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Topology of Hitchin systems and
Hodge theory of character varieties:

the case A1

By Mark Andrea A. de Cataldo, Tamás Hausel, and Luca Migliorini

Abstract

For G = GL2,PGL2, SL2 we prove that the perverse filtration associated

with the Hitchin map on the rational cohomology of the moduli space of

twisted G-Higgs bundles on a compact Riemann surface C agrees with the

weight filtration on the rational cohomology of the twisted G character

variety of C when the cohomologies are identified via non-Abelian Hodge

theory. The proof is accomplished by means of a study of the topology of

the Hitchin map over the locus of integral spectral curves.
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1. Introduction

Starting with the paper of Weil [52], and its commentary by Grothendieck

[26], the moduli space of holomorphic vector bundles on a projective curve

has become the focus of much important work in mathematics, and there is

now extensive literature concerning its construction and properties. As is well

known, the construction of this moduli space via geometric invariant theory is

naturally paired with the notions of stable and semistable vector bundle.

A central result is the theorem of Narasimhan and Seshadri [42], which

asserts that, roughly speaking, the semistable vector bundles of degree zero

on a complex nonsingular projective curve C (that we assume to be of genus

g ≥ 2) are precisely the ones associated with unitary representations of the

fundamental group of C or, if we consider bundles with nonzero degree on

C, of the punctured curve C \ p, with a prescribed scalar monodromy around

the puncture. Let us spell out the theorem in the case of rank 2 bundles:

the fundamental group π1(C \ p) has free generators {a1, . . . , ag, b1, . . . , bg}
such that a−1

1 b−1
1 a1b1 · · · a−1

g b−1
g agbg is the homotopy class of a loop around p.

Unitary local systems of rank 2 on C \ p with local monodromy −I around p

are automatically irreducible, and the set of their isomorphism classes is

NB := {A1, B1, . . . , Ag, Bg ∈ U(2) | A−1
1 B−1

1 A1B1 · · ·
A−1
g B−1

g AgBg = −I}/U(2),

where the unitary group U(2) acts by conjugation on the matrices Ai, Bi. This

action factors through a free action of PU(2); hence the quotient NB is a real

analytic variety. The theorem of Narasimhan and Seshadri states that there is

a canonical diffeomorphism NB ' N , where N is the moduli space of stable

rank 2 vector bundles of degree 1 on C.

A “complexified” version of this set-up, taking into consideration the ana-

logue of the variety NB obtained by replacing the unitary group U(2) with

its complexification GL2(C) (or, more generally, with any complex reductive

group G, in which case the matrix −I is replaced by a suitable element in the

center of G) arose in the work of Hitchin [35], [36]. Even though this paper con-

siders the variants of this construction for the complex algebraic groups groups

SL2(C) and PGL2(C), in this introduction we focus on the group GL2(C); more

details can be found in Section 1.2.
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The representations of π1(C \p) into GL2(C) with monodromy −I around

p are automatically irreducible, and their isomorphism classes are parametrized

by the twisted character variety

MB :=
¶
A1, B1, . . . , Ag, Bg ∈ GL2(C) | A−1

1 B−1
1 A1B1 · · ·

A−1
g B−1

g AgBg = −I
©
//GL2(C),

where the quotient is taken in the sense of geometric invariant theory. As in the

unitary picture, the action of GL2(C) factors through a free action of PGL2(C),

andMB is a nonsingular irreducible complex affine variety of dimension 8g−6.

The non-Abelian Hodge theorem states that, just as in the Narasimhan-

Seshadri correspondence, MB is naturally diffeomorphic to another quasi-

projective variety, i.e., the moduli space of semistable Higgs bundles MDol

parametrizing stable pairs (E, φ) consisting of a degree 1 rank 2 vector bundle

E on C together with a Higgs field φ ∈ H0(C,End (E) ⊗ KC), subject to a

natural condition of stability. If E itself is a stable vector bundle, then φ is in

a natural way a cotangent vector at the point [E] ∈ N . It follows that MDol

contains the cotangent bundle of N as a Zariski open subset, which turns out

to be dense.

The variety MDol has a rich geometry; it has a natural hyperkähler met-

ric, an S1-action by isometries and, importantly, it carries a projective map

χ :MDol −→ A, the Hitchin fibration, where the target A is (noncanonically)

isomorphic to C4g−3, and the fibre of χ over a general point s ∈ A is isomorphic

to the Jacobian of a branched double covering of C associated with s, the spec-

tral curve Cs. This description ofMDol is usually referred to as abelianization

since it reduces, to some extent, the study of Higgs bundles on C to that of

line bundles on the spectral curves.

While the algebraic varieties MB and MDol are diffeomorphic, they are

not biholomorphic. The former is affine, and the latter is foliated by the

fibers of the Hitchin map that are compact (4g − 3)-dimensional algebraic

subvarieties, Lagrangian with respect to the natural holomorphic symplectic

structure associated with the hyperkähler metric on MDol. Furthermore, just

as in the case of NB and N , the variety MB does not depend on the complex

structure of C, whereas MDol does.

It is natural to investigate the relation between some of the invariants of

MB and MDol. This paper takes a step in this direction.

The paper [32] investigates in depth one of the important algebro-geo-

metric invariants ofMB, namely the mixed Hodge structure on its cohomology

groups. In view of [32, Cor. 4.1.11], the mixed Hodge structure of H∗(MB) is

of Hodge-Tate type. The quotient pure Hodge structures GrWi satisfy

(1.1.1) GrW2i+1H
∗(MB) = 0 for all i, and GrW2iH

∗(MB) is of type (i, i).
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The weight filtration W• has a natural splitting, and it is nontrivial in

certain cohomological degrees. For instance, H4(MB) contains classes of type

(2, 2) and (4, 4). A remarkable property of W• is the “curious hard Lefschetz

theorem”: there is a cohomology class α̃ ∈ H2(MB), of type (2, 2), such that

the map given by iterated cup products with α̃ defines isomorphisms

(1.1.2) ∪ α̃l : GrW8g−6−2lH
∗(MB)

∼=−→ GrW8g−6+2lH
∗+2l(MB).

Note that the class α̃ raises the cohomological degree by two and the weight

type by four, and that MB is affine; both facts are in contrast with the hy-

potheses of the classical hard Lefschetz theorem, hence the “curiousity” of

(1.1.2).

On the other hand, the Hodge structure on H∗(MDol) is pure; i.e., its

weight filtration W• is trivial in every cohomological degree. The class α̃ ∈
H2(MDol) has pure type (1, 1). This raises the following question: what is the

meaning of the weight filtration W• of H∗(MB) when viewed in H∗(MDol)

via the diffeomorphism MB ' MDol coming from the non-Abelian Hodge

theorem? The answer we give in this paper brings into the picture the perverse

Leray filtration P of H∗(MDol) that is naturally associated with the Hitchin

map χ :MDol → A.

The perverse Leray filtration has been implicitly introduced in [7], and

it has been studied and employed in [12], [14], [15], [8], [9]. This filtration

is the abutment of the perverse Leray spectral sequence which, in turn, is a

variant of the classical Leray spectral sequence. In the case of proper, but

not necessarily smooth maps, e.g., our Hitchin map χ, this variant is better

behaved than the classical Leray one. In fact, it always degenerates at E2,

and the graded pieces of the abutted perverse Leray filtration satisfy a version,

called the relative hard Lefschetz, of the hard Lefschetz theorem, involving

the operation of cupping with the first Chern class of a line bundle which is

relatively ample with respect to the proper map. Both the Leray and the

perverse Leray filtration originate from filtrations of the derived direct image

complex of sheaves χ∗Q on A.

Since the target A of the map χ is affine, the perverse filtration has the

following simple geometric characterization (see [15], where a different number-

ing convention is used). Let s ≥ 0, and let Λs ⊆ A be a general s-dimensional

linear section of A relative to a chosen identification of A with C4g−3; then

PpH
d(MDol) = Ker {Hd(MDol) −→ Hd(χ−1(Λd−p−1))}.(1.1.3)

The main result of this paper is that, up to a trivial renumbering of the

filtrations, the weight filtration W• on H∗(MB) coincides with the perverse

Leray filtration P• on H∗(MDol).
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Theorem 1.1.1 (“P=W”). In terms of the isomorphism H∗(MB)
'−→

H∗(MDol) induced by the diffeomorphism MB
'−→ MDol stemming from the

non-Abelian Hodge theorem, we have

W2kH
∗(MB) = W2k+1H

∗(MB) = PkH
∗(MDol).

Since the class α̃ ∈ H∗(MDol) is relatively ample with respect to the

Hitchin map, the curious hard Lefschetz theorem for α̃ on (H∗(MB),W ) can

thus be explained in terms of the relative hard Lefschetz theorem for α̃ on

(H∗(MDol), P ).

One may say informally that the weight filtration on H∗(MB) keeps track

of certain topological properties of the Hitchin map on MDol. This is even

more remarkable in view of the fact that the structure of algebraic variety on

MB, and thus the shape of W•, depend only on the topology of the curve C,

while the complex/algebraic structure of the Higgs moduli space MDol and

thus the Hitchin map depend on the complex structure of C.

In fact, as far as P = W goes, we prove a more precise result. There

are natural splittings (constructed by Deligne in [20]) of the perverse Leray

filtration of H∗(MDol). The splittings induced on H∗(MDol) are equal, and

they coincide with the splitting mentioned above of the weight filtration of

H∗(MB). We also prove that these results hold for the varieties associated

with SL2(C) and PGL2(C). In Section 4.2 we also prove a version of the main

theorem “P = W” for the moduli spaces of Higgs bundles with poles on C,

namely when the canonical bundle is replaced by a different line bundle of

high enough degree. In this case, there is no character variety MB to be

compared with MDol. However, the cohomology ring H∗(MDol) admits yet

another filtration which is quite visible in terms of generators and relations.

We prove that this third filtration coincides with the perverse Leray filtration

associated with the Hitchin map (which is also defined in the context of poles).

In the case where there are no poles, this third filtration coincides, after a

simple renumbering, with the weight filtration.

Finally, as we need it in the course of our proof of P = W in the case

when G = SL2, in Remark 4.4.9 we give a description of the cohomology ring

for G = SL2 that does not appear in the literature. This ring had been earlier

determined by M. Thaddeus in unpublished work.

Since the proof of our main result is lengthy, we sketch below the main

steps leading to it. Of course, for the sake of clarity, we do so by overlooking

many technical issues.

The ring structure of H∗(MDol) is known in terms of generators and

relations; see [34], [33]. By using a result of M. Thaddeus, we prove that

the place of the multiplicative generators in the perverse Leray filtration of

H∗(MDol) is the same as in the weight filtration of H∗(MB) (Theorem 3.1.1).
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If the perverse Leray filtration were compatible with cup products, then we

could infer the same conclusion for the other cohomology classes.

However, only the weaker compatibility

PiH(MDol) ∪ PjH(MDol) −→ Pi+j+dH(MDol)

holds a priori for the perverse Leray filtration (see Proposition 1.4.7, and [11,

Th. 6.1]), where d is the relative dimension of the map χ. In contrast, the

compatibility in the strong form holds for the ordinary Leray filtration.

The Leray filtration is contained in the perverse Leray filtration. At the

level of the direct image complex, the two filtrations coincide on the open

subset of regular values on the target of the map.

One key to our approach is that we prove that, for the Hitchin map, there

is a significantly larger open set of A where the Leray and the perverse Leray

filtration coincide on the direct image complex. We define the “elliptic” locus

Aell ⊆ A to be the subset of points s ∈ A for which the corresponding spectral

curve Cs is integral. Let Areg ⊆ Aell be the set of regular values for the Hitchin

map χ; the corresponding spectral curves are irreducible nonsingular. The key

result is then the following, which we believe to be of independent interest.

Theorem 1.1.2. Let j : Areg −→ Aell be the inclusion and, for l ≥ 0,

let Rl denote the local system s 7→ H l(χ−1(s)) on Areg. Then, there is an

isomorphism in the derived category of sheaves on Aell:

(χ∗Q)|χ−1(Aell) '
⊕
l

R0j∗R
l [−l].

This theorem contains two distinct statements:

(1) The perverse sheaves on Aell appearing in the decomposition theorem

([7]) for the Hitchin map restricted over the open set Aell are supported

on the whole Aell; This is a special case of Ngô’s support theorem 7.1.13

in [45].

(2) These perverse sheaves, which are the intersection cohomology com-

plexes on Aell of the local systems Rl on the smooth locus Areg, are

ordinary sheaves, as opposed to complexes. Up to a shift, they agree

with the higher direct images appearing in the Leray spectral sequence.

The theorem implies that the classical and the perverse Leray filtrations

coincide on Aell. This puts us in a position to compute the “perversity” of most

monomials generators of H∗(MDol); see Lemma 4.3.1. As explained in (1.1.3),

the perversity of a class is tested by restricting it to the inverse image of generic

linear sections of A. The algebraic subset A\Aell is of high codimension in A.

It follows that, in a certain range of dimensions, the general linear section can

be chosen to lie entirely in Aell, where we know, by Theorem 1.1.2, that the

perverse Leray filtration is compatible with the cup product since it coincides

with the Leray filtration.
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At this point, we can conclude in the case of Higgs bundles for poles;

see Section 4.2. In the geometrically more significant case where there are

no poles, some monomials are not covered by the above line of reasoning,

for the corresponding linear sections must meet A \ Aell by simple reasons of

dimension. We treat these remaining classes using an ad hoc argument based

on the properties of the Deligne splitting mentioned above; see Section 4.3.

In order to prove Theorem 1.1.2 we first determine an upper bound (see

Theorem 2.2.7) for the Betti numbers of the fibres of the Hitchin map over

Aell. In the case when G = GL2, these fibres are the compactified Jacobians of

the spectral curves, which, being double coverings of a nonsingular curve, have

singularities analytically isomorphic to y2−xk = 0, a fact we use in an essential

way in our computations. Next, we give a lower bound (see Theorem 2.3.1)

for the dimension of the stalks of the intersection cohomology complexes. This

bound is based on the computation of the local monodromy of the family of

nonsingular spectral curves around a singular integral spectral curve. It is

achieved by a repeated use of the Picard-Lefschetz formula. Since the upper

and lower bounds coincide, the decomposition theorem ([7]) gives the wanted

result.

We see at least two difficulties to extend the results in this paper for

complex reductive groups of higher rank:

• the monodromy computation of Theorem 2.3.12 which leads to the

proof of Theorem 2.3.1 would be more complicated, and

• we do not know enough about compactified Jacobians of curves with

singularities which are not double points.

Already for the group GL3, Theorem 1.1.2(2) fails, and the intersection coho-

mology complexes are not shifted sheaves.

On the other hand, a curious hard Lefschetz theorem is conjectured in [32,

Conj. 4.2.7] to hold for the character variety for PGLn, which would of course

follow, if P = W , from the relative hard Lefschetz theorem. Additionally,

in a recent work of physicists Chuang-Diaconescu-Pan [16], a certain refined

Gopakumar-Vafa conjecture for local curves in a Calabi-Yau 3-fold leads to

a conjecture on the dimension of the graded pieces of the perverse filtration

on the cohomology of the moduli space of twisted GLn-Higgs bundles on C.

Their conjecture agrees with the conjectured [32, Conj. 4.2.1] dimension of

the graded pieces of the weight filtration on the cohomology of the twisted

GLn-character variety. The compatibility of these two conjectures may be

considered the strongest indication so far that P = W should hold for higher

rank Higgs bundles as well.

In the paper [10] we prove that a result analogous to our main theorem

P = W holds in a situation that is expected to be closely related to the

moduli space of certain parabolic Higgs bundles of rank n on a genus one
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curve. Interestingly, in this case, the coincidence of the two filtrations holds,

whereas the result (1) above, concerning the supports of the perverse sheaves

being maximal on a large open set, fails, due to the fact that every new stratum

contributes a new direct summand sheaf.

While property (2) above seems to hold only for Hitchin fibrations as-

sociated with groups of type A1, the case studied in the present paper, and

property (1) may not hold for parabolic Higgs bundles, we expect that the

P = W phenomenon should be a general feature of non-Abelian Hodge theory

for curves. More generally, in [10, §4.4] we also conjecture that this exchange of

filtration phenomenon should hold for holomorphic symplectic varieties with

a C∗-action, that, roughly speaking, behave like an algebraically completely

integrable system.

Acknowledgements. The authors would like to thank D. E. Diaconescu,

N. Hitchin, M. N. Kumar, G. Laumon, E. Markman, B. C. Ngô, and A. Vistoli
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1.2. Cohomology of moduli spaces.

1.2.1. Character variety. In this section, we recall some definitions and re-

sults from [32]. Throughout the paper, the singular homology and cohomology

groups are taken with rational coefficients.

Let Σ be a closed Riemann surface of genus g ≥ 2, and let G be a complex

reductive group. In this paper, we consider only the cases G = GL2,PGL2, and

SL2. We are interested in the variety parametrizing certain twisted representa-

tions of the fundamental group π1(Σ) into G modulo isomorphism. Specifically,

we consider the GL2-character variety

MB := {A1, B1, . . . , Ag, Bg ∈ GL2 | A−1
1 B−1

1 A1B1

· · ·A−1
g B−1

g AgBg = −I}//PGL2,

i.e., the affine GIT quotient by the diagonal adjoint action of PGL2 on the

matrices Ai, Bi. We also define the SL2-character variety:

M̌B := {A1, B1, . . . , Ag, Bg ∈ SL2 | A−1
1 B−1

1 A1B1

· · ·A−1
g B−1

g AgBg = −I}//PGL2.
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The torus GL2g
1 acts on GL2g

2 by coordinate-wise multiplication, and this yields

an action of GL2g
1 on MB. Similarly, the finite subgroup of order 2 elements

µ2g
2 ⊂ GL2g

1 , with µ2 := {±1} ⊂ GL1, acts on SL2g
2 by coordinate-wise multi-

plication and we define the PGL2-character variety as

(1.2.1) M̂B :=MB//GL2g
1 = M̌B/µ

2g
2 .

The surjective group homomorphism SL2 × GL1 → GL2 with finite kernel µ2

induces a covering

(1.2.2) M̌B ×GL2g
1 →MB

with covering group µ2g
2 .

The varietiesMB, M̌B are nonsingular and affine (cf. [32, §2.2]), whereas

M̂B is affine with finite quotient singularities and parametrizes the representa-

tions of π1(Σ) to PGL2 that do not admit a lift to representations of SL2. We

have dim MB = 8g − 6 and dim M̌B = dim M̂B = 6g − 6. In view of (1.2.1),

we have that

H∗(M̂B) = H∗(M̌B)µ
2g
2 ,

the subring of µ2g
2 invariants, while (1.2.2) implies that

(1.2.3) H∗(MB) = H∗(GL2g
1 )⊗H∗(M̌B)µ

2g
2 = H∗(GL2g

1 )⊗H∗(M̂B).

The cohomology ring H∗(MB) is generated by certain universal classes

εi ∈ H1(GL2g
1 ) ⊂ H1(MB) for i = 1, . . . , 2g, α ∈ H2(M̌B)µ

2g
2 ⊂ H2(MB), ψi ∈

H3(M̌B)µ
2g
2 ⊂ H3(MB) for i = 1, . . . , 2g, and β ∈ H4(M̌B)µ

2g
2 ⊂ H4(MB).

The proof can be found in [34] (generators) and in its sequel [33] (relations).

The construction of these universal classes is explained in [32, §4.1]. The paper

[32] uses this information to determine the mixed Hodge structure on H∗(MB).

For use in this paper, we summarize these results as follows. Let (H,W•, F
•) be

a mixed Hodge structure. (See the textbook [47] for a comprehensive treatment

of mixed Hodge theory.)

A class σ ∈ H is said to be of homogeneous weight k ([32, Def. 4.1.6]) if

its image in HC, still denoted by σ, satisfies

(1.2.4) σ ∈W2kHC ∩ F kHC.

Note that if σ has homogeneous weight k, then its image in GrW2kHC is of type

(k, k).

The natural mixed Hodge structure on H i(MB) satisfies WkH
i(MB) =

H i(MB) for k ≥ 2i, and, asMB is nonsingular, WkH
i(MB) = 0 for k ≤ i− 1.

The following is proved in [32, Th. 4.1.8].

Theorem 1.2.1. The cohomology classes εi ∈ H1(MB) have homogenous

weight 1, while the classes α ∈ H2(MB), ψi ∈ H3(MB) for i = 1, . . . , 2g, and

β ∈ H4(MB) have homogenous weight 2.
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It follows that homogenous elements generate H∗(MB). The following is

Corollary 4.1.11. in [32].

Theorem 1.2.2. The weight filtration W•H
∗(MB) satisfies

(1) W2kH
∗(MB) = W2k+1H

∗(MB) for all k;

(2)
Ä
GrW2kH

∗(MB)C
äpq

= 0 if (p, q) 6= (k, k).

Denoting byW d
k (MB) ⊂ Hd(MB) the subspace of degree d homogenous weight

k cohomology classes, we have the following splittings:

(1.2.5) Hd(MB) =
⊕
k

W d
k (MB), W2kH

d(MB) =
⊕
i≤k

W d
i (MB).

Theorem 1.1.3 of [32] gives a formula for the mixed Hodge polynomials of M̂B

and MB which implies the curious symmetries

dim GrWdimMB−2kH
∗(MB) = dim GrWdimMB+2kH

∗+2k(MB)

and

dim GrW
dimM̂B−2k

H∗(M̂B) = dim GrW
dimM̂B+2k

H∗+2k(M̂B).

These equalities, called curious Poincaré duality in [32], are made more

precise and significant by the curious hard Lefschetz theorems. Consider the

class α ∈ H2(M̂B) introduced above and the class α̃ ∈ H2(MB) defined in

terms of the isomorphism (1.2.3) by

(1.2.6) α̃ := 1⊗ α+

( g∑
i=1

εiεi+g

)
⊗ 1.

We then have ([32, Th. 1.1.5])

Theorem 1.2.3 (Curious hard Lefschetz). The map given by iterated cup

product with α̃ induces isomorphisms

(1.2.7) ∪ α̃k : GrWdimMB−2kH
∗(MB)

∼=−→ GrWdimMB+2kH
∗+2k(MB), ∀k ≥ 0.

Similarly, cupping with α defines isomorphisms

(1.2.8) ∪ αk : GrW
dimM̂B−2k

H∗(M̂B)
∼=−→ GrW

dimM̂B+2k
H∗+2k(M̂B), ∀k ≥ 0.

The present paper was partly motivated by the desire to give a more

conceptual explanation for these curious hard Lefschetz theorems.

1.2.2. Moduli of Higgs bundles and their cohomology ring. Let C be a

smooth complex projective curve of genus g ≥ 2. A Higgs bundle is a pair

(E, φ) of a vector bundle E on C and a Higgs field φ ∈ H0(C,EndE ⊗KC).

Let MDol denote the GL2-Higgs moduli space, i.e., the moduli space of stable

Higgs bundles of rank 2 and degree 1. It is a nonsingular quasi-projective

variety with dim MDol = 8g − 6.
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Let us fix a degree 1 line bundle Λ on C. Let M̌Dol be the SL2-Higgs moduli

space of stable Higgs bundles (E, φ) or rank 2, with determinant det(E) ' Λ

and trace-free tr(φ) = 0 Higgs field. The moduli space M̌Dol is a nonsingular

quasi-projective variety with dimM̌Dol = 6g − 6. Defining the map

λDol :MDol 7→ Pic1
C ×H0(C,KC), λDol(E, φ) := (det(E), tr(φ)),

we have

M̌Dol = λ−1
Dol((Λ, 0)).

Let M0
Dol ⊆ MDol be the subset of stable Higgs bundles with traceless Higgs

field:

M0
Dol = {(E, φ) with tr(φ) = 0}.

The group Pic0
C of degree 0 holomorphic line bundles on C acts on M0

Dol as

follows: L ∈ Pic0
C sends (E, φ) to (E ⊗ L, φ⊗ IdL). The group Γ := Pic0

C [2] ∼=
Z2g

2 of order 2 line bundles on C acts naturally on M̌Dol in the same way. The

two resulting quotients are easily seen to be isomorphic. We call the resulting

variety the PGL2-Higgs moduli space and denote it by

M̂Dol =M0
Dol/Pic0

C = M̌Dol/Γ.

It is a quasi-projective (6g − 6)-dimensional algebraic variety with finite quo-

tient singularities.

The fundamental theorem of non-Abelian Hodge theory on the curve C

for the groups G = GL2, SL2, and PGL2 under consideration can be stated as

follows ([35], [50], [22], [18]).

Theorem 1.2.4 (Non-Abelian Hodge theorem). There are canonical dif-

feomorphisms

MB
∼=MDol, M̌B

∼= M̌Dol, M̂B
∼= M̂Dol.

At the level of cohomology, the non-Abelian Hodge theorem yields canon-

ical isomorphisms

(1.2.9)

H∗(MB) ∼= H∗(MDol), H
∗(M̌B) ∼= H∗(M̌Dol), H

∗(M̂B) ∼= H∗(M̂Dol).

Remark 1.2.5. The Hodge structure on the cohomology of these Higgs

moduli spaces is pure, and its Hodge polynomial is known; see Conjecture 5.6

in [30], which also proposes a conjectural formula for any rank.

Given a line bundle D on C, we can consider, more generally, the moduli

space of stable pairs (E, φ), where E is a rank 2 degree 1 bundle on C and φ ∈
H0(C,EndE ⊗D). The corresponding moduli space is connected by Theorem

7.5 in [46], and if degD > 2g−2 or ifD = KC , it is nonsingular ([46, Prop. 7.4]).
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Notation 1.2.6. For the sake of notational simplicity, this moduli space is

denoted by M in the sequel of this paper, without mentioning its dependence

on the line bundle D, always meant to satisfy degD > 2g − 2, or D = KC .

Whenever we talk specifically of the case D = KC , we denote the corresponding

moduli space by MDol.

We still have the map λD :M−→ Pic1
C×H0(C,D) defined by λD(E, φ) =

(det(E), tr(φ)). We set M̌ := λ−1
D ((Λ, 0)), M̂ :=M0/Pic0

C = M̌/Γ, where, as

above,

M0 = {(E, φ) ∈M with tr(φ) = 0},
and Γ = Pic0

C [2] ∼= Z2g
2 is the group of order 2 line bundles on C; see Section 2.4.

It is proved in [34, (4.4)] that there is a Higgs bundle (E,Φ) onM×C with

the property that, for every family of Higgs bundles (ES ,ΦS) parametrized by

an algebraic variety S, there is a unique map a : S −→M and an isomorphism

(ES ,ΦS) ' L⊗ (a× Id)∗(E,Φ)

for a uniquely determined line bundle L on S.

Remark 1.2.7. The vector bundle E with the universal property stated

above is determined up to twisting with a line bundle pulled back from M;

hence, given two different choices E,E′, we have a canonical isomorphism of

the associated endomorphisms bundles EndE ' EndE′. The vector bundle

EndE on M× C is thus unambiguously defined.

Let e1, . . . , e2g be a symplectic basis of H1(C) and ω ∈ H2(C) be the

Poincaré dual of the class of a point. The Künneth decomposition of the

second Chern class of EndE,

(1.2.10) − c2(EndE) = α⊗ ω +
2g∑
i=1

ψi ⊗ ei + β ⊗ 1 ∈ H∗(M)⊗H∗(C),

defines the classes α ∈ H2(M), ψi ∈ H3(M), and β ∈ H4(M). These classes

define also classes in H∗(M̌) by restriction and in H∗(M̂) by restriction and

Pic0
C [2]-invariance. They will be denoted with the same letters. In the case

D = KC , these classes coincide, via the isomorphisms (1.2.9), with the classes

in H∗(MB), denoted by the same symbols, defined in Section 1.2.1.

The generators of H∗(Pic1
C) pull back to the classes ε1, . . . , ε2g ∈ H1(M)

via the morphism M→ Pic1
C given by (E, φ) 7→ det(E).

The paper [34] shows that the universal classes

{ε1, . . . , ε2g, α, ψ1, . . . , ψ2g, β}

are a set of multiplicative generators for H∗(M); the relations among these

universal classes were determined in [33]. Due to the role these relations play

in this paper we summarize the main result of [33].
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Because of the isomorphism H∗(M) ' H∗(M̂) ⊗H∗(Pic0
C), it is enough

to describe the ring H∗(M̂). We introduce the element

γ := −2
∑
i

ψiψi+g,

we set Ψ := Span(ψi) ⊆ H3(M̂), and we define

Λk0 :=Ker

®
γg+1−k :

k∧
Ψ −→

2g+2−k∧
Ψ

´
for 0 ≤ k ≤ g and Λk0 = 0 for k > g.

By the standard representation theory of the symplectic group, there is a direct

sum decomposition
k∧

Ψ =
⊕
i

γiΛk−2i
0 .

Definition 1.2.8. Given two integers a, b ≥ 0, we define Iab to be the ideal

of Q[α, β, γ] generated by γa+1 and

(1.2.11) ρcr,s,t :=

min(c,r,s)∑
i=0

αr−i

(r − i)!
βs−i

(s− i)!
(2γ)t+i

i!
,

where c := r + 3s+ 2t− 2a+ 2− b for all the r, s, t ≥ 0 such that

(1.2.12) r + 3s+ 3t > 3a− 3 + b and r + 2s+ 2t ≥ 2a− 2 + b.

Remark 1.2.9. If r = 0 and b > 0, then the second inequality in (1.2.12)

is strictly stronger than the first.

The main result of [34] is then

Theorem 1.2.10. The cohomology ring of M̂ has the presentation

H∗(M̂) =
g∑

k=0

Λk0(ψ)⊗
Ä
Q[α, β, γ]/Ig−kdegD+2−2g+k

ä
.

The form of the relations (1.2.11) affords the following

Definition 1.2.11. We define the grading w on H∗(M̂) by setting

w(α) = w(β) = w(ψi) = 2

and extending it by multiplicativity. This grading is well defined since the

relations of Theorem 1.2.10 are homogenous with respect to this grading. We

denote by W ′• the increasing filtration associated to this grading.

If D = KC , thanks to the results of [32] described in Section 1.2.1, W ′•
on H∗(M̂) coincides, up to a simple renumbering and via (1.2.9), with the

weight filtration associated with the mixed Hodge structure on H∗(M̂B). As
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mentioned in [32, Rem. 5.2.3], for a general D, even though there is no as-

sociated Betti moduli space, the filtration W ′• on H∗(M̂) turns out to have

the same formal properties of the weight filtration on H∗(M̂B) described in

Section 1.2.1. In particular, [32, Lemma 5.3.3] implies that it satisfies the

following curious hard Lefschetz property completely analogous to (1.2.8) of

Theorem 1.2.3.

Theorem 1.2.12. For α ∈ H2(M̂), we have the isomorphisms

(1.2.13) ∪ αk : GrW
dimM̂−2k

H∗(M̂)
∼=−→ GrW

dimM̂+2k
H∗+2k(M̂), ∀k ≥ 0.

Finally, setting w(εi) = 1, we get a grading and an associated filtration

on H∗(M), and all the discussion above goes through without any change.

1.3. The Hitchin fibration and spectral curves.

1.3.1. The Hitchin fibration (G = GL2). Given a Higgs field

φ ∈ H0(C,EndE ⊗D),

we have tr(φ) ∈ H0(C,D) and det(φ) ∈ H0(C, 2D). The Hitchin map, χ :

M−→ A assigns

M3 (E, φ) 7−→ (tr(φ), det(φ)) ∈ A := H0(C,D)×H0(C, 2D).(1.3.1)

Note that we do not indicate the dependence on the line bundle D in the

notation for the target A of the Hitchin map (cf. the conventions introduced in

Notation 1.2.6). It follows from Theorem 6.1 in [46] that the map χ is proper.

In the case of M̌ ⊆ M, the corresponding Hitchin fibration χ̌ is just the

restriction of χ to M̌. Since, by definition, if (E, φ) ∈ M̌, then tr(φ) = 0, we

have

(1.3.2) χ̌ : M̌ −→ A0 := H0(C, 2D) ⊆ A.

The map descends to the quotient M̂ = M̌/Γ, and we have

(1.3.3) χ̂ : M̂ −→ A0.

In the rest of this section, we concentrate on the map χ. The necessary changes

for dealing with the cases of χ̂ and χ̌ are discussed in Section 2.4.

1.3.2. The spectral curve construction. Let πD : V(D) −→ C be the total

space of the line bundle D. For s := (s1, s2) ∈ A as in (1.3.1), the spectral

curve Cs is the curve on V(D) defined by the equation

(1.3.4)
¶
y ∈ V(D) : y2 − π∗D(s1)y + π∗D(s2) = 0

©
.

Spectral curves can be singular, reducible, even nonreduced; they are locally

planar, and, in force of our assumptions on the genus of C and the degree of D,

connected. The restriction πs : Cs −→ C of the projection πD : V(D) −→ C
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exhibits Cs as a double cover of C. Equation (1.3.4) in V(D)×A defines the

flat family u of spectral curves

(1.3.5) CA
π //

u

  

C ×A

p2{{
A,

where u−1(s) = Cs for all s ∈ A. The family is equipped with the involution

ι : CA −→ CA over C ×A exchanging the two sheets of the covering.

The restriction of the relative Picard scheme of the family u to the smooth

locus

Areg := {s ∈ A such that Cs is smooth}
is the disjoint union over l ∈ Z of the proper families p l : P l

reg −→ Areg

such that (p l)−1(s) = Pic lCs is the component of the Picard variety of Cs
parametrizing degree l line bundles on Cs.

Remark 1.3.1. Fix a degree 1 line bundle L on C. The operation of

tensoring line bundles of fixed degree with π∗L defines isomorphisms P l
reg −→

P l+2
reg of schemes over Areg. It follows that, up to isomorphisms, there are only

two such families, the abelian scheme P 0
reg and the P 0

reg-torsor P 1
reg. Sending

a point ĉ ∈ Cs to the line bundle OCs(ĉ) defines an Abel-Jacobi-type Areg-map

CAreg −→P 1
reg.

The Riemann-Hurwitz formula and (1.3.4) imply at once the following

Proposition 1.3.2. Let s = (s1, s2) ∈ A. Assume s2
1 − 4s2 6= 0 ∈

H0(C, 2D).

(1) The spectral curve Cs is reduced, and the covering πs : Cs −→ C is

branched at the zeros of s2
1 − 4s2. The point s = (s1, s2) ∈ Areg if and

only if s2
1−4s2 has simple zeros, in which case g(Cs) = 2g−1+degD.

(2) If s2
1 − 4s2 vanishes to finite order k ≥ 2 at a point c ∈ C , then the

spectral curve Cs has a planar singularity at the point π−1
s (c) that is

locally analytically isomorphic to {y2 − xk = 0} ⊆ C2.

Remark 1.3.3. Associating with s = (s1, s2) ∈ A its discriminant divisor

(s2
1− 4s2) ∈ C(2r), where r := degD and C(2r) is the 2r-th symmetric product

of C, gives a map Θ : A −→ C(2r).

We recall that if F is a torsion-free sheaf on an integral curve C, then

the rank of F is the dimension of its stalk at the generic point of C and the

degree degF is defined as degF := χ(C,F)−rank(F)χ(C,OC). For l ∈ Z, then

the compactified Jacobian PicC
l

of degree l parametrizes torsion-free sheaves

of rank 1 and degree l on C (see [23], [2]). Tensoring with a line bundle of
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degree l gives an isomorphism PicC
0 ' PicC

l
. If C is smooth, then every rank

1 torsion free sheaf is locally free and PicC
l

= Pic lC .

The following theorem ([6, Prop. 3.6]) describes the fibres of the Hitchin

map over a rather large open subset of the base A. Recall Remark 1.3.1 and

that we are considering Higgs bundles of odd degree.

Theorem 1.3.4. Let s ∈ A be such that the spectral curve Cs is integral.

There is an isomorphism of varieties χ−1(s) ' PicCs
a

with a = 0 if degD is

odd and a = 1 if degD is even.

The isomorphisms assigns to a torsion free sheaf F of degree a on Cs
its direct image πs∗F , which is a torsion free OC-module on C. Since C is

smooth, the sheaf πs∗F is locally free of rank 2, in view of the fact that πs has

degree 2. Since the map πs is finite, there are no higher cohomology sheaves,

and χ(Cs,F) = χ(C, πs∗F). The Riemann-Roch theorem

deg πs∗F + 2(1− g) = χ(C, π∗F) = χ(Cs,F)

= degF + χ(Cs,OCs) = degF + 2(1− g)− degD

implies that πs∗F has odd degree if degF − degD is odd. The Higgs field

arises as multiplication by y (see (1.3.4)) in view of the natural structure of

πs∗OCs-module on πs∗F (see [6, §3] for details).

In particular, for every s ∈ Areg, the fiber χ−1(s) can be identified, non-

canonically, with the Jacobian variety of the smooth spectral curve Cs. In fact,

the Abelian scheme P 0
reg acts on Mreg := χ−1(Areg) making it into a torsor

(see [45, §4.3]).

The following is well known.

Lemma 1.3.5. Let α : A −→ S be an Abelian scheme, let τ : P −→ S

be an A-torsor, and let j ≥ 0. Then there are natural isomorphisms of local

systems
Rjτ∗QP ' Rjα∗QA '

j∧
R1α∗QA.

Proof. Since the fibers of A are connected, the action by translation on

the cohomology of the fibers of P is trivial. Hence, the isomorphism of local

systems (Rjτ∗QP )|U ' (Rjα∗QA)|U associated with a local trivialization of P

does not depend on the chosen trivialization. Consequently, the isomorphisms

associated to a trivializing cover {Ui} of S glue to a global isomorphism of

local systems. The second isomorphism follows from the Künneth isomorphism

H l((S1)a) ' ∧lH1((S1)a). �

Corollary 1.3.6. There are canonical isomorphisms of local systems on

Areg:

R lχreg∗QMreg ' R lp∗QP 1
reg
'

l∧
R1p∗QP 1

reg
'

l∧
R1ureg∗QCAreg

.
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Proof. The first and second isomorphisms follow by applying Lemma 1.3.5

to the P 0
reg-torsor Mreg. The Abel-Jacobi Areg-map CAreg −→ P 1

reg of Re-

mark 1.3.1 induces via pullback a map of local systems R1p1
∗Q −→ R1ureg∗Q

that is an isomorphism on each stalk, and this proves the third isomorphism.

�

1.4. Perverse filtration. Let

h : Ma+f −→ Aa

be a proper map of relative dimension f between irreducible varieties of the

indicated dimensions. We assume that M is nonsingular, or with at worst

finite quotient singularities, and that the fibres have constant dimension f .

Let η ∈ H2(M) be the first Chern class of a relatively ample (or h-ample) line

bundle on M , i.e., a line bundle which is ample when restricted to every fiber

of h.

The goal of this section is to define the perverse Leray filtration P on

the cohomology groups H∗(M) and to list and discuss some of its relevant

properties.

1.4.1. Definition of the perverse filtration P on H∗(M). We employ freely

the language of derived categories and perverse sheaves (see the seminal paper

[7], the survey [13], or for example the paper [12]). Standard textbooks on the

subject are [21], [37], [38].

We denote by DA the “constructible derived category.” Its objects are

bounded complexes of sheaves of Q-vector spaces with constructible coho-

mology sheaves; it is a full subcategory of the bounded derived category of

sheaves of Q-vector spaces. We denote the derived direct image Rh∗ simply

by h∗ and, for i ∈ Z, the i-th hypercohomology group of A with coefficients

in K ∈ DA by H i(A,K). If the index i is unimportant (but fixed), we simply

write H∗(A,K). We set H•(A,K) := ⊕iH i(A,K). We work with the middle

perversity t-structure. The corresponding category of perverse sheaves is de-

noted by PA. Given K ∈ DA, we have the sequence of maps of “truncated”

complexes

· · · −→ pτ≤p−1K −→ pτ≤pK −→ pτ≤p+1K −→ · · · −→ K, p ∈ Z,

where pτ≤pK = 0 for every p � 0 and pτ≤pK = K for every p � 0. The (in-

creasing) perverse filtration P on the cohomology groups H∗(A,K) is defined

by taking the images of the truncation maps in cohomology:

(1.4.1) PpH
∗(A,K) := Im {H∗(A, pτ≤pK) −→ H∗(A,K)}.

Clearly, the perverse filtration on H∗(M) = H∗(M,QM ) becomes trivial after

a dimensional shift. On the other hand, we also have the perverse filtration

on H∗(A, h∗Q) = H∗(M) which, as it is the case for its variant given by the
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Leray filtration, is highly nontrivial. This is what may be called the perverse

Leray filtration on H∗(M) associated with h.

For the needs of this paper, we want the perverse Leray filtration P on

H∗(M) to be of type [0, 2f ], i.e., P−1 = {0} and P2f = H∗(M), and to

satisfy 1 ∈ P0H
0(M). In order to achieve this, we define (with slight abuse

of notation) the perverse Leray filtration on H∗(M) (with respect to h) by

setting
PpH

∗(M) := PpH
∗−a(A, h∗QM [a]).

Note that in [12], the perverse Leray filtration is defined so that it is of type

[−f, f ].

In order to simplify the notation, we set

(1.4.2) H∗≤p(M) := PpH
∗(M), H∗p (M) := GrPp H

∗(M) := Pp/Pp−1.

In this paper, we also use the graded spaces for the weight filtration GrWw H
∗(M)

and we employ the same notation H∗w(M). In those cases, we make it clear

which meaning should be given to the symbols.

1.4.2. Decomposition and relative hard Lefschetz theorems, primitive de-

composition. Define

(1.4.3) Pp := pHp(h∗QM [a]) ∈ PA, p ∈ Z,

where pHp(−) denotes the p-th perverse cohomology functor. We have that

Pp = 0 for p /∈ [0, 2f ]. The decomposition theorem for the proper map h :

M → A then gives the existence of isomorphisms in DA

(1.4.4) ϕ :
2f⊕
p=0

Pp[−p] '−→ h∗QM [a].

We have identifications

(1.4.5) H∗≤p(M) =
p⊕

p′=0

ϕ
Ä
H∗p′(M)

ä
, H∗p (M) = H∗−a−p(A,Pp).

Remark 1.4.1. The images ϕ
Ä
H∗p (M)

ä
⊆H∗(M) depend on ϕ. IfH∗≤p−1(M)

= {0}, then the image ϕ
Ä
H∗p (M)

ä
= H∗≤p(M) is independent of ϕ. In partic-

ular, the image ϕ (H∗0 (M)) = H∗≤0(M) is independent of ϕ.

One of the deep assertions of the decomposition theorem is that each

perverse sheaf Pp is semisimple and splits canonically into a direct sum

(1.4.6) Pp =
⊕
Z

ICZ(LZ,p)

of intersection complexes over a finite collection of distinct irreducible closed

subvarieties Z in A with coefficients given by semisimple local systems LZ,p
defined on a dense open subset Zo ⊆ Zreg ⊆ Z of the regular part of Z.
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There are the following three basic symmetries:

(1) (PVD) Poincaré-Verdier duality: If we denote the Verdier dual of K

by K∨, then we have

(1.4.7) Pf−i ' (Pf+i)∨, ∀i ∈ Z.

(2) (RHL) Relative hard Lefschetz: For every i ≥ 0, the i-th iteration of

the operation of cupping with the h-ample line bundle η yields isomor-

phisms of perverse sheaves

(1.4.8) ηi : Pf−i '−→ Pf+i;

in particular, we have the hard Lefschetz isomorphisms at the level of

graded groups (still called RHL):

(1.4.9) ηi : H∗f−i(M)
'−→ H∗+2i

f+i (M), ∀ i ≥ 0.

(3) (Self-duality): The isomorphisms PVD and RHL are compatible with

the direct sum decomposition (1.4.6) and, in particular, the local sys-

tems LZ,p are self-dual.

Recall that PA is an Abelian category. By a standard abuse of notation,

which greatly simplifies the notation, we view kernels and images as subobjects.

For 0 ≤ i ≤ f and 0 ≤ j ≤ f − i, define

(1.4.10)

Qi,0 := Ker
¶
ηf−i+1 : P i −→ P2f−i+2

©
, Qi,j := Im

¶
ηj : Qi,0 −→ P i+2j

©
,

and set Qi,j = 0 for all the other values of (i, j). The RHL (1.4.8) then yields

the natural primitive decompositions in PA:

(1.4.11) Pk =
⊕
j≥0

Qk−2j,j , ∀k ∈ Z≥0.

1.4.3. Deligne’s Q-splitting associated with the relatively ample η. The pa-

per [20] defines three preferred decomposition isomorphisms (1.4.4) associated

with the h-ample line bundle η. We consider the first of them (see also [14]),

which we denote by φη, and name the Deligne isomorphism; notice, however,

that the indexing scheme employed here differs from that of [20], [14]. The

cohomological properties of the Deligne isomorphism needed in this paper are

the following.

Fact 1.4.2. The map

φη :
2f⊕
p=0

Pp[−p] '−→ h∗QM [a]

is characterized by the following properties. Let 0 ≤ i ≤ f . Then

(i) applying the functor pHi(−) to the map φη | : Qi,0[−i] → h∗Q[a] gives

the canonical inclusion Qi,0 ⊆ P i;
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(ii) for every s > f − i, the composition below is zero:

Qi,0[−i]
φη |−→ h∗Q[a]

ηs−→ h∗Q[a][2s] −→ ( pτ≥f+sQ[a]) [2s]

or, equivalently, the composition ηs ◦ φη | factors through pD≤f−s−1
A .

For d ≥ 0, 0 ≤ i ≤ f and 0 ≤ j ≤ f − i, define

Qi,j; d := φη
Ä
Hd−a−i−2j

Ä
A,Qi,j

ää
⊆ Hd

≤i+2j(M),(1.4.12)

Qi,j :=
⊕
d≥0

Qi,j; d ⊆
⊕
d≥0

Hd
≤i+2j(M),(1.4.13)

and define Qi,j = Qi,j; d = {0} for all the other values of (i, j; d). We then have

the following decompositions, which depend on φη:

H•(M) =
⊕
i,j

Qi,j , Hd(M) =
⊕
i,j

Qi,j;d,(1.4.14)

H•≤p(M) =
⊕
d

Hd
≤p(M) =

⊕
i,j,d, i+2j≤p

Qi,j;d =
⊕

i,j, i+2j≤p
Qi,j .(1.4.15)

Every u ∈ H•(M) admits the Q-decomposition associated with the splitting

φη:

(1.4.16) u =
∑

ui,j , ui,j ∈ Qi,j .

By construction, we have

Hd
p (M) =

⊕
i+2j=p

Qi,j; d, Hp(M) =
⊕

i+2j=p

Qi,j .

The properties of the Deligne splitting that we need, and that follow from

Fact 1.4.2, are

(1.4.17)

η Qi,j = Qi,j+1, ∀ 0 ≤ j < f − i, η Qi,f−i ⊆
⊕

0≤l≤min (f−i,f−k)

Qk,l.

In particular, we have the simple relation

(1.4.18) Qi,j = ηjQi,0, ∀ 0 ≤ j ≤ f − i.

Here is some ad hoc notation and terminology. Let p ∈ Z and u ∈
H•≤p(M). Denote by [u]p ∈ H•p (M) the natural projection to the graded group.

In what follows, we add over 0 ≤ i ≤ f and 0 ≤ j ≤ f − i. We have

u =
∑

i+2j≤p
ui,j , [u]p =

∑
i+2j=p

[ui,j ]p.

We say that

• u has perversity ≤ p.
• u has perversity p if [u]p 6= 0.

• The class 0 ∈ H•(M) has perversity p, for every p ∈ Z.
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• u is sharp if ui,j = 0 whenever i + 2j < p; note that the zero class

is automatically sharp and that a class may have a given perversity

without being sharp.

• u = up,0 ∈ Qp,0 ⊆ H•≤p(M) is RHL-primitive; note that such a class is

automatically sharp.

One should not confuse RHL-primitivity with primitivity: if u ∈ Qp,0,

then

(1.4.19) ηf−p+1up,0 ∈ H•≤2f−p+1(M), i.e., [ηf−p+1up,0]2f−p+2 = 0,

whereas one could have ηf−p+1up,0 6= 0.

Recall that we have chosen the Deligne splitting φη associated with η. The

following lemma does not hold for an arbitrary splitting ϕ in (1.4.4).

Lemma 1.4.3 (Nonmixing lemma). Let u ∈ H•≤p(M). If ηf−p+1u = 0,

then u is RHL-primitive, i.e., u = up,0 ∈ Qp,0.

Proof. In view of the Q-decomposition, we can write

u = up,0 +
∑
j≥1

up−2j,j +
∑

s+2t<p

us,t,

where the first two summands are sharp and have perversity p and the third

has perversity ≤ p− 1. By (1.4.17) and (1.4.18) we deduce that

ηf−p+1up,0 ∈
⊕

0≤l≤f−p,f−k
Qk,l, ηf−p+1up−2j,j ∈ Qp−2j,f−p+1+j ,

ηf−p+1us,t ∈ Qs,t+f−p+1.

The three collections of Q-spaces above have no term in common. It follows

that all three terms in ηf−p+1u = 0 are zero. By RHL (1.4.8), cupping with

ηf−p+1 is injective on the spaces Qp−2j,j , j ≥ 1, and Qs,t above. We deduce

that up+2j,j = us,t = 0. �

1.4.4. The perverse filtration and cup-product. The following is a crude,

completely general, estimate.

Lemma 1.4.4. Let u ∈ Hd(M). Then the cup product map with u satisfies

∪u : H∗≤p(M) −→ H∗+d≤p+d(M).

Proof. We have Hd(M) = HomDM (QM ,QM [d]) so that we may view the

cohomology class u as a map u : QM [a] → QM [a + d]. The cup product map

∪u coincides with the map induced in cohomology by the pushed-forward

map h∗u : h∗QM [a]→ h∗QM [a+ d]. We apply truncation and obtain the map
pτ≤ph∗QM [a]→ pτ≤ph∗QM [a+ d] = ( pτ≤p+dh∗QM [a])[d]. The assertion follows

after taking cohomology. �
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A much better estimate, leading to the key Proposition 1.4.11, holds under

the following.

Assumption 1.4.5. The intersection complexes ICZ(LZ,p) (1.4.6) appear-

ing in the decomposition theorem for h∗QM [a] have strict support A (i.e., each

Z = A) and ICA(LA,p) = R0jo∗LA,p[a], where jo : Ao → A is the immersion of

an open dense subset.

Fact 1.4.6. Take Ao to be the open set over which h is smooth, and set

Rp := (Rph∗QM )|Ao . We may re-phrase Assumption 1.4.5 as follows:

h∗QM [a] '
2f⊕
p=0

ICA(Rp)[−p] =
2f⊕
p=0

R0jo∗R
p[a][−p] =

2f⊕
p=0

Rph∗QM [a][−p].

As a consequence, if Assumption 1.4.5 holds, then the perverse Leray filtration

on H∗(M) = H∗−a(A, h∗QM [a]) coincides with the standard Leray filtration

on H∗(M) = H∗(A, h∗QM ).

Proposition 1.4.7. If Assumption 1.4.5 holds, then we have

(1.4.20) H∗≤p(M)⊗H∗≤q(M) −→ H∗+∗≤p+q(M).

Proof. It is a known fact that the multiplicativity property (1.4.20) holds

with respect to the standard Leray filtration (see [11, Th. 6.1] for a proof).

The statement then follows, since, as noticed in Fact 1.4.6, Assumption 1.4.5

implies that the perverse Leray filtration and the standard Leray filtration

coincide. �

Let us assume that the target A of the map h : M → A is affine of

dimension a, and let A ⊆ CN be an arbitrary closed embedding. Let s ≥ 0,

Λs ⊆ A be a general s-dimensional linear section and let MΛs := h−1(Λs). For

s < 0, we define MΛs := ∅.
The following is the main result of [15] (Theorem 4.1.1).

Theorem 1.4.8. A class u ∈ Hd
≤p(M) if and only if u|M

Λd−p−1
= 0.

Remark 1.4.9. Theorem 1.4.8 implies, in particular, that Hd
≤p(M) = 0 if

p < d− a and that Hd
≤p(M) = Hd(M) if p ≥ d.

Remark 1.4.10. For Λs general, transversality implies the following (see

[12, Lemma 4.3.8]). If u ∈ Hd
≤p(M), then, u|MΛs

∈ Hd
≤p(MΛs); in other words,

the change in perversity is compensated by the change in codimension.

Let U ⊆ A be a Zariski dense open subset satisfying Assumption 1.4.5

(with U replacing A), and hence the conclusions of Fact 1.4.6. Let Y := A \U
be the closed complement. Note that such an open set U always exists, e.g.,

U = Ao, the set over which the map is smooth. However, Y could be rather
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large, i.e., have small codimension. The following proposition is key to our

analysis of the perverse filtration in the cohomology ring of the moduli of Higgs

bundles, where, as it turns out, the set Y is small just enough to let us go by.

Proposition 1.4.11. Let ui ∈ Hdi
≤pi(M) for i = 1, . . . , l. Let d :=

∑
di

and p :=
∑
pi. If d− p− 1 < codimY , then v := u1 ∪ u2 ∪ · · · ∪ ul ∈ Hd

≤p(M).

Proof. By the assumption on codimY , a general Λd−p−1 misses Y . By

applying Remark 1.4.10 to the classes ui, and then Proposition 1.4.7 to their re-

striction toMΛd−p−1 , we conclude that the resulting v|M
Λd−p−1

∈ Hd
≤p(MΛd−p−1).

As noticed in Remark 1.4.9, we have v|M
Λd−p−1

= 0. We conclude by Theo-

rem 1.4.8. �

1.4.5. Extra vanishing when Hj(M) = 0 for all j > 2f .

Proposition 1.4.12. Assume that A is affine and that Hj(M) = 0 for

all j > 2f . Then the perversity of u ∈ Hd(M) is in the interval
î
dd2e, d

ó
.

Proof. We may assume that u 6= 0. Let p be the perversity of u. As-

sume that p < dd2e. In particular, p < f and 2p < d. By RHL (1.4.9)

and by the assumption on vanishing, we reach the contradiction 0 6= ηf−pu ∈
H2f−2p+d(M) = {0}. The upper bound follows from Theorem 1.4.8, as noticed

in Remark 1.4.9. �

Corollary 1.4.13. Under the hypothesis of Proposition 1.4.12, we have

that

Hd
≤d d

2
e(M) = Qd

d
2
e,0; d, Hd

≤d d
2
e+1

(M) = Qd
d
2
e,0; d

⊕
Qd

d
2
e−1,1; d.

Proof. By Proposition 1.4.12, we have Hd
≤d d

2
e−1

(M) = {0}. Then (1.4.5)

implies that Hd
≤d d

2
e(M) = φη(H

d−a−d d
2
e(A,Pd

d
2
e)). Equation (1.4.11) implies

that

Hd
≤d d

2
e(M) =

⊕
j≥0

Q d
d
2
e−2j,j; d =

⊕
j≥0

ηj Qd
d
2
e−2j,0; d−2j .

By Proposition 1.4.12, since dd2e−2j < d(d−2j)/2e, we have thatQd
d
2
e−2j,0; d−2j

= {0} for j > 0. The assertion in perversity dd2e + 1 is proved in the same

way. �

2. Cohomology over the elliptic locus

2.1. Statement of Theorem 2.1.4. We go back to the setup of Section 1.3.

Definition 2.1.1. The elliptic locus Aell ⊆ A is the set of points s =

(s1, s2) ∈ A for which the associated spectral curve Cs is integral. We set

Mell := χ−1(Aell).
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Remark 2.1.2. Let s = (s1, s2) ∈ A. Since the covers Cs → C have

degree 2, if the section s2
1− 4s2 ∈ H0(C, 2D) vanishes with odd multiplicity at

least at one point of C, then s ∈ Aell. Since 2D has even degree, there is an

even number of points on C where s2
1 − 4s2 has odd vanishing order.

Lemma 2.1.3. The set Aell is Zariski open and dense in A and contains

Areg. The complement A \ Aell is a closed algebraic subset of codimension

degD if degD > 2g − 2 and of codimension 2g − 3 if D = KC .

Proof. Since degD > 0, given s = (s1, s2) ∈ A, the zero locus of its

discriminant divisor s2
1 − 4s2 is not empty, so that the spectral covering πs :

Cs−→C is never étale. A nonsingular spectral curve must therefore be irre-

ducible, namely Areg ⊆ Aell. The spectral curve associated with s = (s1, s2)

is a divisor on the nonsingular surface V(D), and it is not integral precisely

when s is in the image of the finite map H0(C,D) × H0(C,D) −→ A send-

ing (t1, t2) to (t1 + t2, t1t2); therefore, the image A \ Aell is a closed subset.

By the Riemann-Roch theorem on C, we have that if degD > 2g − 2, then

dim(A \ Aell) = 2(degD + 1 − g) and dimA = 3 degD + 2(1 − g), while, for

D = KC , we have that dim(A \ Aell) = 2g and dimA = 4g − 3. �

We denote by j : Areg −→ Aell the open imbedding and by bl the l-th

Betti number.

Recall from Theorem 1.3.4 the noncanonical isomorphism PicCs
0'χ−1(s).

Section 2 is devoted to the proof of the following

Theorem 2.1.4. For s ∈ Aell and for l ≥ 0, we have

(2.1.1) dim
Ä
(R0j∗R

lχreg∗Q)s
ä

= bl(PicCs) = bl(χ
−1(s)).

Theorem 2.1.4 readily implies the following.

Corollary 2.1.5. The perverse sheaves P lAell
appearing in the statement

of the decomposition theorem (1.4.6) of Section 1.4.2 for the Hitchin map over

the open set Aell satisfy

P lAell
= ICAell

(Rlχreg∗Q) = R0j∗R
lχreg∗Q [dimA], ∀ l;

i.e., there is only one intersection complex, supported on the whole Aell, given

by a sheaf in the single cohomological degree −dimA. In particular, Assump-

tion 1.4.5 of Section 1.4.4 is fulfilled.

Proof that Theorem 2.1.4 implies Corollary 2.1.5. Set Rl :=Rlχreg∗Q and

a := dimA. On the smooth locus Areg, the decomposition theorem takes the

form χreg∗Q '
⊕
Rl[−l]. It follows that (χ∗Q[a])|Aell

'
Ä⊕

IC(Rl)[−l]
ä⊕

K,

where K is a direct sum of shifted semisimple perverse sheaves supported on
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proper subsets of Aell. Taking the stalk at s ∈ Aell of the cohomology sheaves,

Hk+a(χ−1(s)) ' Hk(χ∗Q[a])s '
Ç⊕

l

Hk−l(IC(Rl))s

å⊕
Hk(K)s

and

bk+a(χ
−1(s)) = dimHk(h∗Q[a])s =

∑
l

dimHk−l(IC(Rl))s + dimHk(K)s.

By the very definition of intersection cohomology complex, H−a(IC(Rl)) =

R0j0
∗R

l, hence the equality (2.1.1) forces Hr(IC(Rl)) = 0 for r 6= −a and

Hr(K) = 0 for all r. �

Let us briefly outline the structure of the proof of Theorem 2.1.4, which

occupies the remainder of Section 2. In Section 2.2, we prove an upper bound,

Theorem 2.2.7, on the Betti numbers of the compactified Jacobian of an in-

tegral curve with Ak-singularities. The partial normalizations of such a curve

define a natural stratification of the compactified Jacobian; the cohomology

groups of the strata are easy to determine, and the spectral sequence aris-

ing from the stratification gives the desired upper bound. In Section 2.3, we

complement this upper bound estimate with a lower bound estimate, The-

orem 2.3.1, for the dimension of the stalks (R0j∗R
lχreg∗Q)s. The proof of

Theorem 2.3.1 consists of a monodromy computation which is completed in

Section 2.3.7. In Section 2.3, we also prove that the decomposition theorem

forces the equality of the two bounds. This completes the proof of Theo-

rem 2.1.4.

Remark 2.1.6. The arguments used in the proof of Theorem 2.1.4 do not

depend on the specific features of the Hitchin map and hold more generally in

the following setting. Suppose S is a nonsingular complex variety and C −→ S

is a proper family of integral curves, smooth over the open set Sreg
j
↪→ S,

which are branched double coverings of a fixed curve C. Let I
f−→ S be the

associated family of compactified Jacobians. If I is nonsingular, or has at

worst finite quotient singularities, then Theorem 2.1.4 and its Corollary 2.1.5

hold. In particular, for s ∈ S, we have bl(f
−1(s)) = dim

Ä
(R0j∗R

lf∗Q)s
ä
.

2.2. The upper bound estimate. In this section, C denotes an integral pro-

jective curve whose singularities are double points of type Ak, i.e., analytically

isomorphic to (y2−xk+1 = 0) ⊆ C2 for some k ≥ 1. In view of Proposition 1.3.2

and of the fact that we work exclusively with integral spectral curves, this is

the generality we need. If k ≥ 3, then blowing up a point of type Ak pro-

duces a point of type Ak−2, and if k = 1, 2, respectively corresponding to an

ordinary node and a cusp, then blowing up a point resolves the singularity.

The invariant δc := dimC ‹OC,c/OC,c measures the drop of the arithmetic genus

under normalization. If c ∈ C is a singular point of type Ak, then δc =
†
k
2

£
.
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The point c must be blown up δc times in order to be resolved, and, with the

exception of the blowing up of A1, each blowing up map is bijective.

The following theorem lists a few well-known facts concerning the Picard

variety of a curve with singularities of type Ak.

Theorem 2.2.1. Let C be a reduced and connected projective curve with

at worst Ak-singularities. Let Csing ⊆ C be its singular locus, and let ν : C̃ −→ C
be the normalization map. Let ν∗ : Pic0

C −→ Pic0
C̃

be the map induced by pull-

back, where Pic0
C (resp. Pic0

C̃
) is the connected component of the identity of the

Picard scheme of C (resp. C̃). If c ∈ Csing is a singular point of type Ak, set

Pc :=

®
Cδc if k is even,

C× × Cδc−1 if k is odd,

and define the commutative algebraic group P :=
∏
c∈Csing

Pc. Then

(1) If C is irreducible, there is an exact sequence of commutative algebraic

groups

(2.2.1) 1 −→ P −→ Pic0
C−→Pic0

C̃ −→ 1.

(2) If C is reducible and ] is the number of irreducible components, we have

an exact sequence

(2.2.2) 1 −→ P/(C×)#−1 −→ Pic0
C−→Pic0

C̃ −→ 1.

Proof. These facts follow directly from the exact sequence of sheaves of

groups on C,
1 −→ O×C −→ ν∗O×C̃ −→ ν∗O×C̃ /O

×
C −→ 1,

and a local computation (see [40, §7.5, especially Th. 5.19]). �

The connected group Pic0
C acts, via tensor product, on the compactifica-

tion PicC
0
, which is obtained by adding degree zero rank 1 torsion free sheaves

on C which are not locally free.

Let ν : C′ −→ C be a finite birational map. There is the direct image map

ν∗ : PicC′
0 −→ PicC

0
, F ′ 7−→ ν∗F ′.

The following theorem summarizes most of the properties of the compactified

Jacobians of blow ups that we need in the sequel of the paper.

Theorem 2.2.2. Let C be an integral, projective curve with at worst

Ak-singularities, let ν : C′ −→ C be a finite birational map and let F ∈ PicC
0
.

Then we have

(1) The compactified Jacobian PicC
0

is irreducible. The action of Pic0
C has

finitely many orbits. The orbit corresponding to locally free sheaves is

dense.
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(2) The direct image map ν∗ : PicC′
0 −→ PicC

0
is a closed imbedding with

image a closed Pic0
C-invariant subset of PicC

0
. The image of Pic0

C′ is a

locally closed Pic0
C-invariant subset of PicC

0
.

(3) There are a unique finite birational map µ : CF −→ C, obtained as a

composition of simple blow ups, and a line bundle LF on CF , such that

F = µ∗LF .

(4) Let S be the poset of blow ups C′ −→ C. There is a decomposition into

locally closed subsets

(2.2.3) PicC
0

=
∐

{C′→C}∈S
Pic0
C′ .

Proof. The proof of (1) can be found in [48], [1]. The proof of (2) can be

found in [5]. The proof of (3) and (4) can be found in [25, Prop. 3.4]. �

The main goal of this section is to prove Theorem 2.2.7, which gives an

upper bound for the Betti numbers of the compactified Jacobian PicC
0
. In

order to achieve this upper bound, we study the decomposition (2.2.3) by

describing the poset S of all the blowing-ups of C.

Definition 2.2.3. An integral projective curve C with Ak-singularities is

said to be of singular type

k := (k1, . . . , ko; ko+1, . . . , ko+e)

if its singular locus consists of o+ e distinct points {c1, . . . , co, co+1, . . . , co+e},
where ca is singular of type Aka , with ka odd for 1 ≤ a ≤ o and ka even for

o + 1 ≤ a ≤ o + e. We say that each singular point is of one of two possible

types, odd or even. We set O := {c1, . . . , co} ⊆ Csing, the set of odd singular

points, and E := {co+1, . . . , co+e} ⊆ Csing, the set of even singular points.

Recall that for each entry ka above, we have defined an integer δca :=

dka/2e.

Lemma 2.2.4. Let C be of singular type k, let C̃ be its normalization and

let g̃ := g(C̃). Then ∑
l

bl(Pic0
C) = 22g̃+o.

Proof. A connected commutative Lie group is isomorphic to (S1)r × Rs
for some r and s. The Betti numbers satisfy

∑
l bl((S

1)r × Rs) = 2r. In our

case, Theorem 2.2.1 implies that r = 2g̃ + o. �

The poset of blowing ups of C can be described as the set

S = {I = (i1, . . . , io; io+1, . . . , io+e) ∈ No+e | 0 ≤ ia ≤ δca , ∀a = 1, . . . , o+ e},
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where we say that I ≥ I ′ if ia ≥ i′a for all a = 1, . . . , o+ e. Let CI be the curve

obtained from C by blowing up, in any order, i1 times the point c1, i2 times

the point c2, etc. Let νI : CI −→ C be the corresponding finite birational map.

The singular points of CI are still of type Ak.

Theorems 2.2.2 and 2.2.1 can be applied to Pic0
CI and to PicCI

0
. Note

that CI −→ C factors through CI′ −→ C if and only if I ≥ I ′, and that if

I = (δc1 , . . . , δco+e), then C̃ = CI −→ C is the normalization. Define |I| := ∑
ia.

Theorem 2.2.1 implies that

(2.2.4) dim Pic0
CI = dim Pic0

C − |I|.

For I ∈ S, the direct image νI,∗ defines a locally closed imbedding Pic0
CI −→

PicC
0
. By applying (2.2.3) to the natural maps CI′ −→ CI for I ′ ≥ I, we see

that

PicCI
0

=
∐
I′≥I

Pic0
CI′ .

Proposition 2.2.5. We have the following inequality concerning Betti

numbers : ∑
l≥0

bl(PicC
0
) ≤

∑
I∈S

∑
l≥0

bl(Pic0
CI ).

Proof. Let r be a nonnegative integer. Define the subset of PicC
0
:

Zr =
∐
|I|≥r

Pic0
CI .

In view of the discussion above, we have

(1) Zr is a closed subset of PicC
0
. In particular, it is compact;

(2) there are closed inclusions ∅ ⊆ Zδ ⊆ . . . ⊆ Z1 ⊆ Z0 = PicC
0
, where

δ :=
∑
c∈Csing

δc;

(3) Zr \ Zr+1 =
∐
|I|=r Pic0

CI , where the union is over the connected com-

ponents, all of which have the same dimension by (2.2.4).

The nested inclusions (2) yield the classical spectral sequence

(2.2.5) Ep,q1 = Hp+q(Z−p, Z−p+1) =⇒ Hp+q(PicC
0
).

In view of the compactness (1), the E1-term reads

Ep,q1 = Hp+q
c (Z−p \ Z−p+1) =

⊕
|I|=−p

Hp+q
c (Pic0

CI ).

By Poincaré duality, we have that
∑
l≥0 bl(Pic0

CI ) =
∑
l≥0 dimH l

c(Pic0
CI ). It

follows that ∑
p,q

dimEp,q1 =
∑
I∈S

∑
l≥0

bl(Pic0
CI ).
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Clearly,
∑
p,q dimEp,qr ≤ ∑

p,q dimEp,q1 , for every r ≥ 1, and the statement

follows. �

In what follows, we adopt the convention that a product over the empty

set equals 1. For every subset J ⊆ O, let δJ :=
∏
c∈J δc. We have the following

lemma.

Lemma 2.2.6. We have∑
I∈S

∑
l≥0

bl(Pic0
CI ) = 22g̃

(∏
c∈O

(2δc + 1)

)(∏
c∈E

(δc + 1)

)
.

Proof. Let oI be the number of odd points on CI . For every 0 ≤ r ≤ o, let

#r be the number of curves CI with a given oI = r. Since Lemma 2.2.4 holds

for every CI , we have that

(2.2.6)
∑
I∈S

∑
l≥0

bl(Pic0
CI ) =

∑
I∈S

22g̃+oI =
o∑
r=0

#r 22g̃+r.

We have

#o =

(∏
c∈O

δc

)(∏
c∈E

(δc + 1)

)
;

in fact, the following two operations leave the number of odd points unchanged.

Blowing up t times, 0 ≤ t ≤ δc, an even point c ∈ E, and blowing up t times,

0 ≤ t < δc an odd point c ∈ O.

In order to have precisely o − 1 odd points, we need to first blow up δc
times an odd point c. Once this is done, we repeat the count above and deduce

that

#o−1 =

Ü
o∑
j=1

∏
c∈O
c6=cj

δc

ê∏
c∈E

(δc + 1) =

Ü ∑
J⊆O

]J=o−1

δJ

ê∏
c∈E

(δc + 1).

It is clear that we can repeat this argument and rewrite the last term in (2.2.6)

as

22g̃

Ü
o∑
r=0

2r
∑
J⊆O
]J=r

δJ

ê∏
c∈E

(δc + 1) =

(∏
c∈O

(2δc + 1)

)(∏
c∈E

(δc + 1)

)
,

by the elementary equality
∑o
r=0 2r

∑
J⊆O
]J=r

δJ =
∏
c∈O(2δc + 1). �

Finally, we combine Proposition 2.2.5 and Lemma 2.2.6 and obtain the

desired upper bound.
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Theorem 2.2.7. Let C be an integral curve all of whose singularities are

of type Ak. Denote by O := {c1, . . . , co} the set of its singular points of type Ak
with k odd, and denote by E := {co+1, . . . , co+e} the set of its singular points

of type Ak with k even. Denote by g̃ the genus of the normalization C̃ of C.

Then ∑
l

bl
(
PicC

0
)
≤ 22g̃

(∏
c∈O

(2δc + 1)

)(∏
c∈E

(δc + 1)

)
.

In fact, Theorem 2.1.4 below implies that the inequality above is in fact

an equality. In particular, see Corollary 2.3.22; the spectral sequence (2.2.5)

degenerates at E1.

2.3. The lower bound estimate. The aim of this section is to prove Theo-

rem 2.3.1, which, as we show below, readily implies Theorem 2.1.4.

Theorem 2.3.1. Let s ∈ Aell, and let Cs be the corresponding spectral

curve with its singular locus {c1, . . . , co, co+1, . . . , co+e}. Let O := {c1, . . . , co}
be the set of points of type Ak with k odd, and let E := {co, . . . , co+e} be the

set of points of type Ak with k even. Denote by j : Areg −→ Aell the open

imbedding. Then

22g̃

(∏
c∈O

(2δc + 1)

)(∏
c∈E

(δc + 1)

)
≤
∑
l

dim
Ä
R0j∗R

lχreg∗Q
ä
s
,

where g̃ denotes the genus of the normalization ›Cs of Cs.

Proof that Theorem 2.3.1 implies Theorem 2.1.4. We have the following

inequalities:∑
l

dim
Ä
R0j∗R

lχreg∗Q
ä
s
≤
∑
l

bl
(
PicCs

0
)
≤
∑
l

dim
Ä
R0j∗R

lχreg∗Q
ä
s
,

where the first one follows from the general equality

H− dim A(ICA(Rlχreg∗Q))s =
Ä
R0j∗R

lχreg∗Q
ä
s

combined with the decomposition theorem (1.4.4) and (1.4.6) in Section 1.4.2

for the Hitchin map over Aell where we add up only the summands supported

on Aell, and the second inequality follows immediately by combining Theo-

rems 2.2.7 and 2.3.1. �

Outline of the strategy for the proof of Theorem 2.3.1. Let s ∈ Aell. In

view of Corollary 1.3.6, we have the natural isomorphismÄ
R0j∗R

lχreg∗Q
ä
s
'
(
R0j∗

l∧
R1ureg∗Q

)
s

= lim
−→

Γ

(
N ∩ Areg,

l∧
R1ureg∗Q

)
,

where the direct limit is taken over the set of connected neighborhoods N of s

in A.



TOPOLOGY OF HITCHIN SYSTEMS 1359

Fix a base-point n0 ∈ N ∩Areg. We have the monodromy representation

π1(N ∩ Areg, n0) −→ Aut(H1(Cn0))

and its exterior powers

π1(N ∩ Areg, n0) −→ Aut(
l∧
H1(Cn0)).

The evaluation map Γ(N∩Areg,
∧lR1ureg∗Q) −→ ∧lH1(Cn0) at the point

n0 identifies the vector space of sections Γ(N ∩ Areg,
∧lR1ureg∗Q) with the

subspace of monodromy invariants of
∧lH1(Cn0). Thus, in order to prove

Theorem 2.3.1 we need to investigate the monodromy of the restriction of the

spectral curve family ureg : CAreg → Areg to N ∩ Areg, where N is a small

enough connected neighborhood of s in A.

We consider the local family CU −→ U of double coverings of C whose

branch locus is “close” to that of Cs; i.e., it is contained in a neighborhood

U of the divisor (s2
1 − 4s2) in the symmetric product of C. The family has

the property that every other family of double coverings whose branch locus is

contained in U is the pull-back of CU −→ U via a uniquely determined map; see

Proposition 2.3.11 for a precise statement. We investigate the monodromy of

the smooth part of this family, and we determine the dimension of the subspace

of monodromy invariants in the exterior powers of the associated local system.

Since the spectral curve family, restricted to a small enough neighborhood of

s in A, is isomorphic to the pullback of this local family via the map Θ of

Remark 1.3.3, the dimension of the subspace of monodromy invariants of the

local family gives a lower bound for the dimension of the monodromy invariants

of the spectral curve family, thus proving Theorem 2.3.1.

Remark 2.3.2. While our analysis of the monodromy is purely local, a

detailed study of the global monodromy of the familyMreg −→ Areg has been

carried out, for C a hyperelliptic curve, by Copeland in [17].

Notation 2.3.3. In the remaining of Section 2.3, for notational simplicity,

we denote with the same symbol a cycle (resp. relative cycle) and the homol-

ogy (resp. relative homology) class it defines. In particular, an equality of

cycles (resp. relative cycles) will always mean equality of their homology (resp.

relative homology) classes.

2.3.1. The double covering of a disc. We review some basic facts (see [4,

Part 1]) concerning the topology of a holomorphic branched double covering

ρ : S −→ D of the closed unit disc D ⊆ C, with boundary ∂ D and interior D,

under the following

Assumption 2.3.4. The map ρ is the restriction of a holomorphic mapping

from thickenings of domain and codomain, there are no branch points on ∂D
and the degree 2r of the branch locus divisor Z is even.
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Let pZ(z) be the monic degree 2r polynomial vanishing on Z. Then

(2.3.1) S =
¶

(z, w) ∈ D× C such that w2 = pZ(z)
©
, ρ(z, w) = z.

Remark 2.3.5. Since pZ(z) has even degree, the boundary ∂ S = ρ−1(∂ D)

of S consists of two connected components ∂ ′ and ∂ ′′, which we endow with

the orientation induced from S. We denote the resulting cycles in homology

with the same symbols (cf. Notation 2.3.3).

Assume Z consists of 2r distinct points. By the Riemann-Hurwitz formula,

S is biholomorphic to a compact Riemann surface of genus r−1 with two open

disks removed.

Denote by I := [0, 2r + 1] ⊆ R, and let β : I −→ D be a differentiable

imbedding such that ∂ D∩β(I) = {β(0), β(2r+1)} and Z = {β(1), . . . , β(2r)}.
The subsets

λj := ρ−1 (β([j, j + 1])) , j = 1, . . . , 2r − 1

are closed curves, which we orient subject to the requirements

(2.3.2) (λj , λj+1) = 1,

where ( , ) denotes the intersection product with respect to the the natural

orientation of S, and the equality in homology

(2.3.3)
r∑
j=1

λ2j−1 = ∂′.

The 1-cycles {λj}2r−1
j=1 form a basis for the first homology group H1(S).

Remark 2.3.6. In view of the long exact sequence in relative homology of

the pair (S, ∂ S), the kernel of the natural map H1(S) −→ H1(S, ∂ S) is one

dimensional, generated by the cycle
∑r
j=1 λ2j−1 = ∂′. In order to complete the

set {λj}2r−1
j=1 to a system of generators of H1(S, ∂ S), we need to add a relative

1-cycle sent via the boundary map to a generator of Ker {H0(∂ S) −→ H0(S)},
namely a cycle joining the two components ∂ ′, ∂ ′′ of the boundary. We take

the relative homology class of the curve

(2.3.4) µ := ρ−1 (β([0, 1])) ⊆ S

oriented so that we have the first equality below. We have

(2.3.5) (µ, λ1) = 1 and (µ, λj) = 0, ∀ 1 < j ≤ 2r − 1.

The relative homology classes of the cycles {λ1, . . . , λ2r−1, µ} form a set of

generators for H1(S, ∂S) subject to the only relation
∑r
j=1 λ2j−1 = 0.
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2.3.2. The family of coverings of the disc and its monodromy. We identify

the symmetric product D(2r), parametrizing the effective divisors of degree 2r

on the unit disk D, with the space of monic polynomials of degree 2r whose

roots have absolute values less than 1, by sending v = (v1, . . . , v2r) ∈ D(2r) to

pv(X) =
∏2r

1 (X−vl). The elementary symmetric functions of (v1, . . . , v2r) give

a system of coordinates for D(2r), thus realizing it as a bounded open subset

of C2r.

Notation 2.3.7. We denote a point in D(2r) ⊆ C2r by the divisor v on D
or by its associated monic polynomial pv.

On D× D(2r) there is the divisor

Z2r :=
¶

(z, p) ∈ D× D(2r) such that p(z) = 0
©

and the double covering

S2r =
¶

(z, p, w) ∈ D× D(2r) × C such that w2 = p(z)
©
,

defining the family Φ2r : S2r −→ D(2r) of (possibly singular) Riemann sur-

faces with boundary (for every fiber Sv, the singularities are disjoint from the

boundary):

S2r

ρ2r $$

Φ2r // D(2r)

D× D(2r).

p2

99(2.3.6)

The map ρ2r is a double covering branched over Z2r, and, for v ∈ D(2r),

the fibre Sv := Φ−1
2r (v) is the double covering Sv −→ D of equation w2 = pv(z)

branched precisely over the effective divisor v in D.

Remark 2.3.8. By Remark 2.3.5, the boundary of every fibre of the map

Φ2r consists of two connected components. Since D(2r) is contractible, we have

a smooth trivialization ∂S2r '
(
S1∐S1

)
× D(2r), well defined up to isotopy.

The locus E of polynomials with vanishing discriminant is a divisor in

D(2r), and D(2r)
reg := D(2r) \ E is the open subset corresponding to multiplicity

free divisors, namely 2r-tuples of distinct points in D. The double covering

Sv = Φ−1
2r (v) of D introduced in Section 2.3.2 is nonsingular if and only if

v ∈ D(2r)
reg .

We choose a base-point v ∈ D(2r)
reg . The fundamental group π1(D(2r)

reg , v) is

the classical braid group B2r on 2r strands (see [4], §3.3). As in Section 2.3.1,

a differentiable imbedding β : I −→ D, such that v = {β(1), . . . , β(2r)}, defines

a basis {λj}2r−1
j=1 of H1(Sv), the relative class µ ∈ H1(Sv, ∂ Sv), and the usual

set T1, . . . , T2r−1 of generators of B2r. If vi := β(i), the braid Ti exchanges vi
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with vi+1 by a half-turn. More precisely, let D+,D− be the two open half-discs

determined by β and its orientation; then Ti can be represented by two curves

τ+, τ− : [0, 1] −→ D such that

τ+(0) = τ−(1) = vi, τ+(1) = τ−(0) = vi+1,(2.3.7)

τ+((0, 1)) ⊆ D+, τ−((0, 1)) ⊆ D−.

We apply the Ehresmann fibration lemma to the restriction of the family

Φ2r to D(2r)
reg . We have monodromy homeomorphisms M(Ti) : (Sv, ∂ Sv) −→

(Sv, ∂ Sv) for i = 1, . . . , 2r − 1, which restrict to the identity on the boundary

∂ Sv. They are unique up to an isotopy which fixes the boundary pointwise.

Let γ ∈ H1(Sv, ∂ Sv) be a relative 1-cycle. Since the monodromy homeo-

morphisms fix the boundary, the difference M(Ti)(γ) − γ is homologous to a

cycle, denoted Vari(γ), disjoint from the boundary. This defines the classical

variation maps (see [4, §2.1]):

Vari : H1(Sv, ∂ Sv) −→ H1(Sv), i = 1, . . . , 2r − 1.

Proposition 2.3.9. The following holds :

Vari(λj) =


λi if j = i− 1,

−λi if j = i+ 1,

0 if j 6= i− 1, i+ 1,

Vari(µ) =

®
0 if i 6= 1,

λ1 if i = 1.

Proof. The monodromy M(Ti) is associated with the degeneration of Sv
in which the i-th and (i + 1)-th ramification points come together and the

covering acquires a node. It follows that M(Ti) is a Dehn twist around λi.

The Picard-Lefschetz formula ([4, §1.3]) gives

if c ∈ H1(Sv, ∂ Sv), then Vari(c) = (c, λi)λi.

We conclude by combining the above with (2.3.2) and (2.3.5). �

2.3.3. The local family. Let d = 2r be an even positive integer, and let a

be a partition of d, which we write

(2.3.8) a = (a1, . . . , a2ω+ε),

where a1, . . . , a2ω are odd positive integers and a2ω+1, . . . , a2ω+ε are even pos-

itive integers; we set

(2.3.9) d0 := 0, di :=
i∑

j=1

aj for i = 1, . . . , 2ω + ε.

Clearly d = d2ω+ε.
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Let σ be an effective divisor of degree d on a projective nonsingular curve

C with multiplicity type a, namely

(2.3.10) σ =
2ω+ε∑
i=1

aiqi ,

where the points q1, . . . , q2ω+ε of C are distinct.

Let OC(σ) be the corresponding line bundle on C and let s ∈ Γ(C,OC(σ))

be the section vanishing at σ, well defined up to a nonzero scalar. We choose

a square root of OC(σ), that is, a line bundle L on C such that L⊗2 ' OC(σ).

The double cover Cσ of C branched over σ is the curve on the total space

V(L)
π−→ C of L defined by

{y ∈ V(L) : y2 = π∗s}.

Note that the topology, e.g., its being connected or not, depends on the choice

of the square root L, and not only on σ.

From this point on, we work under the following

Assumption 2.3.10. The double covering Cσ is integral.

The effective divisors of degree 2r on the curve C are parametrized by

the symmetric product C(2r), which is a nonsingular algebraic variety, strat-

ified by the loci corresponding to divisors with a fixed multiplicity type. We

denote by C
(2r)
reg the open subset consisting of multiplicity-free divisors and,

for every subset Y ⊆ C(2r), we set Yreg := Y ∩ C(2r)
reg . We have the divi-

sor Z :=
¶

(c, u) ∈ C × C(2r) : c ∈ u
©
⊆ C × C(2r), the associated line bundle

O(Z) on C × C(2r) and its tautological section S ∈ Γ(C × C(2r),O(Z)) van-

ishing at Z. Given an open subset V ⊆ C × C(2r), we set ZV := Z ∩ V and

denote by OV (Z) and SV the restrictions of the corresponding objects to V .

The following proposition follows readily from the fact that the squaring

map Pic rC −→ Pic 2r
C is étale.

Proposition 2.3.11. Let U be a connected and simply connected open

neighborhood of σ in C(2r), and let ZU := Z ∩ (C × U). Then for every line

bundle L on C such that L⊗2 ' OC(σ), there is a projective family ΦU

CU
ρU

{{
ΦU

��

ZU
� � // C × U
p1

{{

p2

##
C U

with the following properties :
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(1) For u ∈ U , the curve Cu := Φ−1
U (u)

ρu−→ C is a double covering of C

ramified at the effective divisor u = ZU∩p−1
2 (u), and Cσ := Φ−1

U (σ)
ρσ−→

C is the double covering of C ramified at σ corresponding to the choice

of the square root L.

(2) The map ρU is a double covering branched over ZU .

(3) The restriction ΦUreg : CUreg := Φ−1
U (Ureg) −→ Ureg is a smooth family.

(4) If

C ′

ρ′

{{
Φ′

��

Z ′ �
� // C × T

p2

##
T

is a family of double coverings of C with ρ′ ramified over the divisor

Z ′ and, for t0 ∈ T , there is an isomorphism

Φ′−1(t0)

##

' // Cσ

ρσ~~
C,

then, for a suitable neighborhood V ⊆ T of t0, the map θ : V −→ U
associating to t ∈ T the branch locus of Φ′−1(t) −→ C defines an

isomorphism Φ′−1(V ) ' CU ×θ V over V .

We now define the distinguished neighborhoods of σ in C(2r).

Choose a closed disc ∆ ⊆ C whose interior ∆ contains the support of σ.

Choose open discs ∆1, . . . ,∆2ω+ε ⊆ ∆ ⊆ C so that

(1) qi ∈ ∆i for all i.

(2) ∆i ⊆ ∆ for all i, and ∆i ∩∆j = ∅ for all i 6= j.

As in Section 2.3.2, we have the ai-th symmetric product ∆
(ai)
i and its open sub-

set ∆
(ai)
i,reg corresponding to ai-tuples of distinct points. The set of effective divi-

sors of degree 2r consisting of ai points contained in ∆i, where i = 1, . . . , 2ω+ε,

defines a distinguished neighborhood of σ ∈ C(2r):

N :=
∏
i

∆
(ai)
i ⊆ ∆(2r) ⊆ C(2r).

Distinguished neighborhoods are contractible and give rise to a fundamental

system of neighborhoods of σ ∈ C(2r). We also have the open subset

Nreg := N ∩ C(2r)
reg =

∏
i

∆
(ai)
i,reg ⊆ ∆(2r)

reg ,(2.3.11)

consisting of the simple, i.e., multiplicity-free, divisors in N .



TOPOLOGY OF HITCHIN SYSTEMS 1365

By Proposition 2.3.11, the choice of a square root L of the line bundle

OC(σ) yields the family Φ∆(2r) : C∆(2r) → ∆(2r), the smooth family Φ∆(2r) :

C
∆

(2r)
reg
→ ∆

(2r)
reg , and their restrictions ΦN : CN → N and ΦNreg : CNreg → Nreg.

Our aim is the proof of Theorem 2.3.12 below. This result is the main

step in the proof of Theorem 2.3.1 which, as we have seen at the beginning of

Section 2.3, completes the proof of the main Theorem 2.1.4 of this section.

Theorem 2.3.12. Let C be a nonsingular projective curve of genus g,

let σ ∈ C(2r) be an effective divisor of multiplicity type a = (a1, . . . , a2ω+ε),

and let L be a square root of OC(σ) such that the associated double covering

ρσ : Cσ −→ C is integral. Let N be a distinguished neighborhood of σ, let

Nreg be the open subset of simple divisors in N , and let j : Nreg −→ N be the

corresponding imbedding. Then

4g+2r−2∑
l=0

dim

Ç
R0j∗

l∧
R1ΦNreg∗Q

å
σ

=
4g+2r−2∑
l=0

dim Γ

Ç
Nreg,

l∧
R1ΦNreg∗Q

å(2.3.12)

= 24g−2

Ç2ω+ε∏
i=1

(ai + 1)

å
.

Remark 2.3.13. Recall the Definition 2.2.3 of singular type of an integral

curve with Ak-singularities and of the two sets O and E. With the notation of

Theorem 2.3.12, we have E = {ρ−1
σ (qi)} for i ∈ {1, . . . , 2ω} such that ai 6= 1,

and O = {ρ−1
σ (qi)} for 2ω+1 ≤ i ≤ 2ω+ε. With the convention that if ai = 1,

then the term ai−1 should be deleted from the singular type vector k, we have

that Cσ has singular type k = (a2ω+1 − 1, . . . , a2ω+ε − 1; a1 − 1, . . . , a2ω − 1).

Then, the right-hand side of equation 2.3.12 equals the quantity

22g̃

Ç∏
c∈O

(2δc + 1)

åÇ∏
c∈E

(δc + 1)

å
associated with the singular curve Cσ (see Theorem 2.2.7).

For i = 1, . . . , 2ω+ ε, we set δi := δρ−1
σ (qi)

, with the convention that δi = 0

if ai = 1, i.e., if ρ−1
σ (qi) is a nonsingular point of Cσ. Clearly

(2.3.13)

(∏
c∈O

(2δc + 1)

)(∏
c∈E

(δc + 1)

)
=

(
2ω∏
i=1

(δi + 1)

)Ñ
2ω+ε∏
i=2ω+1

(2δi + 1)

é
.

By the Riemann-Hurwitz formula and the definition of the δ-invariant (§ 2.2),

we have that

(2.3.14)

g̃ = 2g+r−1−
∑

δi = 2g+
1

2

2ω+ε∑
i=1

ai−1− 1

2

2ω∑
i=1

(ai−1)− 1

2

2ω+ε∑
i=ω+1

ai = 2g+ω−1.
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Now use the fact that

(2.3.15) ai =

®
2δi if ai is even ,

2δi + 1 if ai is odd,

and deduce the equality

24g−2

(
2ω+ε∏
i=1

(ai + 1)

)
= 22g̃−2ω

2ω∏
i=1

(2δi + 2)
2ω+ε∏
i=2ω+1

(2δi + 1)

= 22g̃
2ω∏
i=1

(δi + 1)
2ω+ε∏
i=2ω+1

(2δi + 1),

whose right-hand side coincides, by (2.3.13), with

22g̃

(∏
c∈O

(2δc + 1)

)(∏
c∈E

(δc + 1)

)
.

For i = 1, . . . , 2ω + ε, let ui ∈ ∆
(ai)
i,reg, and let u = (u1, . . . , u2ω+ε) ∈ Nreg.

We have the monodromy representation

π1(Nreg, u) −→ Aut(H1(Cu))

and its exterior powers

π1(Nreg, u) −→ Aut

(
l∧
H1(Cu)

)
.

The evaluation map at the base-point u gives an isomorphism

Γ

(
Nreg,

l∧
R1ΦNreg∗Q

)
'−→
(

l∧
H1(Cu)

)π1

,

where (−)π1 denotes the subspace of invariants.

Remark 2.3.14. Since the family ΦNreg : CNreg −→ Nreg is the restriction

to Nreg of the family Φ
∆

(2r)
reg

: C
∆

(2r)
reg
−→ ∆

(2r)
reg , its monodromy representation

is the composition

π1(Nreg, u) −→ π1(∆(2r)
reg , u) −→ Aut(H1(Cu)).(2.3.16)

2.3.4. Proof of Theorem 2.3.12. Step 1: splitting off the constant part.

We have the diagram

C∆(2r)

ρ
∆(2r) %%

Φ
∆(2r)

// ∆(2r)

C ×∆(2r)

p2

99
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of Proposition 2.3.11 and the nonsingular branched double covering

(2.3.17) ρu : Φ−1
∆(2r)(u) =: Cu −→ C.

By the Riemann-Hurwitz formula we have g(Cu) = 2g+r−1, where, we remind

the reader, r = deg σ
2 =

∑
i
ai

2 . We set

Ĉ := ρ−1
u (C \∆), Ξu := ρ−1

u (∆).

Remark 2.3.15. In view of Remark 2.3.5, the inverse image ρ−1
u (∂∆) =

∂ Ξu consists of two connected components. There are two distinct possibilities

for the restriction of the covering ρu to Ĉ. The former is that this restricted

covering is disconnected and thus biholomorphic to two copies of C \∆. This

is the case if the square root L of OC(σ) is a trivial line bundle on C \ ∆.

The latter, corresponding to the case in which L is a nontrivial line bundle on

C \ ∆, is that Ĉ is connected, in which case Ĉ = C ′ \ (U1
∐
U2) is obtained

by removing two discs U1, U2 from a connected compact Riemann surface C ′

of genus 2g − 1.

Since the line bundle associated with a divisor on C supported on ∆ is

trivial on C \ ∆, we have a biholomorphism (of surfaces with boundaries)

ρ−1
∆(2r)((C \∆) ×∆(2r)) ' Ĉ ×∆(2r), and the family Φ∆(2r) : C∆(2r) −→ ∆(2r)

is obtained by glueing the family ρ−1
∆(2r)(∆ ×∆(2r)) −→ ∆(2r) to the constant

family Ĉ × ∆(2r) −→ ∆(2r) along the boundary (S1∐S1) × ∆(2r); the same

clearly applies to its restrictions ΦN ,ΦNreg .

The long exact sequence of relative cohomology of the pair Ξu ⊆ Cu, the

vanishing H2(Ξu) = 0, and the fact that H0(Ξu) −→ H0(Cu) is an isomorphism

give the exact sequence

(2.3.18)

0 // H2(Cu) // H2(Cu,Ξu) // H1(Ξu) // H1(Cu) // H1(Cu,Ξu) // 0

H2(Ĉ, ∂ Ĉ)

'
OO

H1(Ĉ, ∂ Ĉ),

'
OO

where the vertical arrows indicate the excision isomorphisms.

Case 1: Ĉ is disconnected. Here dimH2(Cu,Ξu) = 2 and dimH1(Cu,Ξu)

' H1(C)⊕2 = 4g; define

(2.3.19) Ha,disc := Im{H1(Ξu) −→ H1(Cu)}.

It follows from the sequence (2.3.18) that dimHa,disc = 2r− 2, and we have an

exact sequence

(2.3.20) 0 −→ Ha,disc −→ H1(Cu) −→ H1(Cu,Ξu) −→ 0.

Remark 2.3.16. In this case, in order to satisfy Assumption 2.3.10, we

must have ω ≥ 1. In fact, if ω = 0, every singular point of Cσ has two branches.
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Let ν : ›Cσ −→ Cσ be the normalization map. Since the inverse image by ν of

every singular points consists of two points, the composition ›Cσ ν−→ Cσ −→ C

is an étale covering, which must be trivial if Ĉ is disconnected. This implies

that ›Cσ is disconnected and Cσ is reducible against Assumption 2.3.10. See

also [44, §11].

Remark 2.3.17. Given a basis of H1(C), it is possible to represent its

elements by cycles contained in C \ ∆. By taking pre-images of these cycles

via ρu, we get 4g linearly independent homology classes which split the exact

sequence (2.3.20). Since, as we have already observed, the family Φ∆(2r) :

C∆(2r) −→ ∆(2r) is obtained by glueing the constant family with the family

ρ−1
∆(2r)(∆×∆(2r)) −→ ∆(2r), the direct sum decomposition

(2.3.21) H1(Cu) = Ha,disc ⊕H1(C)⊕2

is invariant under the action of π1(∆
(2r)
reg , u), which is trivial on the second

summand.

Case 2: Ĉ is connected. In this case dimH2(Cu,Ξu=1 and dimH1(Cu,Ξu)

= 4g − 1; the sequence (2.3.18) takes the form

(2.3.22) 0 −→ H1(Ξu) −→ H1(Cu) −→ H1(Cu,Ξu) = H1(Ĉ, ∂ Ĉ) −→ 0.

As we already observed in Remark 2.3.15, Ĉ = C ′ \ (U1
∐
U2) is obtained

by removing two discs U1, U2 from a connected compact Riemann surface C ′ of

genus 2g − 1; it is readily seen that the map H1(C ′) −→ H1(C ′, ∂U1
∐
∂U2) is

injective. We have the excision isomorphism H1(C ′, ∂U1
∐
∂U2) = H1(Ĉ, ∂ Ĉ),

by which we identifyH1(C ′) with a subspace ofH1(Ĉ, ∂ Ĉ). Let γ̂ ∈ H1(Ĉ, ∂ Ĉ)

be the class of a path in Ĉ joining the two connected components of its bound-

ary. It is then easy to see that H1(Ĉ, ∂ Ĉ) = H1(C ′)
⊕

Span γ̂. By using the

excision isomorphism H1(Cu,Ξu) = H1(Ĉ, ∂ Ĉ), we obtain an isomorphism

H1(Cu,Ξu) = H1(C ′)
⊕

Span γ̂.

The natural map H1(Ĉ) −→ H1(C ′) is clearly surjective, as every class

in H1(C ′) can be represented by cycles contained in Ĉ. By using this fact,

we choose a (noncanonical) splitting H1(C ′) −→ H1(Ĉ). An easy argument,

based on the Mayer-Vietoris exact sequence associated with the decomposition

Cu = Ĉ ∪ Ξu, shows that the map H1(Ĉ) −→ H1(Cu) is injective. Via the

composition H1(C ′) −→ H1(Ĉ) −→ H1(Cu), we may then identify H1(C ′)

with a subspace of H1(Cu). The lack of canonicity of this identification will be

harmless for what follows.

2.3.5. Proof of Theorem 2.3.12. Step 2: construction of an adapted basis.

Let us choose a differentiable imbedding β : I = [0, 2r + 1] −→ ∆ with the

following properties:
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(1) β(I) ∩ ∂∆ = {β(0), β(2r + 1)}.
(2) ui = {β(di−1 + 1), . . . , β(di)} for i = 1, . . . , 2ω + ε, with di defined in

(2.3.9).

(3) For every i = 1, . . . , 2ω+ε, the inverse images β−1(β(I)∩∆i) are closed

sub-intervals of I.
As in Sections 2.3.1 and 2.3.2,β defines the cycles λi∈H1(Ξu), µ∈H1(Ξu, ∂ Ξu),

and the set {Ti} of generators of B2r.

The open imbedding Nreg −→ ∆
(2r)
reg induces the group homomorphism

π1(Nreg, u) −→ π1(∆
(2r)
reg , u) = B2r. It is evident from the definition of ∆i

and β that, if di < j < di+1, then Tj can be represented by a pair of curves

as in (2.3.7), whose image is entirely contained in ∆i, and is hence contained

in the image of the homomorphism above, whereas this is not possible if j ∈
{d1, . . . , d2ω+ε−1}. This observation readily implies the following lemma; the

missing details of the proof are left to the reader.

Lemma 2.3.18. The map

π1(Nreg, u) −→ π1(∆(2r)
reg , u) = B2r

is injective. Its image is the subgroup Ba of B2r generated by the elements

Tj’s for j ∈ {1, . . . , 2r − 1} \ {d1, . . . , d2ω+ε−1}.

Remark 2.3.19. It follows from Lemma 2.3.18 that if N ′ ⊆ N is another

distinguished neighborhood and u ∈ N ′, then the natural map π1(N ′reg, u) −→
π1(Nreg, u) is an isomorphism and

Γ

Ç
Nreg,

l∧
R1ΦNreg∗Q

å
−→ Γ

Ç
N ′reg,

l∧
R1ΦN ′reg∗

Q
å

is an isomorphism. Hence the natural maps

Γ

Ç
Nreg,

l∧
R1ΦNreg∗Q

å
−→ Γ

Ç
N ′reg,

l∧
R1ΦN ′reg∗

Q
å
−→

Ç
R0j∗

l∧
R1ΦNreg∗Q

å
σ

are isomorphisms.

In the case in which Ĉ is disconnected, the kernel of the map H1(Ξu) −→
H1(Cu) is generated by the element

∑d
l=1 λ2l−1; see (2.3.3). Since, by Re-

mark 2.3.16, ω ≥ 1, we may use this relation to eliminate λa1 so that the

set {λi}, for i = 1, . . . , 2r − 1, i 6= a1, is a basis for the space Ha,disc =

ImH1(Ξu) −→ H1(Cu). This choice is suggested by Lemma 2.3.18 since Ta1 /∈
Ba. It will be evident in Section 2.3.6 that this choice is computationally quite

convenient.
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In force of Remarks 2.3.17 and 2.3.14 and Lemma 2.3.18, we are reduced

to compute the dimension of the subspace of invariants of
∧•Ha,disc for the

action of the group Ba ⊆ B2r ' π1(∆
(2r)
reg , u) defined in Lemma 2.3.18.

We now deal with the case in which Ĉ is connected; we resume the nota-

tion introduced at the end of Section 2.3.4. Recall, in particular, the relative

cycle γ̂, the identification of H1(C ′) with a subspace of H1(Cu,Ξu), and the

noncanonical one with a subspace of H1(Cu). We lift the relative class γ̂ to a

homology class λ0 ∈ H1(Cu) by joining γ̂ with a representative of the relative

cycle µ defined by (2.3.4) in Ξu. Setting Ha,conn := H1(Ξu)
⊕

Span λ0, the

decomposition

(2.3.23) H1(Cu) = Ha,conn

⊕
H1(C ′)

is π1(∆
(2r)
reg , u) ' B2r-invariant. Note that, by (2.3.5), the action on λ0 is given

by

(2.3.24) Ti(λ0) = λ0 if i 6= 1 and T1(λ0) = λ0 + λ1.

Since, by construction, the cycles in the subspace H1(C ′) may be chosen to be

entirely contained in Ĉ, the action of B2r on the summand H1(C ′) is trivial,

and, by Remark 2.3.14 and Lemma 2.3.18, we are reduced to compute the

dimension of the subspace of invariants of
∧•Ha,conn for the action of the

group Ba ⊆ B2r ' π1(∆
(2r)
reg , u).

In either case, a local coordinate ζ : ∆ −→ D, defined on an open set

containing ∆, identifies the family ρ−1
∆(2r)(∆×∆(2r)) −→ ∆(2r) with the family

Φ2r : S2r −→ D(2r) of Section 2.3.2 and the restriction ρu|Ξu : Ξu −→ ∆ with

the double covering Sv −→ D, where v := ζ(u). By (2.3.9), the action of Ba

on Ha,conn and Ha,disc is then given by

(2.3.25)

Ti(λj) = λj if |i− j| 6= 1, Ti(λi+1) = λi+1 − λi, Ti(λi−1) = λi−1 + λi.

2.3.6. Proof of Theorem 2.3.12. Step 3: computation of monodromy in-

variants. Lemma 2.3.20 and Proposition 2.3.21 below summarize the linear

algebra facts which we need to complete the proof of Theorem 2.3.12.

Lemma 2.3.20. Let U be a vector space of even dimension 2m with basis

c1, . . . , c2m, and denote by
∧• U its exterior algebra. Let T1, . . . , T2m ∈ Aut(U)

be defined by

(2.3.26) Ti(cj) = cj if |i−j| 6= 1, Ti(ci+1) = ci+1−ci, Ti(ci−1) = ci−1+ci,

and denote their natural extensions to
∧• U again by Ti. For I ⊆ {1, . . . , 2m},

let TI be the subgroup of Aut(
∧• U) generated by the Ti’s with i ∈ I , and denote

by (
∧• U)TI ⊆ ∧• U the subspace of TI-invariants.



TOPOLOGY OF HITCHIN SYSTEMS 1371

(1) For I = {1, 2, . . . , 2m}, we have dim (
∧• U)TI = m+ 1.

(2) For I ′ = {2, 3, . . . , 2m}, we have dim (
∧• U)TI′ = 2m+ 1.

(3) For I ′′ = {2, · · · , t, t+2, . . . , 2m}, with t odd, we have dim (
∧• U)TI′′ =

(t+ 1)(2m− t+ 1).

Proof. For a, b ∈ {1, . . . , 2m}, with a ≤ b and a ≡ b(2), we set

c[a,b] := ca + ca+2 + · · ·+ cb−2 + cb.

It immediately follows from (2.3.26) that

(2.3.27) Ti
Ä
c[a,b]

ä
=


c[a,b] if i 6= a− 1, b+ 1,

c[a,b] − ca−1 if i = a− 1,

c[a,b] + cb+1 if i = b+ 1.

• Case I = {1, . . . , 2m}. A direct computation using (2.3.27) shows that

Ω :=
m∑
s=1

c[1,2s−1] ∧ c2s ∈
2∧
U

is T I -invariant and Ωm 6= 0. Hence 1,Ω,Ω2, . . . ,Ωm are the desired

m+ 1 T I -invariants.

• Case I ′ = {2, . . . , 2m}. Since TI′ < TI , the Ωt’s introduced above are

TI′-invariant. Furthermore, since T1 /∈ TI′ , it follows from (2.3.27) that

c[2,2m] ∈ UTI′ . Then 1, c[2,2m],Ω, c[2,2m]∧Ω, . . . , c[2,2m]∧Ωm−1,Ωm, give

the desired 2m+1 T I
′
-invariants, which, being nonzero and of different

degrees, are linearly independent.

• Case I ′′ = {2, . . . , t, t + 2, . . . , 2m} with t odd. In addition to the T I
′
-

invariant c[2,2m] ∈ U introduced above, we have c[1,t] ∈ UTI′′ , again by

(2.3.27), since Tt+1 /∈ TI′′ .
Let U0 be the space spanned by c[2,2m] and c[1,t], and set

U1 := Span{c2, c3, . . . , ct} and U2 := Span{ct+2, ct+3, . . . , c2m}.

It results from (2.3.26), and again from the fact that Tt+1 /∈ TI′′ , that

the direct sum decomposition U = U0 ⊕ U1 ⊕ U2 is TI′′-invariant.

Let G1 be the group generated by {T2, T3, . . . , Tt}, and let G2 be the

group generated by {Tt+2, Tt+3, . . . , T2m}.
Applying case (1) of this Lemma to the vector spaces U1 and U2

with the groups G1, G2 respectively, gives

Ωk
1 ∈

(
2k∧
U1

)G1

, ∀ 0 ≤ k ≤ 1

2
(t− 1)
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and

Ωl
2 ∈

(
2l∧
U2

)G2

, ∀ 0 ≤ l ≤ 1

2
(2m− t− 1).

Since G1 acts trivially on U2 and G2 acts trivially on U1, the 1
4(t+1)

·(2m−t+1) elements Ωk
1⊗Ωl

2 ∈
∧2k U1⊗

∧2l U2 are TI′′ invariant. They

are, furthermore, linearly independent since they are nonzero and live

in different summands of the direct sum decomposition of
∧• (U1 ⊕ U2).

From the TI′′-isomorphism

•∧
U '

Ç •∧
U0

å
⊗
Ç •∧

U1

å
⊗
Ç •∧

U2

å
,

we conclude that (
∧• U)TI′′ is a free 1

4(t + 1)(2m − t + 1)-rank mod-

ule over the four-dimensional TI′′-invariant algebra
∧• U0, hence its

dimension is (t+ 1)(2m− t+ 1).

In all of the three cases considered, it is not hard to verify that there is no

other invariant. �

Let a be a partition of d, with associated integers ai, ω, ε, di as in (2.3.8),

(2.3.9), and let Ba be the group of Lemma 2.3.18. Let

(2.3.28)

Va,disc be the Q-vector space generated by the set Idisc = {1, . . . , d− 1} \ {a1},

and let

(2.3.29)

Va,conn be the Q-vector space generated by the set Iconn = {0, . . . , d− 1}.

In either case, denote by {λi}i∈I the corresponding basis, with I = Idisc or

I = Iconn and endow the vector spaces and their exterior algebras
∧• Va,disc

and
∧• Va,conn with the Ba-module structure defined by (2.3.25).

Proposition 2.3.21. Let (−)Ba
denote the subspace of Ba-invariants.

We have

dim

Ç •∧
Va,disc

åBa

=
1

4

∏
(ai + 1),(2.3.30)

dim

Ç •∧
Va,conn

åBa

=
∏

(ai + 1).(2.3.31)

Proof. We first prove (2.3.30), starting with the case ε = 0. We proceed

by induction on ω.

Assume ω=1. Then a = (a1, a2) and Ba = Ba1 × Ba2 is the group

generated by T1, . . . , Ta1−1, Ta1+1, . . . , Ta1+a2−1. Since Ta1 /∈ Ba, it follows
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from (2.3.25) that the direct sum decomposition Va,disc = W1
⊕
W2 with

W1 = Span{λ1, . . . , λa1−1}, W2 = Span{λa1+1, . . . , λa1+a2−1},

is Ba-invariant. Since furthermore, Ba1 acts trivially on
∧•W2 and Ba2 acts

trivially on
∧•W1, we haveÇ •∧

Va,disc

åBa

'
Ç •∧

W1

åBa ⊗Ç •∧
W2

åBa

'
Ç •∧

W1

åBa1 ⊗Ç •∧
W2

åBa2

.

We now apply Lemma 2.3.20(1) twice, first setting U = W1 and 2m = a1 − 1

and then U = W2 and 2m = a2−1, to find dim (
∧• Va,disc)

Ba

= 1
4(a1+1)(a2+1).

• Assume the statement is proved for every multiplicity type a with ε = 0

and ω ≤ k, and let a′ = (a, a2k+1, a2k+2), with a := (a1, . . . , a2k). Set d′ :=

d + a2k+1 and d′′ := d + a2k+1 + a2k+2. We have Ba′ ' Ba × Bb, where

Bb ' Ba2k+1 ×Ba2k+2 is the subgroup generated by

Td+1, . . . , Td′−1, Td′+1, . . . , Td′′−1.

The subspace Va,disc = Span{λi}i∈{1,...,d−1},
i 6=a1

⊆ Va′ is Ba′-invariant, and the

subgroup Bb acts trivially on it by (2.3.25). HenceÄ∧
Va,disc

äBa′

=
Ä∧

Va,disc

äBa

and dim
Ä∧

Va,disc

äBa

=
1

4

2k∏
i=1

(ai + 1)

by the inductive hypothesis. The subspace Span{λd, . . . , λd′′−1}, however, is

not Ba′ invariant as Td−1(λd) = λd − λd−1. We correct this by introducing

λ̂d := λd + λd−2 + · · · + λd2k−1+1; by (2.3.25) we have Tj(λ̂d) = λ̂d if j 6=
d2k−1, d+ 1. Since Td2k−1

/∈ Ba′ , while Td+1(λ̂d) = λ̂d + λd+1, the subspace

W := Span{λ̂d, λd+1, . . . , λd′′−1}

is Ba′-invariant. The decomposition Va′,disc = Va,disc⊕W is hence Ba′-invariant

and Ba acts trivially on W . Since Td /∈ Ba′ , we can apply case (3) of

Lemma 2.3.20 to U = W with t = a2k+1. The statement is now proved

for every a such that ε = 0.

Case ε > 0. Assume the statement is proved for every a with ε ≤ k. Let

a′ := (a, a2ω+ε) and let d′ := d+ a2ω+ε. Just as in the case above, we set

W := Span{λ̂d, λd+1, . . . , λd′−1},

where λ̂d := λd+ λd−2 + · · ·+ λd2ω−1+1, we have a Ba′-invariant decomposition

Va′,disc = Va,disc⊕W with the property that Ba acts trivially on W and Ba2ω+ε

acts trivially on Va,disc; we may thus apply case (2) of Lemma 2.3.20 to U = W

with 2m = a2ω+ε.



1374 M. A. A. DE CATALDO, T. HAUSEL, and L. MIGLIORINI

The proof of (2.3.31) goes along the same lines as that of (2.3.30), so we

will skip some details. We proceed by induction on ω + ε.

• Assume ε = 1, ω = 0. Then a = (a1) with a1 even, and Va,conn is gener-

ated by λ0, . . . , λa1−1 with the action of the group generated by T1, . . . , Ta1−1.

This is, up to an obvious renumbering, precisely case (2) of Lemma 2.3.20,

which gives dim(
∧• Va,conn)Ba

= a1 + 1.

• Assume instead ω = 1, ε = 0. Then a = (a1, a2) with a1, a2 odd,

d = a1 + a2, and Va,conn is generated by λ0, . . . , λd−1 with the action of the

group generated by T1, . . . , Ta1−1, Ta1+1, . . . , Td−1. This is, up to an obvious

renumbering, case (3) of Lemma 2.3.20 with t = a1, 2m = a1 + a2, and we

obtain dim(
∧• Va,conn)Ba

= (a1 + 1)(a2 + 1).

• Assume the statement is proved for all a with ω + ε ≤ k. Given a′ with

ω + ε = k + 1, one needs to consider two cases:

(i) a′ := (a, a) with a even. Defining λ̂d := λd + λd−2 + · · · + λd0 , we

have a Ba′-invariant decomposition Va′,conn = Va,conn ⊕W , with W :=

Span{λ̂d, λd+1, . . . , λd+a−1}, and we proceed as above, applying case

(2) of Lemma 2.3.20 to U = W with 2m = a.

(ii) a′ := (a, a′, a′′) with a′, a′′ odd. Defining λ̂d := λd+ λd−2 + · · ·+ λd0 , we

have a Ba′-invariant decomposition Va′,conn = Va,conn ⊕W , with W :=

Span{λ̂d, λd+1, . . . , λd+a′+a′′−1}, and we proceed as above, applying

case (3) of Lemma 2.3.20 to U = W with 2m = a. �

Proof of Theorem 2.3.12. In the case in which Ĉ is disconnected, the de-

composition (2.3.21) H1(Cu) = Ha,disc⊕H1(C)⊕2, the fact that π1(Nreg, u) acts

trivially on the 4g-dimensional space H1(C)⊕2, the identification of π1(Nreg, u)

with Ba acting on Ha,disc as described in (2.3.25), and case (1) of Proposi-

tion 2.3.21 applied to Ha,disc imply thatÇ •∧
H1(Cu)

åπ1(Nreg,u)

=

Ç •∧
Ha,disc

åBa ⊗ •∧ Ä
H1(C)⊕2

ä
and

dim

Ç •∧
H1(Cu)

åπ1(Nreg,u)

= 24g
Å

1

4

∏
(ai + 1)

ã
= 24g−2

∏
(ai + 1)

In a completely analogous way, in the case in which Ĉ is connected, the de-

composition (2.3.23) H1(Cu) = Ha,conn
⊕
H1(C ′), the fact that π1(Nreg, u)

acts trivially on the 4g − 2-dimensional space H1(C ′), the identification of

π1(Nreg, u) with Ba acting on Ha,conn as described in (2.3.25), and case (2) of
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Proposition 2.3.21 applied to Ha,conn, imply thatÇ •∧
H1(Cu)

åπ1(Nreg,u)

=

Ç •∧
Ha,conn

åBa ⊗Ç •∧
H1(C ′)

å
and

dim

Ç •∧
H1(Cu)

åπ1(Nreg,u)

= 24g−2
∏

(ai + 1). �

2.3.7. Proof of Theorem 2.3.1: Back to the spectral curve. We resume

the notation of the statement of Theorem 2.3.1. Let N be a distinguished

neighborhood of Θ(s) ∈ C(2d). For a small enough neighborhood N of s ∈ Aell,

we have Θ(N) ⊆ N and Θ(N∩Areg) ⊆ Nreg. Let ΦN be the family constructed

in Proposition 2.3.11 associated with the choice of the square root OC(D) of

OC(Θ(s)) ' OC(2D). By point (4) in Proposition 2.3.11, the restriction of the

spectral curve family to N ∩ Areg is the pullback via Θ of ΦNreg . Hence, by

Corollary 1.3.6 and by the base change theorem for proper maps, we have the

isomorphisms of local systems on N ∩ Areg:

Rlχreg∗Q ' Θ∗
(

l∧
R1ΦNreg∗Q

)
.

As the stalk (R0j∗R
lχreg∗Q)s is the direct limit over the set of neighborhoods

N of s in A of the space of monodromy invariants of the local system Rlχreg∗Q
in N ∩ Areg, the statement follows from Theorem 2.3.12 and Remark 2.3.13.

�

As shown just after the statement of Theorem 2.3.1, we have also com-

pleted the proof of Theorem 2.1.4. This latter result has the following conse-

quence.

Corollary 2.3.22. Let s ∈ Aell, and let Cs, g̃, O,E be as in the state-

ment of Theorem 2.3.1. Then

(1) The spectral sequence (2.2.5) degenerates at E1.

(2) The Poincaré polynomial of the fiber χ−1(s) ' PicCs
0

is

(2.3.32)∑
l

tlbl(χ
−1(s))=(1+ t)2g̃

(∏
c∈O

Ä
1 + t+ . . .+ t2δc

ä)(∏
c∈E

Ä
1 + t2 + . . .+ tδc

ä)
.

Proof. It follows from Theorems 2.2.7 and 2.3.1 that∑
p,q

dimEp,q∞ =
∑
l

bl(χ
−1(s))

= 22g̃

(∏
c∈O

(2δc + 1)

)(∏
c∈E

(δc + 1)

)
=
∑
p,q

dimEp,q1 ;
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hence all the differentials in the spectral sequence (2.2.5) are forced to vanish,

proving point (1). Point (2) follows immediately by the equality

(R0j∗R
lχreg∗Q)s = bl(PicCs)

of Theorem 2.1.4, keeping track of the cohomological degrees of the monodromy

invariants. �

2.4. The cases SL2 and PGL2. We now extend the main result found for χ,

Corollary 2.1.5, to χ̂. In order to do this, we need to discuss how M, M̂, M̌
and the relative maps χ, χ̂, χ̌ introduced in Section 1.3.1 are related. As in

Section 1.2.2, we denote by Γ := Pic0
C [2] ' Z2g

2 the group of points of order

two in Pic0
C , byM0 ⊆M be the subset of stable Higgs bundles with traceless

Higgs field

M0 = {(E, φ) with tr(φ) = 0}.
We denote by χ0 : M0 −→ A0 the restriction of the Hitchin map, where,

we recall, A0 := H0(C, 2D) ⊆ A. There are natural maps, easily seen to be

isomorphisms of algebraic varieties:

sq : H0(C,D)×M0 −→M, sq′ : H0(C,D)×A0 −→ H0(C,D)×A0 = A

given by

sq : ((E, φ), s) 7−→
Å
E, φ+

s

2
⊗ 1E

ã
, sq′ : (v, u) 7−→

Ç
v, u+

v⊗2

4

å
,

making the following into a commutative diagram:

(2.4.1) M0

χ0

��

H0(C,D)×M0oo

Id×χ0

��

sq

'
//M

χ

��
A0 H0(C,D)×A0poo sq′

'
// A.

Remark 2.4.1. It follows from the commutative diagram (2.4.1) that we

have an isomorphism

χ∗QM ' sq′∗p∗χ0
∗QM0 .

Remark 2.4.2. We clearly have (see Proposition 1.3.2)

A0
reg = Areg ∩ A0 = {s ∈ H0(C, 2D) | s has simple zeros}

and

sq′
−1

(Areg) = H0(C,D)×A0
reg, sq−1(Mreg) = H0(C,D)×M0

reg.

Similarly,

A0
ell = Aell ∩ A0 = {s ∈ H0(C, 2D)|Cs is integral}

and

sq′
−1

(Aell) = H0(C,D)×A0
ell, sq−1(Mell) = H0(C,D)× χ0−1

(A0
ell).
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Diagram (2.4.1) and Remark 2.4.2 reduce the study of χ : M −→ A to

that of χ0 :M0 −→ A0. We can safely identify sq′∗χ∗QM with p∗χ0
∗QM0 , and

the main Theorem 2.1.4 and its corollary 2.1.5 hold for χ0 on A0
ell; namely, if

j : A0
reg −→ A0

ell is the open imbedding, then

IC
Ä
Rlχ0

reg∗QM0
reg

ä
|A0

ell

'
Ä
R0j∗R

lχ0
reg∗QM0

reg

ä
[dimA0],(2.4.2)

and

χ0
∗QM0 |A0

ell
'
⊕
l

Ä
R0j∗R

lχ0
reg∗QM0

reg

ä
[−l].

For the other groups SL2 and PGL2, we have

M̌ = λ−1
D ((Λ, 0)), M̂ = M̌/Γ =M0/Pic 0

C ,

and the corresponding Hitchin maps

M̌
q̌

!!

χ̌

��

� � //M0

q0

}}

χ0

��

M̂

χ̂
��
A0,

where q̌ and q0 are the two quotient maps.

The following is readily verified.

Proposition 2.4.3. The map

q : Pic 0
C × M̌ −→M0, (L, (E, φ)) 7−→ (E ⊗ L, φ⊗ 1L).

is an unramified Galois covering with group Γ, and there is a commutative

diagram

(2.4.3) Pic 0
C × M̌

Id×q̌ &&

q //

p̌2

��

[2]×q̌

++

M0

χ0

��

q0

~~

r

vv

Pic 0
C × M̌

[2]×Id
// Pic 0

C × M̂

p̂2
��

M̌
q̌ //

χ̌
++

M̂

χ̂
��
A0,

where r :M0 −→ Pic 0
C×M̂ sends (E, φ) to (detE⊗Λ−1, q0(E, φ)) and [2]× q̌

sends (L, (E, φ)) to (L⊗2, q̌(E, φ)).
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Remark 2.4.4. The map [2]× q̌ : Pic 0
C ×M̌ −→ Pic 0

C ×M̂ is the quotient

map relative to the diagonal action of Γ× Γ on Pic 0
C × M̌.

Proposition 2.4.3 implies that

H∗(M) ' H∗(M0) '
Ä
H∗(M̌)⊗H∗(Pic0

C)
äΓ ' H∗(M̂)⊗H∗(Pic0

C).

The last isomorphism follows from the fact that the action of Γ on H∗(Pic0
C)

is trivial, as it is the restriction to a subgroup of the action of the connected

group Pic0
C .

Before stating Theorem 2.4.5, which gives a refinement of the isomorphism

above at the level of derived categories, we make some general remarks on

actions of finite abelian groups and the splitting they induce on complexes.

For ease of exposition, until further notice, we work with the constructible

derived category of sheaves of complex vector spaces. Let K be an object of

DA and suppose that a finite abelian group Γ acts on the right on K, i.e., that

we are given a representation Γ → (AutDA(K))op. It then follows from [19,

2.24] (see also [39, Lemma 3.2.5]) that there is a character decomposition

(2.4.4) K '
⊕
ζ∈Γ̂

Kζ ,

where Γ̂ denotes the group of characters of Γ.

Suppose Γ acts on the left on an algebraic variety M , and let M
q−→M/Γ

be the quotient map. Since q is finite, the derived direct image complex q∗CM
is a sheaf. Clearly, Γ acts on q∗CM on the right via pull-backs, and (2.4.4)

above boils down to the canonical decomposition in the Abelian category of

sheaves ⊕
ζ∈Γ̂

Lζ ' q∗CM .

Let h : M −→ A be a proper map which is Γ-equivariant. We have the

commutative diagram

M

h
��

q // M/Γ

h′||
A

and, by using h′∗q∗ = h∗, we get the canonical identification.

(2.4.5)
⊕
ζ∈Γ̂

h′∗Lζ ' h∗CM .

Clearly, h∗CM is endowed with the Γ-action, and (2.4.5) is just its character

decomposition, namely (h∗CM )ζ = h′∗Lζ .

In particular, taking the trivial representation ρ = 1, we have L1 =

(q∗CM )Γ ' CM/Γ, and we thus identify the direct image h′∗CM/Γ =h′∗((q∗CM )Γ)
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with the canonical direct summand (which we may call the Γ-invariant part)

(h∗CM )Γ := (h∗CM )1 of h∗CM .

Let us go back to our situation where Γ ' Z2g
2 . In this case, the characters

are all {±1}-valued, and we can safely return to rational coefficients.

From the discussion above and the diagram (2.4.3), it follows that

(q̌ ◦ p̌2)∗QPic 0
C×M̌

= (q0 ◦ q)∗QPic 0
C×M̌

contains q0
∗QM0 and (q̌ ◦ p̌2)∗QM̌.

Theorem 2.4.5. There are canonical isomorphisms in DA0 :

(2.4.6) χ0
∗QM0 '

⊕
i∈N

i∧
H1(C)⊗ χ̂∗QM̂[−i] '

⊕
i∈N

i∧
H1(C)⊗ (χ̌∗QM̌)Γ[−i].

Proof. Consider the diagram (2.4.3). As noticed in Remark 2.4.4, the

map [2] × q̌ is the quotient by the action of Γ × Γ. Consider the character

decompositions

[2]∗QPic 0
C
'
⊕
ζ∈Γ̂

Lζ , q̌∗QM̌ '
⊕
ζ∈Γ̂

Mζ .

The Künneth formula gives the following canonical isomorphisms in DPic 0
C×M̂

:

([2]× q̌)∗QPic 0
C×M̌

' [2]∗QPic 0
C
� q̌∗QM̌ '

⊕
(ζ,ζ′)∈Γ̂×Γ̂

Lζ �Mζ′ ,(2.4.7)

([2]× Id)∗QPic 0
C×M̂

'
⊕
ζ∈Γ̂

Lζ �QM̂ ⊆ ([2]× q̌)∗QPic 0
C×M̌

,(2.4.8)

and

r∗QM0 '
⊕
ζ∈Γ̂

Lζ �Mζ ⊆ ([2]× q̌)∗QPic 0
C×M̌

,(2.4.9)

this latter since q is the quotient by the diagonal action Γ −→ Γ× Γ.

Noting that the map [2] is a finite covering of a product of circles, we have

canonical isomorphisms

(p̂2)∗Lζ =

(⊕
i

H i(Pic 0
C , Lζ)[−i]

)
⊗QM̂(2.4.10)

=

®
0 if ζ 6= 1,⊕
i
∧iH1(C)⊗QM̂[−i] if ζ = 1.
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Applying the functor p̂2∗ to ([2] × q̌))∗QPic 0
C×M̌

to ([2] × Id))∗QPic 0
C×M̂

and to r∗QM0 , we obtain canonical isomorphisms in DM̂:

(p̂2 ◦ ([2]× q̌))∗QPic 0
C×M̌

'
⊕

i∈N,ζ∈Γ̂

i∧
H1(C)⊗Mζ [−i],(2.4.11)

(p̂2 ◦ ([2]× Id))∗QPic 0
C×M̂

'
⊕
i∈N

i∧
H1(C)⊗QM̂[−i],(2.4.12)

q0
∗QM0 = (p̂2 ◦ r)∗QM0 '

⊕
i∈N

i∧
H1(C)⊗QM̂[−i].(2.4.13)

Taking the direct image χ̂∗ of the isomorphisms (2.4.11), (2.4.12), and (2.4.13),

and using the fact that q̌∗QM̌ '
⊕

ζ∈Γ̂Mζ with M1 ' QM̂, we find the canon-

ical isomorphisms in DA0 we are seeking for. �

The map χ̂ is projective, and it will be shown in Corollary 5.1.3 that the

class α, defined by equation 1.2.10, is the cohomology class of a χ̂-ample line

bundle on M̂. We can thus apply the results of Section 1.4.3. We have the

Deligne isomorphims that depend on α,

φα :
⊕
p≥0

P̂p[−p] '−→ χ̂∗QM̂[dimM̂],

underlying an even finer decomposition (see (1.4.11)). The cohomology groups

H∗(M̂) are endowed with the direct sum decomposition (1.4.14): H∗(M̂) =∑
Qi,j .

Similarly the class

α̃ := α⊗ 1 + 1⊗
∑
i

εiεi+g ∈ H∗(M̂)⊗H∗(PicC) = H∗(M),

introduced in (1.2.6), is the class of a relatively ample line bundle on M.

We now determine the Deligne splitting φα̃ associated with χ and α̃. De-

note by SPic0
C

: Pic0
C −→ pt the “structural map.” By using the canonical

splitting in Dpt

φJ : SPic0
C∗

QPic0
C

'−→

Ñ⊕
i≥0

i∧
H1(C)[−i]

é
,

the canonical isomorphism of Theorem 2.4.5 takes the form

χ0
∗QM0 ' χ̂∗QM̂ � SPic0

C∗
QPic0

C
' χ̂∗QM̂ �

(⊕
i∈N

i∧
H1(C)[−i]

)
.

Note that this splitting does not depend on the choice of
∑
i εiεi+g and that the

operation of cupping with this class is diagonal (with respect to the splitting).
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Let

φ 0
α̃ :
⊕
p≥0

Pp[−p] '−→ χ0
∗QM0 [dimA0]

be the Deligne splitting for χ0 relative to (the restriction of) α̃. Since, as

pointed out above, the action of
∑
i εiεi+g is diagonal,

φα ⊗ φJ :

Ñ⊕
p≥0

P̂p[−p]

é
⊗

Ñ⊕
i≥0

i∧
H1(C)[i]

é
−→ χ̂∗QM̂[dimA0]⊗ SPic0

C∗
QPic0

C
' χ0

∗QM0 [dimA0]

satisfies the properties stated in Fact 1.4.2; hence it is the isomorphism φ 0
α̃.

Since, by Remark 2.4.1, we have the natural isomorphism χ∗QM'sq′∗p∗χ0
∗QM0,

and p is smooth with contractible fibres of dimension dimA− dimA0, the iso-

morphism

sq′∗p
∗(φα ⊗ φJ) = sq′∗p

∗(φ0
α̃) : χ∗QM[dimA0]

−→
⊕
r≥0

sq′∗p
∗

Ñ ⊕
p+i=r

P̂p ⊗
i∧
H1(C)

é
[−r]

is, up to the shift dimA0−dimA, the Deligne isomorphism φα̃ associated with

χ and α̃.

In particular, we have, for all k and p, a canonical isomorphism:

(2.4.14) Hk
≤p(M) =

⊕
j≥0

Ñ
Hk−j
≤p−j(M̂)⊗

j∧
H1(C)

é
.

The isomorphism of Theorem 2.4.5 can be understood geometrically as follows.

Given the nonsingular double (branched) cover Cs −→ C, the Prym vari-

ety Prym(Cs) ⊆ Pic 0
Cs is defined as

(2.4.15) Prym(Cs) := {F ∈ Pic 0
Cs | Nm(F) = OC},

where Nm : Pic 0
Cs −→ Pic 0

C is the norm map; see [3, App. B, §1]. Clearly, the

image by pullback of the subgroup Γ is contained in Prym(Cs), and we have

the quotient isogeny

Prym(Cs) −→ Prym(Cs)/Γ.

The open subset M̌reg := M̌ ∩Mreg is a torsor for the Abelian scheme

P−
reg over A0

reg whose fibre over s ∈ A0
reg is Prym(Cs). Similarly, the open

subset M̂reg := M̌reg/Γ is a torsor for the Abelian scheme P−
reg/Γ over A0

reg

whose fibre over s ∈ A0
reg is Prym(Cs)/Γ ' Prym(Cs)

∨.

The involution ι (see §1.3.2) on the family of spectral curves u : CA → A
gives a Z/2Z-action on the local system R1ureg∗QCAreg

and a corresponding de-

composition into (±1)- eigenspaces V±. The pullback from C gives a canonical
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isomorphism of local systems

V+ = H1(C)⊗QAreg ,

between the local system of invariants and the constant sheaf with stalk H1(C),

so that

R1χreg∗QMreg ' R1ureg∗QCAreg
=
Ä
H1(C)⊗QAreg

ä⊕
V−.

It follows from Corollary 1.3.6 that, for every l,

(2.4.16) Rlχreg∗QMreg '
l∧
R1ureg∗QCAreg

=
⊕
a+b=l

a∧
H1(C)⊗

b∧
V−.

Clearly, the analogous statement for the restriction to A0
reg holds true. Com-

paring with Theorem 2.4.5, we see that

(2.4.17) Rlχ̂reg∗QM̂ '
l∧
V− and χ̂∗QM̂|A0

reg
'
⊕
l

l∧
V−[−l].

From (2.4.16), we have

IC
Ä
Rlχ0

reg∗QMreg

ä
'

⊕
a+b=l

IC

(
a∧
H1(C)⊗

b∧
V−
)

'
⊕
a+b=l

a∧
H1(C)⊗ IC

(
b∧
V−
)

while, from the first equality in (2.4.2),

IC
Ä
Rlχ0

reg∗QM0
reg

ä
|A0

ell

'
Ä
R0j∗R

lχ0
reg∗QM0

reg

ä
[dimA0]

'
⊕
a+b=l

a∧
H1(C)⊗R0j∗

b∧
V−.

Comparing with the second equality of in (2.4.2) and Theorem 2.4.5, we finally

obtain

Corollary 2.4.6. Let j : A0
reg 7→ A0

ell be the open imbedding. Over the

locus A0
ell, we have

IC

(
l∧
V−
)
|A0

ell

'
(
R0j∗

l∧
V−
)

[dimA0]

and Ä
χ̂∗QM̂

ä
|A0

ell

'
⊕
l

(
R0j∗

l∧
V−
)

[−l].

In particular, over the locus A0
ell, the map χ̂ satisfies Assumption 1.4.5.
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3. Preparatory results

3.1. Placing the generators in the right perversity. Here we prove the fol-

lowing theorem.

Theorem 3.1.1. We have

εi ∈ H1
≤1(M), ∀ 1 ≤ i ≤ 2g.

In each of the three cases GL2,SL2, and PGL2, we have

α ∈ H2
≤2(M), ψi ∈ H3

≤2(M), ∀ 1 ≤ i ≤ 2g.

Furthermore, if g > 2, or g ≥ 2 and degD > 2g − 2,

β ∈ H4
≤2(M).

Proof. By the isomorphism (2.4.14), it is enough to work in the case of

GL2. Recalling that deg εi = 1, degα = 2, degψi = 3, and deg β = 4,

Proposition 1.4.12 implies that

εi ∈ H1
≤1(M), α ∈ H2

≤2(M), ψi ∈ H3
≤3(M), and β ∈ H4

≤4(M).

By Thaddeus’ Proposition 5.1.2 in the appendix, we have that α does not

vanish over the general fiber, while ψi and β do. Theorem 1.4.8 implies α ∈
H2
≤2(M), ψi ∈ H3

≤2(M) and β ∈ H4
≤3(M). The same proposition shows that

in order to conclude that β ∈ H4
≤2(M), we need to prove that β vanishes over

a generic line Λ ⊆ A.

Set, for simplicity of notation, MΛ := χ−1(Λ),MΛreg := χ−1(Λreg), where

Λreg := Λ∩Areg. Since, by Lemma 2.1.3, the generic line avoids A\Aell unless

g = 2 and D = KC , we have that Assumption 1.4.5 holds for χ|MΛ
: MΛ → Λ

due to Corollary 2.1.5. We thus have Fact 1.4.6. Let j : Λreg → Λ be the open

immersion.

Since Λ and Λreg are affine and one dimensional, their cohomology groups

in degree ≥ 2 with coefficients in constructible sheaves are zero. In partic-

ular, the Leray spectral sequences for χ|MΛ
and χ|MΛreg

are necessarily E2-

degenerate. The restriction map in cohomology yields a map of Leray spectral

sequences and thus a commutative diagram of short exact “edge” sequences

0 // H1(j∗R
3) // //

r′

��

H4(MΛ) //

r

��

H0(j∗R
4) //

=

��

0

0 // H1(R3) //// H4(MΛreg) // H0(R4) // 0.

(As in §1.4.4, Rl stands for the local system Rlχreg∗Q.) The arrow r′ is, in

turn, arising from the edge sequence of the Leray spectral sequence for the

map j and is thus injective.
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Below, we prove that the restriction of the class β ∈ H4(M) to Mreg

vanishes. The sought-after conclusion β|MΛ
= 0 follows from this by a simple

diagram chasing.

The class β is a multiple of the second Chern class c2(M). This can be

seen by formally calculating the total Chern class of M using E. The result

c(TM) = (1 − β)2g−2 formally agrees with the formula for the total Chern

class of TN ⊕ T ∗N that was calculated in [43, Cor. 2]. Every linear function

on A gives a Hamiltonian vector field onM, tangent to the fibres of χ. These

Hamiltonian vector fields trivialize the relative tangent bundle of Mreg. The

tangent bundle TMreg is an extension of the trivial bundle χ∗regTAreg by the

relative tangent bundle. It follows that the Chern classes of TMreg vanish. �

Remark 3.1.2. In fact, although the argument above cannot be applied,

we have that β ∈ H4
≤2(M), and that β vanishes over the generic line, also in

the case g = 2 and D = KC . This fact is proved in Proposition 4.3.7.

3.2. Vanishing of the refined intersection form. The purpose of this sec-

tion is to establish Corollary 3.2.4, a fact we need in Section 4.3 as one of the

pieces in the proof of the equality of the weight and perverse Leray filtrations

in the case D = KC . We need the following result proved in [29, Th. 1.1].

Theorem 3.2.1. The natural map

H6g−6
c (M̌Dol) −→ H6g−6(M̌Dol)

from compactly supported cohomology-to-cohomology is the zero map.

Remark 3.2.2. Note that Hd(M̌Dol) = Hd(M̂Dol) = 0 for every d >

6g − 6, since, by (1.2.9), M̌Dol and M̂Dol are homeomorphic to M̌B and M̂B

respectively, which are affine complex varieties of dim 6g − 6.

Let us recall that the refined intersection forms on the fibres of a map (see

[12, §3.4] for a general discussion) is the composite of the two maps

(3.2.1) H12g−12−r(χ̌
−1(0)) −→ Hr(M̌Dol) −→ Hr(χ̌−1(0))

and arises by taking r-th cohomology of the adjunction maps

(3.2.2) i!i
!χ̌∗QM̌Dol

−→ χ̌∗QM̌Dol
−→ i∗i

∗χ̌∗QM̌Dol

and using the canonical isomorphisms Hr(A, i!i!χ̌∗QM̌Dol
) ' Hr(M̌Dol,M̌Dol\

χ̌−1(0)) ' H12g−12−r(χ̌
−1(0)) and Hr(A, i∗i∗χ̌∗QM̌Dol

) ' Hr(χ̌−1(0)). The

first map in (3.2.1) is the ordinary push-forward in homology (followed by

Poincaré duality) and the second map is the restriction map.

By the decomposition theorem (see formula (1.4.4)), the complex χ̌∗QM̌Dol

splits into the direct sum of its perverse cohomology sheaves. Combining this
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fact with (3.2.2), we obtain one refined intersection form for each perversity a:

ιra : H12g−12−r,a(χ̌
−1(0)) −→ Hr

a(χ̌−1(0)).

The following fact will be used in the proof of the next corollary.

Theorem 3.2.3. The map ι3g−3
3g−3 : H6g−6,3g−3(χ̌−1(0)) −→ H6g−6

3g−3 (χ̌−1(0))

is an isomorphism.

Proof. See [12, Th. 2.1.10] (where a different numbering convention is

adopted). �

Corollary 3.2.4. The perverse Leray filtration on the middle-dimen-

sional groups satisfies

H6g−6
≤3g−3(M̌Dol) = 0, H6g−6

≤3g−3(M̂Dol) = 0.

Proof. Since χ̂∗QM̂Dol
= (χ̌∗QM̌Dol

)Γ, it suffices to prove the statement

for M̌Dol.

For every r, the first map in (3.2.1) factors as follows:

(3.2.3) Hr(M̌Dol,M̌Dol \ χ̌−1(0)) −→ Hr
c (M̌Dol) −→ Hr(M̌Dol)

so that, by Theorem 3.2.1, it is the zero map. It follows that the refined

intersection form (3.2.1),

H6g−6(χ̌−1(0)) −→ H6g−6(χ̌−1(0)),

vanishes. This, in turn, implies that all the graded refined intersection forms

ι3g−3
a are zero.

If we combine the vanishing of ι3g−3
3g−3 with Theorem 3.2.3, then we deduce

that

(3.2.4) H6g−6
3g−3 (χ̌−1(0)) = 0.

Proposition 1.4.12 implies that H6g−6
≤3g−4(M̌Dol) = 0. In order to conclude,

we need to prove that H6g−6
3g−3 (M̌Dol) = 0.

Since the restriction map to the fiber is compatible with any splitting

coming from the decomposition theorem, in view of the vanishing (3.2.4), it is

enough to show that the restriction map H6g−6(M̌Dol) −→ H6g−6(χ̌−1(0)) is

an isomorphism. In fact it follows from [49, §3] that χ̌−1(0) — being the down-

ward flow [28, Ths. 3.1 and 5.2] of a C×-action on M̌Dol — is a deformation

retract of M̌Dol. �

3.3. Bi-graded sl2(Q)-modules. We collect here some linear algebra con-

siderations that will be used in the sequel of the paper. Let H =
⊕
d,w≥0H

d
w

be a finite dimensional bi-graded vector space. We say that d is the degree and
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w is the weight. We employ the following notation:

Hw :=
⊕
d≥0

Hd
w, Hd :=

⊕
w≥0

Hd
w.

Let Y be a nilpotent endomorphism of H that is bi-homogeneous of type (2, 2),

i.e., Y : H∗∗ → H∗+2
∗+2. Let wo ∈ Z≥0 be such that for every l ≥ 0, we have hard-

Lefschetz-type isomorphisms

Y l : Hwo−l
'−→ Hwo+l.

Note that we must then have that Hw = {0} for every w > 2wo.

It is well known that we can turn H into an sl2(Q)-module in a natural

way by means of a unique pair (X,H) of homogeneous endomorphism of H or

respective types (−2,−2) and (0, 0) subject to [X,Y ] = H. In this case H is

just the “w-grading” operator: Hu = (w − w0)u if u ∈ Hw.

Given a bi-homogeneous element u ∈ Hd
w, we define

(3.3.1) ∆(u) := d− w.

Note that the action of sl2(Q) leaves ∆ invariant.

We define the primitive space P := KerX ⊆ H, and we obtain the primi-

tive decomposition

H =
⊕
j≥0

Y j · P.(3.3.2)

Note that we have

Y j · P = KerXj+1 ∩ ImY j .

Since X is homogeneous, the space P is also bi-graded. We set Pw :=

P∩Hw, Pd := P∩Hd, and Pdw := P∩Hd
w. We have Pw = {0} for every w > wo

and

P =
⊕
d,w

Pdw =
⊕
w≥0

Pw =
⊕
d≥0

Pd.

For every fixed weight w, the primitive decomposition can be rewritten as

follows:

Hw =
⊕
j≥0

Y j · Pw−2j , Hd
w =

⊕
j≥0

Y j · Pd−2j
w−2j .

We denote by Π the operator of projection onto P; clearly, if u ∈ Hd
w, then

Π(u) ∈ Pdw and Π(u) = u+
∑
j>0 Y

juj with uj ∈ Hd−2j
w−2j .

Given a subset S ⊆ H, we define the associated Y -string

〈S〉Y =
⊕
j≥0

Y j · 〈S〉Q ⊆ H.

In particular, 〈P〉Y = H. If u is a bi-homogeneous element, then ∆ is constant

on the Y -string 〈u〉Y generated by u.
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Let 0 6= pw ∈ Pw. Then 〈pw〉Y = 〈pw, Y · pw, . . . , Y wo−w · pw〉Q ⊆ H is

isomorphic to the irreducible sl2(Q)-submodule of dimension (wo − w) + 1.

Hence, the isotypical decomposition of the sl2(Q)-module H is

H =
⊕

0≤w≤wo
〈Pw〉Y .

We define the isobaric decomposition of H as the direct sum decomposition

obtained by grouping terms according to the powers of Y in the isotypical

decomposition given above, namely

(3.3.3) H =
⊕

0≤w≤wo

⊕
0≤j≤wo−w

Y j · Pw.

The proof of the following proposition is completely elementary and safely

left to the reader. (For point (4), just remark that if u ∈ Hd
w ∩ ImY , then

u = Y v, with v ∈ Hd−2
w−2.)

Proposition 3.3.1. Let M ⊆ H be a subset of bi-homogeneous elements

such that 〈M〉Y = H. Then

(1) The set Π(M) ⊆ P obtained by projecting M to the primitive space is

also a Y -generating subset of bi-homogeneous elements with the same

bi-degrees, and its linear span is P:

〈Π(M)〉Y = H, 〈Π(M)〉Q = P.

(2) If T ′ ⊆ Π(M) is a linearly independent set, then it can be completed

to a basis T ⊆ Π(M) for P that is also Y -generating : 〈T 〉Q = P and

〈T 〉Y = H. Let T ⊆ Π(M) be a basis for P.

(3) Let T dw := T ∩Hd
w, T

d := T ∩Hd, Tw := T ∩Hw; then

Pdw = 〈T dw〉Q, 〈Pw〉Q = 〈Tw〉Q, 〈Pd〉Q = 〈T d〉Q.

(4) If m ∈ M has bidegree (d,w), then there are Cj,t ∈ Q for j > 0, t ∈
T d−2j
w−2j such that

Π(m) = m+
∑
j,t

Cj,tY
jt.

In particular, if Π(m) 6= 0, then ∆(m) = ∆(Π(m)).

4. W=P

This section contains the proof of the main result of this paper: the iden-

tification of the perverse Leray filtration associated to the Hitchin map with

the weight filtration of the cohomology of the character variety in the case

D = KC (§4.3), or, if degD > 2g − 2, with the abstract weight filtration,

defined in Definition 1.2.11. The latter case is easier and we deal with it first.
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Let H :=
⊕
d≥0H

d(M̂), and let Y := α∪ : Hd
w −→ Hd+2

w+2 be the operation

of cupping with α.

In virtue of the curious hard Lefschetz Theorem 1.2.12, we are in the

situation described in Section 3.3, with w0 = g−1+degD. The monomials ψtβs

(as defined in Proposition 4.2.1) give a set of bi-homogeneous elements that is

Y -generating, for H, and, by Proposition 3.3.1, the elements Π(ψtβs) span P.

The perverse filtration is denoted by H≤. As noticed in Corollary 5.1.3, α is

relatively ample and it defines a Deligne decomposition of H, whose summands

are denoted, as in Section 1.4.3, by Qi,j and, when we want to emphasize the

cohomological degree, by Qi,j; d := Qi,j ∩Hd. We set Q :=
⊕

i,dQ
i,0; d. Clearly,

(4.1.1) 〈Q〉Y = H.

Proposition 4.1.1. Let u ∈ Hd
w, i.e., the weight w(u) = w.

(1) If ∆(u) ≤ codimA0 \A0
ell, then u ∈ Hd

≤w, i.e., the perversity p(u) ≤ w.

(2) If u ∈ Pdw and ∆(u) ≤ codimA0 \ A0
ell, then, more precisely, u ∈

Qw,0; d ⊆ Hd
≤w.

Proof. Since the monomials u = αrψtβs are additive generators, it is

enough to prove (1) for these monomials. By virtue of Lemma 1.4.4, we are

further reduced to the case u = ψtβs. Keeping in mind the upper bound

p ≤ 2 on the perversity of β and ψ given by Theorem 3.1.1, we can apply the

perversity test given by Proposition 1.4.11 (where the set Y in loc. cit. is the

present set A0 \A0
ell) and obtain that u∈H4s+3t

≤2(s+t) as soon as (4s+3t)−(2s+2t)

− 1 = ∆(ψtβs)− 1 < codimA0 \ A0
ell. This proves (1)

In view of Proposition 3.3.1, in order to prove the second statement, it is

enough to prove that Π(ψtβs) ∈ Q2(s+t),0; 3t+4s.

By using induction on r := s+ t, we first show that Π(ψtβs) ∈ H≤2(s+t).

• For r = 0 there is nothing to prove.

• Suppose we know that Π(ψt
′
βs
′
) ∈ H≤2(s′+t′) for all (s′, t′) with s′ +

t′ ≤ r − 1. If (s, t) is such that s + t = r, we may write (see again

Proposition 3.3.1, part (4))

(4.1.2) Π(ψtβs) = ψtβs +
∑

(si,ti)

Csi,tiα
jiΠ(ψtiβsi), with ji = r − si − ti > 0.

By (1), we have that ψtβs ∈ H≤2(s+t). By the inductive hypothesis,

we have that Π(ψtiβsi) ∈ H≤2(si+ti) so that, by Lemma 1.4.4, we have

that αjiΠ(ψtiβsi) ∈ H≤2r. The conclusion on the sum Π(ψtβs) ∈ H≤2r

follows.

By definition of primitivity, αw0−2(s+t)+1Π(ψtβs) = 0. Since Π(ψtβs) ∈
H≤2(s+t), the nonmixing Lemma 1.4.3, coupled with the equality above, implies

that Π(ψtβs) ∈ Q2(s+t),0. �
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4.2. The case degD > 2g−2, G = PGL2,GL2. In this section we assume

n := degD + 2− 2g > 0.

Recall the relations (1.2.11) between the generators of the cohomology

ring. Theorem 1.2.10 readily implies the following.

Proposition 4.2.1. For nonnegative integers t1, . . . , t2g , let us write1 ψt

for ψt11 . . . ψ
t2g
2g and let us set t :=

∑2g
i=1 ti. Then

(1) If n := degD + 2− 2g > 0, then βs ψt = 0 for 2s+ t ≥ degD.

(2) If D = KC , then βs ψt = 0 for 2s + t ≥ 2g − 2, unless ψt = γr, with

r + s = g − 1.

Proof. Let us assume n > 0. The monomial βs ψt is a sum of terms of the

form Aiγ
iβs with Ai ∈ Λt−2i

0 . From the relations in Theorem 1.2.10, it follows

that

if γiβs ∈ Ig+2i−t
n+t−2i, then Aiγ

iβs = 0.

By inequalities (1.2.12) and Remark 1.2.9, γiβs∈Ig+2i−t
n+t−2i if 2i+2s≥2(g−t+2i)

− 2 + n + t − 2i, that is, if 2s + t ≥ 2g − 2 + n = d. If n = 0, we proceed as

above, noting that Remark 1.2.9 fails exactly in the case i = 0, in which case

we find that βg−1, γβg−2, . . . , γg−1 6= 0. �

Theorem 4.2.2. The abstract weight filtration W ′• on H∗(M̂) (Defini-

tion 1.2.11) coincides with the perverse Leray filtration associated with the

Hitchin map χ̂. For every integer i, we have

(4.2.1) H∗≤i(M̂) = W ′iH
∗(M̂) = 〈αrψtβs〉2(r+s+t)≤i.

More precisely, the isobaric decomposition (3.3.3) coincides with the Deligne

decomposition (1.4.14) in Section 1.4.3 associated to α: for every w, we have

Pw = Qw,0.

Proof. Since the statement about the equality of the filtrations follows at

once from the second on the equality of the internal direct sum decompositions,

we prove the latter one. By Proposition 4.2.1, we have that ψtβs = 0 as soon

as ∆(ψtβs) = t + 2s ≥ degD. It follows that we only need to consider the

monomials ψtβs with t+s < degD. By Lemma 2.1.3, codimA0\A0
ell = degD.

We can then apply Proposition 4.1.1 and deduce that

(4.2.2) Π(ψtβs) ∈ Q2(s+t),0; 4s+3t.

Since {Π(ψtβs)} is a set of generators for the primitive space P, and since Π

strictly preserves the weights by construction, we deduce that Pw ⊆ Qw,0 for

all w. Since, by (3.3.2), 〈P〉Y = H and, by (4.1.1), 〈Q〉Y = H, it follows that

Pw and Qw,0 coincide for all w. �

1As the ψ classes have degree 3 they anticommute, so we could assume ti = 0, 1.
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Theorem 4.2.3. The abstract weight filtration W ′• on H∗(M) coincides

with the perverse filtration associated with the Hitchin map. More precisely,

the isobaric decomposition coincides with the Deligne decomposition associated

to α̃ = α⊗ 1 + 1⊗ (
∑
εiεi+g).

Proof. As cupping with i increases the perversity exactly by one, the state-

ment follows from the isomorphism (2.4.14) and Lemma 1.4.4. �

4.3. The case D = KC , G = PGL2,GL2. In this section, we set

H =
⊕
d≥0

Hd(M̂Dol).

Lemma 4.3.1. We have the following :

αrψtβs ∈ H2r+3t+4s
≤2(r+t+s), Π(ψtβs) ∈ Q2(t+s),0; 3t+4s

unless ψtβs = γv βs with v + s = g − 1 (cf. (2) in Proposition 4.2.1).

Proof. Since, by Lemma 1.4.4, cupping with α increases the perversity by

at most 2, we may suppose r = 0. Note that we are excluding precisely the

classes in the statement of Proposition 4.2.1 (case D = KC). By this same

proposition, we may thus assume that 2s + t < 2g − 2 = codimA0 \ A0
ell + 1,

where the last equality results from Lemma 2.1.3. The result follows from

Proposition 4.1.1. �

Remark 4.3.2. The argument above breaks when dealing with the classes

γrβg−1−r that we have excluded from the statement. To check that γrβg−1−r ∈
H2r+4g−4
≤2g−2+2r we should consider a linear subspace of dimension (2r + 4g − 4)−

(2g − 2 + 2r) − 1 = 2g − 3, which is exactly the codimension of the “bad

locus” A0 \ A0
ell. On the other hand, a general linear subspace of dimension

one less, i.e., 2g − 4, misses the bad locus, and thus yields, by Theorem 1.4.8,

the following upper bound on the perversity

(4.3.1) γrβg−1−r ∈ H2r+4g−4
≤2g−1+2r.

While this upper bound is not sufficient for our purposes, it is used in what

follows.

Remark 4.3.3. The relations ρc1,s,g−1−s ∈ I
g
0 in (1.2.11) show that for all r,

the class γrβg−1−r is a multiple of αrβg−1.

As pointed out several times, in view of Lemma 1.4.4, cupping with α

is harmless for us and we are reduced to prove that βg−1 ∈ H4g−4
≤2g−2. The

remainder of the analysis is devoted to improve the upper bound (4.3.1), by

one unit, i.e., to proving that βg−1 ∈ H4g−4
≤2g−1.
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Lemma 4.3.4. For every s in the range 0 ≤ s ≤ g − 1, we have

βs ∈ P4s
2s.

In particular, the classes βs are not divisible by α.

Proof. Recall that Hd = 0 for every d > 6g−6 (see Remark 3.2.2). Clearly,

since weights w are strictly multiplicative, βs ∈ H4s
2s. Since, in the terminology

of Section 3.3, H is a bi-graded sl2(Q)-module with w0 = 3g− 3, we have that

α3g−3−2sβs 6= 0. On the other hand, α3g−3−2s+1βs ∈ H6g−4 = {0}. These are

precisely the conditions defining primitivity. �

Set

J := {βsψt ∈ H such that ∆(βsψt) ≤ 2g − 3 if t is odd and(4.3.2)

∆(βsψt) ≤ 2g − 4 if t is even}

and ‹H := 〈 J 〉α = 〈Π(J) 〉α.
By Remark 4.3.3, if r ≥ 1, then γrβg−1−r is divisible by α. In this case, the

projection to the primitive space Π(γrβg−1−r) = 0. By Lemma 4.3.4, we have

Π(βg−1) = βg−1 and γrβg−1−r ∈ 〈βg−1〉α. Since ∆(βsψt) = 2s + t, point (2)

of the statement of Proposition 4.2.1 can be rephrased by saying that, unless

βsψt ∈ 〈βg−1〉α, we have that βsψt ∈ ‹H. Thus we have an sl2(Q)-invariant

decomposition

(4.3.3) H = ‹H ⊕
〈βg−1〉α.

Lemma 4.3.5. The following facts hold :

(1) Hd = ‹Hd unless d+ 4− 4g is even nonnegative.

(2) dimH4g−4+2k = dim‹H4g−4+2k + 1 for 0 ≤ k ≤ g − 1.

(3) In the range of point (1), Pdw = Qw,0; d. In particular, all the nonzero

summands Qi,j,d in the Deligne decomposition satisfy d−i−2j ≤ 2g−3

if d is odd and d− i− 2j ≤ 2g − 4 if d is even.

(4) In the range of point (2), there is at most one nonzero, necessarily

one-dimensional, summand Qi,j,d satisfying d− i− 2j > 2g − 4.

Proof. Points (1) and (2) follow immediately from the fact that the α-

string 〈βg−1〉α contains the classes βg−1, αβg−1, . . . , αg−1βg−1 whose cohomo-

logical degrees are 4g − 4, 4g − 2 . . . , 6g − 6. Note that the monomials βsψt in

J are precisely those to which Lemma 4.3.1 applies; hence

Pdw ∩ ‹Hd
w ⊆ Qw,0; d

and, for j ≥ 0,

(αj Pd−2j
w−2j) ∩ ‹Hd

w ⊆ αjQw−2j,0; d−2j = Qw−2j,j; d.
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Combining this fact with the α-decompositions (3.3.3) and (1.4.14) in Sec-

tion 1.4.3, and with the points (1) and (2) that we just proved, we immediately

obtain points (3) and (4) �

Lemma 4.3.6. Either βg−1 ∈ Q2g−2,0; 4g−4 or βg−1 ∈ Q2g−1,0; 4g−4.

Proof. By (4.3.1), with r = 0, we have that βg−1 ∈ H4g−4
≤2g−1. There is

hence at least one nonzero summand Qi0,j0; 4g−4 in the Deligne decomposition,

satisfying

(4.3.4) i0 + 2j0 ≤ 2g − 1.

Suppose j0 6= 0; by (1.4.18), we have

Qi0,j0; 4g−4 = αj0Qi0,0; 4g−4−2j0 .

Since Qi0,0; 4g−4−2j0 6={0}, we have, by point (3) of Lemma 4.3.5, (4g−4−2j0)

− i0−2j0 ≤ 2g − 4, which contradicts the inequality (4.3.4) above, showing

that j0 = 0. By Corollary 1.4.13, we then have

β ∈ H4g−4
≤2g−1 = Q2g−2,0;4g−4 ⊕Q2g−1,0;4g−4 �

Proposition 4.3.7. We have that

βg−1 ∈ Q2g−2,0; 4g−4.

Proof. Suppose that the statement is false. By Lemma 4.3.6, the space

Q2g−2,0; 4g−4 = 0 and the class βg−1 ∈ Q2g−1,0; 4g−4. From the property of the

Deligne decomposition expressed by (1.4.18), it follows that, for j ≤ g − 2, we

have 0 6= αjβg−1 ∈ Q2g−1,j; 4g−4+2j . By using the decomposition (4.3.3) and

Lemma 4.3.5, it follows that, for every even nonnegative integer d < 6g − 6,

(4.3.5) Hd = ‹Hd =
⊕

d−i−2j≤2g−4

Qi,j; d if d < 4g − 4

and

(4.3.6)

Hd=

Ñ ⊕
d−i−2j≤2g−4

Qi,j; d

é⊕
Q2g−1,j0; d, with j0 =d/2−2g+ 2, if d≥4g−4.

In this latter case, Q2g−1,j0; d = 〈αj0βg−1 〉Q.

Applying one of the defining properties of the Deligne decomposition, i.e.,

the second equation in (1.4.17) (with f = 3g−3 and i = 2g−1), to αg−2βg−1 ∈
Q2g−1,g−2; 6g−8, we have the following upper bound for the perversity

αg−1βg−1 = α(αg−2βg−1) ∈ H6g−6
≤4g−5.

From Corollary 3.2.4, it follows that

H6g−6
≤3g−3 = {0}.
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It follows that there exists 1 ≤ r ≤ g − 2 such that

(4.3.7) αg−1βg−1 ∈ H6g−6
≤3g−3+r and αg−1βg−1 /∈ H6g−6

≤3g−4+r.

From this and from point (4) of Lemma 4.3.5, it follows that αg−1βg−1

must belong to the unique summand Q3g−3−r,r; 6g−6 with 1 ≤ r ≤ g − 2.

Since r ≥ 1, the relation (1.4.18) gives

Q3g−3−r,r; 6g−6 = αrQ3g−3−r,0; 6g−6−2r.

On the other hand, (4.3.6) together with d = 6g − 6 − 2r shows that

Q3g−3−r,0; 6g−6−2r = 0. �

Remark 4.3.8. For g = 2, the previous argument shows that β ∈ H4
≤2, as

anticipated in Remark 3.1.2.

Proposition 4.3.7 allows us to complete point (3) in Lemma 4.3.5:

Pdw = Qw,0; d for all d,w.

We finally summarize what we proved in the following theorem, which is

the main result of this paper:

Theorem 4.3.9. The non-Abelian Hodge theorem for PGL2, (resp. GL2)

identifies

• the perverse Leray filtration with the weight filtration : for every inte-

ger i, we have

H∗≤i(M̂Dol) 'W2iH
∗(M̂B) = W2i+1H

∗(M̂B),

H∗≤i(MDol) 'W2iH
∗(MB) = W2i+1H

∗(MB);

• the relative hard Lefschetz theorem (1.4.9) relative to the Hitchin map

χ̂ (resp. χ) and to the relatively ample class α (resp. α̃ = α⊗ 1 + 1⊗
(
∑
εiεi+g)) with the curious hard Lefschetz Theorem 1.2.3:

H∗3g−3−i(M̂Dol)
' //

αi'
��

GrW6g−6−2iH
∗(M̂B)

αi'
��

H∗+2i
3g−3+i(M̂Dol)

' // GrW6g−6+2iH
∗+2i(M̂B)

and

H∗4g−3−i(MDol)
' //

α̃i'
��

GrW8g−6−2iH
∗(MB)

α̃i'
��

H∗+2i
4g−3+i(MDol)

' // GrW8g−6+2iH
∗+2i(MB);

• the Deligne Q-splitting (1.4.14) associated with the relatively ample

class α (resp. α̃) with the isobaric splitting (3.3.3).
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Proof. It follows from Lemma 4.3.1 that every cohomology class of the

additive basis, with the possible exception of those in the α-chain of βg−1 (see

Remark 4.3.3), satisfies “W=P.” Lemma 4.3.7 show that also βg−1 satisfies the

condition “W=P,” and so do the classes in its α-chain, thus proving the first

statement for PGL2. The two other statements follow similarly. The extension

to GL2 follows immediately from the isomorphism (2.4.14) and Lemma 1.4.4,

as cupping with εi increases the perversity exactly by one. �

Remark 4.3.10. We have made a heavy use and made explicit Deligne’s

splitting of the direct image complex via the use of a relatively-ample line bun-

dle. This general splitting mechanism is described in [20]. The same paper

details the construction of two additional splittings. As the simple example of

the ruled surface P 1×P 1 → P 1 already shows, in general, the three splittings

differ. It is possible to show that, in the case of all three Hitchin maps consid-

ered in this paper, all three splittings coincide when viewed in cohomology.

Remark 4.3.11. Let u ∈ Qi,j . Such a class has perversity p := i+ 2j when

viewed as a cohomology class for the Higgs moduli space. The main result of

this paper, i.e., P = W , shows that the non-Abelian Hodge theorem turns this

class into a (p, p)-class for the split Hodge-Tate mixed Hodge structure on the

associated character variety.

4.4. SL2. In this section, for the sake of notational simplicity, we will

denote simply by M̌ the moduli space M̌Dol of stable Higgs bundles on C of

rank 2 and fixed determinant of degree 1. Let χ̌ : M̌ → A0 be the Hitchin

map. The action of Γ = Pic0
C [2] ' Z2g

2 on M̌ by tensorization preserves the

map χ̌, and, as discussed in Section 2.4, we have a direct sum decomposition

according to the characters of Γ:

(4.4.1) χ̌∗QM̌ '
⊕
κ∈Γ̂

(χ̌∗QM̌)κ = (χ̌∗QM̌)Γ
⊕

(χ̌∗QM̌)var ,

where we set (χ̌∗QM̌)var =
⊕

06=κ∈Γ̂(χ̌∗QM̌)κ. Taking cohomology, (4.4.1) gives

H∗(M̌) =
⊕
κ∈Γ̂

H∗(M̌)κ = H∗(M̌)Γ
⊕

H∗var(M̌),(4.4.2)

where H∗(M̌)κ = H∗(A0, (χ∗QM̌)κ) is the subspace of H∗(M̌) where Γ acts

via the character κ and H∗var(M̌) :=
⊕

0 6=κ∈Γ̂H
∗(M̌)κ = H∗(A0, (χ∗QM̌)var)

is the variant part of H∗(M̌).

Recall from [35, formula after (7.13)] that

dimH4g+2d−5
var (M̌) =

®
(22g − 1)

( 2g−2
2g−2d−1

)
if d = 1, . . . , g − 1,

0 otherwise .
(4.4.3)
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For γ ∈ Γ ⊆ Pic0
C , let Lγ be the corresponding order 2 line bundle, and

let iγ be the “squaring” map

(4.4.4) iγ : H0(C,KC ⊗ Lγ) −→ H0(C, 2KC) = A0, iγ(a) = a⊗ a,

with image A0
γ := Im(iγ) ⊂ A0. By the Riemann-Roch theorem, dim(A0

0) = g

and, if γ ∈ Γ∗ = Γ \ {0}, then dim(A0
γ) = g − 1. Points in ∪γ∈Γ∗A0

γ are called

endoscopic points. Set

A0
ne := A0 \ ∪γ∈Γ\0A0

γ , and M̌ne := χ̌−1(A0
ne).

Our goal is to prove the following proposition.

Proposition 4.4.1. Let s ∈ A0
ne, and let M̌s := χ̌−1(s) denote the fiber

of the Hitchin fibration over s. The group Γ acts trivially on H∗(M̌s).

Proposition 4.4.1 immediately implies

Corollary 4.4.2. The variant complex (χ̌∗QM̌)var is supported on

∪γ∈Γ∗A0
γ = A0 \ A0

ne.

Proof. Taking the cohomology sheaves of the decomposition (4.4.1), we

have that Γ acts as multiplication by the character κ ∈ Γ̂ on Hi((χ∗QM̌)κ).

By Proposition 4.4.1,

if s ∈ A0
ne and κ 6= 0, then Hi((χ∗QM̌)κ)s = 0 for all i;

therefore the restriction of
⊕
κ∈Γ̂\{0} (χ∗QM̌)κ to A0

ne vanishes. �

In order to prove Proposition 4.4.1, we show that the action of Γ on M̌s,

for s ∈ A0
ne, is the restriction to Γ of an action of a connected group PrymCs/C ;

as such Γ acts trivially on H∗(M̌s). We begin with some preliminary consid-

erations on the norm map.

Fix s ∈ A0
ne, and let π : Cs → C be the corresponding spectral cover.

When s ∈ A0
0, we have that Cs = C1 ∪ C2 is reducible; otherwise Cs is an

integral curve. We denote by Pic0
Cs the connected component of the identity

of PicCs . Denote by ν : ‹Cs → Cs the normalization. Define the norm map

NmCs/C : Pic0
Cs → Pic0

C by

NmCs/C := Nm
C̃s/C

◦ ν∗(4.4.5)

where, for a divisor D on the nonsingular curve ‹Cs, the norm map

Nm
C̃s/C

(O(D)) = O((π ◦ ν)∗D)

is the classical one. Consequently NmCs/C : Pic0(Cs) → Pic0(C) is a group

homomorphism.
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By Proposition 3.8 in [31], we have the following alternative formula for

the norm map:

NmCs/C(L) = det(π∗(L))⊗ det(π∗(O))−1.(4.4.6)

As NmCs/C : Pic0
Cs→Pic0

C is a group homomorphism, the kernel PrymCs/C

:= Nm−1
Cs/C

(OC) is a subgroup of Pic0
Cs .

Lemma 4.4.3. If s ∈ A0
ne, then the group PrymCs/C = Nm−1

Cs/C
(OC) is

connected.

Proof. The case of an integral spectral curve Cs is treated in [44, §11].

The argument is easily adapted to the case of a reducible and reduced curve.

For a proof more in the spirit of the present paper, see [31, Th. 1.2]. �

Lemma 4.4.4. Let π : X → Y be a degree two map from a reduced pro-

jective curve X to a nonsingular projective curve Y . Let E be a rank 1 torsion

free sheaf on X and L an invertible one. Then

det(π∗(L ⊗ E)) = det(π∗(E))⊗NmX/Y (L).(4.4.7)

Proof. First we note that by Theorem 2.2.2, we have that there is a unique

partial normalization π′ : X ′ → X and an invertible sheaf L′ on X ′ such that

E = π∗(L′). The multiplicativity of the norm map and (4.4.6) imply

det((π ◦ π′)∗((π′)∗(L)⊗ L′)) = det((π ◦ π′)∗(L′))⊗NmX′/Y ((π′)∗(L)).

This together with NmX′/Y ◦ (π′)∗ = NmX/Y yields the result. �

Proof of Proposition 4.4.1. We first prove that PrymCs/C acts on the fiber

M̌s. Recall that M̌s can be identified with pure rank 1 torsion-free sheaves

E on Cs for which the corresponding Higgs bundle (π∗(E), φE) is stable, and

det(π∗(E)) ∼= Λ. (Note that tr(φE) = 0 is automatic as s ∈ H0(C; 2KC).) Now,

L ∈ PrymCs/C acts on E as E 7→ L ⊗ E , where the result is again a pure rank

1 torsion-free sheaf on Cs. It follows that (π∗(L ⊗ E), φL⊗E) is a rank 2 Higgs

bundle. By Lemma 4.4.4, we have that

det(π∗(L ⊗ E)) = Λ.(4.4.8)

Finally, we prove that tensoring with an element of PrymCs/C preserves

stability. Assume there is a rank 1 Higgs subbundle (LF , φF ) of (π∗(L ⊗ E),

φL⊗E) corresponding to the torsion-free sheaf F ⊂ L ⊗ E on Cs. Then the

spectral curve CF = supp(F) of (LF , φF ) must be a subscheme of Cs, so

that CF → C is degree 1. Thus Cs = C1 ∪ C2 must be reducible and F be

supported on one of the components, say CF = C1, with π1 := π|C1 : C1
∼=→ C

an isomorphism. As LF = π∗(F) we can identify it with F|C1 . Finally since



TOPOLOGY OF HITCHIN SYSTEMS 1397

L ∈ PrymCs/C ⊂ Pic0
Cs , we have that deg(L|C1) = 0, and so

deg(LL−1⊗F ) = deg(L−1|C1 ⊗F|C1) = deg(F|C1) = deg(LF ).

To summarize, (π∗(E), φE) and (π∗(L ⊗ E), φL⊗E) have the same degree sub

Higgs-bundles. It follows that if (π∗(E), φE) is stable, then so is (π∗(L ⊗ E),

φL⊗E).

We thus proved that the connected group scheme PrymCs/C acts on M̌s.

For any order 2 line bundle L ∈ Γ = Pic0
C [2], we have NmCs/C(π∗s(L)) =

L2 = OC ; therefore π∗(L) ∈ PrymCs/C , and consequently Γ ⊂ PrymCs/C acts

trivially on H∗(M̌s). �

Remark 4.4.5. For a more detailed calculation of the group of components

of Prym varieties of spectral covers, see [31].

We now introduce the notation Hk
≤p,var := Pp ∩ Hk

var(M̌) and Hk
p,var :=

GrPp (Hk
var(M̌)).

Theorem 4.4.6. The perverse Leray filtration on H∗var(M̌) satisfies

0 = Hk
≤k−2g+1,var(M̌) ⊆ Hk

≤k−2g+2,var(M̌) = Hk
var(M̌).

Proof. Since dimA0 \ A0
ne = g − 1, a general (2g − 3)-dimensional lin-

ear subspace Λ2g−3 of the (3g − 3)-dimensional affine base A0 lies entirely

inside A0
ne. By Proposition 4.4.1, the restriction of a class in H∗var(M̌) to

H∗(M̌ne), and thus to H∗(M̌|Λ2g−3), is trivial. This fact, coupled with the

test for perversity given by Theorem 1.4.8, implies the inclusion Hk
var(M̌) ⊆

Hk
≤k−2g+2,var(M̌).

We are left with proving that

Hk
≤k−2g+1,var(M̌) = 0.(4.4.9)

Let k be the smallest integer such that Hk
≤k−2g+1,var(M̌) 6= 0. We thus have

that

Hk′
≤k′−2g+1,var(M̌) = 0, ∀ k′ < k.

By combining this vanishing with the equality established above, we deduce

that

Hk′
k′−2g+2,var(M̌) ∼= Hk′

var(M̌).(4.4.10)

The class α is Γ-invariant, so that cupping with the powers of α respects the

Γ-decomposition. In particular, by relative hard Lefschetz, we see that cupping

with the appropriate power of α yields an isomorphism of graded groups

Hk′
k′−2g+2,var(M̌) ∼= H10g−10−k′

8g−8−k′,var(M̌).(4.4.11)

In view of (4.4.3), we have that dimHk′
var(M̌) = dimH10g−10−k′

var (M̌) so

that, by (4.4.11) and by (4.4.10), we have H10g−10−k′
8g−8−k′,var(M̌) ∼= H10g−10−k′(M̌),
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and consequently

H10g−10−k′
≤8g−9−k′,var(M̌) = 0.(4.4.12)

By our choice of k, we have that Hk
≤k−2g+1,var(M̌) 6= 0, so that there is l < k

such that

Hk
l−2g+2,var(M̌) 6= 0.

As above, the relative hard Lefschetz yields

H10g−10+k−2l
8g−8−k′,var (M̌) 6= 0.

In view of the fact that k > l > 2l−k, this contradicts (4.4.12) with the choice

of k′ = 2l − k, and (4.4.9) follows. �

Theorem 4.4.6 determines the perverse Leray filtration on the Γ-variant

part H∗var(M̌). In the course of the proof we have proved that for 2d < g, the

Lefschetz map

∪αg−2d : H4g+2d−5
var (M̌) −→ H6g−5−2d

var (M̌)(4.4.13)

is an isomorphism.

Now we determine the mixed Hodge structure on the cohomology of the

character variety M̌B. Notice that the direct sum decomposition H∗(M̌B) '
H∗(M̌B)Γ⊕H∗var(M̌B), being associated with the algebraic action of a group,

is a decomposition into a direct sum of Mixed Hodge structures.

Theorem 4.4.7.

0 = W2k−4g+3H
k
var(M̌B) ⊂W2k−4g+4H

k
var(M̌B) = Hk

var(M̌B)(4.4.14)

and

0 = F k−2g+2Hk
var(M̌B) ⊂ F k−2g+1Hk

var(M̌B) = Hk
var(M̌B).(4.4.15)

Proof. As the invariant part H∗(M̌B)Γ ∼= H∗(M̂B), we have

Evar(M̌B;x, y) :=
∑
d,i,j

xiyj(−1)k dim
Ä
GrWi+jH

k
c,var(M̌B)

äij
C

(4.4.16)

= E(M̌B;x, y)− E(M̂B;x, y)

= (22g − 1)(xy)2g−2

Ç
(xy − 1)2g−2 − (xy + 1)2g−2

2

å
=

g−1∑
i=1

(22g − 1)
(2g−2

2i−1

)
(xy)2g−3+2i,

whereE(M̂B;x,y) is given by the right-hand side of [32, (1.1.3)] andE(M̌B;x, y)

is given by [41, (4.6)] with q = xy.

We first observe that

Evar(M̌B; 1/x, 1/y) = (xy)6g−6Evar(M̌B;x, y)
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is palindromic. Consequently, by Poincaré duality the corresponding expres-

sion on ordinary cohomology∑
d,i,j

xiyj(−1)k dim(GrWi+jH
k
var(M̌B)C)ij = Evar(M̌B;x, y)

is thus also given by (4.4.16). Now we note that (4.4.16) only depends on xy;

i.e., every term is of the form xpyp. Additionally, by (4.4.3), if Hk
var(M̌B) 6= 0,

then k is odd, and every nontrivial dim
Ä
GrWi+jH

d(M̌B)C
äi,j

will contribute

with a negative coefficient; thus there is no cancellation and the only nontrivial

terms are of the form (GrW2pH
d
var(M̌B)C)p,p. It follows that the mixed Hodge

structure on H∗var(M̌B;x, y) is of Hodge-Tate type; thus (4.4.15) follows from

(4.4.14).

We now determine the weights on H∗var(M̌B). Again, as H∗var(M̌B) is only

nontrivial in odd cohomology, weights cannot cancel each other since they

all contribute with a negative coefficient. The possible weights therefore are

4g − 2, 4g + 2, . . . , 8g − 10 (twice the degrees in xy of the monomials appearing

in (4.4.16)), with multiplicities that turn out to be equal to

dim H4g−3
var (M̌B), dim H4g−1

var (M̌B)) , . . . , dim H6g−7
var (M̌B)

respectively. (These appear as the coefficients in (4.4.16).) To conclude, we

need to show that they will be the weights on the cohomologies

H4g−3
var (M̌B), H4g−1

var (M̌B), . . . ,H6g−7
var (M̌B)

respectively. This follows from (4.4.13) by an argument similar to the proof of

(4.4.6). �

Corollary 4.4.8. We have that P = W on H∗var(M̌) and consequently

on H∗(M̌).

Remark 4.4.9. Note also that this implies a complete description of the

ring H∗(M̌). We already know the ring structure on the invariant part. Now,

α acts on H∗var(M̌) as described in (4.4.13). Also, β and ψi act trivially, since

their weights are such that when multiplied with any class in H∗var(M̌B), it

would provide a class with a degree and weight that does not exist inH∗var(M̌B).

Finally by degree reasons variant classes multiply to 0. This implies a complete

description of the ring structure on H∗(M̌).

Remark 4.4.10. The determination of the perverse filtration on H∗var(M̌)

using the symmetry provided by the group scheme Prym is inspired by Ngô’s

approach in [44], [45]. More connections to his work is discussed in [27, §5.2].
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5. Appendix

In this appendix we recall a result of M. Thaddeus, Proposition 5.1.2 be-

low, concerning the restriction of the generators α,ψi, β defined in Section 1.2.2

to a general fibre of the Hitchin fibration for M̌. In view of Theorem 1.4.8,

this yields an upper bound for their perversity, which is used in Theorem 3.1.1.

Since these results, contained in Thaddeus’ Master thesis ([51]), have not been

published, we report here the original proof.

Let s ∈ A0
reg, let π := πs : Cs → C be the corresponding spectral curve

covering, and let ι := ιs : Cs −→ C be the involution exchanging the two

sheets of the covering (see §1.3.2). The following easy to prove facts are used

in the course of the proof of Proposition 5.1.2.

• The involution ι induces ι∗ on H1(Cs), which splits into the ±1-eigen-

spaces
H1(Cs) = H1(Cs)

+ ⊕H1(Cs)
−.

We denote by Π± the corresponding projections.

Analogously,
H1(Cs) = H1(Cs)

+ ⊕H1(Cs)
−

and, via Poincaré duality,

H1(Cs)
+ ' (H1(Cs)

+)∨, H1(Cs)
− ' (H1(Cs)

−)∨.

The projections are still denoted by Π±.

• We let [C] ∈ H2(C) ' H0(C), [Cs] ∈ H2(Cs) ' H0(Cs) be the funda-

mental classes and [c] ∈ H0(C) ' H2(C), [cs] ∈ H0(Cs) ' H2(Cs) the classes

of a point in C, resp. Cs.

We have

(5.1.1) π∗([cs]) = [c], π∗([Cs]) = 2[C], Kerπ∗ = H1(Cs)
−,

the last equality due to the fact that π ◦ ι = π and π∗ is surjective.

• In terms of the identification H1(Cs)
+ ' H1(C) given by the pull-back

map π∗, the map

(5.1.2) π∗ : H1(Cs) −→ H1(C) ' H1(Cs)
+

is identified with the projection Π+.

Remark 5.1.1. We have isomorphisms χ−1(s) ' Pic0
Cs , χ̌

−1(s) ' PrymCs

and χ̂−1(s) ' PrymCs/Γ. (See Theorem 1.3.4 for χ and §2.4 for χ̌ and χ̂.) We

have the canonical isomorphisms

H1(Pic0
Cs) ' H1(Cs), H1(PrymCs) ' H1(Cs)

−,

in terms of which the restriction map H1(Pic0
Cs) −→ H1(PrymCs) is identified

with the projection Π− : H1(Cs) −→ H1(Cs)
−.
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Proposition 5.1.2.

(1) The restrictions of the classes ψi, β to a general fibre of the Hitchin

maps χ, χ̂, and χ̌ vanish.

(2) The restriction of the class α to a general fibre of the Hitchin maps χ

is nonzero. When restricted to a general fibre of χ̂ and χ̌, the class α

is an ample class.

Proof. For notational simplicity, we denote the fundamental classes [C] ∈
H0(C), [Cs] ∈ H0(Cs), [Pic0

Cs ] ∈ H
0(Pic0

Cs), and [PrymCs ] ∈ H
0(PrymCs) by

1 so that, for example, the second equality in (5.1.1) above reads π∗(1) = 2.

Let s ∈ A0
reg. As discussed in Section 1.3.1, the map χ̌ is the restriction

of χ to M̌, and χ̂ is derived from χ̌ by passing to the quotient M̂ = M̌/Γ. It

is therefore enough to prove the first statement for the map χ We denote the

product map π × id : Cs × Pic0
Cs −→ C × Pic0

Cs simply by π.

Let L be the Poincaré line bundle on Cs × Pic0
Cs . The restriction of E to

C × χ−1(s) ' C ×Pic0
Cs is isomorphic to π∗L (see §1.3.2). The Grothendieck-

Riemann-Roch theorem (see [24, Th. 15.2]) gives the following equality in

H∗(C × Pic0
Cs):

(5.1.3)

ch(E|C×χ−1(s))td(C×Pic0
Cs)=ch(π∗L)td(C×Pic0

Cs)=π∗(ch(L)td(Cs×Pic0
Cs)).

By the Künneth formula and Poincaré duality,

H2(Cs × Pic0
Cs) '

Ä
H0(Cs)⊗H2(Pic0

Cs)
ä

⊕
Ä
H1(Cs)⊗H1(Cs)

ä
⊕
Ä
H2(Cs)⊗H0(Pic0

Cs)
ä

and we have the natural isomorphism

(5.1.4)

EndH1(Cs) ' H1(Cs)⊗H1(Cs) ' H1(Cs)⊗H1(Pic0
Cs) ⊆ H

2(Cs × Pic0
Cs).

We say that a class in H∗(C × Pic0
Cs) has type (a, b) if it is in the Künneth

summand Ha(C) ⊗ Hb(Pic0
Cs), and similarly for classes in H∗(Cs × Pic0

Cs).

Clearly the cup product of a class of type (a, b) with one of type (c, d) is of

type (a+ c, b+ d); in particular, it vanishes if a+ c > 2.

We set, for simplicity, g′ := g(Cs). We fix a symplectic basis δ1, . . . , δ2g′ for

H1(Cs), and we identify its dual basis, δ∨1 , . . . , δ
∨
2g′ , with a basis for H1(Pic0

Cs).

In terms of the isomorphism (5.1.4) above, the first Chern class of L is rep-

resented by the identity in EndH1(Cs) (see [3, VIII.2]), namely c1(L) =∑
i δi ⊗ δ∨i ; hence it is of type (1,1). Let [cs] ∈ H2(Cs), [c] ∈ H2(C) be as

defined above.

A direct computation gives c2
1(L) = 2[cs] ⊗ (

∑
i δ
∨
i ∧ δ∨i+g′) = 2[cs] ⊗ θ,

where θ :=
∑
i δ
∨
i ∧ δ∨i+g′ ∈ H2(Pic0

Cs) denotes the cohomology class of the

theta divisor on Pic0
Cs .
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Since c1(L) is of type (1, 1), we have cr1(L) = 0 if r ≥ 3; hence

ch(L) = 1 + c1(L) +
c2

1(L)

2
= 1 +

∑
i

δi ⊗ δ∨i + [cs]⊗ θ.

Since the tangent bundle of a torus is trivial, we have that td(Pic0
Cs) = 1,

while td(Cs) = 1+(1−g′)[cs] and td(C) = 1+(1−g)[c]. By the multiplicativity

properties of the Todd class, we have that

td(Cs×Pic0
Cs) = 1⊗1+(1−g′)[cs]⊗1, td(C×Pic0

Cs) = 1⊗1+(1−g)[c]⊗1,

so that

ch(L)td(Cs × Pic0
Cs) = 1⊗ 1 +

∑
i

δi ⊗ δ∨i + [cs]⊗ θ + (1− g′)[cs]⊗ 1.

Plugging this into the Grothendieck-Riemann-Roch theorem formula (5.1.3),

we get

ch(E|C×χ−1(s))(1 + (1− g)[c])(5.1.5)

= π∗

(
1⊗ 1 +

∑
i

δi ⊗ δ∨i + [cs]⊗ θ + (1− g′)[cs]⊗ 1

)
.

Applying (5.1.1) gives π∗(1 ⊗ 1) = 2 ⊗ 1, π∗([cs] ⊗ θ) = [c] ⊗ θ, and

π∗([cs]⊗ 1) = [c]⊗ 1. Combining the third equality of (5.1.1) with the isomor-

phism H1(C) ' H1(Cs)
+, we get π∗(

∑
i δi ⊗ δ∨i ) =

∑
i Π+(δi)⊗ δ∨i .

By plugging the above equalities in equation (5.1.5) and equating the

components of degree 2, we deduce that

(5.1.6) c1(E|C×χ−1(s)) + 2(1− g)[c]⊗ 1 =
∑
i

Π+(δi)⊗ δ∨i + (1− g′)[c]⊗ 1.

Since the product of [c]⊗ 1 with a class not of type (0, 2) vanish, we obtain

(5.1.7) c2
1(E|C×χ−1(s)) =

Ç∑
i

Π+(δi)⊗ δ∨i
å2

,

which has type (2, 2). Equating the components of degree 4 in equation (5.1.5)

and using the fact that, by type consideration, the product c1(E|C×χ−1(s))

· ([c]⊗ 1) = 0, we have

(5.1.8)
1

2

Ä
c2

1(E|C×χ−1(s))− 2c2(E|C×χ−1(s))
ä

= [c]⊗ θ,

from which we deduce that also c2(E|C×χ−1(s)) has type (2, 2). From the equal-

ity, true in general for rank 2 vector bundles,

c2(EndE|C×χ−1(s)) = 4c2(E|C×χ−1(s))− c2
1(E|C×χ−1(s)),

it follows that c2(EndE|C×χ−1(s)) has type (2, 2), which, by the very definition

(see the defining equation 1.2.10 in §1.2.2) of β and ψi, means that these classes

vanish on χ−1(s).
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The proof of the second statement is immediately reduced to the case of χ̌.

By Remark 5.1.1, the restriction of the first Chern class of L to Cs × PrymCs

is
∑
i δi ⊗Π−(δ∨i ), and the Grothendieck-Riemann-Roch theorem now reads

ch(E|C×χ̌−1(s))(1 + (1− g)[c])(5.1.9)

= π∗

Ç
1⊗ 1 +

∑
i

δi ⊗Π−(δ∨i ) + [cs]⊗ θ + (1− g′)[cs]⊗ 1

å
,

where θ denotes now the cohomology class of the restriction of the theta di-

visor to PrymCs . As in the first part of the proof, we apply Formulæ 5.1.1,

giving π∗(1 ⊗ 1) = 2 ⊗ 1, π∗([cs] ⊗ θ) = [c] ⊗ θ, π∗([cs] ⊗ 1) = [c] ⊗ 1, and

π∗(
∑
i δi ⊗ δ∨i ) =

∑
i Π+(δi)⊗Π−(δ∨i ) = 0.

By plugging the above equalities in equation (5.1.5), we deduce that

(5.1.10) c1(E|C×χ̌−1(s)) + 2(1− g)[c] = (1− g′)[c],

so that c2
1(E|C×χ̌−1(s)) = 0 and

Ä
c2

1(E|C×χ̌−1(s))− 2c2(E|C×χ̌−1(s))
ä

= 2[c] ⊗ θ.
Hence, c2(E|C×χ̌−1(s))) = −[c]⊗ θ, and finally,

(5.1.11) c2(EndE|C×χ̌−1(s)) = 4c2(E|C×χ̌−1(s))− 4c2
1(E|C×χ̌−1(s)) = −4[c]⊗ θ,

which shows (cf. (1.2.10) in §1.2.2) that the restriction of α to χ̌−1(s) equals 4θ.

�
Corollary 5.1.3. The class α is ample on M̂.

Proof. The variety M̂ = M0/Pic0
C is quasiprojective as M is by [46,

Prop. 7.4]. Additionally it follows from Theorem 1.2.10 that dimH2(M̂) = 1.

As we proved above that α is ample on the generic fiber of χ̂ it must be ample

on M̂ as well. �
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Università di Bologna, Bologna, Italy

E-mail : migliori@dm.unibo.it

http://www.ams.org/mathscinet-getitem?mr=1179076
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0814.32003
http://www.numdam.org/item?id=PMIHES_1992__75__5_0
http://www.numdam.org/item?id=PMIHES_1992__75__5_0
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0018.06302
mailto:mde@math.sunysb.edu
mailto:hausel@maths.ox.ac.uk
mailto:migliori@dm.unibo.it

	1. Introduction
	1.2. Cohomology of moduli spaces
	1.3. The Hitchin fibration and spectral curves
	1.4. Perverse filtration

	2. Cohomology over the elliptic locus
	2.1. Statement of [final]Theorem 2.1.4
	2.2. The upper bound estimate
	2.3. The lower bound estimate
	2.4. The cases SL2 and PGL2 

	3. Preparatory results
	3.1. Placing the generators in the right perversity
	3.2. Vanishing of the refined intersection form
	3.3. Bi-graded sl2(Q)-modules

	4. W=P
	4.2. The case degD>2g-2, G=PGL2, GL2 
	4.3. The case D=KC, G=PGL2, GL2
	4.4. SL2

	5. Appendix
	References

