
S,

where

χv(k)
4
= rs(fv(k))

»
log ∆(fv(k)),(68)

σv
4
=
hv−1∑
k=0

χv(k).(69)

Furthermore, we can require that the tree T satisfies, for every v ∈ V ,

(70)
hv−1∑
i=j+1

χv(i) > C · 2j · rs(fv(j))

as well as

(71) ∆(fv(k)) > exp(C2r24k).

Finally, we require that for every v ∈ T ,

(72) distL2 (ηv, aff({ηu}u/∈Tv)) >
1

20
rs(p(v))−1.

All these requirements are justified by Proposition 3.17.

The distinguishing event. For u, v ∈ L, we let huv be the height of the

least common ancestor of u and v. We will use deg↓(v) = |Γ(v)| to denote the

number of children of v. Define

(73) mu =
hu−1∏
k=0

deg↓(fu(k)) and muv =
huv−1∏
k=0

deg↓(fu(k)).

First, we fix

(74) ε =
1

210 rθ
.
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For every v ∈ L, consider the events

(75) Ev(ε) =
¶
|ηv − εS| 6 50 rs(p(v))m−3/4

v

©
.

Instead of arguing directly about the events Ev(ε), we will couple them to

leaf events of a “percolation” process on T . In particular, in Section 4.2, we

will prove the following lemma.

Lemma 4.3. For all v ∈ L, there exist events Ev such that the following

properties hold :

(1) Ev ⊆ Ev(ε) =
{
|ηv − εS| 6 50 rs(p(v))m

−3/4
v

}
.

(2) P(Ev) > 1
2m
−7/8
v .

(3) P(Eu ∩ Ev) 6 m1/8
uv (mumv)

−7/8.

In Section 4.3, we will prove that for any events {Ev}v∈L satisfying prop-

erties (2) and (3) of Lemma 4.3, we have

(76) P
(⋃
u∈L
Eu

)
>

1

8
.

Thus for t = 1
2ε

2S2, we have

(77) P
Å
∃v ∈ V :

1

2
(ηv +

√
2t)2 6 502r2s(p(v))m−3/2

v

ã
>

1

8
.

In light of the discussion surrounding (65), the reader should think of

S =
¶
s ∈ RV : sv 6 502r2s(p(v))m−3/2

v for some v ∈ V
©
,

and then (77) gives the desired lower bound on P(SR). We now turn to an

upper bound on P(SL ∩ {L > 0}). The next lemma is proved in Section 4.4.

Lemma 4.4. For t > 1
2ε

2S2,

(78) P
(⋃
v∈L

¶
0 < Lvτ(t) 6 502 · r2s(p(v))m−3/2

v

©)
6

1

16
.

From (78) and (77), we conclude that with probability at least 1/16, we

must have Lvτ(t) = 0 for some v ∈ V and t = 1
2ε

2S2, else (63) is violated. This

implies that

(79) Pv0
Ä
τ�cov > τ(1

2ε
2S2)

ä
>

1

16
.

To finish our proof of (62) and complete the proof of Theorem 4.1, we

will apply Lemma 2.7 with β = 1
96 . In particular, we may choose K = 96/ε in

(66), and then applying Lemma 2.7 yields

P
Ç
τ(1

2ε
2S2) 6 C ε

2S2

192

å
6

1

32
.
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Combining this with (79) yields

Pv0

Ç
τ�cov > C

ε2S2

192

å
>

1

16
.

In particular, τ�cov & Cε2S2. This completes the proof of (62), and hence of

Theorem 4.1.

4.2. The coupling. This section is devoted to the proof of Lemma 4.3.

Toward this end, we will try to find a leaf v ∈ L for which ηv ≈ εS. As in

Lemma 4.3(1), the level of closeness we desire is gauged according to a proper

scale, rs(p(v)), as well as to the number of other leaves we expect to see at this

scale, which is represented roughly by m
−3/4
v . (The value 3/4 is not essential

here, and any other value in (1/2, 1) would suffice.)

Our goal is to find such a leaf by starting at the root of the tree. We argue

that some of its children should be somewhat close to the target εS. This

closeness is achieved using the fact that, by definition of an r-separated tree,

the children are separated in the Gaussian distance, and thus they exhibit some

level of independence. We will continue in this manner inductively, arguing

that the children that are somewhat close to the target have their own children

that we could expect to be even closer, and so on. We aim to shrink these

windows around the target more and more so that they are small enough once

we reach the leaves. There are a number of difficulties involved in executing

this scheme. In particular, conditioning on the exact values of the children of

the root could determine the entire process, making future levels moot. Thus

we must first select a careful filtering that allows us to reserve some randomness

for later levels. This is done in Section 4.2.1.

Furthermore, the intermediate targets have to be arranged according to

the variances along the root-leaf paths in our tree. This corresponds to the

fact that, although we have a uniform lower bound on each σv (from (67)), the

summation defining the σv’s could put different weights on the various levels

(recall (69)). The targets also have to take into account random “noise” from

the filter described above, and thus the targets themselves must be random.

This “window analysis” is performed in Section 4.2.2.

4.2.1. Restructuring the randomness. We know that ηz = 0, since z = v0

is the root of T (and the starting point of the associated random walk). Fix a

depth-first ordering of T . (One starts at the root and explores as far as possible

along each branch before backtracking.) Write u ≺ v if u is explored before v,

and u � v if u ≺ v or u = v. For u 6= z, we write u− for the vertex preceding

u in the DFS order. Let F = span ({ηx : x ∈ T }). For a node v ∈ T , let

Fv = span({ηu}u�v) and F−v = span({ηu}u≺v). We next associate a centered

Gaussian process {ξx : x ∈ T } to {ηx : x ∈ T } in the following inductive way.
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Define ξz = 0. Now, assuming we have defined ξu for u ≺ v, we define ξv by

writing

ηv = ζv + ξv,

where ζv ∈ Fv− and ξv ⊥ Fv− . Observe that, by construction, {ξu}u�v forms

an orthogonal basis in L2 for Fv.
Applying (72), we have for all u ∈ T ,

‖ξu‖2 = distL2 (ηu, span ({ηw}w≺u))(80)

> distL2 (ηu, span ({ηw}w/∈Tu)) >
1

20
rs(p(u))−1,

where we used the fact that the span and the affine hull are the same since

ξz = 0. For v ∈ L, define the subspaces

Fv,k = span ({ξu : fv(k) ≺ u � fv(k + 1)}) ,
F−v,k = span ({ξu : fv(k) ≺ u ≺ fv(k + 1)}) .

For 0 6 k 6 hv − 1, define inductively η̃v,0 = 0 and

(81) η̃v,k+1 = η̃v,k + projFv,k(ηv).

Note that the subspaces {Fv,k}hvk=0 are mutually orthogonal, and together they

span Fv. Thus,

(82) η̃v,hv = ηv.

Furthermore, by the definition of the subspace Fv,k, we can decompose

(83) η̃v,k+1 − η̃v,k = ζ̃v,k + ξ̃v,k,

where ζ̃v,k ∈ F−v,k and ξ̃v,k ⊥ F−v,k. The next lemma states that ξ̃v,k has at least

comparable variance to ζ̃v,k.

Lemma 4.5. For every v ∈ L and k = 0, 1, . . . , hv − 1, we have the esti-

mates

(84)
∥∥∥ζ̃v,k∥∥∥

2
6 8 rs(fv(k))

and

(85) 1
64r

s(fv(k))−1 6
∥∥∥ξ̃v,k∥∥∥

2
6 8 rs(fv(k)).

Proof. Writing the telescoping sum,

ηv =
hv−1∑
j=0

ηfv(j+1) − ηfv(j),

we see that

(86)
∥∥∥projFv,k(ηv)

∥∥∥
2
6

hv−1∑
j=k

‖ηfv(j+1) − ηfv(j)‖2 6
hv−1∑
j=k

4rs(fv(j)) 6 8 rs(fv(k)),
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where we used properties (1) and (3) of the separated tree and have assumed

r > 2.

Thus by orthogonality and (83), we have∥∥∥ζ̃v,k∥∥∥
2
6 ‖η̃v,k+1 − η̃v,k‖2 =

∥∥∥projFv,k(ηv)
∥∥∥

2
6 8 rs(fv(k)),

and precisely the same conclusion holds for ξ̃v,k.

Next, we establish a lower bound on ‖ξ̃v,k‖2. From (81) and (83),

ξ̃v,k = projFv,k(ηv)− projF−
v,k

(ηv)(87)

=
hv−1∑
j=k

Å
projFv,k(ηfv(j+1) − ηfv(j))− projF−

v,k
(ηfv(j+1) − ηfv(j))

ã
=

ï
projFv,k(ηfv(k+1) − ηfv(k))− projF−

v,k
(ηfv(k+1) − ηfv(k))

ò
+

hv−1∑
j=k+1

Å
projFv,k(ηfv(j+1) − ηfv(j))− projF−

v,k
(ηfv(j+1) − ηfv(j))

ã
.

Observe that the term in brackets is precisely

projFv,k(ηfv(k+1))− projF−
v,k

(ηfv(k+1)) = ξfv(k+1)

since ηfv(k) ⊥ Fv,k. In particular, we arrive at∥∥∥ξ̃v,k∥∥∥
2
>
∥∥∥ξfv(k+1)

∥∥∥
2
−

hv−1∑
j=k+1

∥∥∥ηfv(j+1) − ηfv(j)

∥∥∥
2

> 1
32r

s(fv(k))−1 − 2 rs(fv(k+1))

> 1
32r

s(fv(k))−1 − 2 rs(fv(k))−2

> 1
64r

s(fv(k))−1,

where in the second line we have used (80) and properties (1) and (2) of the

separated tree and in the final line we have used r > 128. �

4.2.2. Defining the events Ev . Recall that our goal now is to find many

leaves v ∈ L with ηv ≈ εS. Now, writing

ηv =
hv−1∑
k=0

projFv,k(ηv) =
hv−1∑
k=0

(ζ̃v,k + ξ̃v,k),

our “ideal” goal would be to hit a window around the target by getting the

kth term of this sum close to

av(k)
4
= εS

χv(k)

σv
,

for k = 0, 1, . . . , hv − 1. We will use the variance of the ξ̃v,k variables (recall

Lemma 4.5) to lower bound the probability that some points get closer to the
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desired target. On the other hand, we will treat the ζ̃v,k variables as noise that

has to be bounded in absolute value.

This noise cannot always be countered in a single level, but it can be

countered on average along the path to the leaf; this is the content of (70).

We will amortize this cost over future targets as follows. Let bv(0) = 0 and for

k = 0, 1, . . . , hv − 2, define

ρv(k) = ζ̃v,k + ξ̃v,k − av(k) + bv(k),

bv(k + 1) =
k∑
i=0

χv(k + 1)∑hv−1
`=i+1 χv(`)

ρv(i).

Clearly ρv(0) = ζ̃v,0 + ξ̃v,0 − av(0) represents how much we miss our first

target. A similar fact holds for the final target, as the next lemma argues; in

between, the errors are spread out proportional to the contribution to valr(T , s)
for each of the the remaining levels (represented by the χv(k) values). Here

bv(k) represents the error that is meant to be absorbed in the kth level.

Lemma 4.6. For every v ∈ L,

ρv(hv − 1) = ηv − εS.

Proof. We have

hv−2∑
k=0

bv(k + 1) =
hv−2∑
k=0

k∑
i=0

χv(k + 1)∑hv−1
`=i+1 χv(`)

ρv(i)(88)

=
hv−2∑
i=0

ρv(i)
hv−2∑
k=i

χv(k + 1)∑hv−1
`=i+1 χv(`)

=
hv−2∑
i=0

ρv(i).

Also note that

hv−1∑
k=0

ρv(k) =
hv−1∑
k=0

(ζ̃v,k + ξ̃v,k − av(k) + bv(k)) = ηv − εS +
hv−1∑
k=0

bv(k).

Combined with bv(0) = 0 and (88), it follows that ρv(hv − 1) = ηv − εS,

completing the proof. �

We now define the events

Av(k) = {|ζ̃v,k| 6 εθχv(k)},
Bv(k) = {|ρv(k)| 6 wv(k)},

where, for 0 6 k 6 hv − 2, wv(k) is selected so that

(89) P
Ä
Bv(k) | ζ̃v,k + bv(k)

ä
= deg↓(fv(k))−1/8.
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We emphasize that the window wv(k) is not deterministic. And, for k = hv−1,

we select wv(k) so that

(90) P(Bv(k) | ζ̃v,k + bv(k)) = deg↓(fv(k))−1/8m−3/4
v .

Remark 2. Here, wv(k) can be thought to represent the window size

around the random target. The value of wv(k) is chosen to make the probabil-

ities in (89) and (90) exact, allowing us to couple seamlessly to the percolation

process in Section 4.3. The key fact, proved in Lemma 4.7, is that the win-

dow sizes actually satisfy a deterministic upper bound, assuming that all the

“good” events on the path from the root to fv(k) occurred. Thus one should

think of the true window size as the bounds specified in (94) and (95), while

the random value is for the purpose of the coupling.

For 0 6 k 6 ` 6 hv − 1, define

Av(k, `)
4
=
⋂̀
i=k

Av(i) and Bv(k, `)
4
=
⋂̀
i=k

Bv(i).(91)

Since ξ̃v,k ∈ σ(Fv,k \ F−v,k) (see, e.g., (87)), we see that the event Bv(k) is

conditionally independent of σ(F−fv(k+1)) given the value of ζ̃v,k + bv(k). This

implies that for all events E0 ∈ σ(F−fv(k+1)) such that E0∩Av(0, k)∩Bv(0, k−1)

6= ∅,

P (Bv(k) | Av(0, k),Bv(0, k − 1), E0)(92)

=

deg↓(fv(k))−1/8, if 0 6 k < hv − 1,

deg↓(fv(k))−1/8m
−3/4
v , if k = hv − 1.

Finally, for v ∈ L, we define the event

(93) Ev = Av(0, hv − 1) ∩ Bv(0, hv − 1).

Window analysis. We will now show that our final window wv(hv − 1) is

small enough. Observe that our choice of wv(k) is not deterministic. Never-

theless, we will give an absolute upper bound. The bound is essentially the

natural one: For any node u in the tree, and any child v of u, the standard de-

viation of ηu−ηv is O(rs(u)). This follows from property (3) of the r-separated

tree (recall Definition 3.8).

Lemma 4.7. For every v ∈ L and k = 0, 1, . . . , hv − 2, if Av(0, k) and

Bv(0, k − 1) hold, then

(94) wv(k) 6 50 rs(fv(k)).

Furthermore, if Av(0, hv − 1) and Bv(0, hv − 2) hold, then

(95) wv(hv − 1) 6 50 rs(fv(hv−1))m−3/4
v .
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Proof. For k = 0, we have ρv(0) = ζ̃v,0 + ξ̃v,0 − av(0). By (67), we have

(96) av(0) = εSχv(0)/σv 6 θεχv(0) = θεrs(fv(0))
»

log ∆(fv(0)).

Furthermore, from Lemma 4.5, we know that for all k > 0,

(97) 1
64r

s(fv(k))−1 6
∥∥∥ξ̃v,k∥∥∥

2
6 8 rs(fv(k)).

Now, consider a value w > 0 such that

(98) w 6 av(0) + εθχv(0) 6 2θεrs(fv(0))
»

log ∆(fv(0)).

Using (97) and recalling the Gaussian density, we have

P
Ä
|ρv(0)| 6 w | Av(0)

ä
> P

Ä
|ρv(0)| 6 w | ζ̃v,0 = −εθχv(0)

ä(99)

= P
Ä
|ξ̃v,0 − av(0)− εθχv(0)| 6 w

ä
>

1

2

w√
2π 8rs(fv(0))

exp
Ä
−1

2(128εrθ)2 log ∆(fv(0))
ä

=
w

16
√

2πrs(fv(0))
∆(fv(0))−

1
2 (128εrθ)2 .

Recalling the assumption (71), we have
»

log ∆(fv(0)) > Cr > 16
√

2π210r

by choosing C large enough. In particular,

εθχv(0) > (16
√

2π210εθr)rs(fv(0)) = 16
√

2πrs(fv(0)),

recalling (74). Thus setting w = 16
√

2πrs(fv(0)) satisfies (98), and applying

(99), we have

P
Ä
|ρv(0)| 6 16

√
2πrs(fv(0)) | Av(0)

ä
> ∆(fv(0))−

1
2 (128εrθ)2 > deg↓(fv(0))−1/8,

where we have used 1
2(128εrθ)2 = 1

128 , and ∆(fv(0)) > 16 from (71). Therefore,

wv(0) 6 16
√

2πrs(fv(0)) 6 50 rs(fv(0)),

recalling the definition of wv(0) from (89).

Now suppose that (94) holds for all k 6 ` < hv − 2, and consider the case

k = `+ 1. If the events {Bv(j) : 0 6 j 6 `} hold, then

|ρv(j)| 6 wv(j) 6 50 rs(fv(j)),

where the first inequality is from the definition of Bv(j) and the second is from

the induction hypothesis. Using (70), it follows that

(100) |bv(k)| 6
k−1∑
i=0

χv(k)∑hv−1
`=i+1 χv(`)

|ρv(i)| 6
2

C
χv(k).
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Recall that ρv(k) = ζ̃v,k + ξ̃v,k − av(k) + bv(k). Similar to the k = 0 case,

we obtain that for

0 < w 6 2θεrs(fv(k))
»

log ∆(fv(k)),

we have

P
(
|ρv(k)| 6 w | Av(i),Bv(i) for all 0 6 i < k,Av(k)

)
> P

Å ∣∣∣∣ξ̃v,k − av(k)− εθχv(k)− 2

C
χv(k)

∣∣∣∣ 6 wã
>

1

2

w√
2π8 rs(fv(k))

∆(fv(k))−
1
2

(128r)2(εθ+C−1)2 .

Now, by choosing C > 1024r, and recalling (74), we see that

1

2
(128r)2(εθ + C−1)2 6

1

32
.

Since ∆(fv(k)) > 16 (again, by (71)), we conclude that

P
Ä
|ρv(k)| 6 16

√
2πrs(fv(k)) | Av(i),Bv(i) for all 0 6 i < k,Av(k)

ä
> deg↓(fv(k))−1/8.

This implies wv(k) 6 16
√

2πrs(fv(k)) 6 50 rs(fv(k)), where we recall once again

the definition of wv(k) from (89). An almost identical argument yields that

wv(hv − 1) 6 50 rs(fv(hv−1))m
−3/4
v . �

The next lemma states that the events Ev as defined in (93) satisfy re-

quirement (1) of Lemma 4.3.

Lemma 4.8. If Ev occurs, then

|ηv − εS| 6 wv(hv − 1) 6 50 rs(fv(hv−1))m−3/4
v .

Proof. This follows directly from Lemma 4.6, the identity (82), and the

definition of Bv(k). �

The first moment. We now give lower bounds on the probability of the

event Ev.

Lemma 4.9. For every v ∈ L,

P(Ev) >
1

2
m−7/8
v .
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Proof. We have

P(Ev) =
hv−1∏
k=0

P (Av(k) | Av(0, k − 1),Bv(0, k − 1))

(101)

· P (Bv(k) | Av(0, k),Bv(0, k − 1))

= m−3/4
v

hv−1∏
k=0

deg↓(fv(k))−1/8
hv−1∏
k=0

P (Av(k) | Av(0, k − 1),Bv(0, k − 1))

= m−7/8
v

hv−1∏
k=0

P (Av(k)) ,

where the third line follows from (92) and the fourth line from the fact that

Av(k) is independent of {Av(i),Bv(i) : 0 6 i < k}.
Using (84), we have

P(Av(k)) > 1− 2√
2π

∫ ∞
εθχv(k)

exp

Ç
− x2

128r2s(fv(k))

å
dx

> 1− 2∆(fv(k))−
1

128
ε2θ2

> 1− 2 exp

Å
− 1

128
2−20C24k

ã
,

where we have used (71), the definition of ε (74), and

χv(k) = rs(fv(k))
»

log ∆(fv(k)).

Clearly by choosing C a large enough constant, we have

hv−1∏
k=0

P (Av(k)) >
1

2
,

completing the proof. �

The second moment. Finally, we bound the probability of Eu∩Ev for u 6= v.

Lemma 4.10. For every u, v ∈ L,

P(Eu ∩ Ev) 6 m1/8
uv (mumv)

−7/8.

Proof. Assume, without loss of generality, that u ≺ v ∈ L. It is clear from

(101) that P(Eu) 6 m−7/8
u . Also, we have

P(Ev | Eu) 6 P(Av(0, hv − 1),Bv(0, hu − 1) | Eu)

6
hv−1∏
k=huv

P(Bv(k) | Eu,Av(0, k),Bv(0, k − 1)).
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Now recall that Eu ∈ σ(F−fv(huv+1)) ⊂ σ(F−fv(k+1)) for all k > huv. By (92), we

obtain

hv−1∏
k=huv

P(Bv(k) | Eu,Av(0, k),Bv(0, k − 1))

= deg↓(fv(hv − 1))−3/4
hv−1∏
k=huv

deg↓(fv(k))−1/8 = m1/8
uv m

−7/8
v .

Altogether, we conclude that

P(Eu ∩ Ev) = P(Eu)P(Ev | Eu) 6 m1/8
uv (mumv)

−7/8,

as required. �

The main coupling lemma, Lemma 4.3, is an immediately corollary of

Lemmas 4.8, 4.9, and 4.10.

4.3. Tree-like percolation. Lemma 4.11 below yields (76). Its proof is a

variant on the well-known second moment method for percolation in trees (see

[38]). First, we define a measure ν on L via ν(u) = m−1
u . Observe that ν is a

probability measure on L, i.e.,

(102)
∑
u∈L

ν(u) = 1.

To see this, construct a unit flow from the root to the leaves, where each nonleaf

node splits its incoming flow equally among its children. Clearly the amount

that reaches a leaf u is precisely ν(u).

Lemma 4.11. Suppose that to each v ∈ L, we associate an event Ev such

that the following bounds hold :

(1) P(Ev) > 1
2m
−7/8
v for all v ∈ L.

(2) P(Eu ∩ Ev) 6 m1/8
uv (mumv)

−7/8 for all u, v ∈ L.

Define Z =
∑
u∈Lm

−1/8
u 1Eu . Then,

P (Z > 0) >
1

8
.

Proof. By assumption (1),

EZ >
∑
u∈L

1

2
m−1/8
u m−7/8

u =
1

2

∑
u∈L

m−1
u =

1

2
,

where the last equality follows from (102).

By assumption (2), we have

EZ2 =
∑
u,v∈L

(mumv)
−1/8P(Eu ∩ Ev) 6

∑
u,v∈L

m1/8
uv (mumv)

−1.



COVER TIMES, BLANKET TIMES, AND MAJORIZING MEASURES 1463

In order to estimate the second moment, we first fix u and sum over v. To be

more precise, let

Lh(u) = {v ∈ L : huv = h},

where we recall that hu is the height of a node u and huv is the height of the

least-common ancestor of u and v.

We can then partition L =
⋃
h>0 Lh(u) and obtain, for every u ∈ L,

∑
v∈L

m1/8
uv m

−1
v =

hu∑
h=0

∑
v∈Lh(u)

m1/8
uv m

−1
v =

hu∑
h=0

h−1∏
i=0

deg↓(fu(i))1/8
∑

v∈Lh(u)

m−1
v

=
hu∑
h=0

h−1∏
i=0

deg↓(fu(i))1/8ν(Lh(u)).

Recalling the flow representation of the measure ν, we see that

ν(Lh(u)) =
deg↓(fu(h))− 1

deg↓(fu(h))

h−1∏
i=0

deg↓(fu(i)).

Therefore,

∑
v∈L

m1/8
uv m

−1
v =

hu∑
`=0

deg↓(fu(h))− 1

deg↓(fu(h))

h−1∏
i=0

deg↓(fu(i))−7/8

6
hu∑
`=0

h−1∏
i=0

deg↓(fu(i))−7/8 6 2,

where the last transition follows from (71) for C chosen sufficiently large. Ap-

plying the second moment method, we deduce that

P (Z > 0) >
(EZ)2

EZ2
>

1

8
,

completing the proof. �

4.4. The local times. We now prove Lemma 4.4 in order to the complete

the analysis of the left-hand side of (63).

Lemma 4.12. Consider the local times Lvτ(t) as defined in Theorem 1.14.

For v ∈ L, define

Ẽv =
¶

0 < Lvτ (t) 6 502 · r2s(fv(hv−1))m−3/2
v

©
.

Then, for any t > 0,

P
(⋃
v∈L
Ẽv

)
6

1

16
.
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Proof. Note that the random walk is at vertex v0 at time τ(t). Hence,

given that Lvτ(t) > 0, the random walk contains at least one excursion that

starts at v and ends at v0. Therefore, given that Lvτ(t) > 0, we see cvL
v
τ(t)

stochastically dominates the random variable

L =

∫ Tv0

0
1{Xt=v}dt,

where Xt is a random walk on the network started at v and Tv0 is the hitting

time to v0.

By definition, every time the random walk hits v, it takes an exponential

time for the walk to leave. Also, the probability that the random walk would

hit v0 before returning to v can be related to the effective resistance (see, for

example, [39]). Formally, when the random walk Wt is at vertex v, it will

wait until the Poisson clock σ with rate 1 rings and then move to a neighbor

(possibly v itself) selected proportional to the edge conductance. Define

T+
v = min{t > σ : Xt = v}.

Then we have the continuous-time version of (33):

Pv(T+
v > Tv0) =

1

cvReff(v, v0)
.

By the strong Markov property, L follows the law of the sum of a geometric

number of i.i.d. exponential variables. Thus L follows the law of an exponential

variable with EL = cvReff(v, v0).

Recalling property (72) of our separated tree T , we see that

Reff(v, v0) = E(ηv − ηv0)2 > 2−10r2s(fv(hv−1))−2.

Thus,

P(0 < Lvτ(t) 6 502 · r2s(fv(hv−1))m−3/2
v ) 6 P(L 6 cv · 502 · r2s(fv(hv−1))m−3/2

v )

6
502 · r2s(fv(hv−1))m

−3/2
v

Reff(v, v0)

6 211 · 502 · r2m−3/2
v

6
1

16
m−1
v ,

where the last transition using (71) for C chosen large enough and mv >
exp(C2r2).

Therefore, we conclude that

P
(⋃
v∈L
Ẽv

)
6

1

16

∑
v∈L

m−1
v =

1

16
,

where we used, from (102), the fact that
∑
v∈Lm

−1
v = 1, completing the proof.

�
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4.5. Additional applications. We now prove a generalization of Theorem 1.7.

Suppose that V = {1, 2, . . . , n}, and let G(V ) be a network with conductances

{cij}. We define real, symmetric n× n matrices D and A by

Dij =

ci, i = j,

0, otherwise,

Aij = cij .

We write

(103) LG =
D −A
tr(D)

and L+
G for the pseudoinverse of LG.

Theorem 4.13. For any connected network G(V ),

tcov(G) � E
∥∥∥»L+

G g
∥∥∥2

∞
,

where g = (g1, . . . , gn) is a standard n-dimensional Gaussian.

Proof. If κ denotes the commute time in G, then the following formula is

well known (see, e.g., [32]):

κ(i, j) = 〈ei − ej , L+
G(ei − ej)〉,

where {e1, . . . , en} are the standard basis vectors in Rn. Using the fact that

L+
G is self-adjoint and positive semi-definite, this yields

κ(i, j) =
∥∥∥»L+

G ei −
»
L+
G ej

∥∥∥2
.

Let g = (g1, . . . , gn) ∈ Rn be a standard n-dimensional Gaussian, and

consider the Gaussian processes {ηi : i = 1, . . . , n} where ηi =
〈
g,
»
L+
G ei

〉
.

One verifies that for all i, j ∈ V ,

E |ηi − ηj |2 =
∥∥∥»L+

G(ei − ej)
∥∥∥2

= κ(i, j);

thus by Theorem (MM),

γ2(V,
√
κ) � Emax

i∈V
ηi = Emax

i∈V

〈
g,
»
L+
G ei

〉
(104)

= Emax
i∈V

〈»
L+
G g, ei

〉
� E

∥∥∥»L+
G g
∥∥∥
∞
.

By Theorem 1.9, [γ2(V,
√
κ)]

2 � tcov(G). Finally, one can use Lemma 2.2 to

conclude that (
E
∥∥∥»L+

G g
∥∥∥
∞

)2
� E

∥∥∥»L+
G g
∥∥∥2

∞
. �
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Theorem 4.14. There is a randomized algorithm that, given any con-

nected network G(V ), with m= |{(x, y) : cxy 6=0}|, runs in time O(m(logm)O(1))

and outputs a number A(G) such that tcov(G) � E [A(G)] � (E
[
A(G)2

]
)1/2.

Proof. In [46, §4], it is shown how to compute a k×n matrix Z, in expected

time O(m(logm)O(1)), with k = O(log n), and such that for every i, j ∈ V ,

(105) κ(i, j) 6 ‖Z(ei − ej)‖2 6 2κ(i, j).

We can associate the Gaussian processes {ηi}i∈V , where ηi = 〈g, Zei〉 and g

is a standard k-dimensional Gaussian. Letting d(i, j) =
»
E |ηi − ηj |2, we see

from (105) that
√
κ 6 d 6

√
2κ; therefore, γ2(V,

√
κ) � γ2(V, d). It follows

(see (104)) that

E ‖Zg‖2∞ � E
∥∥∥»L+

G g
∥∥∥2

∞
� tcov(G),

where the last equivalence is the content of Theorem 4.13.

The output of our algorithm is thus A(G) = ‖Zg‖2∞, where g is a standard

k-dimensional Gaussian vector. The fact that E[A(G)] � (E[A(G)2])1/2 follows

from Lemma 2.2. �

5. Open problems and further discussion

We now present two open questions that arise naturally from the present

work. The first question concerns obtaining a better deterministic approxima-

tion to the cover time.

Question 5.1. Is there, for any ε > 0, a deterministic, polynomial-time

algorithm that approximates tcov(G) up to a (1 + ε) factor?

Note that the preceding question has been solved by Feige and Zeitouni

[23] in the case of trees.

The second question involves concentration of τcov around its expected

value. Under the assumption that limn→∞
tcov(Gn)
thit(Gn) = ∞, where thit denotes

the maximal hitting time, Aldous [4] proves that τcov(Gn)
tcov(Gn) converges to 1 in

probability. We ask whether it is possible to obtain sharper concentration.

Question 5.2. Is the standard deviation of τcov bounded by the maximal

hitting time thit? Furthermore, does τcov−tcov
thit

exhibit an exponential decay with

constant rate?

It is interesting to consider the extent to which Theorem 2.8 is sharp.

Consider a family of graphs {Gn}. We point out that the asymptotic formula,

(106) tcov(Gn) ∼ |E(Gn)| ·
(
E sup
v∈V

ηv
)2
,

holds for both the family of complete graphs and the family of regular trees,

where we write an ∼ bn for lim an/bn = 1 and E(Gn) denotes the set of edges
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in Gn. Here, {ηv} is the GFF associated to Gn with ηv0 = 0 for some fixed

vertex v0.

To see this, note that the GFF on the n-vertex complete graph satisfies

Var ηv = 2
n and E(ηvηu) = 1

n for v0 /∈ {u, v}. Therefore, we can write ηv = ξ+ξv
for every v 6= v0, where ξ and all {ξv}v∈V are i.i.d. Gaussian variables with

variance 1
n . It is now clear that E supv ηv ∼

»
2 log n/n. Combined with the

facts that tcov(Gn) ∼ n log n and |E(Gn)| = n(n−1)
2 , this confirms (106) for

complete graphs.

Fix b > 2, and consider a regular b-ary tree Tm of height m with n =
bm+1−1
b−1 vertices. It is shown in [3] that tcov(Tm) ∼ 2mn log n. On the other

hand, Biggins [8] proved that the corresponding GFF satisfies E supv ηv ∼√
2m log n . Since the number of edges in Tm is n−1, we infer that (106) holds

for regular trees. It is clearly very interesting to understand the generality

under which (106) holds.
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