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The embedding capacity of
4-dimensional symplectic ellipsoids

By Dusa McDuff and Felix Schlenk

Abstract

This paper calculates the function c(a) whose value at a is the infimum

of the size of a ball that contains a symplectic image of the ellipsoid E(1, a).

(Here a ≥ 1 is the ratio of the area of the large axis to that of the smaller

axis.) The structure of the graph of c(a) is surprisingly rich. The volume

constraint implies that c(a) is always greater than or equal to the square

root of a, and it is not hard to see that this is equality for large a. However,

for a less than the fourth power τ4 of the golden ratio, c(a) is piecewise

linear, with graph that alternately lies on a line through the origin and is

horizontal. We prove this by showing that there are exceptional curves in

blow ups of the complex projective plane whose homology classes are given

by the continued fraction expansions of ratios of Fibonacci numbers. On

the interval [τ4, 7] we find c(a) = (a + 1)/3. For a ≥ 7, the function c(a)

coincides with the square root except on a finite number of intervals where

it is again piecewise linear.

The embedding constraints coming from embedded contact homology

give rise to another capacity function cECH which may be computed by

counting lattice points in appropriate right angled triangles. According to

Hutchings and Taubes, the functorial properties of embedded contact ho-

mology imply that cECH(a) ≤ c(a) for all a. We show here that cECH(a) ≥
c(a) for all a.
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1. Introduction

1.1. Statement of results. As has been known since the time of Gromov’s

Nonsqueezing Theorem, questions about symplectic embeddings lie at the heart

of symplectic geometry. To date, most results have concerned the embeddings

of balls or of products of balls since these are most amenable to analysis.

(See Cieliebak, Hofer, Schlenk and Latschev [5] for a comprehensive survey of

embedding problems.) However, ellipsoids are another very natural class of

examples. As pointed out by Hofer, the simplicity of the characteristic flow

on their boundary makes them a natural test case for understanding the role

of variational properties in symplectic geometry. One would like to under-

stand the extent to which obstructions coming from periodic orbits capture

all symplectic invariants. Judging from the evidence of the current work, it

seems one cannot take a naive approach. As pointed out in McDuff [17], the

Ekeland-Hofer capacities of [6] (which are purely variational) do not give all

obstructions. Instead one must use invariants coming from the Hutchings-

Taubes [12] embedded contact homology, which has an unavoidably geometric

flavor. Indeed Taubes [25] has recently shown it equals a version of Seiberg-

Witten Floer homology and so is a gauge theory.

In view of the work of Guth [7] on higher dimensional symplectic em-

bedding questions, there has been renewed interest in this kind of question.

However, we restrict consideration to four dimensions since the methods and



4-DIMENSIONAL SYMPLECTIC ELLIPSOIDS 1193

results in this case are very different from those in higher dimensions; cf. Re-

mark 1.1.4. For relevant background and a survey of the results of the current

paper, see [16].

Given a real number a ≥ 1, denote by E(1, a) the closed ellipsoid

E(1, a) :=
{
x21 + x22 +

x23 + x24
a

≤ 1
}
⊂ R4.

This paper studies the function c : [1,∞)→ R defined by

(1.1.1) c(a) := inf
{
µ | E(1, a)

s
↪→B(µ)

}
,

where B(µ) :=
{∑

x2i ≤ µ
}

is the ball of radius
√
µ and A

s
↪→B means that

A embeds symplectically in B. This is one of a range of symplectic capacity

functions defined by Cieliebak, Hofer, Latschev and Schlenk in [5], and is the

first to be calculated.

Since E(1, a) has volume aπ2/2, we must have c(a) ≥
√
a. Here is another

elementary result.

Lemma 1.1.1. The function c is nondecreasing and continuous. Further,

it has the following scaling property:

(1.1.2)
c(λa)

λa
≤ c(a)

a
when λ > 1.

Proof. The first statement is clear. The second holds because E(1, λa) ⊂√
λE(1, a) when λ > 1 and also E(1, a)

s
↪→B(µ) if and only if

√
λE(1, a)

s
↪→
√
λB(µ) = B(λµ). �

The function c(a) was calculated1 in [17] for integral a as follows:

c(a) =
√
a if a ∈ N is 1, 4 or ≥ 9,(1.1.3)

c(2) = c(3) = c(4) = 2, c(5) = c(6) = 5
2 , c(7) = 8

3 , c(8) = 17
6 .

Its monotonicity and scaling property are then enough to determine all its

values for a ≤ 6; it is constant on the intervals [2, 4] and [5, 6] and otherwise

linear, with graph along appropriate lines through the origin. (See Figure 1.1

and Corollaries 1.2.4 and 1.2.8.)

It turns out that the two steps of c(a) that we described above extend

to an infinite staircase for a ∈ [1, τ4], where τ4 = 7+3
√
5

2 is the fourth power

of the golden ratio τ := 1+
√
5

2 . We call this the Fibonacci stairs. Denote by

gn := f2n−1, n ≥ 1, the terms in the odd places of the Fibonacci sequence fn.

1The first nontrivial result here, that c(4) = 2, was proved earlier by Opshtein in [21]. See

also Theorem 4 in Opshtein [22].
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(For short, we call these the “odd Fibonacci numbers.”) Thus the sequence gn
starts with 1, 2, 5, 13, 34, . . . . Set g0 = 1 and for each n ≥ 0, define

an =
Ä
gn+1

gn

ä2
and bn = gn+2

gn
.

Then

a0 = 1 < b0 = 2
1 = 2 < a1 = (21)2 = 4 < b1 = 5

1 = 5

< a2 = (52)2 = 61
4 < b2 = 13

2 = 61
2 < a3 =

Ä
13
5

ä2
= 619

25 < b3 = 34
5 = 64

5 < · · · .

More generally,

· · · < an < bn < an+1 < bn+1 < · · · and lim an = lim bn = τ4 ≈ 6.854.

1 2 4 5 25
4 τ4

a

c(a)

5
2

τ2

2

1

Figure 1.1. The Fibonacci stairs: The graph of c(a) on
[
1, τ4

]
.

Theorem 1.1.2. (i) For each n ≥ 0, c(a) = a√
an

for a ∈ [an, bn], and

c is constant with value
√
an+1 on the interval [bn, an+1].

(ii) c(a) = a+1
3 on [τ4, 7].

(iii) There are a finite number of closed disjoint intervals Ij ⊂ [7, 8 1
36 ] such

that c(a) =
√
a for all a > 7, a /∈ Ij . Moreover, c is piecewise linear in

each Ij , with one nonsmooth point in the interior of Ij .

(iv) c(a) =
√
a for a ≥ 8 1

36 .
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The argument proving part (i) hinges on the existence of an unexpected

relation between the function c(a) and the Fibonacci numbers. We shall see

that this relation persists for a just larger than τ4, and so we also deal with the

interval [τ4, 7] by largely arithmetic means. However, the analysis of c(a) for

a > τ4 gets easier the larger a is. As we show in Corollary 1.2.4, it is almost

trivial to see that c(a) =
√
a when a ≥ 9, and it is not much harder to see that

c(a) =
√
a when a ≥ 8 1

36 . The method used also shows that there are finitely

many obstructions when a ≥ 7. The full analysis of c(a) on [7, 8 1
36 ] takes more

effort. The intervals Ij contain rational numbers with small denominators; for

example the three longest contain 7, 71
2 and 8; cf. Figure 1.2.

τ4
a

7 7 19 7 14 7 13 7 12 8 8
 1
36

17
6

11
4

 8
3

τ2

c(a)

Figure 1.2. The graph of c(a) on
î
τ4, 8 1

36

ó
.

We refer to Theorem 5.2.3 for a full description of c(a) on the interval [7, 8 1
36 ].

One point to note here is that although all the flatter portions of the graph of

c are horizontal when a < τ4, this is not true when a ∈ [7, 8]; for example the

two parts of the graph of c centered at a = 71
8 both have positive slope.

Connection with counting lattice points. As we explain in Section 1.3, the

obstructions to embeddings E(1, a)
s
↪→B(µ) that we consider come from ex-

ceptional spheres in blow ups of CP 2. Hofer2 suggested that one should also

be able to obtain a complete set of obstructions from the embedded contact

homology theory recently developed by Hutchings and Taubes [12]. The em-

bedded contact homology ECH∗
Ä
E(a, b)

ä
of a 4-dimensional ellipsoid has one

generator in each even degree with action of the form ma+nb; m,n ≥ 0. Since

the action is a nondecreasing function of degree, the actions of the generators

arranged in the order of increasing degree form the sequence N(a, b) obtained

by arranging all numbers of the form ma + nb; m,n ≥ 0, in nondecreasing

2Private communication.
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order (with multiplicities). We will say that N(a, b) 4 N(a′, b′) if each term

in N(a, b) is no greater than the corresponding term in N(a′, b′). Using work

by Taubes, Hutchings shows in [10] that the sequence N(a, b) is a monotone

invariant of E(a, b):

E(a, b)
s
↪→E(a′, b′) =⇒ N(a, b) 4 N(a′, b′).(1.1.4)

Even before this was proven, Hofer suggested that

(C) E(a, b)
s
↪→E(a′, b′) ⇐⇒ N(a, b) 4 N(a′, b′).

One might be able to prove this directly by showing that the embedded curves

that provide the morphism ECH∗
Ä
E(a, b)

ä
→ ECH∗

Ä
E(a′, b′)

ä
correspond pre-

cisely to the exceptional spheres that give our obstructions. However, so far

all approaches have been more indirect.

For a ≥ 1, define

cECH(a) := inf {µ > 0 | N(1, a) 4 N(µ, µ)} .

As we show in Section 2.4, the function cECH can be understood in terms of

counting lattice points in triangles. Then Hutchings’s result (1.1.4) for the

case that the target ellipsoid is a ball becomes

cECH(a) ≤ c(a) for all a ≥ 1.

In this paper we prove the converse.

Theorem 1.1.3. cECH(a) ≥ c(a) for all a ≥ 1.

Thus Hofer’s conjecture (C) holds if the target is a ball: cECH(a) = c(a)

for all a.

Remark 1.1.4. (i)The methods used to analyze the embedding of a 4-dimen-

sional ellipsoid into a ball work equally well when one considers embeddings

from one ellipsoid to another. In other words, Theorem 1.2.2 below has an

analog that is applicable to this setting; see [17, Th. 1.5]. One can also use

much the same method to analyze embeddings of an ellipsoid into S2 × S2;

see [20].

(ii) One might wonder if these results can be extended to higher di-

mensions. For example, in dimension 6 is there a symplectic embedding

E(a, b, c)
s
↪→E(a′, b′, c′) if and only if N(a, b, c) 4 N(a′, b′, c′)? Guth’s construc-

tion in [7] of an embedding E(1, R,R)
s
↪→E(2, 10, 2R2) for all R > 1 shows that

the answer is no. It is not at present clear what the correct condition should

be in this case. (See Hind-Kerman [9] for a more precise version of Guth’s

result and Buse-Hind [4] for some further results.) Note that embedded con-

tact homology is a specifically 4-dimensional theory, as are the results stated
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in Theorem 1.2.2 and Proposition 1.2.12 below, on which our calculation of

c is based.

(iii) There are two early papers by Biran with constructions that are

somewhat similar to ours. In [2] he uses an iterated ball packing construction to

obtain information on the Kähler cone of blow ups of CP 2. Continued fractions

are relevant here, but Biran does not use them in the way we do. The survey

article [3] mentions how an understanding of embeddings of ellipsoids might

help calculate this Kähler cone, and hence suggests a potential application of

our work. However, for this one would need to understand which embeddings

of ellipsoids give rise to Kähler forms, a question which we do not consider.

(iv) Meanwhile, the full Hofer conjecture (C) has been proven by Mc-

Duff [18], without using embedded contact homology; see also Hutchings [11].

1.2. Method of proof. The first author showed in [17] that if a ≥ 1 is

rational, there is a finite sequence w(a) := (w1, . . . , wM ) of rational numbers

such that the ellipsoid E(1, a) embeds symplectically in the ball B(µ) exactly if

the corresponding collection tiB(wi) of M disjoint balls embeds symplectically

in B(µ). This ball embedding problem was reduced in McDuff-Polterovich [19]

to the question of understanding the symplectic cone of the M -fold blow up

of CP 2. After further work by McDuff [15] and Biran [1], the structure of this

cone was finally elucidated in Li-Liu [14] and Li-Li [13].

The key to understanding this cone is the following set EM .

Definition 1.2.1. Denote by XM the M -fold blow up of CP 2 with any

symplectic structure ωM obtained by blow up from the standard structure on

CP 2. Let L,E1, . . . , EM ∈ H2(XM ) be the homology classes of the line and the

M exceptional divisors. We define EM as the set consisting of (0;−1, 0, . . . , 0)

and of all tuples (d;m) of nonnegative integers (d;m1, . . . ,mM ) with m1 ≥
· · · ≥ mM and such that the class E(d;m) := dL −∑imiEi is represented in

(XM , ωM ) by a symplectically embedded sphere of self-intersection −1. If there

is no danger of confusion, we will write E instead of EM . Clearly, EM ⊂ EM ′
whenever M ≤M ′.

Since these classes E(d;m), (d;m) ∈ EM , have nontrivial Gromov invariant,

they have symplectically embedded representatives for all choices of the blow-

up form ωM . Therefore the above definition does not depend on this choice.

Denote by −K := 3L−∑Ei the standard anti-canonical divisor in XM ,

and consider the corresponding symplectic cone CK , consisting of all classes

on XM that may be represented by a symplectic form with first Chern class

Poincaré dual to −K. Then Li-Li show in [13] that

CK =
¶
α ∈ H2(XM ) | α2 > 0, α(E) > 0 for all E ∈ EM

©
.



1198 DUSA MCDUFF and FELIX SCHLENK

Proposition 1.2.12 below gives necessary and sufficient conditions for an ele-

ment (d;m) to belong to EM . Before discussing this, we explain the relevance

of EM to our problem. The following result is proved in [17]. We will denote

by `, ei ∈ H2(XM ) the Poincaré duals to L,Ei and by m ·w =
∑M
i=1miwi the

Euclidean scalar product in RM .

Theorem 1.2.2. For each rational a ≥ 1, there is a finite weight ex-

pansion w(a) = (w1, . . . , wM ) such that E(1, a) embeds symplectically in the

interior of B4(µ) if and only if µ` −∑wiei ∈ CK . Moreover wi ≤ 1 for all i

and
∑
iw

2
i = a.

Corollary 1.2.3. If the rational number a ≥ 1 has weight expansion

w(a) = w = (wi), then

c(a) = sup
(√

a, µ(d;m)(a) | (d;m) ∈ E
)
,

where µ(d;m)(a) := m·w(a)
d .

Proof. The above description of CK shows that E(1, a) embeds into the

interior of B4(µ) if and only if the tuple (µ,w) satisfies the conditions

(i) µ2 > w ·w =:
∑
w2
i ,

(ii) dµ >m ·w =:
∑
miwi for all (d;m) ∈ EM .

The corollary now follows because w ·w = a. �

Biran showed in [1] that µ(d;m)(k) ≤
√
k for all (d;m) ∈ E for all integers

k ≥ 9. His argument extends to all a ≥ 9 and shows

Corollary 1.2.4. c(a) =
√
a when a ≥ 9.

Proof. Since c is continuous by Lemma 1.1.1, it suffices to check this for

rational a. Fix (d;m) ∈ E . The corresponding symplectically embedded (−1)-

sphere E has c1(E) = 1, and so 3d − 1 =
∑
imi. Therefore,

∑
imi wi ≤∑

imi = 3d− 1. For a ≥ 9, we thus find

µ(d;m)(a) := m·w
d < 3 ≤

√
a.

Now use Corollary 1.2.3. �

In view of Corollary 1.2.3, our task is two-fold; first to understand the

weight expansions and then to understand the restrictions placed on embed-

dings by the elements of EM . The description that we now give for w(a) is

convenient for calculations but is somewhat different from that in [17]. The

equivalence of the two definitions is established in Corollary A.7.

Definition 1.2.5. Let a = p/q ∈ Q, written in lowest terms. The weight

expansion w := (wi) := (w1, . . . , wM ) of a ≥ 1 is defined recursively as follows:
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• w1 = 1, and wn ≥ wn+1 > 0 for all n;

• if wi > wi+1 = · · · = wn (where we set w0 := a), then

wn+1 =

 wn if wi+1 + · · ·+ wn+1 = (n− i+ 1)wi+1 ≤ wi,

wi − (n− i)wi+1 otherwise;

• the sequence stops at wn if the above formula gives wn+1 = 0.

The number M of entries in w(a) is called the length `(a) of a.

For example, a = 25/9 has weight expansion w(a) = (1, 1, 79 ,
2
9 ,

2
9 ,

2
9 ,

1
9 ,

1
9),

which we will abbreviate as (1×2, 79 ,
2
9
×3, 19

×2).
We may also think of this expansion (wi) as consisting of N + 1 blocks of

length `s of the (decreasing) numbers xs where x0 = 1; viz:

w(a) :=
Ä
1, . . . , 1︸ ︷︷ ︸

`0

, x1, . . . , x1︸ ︷︷ ︸
`1

, . . . , xN , . . . , xN︸ ︷︷ ︸
`N

ä
(1.2.1)

=
Ä
1×`0 , x×`11 , . . . , x×`NN

ä
.

Then x1 = a−`0 < 1, x2 = 1−`1x1 < x1, and so on. In this form the sequence

can be generated as follows. If a = p
q , first draw a rectangle of length p and

height q, then mark off as many (say `0) squares of side length q as possible,

then in the remaining rectangle of size q × (p − `0q) mark off as many (say

`1) squares of side length (p − `0q) as possible, continuing in this way until

the rectangle is completely filled. Then qxj is the side length of the (j + 1)st

set of squares, while the `j are the multiplicities; see Figure 1.3. As is well

known, the multiplicities `j , 0 ≤ j ≤ N , give the continued fraction expansion

[`0; `1, . . . , `N ] of p/q. For example, 25/9 = [2; 1, 3, 2] and

25

9
= 2 +

1

1 + 1
3+ 1

2

.

Notice also that 25/9 = 2 · 12 + (7/9)2 + 3(2/9)2 + 2(1/9)2.

9 9 7

1
122 2

9
7

Figure 1.3. The expansion for a = 25/9.
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Lemma 1.2.6. Let w := (w1, . . . , wM ) be the weight expansion of a= p
q ≥1.

Then

wM = 1
q ,

w ·w :=
M∑
i=1

w2
i = a,(1.2.2)

M∑
i=1

wi = a+ 1− 1
q .(1.2.3)

Proof. Equation (1.2.2) holds because the total area of all the squares is

pq. To understand the sum, suppose that there are N + 1 sets of squares in

the expansion (1.2.1) so that xN+1 = 0 and write∑
i

wi = 1 +
(
1 + · · ·+ 1︸ ︷︷ ︸

`0−1
+x1

)
+
(
x1 + · · ·+ x1︸ ︷︷ ︸

`1−1

+x2
)

+ · · ·

+
(
xN + · · ·+ xN︸ ︷︷ ︸

`N−1

+xN+1

)
= 1 + (a− 1) + (1− x1) + · · ·+ (xN−1 − xN )

= 1 + a− xN .

It remains to note that xN = wM = 1/q. This is obvious from the geometric

construction. For, qxN = qwM is the side length of the smallest square in the

decomposition of the rectangle. If this length were divisible by s, then the side

lengths of all the squares would be divisible by s. Hence both p and q would

be divisible by s. But they are mutually prime by hypothesis. �

We next describe the sets EM . The first lemma is well known and can be

easily deduced from Proposition 1.2.12 below.

Lemma 1.2.7. The set EM is finite for M ≤ 8 with elements (d;m1, . . .

. . . ,mM ) equal to

(0;−1), (1; 1, 1), (2; 1×5), (3; 2, 1×6),

(4; 2×3, 1×5), (5; 2×6, 1, 1), (6; 3, 2×7).

From this one can immediately calculate c(a) for those a whose weight

expansion has M ≤ 8.

Corollary 1.2.8. The function c takes the following values :

c(2) = c(3) = c(4) = 2, c(5) = c(6) = 5
2 ,

c
Ä
13
2

ä
= 13

5 , c(7) = 8
3 , c(8) = 17

6 .

Moreover, its graph is linear on each subinterval [1, 2], [2, 4], [4, 5], [5, 6].
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Proof. The values of c(a) for integers a ∈ [1, 8] were calculated in [17,

Cor. 1.2]. One can similarly calculate c(132 ) since the length of w
Ä
13
2

ä
is < 9.

The second statement then follows from Lemma 1.1.1. �

From Lemma 1.2.7 we can also compute c near 7.

Proposition 1.2.9. For a ∈ [611
12 , 7], we have c(a) = 1

3(a + 1). Also

c(a) = 8
3 for a ∈ [7, 71

9 ].

Proof. Since c is continuous, it suffices to prove these identities for a ∈ Q.

First assume that a < 7 and write a = 6 + x. Then

w(a) =
Ä
1×6, x, w8, . . . , wM

ä
,

where 0 < wi < 1 − x for i ≥ 8. The element (3; 2, 1×6) ∈ E7 gives the

constraint c(a) ≥ µ0 = 1
3(a+ 1).

Since 1 − x ≤ x/9, at least the first nine of the weights w8, w9, . . . are

equal. Hence, by Corollary 1.2.4, we can fully pack all but the first seven balls

into one ball of size λ where a = 6 +x2 +λ2. It remains to show that the eight

balls of sizes

W = (1, . . . , 1, x, λ)

fit into B(µ0); that is, W ·m ≤ d
3(7 + x) for all (d;m) ∈ E .

This is clear for classes in E7. The classes in E8r E7 are (4; 2×3, 1×5),
(5; 2×6, 1, 1), (6; 3, 2×7). The strongest constraint comes from (5; 2×6, 1, 1) and

equals

µ1 = 1
5

Ä
12 + x+ λ

ä
.

The desired inequality µ1 ≤ µ0 is equivalent to 1+3λ ≤ 2x. Since λ2 = x(1−x),

we need 13x2 − 13x+ 1 ≥ 0, which is satisfied when x ≥ 11
12 .

We know c(7) = 8
3 by Corollary 1.2.8. Therefore it suffices to show that

c(71
9) = 8

3 . As above, since the nine balls B(19) fully fill B(13), we just need to

check that the finite number of elements in E8 give no obstruction to embedding

eight balls, seven of size 1 and one of size 1
3 , into B(83). �

Remark 1.2.10. Similarly, there is an obstruction at a = 8 given by the

class (d;m) = (6; 3, 2×7). For a < 8 with w(a) = (1×7, a − 7, . . . ), this gives

the constraint µ(a) = 1+2a
6 , while for a ≥ 8 we get µ(a) = 17

6 . Therefore

c(a) ≥ µ(a) ≥
√
a for 8+3

√
7

2 ≤ a ≤ 8 1
36 . However, unfortunately, one cannot

argue as above to show that c = µ on some interval (8 − ε, 8 1
36 ] because the

auxiliary packings would involve nine balls and E9 is infinite. We shall prove

that c = µ on
î
8+3
√
7

2 , 8 1
36

ó
in Sections 5.2 and 5.3 by different methods.

Now consider EM , M ≥ 9. We say that a tuple of integers (d;m) =

(d;m1, . . . ,mM ) is ordered if mi ≥ mi+1 when mi 6= 0, mi+1 6= 0, and if the

mi with mi = 0 are at the end. For instance, the elements of EM are ordered
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in view of Definition 1.2.1. To characterize EM when M ≥ 9 we need the

following definition.

Definition 1.2.11. The Cremona transform of an ordered tuple (d;m) is

(2d−m1 −m2 −m3; d−m2 −m3, d−m1 −m3, d−m1 −m2, m4, m5, . . . ).

A standard Cremona move Cr takes an ordered tuple (d;m) to the tuple ob-

tained by ordering the Cremona transform of (d;m). More generally, a Cre-

mona move is the composite of a Cremona transform with any permutation

of m.

Standard Cremona moves preserve EM because they are achieved by Cre-

mona transformations, which (modulo permutations of the Ei) are just reflec-

tions A 7→ A+(A ·C)C in the (−2)-sphere in the class C := L−E1−E2−E3;

cf. [13].3 In particular, these moves preserve the intersection product and the

first Chern class c1(M) := 3L−∑iEi.

Proposition 1.2.12. (i) The following identities hold for all (d;m)∈EM :

(1.2.4)
∑
i

mi = 3d− 1, m ·m :=
∑
i

m2
i = d2 + 1.

(ii) For all pairs (d;m), (d′;m′) of distinct elements of EM , we have

m ·m′ :=
∑
i

mim
′
i ≤ d d′.

(iii) A tuple (d;m) satisfying the Diophantine conditions in equations (1.2.4)

belongs to EM exactly if it may be reduced to (0;−1, 0, . . . , 0) by repeated

standard Cremona moves.

Proof. The two equations in (i) express the fact that any symplectically

embedded (−1)-sphere E has c1(E) = 1 and E · E = −1. Since the elements

in EM are all represented by embedded J-holomorphic spheres for generic J ,

part (ii) holds by positivity of intersections.

Part (iii) for a class (d;m) with d = 0 is clear. Part (iii) for nonnegative

tuples (d;m) may be deduced from Li-Li’s arguments in [13, Lemma 3.4]. In

this paper the authors work in a more general context than ours, considering all

symplectic forms on XM , while we consider only those symplectic forms with

the standard first Chern class (or anticanonical class) −K := 3L−∑Ei. They

also introduce many ideas, such as the symplectic genus. However, the concept

3If ω is a symplectic form on XM for which the class C is represented by a Lagrangian

sphere SL, then the Cremona transformation can be realized by the Dehn twist in SL; cf. Sei-

del [23].
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relevant here is that of a reduced class. This is a class A := dL−∑miEi with

d > 0, m1 ≥ m2 ≥ · · · ≥ 0, d ≥ m1 +m2 +m3.

We can clearly assume that M ≥ 3. In this case they show that for every class

A with A2 = −1 and c1(A) > 0, there is a combination of Cremona moves

and reflections Ei 7→ −Ei that transform A either into E1 (which corresponds

to (0;−1, 0, . . . , 0)) or into a reduced class A′. Each step consists of a Cre-

mona transform, followed by an adjustment of signs to make the coefficients

of the −Ei nonnegative and then a permutation to reorder the mi. Since the

Cremona transform takes (d;m) to

(2d−m1 −m2 −m3; d−m2 −m3, d−m1 −m3, d−m1 −m2, m4, . . . ),

this decreases d unless A is reduced. Li-Li show by a simple algebraic compu-

tation that, because we start with a class with A · A ≥ −1 and the reduction

process preserves the intersection form, the coefficient d cannot become nega-

tive. Thus one stops the process when the coefficient d is at its minimum. If

d = 0, then the final class A0 is (0;−1, 0 . . . , 0). On the other hand, if A0 is

reduced, another essentially algebraic argument (part 3 of their Lemma 3.4)

shows that A0 ·E ≥ 0 for all solutions E to equations (1.2.4). Hence A0 /∈ EM
since A0 ·A0 = −1.

It is easy to adapt the results of this lemma to our situation. We are

interested here only in symplectic forms with the standard canonical class K,

and therefore we cannot change the signs of the Ei. However, if there is a

sequence σ of standard Cremona moves that takes a tuple (d;m) that satisfies

(1.2.4) to a tuple (d′;m′) with some m′i < 0, then either d′ = 0 and (d′;m′) =

(0;−1, 0, . . . , 0), or d′ 6= 0. But in the latter case (d;m) cannot be in EM since

we would have
E(d;m) · E = E(d′;m′) · Ei = m′i < 0,

where E is the image of Ei under the reverse sequence σ−1 of Cremona moves.

Therefore (iii) must hold. �

Definition 1.2.13. A class E=(d;m)∈ E is called obstructive if µ(d;m)(z)

>
√
z on some nonempty interval I. Further, we say that E is obstructive at a

if µ(d;m)(a) >
√
a.

Thus our task is to understand enough about the obstructive classes to

figure out the supremum of the corresponding constraint functions µ(d;m).

Remark 1.2.14. (i) Later we will expend considerable effort to show that

certain classes E = (d;m) that satisfy the identities (1.2.4) do in fact lie

in EM . In some cases, the corresponding constraints µ(d;m)(a) contribute

to c(a). However, in many other cases (for example the classes E
Ä
bk(i)

ä
of

Proposition 4.2.2 for i ≥ 3; see Lemma 4.3.1) the constraint µ(d;m)(a) does

not contribute to c(a); rather E influences c(a) because E · E′ ≥ 0 for all
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E′ ∈ EMrE. For this positivity of intersections to hold, it is not necessary

that E ∈ EM . As explained in the proof of Proposition 1.2.12, it suffices that

when we apply standard Cremona moves to E, we do not arrive at a class

with d > 0 and some mi < 0, but instead end up at a reduced class. (By

[13, Lemma 3.6], the class E then must have positive symplectic genus, and

therefore cannot be represented by a smoothly embedded sphere.) However,

it is just as difficult to check this condition as it is to check whether E ∈ EM ,

and, in fact, it turns out that E ∈ EM in all cases of interest to us here.

(ii) As we show in Proposition 5.2.1, there are only finitely many tuples

(d;m) ∈ EM that are obstructive at some a ≥ 7. In fact, there are precisely

thirteen such classes; the class
Ä
3; 2, 1×6

ä
centered at a = 7, another eight

classes that contribute to c(a) as described in Theorem 5.2.3, and four more

classes listed in Lemma 5.2.5, which are “hidden” in the sense that they con-

tribute nothing new to c(a). Although we work mostly by hand, we do use

the computer programs of Appendix B to prove Corollary 5.2.10, which states

that there are no other relevant classes.

In contrast, there are infinitely many classes that are obstructive some-

where on the interval [1, 7], and we do not try to compute them all. As shown

in Example 2.3.1, the part of the graph of an obstruction µ(d;m)(a) that lies

above
√
a can be quite complicated and need not have the scaling or positivity

properties of c that are described in Lemma 1.1.1. Further, even though Corol-

lary 2.1.4 states that at each point a where c(a) >
√
a there are only finitely

many obstructive classes with µ(d;m)(a) = c(a), we do not know if for some

a0 there are infinitely many classes with µ(d;m)(a0) >
√
a0. By Remark 5.2.2

this cannot happen when a0 > τ4. When a0 = τ4, Proposition 4.3.2 shows

that there are infinitely many classes that are obstructive on an interval whose

closure contains a0. However, because c(τ4) = τ2, no class is obstructive at τ4

itself. We have no relevant results when a0 < τ4.

(iii) We compute c(a) for a ≤ 7 by looking not only at classes with

µ(d;m)(a) >
√
a but also at some other classes that influence c(a) indirectly.

The most interesting of these are the classes described in Proposition 4.3.2

that are made from the even terms of the Fibonacci sequence. They play a

dual role. Though obstructive, they contribute nothing new to c(a) and so the

corresponding graph is called the ghost stairs. Their importance is rather that

they allow one to calculate c(a) at a series of points ek where they are not

obstructive; cf. the proof of Corollary 4.2.4.

1.3. Outline of paper. Corollary 1.2.3 gives a formula for c(a) that we can

interpret using the description of E contained in Proposition 1.2.12. However,

this formula is not at all explicit, and the methods needed to understand it

depend on the size of a. One can compute c(a) by direct methods when a < τ4,
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but for larger a our arguments require a deeper understanding of the constraint

functions µ(d;m)(a). Therefore we begin in Section 2 by developing some tools

to distinguish the obstructive classes in E .

First, we show in Proposition 2.1.1 that (d;m) is obstructive at a only if

the vector m is almost parallel to w(a). If m is parallel to w(a) for some a,

then we call (d;m) a perfect obstruction at a. Lemma 2.1.5 shows that these

elements determine the function c(z) for z near a, while Corollary 3.1.3 shows

that the only perfect obstructions occur at the numbers bn of the Fibonacci

stairs. Second, we show in Lemma 2.1.3 that if µ(d;m)(a) >
√
a on the

interval I, then I has a unique central point a0 distinguished by the fact that

`(a0) = `(m) while `(a) > `(m) for all other a ∈ I. (Here, `(m) denotes the

number of positive entries in m.) Lemmas 2.1.7 and 2.1.8 describe other useful

properties of obstructive classes.

These are the basic results needed to determine c(a) when a ≥ 7. (Since

by Proposition 5.2.1 there are only finitely many obstructive (d;m) for a ≥ 7,

we can analyze these on a case by case basis, without using more general re-

sults.) However, we continue in Section 2 with a deeper analysis of the functions

µ(d;m) so that we can explain the relation of c(a) to the lattice point counting

problem. This analysis is based on Proposition 2.2.6, which derives surpris-

ing identities satisfied by weight expansions. (These are quadratic identities

involving the weight expansions of a and its “mirror”
←
a.) This proposition

also turns out to be helpful in understanding c(a) on [τ4, 7], where there are

infinitely many obstructive classes.

Our next main result is Proposition 2.3.2, which shows that the central

point of I is the break point of µ(d;m) in the sense that µ(d;m) is linear on

each component of Ir{a0}. Moreover, one can apply Proposition 2.2.6 to show

that the coefficients of these linear functions are remarkably close to those of

the linear functions that occur in the counting problem. In Section 2.4, we

explain this connection and prove Theorem 1.1.3 (which states that cECH ≥ c).
In Section 3 we calculate c(a) for a ∈ [1, τ4] by direct methods. Theo-

rem 3.1.1 states that there are classes E(an) and E(bn) in E given by tuples

(d;m) constructed from the weight expansions of ratios of odd Fibonacci num-

bers. As we see in Corollary 3.1.2, because these classes are perfect, their very

existence together with the scaling property of c is enough to calculate c(a) in

this range. The difficulty here is to prove that these classes really do belong

to E . In particular, describing what happens to these classes under Cremona

moves involves establishing many quadratic identities for Fibonacci numbers.

Therefore in Section 3.2 we develop an inductive method to prove such iden-

tities; cf. Proposition 3.2.3. The proof of Theorem 3.1.1 is completed in Sec-

tion 3.3. This section is essentially independent of Section 2.
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We next compute c(a) on [τ4, 7]. The obstruction (3; 2, 1×6) centered at 7

gives the lower bound c(a) ≥ a+1
3 on this interval, and our task in Section 4

is to show that no obstruction exceeds this one. One difficulty is that the

quantity y(a) := a + 1 − 3
√
a tends to 0 as a approaches τ4, permitting the

existence of infinitely many obstructive classes; cf. Proposition 4.3.2. Another

is that the line a+1
3 does not pass through the origin. Therefore we can no

longer use the scaling property of c, which in the case of the interval [1, τ4]

allowed us to restrict attention to the points an, bn. Nevertheless, by using the

results of Section 2 we show in Proposition 4.1.6 that there is only a double

sequence of relevant points.

One could then attempt a direct calculation of c(a) at these points, com-

bining more elaborate versions of the estimation techniques used in Section 5

with arithmetic results based on Corollary 2.2.7. This is possible. However it

is very complicated, and it turns out that there is a much easier proof. The

sequence E(bn) of perfect classes that determine the Fibonacci stairs really

consists of two subsequences Ek(0) and Ek(1) that are the first two members

of an infinite family Ek(i), i ≥ 0, of sequences of “nearly perfect” classes in E .

The classes Ek(2), k ≥ 1, form the ghost stairs discussed in Remark 1.2.14(iii),

while the classes Ek(i), i > 2, are not obstructive by Lemma 4.3.1. Neverthe-

less, as we show in Lemma 4.1.10, the fact that they are nearly perfect puts

constraints on the possible obstructive classes. The desired conclusion follows

by combining this result with Proposition 4.1.6.

Section 5 carries out a detailed analysis of the obstructions in the interval

[7, 9]. The argument is based on the equality in Proposition 2.1.1(iv). This

estimates the “error” (the difference between m and a suitable multiple of

w(a)) at a rational point a = p/q in terms of the quantity y(a) − 1/q, where

again y(a) = a+1−3
√
a. Since y(τ4) = 0, this estimate gets better the further a

is from τ4 and the larger q is. One easy consequence is Proposition 5.2.1,

stating that there are only finitely many obstructive classes (d;m) for a ≥ 7.

The proof (in Section 5.2) that c(a) =
√
a for a ≥ 8 1

36 is also easy.

To work out exactly what the constraints are requires some computation.

It would be possible, though very tedious, to do this entirely by hand. We

have aimed to use the computer as little as possible and so have developed

quite a few techniques for estimating the error. Since y(a) − 1
q is negative

when a = 7 1
k , we must treat these points separately, by purely arithmetic

means. Thus in this case we simply look for suitable solutions (d;m) of the

Diophantine equations (1.2.4) with centers at these points, using Lemma 2.1.7

to limit possibilities. This computation (in Lemma 5.2.5) finds several classes

that contribute to c(a) as well as some interesting “hidden” classes for which

µ(d;m)(a) = c(a) at just one point, namely the center. There are some other

obstructive classes centered at points of the form a = 7 2
2k+1 . (The table in
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Theorem 5.2.3 lists all classes that contribute to c(a).) We show that there

are no other obstructive classes in Section 5.2, using estimates developed in

Section 5.1 as well as two computer programs that are described in Appendix B.

Finally, Appendix A explains the connection between our current defini-

tion of the weight expansion of a in terms of the continued fraction expansion

of a and the definition used in [17], which came from a blow up construction.

The results here are no doubt well known; we included them for the sake of

completeness.

Acknowledgments. We wish to thank Dylan Thurston for making some

very helpful observations at the beginning of this project (he was the first

person to point out a connection with Fibonacci numbers), Michael Hutchings

for explaining the obstructions coming from embedded contact homology, and

Helmut Hofer and Peter Sarnak for their inspiration and encouragement.

2. Foundations

2.1. Basic observations. Given a with weight expansion w(a) of length

`(a) = M and (d;m) ∈ EM , we define ε := ε(a) = (ε1, . . . , εM ) by setting

(2.1.1) m =
d√
a
w(a) + ε.

We will refer to the vector ε as the error and to quantities such as
∑
ε2i as the

squared error. We need to understand the function µ(d;m)(a) = m ·w(a)/d

defined in Corollary 1.2.3.

Our arguments will be based on the following observations.

Proposition 2.1.1. For all (d;m) ∈ E and a, we have

(i) µ(d;m) := µ(d;m)(a) ≤
√
a
»

1 + 1/d2;

(ii) µ(d;m) >
√
a ⇐⇒ ε ·w > 0;

(iii) If µ(d;m) >
√
a, then E := ε · ε =

∑
ε2i < 1;

(iv) Let y(a) := a+ 1− 3
√
a, where a = p/q. Then

(2.1.2) −∑ εi = 1 + d√
a

Ä
y(a)− 1

q

ä
.

Proof. Lemma 1.2.6 and Proposition 1.2.12 imply that

µ(d;m) d = w ·m ≤ ‖w‖ ‖m‖ =
√
a
√
d2 + 1.

This proves (i). (ii) is immediate, while (iii) follows from (ii) because

d2 + 1 = m ·m =
Ä
d√
a
w(a) + ε

ä
·
Ä
d√
a
w(a) + ε

ä
= d2 + 2 d√

a
w(a) · ε+ ε · ε.

Finally, to prove (iv) observe that

3d− 1 =
∑
mi = d√

a

Ä
a+ 1− 1

q

ä
+
∑
εi.
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Hence
d√
a

Ä
a+ 1− 3

√
a
ä
− d√

a q
+ 1 +

∑
εi = 0.

This completes the proof. �

Remark 2.1.2. (i) Proposition 2.1.1(iii) implies that an element (d;m) ∈ E
gives an obstruction at a (i.e., has µ(d;m)(a) >

√
a) only if the vector m is

“almost parallel” to the vector w(a). In particular, if we are interested in

solutions that provide obstructions when a = k + x for x ∈ (0, 1), we need

the first k entries to be equal within the allowable error. As we will see in

Lemma 2.1.7, this means that the first k entries of m must lie in the set

{m1,m1−1}, with at most one entry different from the others. Some elements

of E with d ≤ 9 that satisfy these conditions for a ∈ [6, 8] are

(2; 1×5), (3; 2, 1×6), (5; 2×6, 1×2), (8; 3×7, 1×2).

It turns out that these elements all do give obstructions.

(ii) Another noteworthy point is that y(a) = 0 when a = τ4. Therefore (iv)

gives most information when a− τ4 is quite large, e.g. if a > 7; see Section 5.1.

The next result explains the basic structure of the constraints. Through-

out we write `(m) for the number of positive entries in m and `(a) for the

length of the weight sequence w(a).

Lemma 2.1.3. Let (d;m) ∈ E , and suppose that I is a maximal nonempty

open interval such that
√
a < µ(d;m)(a) for all a ∈ I . Then there is a unique

a0 ∈ I such that `(a0) = `(m). Moreover `(a) ≥ `(m) for all a ∈ I .

Proof. Denote by wi(a) the ith weight of a considered as a function of a.

Then it is piecewise linear and is linear on any open interval that does not

contain an element a′ with length `(a′) ≤ i. That is, the formula4 for wi(a)

can change only if it or one of the earlier weights becomes zero.

Therefore if `(a) > `(m) for all a ∈ I, the function µ(d;m)(a) is linear

in I. But this is impossible since the function
√
a is concave and I ⊂ (1, 9) is

bounded.

Thus there is a0 ∈ I with `(a0) ≤ `(m). On the other hand, if `(a) <

`(m), then
∑
i≤`(a)m

2
i < d2 + 1, so that

|w ·m| ≤ ‖w‖
√ ∑
i≤`(a)

m2
i ≤ d‖w‖ = d

√
a.

Hence µ(d;m)(a) ≤
√
a, i.e. a /∈ I.

4See Lemma 2.2.1 for an explicit expression.
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The uniqueness follows from the properties of continued fractions. We

claim that if b > a and `(b) = `(a), then there must be some number y ∈ (a, b)

with `(y) < `(a). Since such y cannot be in I, this gives the required unique-

ness. To prove the claim, let a have continued fraction expansion [`0; `1, . . . , `N ]

and consider the functions xj(a) as in equation (1.2.1). If N is even, the func-

tion xN (z) decreases as z increases. Hence `N increases, and so the next

number z > a with length ≤ `(a) is [`0; `1, . . . , `N−1] which has length < `(a).

Similarly, if we look for numbers z < a with `(z) ≤ `(a), then the first one is

[`0; . . . , `N − 1]. Similar arguments apply if N is odd. �

Corollary 2.1.4. Suppose that c(a) >
√
a. Then

(i) There are (possibly equal) elements (d±;m±) ∈ E and ε > 0 such that

c(z) =

 µ(d−;m−)(z) for all z ∈ (a− ε, a],

µ(d+;m+)(z) for all z ∈ [a, a+ ε).

(ii) On each of the intervals in (i), there are rational numbers α, β ≥ 0

such that c(a) = α+ βa.

(iii) The set of (d;m) such that c(a) = µ(d;m)(a) is finite.

Proof. Since c(a) >
√
a, there exists D ∈ N with

»
1 + 1/D2 < c(a)/

√
a.

If (d;m) ∈ E is such that µ(d;m)(a) = c(a) >
√
a, then d ≤ D by Proposi-

tion 2.1.1(i). But there are only finitely many elements (d;m) ∈ E with d ≤ D.

Since c(a) is continuous by Lemma 1.1.1, we must have
»

1 + 1/D2 < c(z)/
√
z

for all z sufficiently close to a. Further, as we have seen in the proof of

Lemma 2.1.3, each function µ(d;m)(z) is piecewise linear, and it has rational

coefficients because the weight functions wi(z) do. Hence, c(z) is the supre-

mum of a finite number of rational linear functions. This proves (i) and (iii).

Moreover, if near a we write c(z) = α+βz for some rational numbers α, β, then

β ≥ 0 since c is nondecreasing, while α ≥ 0 because of the scaling property in

equation (1.1.2). �

Let us call an element (d;m) ∈ E perfect if m is a multiple of the weight

vector w(b) of some b > 1. The next lemma combined with Corollary 2.1.4

shows that these elements determine c(a) for a near b.

Lemma 2.1.5. Suppose that (d;m) ∈ E is perfect : m = κw(b) for some

b > 1. Then

(i) µ(d;m)(b) = c(b) >
√
b, and (d;m) is the only class with µ(d;m)(b) =

c(b).

(ii) m = qw(b), where b = p/q in lowest terms, and b < τ4.
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Proof. (i) Since (d;m) ∈ E and m = κw(b), we have d2 < d2 + 1 =

m ·m = κ2w(b) ·w(b) = κ2b, whence d < κ
√
b. Therefore,

µ(d;m)(b) :=
m ·w(b)

d
=
κb

d
>

κb

κ
√
b

=
√
b.

Let (d′;m′) ∈ E be another solution. Since (d′;m′) 6= (d;m), positivity of

intersections (part (ii) of Proposition 1.2.12) shows dd′ ≥m ·m′ = κm′ ·w(b).

This and d2 < d2 + 1 = m ·m = κm ·w(b) yield

µ(d′;m′)(b) =
m′ ·w(b)

d′
≤ d

κ
<

m ·w(b)

d
= µ(d;m)(b).

(ii) Let w(b) = (w1, . . . , wM ). Since wM = 1
q and mM ∈ Z, we have κ = sq

for some integer s. Equations (1.2.4) and Lemma 1.2.6 give

3d− 1 =
∑

mi = κ
∑

wi = sq
Ä
b+ 1− 1

q

ä
,

d2 + 1 =
∑

m2
i = κ2

∑
w2
i = (sq)2b.

If s = 1, then 3d = q(b+ 1) so that

1 + b− 3
√
b = 3dq − 3

√
d2+1
q < 0.

Thus
√
b < τ2.

Otherwise, adding the two above equations gives s|d(d+ 3). But the first

equation shows that s, d are mutually prime. Therefore s|d + 3 and s|3d − 1;

hence s|10. Therefore s = 2, 5 or 10.

The identity (d+3)2 = (d2+1)+2(3d−1)+10 shows that s2|2(3d−1)+10.

If 2|s, this means that d is even which is impossible since 3d− 1 is even.

If s = 5, then 3d+ 4 = 5q(b+ 1) so that

(2.1.3) y(b) := 1 + b− 3
√
b = 1

5q

Ä
3d+ 4− 3

√
d2 + 1) > 0.

Thus
√
b > τ2. But this is impossible: For (d;m) ∈ E must have nonnegative

intersection with the class (3; 2, 1×6) ∈ E . Therefore

2m1 +m2 + · · ·+m7 ≤ 3d.

If b ∈ [τ4, 7], then m = 5q(1×6, b− 6, . . . ), and we obtain

5q(1 + b) ≤ 3d,

a contradiction. Assume now that b = 7 rq > 7. Assume first that b = 71
q . Then

3d − 1 = 40q and d2 + 1 = 25q2(7 + 1
q ). Solving the first equation for d and

inserting the result into the second equation, we get the equation

5q2 − 29q + 2 = 0,
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whose solutions are not integral. Thus b = 7 rq with r ≥ 2. By (2.1.3),

q =
3d+ 4− 3

√
d2 + 1

5y(b)
<

4

5y(b)
<

4

5y(7)
< 13,

whence q ≤ 12. Thus b ≥ 7 2
12 , and so q < 4

5y(7 1
6
)
< 6, whence q ≤ 5.

Thus b ≥ 72
5 , and so q < 4

5y(7 2
5
)
< 4, whence q ≤ 3. Thus b ≥ 72

3 , and so

q < 4
5y(7 2

3
)
< 3, whence q ≤ 2. Thus b ≥ 8, and so q < 4

5y(8) < 2, whence q = 1.

Thus b ≥ 9, and so q < 4
5y(9) < 1, which is impossible. �

Remark 2.1.6. We show later that the only perfect elements are those at

the numbers bn of the Fibonacci stairs; see Corollary 3.1.3. However there

are many nearly perfect elements that are relevant to the problem such as the

classes E(an) of Theorem 3.1.1 and the classes E
Ä
bk(i)

ä
of Proposition 4.2.2.

These elements are perfect except for some adjustments on the last block.

The next lemma expands on the first part of Remark 2.1.2.

Lemma 2.1.7. Assume that (d;m) ∈ E is such that µ(d;m)(a) >
√
a.

Let J := {k, . . . , k + s − 1} be a block of s ≥ 2 consecutive integers for which

w(ai), i ∈ J , is constant. Then

(i) One of the following holds :

mk = · · · = mk+s−1 or

mk = · · · = mk+s−2 = mk+s−1 + 1 or

mk − 1 = mk+1 = · · · = mk+s−1.

(ii) There is at most one block of length s ≥ 2 on which the mi are not all

equal.

(iii) If there is a block J of length s on which the mi are not all equal, then∑
i∈J ε

2
i ≥ s−1

s .

Proof. Let wi(a) = x for i ∈ J . By Proposition 2.1.1(iii), we have

k+s−1∑
i=k

∣∣∣ dx√
a
−mi

∣∣∣ 2 =
k+s−1∑
i=k

ε2i < 1.

Thus {mk, . . . ,mk+s−1} can contain at most two different integers, which must

be neighbors if they are different, say m, m + 1. We can also clearly assume

that m < dx√
a
< m+ 1. Therefore (i) holds when s < 4.
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So suppose that s ≥ 4 and assume that m + 1 occurs t times. Set v =
dx√
a
− n ∈ [0, 1), where n ∈ Z. Then the squared error on this block is

k+s−1∑
i=k

∣∣∣ dx√
a
−mi

∣∣∣2 =
k+t−1∑
i=k

|v − 1|2 +
k+s−1∑
i=k+t

|v|2

= t(v − 1)2 + (s− t)v2

≥ 2(s−2)
s for all v ∈ (0, 1) if t ∈ {2, . . . , s− 2}.

But 2(s−2)/s ≥ 1 when s ≥ 4. This proves (i). Parts (ii) and (iii) follow from

the fact that the minimum squared error on a block of length s on which the

mi are not all equal is 1− 1
s ≥

1
2 . �

The following lemma will also be important for detecting potentially ob-

structive solutions (d;m).

Lemma 2.1.8. Let (d;m) ∈ E be such that µ(d;m) >
√
a for some a with

`(a) = `(m) = M . Let wk+1, . . . , wk+s be a block, but not the first block, of

w(a).

(i) If this block is not the last block, then

|mk − (mk+1 + · · ·+mk+s +mk+s+1)| <
√
s+ 2.

If this block is the last block, then

|mk − (mk+1 + · · ·+mk+s)| <
√
s+ 1.

(ii) Always,

mk −
M∑

i=k+1

mi <
√
M − k + 1.

Proof. (i) We prove the first claim; the second claim is proven in the

same way. By definition (2.1.1) of the errors, mi = d√
a
wi + εi for all i. Since

wk+1 = · · · = wk+s and wk+s+1 = wk − swk+1, we have that

mk − (mk+1 + · · ·+mk+s +mk+s+1) = εk − (εk+1 + · · ·+ εk+s + εk+s+1) ,

and so

|mk − (mk+1 + · · ·+mk+s +mk+s+1)| ≤ |εk|+ |εk+1|+ · · ·+ |εk+s|+ |εk+s+1| .

Since ε · ε =
∑
ε2i < 1 by Proposition 2.1.1(iii), the latter sum is <

√
s+ 2.

(ii) If the block wk+1, . . . , wk+s is the last block, then M = k + s, and so

the stated estimate is the same as in (i). So assume that wk+1, . . . , wk+s is not

the last block. Since wk = s wk+1 + wk+s+1, we then have wk <
∑M
i=k+1wi.
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Therefore,

mk < −εk +
M∑

i=k+1

(mi + εi) ≤
M∑

i=k+1

mi +
M∑
i=k

|εi| <
M∑

i=k+1

mi +
√
M − k + 1,

as claimed. �

2.2. Some identities for weight expansions. This subsection establishes

some rather surprising identities for weight expansions.

Let a > 1 be a rational number, and consider its continued fraction ex-

pansion

(2.2.1) a := [`0; `1, . . . , `N ] = `0 +
1

`1 + 1
`2+...

.

Usually, to avoid ambiguity, we assume that `N ≥ 2, but in this section only

it is convenient to permit the case `N = 1 as well. We define the sequence

αa := (αaj )
N+1
j=0 by setting αa0 = 1, αa1 = −`0, and

(2.2.2) αaj = αaj−2 − `j−1αaj−1, j = 2, . . . , N + 1.

Similarly, define βa = (βaj )N+1
j=0 by the same recursive formula, but starting with

βa0 = 0, βa1 = 1. Thus βa does not depend on `0. Both sequences alternate in

sign.

We chose the notation αa, βa for these sequences because, as we now

see, they are the coefficients of the linear functions wi(z) for z lying on the

appropriate side of a. Write the weight expansion w(a) of a as

w(a) =
Ä
1×`0 , (x1(a))×`1 , . . . , (xN (a))×`N

ä
=
Ä
1, . . . , 1︸ ︷︷ ︸

`0

, x1, . . . , x1︸ ︷︷ ︸
`1

, . . .
ä
.

Then the weights xj := xj(a) satisfy the recursive formula (2.2.2) with x0 = 1,

and x1 = a − `0, so that xj = αaj + aβaj for j ≤ N . If N is odd, this formula

for xj(z), j ≤ N , continues to hold for all z < a that are so close to a that

the xj(z) are positive. In this case, z = [`0; `1, . . . , `N , h, . . . ] where h ≥ 1.

Similarly, if N is even, it holds for z > a and sufficiently close to a. This

proves the following result.

Lemma 2.2.1. Let a and N be as above. Then if N is odd, there is ε > 0

and h ≥ 1 such that for z ∈ (a− ε, a), we have

w(z) =
Ä
1×`0 ,

Ä
x1(z)

ä×`1
, . . . ,

Ä
xN (z)

ä×`N
,
Ä
xN+1(z)

ä×h
, . . .
ä
,

where xj(z) = αaj + zβaj for j ≤ N + 1. If N is even, the same statement holds

for z ∈ (a, a+ ε). Moreover, in both cases xj(z) is an increasing function of z

for j odd and a decreasing function for j even.
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We now give a second description for the sequences w(a), αa, and βa in

terms of the convergents of a related number
←
a (the mirror of a), which helps

to explain their symmetry properties.

Definition 2.2.2. Let `j ≥ 1 for 0 ≤ j ≤ N , where N ≥ 1. We define

→
a := [`0; `1, . . . , `N ],

←
a := [`N ; `N−1, . . . , `0]

and call
←
a the mirror of

→
a. The convergents (

→
a)k, 0 ≤ k ≤ N , to

→
a are defined

by setting

(
→
a)k := [`0; `1, . . . , `k] =:

pk(
→
a)

qk(
→
a)

=:
pk
qk
,

where pk(
→
a), qk(

→
a) are the numerator and denominator of the rational number

represented by (
→
a)k. In particular, (

→
a)N = pN/qN = a, and for short we write

a =
→
a.

We define the normalized weight sequence of
→
a as

W (
→
a) := qNw(

→
a) =

(Ä
X0(

→
a)
ä×`0

, . . . ,
Ä
XN (

→
a)
ä×`N)

.

In particular, XN = 1 always. Finally, we define the (signed) mirror of a

sequence W :=
Ä
X×`00 , X×`11 , . . . , X×`NN

ä
to be

Ŵ :=
(
X×`NN ,

Ä
−XN−1

ä×`N−1
, . . . ,

Ä
(−1)NX0

ä×`0)
,

where we reverse the order and change signs.

Note that the sequence of weights w(a) is independent of the ambiguity

in the `j , but its block description and the Xj do depend on this choice.

The first part of the next lemma is well known. We then show that the nor-

malized weights of a =
→
a are equal to the numerators of the convergents of

←
a.

Further, the coefficients αa (resp. βa) are the numerators (resp. denominators)

of the convergents of a =
→
a shifted by 1. Define p−1(a) = 1, q−1(a) = 0.

Lemma 2.2.3. Let a =
→
a be as above. Then

(i)
←
a = pN (

→
a)/pN−1(

→
a); in particular, pN (

→
a) = pN (

←
a).

(ii) For 0 ≤ j ≤ N , we have

Xj(
→
a) = |α

←
a
N−j |, XN−j(

←
a) = |α

→
a
j |.

Further, |αaj | = pj−1(a) for all a and 0 ≤ j ≤ N + 1, so that Xj(
→
a) =

pN−j−1(
←
a) for j = 0, . . . , N .

(iii) Define u =
→
u := [`1; . . . , `N ]. Then

←
u = (

←
a)N−1, and for 1 ≤ j ≤ N+1,

we have

|βaj | = |αuj−1| = qj−1(a).
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Proof. The following matrix identity holds by induction on k:

(2.2.3)

Ñ
`0 1

1 0

é Ñ
`1 1

1 0

é
· · ·

Ñ
`k 1

1 0

é
=

Ñ
pk(

→
a) pk−1(

→
a)

qk(
→
a) qk−1(

→
a)

é
.

(i) follows by considering its transpose.

To prove (ii), observe that the elements Xj := Xj(a) are decreasing posi-

tive integers with XN = 1, XN+1 = 0, and by Definition 1.2.5 may be defined

backwards by the iterative relation

XN−j−1 = XN−j+1 + `N−j XN−j , j ≥ 1.

Similarly, αa0 = 1 and, if we set α−1 = 0, the identity (2.2.2) implies that the

|αaj | are increasing positive integers satisfying

|αaj+1| = |αaj−1|+ `j |αaj |, j ≥ 0.

But
←
a = [`′0; . . . , `

′
N ] where `′j = `N−j . Therefore Xj(

→
a) = |α

←
a
N−j | for j =

0, . . . , N . Since
⇔
a =

→
a, we also have that Xj(

←
a) = |α

→
a
N−j | for j = 0, . . . , N .

To understand the relation between αaj and pj−1 := pj−1(a), note first that

p0 = `0 = |αa1|. Further, (2.2.3) implies that pj = pj−2 + `jpj−1. Therefore

|αaj | = pj−1(a) for j = 0, . . . , N + 1, as claimed. This proves (ii).

The first claim in (iii) is obvious. To prove the second, note that the

identity |βaj | = |αuj−1| follows immediately from the definitions of α and β.

Therefore, by (ii), |βaj | = |αuj−1| = pj−2(u). But if v := [0; `1, . . . , `N ], then
1
u = v = a − bac. Hence p0(u) = q1(v) = q1(a), and more generally, pk(u) =

qk+1(a). Hence |βaj | = qk−1(a). �

Corollary 2.2.4.

Ŵ (
←
a) :=

(Ä
XN (

←
a)
ä×`0

,
Ä
−XN−1(

←
a)
ä×`1

, . . . ,
Ä
(−1)NX0(

←
a)
ä×`N)

=
(Ä
αa0
ä×`0

,
Ä
αa1
ä×`1

, . . . ,
Ä
αaN
ä×`N)

.

We now show that there is a mirror version of the quadratic relation

w(a) ·w(a) = a proven in Lemma 1.2.6. Since W (
→
a) = qN (

→
a)w(a), we may

also write this identity as

W (
→
a) ·W (

→
a) = pN (

→
a) qN (

→
a).

One can prove the mirror formula directly, using the geometric definition of

the weights. We now present a more elegant proof formulated in terms of the
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tridiagonal matrices first introduced by Sylvester in [24]:5

Tri (
→
a) :=



`0 1 0 0 · · ·

−1 `1 1 0 · · ·

0 −1 `2 1 · · ·

0 0 −1 `3 · · ·

· · ·


.

In the following we number the rows and columns of the (N + 1) × (N + 1)

matrix A := Tri (
→
a) by the labels i, j ∈ {0, . . . , N}. Thus A := (aij)0≤i,j≤N

where aii = `i. Its determinant is denoted |A|.

Lemma 2.2.5. Let
→
a = [`0; . . . , `N ] = pN (

→
a)/qN (

→
a), and denote by Aij

the determinant of the i, j minor of A := Tri (
→
a), where 0 ≤ i, j ≤ N . Then

(i) for all
→
a , we have pN (

→
a) = |Tri (

→
a)|,

(ii) for all i, we have Aii = pi−1(
→
a) pN−i−1(

←
a) = XN−i(

←
a)Xi(

→
a).

Proof. Part (i) follows by induction. The first equality in (ii) is immediate,

and the second holds because Lemma 2.2.3(ii) implies that pi−1(
→
a) = XN−i(

←
a)

and pN−i−1(
←
a) = Xi(

→
a). �

Proposition 2.2.6. Let
→
a = [`0; . . . , `N ]. Then W (

→
a) · Ŵ (

←
a) = pN (

→
a) if

N is even, and = 0 if N is odd.

Proof. Consider the (N +1)× (N +1) matrix A := Tri (
→
a) = (aij)0≤i,j≤N .

First observe that

N∑
i,j=0

(−1)jaijAij =

 |A| if N is even,

0 if N is odd.

This holds because the sum for each fixed i is (−1)i |A|. Next observe that

aijAij = 0 unless |i − j| ≤ 1. Further, if i = j − 1, then Aij = −Aji so that

aijAij = ajiAji. It follows that∑
ij

(−1)jaijAij =
∑
i

(−1)i`iAii =
∑
i

(−1)i `iXi(
→
a)XN−i(

←
a),

where the last equality uses Lemma 2.2.5(ii). Finally notice that

W (
→
a) · Ŵ (

←
a) =

∑
i

(−1)i `iXi(
→
a)XN−i(

←
a)

and that |A| = pN (
→
a) by Lemma 2.2.5(i). �

5We are indebted to Andrew Ranicki for telling us about Sylvester’s work. There are

corresponding results for the Hirzebruch-Jung continued fractions coming from tridiagonal

matrices with subdiagonal entries equal to 1.
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Corollary 2.2.7. Let xj := xj(a), where a = [`0; `1, . . . , `N ] > 1, and

define αaj , β
a
j as in equation (2.2.2). Then

(i) If N is even,
∑N
j=0 `j xj α

a
j = a and

∑N
j=0 `j xj β

a
j = 0;

(ii) If N is odd,
∑N
j=0 `j xj α

a
j = 0 and

∑N
j=0 `j xj β

a
j = 1.

Proof. The sums involving α have the stated value by Proposition 2.2.6

and Corollary 2.2.4. To prove the claims involving βa, write

→
u = [`1; `2, . . . , `N ] = [`′0; `

′
1, . . . , `

′
N ′ ],

where N ′ = N − 1. Note that Xi(u) = Xi+1(a) for 0 ≤ i ≤ N ′. Thus, with

βa0 := 0, and since βaj = αuj−1 by Lemma 2.2.3(iii), we find that

qN (a)
N∑
j=0

`j xj(a)βaj =
N∑
j=1

`j Xj(a)αuj−1

=
N ′∑
i=0

`′iXi(u)αui .

By what we have already shown, this sum is 0 when N ′ is odd (i.e., N is even)

and equals the numerator pN ′(u) of u when N ′ is even (i.e., N is odd). But

pN ′(u) is the denominator of 1
u = [0; `1, . . . , `N ] = a−bac and so equals qN (a).

The result follows. �

2.3. The nature of the obstructions. We saw in Corollary 2.1.4 that near

each point a where c(a) >
√
a, the function c is the supremum of a finite number

of piecewise linear functions µ(d;m), and that each linear segment of c has the

form z 7→ α+βz with rational and nonnegative coefficients. The next example

shows that the coefficients of the functions µ(d;m), though rational, are not

restricted in this way even if we suppose that µ(d;m)(z) >
√
z.

Example 2.3.1. Consider the class (d;m) =
(
10; 4×6, 1×5

)
in E . (Under

the name E(a2), this class will play a role in Section 3.) Abbreviate µ(z) =

µ(d;m)(z). We compute dµ(z) = 10µ(z) on the interval
î
6, 61

2

ó
:

on I1 =
î
6, 61

4

ó
: −6 + 5z on

î
6 , 61

5

ó
, 25 on

î
61
5 , 6

1
4

ó
;

on I2 =
î
61
4 , 6

1
3

ó
: 4z on

î
61
4 , 6

2
7

ó
, 44− 3z on

î
62
7 , 6

1
3

ó
;

on I3 =
î
61
3 , 6

2
5

ó
: −13 + 6z on

î
61
3 , 6

3
8

ó
, 38− 2z on

î
63
8 , 6

2
5

ó
;

on I4 =
î
62
5 , 6

1
2

ó
: 6 + 3z on

î
62
5 , 6

3
7

ó
, 51− 4z on

î
63
7 , 6

1
2

ó
;

see Figure 2.1. The figure also shows the graph of
√
z and of c(z) (dashed) onî

6, 61
2

ó
, which by Theorem 1.1.2(i) is

c(z) = 5
2 on

î
6, 61

4

ó
, c(z) = 2

5 z on
î
61
4 , 6

1
2

ó
.
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6 61
5 61

4 62
7 61

3 63
8 62

5 63
7 61

2

z

µ(z)

c(z)

√
z

5
2

Figure 2.1. The graph of µ on
î
6, 61

2

ó
.

Note that `(m) = `(a) = 11 at 61
5 , 62

7 , 63
8 , 63

7 . Also note that at a = 63
8 we

have µ(a) >
√
a while at a = 63

7 we have µ(a) <
√
a.

Similar results hold for the functions µ(d;m) given by the classes E(an),

n > 2, of Theorem 3.1.1. For example, one can use Corollary 2.2.7 to show

that these functions equal c(z) for z near an.

We now show that although the coefficients α, β may be negative, they

are somewhat restricted.

Proposition 2.3.2. Let (d;m) ∈ E and a ∈ Q be such that `(m) = `(a)

and µ(d;m)(a) >
√
a. Write a =: p/q in lowest terms, let m := mM be

the last nonzero entry in m and let I be the connected component of the set

{z | µ(d;m)(z) >
√
z} that contains a. Then there are integers A < p and

B < (m+ 1)q such that

dµ(d;m)(z) =

 A+Bz if z < a, z ∈ I,
(A+mp) + (B −mq)z if z > a, z ∈ I.

We begin the proof by establishing the following lemma.

Lemma 2.3.3. Consider (d;m) ∈ E and a = p
q (in lowest terms) such

that `(m) = `(a) =: M . Let dµ(d;m)(z) = A+Bz on a nonempty interval of

the form (a− ε, a). Then there is ε′ > 0 so that for z′ ∈ (a, a+ ε′),

dµ(d;m)(z′) = A+Bz′ +m(p− qz′) =: A′ +B′z′.
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Proof. Suppose first that N is odd. Then by Lemma 2.2.1 when z < a,

xj(z) = αaj + zβaj for j ≤ N + 1. Further,

(2.3.1) xN+1(z) = xN−1(z)− `NxN (z) = αaN+1 + zβaN+1 = p− qz,

where the last equality holds by Lemma 2.2.3.

When z′ is just larger than a, its Nth multiplicity is `N − 1 and `N+1 is

very big. (Since `N ≥ 2, this still gives an allowed set of multiplicities.) Hence

for such z′ the formula for the linear functions xj(z
′), j ≤ N, is unchanged,

but now x′N+1(z
′) = xN−1(z′) − (`N − 1)xN (z′). (For clarity we denote by

x′N+1 the formula that holds for z′ > a, and by xN+1 the formula that holds

for z < a.) Note that because `(m) = `(a), just one term from the (N + 1)st

block is counted in µ(d;m)(z′). Hence, with m := mM , we have

dµ(d;m)(z′)− (A+Bz′) =−mxN (z′) +mx′N+1(z
′)

=m
Ä
−xN (z′) + xN−1(z′)− (`N − 1)xN (z′)

ä
=m

Ä
xN−1(z′)− `NxN (z′)

ä
= m(p− qz′),

where the last equality uses equation (2.3.1).

Now suppose that N is even. Then the formulas xj(z
′) := αaj + zβaj give

the (beginning of the) weight expansion for z′ just larger than a. As above,

when z is just less than a, we must modify the last multiplicities of a, reducing

`N by 1, and making `N+1 arbitrarily large. Thus as above, the formulas for

the weights xj(z), j ≤ N, are unchanged but that for the (N + 1)st weight is

modified. As above we denote by x′N+1 the formula that holds for z′ > a and

by xN+1 the formula that holds for z < a. Then x′N+1(z
′) = −p + qz′ > 0.

Further, if dµ(d;m)(z′) = A′ +Bz′ for z′ > a, we find for z < a that

dµ(d;m)(z)− (A′ +B′z) =−mxN (z) +mxN+1(z)

=m
Ä
−xN (z) + xN−1(z)− (`N − 1)xN (z)

ä
=mx′N+1(z) = −m(p− qz).

Therefore A+Bz = A′ +B′z −m(p− qz), as claimed. �

To complete the proof of Proposition 2.3.2 we need to estimate the size of

A,B. Here is an auxiliary lemma.

Lemma 2.3.4. Let `0; `1, . . . , `N be any sequence of positive integers with

`N ≥ 2, and let ηj , j ≥ 0, be one of the sequences |αaj |, |βaj |. Then
∑N
j=0 `j |ηj |2

< 1
2 |ηN+1|2.

Proof. By definition, ηj = ηj−2 + `j−1ηj−1. The inequality

(2.3.2) `k

Ñ
k∑
j=0

`jη
2
j

é
≤ η2k+1
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holds for k = 0 and may be proved for all larger k by induction. Setting k = N

yields the lemma. �

Proof of Proposition 2.3.2. Suppose first that N is odd, and write mi =
d√
a
wi(a) + εi as in equation (2.1.1). For notational convenience, let us first

assume that the mi are constant on each of the blocks of length `j . Then

define nj to be this constant value on the jth block. If this assumption holds,

then the εi are also constant on the blocks, and we denote their values by δj .

Then dµ(m; d)(a) = A+Ba where, by Lemma 2.2.1, we have

A =
∑

`j nj α
a
j , B =

∑
`j nj β

a
j .

Therefore, substituting nj = d√
a
xj + δj , we find

A=
∑

`j nj α
a
j =

∑
d√
a
`jxjα

a
j +

∑
`jδjα

a
j

= 0 +
∑

`jδjα
a
j

≤
(∑

`jδ
2
j

)
1/2

(∑
`j |αaj |2

)
1/2 <

»
E/2 |αaN+1| < p.

Here we used Corollary 2.2.7 for the third equality, and for the inequalities

used the Cauchy–Schwarz inequality,
∑
`jδ

2
j =: E < 1 from Proposition 2.1.1,

Lemma 2.3.4 and finally the fact that |αaN+1| = p from Lemma 2.2.3(ii).

This argument is also valid if the mi are not constant on the blocks. In

this case, by Lemma 2.1.7 the values of nj and δj may vary by 1 over the entries

of one block, but that variation can be absorbed into the sum that gives
√
E

and will not increase it above
√
E + 1 <

√
2.

Similarly,

B =
∑

`j nj β
a
j =

∑
d√
a
`jxjβ

a
j +

∑
`jδjβ

a
j

= d√
a

+
∑

`jδjβ
a
j =: d√

a
+ S,

where S :=
∑
j≤N `jδjβ

a
j . By definition, m = mM = d√

a
xN + δN and xN = 1

q .

Therefore, assuming that the mi are constant on the blocks, we have

B − (m+ 1)q = d√
a
− qm− q + S = −q(1 + δN ) + S.

We need to show that S < q(1 + δN ) = |βaN+1| (1 + δN ). If δN ≥ 0, we may

estimate S as before by

S ≤
√
E
( N∑
j=0

`j(β
a
j )2
)1/2

< 1√
2
|βaN+1| < q.
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Now assume that δN = −δ is negative and note that βaN > 0 because N is odd.

Therefore

S :=
∑
j≤N

`jδjβ
a
j ≤ −`NδβaN +

√
E
(N−1∑
j=0

`j(β
a
j )2
)1/2

≤ βaN
Ä√

E − `Nδ
ä
,

where we used equation (2.3.2) with k = N − 1 and `N−1 ≥ 1. Since βaN <

|βaN+1|/2 = q/2 by the inductive formula, the desired result follows easily.

Suppose now that the mi are not constant on the jth block. If j < N ,

then, as before, we simply need to replace E by E + 1 in the above estimates.

It is easy to check that the argument still goes through.

It remains to consider the case when the mi are not constant on the last

block. Define δN again by m = mM = d√
a
xN + δN . By Lemma 2.1.7, the last

block of m is either (m+1)×`,m with errors (δN +1)×`, δN , or m+1,m×` with

errors δN +1, δ×`N , where ` := `N−1. Note that δN =: −δ is negative. The sum

SN of δiβ
a
i over the last block is either

Ä
`(1− δ)− δ

ä
βaN or

Ä
(1− δ)− `δ

ä
βaN .

Since ` ≥ 1, in either case SN ≤
Ä
`(1 − δ) − δ

ä
βaN . But because (` + 1)βaN <∣∣∣βaN+1

∣∣∣ = q, we can estimate B − (m+ 1)q as follows:

B − (m+ 1)q=−q(1− δ) +
∑
j<N `jδjβ

a
j + SN

≤−βaN
(
(`+ 1)(1− δ)−

√
E − `(1− δ) + δ

)
< 0.

This completes the proof when N is odd. The case when N is even is similar

and is left to the reader. �

2.4. Connection to the lattice counting problem. In this section we prove

Theorem 1.1.3, stating that cECH(a) ≥ c(a) for all a ≥ 1. Recall that for a ≥ 1,

cECH(a) := inf {µ > 0 | N(1, a) 4 N(µ, µ)} .

The first step is to describe cECH in another way. As Hutchings pointed out,6

the inequalities N(1, a) 4 N(µ, µ) can be understood in terms of counting

lattice points in triangles, as follows. Let a ≥ 1 be irrational. For each pair of

integers A,B ≥ 0, consider the closed triangle

T aA,B :=
¶

(x, y) ∈ R2 | x, y ≥ 0, x+ ay ≤ A+ aB
©
.

Thus the slant edge of T aA,B has slope − 1
a and passes through the integral

point (A,B). Then the number #
Ä
T aA,B ∩Z2

ä
of integer points in the triangle

T aA,B is just the number of elements in N(1, a) that are ≤ A+Ba. We define

(2.4.1) kA,B(a) := A+Ba
d ,

6Private communication.
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where d is the smallest positive integer such that

#
Ä
T aA,B ∩ Z2

ä
≤ 1

2(d+ 1)(d+ 2).

(Note that N(1, 1) = (0, 1, 1, 2, 2, 2, 3, 3, 3, 3, 4, . . . ) has precisely 1
2(d+1)(d+2)

entries that are ≤ d.) Further, set

K(a) := sup
A,B≥0

¶
kA,B(a)

©
.

We extend the function K to rational a by defining

(2.4.2) K(a) := sup
z<a, z irrat

K(z).

Lemma 2.4.1. K(a) = cECH(a) for all a ≥ 1.

Proof. For each λ > 1, we have N(1, λa) 4 λN(1, a). Therefore, the

conclusions of Lemma 1.1.1 hold for cECH as well as for c. In particular, cECH

is continuous and nondecreasing. Therefore, (2.4.2) also holds for cECH. It

hence suffices to prove the lemma for irrational a.

Fix an irrational a. If cECH(a) < K(a), then one can find a rational

number µ > cECH(a) and nonnegative integers A,B with µ < kA,B(a). Since

µ > cECH(a), we have N(1, a) 4 N(µ, µ). This inequality implies that for all

nonnegative integers A,B, we have

# {p ∈ N(1, a) | p ≤ A+Ba} ≥ # {p ∈ N(µ, µ) | p ≤ A+Ba} .

The number on the left is #
Ä
T aA,B ∩ Z2

ä
, while the number on the right is

1
2(D + 1)(D + 2), where D := bA+Baµ c. This must be a strict inequality for

some A,B. To see this, let u = (u1, u2, u3, . . . ) be the sequence of natural

numbers obtained by arranging in increasing order all the numbers on the left-

hand side obtained by running through all pairs of integers A,B ≥ 0. Since a

is irrational, each number in N(1, a) occurs with multiplicity 1. The definition

of N(1, a) therefore shows that u = (1, 2, 3, . . . ). On the other hand, the

numbers in N(µ, µ) appear with larger and larger multiplicity. The sequence

obtained in this way from the right-hand side therefore jumps by larger and

larger amounts.

Consider A,B such that this is a strict inequality. Then kA,B(a) = A+Ba
d ,

where d > D. On the other hand, because a is irrational and µ is rational,

D + 1 > A+Ba
µ > D so that

kA,B(a) = A+Ba
d ≤ A+Ba

D+1 < µ.

Since this contradicts our assumptions, we conclude that cECH(a) ≥ K(a).

To complete the proof, it suffices to show that K(a) ≥ µ for all µ <

cECH(a). For such µ, we have N(1, a) 64 N(µ, µ). Therefore there is A,B such



4-DIMENSIONAL SYMPLECTIC ELLIPSOIDS 1223

that

# {p ∈ N(1, a) | p ≤ A+Ba} < # {p ∈ N(µ, µ) | p ≤ A+Ba} .

With D as before, this implies that d≤D so that kA,B(a)= A+Ba
d ≥ A+Ba

D ≥µ.

Hence K(a) = sup kA,B(a) ≥ µ as required. �

We are now going to prove Theorem 1.1.3 by direct calculation, showing

that for each of the constraints (d;m) that contributes to c(a), there is a

triangle that contributes to K(a) in exactly the same way. Therefore we will

assume the results of Theorems 1.1.2 and 5.2.3.

The key to understanding the relation between the functions kA,B of equa-

tion (2.4.1) and the number of lattice points in the triangles T aA,B is the fol-

lowing lemma, which was explained to us by Hutchings.

Lemma 2.4.2. Suppose that a is rational, abbreviate T := T aA,B , and sup-

pose that

#(T ∩ Z2) ≤ 1
2(d+ 1)(d+ 2) + s− 1 = 1

2(d2 + 3d) + s,

where s ≥ 1 is the number of integral points on the slant edge of T . Assume

that (A,B) (resp. (A′, B′)) is the integral point on the slant edge with smallest

(resp. largest) x-coordinate. Then there is ε > 0 such that

K(z) ≥ A+zB
d if z ∈ (a− ε, a], K(z) ≥ A′+zB′

d if z ∈ [a, a+ ε).

Proof. Recall that cECH and hence K is continuous. To prove the state-

ment for z < a it therefore suffices to consider irrational z of the form z = a−ε.
Then, for small enough ε > 0, the triangle T zA,B contains s − 1 fewer integral

points than T . Therefore kA,B(z) ≥ A+zB
d , which proves the first statement.

Similarly, the second statement holds because if z = a + ε is irrational and

ε > 0 is sufficiently small, the triangle T zA′,B′ contains s − 1 fewer integral

points than T . �

Lemma 2.4.3. K(bn) ≥ √an+1 for all n ≥ 1.

Proof. Consider the triangle Tn ⊂ R2 with vertices (0, 0), (gn+2, 0) and

(0, gn), where gn is the nth odd Fibonacci number. Because gn, gn+2 are mu-

tually prime and satisfy the identities

gn + gn+2 = 3gn+1, gngn+2 = g2n+1 + 1

(see Section 3.1), we find that

#(Tn ∩ Z2) = 1
2(gn + 1)(gn+2 + 1) + 1(2.4.3)

= 1
2(g2n+1 + 3gn+1) + 2.
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Since bn = gn+2

gn
, we have Tn = T bn0,gn . In view of (2.4.3) we can apply

Lemma 2.4.2 with s = 2 and d = gn+1: For some ε > 0, we have

K(z) ≥ zgn
gn+1

when z ∈ (bn − ε, bn],

and

K(z) ≥ gn+2

gn+1
when z ∈ [bn, bn + ε).

In particular, K(bn) ≥ gn+2

gn+1
=
√
an+1. �

Corollary 2.4.4. K(a) ≥ c(a) for all a ∈ [1, τ4].

Proof. First observe that c is the smallest continuous and nondecreasing

function on [1, τ4] that is ≥
√
a, has the scaling property of Lemma 1.1.1 and

also satisfies c(bn) =
√
an+1. On the other hand, we already remarked that

cECH and hence K is continuous, nondecreasing and has the scaling property.

It is also easy to see that K(a) ≥
√
a, because the number of integer points in

a large triangle approximates its area. Therefore K(bn) ≥ c(bn) implies that

K(a) ≥ c(a) over the whole interval. �

Proof of Theorem 1.1.3. By Corollary 2.4.4 we only need to show K ≥ c

on the interval [τ4,∞). Since, as remarked there, K(a) ≥
√
a for all a, we

just need to check that K(a) ≥ µ(d;m)(a) for all (d;m) that contribute to c.

Recall from the proof of Proposition 1.2.9 that the class (3; 2, 1×6) gives the

constraint a+1
3 on [τ4, 7]. Together with Theorems 1.1.2(ii) and 5.2.3, we see

that it suffices to check K(a) ≥ µ(d;m)(a) for the nine classes in Table 2.1

below. Each of these classes contributes on both sides of its center point.

It suffices to show that in each case there is a triangle that gives an equal

constraint. Proposition 2.3.2 shows which triangles to take: If the constraint

(d;m) is centered at a, then one should consider T := T aA,B = T aA′,B′ where

µ(d;m)(z) equals 1
d(A + Bz) to the left of a and 1

d(A′ + B′z) to the right.

Because c = µ(d;m) in a neighborhood of the center point, this proposition

together with Corollary 2.1.4 implies that 0 ≤ A < p and mq ≤ B < (m+ 1)q,

so that the integral points (A,B) and (A′, B′) = (A + mp,B − mq) are the

first and last on the slant edge of T , as required by Lemma 2.4.2. Therefore, it

suffices to check that in each case the coefficient d occurring in (d;m) satisfies

the condition in Lemma 2.4.2. Thus the number N(A,B) of integer points

in T must be ≤ N(d) := 1
2(d + 1)(d + 2) + s − 1, where s = m + 1 is the

number of points on the slant edge of T . In fact, as Table 2.1 shows we find

that N(A,B) = N(d) in each case.

We calculate N(A,B) by subdividing T into five parts labeled α, . . . , ε as

in Figure 2.2. Each part besides γ is half open and includes the integer points

on the heavy boundary edges but not those on the dashed boundary edges. For

example, the rectangle β includes the integer points on the x and y-axes, but
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a (d;m) (A,B) (A′, B′) N(A,B) s N(d)

7 (3; 2, 1×6) (1, 1) (8, 0) 11 2 11

71
8 (48; 18×7, 3, 2×7) (7, 17) (121, 1) 1227 3 1227

7 2
15 (64; 24×7, 3×7, 1×2) (14, 22) (121, 7) 2146 2 2146

71
7 (24; 9×7, 2, 1×6) (7, 8) (57, 1) 326 2 326

7 2
13 (40; 15×7, 2×6, 1×2) (14, 13) (107, 0) 862 2 862

71
5 (16; 6×7, 1×5) (7, 5) (43, 0) 154 2 154

71
4 (35; 13×7, 4, 3×3) (0, 13) (87, 1) 669 4 669

71
2 (8; 3×7, 1×2) (7, 2) (22, 0) 46 2 46

8 (6; 3, 2×7) (1, 2) (17, 0) 30 3 30

Table 2.1.

α

γ

δ

β

ε

(A′, B′)

(A,B)

Figure 2.2. The subdivision of the triangle T aA,B.

not those on the (dashed) edges shared by α, γ or δ. Thus #(β ∩ Z2) = AB.

Further, because A,B (resp. (A′, B′)) is the integer point on the slant edge

with smallest (resp. largest) x coordinate, we put all integer points on the

slant edge into γ. Thus, we find that

#(γ ∩ Z2) = 1
2

(
(A′ −A+ 1)(B′ −B + 1)− s

)
+ s.

For example, in the case of the triangle T a7,17 with a = 71
8 and s = 3, the

numbers of integer points in α, . . . , ε are 7, 119, 979, 114 and 8, giving a total

of 1227.

This completes the proof of Theorem 1.1.3. �
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Remark 2.4.5. On the interval [7, 8], there are four other classes (described

in Table 5.5) with the property that µ(d;m)(a) = c(a) at their center points

a = p
q , but that do not contribute otherwise to c(a). Let us look at their

contribution to K. In each case (A,B) = (−1,mq), where m is the last nonzero

entry in m, so that µ(d;m) does not satisfy the scaling condition to the left.

In the corresponding triangles the first point on the slant edge is (A1, B1) =

(−1 + p, (m − 1)q), and one can check as before that in each case s = m and

N(A,B) = N(d). Therefore to the left of each center point we obtain the

inequality

K(a) ≥ kA1,B1(a) =
p− 1 + (m− 1)qa

d
.

In each case, one can check that kA1,B1(a) is precisely c(a). For example, at

71
8 = 57

8 =: p
q , we get 56+17·8a

384 = 7+17a
48 which agrees with the first line in

Table 5.1.

(ii) Recall from the introduction that the functorial properties of embed-

ded contact homology establish that cECH(a) ≤ c(a) for all a. For a ≤ 61
4 ,

a = 9 and for a ≥ 11, one can prove this by directly showing that for each d

the closed triangle with vertices (0, 0), (d c(a), 0), (0, d c(a)a ) contains at least
1
2(d+ 1)(d+ 2) lattice points. For extensions of such arguments see [18].

3. The Fibonacci stairs

In this section we establish the behavior of c(a) for a ≤ τ4.

3.1. Main results. Recall that the Fibonacci numbers fn for n ≥ 0 are

recursively defined by

(3.1.1) f0 = 0, f1 = 1 and fn+1 = fn + fn−1, n ≥ 1.

Denote by gn = f2n−1, n ≥ 1, the sequence of odd Fibonacci numbers. The

sequence gn starts with

1, 2, 5, 13, 34, 89, 233, 610, 1597, 4181, 10946, . . . .

The recursion formula fn+1 = fn + fn−1 implies the recursion formula

(3.1.2) gn+1 = 3gn − gn−1.

Using this and induction we find that

(3.1.3) g2n + 1 = gn−1gn+1.

Set

an =
Ä
gn+1

gn

ä2
and bn = gn+2

gn
.

Then · · · < an < bn < an+1 < bn+1 < · · · . Since lim
n→∞

fn+1

fn
= 1+

√
5

2 =: τ , we

have

lim
n→∞ an = lim

n→∞ bn = τ4 ≈ 6.8541.
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The key to establishing the Fibonacci stairs is the following result that

states that there are elements in E corresponding to the points an, bn.

Theorem 3.1.1. (i) Let W (bn) = gnw(bn). Then

E(bn) :=
Ä
gn+1;W (bn)

ä
∈ E .

(ii) Let W ′(an) be the tuple obtained from W (an) := g2nw(an) by adding

an extra 1 at the end. Then

E(an) :=
Ä
gngn+1;W

′(an)
ä
∈ E .

Corollary 3.1.2. Part (i) of Theorem 1.1.2 holds.

Proof of Corollary. Since E(bn) is a perfect element, Lemma 2.1.5(i) shows

that

c(bn) = µ
Ä
gn+1;W (bn)

ä
(bn) = gn

gn+1
w(bn) ·w(bn) = gn

gn+1
bn = gn+2

gn+1
=
√
an+1.

Suppose that c(an) >
√
an for some n. Then Corollary 1.2.3 implies that there

is (d;m) ∈ E such that

m ·w(an) > d
√
an.

Note that (d;m) 6=
Ä
gngn+1;W

′(an)
ä

since W ′(an) ·w(an)=g2nan=gngn+1
√
an.

Therefore by positivity of intersections (part (ii) of Proposition 1.2.12), we

must have

dgngn+1 ≥m ·W ′(an) ≥ g2nm ·w(an), i.e., d
√
an ≥m ·w(an).

It follows that c(an) =
√
an for all n. Thus c(bn) =

√
an+1 = c(an+1). More-

over,
c(bn)
bn

=
√
an+1

bn
= 1√

an
= c(an)

an
.

Hence c is linear on the interval [an, bn] by the scaling property (1.1.2). �

Corollary 3.1.3. The classes E(bn) are the only perfect elements.

Proof. On [1, τ4], c(a) is given by the Fibonacci stairs. By Lemma 2.1.5(i),

the perfect element E(bn) is the only class giving the constraint c(bn) at bn.

This and Proposition 2.3.2 show that the step of the stairs over [an, an+1]

centered at bn is the constraint µ given by the perfect element E(bn).

Lemma 2.1.5(i) now shows that there cannot be another perfect element

on [1, τ4]. By (ii) of Lemma 2.1.5 there is no perfect element on [τ4,∞). �

We now turn to the proof of Theorem 3.1.1. The proof of part (i) is

relatively easy; it is deferred to Corollary 4.2.3 since it is a special case of

Proposition 4.2.2. To prove part (ii) we first need to show that the ele-

ments E(an) satisfy the appropriate Diophantine equations, which is accom-

plished in Lemma 3.1.4. Second, we must check that E(an) reduces correctly

under Cremona moves. As we see in Section 3.3, the reduction process is quite
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complicated (and in fact is much more complicated than for the E(bn)), basi-

cally because the weight expansions w(an) involve quadratic rather than linear

functions in the Fibonacci numbers. The intermediate Section 3.2 collects ba-

sic identities on Fibonacci numbers and explains an inductive procedure useful

for checking identities on them.

Lemma 3.1.4. The tuples E(an) :=
Ä
gngn+1;W

′(an)
ä

have integer entries

and satisfy equations (1.2.4).

Proof. Consider the tuple
Ä
gngn+1;W

′(an)
ä
. Since an =

g2n+1

g2n
, it follows

from Lemma 1.2.6 that the last entry wM of w(an) is 1
g2n

. Therefore, the terms

in W (an) = g2nw(an) and hence in W ′(an) are all integers. Next,∑
i

W ′i (an) = g2n

(∑
i

wi

)
+ 1 = g2n

(
an + 1− 1

g2n

)
+ 1

= g2n+1 + g2n = g2n+1 + gn+1gn−1 − 1

= gn+1 (gn+1 + gn−1)− 1 = 3gn+1gn − 1.

Finally, W ′(an) · W ′(an) = g4n an + 1 = (gngn+1)
2 + 1. This completes the

proof. �

3.2. Identities for Fibonacci numbers. The proof that the classes E(an)

reduce correctly involves many small calculations. To avoid having to do them

explicitly, we first explain a general inductive procedure whose conclusions are

summarized in Proposition 3.2.3. It is based on the following elementary result.

Recall that fk denotes the kth Fibonacci number defined in (3.1.1).

Lemma 3.2.1. Given any three distinct numbers s0, s1, s2 ≥ 0, there are

rational constants λ, µ such that fs2+j = λfs0+j + µfs1+j for all j ≥ 0.

Proof. The equations

λfs0 + µfs1 = fs2 , λfs0+1 + µfs1+1 = fs2+1

have a unique solution because
fs0
fs0+1

6= fs1
fs1+1

when s0 6= s1. Now apply the

defining relation (3.1.1). �

We will frequently use the following relations between Fibonacci numbers.

f2k = fk+1fk−1 − (−1)k,(3.2.1)

f2k−1 = f2k + f2k−1,(3.2.2)

f2k = f2k+1 − f2k−1.(3.2.3)

Lemma 3.2.2. For each i ≥ 0 and s ≥ 0, there is an identity of the form

fs+ifs =
∑
j≥0

aijf2s+j + (−1)sci,
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with a finite number of coefficients ci, aij ∈ Q that do not depend on s. Further,

ci = −∑j≥0 aijfj .

Proof. By (3.1.1) it suffices to prove this for i = 0 and i = 2. We claim

that for all s ≥ 0,

5fsfs =−f2s + 2f2s+1 − 2(−1)s,(3.2.4)

5fs+2fs = f2s+1 + f2s+3 − 3(−1)s.(3.2.5)

For s = 0, equation (3.2.4) is true. For s ≥ 1, equation (3.2.4) can be rewritten

as

5f2s = f2s+1 + f2s−1 − 2(−1)s.

By (3.2.2), the right-hand side is f2s+1 + 2f2s + f2s−1 − 2(−1)s, whence we need

to check

(3.2.6) 3f2s = f2s+1 + f2s−1 − 2(−1)s.

Replacing fs+1 by fs + fs−1, this becomes 2f2s = 2fsfs−1 + 2f2s−1 − 2(−1)s,

which is true since by (3.2.1), f2s = fs+1fs−1 − (−1)s = fsfs−1 + f2s−1 − (−1)s.

By (3.2.1) and (3.2.2), equation (3.2.5) becomes

5f2s+1 + 5(−1)s+1 = f2s+2 + 2f2s+1 + f2s − 3(−1)s;

i.e.,

3f2s+1 = f2s+2 + f2s − 2(−1)s+1,

which is true by (3.2.6). The formula for ci holds because f0 = 0. �

Proposition 3.2.3. A quadratic identity of the form

Q(s) :=
∑
i,j≥0

aijfs+ifs+j +
∑
j≥0

bjf2s+j + (−1)sc = 0

holds for all s ≥ 0 if it holds for any three distinct values of s. Moreover, if

the relation is homogeneous and linear (that is, if aij = c = 0 for all i, j), then

it suffices to check two values of s.

Proof. Suppose that Q(s) = 0 for s = s0, s1, s2, where 0 ≤ s0 < s1 < s2.

By Lemma 3.2.2 one can convert Q(s) to an equivalent identity of the form

Q′(k) :=
∑
j≥0

ajfk+j + (−1)sc′ = 0, where k = 2s.

We first claim that c′ = 0. By Lemma 3.2.1 there are constants µ, λ such

that

(3.2.7) f2s2+j = µf2s1+j + λf2s0+j for all j ≥ 0.

Since Q′(k) = 0 for k = 2s0, 2s1, 2s2, and by (3.2.7),

c′ =
Ä
(−1)s0+s2µ+ (−1)s1+s2λ

ä
c′.
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If c′ 6= 0, we thus have 1 ∈ {±µ± λ}. This is impossible: We use the recurrence

relation (3.1.1) to extend the sequence (fn), n ≥ 0, to negative index n. Note

that f−n = (−1)n+1fn. Then (3.2.7) holds for all j ∈ Z. With j = −2s0 and

j = −2s1, we get

µ =
f2(s2−s0)
f2(s1−s0)

, λ = −
f2(s2−s1)
f2(s1−s0)

.

Therefore, ±µ± λ = 1 exactly if

±f2(s2−s0) = ±f2(s2−s1) + f2(s1−s0).

The signs ++ are impossible because fm+n = fm+n−1 + fm+n−2 > fm + fn
for all even m,n > 0. Further, +−, −+ and −− are impossible because

s2 > s1 > s0 > 0.

We have shown that Q′(k) =
∑
j≥0 ajfk+j . Recall that Q′(k) = 0 for

k = 2s0, 2s1, 2s2. By Lemma 3.2.1, the expression for Q′(0) can be written as

a linear combination of the expressions for Q′(2s0) and Q′(2s1), and the same

is true for Q′(1). Therefore, Q′(0) = 0 and Q′(1) = 0. This and the defining

relation (3.1.1) show that Q′(k) = 0 for all k. In particular, Q′(k) = 0 for all

even k, and so Q(s) = 0 for all s. This proves the first statement. The second

holds similarly. �

In the subsequent sections, the following abbreviations will be useful.

Definition 3.2.4. The kth Lucas number is defined to be `k = fk−1+fk+1,

k ≥ 1. We set Fk := 1
3f4k and Lk := 1

3`4k+2.

Then

F1 = 1, F2 = 7, F3 = 48, F4 = 329,

L0 = 1, L1 = 6, L2 = 41, L3 = 281, L4 = 1926.

Further, for k ≥ 0, define the sequence Hk by

(3.2.8) Hk = 1
3 f2kf2k+2.

Then H0 = 0, H1 = 1, H2 = 8, H3 = 56, H4 = 385, H5 = 2640, . . . .

Lemma 3.2.5. The following identities hold for all k ≥ 0:

(i) Fk+1 = Lk + Fk;

(ii) Lk+1 = 5Fk+1 + Lk;

(iii) Hk+1 = Hk + Fk+1 =
∑k+1
i=1 Fi;

(iv) Lk = 5Hk + 1.

(v) F 2
k+1 − FkFk+2 = 1.

Proof. The second identity in (iii) follows from the first identity in (iii) by

induction. All other identities have the form considered in Proposition 3.2.3,

and so it is enough to check each of them for at most three low values of k. �
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3.3. Reducing E(an). We begin with a general remark about the reduction

process.

Remark 3.3.1. Consider a tuple (d;m) that satisfies the Diophantine iden-

tities (1.2.4). Proposition 1.2.12 states that (d;m) ∈ E exactly if it reduces to

(0;−1, 0, . . . , 0) under standard Cremona moves, as defined in Definition 1.2.11.

In fact, it clearly suffices to reduce (d;m) to a known element of E by any se-

quence of Cremona moves. Each such move consists of an application of the

Cremona transformation

(d;m) 7→ (2d−m1 −m2 −m3; d−m2 −m3, d−m1 −m3, d−m1 −m2, . . . )

followed by a choice of reordering. It does not matter whether this reordering

restores the natural order; all that is important is that in the end, after doing

many such moves, we arrive at a known element of E . In fact, the reorderings

chosen below all do restore the natural order. The point of this remark is that

there is no need to prove this.

Example 3.3.2. The first few elements E(an) areÄ
g2g3;W

′(a2)
ä

=
Ä
10; 4×6, 1×5

ä
,Ä

g3g4;W
′(a3)

ä
=
Ä
65; 25×6, 19×1, 6×3, 1×7

ä
,Ä

g4g5;W
′(a4)

ä
=
Ä
442; 169×6, 142×1, 27×5, 7×3, 6×1, 1×7

ä
.

These values of n are too low for our general arguments in Sections 3.3.1

and 3.3.2 to apply. Hence one proves that they reduce correctly by direct

calculation.

The following list of Fibonacci numbers will be useful in the subsequent

proofs:

n 0 1 2 3 4 5 6 7 8 10 12

fn 0 1 1 2 3 5 8 13 21 55 144

3.3.1. Reducing E(an) for even n. Throughout this subsection we will

consider n = 2m ≥ 2 to be a fixed even number. We will obtain an explicit

expression for W ′(an) and then examine its reduction by Cremona moves.

By Example 3.3.2 it suffices to consider the case n ≥ 6. Hence this case of

Theorem 3.1.1 follows from Propositions 3.3.6, 3.3.9 and 3.3.10.

For each fixed n, denote k′ := n− k and define

uk := f22n−2k−1 + 2Hk = f22k′−1 + 2Hk, k = 0, . . . ,m− 1,(3.3.1)

vk := 3Fn−k − 2Fk = 3Fk′ − 2Fk, k = 1, . . . ,m.

Note that uk, vk depend on n, though for simplicity the notation does not make

this explicit. Also, vk > 0 for all k ≤ m and vm = Fm. However, the above
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formula for vk gives a negative number when k > m. This is why the expansion

in Proposition 3.3.3 below changes its form at the term vm. Note also that by

equations (3.2.1) and (3.2.8),

(3.3.2) f22n+1 = f2nf2n+2 + 1 = 3Hn + 1.

Hence we also have

(3.3.3) uk = 3Hk′−1 + 2Hk + 1.

Proposition 3.3.3. If n = 2m is even, then the continued fraction ex-

pansion of an is

[6; 1, 5︸︷︷︸
m−1

, 3, 1, 5, 1︸︷︷︸
m−1

] =: [6; {1, 5}×(m−1), 3, 1, {5, 1}×(m−1)]

and the (renormalized) weight expansion W (an) is (An, Bn), where the vectors

An, Bn are

An =
Ä
u0
×6, v1×1, u1×5, v2×1, . . . , um−2×5, vm−1×1, um−1×5

ä
,

Bn =
Ä
Fm
×3, Lm−1×1, Fm−1×5, Lm−2×1, . . . , F2

×5, L1
×1, F1

×5, L0
×1ä.

Remark 3.3.4. Although our usual convention is that the expression a =

[`0; `1, . . . , `N ] always has `N ≥ 2, we relax this condition here in order to

simplify the formulas. We allow ourselves another liberty at the end of these

expansions: In the formula for Bn in Proposition 3.3.3, the last two weights

F1, L0 are equal, so the ending multiplicity is in fact 6 rather than 5, 1.

Proof. Recall that an =
Ä
gn+1

gn

ä
2 =

f22n+1

f22n−1
. Also, because bn−1 < an < bn,

the weight expansion w(an) begins as (1×6, (an − 6)×1, . . . ). Hence

W (an) = f22n−1w(an) =
Ä
f22n−1

×6
, f22n+1 − 6 f22n−1, . . .

ä
.

Therefore, because vm = Fm as noted above, the expansion of W (an) up to and

including the term Lm−1 follows from Lemma 3.3.5. The rest of the expansion

holds by Lemma 3.2.5. �

Lemma 3.3.5. Let n = 2m ≥ 4. The following identities hold :

(i) f22n+1 = 6u0 + v1 and v1 < u0;

(ii) uk = vk+1 + uk+1 and uk+1 < vk+1 for k = 0, . . . ,m− 2;

(iii) vk = 5uk + vk+1 and vk+1 < uk for k = 1, . . . ,m− 1;

(iv) um−1 = 3Fm + Lm−1 and Lm−1 < Fm.

Proof. Statement (i) is equivalent to

(3.3.4) f22n+1 = 6 f22n−1 + 3Fn−1 − 2.
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Since f2s+1 = 6f2s−1 + f2s−4 − 2(−1)s holds true for s = 2, 3, 4, this equation

holds true for all s ≥ 2 by Proposition 3.2.3; in particular it holds true for all

even s ≥ 2, and so (3.3.4) holds true.

The equality in (ii) follows from the definitions of uk, vk by using (3.3.3)

and Hk =
∑k
i=1 Fi and by dividing the equations into two equations, one for k

and one for k′ := n− k. To prove the equation in (iii) we again divide it into

two equations, one for k and one for k′ := n− k; namely,

−2Fk = 10Hk + 2− 2Fk+1, 3Fk′ = 5f22k′−1 − 2 + 3Fk′−1.

The first equation is equivalent to Lk=5Hk+1, which holds by Lemma 3.2.5(iv),

and the second holds because f2s = 5f2s−1−2(−1)s+f2s−4 is true for s = 2, 3, 4

and hence for all s ≥ 2 by Proposition 3.2.3.

Equation (3.3.3) and Lemma 3.2.5 imply that

um−1 = 3Hm + 2Hm−1 + 1 = 3Fm + 5Hm−1 + 1 = 3Fm + Lm−1.

This proves (iv).

Since uk, vk are positive in the given ranges, the equalities in (ii) and (iv)

imply the inequalities in (i) and (iii). Similarly, the equalities in (iii) imply the

inequalities in (ii). This completes the proof. �

The reduction process has three steps that are described in Proposi-

tions 3.3.6, 3.3.9 and 3.3.10. Notice, before we begin, that the weights of

an divide into three groups, namely (m − 1) pairs {1, 5}, two central blocks

with multiplicities 3, 1, and finally (m − 1) pairs {5, 1}. In the first step we

show that a set of 5 Cremona moves has the effect of moving the first {1, 5}
pair from the left to a {5, 1} pair on the right. Moreover, doing this introduces

no new weights to the right while slightly modifying the first block on the left.

Denote Vn = E(an) = (gngn+1;W (an), 1). Note that

gngn+1 = f2n−1f2n+1 = f22n + 1 = f22n + f21

by (3.2.1).

Proposition 3.3.6. For n = 2m ≥ 6, the vector Vn is reduced by 5(m−1)

Cremona moves to the vector V 1
n =

Ä
f22(m+1) + f22m−1; A

1
n, B

1
n

ä
, where

A1
n : =

Ä
(um−1 + Fm−1)×1, um−1×5

ä
,

B1
n : =

Ä
Fm
×3, Lm−1×1, Fm−1×10, Lm−2×2, . . . ,

F2
×10, L1

×2, F1
×10, L0

×2, 1×1
ä
.

Let

V (n, 1) :=
Ä
f22n + 1;A(n, 1), B(n, 1)

ä
:=
Ä
f22n + 1;An, Bn

ä
= Vn,

and for k = 2, . . . ,m, define the vector V (n, k) byÄ
f22(n−k+1) + f22k−1;A(n, k), B(n, k)

ä
,
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where

A(n, k) =
Ä
(uk−1 + Fk−1)

×1, uk−1
×5, vk

×1, uk
×5, . . . , , vm−1×1, um−1×5

ä
,

B(n, k) =
Ä
Fm
×3, Lm−1×1, . . . , Fk

×5, Lk−1
×1, Fk−1

×10, Lk−2
×2, . . . ,

F1
×10, L0

×2, 1×1
ä
.

Then V (n, 1) = Vn and V (n,m) = V 1
n . Moreover, A(n, k + 1) is obtained

from A(n, k) by replacing its first seven entries by the single entry uk + Fk =

f22(n−k)−1 + 2Hk + Fk, and B(n, k + 1) is obtained from B(n, k) by insertingÄ
Fk
×5, Lk−1

ä
. Proposition 3.3.6 will follow if we prove

Lemma 3.3.7. For 1 ≤ k ≤ m − 1, V (n, k) reduces to V (n, k + 1) by

5 Cremona moves.

We prove Lemma 3.3.7 in five steps. Throughout, we abbreviate n− k to

k′. Thus k′ > k.

Remark 3.3.8. (i) Each step of the reduction involves many small calcu-

lations that can be done directly using identities such as (3.2.1), (3.2.2) and

(3.2.3). However, in all cases the required identity is quadratic in the sense of

Proposition 3.2.3. Hence they can be all proved by verifying them for just three

low values of s, as we have already illustrated in the proof of Lemma 3.3.5.

The only condition on the choice of s is that all subscripts of the fi should be

≥ 0.

(ii) In each step of the reduction process there is no interaction between

the terms in k and those in k′; we simplify each set of terms separately.

Step 1: There is a Cremona move that takes V (n, k) to

V1(n, k) :=
Ä
f4k′+2 − Fk−1; uk−1×3, vk, f2k′+1f2k′ −Hk−1,

(f2k′+1f2k′ −Hk−1 − Fk−1)×2, uk×5, . . .
ä
.

Proof. The first component of the Cremona transform of V (n, k) is

2
Ä
f22(k′+1) + f22k−1

ä
− 3uk−1,

and we must show that it equals f4k′+2. Since uk−1 := f22k′+1 + 2Hk−1, we

need to see that

2 f22(k′+1) − 3 f22k′+1 − f4k′+2 = 6Hk−1 − 2 f22k−1 = 2
Ä
f2k−2f2k − f22k−1

ä
.

But both sides are equal to −2. This is clear for the right-hand side by (3.2.1).

For the left-hand side, note that 2f2s+2− 3f2s+1− f2s+2 = −2(−1)s since this is

true for s = −1, 0, 1 and hence for all s ≥ −1 by Proposition 3.2.3.

The second three terms of the Cremona transform of V (n, k) equalÄ
f22(k′+1) + f22k−1

ä
− 2uk−1,
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and one can check as above that this is f2k′+1f2k′ −Hk−1. Therefore the given

vector V1(n, k) is a reordering of the Cremona transform of V (n, k). �

Step 2: There is a Cremona move that takes V1(n, k) to

V2(n, k) :=
(
f4k′ + f2k′+1f2k′ −Hk − Fk−1; vk, f2k′+1f2k′ −Hk−1,

(f2k′+1f2k′ −Hk−1 − Fk−1)×2, (f2k′f2k′−1 − f2kf2k−1)×3, uk×5, . . .
)
.

Proof. For the first component we need to see that

2 (f4k′+2 − Fk−1)− 3uk−1 = f4k′ + f2k′+1f2k′ −Hk − Fk−1.

But this is equivalent to the identity

(3.3.5) 2 f4k′+2 − 3 f22k′+1 − f4k′ − f2k′+1f2k′ = 6Hk−1 + Fk−1 −Hk,

and one can check that both sides here equal −1.

The Cremona transform also contains three terms of the form f4k′+2 −
Fk−1−2uk−1, and we need to check that this is f2k′f2k′−1−f2kf2k−1. But this

holds because

f4k′+2 − 2 f22k′+1 − f2k′f2k′−1 = 4
3f2k−2f2k − f2kf2k−1 + 1

3f4k−4 = −1.

Thus V2(N, k) is a reordering of the Cremona transform of V1(n, k). �

Step 3: There is a Cremona move that takes V2(n, k) to

V3(n, k) :=
Ä
f4k′ − Fk−1; f2k′+1f2k′ −Hk−1 − Fk−1,

(f2k′f2k′−1 − f2kf2k−1)×4, uk×5, . . .
ä
,

where the multiplicities of Fk and Lk−1 are each increased by one to Fk
×6,

Lk−1×2.

Proof. Since Hk = Hk−1 + Fk, the first term

2 (f4k′ + f2k′+1f2k′ −Hk − Fk−1)− vk − 2 (f2k′+1f2k′ −Hk−1) + Fk−1

of the Cremona transform of V2(n, k) is equal to

2 f4k′ − 2Fk − Fk−1 − (f4k′ − 2Fk) = f4k′ − Fk−1.

Its second term

(f4k′ + f2k′+1f2k′ −Hk − Fk−1)− 2 (f2k′+1f2k′ −Hk−1) + Fk−1

simplifies to

f4k′ − f2k′+1f2k′ − Fk +Hk−1 = f2k′f2k′−1 − f2kf2k−1,

where the last equality follows from the identities

(3.3.6) f4k′ − f2k′+1f2k′ − f2k′f2k′−1 = 0, Fk −Hk−1 − f2kf2k−1 = 0.
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The third term of the Cremona transform of V2(n, k) is

(f4k′ + f2k′+1f2k′ −Hk − Fk−1)− vk − (f2k′+1f2k′ −Hk−1 − Fk−1) .

This is equal to Fk. In the same way, we find that its fourth term is Fk−Fk−1 =

Lk−1. The result follows immediately. �

Step 4: There is a Cremona move that takes V3(n, k) to

V4(n, k) :=
Ä
f2k′+1f2k′ −Hk−1 − Fk−1 + 2Fk; f

2
2k′ + f22k−1 + Fk,

(f2k′f2k′−1 − f2kf2k−1)×2, uk×5, . . .
ä
,

where the multiplicities of Fk and Lk−1 are now Fk
×8, Lk−1×2.

Proof. By (3.3.6), the first term of the Cremona transform of V3(n, k) is

f2k′+1f2k′ −Hk−1 − Fk−1 + 2Fk.

We claim that its second term is

f4k′ − Fk−1 − 2 (f2k′f2k′−1 − f2kf2k−1) = f22k′ + f22k−1 + Fk.

This follows from

(3.3.7) f4k′ − 2 f2k′f2k′−1 − f22k′ = 0, Fk−1 − 2 f2kf2k−1 + f22k−1 + Fk = 0.

Finally, the third and fourth term of the Cremona transform of V3(n, k)

are

f4k′ − Fk−1 − (f2k′+1f2k′ −Hk−1 − Fk−1)− (f2k′f2k′−1 − f2kf2k−1) = Fk,

where the equality holds by (3.3.6). Hence V4(n, k) is a reordering of the

Cremona transform, as claimed. �

Step 5: There is a Cremona move that takes V4(n, k) to

(3.3.8) V (n, k + 1) :=
Ä
f22k′ + f22k+1; uk + Fk, Fk

×2, uk
×5, . . .

ä
,

where the multiplicities of Fk and Lk−1 are Fk
×10, Lk−1×2.

Proof. The above expression for the first term of the Cremona transform

of V4(n, k) follows from the identities

2 f2k′+1f2k′ − 2 f22k′ − 2 f2k′f2k′−1 = 0,

2Hk−1 + 2Fk−1 − 3Fk + f22k−1 − 2 f2kf2k−1 + f22k+1 = 0.

(The second identity can be simplified by subtracting the second identity

of (3.3.7).)

We next claim that the second term of this transform is uk + Fk. Since

uk = f22k′−1 + 2Hk and Hk−1 + Fk = Hk, this is equivalent to the identity

f2k′+1f2k′ − 2 f2k′f2k′−1 − f2k′−1 = 3Hk−1 + Fk−1 + Fk − 2 f2kf2k−1.

But both sides equal −1.
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Finally, its third and fourth terms are Fk because

f2k′+1f2k′ − f22k′ − f2k′f2k′−1 = Hk−1 + Fk−1 + f22k−1 − f2kf2k−1.

Here both sides vanish. �

This completes the proof of Lemma 3.3.7 and hence of Proposition 3.3.6.

The next stage of the reduction process results in a vector V 2
n whose compo-

nents are linear (rather than quadratic) functions of the fk and do not involve

the index k′.

Proposition 3.3.9. When n = 2m ≥ 6, the vector V 1
n may be reduced by

four Cremona moves to

V 2
n =

Ä
Fm
×1;Lm−1×1, Fm−1×11, Lm−2×2, . . . , F2

×10, L1
×2, F1

×13ä.
Proof. Note that V 2

n is obtained from B1
n by removing two copies of Fm

and adding one Fm−1.
We first claim that the Cremona transform of V 1

n isÄ
f4m+2 − Fm−1; f4m−1 + Fm−1, f4m−1×2, um−1×3, B1

n

ä
,

which we reorder as

(3.3.9)
Ä
f4m+2 − Fm−1; um−1×3, f4m−1 + Fm−1, f4m−1×2, B1

n

ä
.

Here one obtains the first term of the transform from the identity

2
Ä
f22(m+1) + f22m−1

ä
− 3um−1 = f4m+2

and the second term from

f22m+2 + f22m−1 − 2um−1 = f4m−1 + Fm−1.

Next, observe that Lemma 3.3.5(iv) implies that 2um−1 = 6Fm + 2Lm−1,
which, as one can easily check, is just f4m+2 − Fm−1. Therefore, the second

Cremona transform moves the vector (3.3.9) to

(3.3.10)
Ä
um−1; f4m−1 + Fm−1, f4m−1×2, B1

n

ä
.

We next claim that um−1 − 2 f4m−1 = Fm−1. Hence the third Cremona

transform moves the vector (3.3.10) toÄ
f4m−1 + Fm−1; Fm−1, 0×2, B1

n

ä
,

which we reorder asÄ
2Fm;Fm

×3, Lm−1×1, Fm−1×11, Lm−2×2, Fm−2×10, Lm−2×2, . . . ,

F2
×10, L1

×2, F1
×13 ä.
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Therefore, another Cremona move takes the above vector to

V 2
n =

Ä
Fm; Lm−1×1, Fm−1×11, Lm−2×2, Fm−2×10, Lm−2×2, . . . ,

F2
×10, L1

×2, F1
×13ä.

This completes the proof of Proposition 3.3.9. �

Proposition 3.3.10. For n = 2m ≥ 6, the vector V 2
n may be reduced

to (2; 1×5) by Cremona moves.

Proof. One shows by direct calculation that this holds when n = 6. There-

fore, by induction it suffices to show that the vector V 2
n is reduced to V 2

n−2 by

six Cremona moves. By using the identities in Lemma 3.2.5, it is not hard to

prove directly that this reduction may be achieved by six standard Cremona

moves. Alternatively, one can check numerically that this holds when n = 8

and 10, checking also that the reordering required is the same in both cases at

each stage. Then it holds for all n by Proposition 3.2.3. (Note that we only

need to check two values since all identities are homogeneous and linear.) �

3.3.2. Reducing E(an) for odd n. Throughout this section we denote n =

2m + 1, where m ≥ 1. By Example 3.3.2 it suffices to consider the case

n ≥ 5. Hence this case of Theorem 3.1.1 follows from Propositions 3.3.13, 3.3.14

and 3.3.15.

We consider the numbers

uk = f22n−2k−1 + 2Hk, k = 0, . . . ,m, vk = f4(n−k) − 2Fk, k = 1, . . . ,m,

as before. Again we have vm > 0 > vm+1, but now um = Lm. Therefore

Lemma 3.3.5 takes the following form.

Lemma 3.3.11. If n = 2m+ 1, the following identities hold :

(i) f22n+1 = 6u0 + v1 and v1 < u0;

(ii) uk = vk+1 + uk+1 and uk+1 < vk+1 for k = 0, . . . ,m− 1;

(iii) vk = 5uk + vk+1 and vk+1 < uk for k = 1, . . . ,m− 1;

(iv) vm = 3um + Fm = 3Lm + Fm and Fm < Lm.

Proof. The proofs of the equalities in (i), (ii) and (iii) go through as before,

since these are based on equalities that do not mention m. (Note that the

proof of the equality in (ii) works when k = m− 1, though the corresponding

inequality failed for even n.) One then checks (iv). Then the inequality in (ii)

follows from the equalities in (iii) and (iv), while the inequality in (iii) holds

by (ii). �

As before, this lemma immediately gives the following result.
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Proposition 3.3.12. If n = 2m+1 is odd, the continued fraction expan-

sion of an =
f22n+1

f22n−1
is

[6; {1, 5}×(m−1), 1, 3, {5, 1}×m],

and the (renormalized) weight expansion W (an) is (“An, “Bn), where“An :=
Ä
u0
×6, v1×1, u1×5, . . . , vm−1×1, um−1×5, vm×1

ä
,“Bn :=

Ä
(um = Lm)×3, Fm×5, Lm−1×1, . . . , F1

×5, L0
×1ä.

The proof of Proposition 3.3.6 also goes through. In other words, each

set of five Cremona moves takes one of the m − 1 pairs {1, 5} from the left

to the right of the central blocks (which now have multiplicities 1, 3), while

introducing no new weights on the right. Since we start with m blocks on the

right but only (m− 1) on the left, this means that one pair {5, 1} still remains

on the right, though all the others become {10, 2}. The only other difference

is in the interpretation of the first term of V (n,m): When n = 2m + 1 and

k = m, we have 2(n− k + 1) = 2(m+ 2). Thus we obtain

Proposition 3.3.13. For n = 2m+ 1 ≥ 5, the vector“Vn = (gngn+1;W (an), 1)

is reduced by 5(m− 1) Cremona moves to the vector“V 1
n =

Ä
f22m+4 + f22m−1; “A1

n,
“B1
n

ä
,

where“A1
n :=

Ä
(um−1 + Fm−1)×1, um−1×5, vm×1

ä
,“B1

n :=
Ä
Lm
×3, Fm×5, Lm−1×1, Fm−1×10, . . . , F2

×10, L1
×2, F1

×10, L0
×2, 1×1

ä
.

Notice that the entries in “V 1
n still depend explicitly both on k and on

k′ = n − k since um−1 and vm−1 have this structure. This means that there

are entries in “V 1
n that do not occur anywhere in the reduction of “Vn+2. The

next stage takes us to a vector that occurs in the reduction of all “Vn+2i. For

even n, this stage consisted of four moves, but now it takes six moves.

Proposition 3.3.14. When n = 2m+ 1 ≥ 5, the vector “V 1
n is reduced by

six Cremona moves to“V 2
n :=

Ä
Lm − Fm; (Lm − 2Fm)×1, Fm×7, Lm−1×2, Fm−1×10, Lm−2×2, . . .

ä
,

where the terms including and after Fm−1×10 in “V 2
n are the same as those

in “B1
n.
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Proof. Since the proof is much the same as that of Proposition 3.3.9, we

simply list the results of each Cremona move. Here are the results of the first

four moves:Ä
f4m+6 − Fm−1;um−1×3, vm, f4m+3 + f4m−1 + Fm−1, (f4m+3 + f4m−1)×2,

Lm
×3, . . .

ä
,Ä

f4m+5 + Lm−1; vm, f4m+3 + f4m−1 + Fm−1, (f4m+3 + f4m−1)×2, Lm×3,

f4m+1
×3, . . .

ä
,Ä

f4m+4 − Fm−1; f4m+3 + f4m−1, Lm×3, f4m+1
×4, Fm, Lm−1 . . .

ä
,Ä

f4m+3 + f4m−1; f4m+3 + f4m−1 − Lm, Lm, f4m+1
×4, Fm, Lm−1, . . .

ä
.

None of these moves uses up any of the terms of “B1
n after Lm

×3, though the

multiplicity of Fm, Lm−1 is increased. Hence after the entry for Lm we have

simply listed the extra terms that get added to “B1
n. Note also there is just one

new number that appears after Lm, namely f4m+1 = Lm−Fm, which appears

with multiplicity 4. Using the same conventions, the next move givesÄ
2f4m+1; f4m+1

×3, f4m+1 − Fm, Fm×2, Lm−1, . . .
ä
.

The last move changes the first four terms to the single term f4m+1 =

Lm − Fm. �

Proposition 3.3.15. For n = 2m+ 1 ≥ 5, the vector “V 2
n may be reduced

to (2; 1×5) by Cremona moves.

Proof. This is just the same as the proof of Proposition 3.3.10. �

4. The interval [τ4, 7]

This section is devoted to the calculation of c(a) on the interval [τ4, 7],

thus completing the proof of part (ii) of Theorem 1.1.2. Proposition 1.2.9

gives an easy argument that c(a) = a+1
3 when a ∈ [611

12 , 7]. To prove that this

holds on the whole interval [τ4, 7], we shall adapt the arithmetic approach that

works for a < τ4 rather than using more analytical arguments as in the case

a > 7. We show in Proposition 4.1.6 that it suffices to restrict attention to

some special points with relatively short continued fraction expansions that

are related to the convergents of τ4. We then deal with these special points by

largely arithmetic means. The proof that c(a) = a+1
3 on [τ4, 7] is given at the

end of Section 4.1.

4.1. Reduction to special points. As in Section 2.1, given a with weight

expansion w(a) and (d;m) ∈ E , we define ε by m = d√
a
w(a) + ε and denote
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E :=
∑
ε2i . Also set λ2 := 1− E. Denote

y(a) := a+ 1− 3
√
a.

Since y(τ4) = 0, we have y(a) > 0 for a > τ4. The first result extends

Proposition 2.1.1.

Proposition 4.1.1. Let a ∈ (τ4, 7), and suppose that (d;m) ∈ E is such

that µ(d;m)(a) > a+1
3 . Then

(i) d <
3
√
a√

a2 − 7a+ 1
;

(ii) λ2 >
2d2y(a)

3
√
a

.

Proof. By Proposition 2.1.1(i), we have a+1
3 <

√
a
»

1 + 1/d2, proving (i).

Since a+1
3 <m ·w/d =

√
a+ ε ·w/d, we have y(a)d/3 < ε ·w. Further,

d2 + 1 = m ·m = d2

a a+ 2d√
a
w(a) · ε+ ε · ε,

i.e., ε ·w(a) = λ2
√
a

2d , proving (ii). �

The continued fraction expansion of τ4 = 7+3
√
5

2 is [6; 1, 5, 1, 5, . . . ]. For

k ≥ 1, define its kth convergent ck by

c2k−1 :=
î

6; {1, 5}×(k−1), 1
ó

=
î

6; {1, 5}×(k−2), 1, 6
ó
,

c2k :=
î

6; {1, 5}×k
ó
.

Thus

c1 = 7, c2 = 65
6 = 41

6 , c3 = [6; 1, 5, 1] = [6; 1, 6] = 66
7 = 48

7 ,(4.1.1)

c4 = [6; 1, 5, 1, 5] = 635
41 = 281

41 , c5 = [6; 1, 5, 1, 6] = 641
48 = 329

48 ,

and more generally

c2k < c2k+2 < τ4 < c2k+1 < c2k−1 for all k ≥ 1.

Moreover, for k ≥ 1 and j ≥ 1, define the numbers uk(j), vk(j) ∈ (c2k+1, c2k−1)
by

uk(j) :=
î

6; {1, 5}×(k−1), 1, 6, j
ó
,

vk(j) :=
î

6; {1, 5}×(k−1), 1, j
ó
.

As in Definition 3.2.4, we define for k ≥ 1 the kth Lucas number `k = fk−1 +

fk+1, and set Fk = 1
3f4k and Lk = 1

3`4k+2. Recall from Lemma 3.2.5 that for

all k ≥ 0,

(4.1.2) Fk+1 = Lk + Fk and Lk+1 = 5Fk+1 + Lk
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as well as

(4.1.3) F 2
k+1 − FkFk+2 = 1.

Lemma 4.1.2. For all k ≥ 1,

(i) c2k−1 =
Fk+1

Fk
, c2k =

Lk+1

Lk
;

(ii) uk(j) =
Fk+1 + jFk+2

Fk + jFk+1
for all j ≥ 1;

(iii) vk(j) =
Lk + jFk+1

Lk−1 + jFk
=

(j − 6)Fk+1 + Fk+2

(j − 6)Fk + Fk+1
for all j ≥ 1.

Proof. Recall that if pn/qn is the nth convergent to [`0; `1, . . . , `N ], then

for any n < N and any positive x ∈ R, we have

(4.1.4) [`0; `1, . . . , `n−1, x] =
pn−2 + xpn−1
qn−2 + xqn−1

.

(i) follows from induction on k: The statement is true for k = 1. Assume

it holds for k. By (4.1.4) with x = 1, and by (4.1.2),

c2k+1 =
Fk+1 + Lk+1

Fk + Lk
=
Fk+2

Fk+1
.

Then, by (4.1.4) with x = 5, and by (4.1.2),

c2k+2 =
Lk+1 + 5Fk+2

Lk + 5Fk+1
=
Lk+2

Lk+1
.

(ii) follows from (i) by using c2k+1 = [6; {1, 5}×(k−1), 1, 6].

(iii) follows from (i) and (4.1.2). �

Corollary 4.1.3. For all k ≥ 1, s ≥ 3 and t ≥ 8, we have

c2k+1 < uk(s+ 1) < uk(s) < · · · < uk(2) < uk(1)

= vk(7) < vk(t) < vk(t+ 1) < c2k−1.

Proof. This follows from Lemma 4.1.2 and identity (4.1.3). �

The following corollary will be very useful.

Corollary 4.1.4. (i) Let u = uk(j) =: pq , where j ≥ 1. Then

q2
Ä
u2 − 7u+ 1

ä
= j2 + 7j + 1.

(ii) Let v = vk(j) =: pq , where j ≥ 1. Then

q2
Ä
v2 − 7v + 1

ä
= j2 − 5j − 5.
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Proof. The proofs of (i) and (ii) are similar. We prove (ii). In view of

Lemma 4.1.2(iii) we need to show

(4.1.5)

(Lk + jFk+1)
2 − 7 (Lk−1 + jFk) (Lk + jFk+1) + (Lk−1 + jFk)

2 = j2 − 5j − 5.

Fix j. Identity (4.1.5) is true for k = 1, 2, 3. It therefore holds for all k by

Proposition 3.2.3. �

Definition 4.1.5. We say that a point a ∈ [τ4, 7] is regular if for all (d;m)

∈ E with `(m) = `(a), we have µ(d;m)(a) ≤ a+1
3 .

Proposition 4.1.6. Assume that all the points c2k−1 and all the points

uk(j) with k ≥ 1 and j ≥ 2 and vk(j) with k ≥ 1 and j ≥ 7

are regular. Then c(a) = a+1
3 on [τ4, 7].

A main ingredient in the proof will be the following lemma.

Lemma 4.1.7. Consider the functions ϕ(a) := a+1
3 and ψ(a) :=

√
a. Fix

k ≥ 1. Then

(i) ϕ
Ä
uk(j + 1)

ä
> ψ
Ä
uk(j)

ä
for all j ≥ 1;

(ii) ϕ
Ä
vk(j)

ä
> ψ
Ä
vk(j + 1)

ä
for all j ≥ 7.

Proof. (i) Abbreviate u := uk(j + 1), u′ = uk(j). We need to show that
u+1
3 >

√
u′, i.e.,

(4.1.6) u2 + 2u+ 1 > 9u′.

Recall from Lemma 4.1.2(iii) that

(4.1.7) u =
(j + 1)Fk+2 + Fk+1

(j + 1)Fk+1 + Fk
, u′ =

jFk+2 + Fk+1

jFk+1 + Fk
.

In particular, the denominator of u is q := (j + 1)Fk+1 + Fk. Applying Corol-

lary 4.1.4(i) to u we therefore find

u2 =
(j + 1)2 + 7(j + 1) + 1

q2
+ 7u− 1

and so (4.1.6) is equivalent to

(4.1.8) 9(u′ − u)q2 < (j + 1)2 + 7(j + 1) + 1.

Using (4.1.7) and F 2
k+1 − FkFk+2 = 1 we compute

u′ − u =
1Ä

(j + 1)Fk+1 + Fk
äÄ
jFk+1 + Fk

ä .
Inequality (4.1.8) therefore becomes

(4.1.9) 9
(j + 1)Fk+1 + Fk
jFk+1 + Fk

< (j + 1)2 + 7(j + 1) + 1.
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For all j ≥ 1, the second factor on the left-hand side is < 2 and the right-hand

side is ≥ 19, and so (4.1.9) holds for all j ≥ 1.

The proof of (ii) is similar (but slightly easier). �

Proof of Proposition 4.1.6. Assume that c(a) ≤ a+1
3 does not hold on

[τ4, 7]. Since c(a) ≥ a+1
3 >

√
a on (τ4, 7], Corollary 2.1.4 shows that c(a)

is piecewise linear on (τ4, 7]. Let S ⊂ (τ4, 7) be the set of nonsmooth points

of c on (τ4, 7). This set decomposes as S = S+ ∪ S−, where S+ (resp. S−)

consists of those s ∈ S near which c is concave (resp. convex). Note that for

s ∈ S+, we have c(s) > s+1
3 . By Proposition 1.2.9, c(a) = a+1

3 for a ∈ [611
12 , 7],

and so the biggest point of S is in S−. This and c(τ4) = τ4+1
3 imply that the

set S+ is nonempty. Let a0 = maxS+. Then a0 ∈ (τ4, 7). By Corollary 2.1.4(i)

there exists (d;m) ∈ E and ε > 0 such that

(4.1.10) c(z) = µ(d;m)(z) on [a0, a0 + ε].

Abbreviate µ(z) := µ(d;m)(z). By (4.1.10), µ(a0) = c(a0) >
a0+1
3 >

√
a0.

Let I be the maximal open interval containing a0 such that µ(z) >
√
z for all

z ∈ I. By Lemma 2.1.3, there exists a unique a′ ∈ I with `(m) = `(a′), and

`(m) < `(z) for all other z ∈ I. Further, by Proposition 2.3.2, the constraint

µ(z) is given by two linear functions on I:

µ(z) =

 α+ βz if z < a′, z ∈ I,

α′ + β′z if z > a′, z ∈ I;

that is, a′ is the only nonsmooth point of µ on I. By (4.1.10), and since a0 ∈ S+
and µ ≤ c, the point a0 ∈ I is also a nonsmooth point of µ, and hence a′ = a0.

Now (4.1.10) and the fact that c is nondecreasing show that β′ ≥ 0.

Let k ≥ 1 be such that a0 ∈ [c2k+1, c2k−1]. Since c2k+1 and c2k−1 are

regular by assumption, we have a0 ∈ (c2k+1, c2k−1). Note that uk(j) → c2k+1

and vk(j)→ c2k−1 as j →∞. Let u−, u+ be the two neighboring points from

the sequence

< uk(s+ 1) < uk(s) < · · · < uk(2) < uk(1) = vk(7) < vk(t) < vk(t+ 1) < · · ·

from Corollary 4.1.3 with a0 ∈ [u−, u+]. Since u− and u+ are regular by

assumption, we have a0 ∈ (u−, u+). Then µ(a0) >
a0+1
3 > u−+1

3 = ϕ(u−) >

ψ(u+) =
√
u+ by Lemma 4.1.7. Since β′ ≥ 0, it follows that µ(u+) ≥ µ(a0) >√

u+, and hence u+ ∈ I, and hence `(u+) > `(a0). However, `(z) > `(u−) and

`(z) > `(u+) for all z ∈ (u−, u+); in particular, `(a0) > `(u+), a contradiction.

�

As we see in the next two lemmas, one can prove that most of the points

uk(j) and vk(j) are regular by direct arguments.

Lemma 4.1.8. The points uk(j) with k ≥ 1 and j ≥ 2 are regular.
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Proof. Abbreviate u := uk(j) and p
q := u in lowest terms. Assume that

(d;m) ∈ E is such that µ(d;m)(u) > u+1
3 and `(u) = `(m). By Proposi-

tion 4.1.1(i) and Corollary 4.1.4(i) we can estimate

d

q
√
u
<

3

q
√
u2 − 7u+ 1

=
3√

j2 + 7j + 1
,

an estimate independent of k. Note that 3√
j2+7j+1

< 1 for j ≥ 2. Since

`(u) = `(m), we have mi ≥ 1 for all i. Therefore,

E ≥ j
Ç

1− d

q
√
u

å2

> j

Ç
1− 3√

j2 + 7j + 1

å2

=: s(j).

The function s(j) is increasing in j, and s(4) > 1, proving the lemma for j ≥ 4

and all k ≥ 1.

Assume now that j ∈ {2, 3}. In this case, s(j) < 1. We therefore need to

use the better estimate E = 1 − λ2 < 1 − 2d2y(u)
3
√
u

from Proposition 4.1.1(ii).

With this estimate we have

0 = E + λ2 − 1> 2

Ç
1− d

q
√
u

å2

+
2

3

d2y(u)√
u
− 1

=

Ç
2

q2u
+

2

3

y(u)√
u

å
d2 +

Ç
− 4

q
√
u

å
d+ 1 =: f(d).

We need to show that f(d) ≥ 0. Since f is a quadratic polynomial in d, this

holds if its discriminant is negative:

16

q2u
< 4

Ç
2

q2u
+

2

3

y(u)√
u

å
.

Multiplying by u
8 and using y(u) = u+ 1− 3

√
u, this is equivalent to

1

q2
+ u <

u+ 1

3

√
u.

Taking squares, replacing u by p
q and multiplying by 9q4, this becomes

(4.1.11) 0 < −9 + p3q − 7p2q2 + pq
Ä
−18 + q2

ä
.

Recall now from Lemma 4.1.2(ii) that p = jFk+2 + Fk+1 and q = jFk+1 + Fk.

Since pq > 9 for all k ≥ 1, (4.1.11) follows from the identities

1 = p2 − 7pq +
Ä
−18 + q2

ä
,

which hold true for k = 1, 2, 3 and hence for all k by Proposition 3.2.3. �

Lemma 4.1.9. The points vk(j) with k ≥ 1 and j ≥ 8 are regular.
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Proof. Abbreviate v := vk(j) and p
q := v in lowest terms. Assume that

(d;m) ∈ E is such that µ(d;m)(v) > v+1
3 and `(m) = `(v). Again, by Propo-

sition 4.1.1(i) and Corollary 4.1.4(ii),

d

q
√
v
<

3

q
√
v2 − 7v + 1

=
3√

j2 − 5j − 5
,

independent of k. Note that 3√
j2−5j−5

< 1 for j ≥ 8. Since `(v) = `(m), we

have mi ≥ 1 for all i. Therefore,

E ≥ j
Ç

1− d

q
√
v

å2

> j

Ç
1− 3√

j2 − 5j − 5

å
=: t(j).

The function t(j) is increasing on {j ≥ 8}, and t(8) > 1, whence the lemma

follows. �

For k ≥ 1 and i ≥ 0, we set

(4.1.12) bk(i) := vk(1 + 3i) =
î

6; {1, 5}×(k−1), 1, 1 + 3i
ó
.

Hence bk(2) = vk(7), bk(3) = vk(10), . . . .

Lemma 4.1.10. c(a) = a+1
3 for all a = bk(i), k ≥ 1, i ≥ 2. In particular,

the points vk(7) are regular for all k ≥ 1.

The proof is postponed to Corollary 4.2.4 in the next subsection. It uses

the existence of special (nearly perfect) elements of E , rather than the estimates

of Proposition 4.1.1.

Proof of Theorem 1.1.2 part (ii). By Proposition 4.1.6 it suffices to show

that for all k ≥ 1, the points c2k−1, uk(j), j ≥ 2, and vk(j), j ≥ 7, are regular.

Regularity holds for uk(j), j ≥ 2, by Lemma 4.1.8 and for vk(j), j ≥ 8, by

Lemma 4.1.9. Moreover, when a belongs to the subsequence bk(i), i ≥ 2, of the

vk(j), then Lemma 4.1.10 makes the stronger statement that c(a) = a+1
3 . This

holds in particular when a = vk(7) = bk(2). Hence these points are regular.

Further, because the sequence
Ä
bk(i)

ä
i≥2 converges to c2k−1 as i → ∞, the

continuity of c implies that c(a) = a+1
3 also at a = c2k−1. Hence these points

are also regular, which completes the proof. �

4.2. The classes E
Ä
bk(i)

ä
. Recall from Section 3.1 that for n ≥ 0, the

points bn = gn+2

gn
< τ4 are the break points of the Fibonacci stairs. The

next result shows their relation to the numbers bk(i), k ≥ 1, i ≥ 0, defined

by (4.1.12).

Lemma 4.2.1. b2k = bk(0) and b2k+1 = bk(1) for all k ≥ 1.
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Proof. Using Proposition 3.2.3 and Definition 3.2.4 we see that Lk +Fk+1

= g2k+2 and Lk + 4Fk+1 = g2k+3 for all k ≥ 0. Together with Lemma 4.1.2(iii)

we conclude that

bk(0) = vk(1) =
Lk + Fk+1

Lk−1 + Fk
=
g2k+2

g2k
= b2k,

bk(1) = vk(4) =
Lk + 4Fk+1

Lk−1 + 4Fk
=
g2k+3

g2k+1
= b2k+1,

as required. �

The lemma says that the sequence
Ä
bn
ä
, n ≥ 2, extends to a double

sequence
Ä
bk(i)

ä
, k ≥ 1, i ≥ 0, where for each k ≥ 1 the sequence

Ä
bk(i)

ä
,

i ≥ 0, emanates from the pair
Ä
b2k, b2k+1

ä
=
Ä
bk(0), bk(1)

ä
.

Recall from Section 3.1 that E(bn) :=
Ä
gn+1;W (bn)

ä
, where W (bn) :=

gnw(bn). In order to prove Lemma 4.1.10, we associate classes E
Ä
bk(i)

ä
to all bk(i) as follows. Let bk(i) =: p

q . Let mk(i) be the tuple obtained

from qw
Ä
bk(i)

ä
by replacing its last block

Ä
1×(1+3i)

ä
by
Ä
i, 1×(1+2i)

ä
, and set

dk(i) := q
Ä
1 + bk(i)

ä
/3. Then define E

Ä
bk(i)

ä
:=
Ä
dk(i);mk(i)

ä
.

Note that for i = 0, 1, we have (with n = 2k+ i) that mk(i) = gnw
Ä
bk(i)

ä
= W (bn) and, by (3.1.2), dk(i) = gn

Ä
1 + gn+2

gn

ä
/3 = (gn + gn+2) = gn+1.

Therefore,

(4.2.1) E
Ä
bk(0)

ä
= E

Ä
b2k
ä
, E

Ä
bk(1)

ä
= E

Ä
b2k+1

ä
for all k ≥ 1.

Proposition 4.2.2. E
Ä
bk(i)

ä
∈ E for all k ≥ 1 and i ≥ 0.

Before proving Proposition 4.2.2, we show that it is the key to completing

the calculation of c on the interval [1, 7].

Corollary 4.2.3. Part (i) of Theorem 3.1.1 holds.

Proof. This is immediate from equation (4.2.1). �

Corollary 4.2.4. Lemma 4.1.10 holds.

Proof. We argue as in the proof of Corollary 3.1.2. Let (d;m) ∈ E . Write

b′ := bk(i), d
′ := dk(i), m

′ := mk(i), so that (d′;m′) = E(bk(i)). If (d;m) =Ä
d′;m′

ä
, then

µ(d;m)
Ä
b′
ä

=
m′ ·w(b′)

d′
=

3b′

b′ + 1
<
√
b′

because b′ > τ4. If (d;m) 6= (d′;m′), then d d′ ≥ m ·m′ by positivity of

intersections. By the definition of d′ and m′, and since m is ordered, this

spells out to
q d 1+b′

3 ≥m ·m′ ≥ qm ·w(b′);

i.e., 1+b′

3 ≥ 1
dm ·w(b′) =: µ(d;m)(b′). �
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Remark 4.2.5. (i) Note that the classes E
Ä
bk(i)

ä
=
Ä
dk(i);mk(i)

ä
are

perfect for i = 0, 1, but are not perfect for i ≥ 2. Since, nevertheless, at

bk(i) =: pq we have

(4.2.2) mk(i) ·w
Ä
bk(i)

ä
= qw

Ä
bk(i)

ä
·w
Ä
bk(i)

ä
= q bk(i) for all i,

these classes are useful also for i ≥ 2.

(ii) For i ≥ 3, there are other choices for mk(i) that can be used to prove

Lemma 4.1.10. All one needs is that (4.2.2) holds. For this, one just needs to

alter the last block 1×j so that the sum of entries stays intact, while the sum

of the squares goes up by i2 − i.
If i = 2, one has no choice: In order to make the sum of squares go up

by 2, one must replace 1×7 by 2, 1×5. If i = 3, however, instead of replacing

1×10 by 3, 1×7, one can replace it by 23, 1×4. The resulting class
Ä
dk(3);m′k(3)

ä
lies in E for all k. If i = 4, instead of replacing 1×13 by 4, 1×9, one can make

the sum of squares go up by 12 also by replacing mk(4) =
Ä
. . . , 1×13

ä
by one

of

m
(1)
k (4) :=

Ä
. . . , 3×2, 1×7

ä
, m

(2)
k (4) :=

Ä
. . . , 3, 2×3, 1×4

ä
,

m
(3)
k (4) :=

Ä
. . . , 2×6, 1

ä
.

However, while the classes
Ä
dk(4);m

(2)
k (4)

ä
and

Ä
dk(4);m

(3)
k (4)

ä
reduce to

(1; 1, 1), and thus lie in E , the classes
Ä
dk(4);m

(1)
k (4)

ä
do not reduce correctly.

We now turn to the proof of Proposition 4.2.2. It follows from Lemma 4.2.6

and Proposition 4.2.7 below.

Lemma 4.2.6. The class
Ä
dk(i);mk(i)

ä
satisfies the Diophantine condi-

tions (1.2.4) for the elements of E .

Proof. Write b := bk(i) and (d;m) =
Ä
dk(i);mk(i)

ä
. By Lemma 1.2.6,∑

ms =
∑
q ws(b) = q(b+ 1)− 1 = 3d− 1. Further,

∑
m2
s = q2b+ i2 − i, and

by Corollary 4.1.4(ii),

q2
Ä
b2 − 7b+ 1

ä
= (1 + 3i)2 − 5 (1 + 3i)− 5 = 9i2 − 9i− 9.

Therefore,

d2 + 1 = 1
9q

2 (1 + b)2 + 1 = 1
9q

2
Ä
b2 − 7b+ 1

ä
+ q2b+ 1

= i2 − i+ q2b =
∑

m2
s,

as required. �

Proposition 4.2.7. The classes E
Ä
bk(i)

ä
reduce to (1; 1, 1) for all k ≥ 1

and i ≥ 0.
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Proof. We fix i ≥ 0, and argue by induction on k ≥ 1.

Step 1. Assume that k = 1. Set j = 1 + 3i. The weight expansion of

b1(i) = [6; 1, j ] =: pq is

(4.2.3) 1
q

Ä
(j + 1)×6, j, 1×j

ä
.

Together with (1.2.3) we find d1(i) = q
3

Ä
1 + b1(i)

ä
= 1

3

Ä
6(j + 1) + j + j + 1

ä
=

1
3 (8j + 7) = 8i+ 5, and soÄ

d1(i);m1(i)
ä

=
Ä
8i+ 5; (3i+ 2)×6, 3i+ 1, i, 1×(2i+1)

ä
.

Applying five standard Cremona moves yields, successively,Ä
7i+ 4; (3i+ 2)×3, 3i+ 1, (2i+ 1)×3, i, 1×(2i+1)

ä
;Ä

5i+ 2; 3i+ 1, (2i+ 1)×3, i×4, 1×(2i+1)
ä
;Ä

3i+ 1; 2i+ 1, i×5, 1×(2i+1)
ä
;Ä

2i+ 1; i+ 1, i×3, 1×(2i+1)
ä
;Ä

i+ 1; i, 1×(2i+2)
ä
.

The standard Cremona move maps (s + 1; s, 1×t) to (s; s− 1, 1×(t−2)) for any

s ≥ 1 and t ≥ 2. Applying i more standard Cremona moves therefore movesÄ
i+ 1; i, 1×(2i+2)

ä
to (1; 1, 1).

Step 2. Assume by induction that
Ä
dk(i);mk(i)

ä
reduces to (1; 1, 1). We

shall show that
Ä
dk+1(i);mk+1(i)

ä
reduces to

Ä
dk(i);mk(i)

ä
by five standard

Cremona moves.

The end of the weight expansion qw
Ä
bk(i)

ä
= qw

Ä
vk(j)

ä
isÄ

. . . , (48j + 41)×5, 41j + 35, (7j + 6)×5, 6j + 5, (j + 1)×5, j, 1×j
ä
.

Using Fk+1 = Lk + Fk and Lk+1 = 5Fk+1 + Lk from (4.1.2), and

Lk+1 − Lk = 5Lk + (Lk − Lk−1),

which follows from these two formulae, we see that in general,

mk(i) =
Ä
(jFk + Lk−1)

×6, (j + 1)Lk−1 − Lk−2,(4.2.4)

(jFk−1 + Lk−2)
×5, (j + 1)Lk−2 − Lk−3, . . . ,

(jF2 + L1)
×5, (j + 1)L1 − L0, (j + 1)×5, j, i, 1×(j−i)

ä
.

It will be convenient to express the numbers dk(i) in terms of the even

Fibonacci numbers hk := f2k. Thus

h1 = 1, h2 = 3, h3 = 8, h4 = 21, h5 = 55, h6 = 144, . . . .(4.2.5)

Lemma 4.2.8. dk(i) = h2k+2 + (i− 2)h2k+1.
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Proof. We fix i and j = 1 + 3i and write dk = dk(i), mk = mk(i),

bk = bk(i), etc. Set bk = pk
qk

. By Lemma 4.1.2(iii),

pk = Fk+2 + (j − 6)Fk+1, qk = Fk+1 + (j − 6)Fk.

Therefore, 3dk = qk(bk + 1) = pk + qk = Fk+2 + (j − 5)Fk+1 + (j − 6)Fk. We

thus need to show that

Fk+2 + (j − 5)Fk+1 + (j − 6)Fk = 3h2k+2 + 3(i− 2)h2k+1.

This holds true for k = 1 and k = 2, and so it holds true for all k ≥ 1 by

Proposition 3.2.3. �

Lemma 4.2.9. The class
Ä
dk+1(i);mk+1(i)

ä
reduces to

Ä
dk(i);mk(i)

ä
by

five Cremona transforms.

Proof. Fix i. By (4.2.4) and Lemma 4.2.8, the entries of
Ä
dk+1(i);mk+1(i)

ä
are given by linear formulas in Fibonacci numbers that depend only on k.

Using identity (4.2.4) and Lemma 4.2.8 one checks for k = 1 and k = 2 thatÄ
dk+1(i);mk+1(i)

ä
reduces to

Ä
dk(i);mk(i)

ä
by five Cremona transforms with

equal reordering at each stage. The lemma thus follows from Proposition 3.2.3.

�

The proof of Proposition 4.2.7 is complete.

4.3. The ghost stairs. In this section we compute the contribution of the

classes E
Ä
bk(i)

ä
=
Ä
dk(i);mk(i)

ä
, i ≥ 2, to the graph of c(a) = a+1

3 on
[
τ4, 7

]
.

The lemma and the proposition below are not needed for the results of this

paper, but they illuminate the role of these classes.

Lemma 4.3.1. Assume that i ≥ 3. Then µ
Ä
dk(i);mk(i)

ä
(a) ≤

√
a for all

a > 1 and all k ≥ 1.

Proof. Write d = dk(i), m = mk(i). Assume that µ(d;m)(a) >
√
a for

some a ≥ 1. Let I be the open interval such that µ(d;m)(z) >
√
z and a ∈ I.

Let a0 be the unique point in I with `(a0) = `(m). Recall that

m =
Ä
. . . , i, 1×(2i+1)

ä
.

Since i ≥ 3, the last block of w(a0) must have length 2i + 1 according to

Lemma 2.1.7(i). But

|i− (2i+ 1)| = i+ 1 ≥
√

2i+ 1 ,

in contradiction to Lemma 2.1.8(i). �

Thus, surprisingly, for i ≥ 3 the classes E
Ä
bk(i)

ä
give no embedding con-

straints, but nevertheless are most useful to find c(a) on [τ4, 7].
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We now look at the case i = 2. For k ≥ 1, write ek := bk(2) = vk(7)

and E(ek) = (dk;mk) :=
Ä
dk(2);mk(2)

ä
. Recall from Lemma 4.2.8 that dk =

h2k+2, where h2k+2 = f4k+4 is an even Fibonacci number. We now show

that the corresponding constraint functions µ(dk;mk) form a staircase whose

properties echo that of the Fibonacci stairs on the other side of τ4. However

this staircase does not add anything new to the graph of c(a) because it never

rises above the line y = a+1
3 . Thus we call it the ghost stairs. Note also that

although E(ek) is made from w(ek) and so influences c(a) at a = ek, it gives

a constraint that is centered at the convergent c2k+1 < ek.

Proposition 4.3.2 (The ghost stairs).

µ(dk;mk)(z) =


z+1
3 for z ∈ [c2k, c2k+1] ,

h2k+3

h2k+2
for z ∈ [c2k+1, ek] .

Since for each k we have c2k < τ4, the proposition shows that µ(dk;mk)(z)

= c(z) = z+1
3 on [τ4, c2k+1].

Proof. Fix k, and recall from Lemma 4.1.2 and Corollary 4.1.3 that

c2k =
î
6; {1, 5}(k−1), 1, 5

ó
,(4.3.1)

c2k+1 =
î
6; {1, 5}(k−1), 1, 6

ó
,(4.3.2)

ek =
î
6; {1, 5}(k−1), 1, 7

ó
=

Lk+7Fk+1

Lk−1+7Fk
(4.3.3)

and that c2k < c2k+1 < ek. If z∈(c2k, c2k+1), then z=
î
6; {1, 5}(k−1), 1, g, h, . . .

ó
with g=5 and h≥1, while if z∈(c2k+1, ek), then z=

î
6; {1, 5}(k−1), 1, g, h, . . .

ó
with g=6 and h≥1. In both cases, the weight expansion has the form

w(z) =
Ä
1×6, z − 6, (7− z)×5, 6z − 41, . . . , x2k−1(z) = zLk−1 − Lk,(4.3.4) Ä
x2k(z) = Fk+1 − zFk

ä×g
,
Ä
x2k+1(z)

ä×h
, . . .
ä
.

Further, w(ek) begins the same way, but ends at the block of termsÄ
x2k(z) = Fk+1 − zFk

ä×7
=
Ä
αe2k + zβe2k

ä×7
,

where the last expression uses the elements αej and βej of equation (2.2.2) with

a = e := ek.

Since ek has N + 1 blocks where N is even, Corollary 2.2.7 implies that∑
j

`j xj(ek)
Ä
αej + zβej

ä
= ek =

Lk+7Fk+1

Lk−1+7Fk
.

Further, mk = qw(ek) where q := Lk−1 + 7Fk, except for the last block where

we have 2, 1×5 instead of 1×7. When z has g = 6, it follows that

mk ·w(z) = mk ·w(ek) = qw(ek) ·w(ek) = q ek = Lk + 7Fk+1.
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Thus µ(dk;mk)(z) is constant on this interval. On the other hand, if g = 5,

then x2k+1(z) = zLk − Lk+1 and we find

mk ·w(z) =
∑
j

q `j xj(ek)
Ä
αej + zβej

ä
− x2k(z) + x2k+1(z)

= q ek − Fk+1 + zFk + zLk − Lk+1

= 6Fk+1 + Lk − Lk+1 + z(Lk + Fk)

= (1 + z)Fk+1.

But

3dk = q(1 + ek) = Lk−1 + 7Fk + Lk + 7Fk+1 = 9Fk+1.

Therefore µ(dk;mk)(z) = (z+1)/3 for z ∈ [c2k, c2k+1], and it remains to check

that c2k+1 + 1 = 3h2k+3/h2k+2. Since c2k+1 = Fk+2/Fk+1 and Fk+1 = 3h2k+2,

this reduces to the identity

f4k+8 + f4k+4 = 3f4k+6,

which is readily checked using Proposition 3.2.3. �

Remark 4.3.3. (i) At the points vk(j) with j ≥ 7, Theorem 1.1.2(ii) implies

that c
Ä
vk(j)

ä
= vk(j)+1

3 , which by Lemma 4.1.2(iii) can be written as

c

Ç
`4k+2 + jf4k+4

`4k−2 + jf4k

å
=
`4k + jf4k+2

`4k−2 + jf4k
,

where `4k+2 = 3Lk as in Definition 3.2.4. In particular, at bk(2) = vk(7) and

bk(3) = vk(10),

c

Ç
h2k+3

h2k+1

å
=
h2k+2

h2k+1
and c

Ç
`4k+5

`4k+1

å
=
`4k+3

`4k+1
,

where the hk are the even Fibonacci numbers of (4.2.5). On the other hand,

on the left of τ4, where a+1
3 <

√
a, we have by Theorem 1.1.2 that

c(bn) = c

Å
gn+2

gn

ã
=
gn+2

gn+1
=
bn+1 + 1

3
.

In other words, the function c attains the value bn+1
3 already at bn−1.

(ii) Recall from Section 3.1 that an =
Ä
gn+1

gn

ä2
and that on the left of τ4,

the classes W ′(an) obtained from W (an) = g2nw(an) by adding one 1 were very

useful to establish the Fibonacci stairs. One may try to define similar classes

at a′n :=
Ä
hn+1

hn

ä2
. Denote by W ′′(a′n) the sequence obtained from h2nw(a′n) by

removing three of the 1s at the end and adding one 2. Thus when n = 3, we

get

a′3 =
Ä
21
8

ä2
, W ′′(a′3) =

Ä
64×6, 57, 7×8, 2, 1×4

ä
.
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It is easy to check that the tuple
Ä
hnhn+1;W

′′(a′n)
ä

satisfies the Diophantine

equations (1.2.4). However, when n ≥ 3 this is not an element of E because

it has negative intersection with the class (3; 2, 1×6) ∈ E . On the other hand,

when n = 2 this gives (24; 9×7, 2, 1×6) ∈ E , which as we will see in Theo-

rem 5.2.3 does give an obstruction near a = 71
7 , and when n = 1 we get

(3; 2, 1×6) itself.

5. The interval [7, 9]

This section calculates c on the interval [7, 9]. The main arguments are

contained in Sections 5.2 and 5.3. We begin in Section 5.1 by establishing

some estimates that are most useful on [8, 9] but are also needed for some of

the arguments concerning [7, 8] such as Lemma 5.2.7.

5.1. Preliminaries. We begin with a simple result about continued frac-

tions. Let qn(a) be the denominator of the nth convergent [`0; `1, . . . , `n] to

the continued fraction

a := [`0; `1, . . . , `N ] = `0 +
1

`1 + 1
`2+···

.

Thus q1(a) = `1, q2(a) = 1 + `1`2 and, in general, qn(a) = `nqn−1(a) + qn−2(a).

Then an easy induction argument shows that

Sublemma 5.1.1. Let L :=
∑N
j=1 `j . Then qN (a) ≥ L.

In the sequel, we abbreviate σ :=
∑
i>`0 ε

2
i <1 and σ′ :=

∑
`0<i≤M−`N ε

2
i ≤σ.

Lemma 5.1.2. Assume that (d;m) ∈ E is such that µ(d;m)(a) >
√
a

for some a ∈ (τ4, 9) with `(a) = `(m). Assume further that y(a) > 1
q where

q := qN (a), and denote vM := d
q
√
a
. Then

(i) |∑i≥1 εi| ≤
√
σL.

(ii) If vM < 1, then |∑i≥1 εi| ≤
√
σ′L.

(iii) If vM ≤ 1
2 , then vM > 1

3 and σ′ ≤ 1
2 . If vM ≤ 3

4 , then σ′ ≤ 7
8 .

(iv) Define δ := y(a)− 1
q > 0. Then

d ≤
√
a
δ

Ä√
σL− 1

ä
≤
√
a
δ (
√
σq − 1) <

√
a
δ

Ä
σ

δvM
− 1
ä
.

Further, if vM < 1, then σ can be replaced by σ′. In particular, always

d <
√
a
δ

Ä
2
δ − 1

ä
< 2

√
a

δ2
.

Proof.

Step 1:
∑
i≥1 εi < 0. Proposition 2.1.1(iv) states that

(5.1.1) −∑ εi = 1 + d√
a

Ä
y(a)− 1

q

ä
.

Since we assume that y(a) > 1
q , Step 1 is immediate.
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Step 2:
∑
i>`0 |εi| ≥ |

∑
i≥1 εi|. If

∑
i≤`0 εi ≥ 0, then by Step 1 we have∣∣∣∣∑

i≥1
εi

∣∣∣∣ ≤ ∣∣∣∣∑
i>`0

εi

∣∣∣∣ ≤ ∑
i>`0

|εi|,

as required. Therefore, suppose that
∑
i≤`0 εi < 0. Let P = {i > `0 | εi > 0}

and Q = {i > `0 | εi ≤ 0}. Because wi = 1 for i ≤ `0, we have

0 < ε ·w =
∑
i≤`0

εi +
∑
i∈P

εiwi −
∑
i∈Q
|εi|wi

<
∑
i≤`0

εi +
∑
i∈P

εi.

Therefore

0 >
∑
i≥1

εi ≥
∑
i∈Q

εi = −
∑
i∈Q
|εi| ≥ −

∑
i>`0

|εi|.

Step 3: Proof of (i). Let a = [`0; `1, . . . , `N ] as above, and write ε as N +1

blocks each of length `j . Assume first that εi is constant on each block with

absolute value δj . Let νj = `jδ
2
j so that δj =

√
νj
`j

. Then

∑
i>`0

ε2i =
∑
j≥1

`jδ
2
j =

N∑
j=1

νj = σ.

Hence, by Step 2, ∣∣∣∣∑
i≥1

εi

∣∣∣∣≤∑
i>`0

|εi| =
N∑
j=1

`jδj

=
∑

`j
√

νj
`j

=
∑»

νj`j

≤
√∑

`j

√∑
νj ≤

√
σL.

This proves (i) in the case when the εi are constant on the jth block for all

j ≥ 1. But by Lemma 2.1.7, the only other possibility is that there is precisely

one block, say the Jth, on which εi is not constant. In that case we subdivide

this block into two subblocks of lengths `J − 1 and 1. Since the upper bound√
σL depends only on the sum of the `j , the argument goes through as before.

Step 4: Proof of (ii). We abbreviate M ′ = M − `N and write vi := d√
a
wi.

If the vi are constant on the last block and if vM := d
q
√
a
< 1, then mM ′+1 =

· · · = mM = 1, and so εM ′+1 = · · · = εM = 1− vM > 0. Since also
∑
i εi < 0,

we have |∑i εi| ≤
∣∣∣∑M ′

i=1 εi
∣∣∣. Hence, the argument in Step 3 adapts to show

that ∣∣∣∣∑
i≥1

εi

∣∣∣∣ ≤
∣∣∣∣∣∣
M ′∑
i=1

εi

∣∣∣∣∣∣ ≤
M ′∑
i>`0

|εi| ≤
√
σ′L.
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Proof of (iii). Assume that vM ≤ 1
3 . If `N ≥ 3, then

1 > ε2M ′+1 + · · ·+ ε2M ≥ 3
Ä
2
3

ä2
> 1,

a contradiction. If `N = 2, then vM−2 = vM−1 + vM = 2vM ≤ 2
3 , and so

1 > ε2M−2 + 2ε2M ≥
Ä
1
3

ä2
+ 2
Ä
2
3

ä2
= 1,

a contradiction. Further, εM ≥ 1
2 implies that

σ′ ≤
∑

`0<i≤M−2
ε2i ≤ σ − 1

2 ≤
1
2 .

The second claim in (iii) is proved similarly.

Proof of (iv). We use Sublemma 5.1.1 and equation (5.1.1) to estimate

(5.1.2)
√
σq ≥

√
σL ≥ 1 + d√

a

Ä
y(a)− 1

q

ä
= 1 + d√

a
δ = 1 + δqvM > δqvM .

Therefore,
√
q <

√
σ

δvM
, and so, using again (5.1.2),

d ≤
√
a
δ

Ä√
σL− 1

ä
≤
√
a
δ (
√
σq − 1) <

√
a
δ

Ä
σ

δvM
− 1
ä
.

If vM < 1, we repeat this argument with σ replaced by σ′. This completes the

proof. �

5.2. The interval [7, 8]. In this section we calculate c(a) on the interval

[7, 8]. At some places, we will use the computer. We will therefore first prove

a weaker result that does not use the computer.

Proposition 5.2.1. There are only finitely many (d;m) ∈ E for which

there is a ≥ 7 with c(a) = µ(d;m)(a) >
√
a.

Proof. Suppose that µ(d;m)(a) >
√
a for some a ≥ 7. Let I be the

maximal open interval containing a on which µ(d;m)(z) >
√
z, and let a0 ∈ I

be the unique element with `(a0) = `(m). (This exists by Lemma 2.1.3.) If

7 ∈ I, then clearly a0 = 7 so that (d;m) belongs to the finite set E7. Otherwise,

a0 > 7. In particular, y(a0) > y(7) = 8 − 3
√

7 > 1
20 . Moreover a0 < 9 by

Corollary 1.2.4.

Now write a0 = p/q. There are only finitely many a = p
q ∈ [7, 9] with

q ≤ 40, and for each of them Corollary 2.1.4 shows that there are only finitely

many obstructive (d;m). We can therefore assume that q := q(a0) ≥ 40 so

that y(a0)− 1
q ≥

1
40 > 0. Since `(a0) = `(m), we can apply the last statement

of Lemma 5.1.2 to conclude that

d ≤ 2(40)2
√
a0 < 6(40)2.

Since for each D there are only finitely many (d;m) ∈ E with d ≤ D, this

completes the proof. �

Remark 5.2.2. The result in Proposition 5.2.1 clearly extends to any in-

terval of the form [a, b] provided that a > τ4.
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We already know that c(a) = 8
3 on [7, 71

9 ] by Proposition 1.2.9. We can

therefore assume that a ∈ [71
9 , 8].

In order to explain our notation in Theorem 5.2.3 below, we work out the

constraint given by the class

(d;m) =
Ä
48; 18×7, 3, 2×7

ä
∈ E .

Note that `(m) = 7 + 8 = `(71
8). It gives the constraint µ(d;m)(71

8) = 1025
384 >»

71
8 at 71

8 . For a = 7 + x with x ∈ [19 ,
1
8 ], we have w(a) =

(
1×7, x×8, . . .

)
.

Therefore,

m ·w(a) = 7 · 18 + 3x+ 14x = 126 + 17x = 7 + 17a,

and so µ(d;m)(a) = 1
48(7+17a). Note that 1

48(7+17a) =
√
a at u 1

8
:= 7.12499

(where the last decimal is rounded). Similarly, for a = 7 + x with x ∈ [18 ,
1
7 ],

we have w(a) =
(
1×7, x×7, 1− 7x, . . .

)
. Therefore,

m ·w(a) = 7 · 18 + 3x+ 12x+ 2− 14x = 128 + x = 121 + a,

and so µ(d;m)(a) = 1
48(121+1a). Note that 1

48(121+a) =
√
a at v 1

8
:= 7.12501

(where the last decimal is rounded). The interval containing a = 71
8 on which

this class gives a constraint is therefore I 1
8

:= [u 1
8
, v 1

8
], and

µ(d;m)(z) =


1
48(7 + 17z) if z ∈

î
u 1

8
, 71

8

ó
,

1
48(121 + z) if z ∈

î
71
8 , v 1

8

ó
.

All this is expressed in the first row of the table below. In the same way we

compute (A,B), (A′, B′), ux, vx and µ(a) := µ(d;m)(a) at a = 7 + x for the

other seven classes in the table below, where we write µ(z) = 1
d(A+Bz) for z

just less than a and µ(z) = 1
d(A′ + B′z) for z just greater than a. Note that

the eight intervals [ux, vx] are all disjoint.

Theorem 5.2.3. For a ∈ [71
9 , 8], we have c(a) =

√
a except for the eight

intervals [ux, vx] where c(a) is as described in Table 5.1.

Remark 5.2.4. (i) Table 5.1 gives just enough decimal places of the (ir-

rational) numbers ux, vx to describe their important features. For example

u 1
2

= 1
2

Ä
9 + 4

√
2
ä
≈ 7.328 < 71

3 .

(ii) In Table 5.1 there is one constraint centered at each point of the form

7 1
k for 2 ≤ k ≤ 8, except for k = 3 and k = 6. In fact, there are classes (d;m)

giving constraints centered at 71
6 and 71

3 , namelyÄ
96; 36×6, 35, 6×6

ä
at 71

6 and
Ä
24; 9×6, 8, 3×3

ä
at 71

3 .

But these (d;m) have the property that µ(d;m)(a) = c(a) only at their center

points. (See the proof of Theorem 5.2.3 at the end of this section for details.)
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a (d;m) (A,B) (A′, B′) ux vx µ(a) µ(a)−
√
a

7 1
8 (48; 18×7, 3, 2×7) (7, 17) (121, 1) 7.12499 7.12501 1025

384 1.27 10−6

7 2
15 (64; 24×7, 3×7, 1×2) (14, 22) (121, 7) 7.1333 7.1334 641

240 3.25 10−6

7 1
7 (24; 9×7, 2, 1×6) (7, 8) (57, 1) 7.1428 7.1429 449

168 6.63 10−6

7 2
13 (40; 15×7, 2×6, 1×2) (14, 13) (107, 0) 7.151 7.156 107

40 332.5 10−6

7 1
5 (16; 6×7, 1×5) (7, 5) (43, 0) 7.1665 7.22 43

16 4218.4 10−6

7 1
4 (35; 13×7, 4, 3×3) (0, 13) (87, 1) 7.2485 7.252 377

140 274.7 10−6

7 1
2 (8; 3×7, 1×2) (7, 2) (22, 0) 7.328 7.56 11

4 11387.2 10−6

8 (6; 3, 2×7) (1, 2) (17, 0) 7.97 8.03 17
6 4906.2 10−6

Table 5.1.

(iii) The four steps at the points 71
8 , 7 2

15 , 71
7 , 71

4 are the only ones in the

graph of c(a) that are not flat to the right.

To prove Theorem 5.2.3 we will proceed as follows. Assume that (d;m)∈ E
is a class with `(a) = `(m) and µ(d;m)(a) >

√
a for some a ∈ [71

9 , 8]. We first

assume that a = 7 1
k for some k ∈ {1, . . . , 8} and find all such classes (d;m).

We then assume that a ∈ ]7 1
k+1 , 7

1
k [ and prove an upper bound D(zk) for d

if a = zk := 7 2
2k+1 and an upper bound Dk if a 6= zk. In both cases, we also

show that m1 = · · · = m7. We then use a simple computer program to find all

classes (d;m) as above at zk with d ≤ D(zk). Finally, we use another computer

program to find all classes (d;m) as above at some a 6= zk with d ≤ Dk.

First, we look at the boundary points 7 1
k of our subintervals [7 1

k+1 , 7
1
k ].

Lemma 5.2.5. The classes (d;m) ∈ E such that `(7 1
k ) = `(m) and

µ(d;m)(7 1
k ) >

»
7 1
k are:

k (d;m) k (d;m)

8
(
48; 18×7, 3, 2×7

)
8
(
384; 144×6, 143, 18×8

)
7
(
24; 9×7, 2, 1×6

)
7
(
168; 63×6, 62, 9×7

)
6
(
96; 36×6, 35, 6×6

)
5
(
16; 6×7, 1×5

)
4
(
35; 13×7, 4, 3×3

)
3
(
24; 9×6, 8, 3×3

)
2
(
8; 3×7, 1×2

)
1
(
6; 3, 2×7

)
Table 5.2.
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Proof. We first look at the case a = 71
1 = 8. Then `(m) = `(8) = 8.

By Lemma 2.1.7 we need to consider 3 cases, namely m = (M×8), m =

(M + 1,M×7), m = (M×7,M − 1). Consider the case m = (M×8). From the

Diophantine equations 3d = 8M + 1,

d2 = 8M2 − 1,

we obtain (8M+1)2 = 9
(
8M2 − 1

)
, i.e., 4M2−8M−5 = 0. This equation has

no solution in N. In the case m = (M + 1,M×7), the Diophantine equations

give

(8M + 1 + 1)2 = 9
Ä
8M2 + 2M + 1− 1

ä
,

whose only solution in N is M = 2, giving the solution (d;m) = (6; 3, 2×7).
In the case (M×7,M − 1), the Diophantine equations give (8M − 1 + 1)2 =

9
(
8M2 − 2M + 1− 1

)
, which has no solution in N.

Assume now that k ∈ {2, . . . , 8}. In view of Lemma 2.1.7, there are five

possibilities for m, namely

(M×7,m×k), (M + 1,M×6,m×k), (M×6,M − 1,m×k),

(M×7,m+ 1,m×(k−1)), (M×7,m×(k−1),m− 1).

Since `(m) = `(7 1
k ) = 7 + k, in the first four cases we can assume that m ≥ 1

and in the last case we can assume that m− 1 ≥ 1. We define εM and εm by

M = d√
7 1
k

+ εM , m = d

k
√

7 1
k

+ εm.

Case 1. m = (M×7,m×k). Then |M − km| = |εM − kεm| ≤ |εM |+ k|εm|.
Since |εM |2 + k|εm|2 < 1, we find |εM |+ k|εm| <

√
k + 1, and so |M − km| ≤

d
√
k + 1− 1e ∈ {0, 1, 2}. Set

s = M − km ∈

{0,±1} if k ∈ {2, 3},
{0,±1,±2} if k ∈ {4, . . . , 8}.

From the Diophantine equations3d = 7M + km+ 1,

d2 = 7M2 + km2 − 1,

we obtain (7M + km + 1)2 = 9
(
7M2 + km2 − 1

)
. Since M = km + s, this

becomes

10 + km (16− 9m+ km) + 14s (1− km− s) = 0.

If s = 1, this is

10 + km (2− 9m+ km) = 0,
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which has solutions in N only if k = 5 or 2, namely m = 1, givingÄ
16; 6×7, 1×5

ä
at 71

5 ,
Ä
8; 3×7, 1×2

ä
at 71

2 .

No other allowed values for s and k yield integer solutions m.

Case 2. m = (M + 1,M×6,m×k). Then σ = k|εm|2 ≤ 1
7 . Therefore,

|M − km| ≤ |εM |+ k|εm| ≤ 1√
6

+
»

k
7 , and so

(5.2.1) s := M − km ∈

{0} if k = 2,

{0,±1} if k ∈ {3, . . . , 8}.

In this case, the Diophantine equations translate to

(7M + km+ 2)2 = 9
Ä
7M2 + 2M + 1 + km2 − 1

ä
.

With M = km+ s this becomes

(5.2.2) − 4− km (14− 9m+ km) + 2s (−5 + 7km+ 7s) = 0.

If s = 0, this becomes

−4− km (14− 9m+ km) = 0,

which has no solution in N for k ∈ {2, . . . , 8}. For s = ±1 and k ∈ {3, . . . , 8},
equation (5.2.2) has no solution in N.

Case 3. m = (M×6,M − 1,m×k). As in Case 2 we have (5.2.1). In this

case, the Diophantine equations translate to

(7M + km)2 = 9
Ä
7M2 − 2M + 1 + km2 − 1

ä
.

With M = km+ s, this becomes

(5.2.3) − km (18− 9m+ km) + 2s (−9 + 7km+ 7s) = 0.

If s = 0, this becomes

18− 9m+ km = 0,

which has a solution in N for four k, namely k = 8, 7, 6 and 3. This gives the

first four of the five entries in the table with m1 6= m7.

If s = 1, equation (5.2.3) becomes

−4− km (4− 9m+ km) = 0,

which has a solution in N only for k = 4. We get the solution (13; 5×6, 4, 1×4),
which is, however, not obstructive, since it gives µ(d;m)(71

4) = 35
13 <

»
71
4 .

If s = −1, equation (5.2.3) becomes

32− km (32− 9m+ km) = 0.
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It has a solution in N only for k = 2 and gives (19; 7×6, 6, 4×2). But again this

class is not obstructive, since µ(d;m)(71
2) = 52

19 <
»

71
2 .

Case 4. m = (M×7,m+1,m×(k−1)). Note that for ε ∈ R and k ∈ N with

(k − 1)ε2 + (ε+ 1)2 ≤ 1, we have ε ∈
î
− 2
k , 0
ó
, and hence

|(k − 1)ε+ (ε+ 1)| = |kε+ 1| ≤ 1.

Using this and σ ≥ k−1
k , we estimate

|M − km− 1| = |M − (m+ 1)− (k − 1)m|= |εM − (εm + 1)− (k − 1)εm|
≤ |εM |+ |(k − 1)εm + εm + 1|

≤
»

1
7k + 1 < 2.

Therefore,

M − 1 = km+ s with s ∈ {0,±1}.
In this case, the Diophantine equations translate to

(7M + km+ 1 + 1)2 = 9
Ä
7M2 + km2 + 2m+ 1− 1

ä
.

With M = km+ 1 + s, this becomes

(5.2.4) − 18 + 18m− km (18− 9m+ km) + 14s (km+ s) = 0.

If s = 1, this is

−4 + 18m− km (4− 9m+ km) = 0,

which has a solution in N only when k = 8,m = 2 and k = 7,m = 1, giving us

two more entries in our table. If s = 0, equation (5.2.4) becomes

−18 + 18m− km (18− 9m+ km) = 0,

which has a solution in N only for k = 4,m = 3. This gives the entry in

the table at k = 4. If s = −1, equation (5.2.4) has no solution in N for

k ∈ {2, . . . , 8}.
Case 5. m = (M×7,m×(k−1),m− 1). As in Case 4 we find

M + 1 = km+ s with s ∈ {0,±1}.

In this case, the Diophantine equations translate to

(7M + km− 1 + 1)2 = 9
Ä
7M2 + km2 − 2m+ 1− 1

ä
.

With M = km− 1 + s this becomes

(5.2.5) − 14 + 18m+ km (14− 9m+ km) + 14s (2− km− s) = 0.

If s = 1, this becomes

18− 9km+ k2m = 0.

It has a solution in N only for k = 6 and k = 3, namely m = 1. Since we

assumed that m− 1 ≥ 1, the corresponding classes (d;m) are not relevant. If

s = 0 or if s = −1, equation (5.2.5) has no solution in N for k ∈ {2, . . . , 8}.
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The above calculations show that the elements listed in Table 5.2 are the

only obstructive solutions to the Diophantine equations. One readily checks

that these elements all reduce to (0;−1) under standard Cremona moves and

therefore belong to E . �

Remark 5.2.6. Proceeding as in the proof of Lemma 5.2.5, one can find

all classes (d;m) ∈ E with µ(d;m)(zk) >
√
zk and `(zk) = `(m) at the points

zk := 7 2
2k+1 , k ∈ {1, . . . , 8}, namelyÄ
64; 24×7, 3×7, 1×2

ä
at 7 2

15 and
Ä
40; 15×7, 2×6, 1×2

ä
at 7 2

13 .

For convenience, we will find these classes by a different method, which involves

the first of the two computer programs of Appendix B.

We next derive upper bounds for d if a ∈ ]7 1
k+1 , 7

1
k [. There are various

ways to do this. We will give arguments that give rather low upper bounds,

so that our method of finding c(a) depends as little as possible on computer

computations. (Compare Remark 5.2.9 below.) Note that a ∈ ]7 1
k+1 , 7

1
k [ has

N + 1 blocks with N ≥ 2 and that L :=
∑
i≥1 `i ≥ 2 + k with equality exactly

if a = [7; k, 2] = 7 2
2k+1 = zk.

Lemma 5.2.7. Suppose that (d;m) ∈ E is such that µ(d;m)(a) = c(a)

>
√
a for some a with `(a) = `(m). Suppose also that a has N + 1 blocks

for some N ≥ 2 and that a ∈ ]7 1
k+1 , 7

1
k [ where 8 ≥ k ≥ 1. Then m1 = m7.

Further,

(i) When L = 2 + k, Table 5.3 gives the maximum possible values D(zk)

of d for the different k.

(ii) When L > 2 + k, Table 5.4 gives the maximum possible values Dk of d

for the different k.

k 8 7 6 5 4 3 2 1

D(zk) 104 98 92 86 79 73 69 75

Table 5.3.

k 8 7 6 5 4 3 2 1

Dk 88 81 74 67 61 56 64 66

Table 5.4.
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Remark 5.2.8. By Lemma 5.2.5 one cannot conclude m1 = m7 without

the assumption a 6= 7 1
k .

Proof. The proof of this lemma is based on an analysis of equation (5.1.1)

using the estimates for |∑ εi| obtained in Lemma 5.1.2. Recall from (iv) of

that lemma that for a = 7pq and with vM := d
q
√
a
, we have the estimates

(5.2.6) d ≤
√
a

δ

Ä√
σL− 1

ä
≤
√
a

δ
(
√
σq − 1) <

√
a

δ

Å
σ

vMδ
− 1

ã
whenever δ := y(a)− 1

q > 0.

(i) The only number in ]7 1
k+1 , 7

1
k [ with L = k+2 is zk := [7; k, 2] = 7 2

2k+1 .

Note that

y(zk)− 1
q = 8 + 1

2k+1 − 3
√

7 + 2
2k+1 > 0

for all k. By (5.2.6) we therefore have

d ≤

(»
σ(k + 2)− 1

)√
zk

y(zk)− 1
2k+1

=

(»
σ(k + 2)− 1

)»
7 + 2

2k+1

8 + 1
2k+1 − 3

»
7 + 2

2k+1

.

With σ ≤ 1 this yields Table 5.3. If m1 6= m7, we may take σ ≤ 1
7 . The largest

value of d is then ≤ 6 when k ≤ 7 and ≤ 9 when k = 8. But there are clearly

no suitable (d;m) with such small d. Therefore this case does not occur. This

proves m1 = m7 for L = 2 + k.

We will prove (ii) and the claim that m1 = m7 together. We will give

separate arguments for the three cases k = 1, k = 2 and k ∈ {3, . . . , 9}.
Denote ak = 7 1

k+1 for some 1 ≤ k ≤ 8. We have the following table (rounded

down to three decimal places):

k = 8 7 6 5 4 3 2 1

y(ak) ≥ 1
9 = 0.111 0.117 0.125 0.135 0.150 0.172 0.209 0.284

The case k = 1. Assume that (d;m) ∈ E is a class with µ(d;m)(a) >
√
a

and `(a) = `(m) for some a ∈ ]71
2 , 8[ other than 72

3 . We first prove that

m1 = m7. If not, then σ ≤ 1
7 . Therefore, vM = d

q
√
a
≥ 1 − 1√

14
> 0.73, since

otherwise σ ≥ ε2M + ε2M−1 > 2 1
14 = 1

7 . Also, q ≥ L ≥ 3 + k = 4, and so

y(a)− 1
q ≥ y(71

2)− 1
4 ≥ 0.28− 1

4 > 0. We can therefore apply (5.2.6):»
q
7 ≥
√
σL ≥ 1 + d√

a

Ä
y(a)− 1

q

ä
> 1,
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showing that q ≥ 8. Therefore, y(a) − 1
q > y(71

2) − 1
8 > 0.28 − 1

8 >
1
7 . Using

again (5.2.6) we finally find

5
√
a< 8 · 0.73

√
a≤ 0.73q

√
a < d <

√
a
1
7

Ç
σ

vM
1
7

− 1

å
< 7
√
a

Å
1

0.73
− 1

ã
< 3
√
a,

a contradiction.

We now prove that d ≤ 66. For a as above, both numbers

f(a, q) :=

√
a

a+ 1− 3
√
a− 1

q

Ä√
q − 1

ä
,

g(a, q) :=

√
a

a+ 1− 3
√
a− 1

q

(
2

a+ 1− 3
√
a− 1

q

− 1

)
,

are positive. Moreover, by (5.2.6), we have d ≤ f(a, q), and using also part (iv)

of Lemma 5.1.2 we see that d < g(a, q). We saw above that q ≥ 4. We first use

the function f to see that for q ∈ {4, 5, 6, 7, 8}, we have d ≤ 26. Assume now

that q ≥ 9. We then view a and q as independent variables of the functions f

and g. Both f(a, q) and g(a, q) are decreasing functions of a. With a1 = 71
2

we therefore have

d ≤ max
q≥9

min {f(a1, q), g(a1, q)} .

One readily checks that f(a1, q) is increasing on {q ≥ 9} and that g(a1, q) is

decreasing in q. Since d ≤ f(a1, 56) < 67 if q ≤ 56 and d ≤ g(a1, 57) < 67 if

q ≥ 57, we conclude that d ≤ 66, as claimed.

Remark 5.2.9. This method for estimating d can be used for all k ≤ 8.

However, the estimates get worse; e.g., for k = 8 (with the factor
√
q − 1 of f

replaced by
»

8 + q
8 − 1, see (5.2.7) below), one finds d ≤ 410. One could also

omit checking that obstructive classes have m1 = m7 and use a variant of our

computer code SolLess from Appendix B.1 that does not use m1 = m7.

The case k = 2. The class (8; 3×7, 1×2) gives the constraint c(a) ≥ µ0(a) =
7+2a
8 >

√
a on [71

3 , 7
1
2 ]. Assume that (d;m) ∈ E is a class with µ(d;m)(a) =

c(a) ≥ 7+2a
8 for some a ∈ [71

3 , 7
1
2 ]. Proposition 2.1.1(i) implies that

7 + 2a

8
≤ µ(d;m)(a) ≤

√
a
»

1 + 1/d2.

When a = 71
3 this gives the estimate d ≤ 64. Since 7+2a√

a
decreases on [71

3 , 7
1
2 ],

we find d ≤ 64 everywhere. We will check m1 = m7 for k = 2 and L ≥ 3+k = 5

at the same time as for k ≥ 3.

The case k ∈ {3, . . . , 9}. Suppose that a ∈ ]7 1
k+1 , 7

1
k [ for some k ≥ 2 and

that L ≥ 3 + k. Then we may write

a = [7; k, `2, . . . , `N ] = 7 + 1

k+
p′

q′

,
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where p′

q′ := a′ := [0; `2, . . . , `N ]. Thus q′ = qN−1(a′) ≥
∑
j≥2 `j =: L′ by

Sublemma 5.1.1, and so

L :=
∑
j≥1

`j = k + L′ ≤ k + q′.

Since q = kq′ + p′, we find L ≤ k + q
k . Moreover, q′ ≥ L′ = L− k ≥ 3, and so

q ≥ 3k + 1. Therefore, for a ∈ ]ak, ak−1[, we have y(a) ≥ y(ak) >
1

3k+1 >
1
q .

Thus the inequality (5.2.6) implies that

(5.2.7)
Ä
1− d

q
√
a

ä
+ d√

a
y(a) = 1 + d√

a

Ä
y(a)− 1

q

ä
≤
»
σ(k + q

k ).

Case 1: 1
2 ≤ vM := d

q
√
a
≤ 3

4 . Because y(a) ≥ y(ak) for all a ∈ [ak, ak−1]

and y(a8) = 1
9 , we must have

q
18 ≤

1
4 + q

2y(ak) ≤ 1
4 + d√

a
y(ak) ≤

(
1− d

q
√
a

)
+ d√

a
y(a) ≤

»
σ′(k + q

k ) ,

where σ′ ≤ 7
8 is as in Lemma 5.1.2(iii).

Note that the squared error of the last two εi is at least 2
Ä
1
4

ä2
= 1

8 . There-

fore, if also m1 6= m7, we have σ′ < 1
7 −

1
8 = 1

56 . But, for each k ∈ [2, 8], the

inequality
q
18 ≤

»
1
56(k + q

k )

holds only if q2 ≤ 6(k+ q
k ). Since this quadratic inequality holds for q = 0 and

does not hold when q = 3k+ 1, it does not hold for any q ≥ 3k+ 1. Therefore,

for each k, we have m1 = m7, and σ′ ≤ 7
8 .

Now suppose that k = 8, and consider the inequality

1
4 + q

2y(a8) = 1
4 + q

18 ≤
»

7
8(8 + q

8).

This holds when q = 0 but does not hold for q ≥ 63. Thus q ≤ 62 so that d√
a
1
9 ≤√

7
8

Ä
8 + 62

8

ä
− 1

4 . Since a ≤ 71
8 , we get d ≤ 83. The same argument works for

the other k, and we obtain the following upper bounds for q and then for d:

k = 8 7 6 5 4 3

q ≤ 62 58 53 49 45 41

d ≤ 83 77 71 66 61 56

Case 2: vM ≤ 1
2 . Since the squared error `Nδ

2
N on the last block is now

at least 1
2 , we must have m1 = m7 and σ′ < 1

2 . Further, by Lemma 5.1.2(iii),
d

q
√
a
≥ 1

3 . Therefore (5.2.7) gives

1
2 + q

3y(ak) ≤ 1
2 + d√

a
y(ak) ≤

»
1
2(k + q

k ) .
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This gives the following upper bounds for q and d:

k = 8 7 6 5 4 3

q ≤ 62 57 53 49 45 42

d ≤ 55 51 47 43 40 37

Case 3: 3
4 ≤ vM ≤ 1. Now (5.2.7) gives

3
4 q y(ak) ≤ d√

a
y(ak) ≤

»
σ(k + q

k ) .

If σ ≤ 1
7 , this is not satisfied when q ≥ 3k + 1 for any k ∈ {2, . . . , 8}. Thus

m1 = m7.

Further, taking σ = 1 we obtain the following upper bounds for q and d:

k = 8 7 6 5 4 3

q ≤ 44 40 37 33 30 26

d ≤ 88 81 74 67 60 53

Case 4: 1 ≤ vM . In this case, (5.2.7) gives

q y(ak)≤ 1+q
Ä
y(ak)− 1

q

ä
≤ 1+ d√

a

Ä
y(ak)− 1

q

ä
≤ 1+ d√

a

Ä
y(a)− 1

q

ä
≤
»
σ(k+ q

k ) .

We have already seen in Case 3 that q y(ak) ≤
»
σ(k + q

k ) is impossible for

σ ≤ 1
7 . Thus m1 = m7.

Further, taking σ = 1 we obtain the following upper bounds for q and d:

k = 8 7 6 5 4 3

q ≤ 31 28 25 22 19 17

d ≤ 82 75 68 61 54 46

Taking for each k the worst upper bound for d in the different cases, we obtain

Table 5.4. This completes the proof of Lemma 5.2.7. �

Corollary 5.2.10. (i) The only classes (d;m)∈E such that `(zk) =

`(m) and such that µ(d;m)(zk) >
√
zk are

7 2
15 :
Ä
64; 24×7, 3×7, 1×2

ä
and 7 2

13 :
Ä
40; 15×7, 2×6, 1×2

ä
.

(ii) There are no classes (d;m) ∈ E such that `(a) = `(m) and µ(d;m)(a)

>
√
a for some a ∈ ]71

9 , 8[ not of the form 7 1
k or 7 2

2k+1 .

Proof. (i) The computer code SolLess[a,D] given in Appendix B.1 finds,

for a rational number a and a natural number D, all classes (d;m) ∈ E with

`(m) = `(a) and µ(d;m)(a) >
√
a and d ≤ D. For k ∈ {1, . . . , 8}, we choose

D = D(zk) as given by Table 5.3. The code SolLess[a,D] with D = D(zk)
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and a = zk tells us that for k = 7 and k = 6, the only such classes are the

ones given in the corollary, while for the other k there are no such classes.

Finally, one checks that the two classes in (i) reduce to (0;−1) under standard

Cremona moves and hence belong to E .

(ii) The computer code InterSolLess[k,D] given in Appendix B.2 pro-

vides, for a natural number D, a finite list of candidate classes (d;m) ∈ E
with `(m) = `(a) and µ(d;m)(a) >

√
a and d ≤ D for some a ∈ ]7 1

k+1 , 7
1
k [.

For k ∈ {1, . . . , 8}, we choose D = Dk as given by Table 5.4. The code

InterSolLess[k,D] with D = Dk tells us that for k 6= 4 there are no candidate

classes, while for k=4 the only candidate class is (d;m)=
(
59; 22×7, 5×3,4,1×3

)
.

Since the length of the second block is 4 and the length of the last block

is ≥ 2, the a in question must be [7; 4, 3] or [7; 4, 1, 2]. The second possibil-

ity is excluded by Lemma 2.1.8(i) applied to the third block. Moreover, at

a = [7; 4, 3] = 7 3
13 we have µ(d;m)(a) = 2062

767 <
√
a, which excludes also the

first possibility. �

Proof of Theorem 5.2.3. Recall from Proposition 1.2.9 that c(71
9) =

»
71
9 .

Moreover, by Lemma 2.1.3 any class (d;m) ∈ E with µ(d;m)(8) >
√

8 must

lie in E8. By looking at the list of elements in E8 given in Lemma 1.2.7 one

checks that the only such class is
(
6; 3, 2×7

)
. By using Lemma 2.1.3 once

more, we conclude that all constraints on [71
9 , 8] come from the ten classes of

Lemma 5.2.5 and the two classes from Corollary 5.2.10.

In the paragraph just before Theorem 5.2.3 we worked out the constraint

µ(d;m) given by the class centered at 71
8 . Similar computations show that all

the eight classes in Table 5.1 behave as described there. In order to prove Theo-

rem 5.2.3, it therefore remains to check that the four classes from Lemma 5.2.5

that do not appear in Theorem 5.2.3 give no further constraints. However, one

can calculate the corresponding functions µ(d;m) just as before, obtaining

Table 5.5.7 In all cases the new constraint takes the same value at its center

point as the old one, but the slope to the left is steeper (because A = −1) and

it is flat (i.e., with B′ = 0) rather than increasing to the right. This completes

the proof. �

5.3. The interval [8, 9]. In this section we compute c(a) on the interval

[8, 9]. We first prove that c(a) =
√
a for a ≥ 8 1

36 .

Lemma 5.3.1. Suppose that µ(d;m)(a) >
√
a for some a ∈

î
8 1
36 , 9

ä
with

`(a) = `(m). Then d ≤ 16 and m1 = · · · = m8.

7We also calculated the number N(A,B) of integer points in the triangle T a
A,B and the

number s of integer points on its slant edge because of their relevance to Remark 2.4.5.
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a (d;m) (A,B) (A′, B′) µ(a) N(A,B) s

71
8 (384; 144×6, 143, 18×8) (−1, 144) (1025, 0) 1025

384 74322 18

71
7 (168; 63×6, 62, 9×7) (−1, 63) (449, 0) 449

168 14373 9

71
6 (96; 36×6, 35, 6×6) (−1, 36) (257, 0) 257

96 4758 6

71
3 (24; 9×6, 8, 3×3) (−1, 9) (65, 0) 65

24 327 3

Table 5.5.

Proof. Note that y(a) ≥ y(8 1
36) = 19

36 >
1
q for all q ≥ 2. Assume first that

q ≥ 12. Then δ := y(a) − 1
q ≥

19
36 −

1
12 = 4

9 . Suppose that m1 6= m8. Then

σ ≤ 1
8 , and hence vM ≥ 3

4 . This and δ > 1
6 show that σ

vM δ < 1, which is

impossible by Lemma 5.1.2(iv). In order to prove that d ≤ 16, note that

if vM ∈ [13 ,
1
2 ], then σ′

vM
≤ 1/2

1/3 = 3
2 ;

if vM ∈ [12 ,
2
3 ], then σ′

vM
≤ 7/9

1/2 = 14
9 ;

if vM ≥ 2
3 , then σ

vM
≤ 3

2 .

Lemma 5.1.2(iv) with
√
a ≤ 3 therefore shows that

d ≤ 3
4/9

(
14
9

1
4/9 − 1

)
= 27

4
5
2 < 17,

and hence d ≤ 16.

Assume now that q ≤ 11. Note that a ≤ 8 q−1q and δ = y(a)−1
q ≥ y(81

q )−1
q .

Lemma 5.1.2(iv) therefore shows that

d ≤

√
8 q−1q

y(81
q )− 1

q

(
√
q − 1) .

The right-hand side is < 17 for all q ∈ {2, . . . , 11}, and so d ≤ 16. Suppose

that m1 6= m9. Then σ ≤ 1
8 . If q ≤ 8, then

√
σq − 1 ≤ 0, contradicting (iv) of

Lemma 5.1.2. If q ∈ {9, 10, 11}, then

vM = d
q
√
a
≤ 16

9
√
8
< 2

3 ,

and hence ε · ε ≥ 7
8 + 2 · 19 > 1, a contradiction. �

Proposition 5.3.2. c(a) =
√
a for a ∈

î
8 1
36 , 9

ä
.

Proof. Suppose to the contrary that µ(d;m)(a) >
√
a for some a ≥ 8 1

36 .

By Lemma 2.1.3 we may choose a0 with `(a0) = `(m) in the interval I con-

taining a on which this inequality holds.

We first claim that a0>8. By Lemma 2.1.3 it suffices to see that `(m) > 8.

One can prove this by explicit calculation since E8 is finite. In fact, the last
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obstruction given by the elements of E8 is that centered on a = 8 which is

discussed in Remark 1.2.10. As we saw there, this is not effective when a > 8 1
36 .

It then follows that a0 ≥ 8 1
36 . For if not, because I contains a ≥ 8 1

36 , it

must also contain 8 1
36 . But clearly `(z) > `(8 1

36) = 8+36 = 44 for z ∈ (8, 8 1
36).

Therefore, the minimum of `(z) on I cannot occur in this interval.

We may therefore apply Lemma 5.3.1 to a0. Hence d ≤ 16 and m := m1 =

m8. Since
∑
mi = 3d− 1 ≤ 47, we must have m ≤ 5. It remains to check that

there are no solutions to the Diophantine equations (1.2.4) for any choice of

m ≤ 5.

Suppose first that m = 5. We then look for solutions of

(5.3.1) 3d− 1 = 40 +
∑
i>8

mi, d2 + 1 = 200 +
∑
i>8

m2
i .

The second equation shows that d ∈ {15, 16}. For d = 15, (5.3.1) becomes

4 =
∑
i>8mi, 26 =

∑
i>8m

2
i , which has no solution. For d = 16, (5.3.1)

becomes 7 =
∑
i>8mi, 57 =

∑
i>8m

2
i , which has no solution either. For

m ≤ 5, there also are no solutions. �

Corollary 5.3.3. c(a) = 17
6 for a ∈ [8, 8 1

36 ].

Proof. The class (d;m) = (6; 3, 2×7) gives c(a) ≥ µ(d;m)(a) = 17
6 =»

8 1
36 for a ≥ 8. Therefore c must be constant on this interval because it

cannot decrease. �

Appendix A. Weight expansions and Farey diagrams

In this section, we show that the weight expansion w(a) described above

agrees with the expansion considered in [17]. For clarity, we call the latter

the Farey weight expansion; see Definition A.4. It arose from a procedure of

constructing an outer approximation to an ellipsoid by repeated blowing up.

After explaining this, we establish the equivalence of the two definitions in

Corollary A.7. No doubt, versions of this result are already known. However,

since it is not hard, we give a direct proof in our context.

Definition A.1. Let (ρi = pi/qi), i = 0, . . . , N , be a sequence of rational

numbers in lowest terms, with ρ0 = 0/1, ρ1 = 1/1 and ρi > 0 for i > 0. We say

that the two elements ρj , ρk are adjacent in (ρi) if they are neighbors when the

numbers ρ0, . . . , ρN are arranged in increasing order. Further, (ρi) is called a

Farey expansion of the rational number a if the following conditions hold:

(i) ρN = a;

(ii) qi < qi+1 for all i ≥ 1;

(iii) Adjacent pairs p/q, p′/q′ of elements of (ρi) have the property that

(A.0.1) |pq′ − p′q| = 1;

(iv) Condition (iii) does not hold if any term is removed from this expansion.
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Example A.2. The Farey expansion of 4
7 is 1, 12 ,

2
3 ,

3
5 ,

4
7 which may be ar-

ranged as
1
2 <

4
7 <

3
5 <

2
3 <

1
1 .

Lemma A.3. (i) Every positive rational number a has a Farey expansion.

(ii) This expansion is unique. Moreover, if ρ1, . . . , ρN is the Farey expan-

sion of a = ρN , then for all n < N , ρ1, . . . , ρn is the Farey expansion of ρn.

Sketch of proof. Given positive fractions ρi := pi
qi

and ρj :=
pj
qj

, we define

their Farey sum to be

ρi ⊕ ρj :=
pi + pj
qi + qj

.

If 0 < a < 1, the expansion is constructed inductively, starting with ρ0 = 0 and

ρ1 = 1, in such a way that ρi+1 := ρi ⊕ ρj , where j is the largest number < i

such that a lies between ρi and ρj . Thus ρ2 = 1
2 , and ρ3 is either 1

3 (if a < ρ2)

or 2
3 (if a > ρ2). The construction stops when a = ρN .

If a lies between k and k + 1, then the expansion begins with the terms

ρi := i
1 , i = 1, . . . , k + 1. Then ρk+2 = ρk ⊕ ρk+1 = 2k+1

2 , and the expansion

proceeds as in the previous case. Further details may be found in Hardy and

Wright, [8, Ch. III]. �

ε0
ε1

ε3

ε4

ε2

ε−1

(1, 0) = v0

(1, 1)
(2, 3)

(3, 5)

(1, 2)

(0, 1) = v−1

Figure A.1. The Farey diagram for p/q = 5/3. Here v1 =

(1, 1), v2 = (1, 2), v3 = (2, 3), v4 = (3, 5). The edge ε2 meets

ε1 and ε0, while ε3 meets ε1 and ε2, and ε4 meets ε2 and ε3.

One can build a diagram in R2 corresponding to a given Farey expansion

by associating to each fraction pi/qi a line segment εi (called an edge) with

normal vector vi := (qi, pi) of slope pi/qi. See Figure A.1. One starts with

the first quadrant whose edges ε−1, ε0 are the positive coordinate axes with

(inward) normals (q−1, p−1) = (1, 0) and (q0, p0) = (0, 1), and builds up a
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sequence of edges by cutting along certain directions. The first cut is along an

edge ε1 going from ε−1 to ε0 with normal v1 = (1, 1). In general, if ρi is the

Farey sum of ρj with ρi−1 for some j < i− 1, then the ith cut is along an edge

εi with normal vi that meets the edges εj and εi−1 (but none of the others).

The collection of edges ε1, . . . , εN is called the Farey diagram; the extended

Farey diagram also includes the edges ε−1, ε0.
As described in [17, §3], adding a new edge whose normal is the sum of

the two adjacent normals corresponds to a (smooth) blow up, since in the

toric model, each blow up corresponds to cutting off a corner of the moment

polytope. Therefore, we can think of the process of constructing the Farey

expansion for a as the process of blowing up the first quadrant repeatedly and

in as efficient a way as possible, in order to obtain a (smooth) polytope with

one edge whose normal has slope a. In the language of [17], this is an outer

approximation; see Figure 3.1 and Lemma 3.8 ff. in [17]. For further discussion

of the relation between weight sequences and the resolution of singularities by

blow up, see the end of [16]. This contains a description of the Riemenschneider

staircase that links the weight expansion for a to the Hirzebruch-Jung contin-

ued fraction expansions for the two singular points at the vertices of the toric

model of the ellipsoid E(1, a).

Given such a sequence of edges ε1, . . . , εN , one can define an associated

sequence of Farey labels λ1, . . . , λN as follows, starting with the last εN that is

labeled by λN := 1.

(∗) If εj , j > n, is labeled by λj , label εn with the sum of the labels of the

edges εj , j > n, that intersect εn.

Definition A.4. If a = p/q has Farey diagram with labels λi, 1 ≤ i ≤ N ,

the Farey weights of a are the numbers ui := λi/λ1 for i = 1, . . . , N .

Note that reflection in the line p = q converts the Farey diagram for p/q

into that for q/p. Therefore, the Farey weights for p/q and q/p are equal.

These Farey weights are the weights considered in [17]. Our aim in this

section is to show that these agree with the weights w(a) of Definition 1.2.5.

Example A.5. One can see from Figure A.1 that when p/q = 5/3, the

labels λi (in decreasing order) are λ4 = 1, λ3 = 1, λ2 = 2, λ1 = 3, which gives

the Farey weights 1, 23 ,
1
3 ,

1
3 . These agree with the weight expansion constructed

in Definition 1.2.5.

In the following we will denote the distinct Farey labels for a = p/q by

h1 > h2 > · · · > hS > 0 and will suppose that they occur with multiplicities

n1, . . . , nS . Thus we write

(λ1, λ2, . . . , λN ) =
Ä
h×n1
1 , . . . , h×nS

S

ä
.
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Proposition A.6. Let h1 > · · · > hS > 0 be the distinct Farey labels for

a = p/q and suppose that they occur with multiplicities n1, . . . , nS .

(i) If a ∈ (k, k + 1], then n1 = k and h1 = q, h2 = p− kq;
(ii) If a ∈ [1/(k + 1), 1/k), then n1 = k and h1 = p, h2 = q − kp;

(iii) In both cases the hi for 1 ≤ i < S satisfy the recursion relation

hi = ni+1hi+1 + hi+2,

where hS+1 := 0.

Corollary A.7. For all a > 1, the weights w(a) of Definition 1.2.5 are

the Farey weights of a.

Proof. If we write w(a) as w(a) =
(
1×`1 , x×`22 , . . . , x×`KK

)
, then Defini-

tion 1.2.5 implies that the xi are characterized by the properties that x1 = 1,

xi > xi+1 ≥ 0 and the recursive relation

xi = `i+1xi+1 + xi+2.

Since the λi are positive and nonincreasing, Proposition A.6 shows that Farey

weights λi/λ1 have precisely the same characterization. �

Proof of Proposition A.6. Reflection in the line p = q converts the Farey

diagram for p/q into that for q/p. Therefore statements (i) and (ii) are equiv-

alent. We will prove all three statements together by an inductive argument.

We use the extended diagram obtained by adding to the edges ε1, . . . , εN
the edge ε0 with normal v0 = (0, 1) and the edge ε−1 with normal v−1 = (1, 0).

When a > 1, we order them as ε−1, ε0, ε1, . . . , and then label these as in (∗)
above; when a < 1, we order them as ε0, ε−1, ε1, . . . , and then label them

using (∗).
If k < a < k + 1, the Farey expansion starts with 1, 2, . . . , k, k + 1 and

then contains further elements between k and k + 1. It follows that n1 = k.

Further, because the only edges meeting ε0 are ε1, . . . , εk+1, we have

(A.0.2) λ0 = kλ1 + λk+1 = n1h1 + h2.

Similarly, because the only edges meeting ε−1 are ε0 and ε1, we have λ−1 =

λ0 + λ1. Therefore (i) is equivalent to

(iv) n1 = k and λ0 = p, λ−1 = p+ q when p/q > 1.

Similarly, if a ∈ (1/(k + 1), 1/k) we find that

n1 = k, λ−1 = kλ1 + λk+1 = n1h1 + h2, λ0 = λ−1 + λ1.

Hence (ii) is equivalent to

(v) n1 = k and λ−1 = q, λ0 = p+ q when p/q < 1.

We argue by induction on N , the length of the Farey expansion of a. By

symmetry, it suffices to consider the case when a ∈ (k, k+1]. The result is clear

when a = k + 1 (and also for the trivial case a = 1, which has a single label
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λ1 = 1). Point (i) is easily checked when N = k+2 since then p/q = (2k+1)/2.

Similarly, one can check it for the two numbers (3k + 1)/3, (3k + 2)/3 with

N = k + 3. (Note that vk+2 = (2, 2k + 1) and vk+3 is either (3, 3k + 1) =

(1, k)⊕ (2, 2k + 1) or (3, 3k + 2) = (2, 2k + 1)⊕ (1, k + 1).) Now, consider the

matrix

Ak =

Ñ
k + 1 −1

−k 1

é
that takes the vectors (1, k), (1, k + 1) to (1, 0) = v−1, (0, 1) = v0. Then

Ak

Ñ
q

p

é
=

Ñ
(k + 1)q − p

−kq + p

é
=:

Ñ
q′

p′

é
.

Therefore if p/q =: k + x, we find p′/q′ = x/(1− x). In particular, p′/q′ > 1 if

and only if x > 1− x, i.e., exactly if n2 = 1.

Because detAk = 1, Ak preserves the Farey addition relation between ad-

jacent normals. Hence if v1 = (1, 1), v2, . . . , vN are the normals in the diagram

for p/q, the normals for the diagram for p′/q′ are

Akvk+2 = (1, 1), Akvk+3, . . . , AkvN .

In fact one could construct the diagrams for p/q and p′/q′ so that there is

an affine transformation obtained by following Ak by a suitable translation

that takes the standard diagram for p/q to the extended diagram for p′/q′.
Therefore, if p′/q′ > 1, the labels λk, λk+1, . . . , λN for p/q equal the labels

λ′−1, λ
′
0, λ
′
1, . . . , λ

′
N−k−1 of the extended diagram for p′/q′. Hence

if p′/q′ > 1, then n2 = 1 and the multiplicities for p′/q′ are n3, . . . , nS
with corresponding labels h3, . . . , hS .

Therefore, because the recursive relation (iii) holds for p′/q′, it holds for p/q and

i≥3. Further, by equation (A.0.2) and (iv) applied to p′/q′, λ′0=n3h3+h4a=p′

and λ′−1 = λ′0 + λ′1 = p′ + h3. Therefore, since n2 = 1,

h2 = λk+1 = λ′0 = n3h3 + h4 = p′, h1 = λ1 = λ′−1 = n2h2 + h3.

This shows that (iii) holds for p/q. Moreover, h2 = p′ = p− kq and, by (i) for

p′/q′, we find h1 = p′ + h′1 = p′ + q′ = q.

This completes the proof when p′/q′ > 1. When p′/q′ < 1, the proof is

similar. By (v), the labels λ′0, λ
′
−1, λ

′
1, . . . (note the reordering) for the extended

diagram for p′/q′ are λk+λk+1, λk, λk+2, . . . , with first multiplicity n′1 = n2−1.

Further details will be left to the reader.

Appendix B. Computer programs

B.1. Computing c(a) at a point a. In this section we describe a Math-

ematica program SolLess[a,D] that finds for a rational number a and a
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natural number D all classes (d;m) ∈ E with `(m) = `(a) and µ(d;m)(a) >√
a and d ≤ D. We have applied this program in the proof of Theorem 5.2.3

to eight numbers zk = 7 2
2k+1 in [71

9 , 8]. The present program can be used for

all a. By removing one line, one obtains a program finding all obstructive

solutions at a with d ≤ D (not just those with `(m) = `(a)).

Recall from Remark 5.2.6 that instead of using the code SolLess, one can

use the algebraic method from the proof of Lemma 5.2.5 to find all obstructive

classes (d;m) at zk with `(m) = `(zk). We have chosen to use this code

for convenience and because it might be helpful for understanding the more

involved code of Section B.2.

We start with computing the weight expansion w(a) of a rational num-

ber a. For convenience, we use that the multiplicities of w(a) are given by the

continued fraction expansion of a.

W[a_] := Module[{aa=a,M,i=2,L,u,v},

M = ContinuedFraction[aa];

L = Table[1, {j,M[[1]]}];

{u,v} = {1,aa-Floor[aa]};

While[i <= Length[M],

L = Join[L, Table[ v, {j,M[[i]]}] ];

{u,v} = {v,u - M[[i]] v};

i++];

Return[L] ]

For instance, W[3+2/3] yields {1,1,1,2/3,1/3,1/3}.

We next give for each natural number k a list of four vectors, from which

we will construct candidates for the vectors m:

P[k_] := Module[{kk=k,PP,T0,i},

T0 = Table[0,{u,1,k}];

T0p = ReplacePart[T0,1,1];

T1 = Table[1,{u,1,k}];

T1m = ReplacePart[T1,0,-1];

PP = {T0,T0p,T1,T1m};

Return[PP] ]

For instance, P[3] yields {0, 0, 0}, {1, 0, 0}, {1, 1, 1}, {1, 1, 0} .

Our next task is to construct for given a all candidate vectors m. To this

end we first take a given multiplicity vector M, say (k1, k2, k3), and associate to

it all vectors of length k1 + k2 + k3 such that the j th block is a vector from

P[kj]. In the example we thereby obtain 43 vectors. We use the sets P[k] and

a recursion:
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Difference[M_] := Module[{V=M,vN,V1,l,L={},D,PP,i,j,N},

l = Length[V];

If[ l == 1, L = P[ V[[1]] ]];

If[ l > 1,

vN = V[[-1]];

V1 = Delete[V,-1];

D = Difference[V1];

PP = P[vN];

i = 1;

While[ i <= Length[D],

j=1;

While[j <= Length[PP],

N = Join[ D[[i]], PP[[j]] ];

L = Append[L,N];

j++];

i++] ];

Return[L] ]

We now take a positive rational number a and d ∈ N and compute all

solutions of the Diophantine equation with d given that are obstructive at a:

We first take the multiplicity vector M of w(a) and then round down each of

its entries, getting F . In view of Lemma 2.1.7, an obstructive multiplicity

vector m must be of the form F+D[[i]], where D[[i]] is the ith vector from

the list Difference[W[a]]. We therefore run through this list, and each time

check whether V=F+D[[i]] is a solution of the Diophantine system, has last

entry positive and is obstructive: µ(d;V )(a) >
√
a. If all three conditions are

fulfilled, we add V to our list and also retain d:

Sol[a_,d_] := Module[{aa=a,dd=d,M,F,D,i,V,L={}},

M = ContinuedFraction[aa];

F = Floor[ dd/Sqrt[aa] W[aa] ];

D = Difference[M];

i=1;

While[i <= Length[D],

V = Sort[F+D[[i]], Greater];

SV = Sum[ V[[j]], {j,1,Length[V]} ];

If[ {SV, V.V} == {3dd-1, dd^2+1}

&& V[[-1]] > 0

&& W[aa].V / dd >= Sqrt[aa],

L = Append[L, V] ];

i++];

Return[{dd,Union[L]}] ]
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For instance, Sol[7 + 1/8, 48] yields

{48, {{18, 18, 18, 18, 18, 18, 18, 3, 2, 2, 2, 2, 2, 2, 2}}}.

Remark B.1. (i) We were not at all economical when constructing the list

Difference[M]: In view of Lemma 2.1.7, for an obstructive vector F+D[[i]],

there is at most one kj such that the vector P[kj] appearing in D[[i]] can

have both 0 and 1 as entries. We have chosen this form of the program to

make it more readable.

(ii) In the main body of the paper, we applied this program only to the

eight numbers zk = 7 2
2k+1 , and for these numbers we know that m1 = m7

by Lemma 5.2.7. We did not use this information so as to make the program

applicable also at other points, e.g. to 7 1
k in order to check Lemma 5.2.5 (at

least for all d ≤ 2000 or so).

(iii) Recall from Lemma 2.1.3 that for every (d;m) that gives an obstruc-

tion at a, we have `(a) ≥ `(m). The condition V[[-1]] > 0 asked in Sol[a,d]

is therefore equivalent to `(a) = `(m). By removing this condition, we obtain

a program finding all obstructive solutions (d;m) at a.

We finally collect, for given a and D ∈ N, all solutions that are obstructive

at a and have d ≤ D:

SolLess[a_,D_] := Module[{aa=a,DD=D,d=1,Ld,L={}},

While[d <= D,

Ld = Sol[aa,d];

If[ Length[ Ld[[2]] ] > 0,

L = Append[L,Sol[aa,d]]

];

d++];

Return[L] ]

B.2. Computing c(a) on an interval. In this section we describe a Math-

ematica program InterSolLess[k,D] that provides, for a natural number D,

a finite list of candidate classes (d;m) ∈ E with `(m) = `(a) and µ(d;m)(a)

>
√
a and d ≤ D for some a ∈ ]7 1

k+1 , 7
1
k [, a 6= zk, where zk = [7; k, 2]. We

have applied this program in the proof of Theorem 5.2.3 to the eight intervals

]7 1
k+1 , 7

1
k [, k ∈ {1, . . . , 8}. Throughout we assume that a, b and the mi are

positive integers.

Our first goal is to list for a given pair a, b all solutions of the Diophantine

system

(B.2.1)

a =
∑
imi,

b =
∑
im

2
i .
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To illustrate our method, let us find in an algorithmic way the solutions m

of (B.2.1) for (a, b) = (4, 6). It suffices to list solutions m = (m1,m2, . . . ,mM )

with m1 ≥ m2 ≥ · · · ≥ mM . We must have m1 ≤ b
√

6c = 2. We therefore try

with m1 = 1 and m1 = 2. For a solution m, the next numbers (m2,m3, . . . )

must fulfill (B.2.1) with (a, b)=(4−1, 6−1)=(3, 5) and (a, b)=(4−2, 6−4)=

(2, 2). In the first case (when m1 = 1), we only need to try with m2 = 1.

The next numbers (m3, . . . ) of a solution must then fulfill (B.2.1) with (a, b) =

(3 − 1, 5 − 1) = (2, 4). Then a2 = b so that the only solution is m3 = 2. But

m3 = 2 > 1 = m2, whence we discard the solution (1, 1, 2). In the second

case (when m1 = 2), we try to find numbers (m2,m3, . . . ) solving (B.2.1) with

(a, b) = (4− 2, 6− 4) = (2, 2). We only need to try with m2 = 1, and then we

want to solve (B.2.1) with (a, b) = (2− 1, 2− 1) = (1, 1) for m3. Since a2 = b,

the only solution is m3 = 1. We therefore find the solution m = (2, 1, 1).

The code Solutions[a,b] below does the same thing by a recursion. Note

that if a2 < b, then (B.2.1) has no solution.

Solutions[a_,b_] := Solutions[a,b,Min[a,Floor[Sqrt[b]]]]

Solutions[a_,b_,c_] := Module[{A=a,B=b,C=c,i,m,K,j,V,L={}},

If[ A^2 < B, L={}];

If[ A^2== B,

If[ A > C, L={}, L={{A}} ] ];

If[ A^2 > B,

i=1;

m = Min[Floor[Sqrt[B]],C];

While[i <= m,

K = Solutions[A-i,B-i^2,i];

j=1;

While[j <= Length[K],

V = Prepend[ K[[j]], i];

L = Append[L,V];

j++

];

i++]

];

Return[Union[L]] ]

Notice that applied to (a, b) = (3d − 1, d2 + 1), the above algorithm lists all

solutions of our principal Diophantine equation. For large d, however, there

are many solutions. We shall therefore directly choose the first 7 + k + 1

numbers mi, using that for obstructive solutions the vectors m and w(a) must

be essentially parallel, and shall then use the code Solutions only to choose

the remaining m7+k+2, . . . .
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It will be useful to have a short expression for the sum of the entries of a

vector L:

sum[L_] := Sum[ L[[j]], {j,1,Length[L]} ]

For given k ≥ 1, the following code gives three vectors of length 7+k that

have all entries equal to 0 except that the last entry of the first vector is −1

and the eighth entry of the third vector is 1:

P[k_] := Module[{kk=k,PP,T0,i},

T0 = Table[0,{i,7+kk}];

Tm = ReplacePart[T0,-1,-1];

Tp = ReplacePart[T0,1,8];

PP = {Tm,T0,Tp};

Return[PP] ]

For k = 4, this gives {07, 0, 0, 0,−1}, {07, 0, 0, 0, 0}, {07, 1, 0, 0, 0}. We shall

use these vectors to take into account that the mi may not be constant on the

second block.

Fix d ∈ N and k ∈ {1, . . . , 8}. Assume that m is such that (d;m) ∈ E
and such that `(m) = `(a) and µ(d;m)(a) >

√
a for some a ∈ ]7 1

k+1 , 7
1
k [.

In view of Lemma 2.1.7, we have m1 = m7. Moreover, since |ε1| ≤ 1√
7
< 1

2

and a < 7 1
k ,

m1 = d√
a

+ ε1 >
d»
7
1
k

− 1
2

and hence m1 ≥ m1 := Round

Ç
d√
7+ 1

k

å
. In the same way we see that m1 ≤

M1 := Round

(
d»

7+ 1
k+1

)
. The number m1 = m7 must therefore be in the

interval [m1, M1].

Next, consider mj for j ∈ {8, . . . , 7 + k}. For a = 7 + x, we have 1
k+1 <

x < 1
k . Therefore,

mj = d√
a
x+ εj >

d»
7
1
k

1
k+1 − 1

and hence

mj ≥ mx :=

⌈
d»
7 1
k

1

k + 1

⌉
− 1 = Ceiling

Ñ
d»
7 1
k

1

k + 1

é
− 1.

In the same way we see that

mj ≤ Mx :=

⌊
d»

7 1
k+1

1

k

⌋
+ 1 = Floor

Ñ
d»

7 1
k+1

1

k

é
+ 1.

The numbers m8, . . . ,m7+k must therefore be in the interval [mx, Mx].
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Since a ∈ ]7 1
k+1 , 7

1
k [, we have `(m) = `(a) ≥ 7 + k + 1. Lemma 2.1.8(i)

applied to the second block shows that |m7− (m8 + · · ·+m7+k)−m7+k+1)| ≤
Ceiling

Ä√
k+2

ä
− 1. Note that we can assume that m1≥m2 ≥ · · · ≥ m7+k+1

and that m7+k+1 ≥ 1.

Using this information about m1, . . . ,m7+k+1, we build a preliminary list

of vectors m as follows. We first take all possibilities for m1, . . . ,m7+k+1

into account. Since the full vector m solves the Diophantine equation for d,

the remaining numbers m7+k+2, . . . ,mM must solve the Diophantine equa-

tion (B.2.1) with

a = 3d− 1−
7+k+1∑
i=1

mi, b = d2 + 1−
7+k+1∑
i=1

m2
i .

Note that we can assume that a ≥ 0 and b ≥ 0. We then take the list

Solutions[a,b,M[[-1]] of all solutions to (B.2.1) for which all mj are at

most m7+k+1, and append each such solution to (m1, . . . ,m7+k+1). It could

be that the only solution is 0 (namely if a = b = 0); in this case we remove the

entry 0:

Prelist[k_,d_] := Module[{kk=k,dd=d,u,v,m1,M1,mx,Mx,f,t,

PP,M,MM,i=0,j=0,s=1,S,T,K,l,L={}},

u = 1/(kk+1);

v = 1/kk;

m1 = Round[dd/Sqrt[7+v]];

M1 = Round[dd/Sqrt[7+u]];

mx = Floor[dd/Sqrt[7+v] u]-1;

Mx = Ceiling[dd/Sqrt[7+u] v]+1;

f = Ceiling[Sqrt[kk+2]-1];

t = -f;

PP = P[kk];

While[i <= M1-m1,

While[j <= Mx-mx,

While[s <= 3,

While[t <= f,

M = Join[ Table[m1+i, {u,7}], Table[mx+j, {u,kk}] ];

M = M + PP[[s]];

S = Sum[ M[[u]], {u,8,8+kk-1}];

M = Append[M, M[[7]]-S+t];

T=1;

If[ M == Sort[M,Greater] && M[[-1]] > 0, T=1, T=0];

S = sum[M];

A = 3dd-1-S;

B = dd^2+1-M.M;
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If[ Min[A,B] < 0, T=0];

If[ T==1,

K = Solutions[A,B,M[[-1]]];

l=1;

While[l <= Length[K],

MM = Join[ M,K[[l]] ];

While[ MM[[-1]] == 0, MM=Drop[MM,-1] ];

L = Append[L,MM];

l++

]

];

t++];

t=-f;

s++];

s=1;

j++];

j=0;

i++];

Return[{dd,Union[L]}] ]

Many of the solutions (d;m) in Prelist[k,d] are not obstructive. The

next code removes most of these solutions:

InterSol[k_,d_] := Module[{kk=k,dd=d,L,M,T,K={},i=1,l,rest},

L = Prelist[kk,dd][[2]];

While[i <= Length[L],

M = L[[i]];

l = Length[M];

T = 1;

If[ l <= 7 + kk + 2, T=0];

If[ M[[-2]]-M[[-1]] > 1, T=0 ];

If[ M[[-3]] > M[[-2]] + 1

&& Abs[ M[[-3]]-M[[-2]]-M[[-1]] ] > 1, T=0 ];

If[ kk==1 && l >= 10,

If[ M[[9]] - M[[10]] > 1 &&

Abs[ M[[8]] - (M[[9]] + M[[10]]) ] > 1,

T=0 ]];

rest = Sum[ M[[j]], {j,8+kk,l} ];

If[ M[[7+kk]] - rest >= Sqrt[l-kk-6], T=0 ];

If[ T==1, K = Append[K, M] ];

i++];

Return[{dd,K}] ]
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Recall that a ∈ ]7 1
k+1 , 7

1
k [, a 6= zk, where zk = [7; k, 2]. In particular, `(m) =

`(a) > 7 + k + 2. We then test the very end of m. Since the last block has

length at least 2, we must have mM−1 = mM + 1 or mM−1 = mM in view of

Lemma 2.1.7.

We next exploit Lemma 2.1.8. If mM−2 > mM−1 + 1, then we know that

the length of the last block is 2 and mM−2 belongs to the before the last block.

Lemma 2.1.8(ii) then shows that |mM−2 − (mM−1 + mM )| ≤ 1. In the next

test we apply the same lemma to the special situation where k = 1 and where

we know that the third block has length 1.

In the last test we apply Lemma 2.1.8(ii) with j = 7 + k.

We finally take the union over d ≤ D of the solutions in InterSol[k,D]:

InterSolLess[k_,D_] := Module[{kk=k,DD=D,LL={},Q,d=1},

While[d <= DD,

Q = InterSol[kk,d];

If[Length[Q[[2]]] > 0,

LL = Append[LL,Q]];

d++];

Return[LL] ]

References

[1] P. Biran, Symplectic packing in dimension 4, Geom. Funct. Anal. 7 (1997), 420–

437. MR 1466333. Zbl 0892.53022. http://dx.doi.org/10.1007/s000390050014.

[2] , Constructing new ample divisors out of old ones, Duke Math. J.

98 (1999), 113–135. MR 1687571. Zbl 0961.14005. http://dx.doi.org/10.1215/

S0012-7094-99-09803-4.

[3] , From symplectic packing to algebraic geometry and back, in Euro-

pean Congress of Mathematics, Vol. II (Barcelona, 2000), Progr. Math. 202,
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