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Immersing almost geodesic surfaces in
a closed hyperbolic three manifold

By Jeremy Kahn and Vladimir Markovic

Abstract

Let M3 be a closed hyperbolic three manifold. We construct closed

surfaces that map by immersions into M3 so that for each, one the corre-

sponding mapping on the universal covering spaces is an embedding, or, in

other words, the corresponding induced mapping on fundamental groups is

an injection.

1. Introduction

The purpose of this paper is to prove the following theorem.

Theorem 1.1. Let M3 = H3/G denote a closed hyperbolic three manifold

where G is a Kleinian group, and let ε > 0. Then there exists a Riemann

surface Sε = H2/Fε where Fε is a Fuchsian group and a (1+ε)-quasiconformal

map g : ∂H3 → ∂H3, such that the quasifuchsian group g◦Fε◦g−1 is a subgroup

of G. (Here we identify the hyperbolic plane H2 with an oriented geodesic plane

in H3 and the circle ∂H2 with the corresponding circle on the sphere ∂H3.)

Remark. In the above theorem the Riemann surface Sε has a pants de-

composition where all the cuffs have a fixed large length and they are glued by

twisting for +1.

One can extend the map g to an equivariant diffeomorphism of the hy-

perbolic space. This extension defines the map f : Sε →M3, and the surface

f(Sε) ⊂M3 is an immersed (1+ε)-quasigeodesic surface. In particular, the sur-

face f(Sε) is essential which means that the induced map f∗ : π1(Sε)→ π1(M3)

is an injection. We summarize this in the following theorem.

Theorem 1.2. Let M3 be a closed hyperbolic three manifold. Then we

can find a closed hyperbolic surface S and a continuous map f : S →M3 such

that the induced map between fundamental groups is injective.
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Let S be an oriented closed topological surface with a given pants de-

composition C, where C is a maximal collection of disjoint (unoriented) simple

closed curves that cut S into the corresponding pairs of pants. Let f : S →M3

be a continuous map and let ρf : π1(S)→ π1(M3) be the induced map between

the fundamental groups. Assume that ρf is injective on π1(Π) for every pair

of pants Π from the pants decomposition of S. Then to each curve C ∈ C we

can assign a complex half-length hl(C) ∈ (C/2πiZ) and a complex twist-bend

s(C) ∈ C/(hl(C)Z + 2πiZ). We prove the following in Section 2.

Theorem 1.3. There are universal constants ε̂, K0 > 0 such that the

following holds. Let ε be such that ε̂ > ε > 0. Suppose (S, C) and f : S →M3

are as above, and for every C ∈ C, we have

|hl(C)− R

2
| < ε, and |s(C)− 1| < ε

R

for some R > R(ε) > 0. Then ρf is injective and the map ∂f̃ : ∂S̃ → ∂fiM3

extends to a (1 + K0ε)-quasiconformal map from ∂H3 to itself. (Here S̃ andfiM3 denote the corresponding universal covers.)

It then remains to construct such a pair (f, (S, C)). If Π is a (flat) pair

of pants, we say f : Π → M3 is a skew pair of pants if ρf is injective, and

f(∂Π) is the union of three closed geodesics. Suppose we are given a collection

{fα : Πα →M3}α∈A of skew pants, and suppose for the sake of simplicity that

no fα maps two components of ∂Π to the same geodesic.

For each closed geodesic γ in M3, we let Aγ = {α ∈ A : γ ∈ fα(∂Πα)}.
Given permutations σγ : Aγ → Aγ for all such γ, we can build a closed surface

in M3 as follows. For each (fα,Πα), we make two pairs of skew pants in

M3, identical except for their orientations. For each γ, we connect via the

permutation σγ the pants that induce one orientation on γ to the pants that

induce the opposite orientation on γ. We show in Section 3 that if the pants

are “evenly distributed’ around each geodesic γ, then we can build a surface

this way that satisfies the hypotheses of Theorem 1.3.

We can make this statement more precise as follows: for each γ ∈ fα(∂Πα),

we define an unordered pair {n1, n2} ∈ N1(γ), the unit normal bundle to γ.

The two vectors satisfy 2(n1 − n2) = 0 in the torus C/(2πiZ + l(γ)Z), where

l(γ) is the complex length of γ. So we write

footγ(Πα) ≡ footγ(fα,Πα) = {n1, n2} ∈ N1(
√
γ) = C/(2πiZ + hl(γ)Z).

We let foot(A) = {footγ(Πα) : α ∈ A, γ ∈ ∂Πα}. (Properly speaking,

foot(A) is a labeled set (or a multiset) rather than a set; see Section 3 for

details.) We then define footγ(A) = foot(A)|N1(
√
γ). We let τ : N1(

√
γ) →

N1(
√
γ) be defined by τ(n) = n + 1 + iπ. If for each γ we can define a
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permutation σγ : Aγ → Aγ such that

| footγ(Πσγ(α))− τ(footγ(Πα))| < ε

R
,

and |hl(γ)− R
2 | < ε for all γ ∈ ∂Πα, then the resulting surface will satisfy the

assumptions of Theorem 1.3. The details of the above discussion are carried

out in Section 3.

In Section 4 we construct the measure on skew pants that after rationali-

sation will give us the collection Πα we mentioned above. This is the heart of

the paper. Showing that there exists a single skew pants that satisfies the first

inequality in Theorem 1.3 is a nontrivial theorem, and the only known proofs

use the ergodicity of either the horocyclic or the frame flow. This result was

first formulated and proved by L. Bowen [1], where he used the horocyclic flow

to construct such skew pants. Our construction is different. We use the frame

flow to construct a measure on skew pants whose equidistribution properties

follow from the exponential mixing of the frame flow. This exponential mixing

is a result of Moore [10]; see also [11]. (It has been shown by Brin and Gromov

[2] that for a much larger class of negatively curved manifolds the frame flow

is strong mixing.) The detailed outline of this construction is given at the

beginning of Section 4.

We point out that Cooper-Long-Reid [5] proved the existence of essen-

tial surfaces in cusped finite volume hyperbolic three manifolds. Lackenby [9]

proved the existence of such surfaces in all closed hyperbolic three manifolds

that are arithmetic.

Acknowledgement. We would like to thank the following people for their

interest in our work and suggestions for writing the paper: Ian Agol, Nicolas

Bergeron, Martin Bridgeman, Ken Bromberg, Danny Calegari, Dave Gabai,

Bruce Kleiner, Francois Labourie, Curt McMullen, Yair Minsky, Jean Pierre

Otal, Peter Ozsvath, Dennis Sullivan, Juan Suoto, Dylan Thurston, and Dani

Wise. In particular, we are grateful to the referee for numerous comments and

suggestions that have improved the paper.

2. Quasifuchsian representation of a surface group

2.1. The Complex Fenchel-Nielsen coordinates. Below we define the Com-

plex Fenchel-Nielsen coordinates. For a very detailed account, we refer to [12]

and [8]. Originally the coordinates were defined in [13] and [8].

A word on notation. By d(X,Y ) we denote the hyperbolic distance be-

tween sets X,Y ⊂ H3. If γ∗ ⊂ H3 is an oriented geodesic and p, q ∈ γ∗,

then dγ∗(p, q) denotes the signed real distance between p and q. Let α∗, β∗

be two oriented geodesics in H3, and let γ∗ be the geodesic that is orthogonal

to both α∗ and β∗, with an orientation. Let p = α∗ ∩ γ∗ and q = β∗ ∩ γ∗.
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Let u be the tangent vector to α∗ at p, and let v be the tangent vector to β∗

at q. We let u′ be the parallel transport of u to q. By dγ∗(α
∗, β∗) we denote

the complex distance between α∗ and β∗ measured along γ∗. The real part

is given by Re(dγ∗(α
∗, β∗)) = dγ∗(p, q). The imaginary part Im(dγ∗(α

∗, β∗))

is the oriented angle from u′ to v, where the angle is oriented by γ∗ which is

orthogonal to both u′ and v. The complex distance is well defined (mod 2kπi),

k ∈ Z. In fact, every identity we write in terms of complex distances is

therefore assumed to be true (mod 2kπi). We have the following identities:

dγ∗(α
∗, β∗) = −dγ∗(β

∗, α∗), d−γ∗(α
∗, β∗) = −dγ∗(α

∗, β∗), and dγ∗(−α∗, β∗) =

dγ∗(α
∗, β∗) + iπ.

We let d(α∗, β∗) (without a subscript for d) denote the unsigned complex

distance equal to dγ∗(α
∗, β∗) modulo 〈z → −z〉. We will write d(α∗, β∗) ∈

(C/2πiZ)/Z2, where Z2 of course stands for 〈z → −z〉. We observe that

d(α∗, β∗) = d(β∗, α∗) = d(−α∗,−β∗) = d(−β∗,−α∗).
For a loxodromic element A ∈ PSL(2,C), by l(A) we denote its complex

translation length. The number l(A) has a positive real part and it is defined

(mod 2kπi), k ∈ Z. By γ∗ we denote the oriented axis of A, where γ∗ is oriented

so that the attracting fixed point of A follows the repelling fixed point.

Let Π0 be a topological pair of pants (a three holed sphere). We consider

Π0 as a manifold with boundary; that is, we assume that Π0 contains its cuffs.

We say that a pair of pants in a closed hyperbolic three manifold M3 is an

injective homomorphism ρ : π1(Π0)→ π1(M3), up to conjugacy. This induces

a representation

ρ : π1(Π0)→ PSL(2,C),

up to conjugacy, which in general we also call a free-floating pair of pants. A

pair of pants in M3 is determined by (and determines) a continuous map f :

Π0 →M3, up to homotopy, and free-floating pair of pants likewise determines

a map

f : Π0 → H3/ρ(π1(Π0)) = Mρ,

up to homotopy.

Suppose ρ : π1(Π0) → PSL(2,C) is a free-floating pair of pants, and

suppose ρ = f∗, where f : Π0 → Mρ. We orient the components Ci of ∂Π0

so that Π0 is on the left of each Ci. For each i, there is a unique oriented

closed geodesic γi in Mρ freely homotopic to f(C0). Now let ai be the simple

nonseparating arc on Π0 connecting Ci−1 and Ci+1. (We take the subscript

(mod 3).) We can homotop f so that f maps each Ci to γi and maps ai to an

arc ηi from γi−1 to γi+1 that is orthogonal at its endpoints to γi−1 and γi+1.

While such an f is not unique, the 1-complex made of the γi and the ηi
together divide f(Π0) into two singular regions whose boundaries are geodesic

right-angled hexagons. Because the geometry of each of these two hexagons
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is determined by these unsigned complex distances dηi(γi−1, γi+1), the two

right-angled hexagons are isometric.

Let us fix for the moment i ∈ {0, 1, 2}. We then orient ηi−1 and ηi+1 to

point away from γi (so the signed complex distance dηi±1(γi, γi∓1) has positive

real part). Recall that dγi(ηi−1, ηi+1) denotes the signed complex distance

from ηi−1 to ηi+1, along γi. Because the two hexagons are isometric,

dγi(ηi−1, ηi+1) = dγi(ηi+1, ηi−1).

We let

hl(γi) = dγi(ηi−1, ηi+1).

We can also think of this definition on the universal cover H3 as follows.

We conjugate ρ so that there is a lift γ̃i of γi to H3 = {(x, y, z) : z > 0} that

connects 0 and ∞. We let Aγi ∈ PSL(2,C) be such that γi = γ̃i/〈Aγi〉. Then

Aγi : H3 → H3 extends to map “C = ∂H3 to itself by z 7→ el(γi) · z.
Moreover, the lifts of ηi−1 and ηi+1 that intersect γ̃i will alternate along

γ̃i (so we can define dγi(ηi−1, ηi+1) as dγ̃i(η̃i−1, η̃i+1), where η̃i−1 is a lift of

ηi−1 that intersects γ̃i and η̃i+1 is the next lift of ηi+1 along γ̃i). If we define√
Aγi ∈ PSL(2,C) so that it maps z 7→ ehl(γi) · z, then it will map the lifts of

ηi−1 to the lifts of ηi+1, and vice verse.

Moreover, the unit normal bundle N1(γ̃i) is a torsor for C∗ ≡ C/2πiZ,

and the unit normal bundle N1(γi) is a torsor for

C∗/〈Aγi〉 = C/2πiZ + l(γi) · Z.

Remark. Let G be a group, and let X be a space on which G acts. We

say that X is a torsor for G (or that X is a G-torsor) if, for any two elements

x1 and x2 of X, there exists a unique group element g ∈ G with g(x1) = x2.

By a mild abuse of notation, we let

N1(
√
γi) = N1(γ̃i)/

¨»
Aγi
∂
.

This is a torsor for

C∗/
¨»

Aγi
∂

= C/2πiZ + hl(γi) · Z.

For i 6= j, i, j = 0, 1, 2, we let n(i, j) ∈ N1(γi) be the unit vector at γi∩ ηj
pointing along ηj . Then

√
Aγi interchanges n(i, i−1) and n(i, i+1), so we can

think of the unordered pair {n(i, i− 1), n(i, i+ 1)} as an element of N1(
√
γi).

We call this element footγi(ρ) or footγi(f), where f : Π0 →Mρ is a map whose

homotopy class is determined by ρ.

If ρ : π1(Π0) → PSL(2,C) is a representation for which hl(C) ∈ R+ for

each C ∈ ∂Π0, then, after conjugation, ρ(π1(Π0)) ∈ PSL(2,R) < PSL(2,C),

and H2/ρ(π1(Π0)) is a topological pair of pants (homeomorphic to the interior

of Π0). Also the converse is true: if we are given ρ : π1(Π0)→ PSL(2,R) and



1132 J. KAHN and V. MARKOVIC

H2/ρ(π1(Π0)) is homeomorphic to the interior of Π0, then hl(C) ∈ R+ for each

cuff C ∈ ∂Π0.

Now suppose that S0 is a closed surface (of genus at least 2) and C0 a

maximal set of simple closed curves on S0. (The curves in C0 are disjoint,

nonisotopic and nontrivial.) By C∗ we denote the set of oriented curves from

C0. (Each curve is taken with both orientations.) A pair of pants Π for (S0, C0)

is the closure of a component of S0 \ ⋃ C0, and a marked pair of pants is a

pair (Π, C), where C ∈ C∗ is an oriented closed curve such that C ∈ ∂Π, and

C lies to the left of Π. For any marked pair of pants (Π, C), there is a unique

marked pair of pants (Π′, C ′) such that C ′ = −C (where −C denotes the curve

C but with the opposite orientation). We observe in passing that Π can be

equal to Π′.

Now suppose that

ρ : π1(S0)→ PSL(2,C)

is a representation that is discrete and faithful when restricted to π1(Π) for each

pair of pants Π in S0\⋃ C0. By Mρ we again denote the quotient H3/ρ(π1(S0)).

Suppose that ρ = f∗ for some continuous map f : S0 → Mρ. Then for each

marked pair of pants (Π, C), we let γ be the oriented geodesic freely homotopic

to f(C). As before, we define hlΠ(γ) using f |Π.

Let (Π′, C ′) be the marked pair of pants such that C ′ = −C. Then

hlΠ(C) = hlΠ′(C) or hlΠ(C) = hlΠ′(C) + iπ. In the former case, 〈
√
Aγ〉 =

〈
»
Aγ′〉, so N1(

√
γ) = N1(

√
γ′) literally. In this case we write hl(C) =

hlΠ(C) = hlΠ′(C).

Definition 2.1. Let S0 and C0 be as above. We say that a representation

ρ : π1(S0)→ PSL(2,C)

is viable if

• ρ is discrete and faithful when restricted to π1(Π) for each pair of pants

Π in S0 \⋃ C0;

• hl(C) = hlΠ(C) = hlΠ′(C) for each C ∈ C0, where Π and Π′ are two

pairs of pants that contain C.

Given a viable representation ρ : π1(S0)→ PSL(2,C), we let

s(C) = footγ(ρ|Π)− footγ′(ρ|Π′)− iπ.

Then s(C) ∈ C/2πiZ+hl(C) ·Z. If we reverse the roles of (Π, C) and (Π′, C ′),

we negate the difference of the two feet, but we also reverse the orientation of

γ, so we get the same element s(C) ∈ C/2πiZ + hl(C) · Z. The coordinates

(hl(C), s(C)) are called the reduced complex Fenchel-Nielsen coordinates for ρ.

The following is the main result of this section and it will be used later in

the paper.
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Theorem 2.1. Let 0 < ε < ε̂, where ε̂ > 0 is a universal constant. Then

there exists R0 = R0(ε) > 0 such that the following holds. Let S0 be a closed

topological surface with a pants decomposition C0. Suppose that ρ : π1(S0) →
PSL(2,C) is a viable representation such that

|hl(C)− R

2
| < ε, and |s(C)− 1| < ε

R

for some R > R0 > 0. Then there exists a viable representation ρ0 : π1(S0)→
PSL(2,C) such that hl(C) = R and s(C) = 1 for all C ∈ C0 and a K-quasi-

symmetric map h : ∂H3 → ∂H3 so that h−1ρ0(π1(S0))h = ρ(π1(S0)), where

K = K(ε) and K(ε) → 1 uniformly when ε → 0. In particular, the represen-

tation ρ is injective and the group ρ(π1(S0)) is quasifuchsian.

2.2. Holomorphic families of representations. In this subsection we state

Theorem 2.2 that will imply Theorem 2.1. The rest of Section 2 is devoted to

proving Theorem 2.2.

Fix a closed surface S0 with a pants decomposition C0. Fix a pair of pants

Π from S0 \ C0, and let C0, C1, C2 ∈ C0 denote the cuffs of Π. The inclusion

Π → S0 induces an embedding π1(Π) → π1(S0). (Such embedding is well

defined up to conjugation.) Let c0, c1 ∈ π1(Π) ⊂ π1(S0) be elements in the

conjugacy classes corresponding to C0 and C1 respectively.

Let ρ : π1(S0)→ PSL(2,C) be a viable representation. After conjugating

ρ by an element of PSL(2,C), we may assume that the axis of ρ(c0) is the

geodesic in H3 that connects 0 and ∞ (such that 0 is the repelling point) and

that the point 1 ∈ ∂H3 is the repelling point of ρ(c1). (Such a conjugation

exists since ρ is viable and the restriction of ρ to π1(Π) is injective.) Such ρ is

said to be normalized. (The normalization depends on the choice of c0 and c1

but we suppress this.)

Let R > 0, and let Ω denote the set of all pairs (zC , wC), C ∈ C0, where

for each C, we have

(1) zC ∈ C/2πiZ and |zC − R
2 | < 1,

(2) wC ∈ C/2πiZ + zC · Z and |s(C)− 1| < 1
R .

For simplicity we let z = (zC)C∈C0 and w = (wC)C∈C0 . It follows from [8]

and [12] that when R is large enough (say R > 2), for each (z, w) ∈ Ω there

exists a normalized viable representation ρ : π1(S0) → PSL(2,C) such that

hl(C) = zC and s(C) = wC .

Remark. The representation ρ is not unique since (hl(C), s(C)) are the

reduced complex Fenchel-Nielsen coordinates and they determine the normal-

ized representation only if we specify the marking of the cuffs. (That is, a

normalized viable representation is uniquely determined by the choice of the

(nonreduced) Fenchel-Nielsen coordinates.)
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Suppose that we are given a normalized viable representation ρ′ : π1(S0)→
PSL(2,C) such that |hl(C)− R

2 | < 1 and |s(C)− 1| < 1
R , where (hl(C), s(C))

are the reduced complex Fenchel-Nielsen coordinates for ρ′. Let z′C = hl(C)

and w′C = s(C). Then (z′, w′) ∈ Ω. It then follows from [8] and [12] that

for each (z, w) ∈ Ω, there exists a unique normalized viable representation

ρz,w : π1(S0)→ PSL(2,C) such that

• zC = hl(C) and wC = s(C), where (hl(C), s(C)) are the reduced

complex Fenchel-Nielsen coordinates for ρz,w;

• the family of representations ρz,w varies holomorphically in (z, w);

• ρ′ = ρz′,w′ .

Definition 2.2. For C ∈ C0 let ζC , ηC ∈ D, where D denotes the unit

disc in the complex plane. Let τ ∈ D be a complex parameter. Fix R > 1

and let hl(C)(τ) = 1
2(R + τζC) and s(C)(τ) = 1 + τηC

R . By ρτ we denote

the corresponding normalized viable representation with the reduced Fenchel-

Nielsen coordinates (hl(C)(τ), s(C)(τ)). Note that ρτ depends on ζC , ηC but

we suppress this.

It follows that ρτ depends holomorphically on τ . The remainder of this

section is devoted to proving the following theorem.

Theorem 2.2. There exist constants “R, ε̂ > 0, such that the following

holds. Let S0 be any closed topological surface with a pants decomposition C0,

and fix ζC , ηC ∈ D for C ∈ C0. Then for every R ≥ “R and |τ | < ε̂, the group

ρτ (π1(S0)) is quasifuchsian and the induced quasisymmetric map fτ : ∂H2 →
∂H3 (that conjugates ρ0(π1(S0)) to ρτ (π1(S0))) is K(τ)-quasisymmetric, where

K(τ) =
ε̂+ |τ |
ε̂− |τ |

.

2.3. Notation and the brief outline of the proof of Theorem 2.2. The fol-

lowing notation remains valid through the section. Fix S0, C0 and ζC , ηC ∈ D
as above. Denote by Cτ (R) the collection of translation axes in H3 of all the

elements ρτ (c), where c ∈ π1(S0) is in the conjugacy class of some cuff C ∈ C0.

Fix two such axes C(τ) and “C(τ), and let O(τ) be their common orthogonal

in H3. Since C(τ) and “C(τ) vary holomorphically in τ , so does O(τ). (This

means that the endpoints of O(τ) vary holomorphically on ∂H3.) Note that the

endpoints of O(τ) might not belong to the limit set of the group ρτ (π1(S0)).

Let C0(0), C1(0), . . . , Cn+1(0) be the ordered collection of geodesics from

C0(R) that O(0) intersects (and in this order) and so that C0(0) = C(0) and

Cn+1(0) = “C(0). The geodesic segment on O(0) between C0(0) and Cn+1(0)

intersects n ≥ 0 other geodesics from C0(R). (Until the end of this section, n

will have the same meaning.) We orient O(0) so that it goes from C0(0) to
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D3

C0
C1

C4

F0

O

D0

N1

D1

F1

D2

C2

C3

Figure 1. The geodesics O, Ci, Ni, Fi, and Di

Cn+1(0). We orient each Ci(0) so that the angle from O(0) to Ci(0) is positive.

(Recall that we fix in advance an orientation on the initial plane H2 ⊂ H3 so

this angle is positive with respect to this orientation of the plane H2.) Then

the oriented geodesics Ci(τ) vary holomorphically in τ .

Let Ni(τ) be the common orthogonal between O(τ) and Ci(τ) that is

oriented so that the imaginary part of the complex distance dNi(τ)(O(τ), Ci(τ))

is positive. Let Di(τ), i = 0, . . . , n be the common orthogonal between Ci(τ)

and Ci+1(τ) that is oriented so that the angle from Di(0) to Ci(0) is positive.

Also, let Fi(τ) be the common orthogonal between O(τ) and Di(τ) for i =

0, . . . , n. We orient Fi(τ) so that the angle from O(0) to Fi(0) is positive.

Observe that F0(τ) = C0(τ) and Fn(τ) = Cn+1(τ).

For simplicity, in the rest of this section we suppress the dependence on τ ;

that is, we write Ci(τ) = Ci, O(τ) = O and so on. However, we still write

Ci(0), O(0), to distinguish the case τ = 0.



1136 J. KAHN and V. MARKOVIC

For Theorem 2.2, we need to estimate the quasisymmetric constant of

the map fτ , when τ belongs to some small, but definite neighbourhood of the

origin in D. In order to do that we want to estimate the derivative (with

respect to τ) d′O(C0, Cn+1) of the complex distance dO(C0, Cn+1) between

any two geodesics C0, Cn+1 ∈ Cτ (R). We will compute an upper bound of

|d′O(C0, Cn+1)| in terms of dO(C0, Cn+1). This will lead to an inductive type

of argument that will finish the proof. We will offer more explanations as we

go along.

2.4. The Kerckhoff-Series-Wolpert type formula. In [12], C. Series has de-

rived the formula for the derivative of the complex translation length of a (not

necessarily simple) closed curve on S0 under the representation ρτ . Using the

same method (word by word) one can obtain the appropriate formula for the

derivative of the complex distance dO(τ)(C0(τ), Cn+1(τ)).

Theorem 2.3. Letting ′ denote the derivative with respect to τ , we have

d′O(C0, Cn+1) =
n∑
i=0

cosh(dFi(O,Di))d
′
Di(Ci, Ci+1)(1)

+
n∑
i=1

cosh(dNi(O,Ci))d
′
Ci(Di−1, Di).

Proof. For each i = 1, . . . , n, consider the skew right-angled hexagon with

sides O,Fi, Di, Ci, Di−1, Fi−1. Since each hexagon varies holomorphically in τ ,

we have the following derivative formula in each hexagon (this is the formula

(7) in [12]):

d′O(Fi−1, Fi) = cosh(dNi(O,Ci))d
′
Ci(Di−1, Di)(2)

+ cosh(dFi−1(O,Di−1))d′Di−1
(Fi−1, Ci)

+ cosh(dFi(O,Di))d
′
Di(Ci, Fi).

The following relations (3), (4), and (5) are direct corollaries of the identities

F0 = C0 and Fn = Cn+1. We have

(3)
n∑
i=1

dO(Fi−1, Fi) = dO(C0, Cn+1).

Also

(4) d′D0
(F0, C1) = d′D0

(C0, C1)

and

(5) d′Dn(Cn, Fn) = d′Dn(Cn, Cn+1).

Also for 1 = 1, . . . , n, we observe the identity

dDi(Ci, Fi) + dDi(Fi, Ci+1) = dDi(Ci, Ci+1).
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Putting all this together and summing up formula (2), for i = 1, . . . , n we

obtain (1). �

Let H be a consistently oriented skew right-angled hexagon with sides Lk,

k ∈ Z, and Lk = Lk+6. Set σ(k) = dLk(Lk−1, Lk+1). Recall the cosine formula

cosh(σ(k)) =
cosh(σ(k + 3))− cosh(σ(k + 1)) cosh(σ(k − 1))

sinh(σ(k + 1)) sinh(σ(k − 1))
.

Assume that σ(2j + 1) = 1
2(R + a2j+1) + iπ, j = 0, 1, 2, and a2j+1 ∈ D. A

hexagon with this property is called a thin hexagon. From the cosine formula

for a skew right-angled hexagon, we have (see also Lemma 5.1 in [1])

(6) σ(2j) = 2e
1
4

[−R+a2j+3−a2j+1−a2j−1] + iπ +O(e−
3R
4 ).

From the pentagon formula, the hyperbolic distance between opposite sides in

the hexagon can be estimated as (see Lemma 5.4 in [1] and Lemma 2.1 in [12])

(7)
R

4
− 10 < d(Lk, Lk+3) <

R

4
+ 10

for R large enough.

Lemma 2.1. Suppose that |dO(C0, Cn+1)| < R
5 . Then for R large enough,

the following estimate holds :

|d′O(C0, Cn+1)| ≤ 20e−
R
4

n∑
i=0

ed(O,Di) +
n

R

Å
max

1≤i≤n
ed(O,Ci)

ã
.

Proof. Let γ be the geodesic segment on O(0) that runs between Cj(0)

and Cj+1(0). Then γ is a lift of a geodesic arc connecting two cuffs in the pair

of pants whose all three cuffs have length R. Since the length of γ is at most
R
5 , we have from (7) that γ connects two different cuffs in this pair of pants

and is freely homotopic to the shortest orthogonal arc between these two cuffs

in this pair of pants. This implies that there exists ‹C ∈ C(R) such that the

hexagon determined by Cj , Cj+1 and ‹C is a thin hexagon. Then Di is a side of

this hexagon since it is the common orthogonal for Ci and Ci+1. Taking into

account that the orientation of Di that comes from this hexagon is opposite

to the one we defined above in terms of O and applying (6), we obtain

(8) dDj (Cj , Cj+1) = 2e
1
4

[−R+ζ̃τ−ζjτ−ζj+1τ ] +O(e−
3R
4 ),

where ζj , ζj+1, ζ̃ ∈ D are the complex numbers associated to the corresponding

C ∈ C0 in Definition 2.2. Differentiating the cosine formula for the skew right-

angled hexagon, we get

|d′Dj (Cj , Cj+1)| < 20e−
R
4

for R large enough. (Here we use |ζC |, |τ | < 1.)



1138 J. KAHN and V. MARKOVIC

On the other hand, dCj (Dj−1, Dj) = 1 +
τηj−1

R , where ηj−1 ∈ D is the

corresponding number. Differentiating this identity gives |d′Cj (Dj−1, Dj)|≤ 1
R .

(We use |ηj−1| < 1.) Combining these estimates with the equality of Theo-

rem 2.3 proves the lemma. �

2.5. Preliminary estimates. The purpose of the next two subsections is to

estimate the two terms on the right-hand side of the inequality of Lemma 2.1

in terms of the complex distance dO(C0, Cn+1). We will show that

|d′O(C0, Cn+1)| ≤ CF (dO(C0, Cn+1)),

where C is a constant and F is the function F (x) = xex. We will obtain this

estimate under some natural assumptions (see Assumption 2.1 below).

Let α, β be two oriented geodesics in H3 such that d(α, β) > 0, and let O

be their common orthogonal (with either orientation). Let q0 = β ∩ O. Let

t ∈ R, and let q : R → β be the parametrization by arc length such that

q(0) = q0. The following trigonometric formula follows directly from the cosh

and sinh rules for right-angled triangles in the hyperbolic plane (the planar

case of this formula was stated in Lemma 2.4.7 in [4]):

(9) sinh2(d(q(t), α)) = sinh2(d(α, β)) cosh2(t) + sinh2(t) sin2(Im[dO(α, β)]).

This yields the following inequality, which will suffice for us:

(10) sinh(d(α, β)) cosh(t) ≤ sinh(d(q(t), α)).

From this we derive

(11) |t| ≤ d(q(t), α)− log d(α, β) for every t ∈ R

and

(12) |t| ≤ log d(q(t), α) + 1− log d(α, β) when d(q(t), α) ≤ 1.

Let γ = γ(τ), τ ∈ D, be an oriented geodesic in H3 that varies continuously

in τ and such that γ(0) belongs to the plane H2 ⊂ H3 that contains the

lamination C0(R). (The common orthogonal O from the previous subsection is

an example of γ but there is no need to restrict ourselves to O in order to prove

the estimates below.) Let C1(0), . . . , Ck(0) be an ordered subset of geodesics

from C0(R) that γ(0) consecutively intersects. (This means that the segment

of γ(0) between Ci(0) and Ci+1(0) does not intersect any other geodesic from

C0(R).) Orient each Ci so that the angle from γ(0) to Ci(0) is positive. Let

Ni be the common orthogonal between γ and Ci, and let zi = Ni ∩ Ci and

z′i = Ni ∩ γ (see Figure 2). Let Di, i = 1, . . . , k be the common orthogonal

between Ci and Ci+1, and let w−i = Di ∩ Ci and w+
i = Di ∩ Ci+1. As long as

the distance between zi and zi+1 is at most R
5 , then (as seen in the previous
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C1(0)
C2(0)

C3(0)

w+
2

w−2

w−1

z1(0)

z3(0)

z2(0)
z0(0)

w−0
w+

0

w+
1

γ(0)

C0(0)

Figure 2. The z’s and the w’s

subsection), for R large enough, we have

(13) dDi(Ci, Ci+1) = (2 + o(1))e−
R
4

+τµ ≤ e−
R
4

+2,

where µ ∈ C and |µ| ≤ 3
4 (see (8)). Then it follows from the definition of Cτ (R)

that

(14) dCi(w
+
i−1, w

−
i ) = 1 + Re

[τη
R

+ j
(R+ τζ)

2

]
for some j ∈ Z, where η = ηC and ζ = ζC are the complex numbers from

the unit disc that correspond to the cuff in C ∈ C0 whose lift is Ci(0). Here

dCi(w
+
i−1, w

−
i ) denotes the signed hyperbolic distance.

Lemma 2.2. Assume that d(zi, zi+1) < e−5 for i = 1, . . . , k − 1. Set

ai = dCi(zi, w
−
i ). Then for R large enough, the following inequalities hold :

(1) ai+1 − ai < 1 + e−1, i = 1, . . . , k − 2;

(2) k < R.
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Proof. Since the distance between each pair zi and zi+1 is at most e−5,

applying (12) and (13) to all pairs α = Ci and β = Ci+1 yields the inequality

(15) d(zi, w
+
i−1), d(zi, w

−
i ) ≤ R

4
− 2

for each i = 1, . . . , k − 1. By the triangle inequality, we have

(16) dCi(w
+
i−1, w

−
i ) ≤ R

2
− 4.

On the other hand, from (14) we obtain

|j|
Ç

1− |τζ|
R

å
≤ 2

R

Ç
dCi(w

+
i−1, w

−
i ) + 1 +

|τη|
R

å
≤ 2

R

Å
R

2
− 4 + 2

ã
.

Since |τ |, |ζ|, |η| < 1 and from (16), we get

|j| ≤
1− 4

R

1− 1
R

,

which shows that j = 0 in (14).

From (15) we have

(17) |ai| <
R

4
.

We write (using the triangle inequality)

ai+1 − ai − 1 ≤ d(w−i , w
+
i ) + d(zi, zi+1) + |d(w+

i , w
−
i+1)− 1|.

By (13) we have

d(w−i , w
+
i ) ≤ e−

R
4

+2.

The assumption of the lemma is d(zi, zi+1) ≤ e−5. It follows from (14) (and

the established fact that in this case j = 0) that

|d(w+
i , w

−
i+1)− 1| ≤ |Re

Å
τη

R

ã
| ≤ 1

R
.

Therefore

ai+1 − ai − 1 < e−1,

which proves the first part of the lemma.

From (17) we have−R
4 < a1, which implies that ak−1 > (k−1)(1−e−1)−R

4 .

Again from (17) we have ak−1 <
R
4 , which proves

k <
R

2(1− e−1)
+ 1 < R. �

The following lemma is a corollary of the previous one.

Lemma 2.3. Let γ be a geodesic segment in H2 that is transverse to the

lamination C0(R). For R large enough, the number of geodesics from C0(R)

that γ intersects is at most (2 +R)e5|γ|.
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Proof. As above, denote by Ci(0), i = 1, . . . , k, the geodesics from C0(R)

that γ intersects. Using the above notation, let j1, . . . , jl ∈ {0, .., k}, be such

that d(zji(0), zji+1(0)) > e−5. Then

l <
|γ|
e−5

= e5|γ|.

By definition, the open segment between zji(0) and zji+1(0) does not intersect

any geodesics from C0(R).

On the other hand, by the previous lemma the number of geodesics from

C0(R) that the subsegment of γ between zji+1(0) and zji+1(0) intersects is at

most R (because the distance between any zi(0) and zi+1(0) in this range

is at most e−5). Since there are at most l such segments, we have that the

total number of geodesics from C0(R) that γ intersects is at most 2l + lR <

(2 +R)e5|γ|. �

2.6. Estimating the derivative |d′O(C0, Cn+1)|. We now combine the nota-

tion of the previous two subsections (and set γ = O). In the following lemmas

we prove estimates for the two terms on the right-hand side in the inequality

of Lemma 2.1, which are independent of R.

We first estimate the second term in the inequality of Lemma 2.1.

Lemma 2.4. We have
n

R

Å
max

1≤i≤n
ed(O,Ci)

ã
≤ 1000d(C0(0), Cn+1(0))

Å
max

1≤i≤n
ed(O,Ci)

ã
,

where n is the number of geodesics that O(0) intersects between C0(0) and

Cn+1(0).

Proof. From Lemma 2.3 we have

n ≤ (2 +R)e5d(C0(0), Cn+1(0)) < 1000Rd(C0(0), Cn+1(0)),

which proves the lemma. �

We now bound the first term in the inequality of Lemma 2.1 under the

following assumption.

Assumption 2.1. Assume that for some τ ∈ D, the following estimates

hold for i = 0, . . . , n+ 1:

d(zi, zi(0)), d(O,Ci) <
1

4
e−5.

We have

Lemma 2.5. Under Assumption 2.1 and for R large enough, we have

20e−
R
4

n+1∑
i=0

ed(O,Di) ≤ 108d(C0(0), Cn+1(0))ed(C0(0),Cn+1(0)).
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Proof. Recall z′i = Ni ∩O. (Note z0 = z′0 and zn+1 = z′n+1 since O is the

common orthogonal between C0 and Cn+1.) Observe that

(18) d(O,Di) ≤ d(z′i, zi) + d(zi, w
−
i ) = d(O,Ci) + |ai| < 1 + |ai|.

It follows from (11) that

|ai| = d(zi, w
−
i ) ≤ d(zi, Ci+1)− log d(Ci, Ci+1).

We observe the estimate d(zi, Ci+1) ≤ d(zi, zi+1). On the other hand, by (13)

we have

dDi(Ci, Ci+1) = (2 + o(1))e−
R
4

+τµ,

so for R large enough (such that |o(1)| < 1) we find that (using the estimate

|τµ| < 1)

d(Ci, Ci+1) ≥ e−
R
4
−1;

that is, − log d(Ci, Ci+1) ≤ R
4 + 1. It follows that

|ai| ≤ d(zi, zi+1) +
R

4
+ 1.

From

(19) |d(zi, zi+1)− d(zi(0), zi+1(0))| ≤ d(zi, zi(0)) + d(zi+1, zi+1(0)) ≤ e−5

2

and d(zi(0), zi+1(0)) ≤ d(C0(0), Cn+1(0)), we obtain

(20) |ai| <
R

4
+ d(C0(0), Cn+1(0)) + 2.

Let j1, . . . , jl ∈ {1, .., n − 1}, be such that d(zji , zji+1) > e−5. (Note that

l = l(τ) depends on τ .) Set j0 = 0 and jl+1 = n. From (19), we have

d(zji(0), zji+1(0)) > e−5

2 for each 1 ≤ i ≤ l. The intervals (zi(0), zi+1(0))

partition the arc between z0(0) and zn+1(0), so we get

(21) l <
d(C0(0), Cn+1(0))

e−5

2

= 2e5d(C0(0), Cn+1(0)).

Let 0 ≤ i ≤ l + 1. For ji + 1 ≤ t < ji+1, we have d(zt, zt+1) ≤ e−5. It

follows from Lemma 2.2 that

1

2
< at+1 − at.

We see that in this interval the sequence at is an increasing sequence. Com-

bining this with (20) and (18), we obtain

ji+1∑
t=ji+1

ed(O,Dt) ≤ 2e
R
4

+d(C0(0),Cn+1(0))+3
∞∑
t=0

e−
t
2(22)

< 200e
R
4

+d(C0(0),Cn+1(0)).
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We have

n+1∑
i=0

ed(O,Di) ≤ (l + 1) max
i=0,...,n+1

ed(O,Di) +
l+1∑
i=0

ji+1∑
t=ji+1

ed(O,Dt).

By (18) and (20) we have

ed(O,Di) ≤ e
R
4

+d(C0(0),Cn+1(0))+2.

Also, by (21) and (22) we have

l+1∑
i=0

ji+1∑
t=ji+1

ed(O,Dt) ≤
Ä
2e5d(C0(0), Cn+1(0)) + 1

ä
× 200e

R
4

+d(C0(0),Cn+1(0))

< 106d(C0(0), Cn+1(0))e
R
4

+d(C0(0),Cn+1(0)).

Combining all this gives

20e−
R
4

n+1∑
i=0

ed(O,Di) ≤ 108d(C0(0), Cn+1(0))ed(C0(0),Cn+1(0)). �

The previous two lemmas together with Lemma 2.1 imply

Lemma 2.6. Under Assumption 2.1 and assuming that d(C0, Cn+1) < R
5 ,

for R large enough we have

|d′O(C0, Cn+1)| < 109d(C0(0), Cn+1(0))ed(C0(0),Cn+1(0)).

Proof. By Lemma 2.1 the estimate

|d′O(C0, Cn+1)| ≤ 20e−
R
4

n∑
i=0

ed(O,Di) +
n

R

Å
max

1≤i≤n
ed(O,Ci)

ã
holds for R large enough. (Recall that n is the number of geodesics that O(0)

intersects between C0(0) and Cn+1(0).) By Lemma 2.4 we have

n

R

Å
max

1≤i≤n
ed(O,Ci)

ã
≤ 1000d(C0(0), Cn+1(0))

Å
max

1≤i≤n
ed(O,Ci)

ã
.

By Assumption 2.1 we have that

d(O,Ci) ≤
1

4
e−5

for every 0 ≤ i ≤ n+ 1, so we obtain

n

R

Å
max

1≤i≤n
ed(O,Ci)

ã
≤ 3000d(C0(0), Cn+1(0)).

On the other hand, by Lemma 2.5 we have

20e−
R
4

n+1∑
i=0

ed(O,Di) ≤ 108d(C0(0), Cn+1(0))ed(C0(0),Cn+1(0)).

Putting the above estimates together proves the lemma. �
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2.7. The family of surfaces S(R). We will consider geodesic laminations

on a closed hyperbolic surface, and on its universal cover, the hyperbolic plane,

which we will identify with the unit disk. By recording the endpoints of the

leaves of a lamination of the unit disk, we can think of the lamination as a

symmetric subset of ∂D× ∂D, and by adding the diagonal, we obtain a closed

subset of ∂D × ∂D. The Hausdorff topology on such closed subsets will give

us what we will call the Hausdorff topology on geodesic laminations of the

unit disk.

Definition 2.3. Let R > 1, and let P (R) be the pair of pants whose all

three cuffs have the length R. We define the surface S(R) to be the genus two

surface that is obtained by gluing two copies of P (R) alongside the cuffs with

the twist parameter equal to +1. (These are the Fenchel-Nielsen coordinates

for S(R).) The surface S(R) can also be obtained by first doubling P (R) and

then applying the right earthquake of length 1, where the lamination that

supports the earthquake is the union of the three cuffs of P (R).

By Orb(R) we denote the quotient orbifold of the surface S(R) (the quo-

tient of S(R) by the group of automorphisms of S(R)). Observe that the

Riemann surface H2/ρ0(π1(S0)) is a regular finite degree cover of the orb-

ifold Orb(R). In particular, there exists a Fuchsian group G(R) such that

Orb(R) = H2/G(R) and that ρ0(π1(S0)) < G(R) is a finite index subgroup.

It is important to point out that the lamination C0(R) is invariant under the

group G(R). In fact, one can define the group G(R) as the group of all ele-

ments of PSL(2,R) that leave invariant the lamination C0(R) ⊂ H2. Observe

that the group G(R) acts transitively on the geodesics from C0(R); that is, the

G(R)-orbit of a geodesic from C0(R) is equal to C0(R).

Although the marked family of surfaces S(R) (marked by its Fenchel-

Nielsen coordinates defined above) tends to ∞ in the Teichmüller space of

genus two surfaces, the unmarked family S(R) stays in some compact set in

the moduli space of genus two surfaces. We prove this fact below.

Lemma 2.7. For R large enough, the length of the shortest closed geodesic

on the surface S(R) is at least e−5.

Proof. Suppose that the length of the shortest closed geodesic on S(R)

is less than e−5, and let γ be a lift of this geodesic to H2. (This geodesic is

transverse to the lamination C0(R) because otherwise γ ∈ C0(R), which implies

that the length of the shortest closed geodesic on S(R) is equal to R.) Then

by Lemma 2.2 every subsegment of γ can intersect at most R geodesics from

C0(R), which means that γ intersects at most R geodesics from C0(R). This

is impossible since γ is a lift of a closed geodesic that is transverse to C0(R)
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so it has to intersect infinitely many geodesics from C0(R). This proves the

lemma. �

The conclusion is that the family of (unmarked) Riemann surfaces S(R)

stays in some compact set in the moduli space of genus two surfaces. One

can describe the accumulation set of the family S(R) in the moduli space as

follows. Let P be a pair of pants that is decomposed into two ideal triangles

so that all three shears between these two ideal triangles are equal to 1. Then

all three cuffs have the length equal to 2. Let St, t ∈ [0, 1] be the genus two

Riemann surface that is obtained by gluing one copy of P onto another copy

of P (along the three cuffs) and twisting by +2t along each cuff. The “circle”

of surfaces St is the accumulation set of S(R) when R → ∞. Note that the

edges of the ideal triangles that appear in the pants P are the limits of the (R

long) cuffs from the pairs of pants P (R).

Then we have the induced circle of orbifolds Orbt. Let Gt be a circle of

Fuchsian groups such that Orbt = H2/Gt. By C0,t we denote the lamination in

H2 that is the lift of the corresponding ideal triangulation on St. Then up to a

conjugation by elements of PSL(2,R), the circle of groups Gt is the accumu-

lation set of the groups G(R) when R→∞, and the circle of laminations C0,t

is the accumulation set of the laminations C0(R). We observe that the group

Gt acts transitively on C0,t.

2.8. Quasisymmetric maps and hyperbolic geometry. In this subsection we

state and prove a few preparatory statements about quasisymmetric maps and

the complex distances between geodesics in H3, culminating in Theorem 2.5.

Definition 2.4. We say that a geodesic lamination λ on H2 is nonelemen-

tary if neither of the following holds:

(1) There exists z ∈ ∂H2 that is an endpoint of every leaf of λ.

(2) There exists a geodesic O ⊂ H2 that is orthogonal to every leaf of λ.

Of course, λ has at least three elements if λ is nonelementary. Moreover, if

λ is nonelementary, then there is a sublamination λ′ ⊂ λ such that λ′ contains

exactly three geodesics and such that λ′ is nonelementary.

Let λ be a geodesic lamination, all of whose leaves have disjoint closures.

By ∂λ we denote the union of the endpoints of leaves from λ. We let ιλ : ∂λ→
∂λ be the involution such that ιλ exchanges the two points of ∂α for every leaf

α ∈ λ.

We say that a quasisymmetric map g : ∂H2 → ∂H3 is K-quasisymmetric

if for every 4 points on ∂H2 with cross ratio equal to −1, the cross ratio of the

image four points is within logK hyperbolic distance of −1 for the hyperbolic

metric on C \ {0, 1,∞}. (Observe that a map is K-quasisymmetric if and only

if it has a K ′-quasiconformal extension to ∂H3 for some K ′ > 1.)
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If α and β are oriented geodesics in H3 by d(α, β), we denote their unsigned

complex distance.

Lemma 2.8. Suppose that λ is nonelementary and f : ∂λ→ ∂H3 is such

that

d(f(α), f(β)) = d(α, β)

for all α, β ∈ λ. Then there is a unique Möbius transformation T such that

either

(1) T = f on ∂λ, or

(2) T = f ◦ ιλ on ∂λ.

The second case can only occur when all the leaves of λ have disjoint

closures. We will prove two special cases of Lemma 2.8 before we prove the

lemma.

If the endpoints of α are x and y and α is oriented from x to y, then we

write ∂α = (x, y). The following lemma is elementary.

Lemma 2.9. For every d ∈ C/2πiZ/Z2, with d 6= 0, there exists a unique

s ∈ C/2πiZ such that for two oriented geodesics α and β we have d(α, β) = d

if and only if ∂β = (x, y) and y = Ts,α(x), where Ts,α is the translation by s

along α.

Proposition 2.1. Suppose that α0, α1, α2 are oriented geodesics in H3

for which d(αi, αj) 6= 0 for i 6= j, and suppose that α0, α1, α2 do not have a

common orthogonal. Suppose α′0, α
′
1, α
′
2 are such that d(αi, αj) = d(α′i, α

′
j).

Then we can find a unique T ∈ PSL(2,C) that satisfies one of the two condi-

tions

(1) T (αi) = α′i, i = 0, 1, 2;

(2) T (αi) = −α′i, i = 0, 1, 2, where −α′i is α′i with the orientation reversed.

Proof. Given αi and α′i satisfying the hypotheses of the proposition, we

can assume that αi = α′i for i = 0, 1. Let di = d(αi, α2), and let Ti = Tdi,αi as

in Lemma 2.9. Then by Lemma 2.9, for any β for which d(αi, β) = di, we have

Ti(x) = y where ∂β = (x, y). Thus (T−1
1 ◦ T0)(x) = x. Since T1 6= T0 (because

α0 6= α1), we see that the equation d(αi, β) = di (in β) has at most as many

solutions as the equation (T−1
1 ◦ T0)(x) = x, x ∈ ∂H2. Therefore d(αi, β) = di

has at most two solutions, and it has at most one solution if T−1
1 ◦ T0 has a

unique fixed point on ∂H2.

On the other hand, we let Q be the Möbius transformation such that

Q(αi) = −αi for i = 0, 1. (Such Q exists since d(αi, αj) 6= 0 for i 6= j.) Let

α̂2 = −Q(α2). Then d(αi, α̂2) = d(αi, α2) for i = 0, 1. Therefore α̂2 6= α2 since

α0, α1 and α2 do not have a common orthogonal. We conclude that α′2 = α2

or α′2 = α̂2. �
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Proposition 2.2. Suppose that distinct geodesics α0 and α1 in H2 have

a common endpoint x ∈ ∂H2, and let β be another geodesic in H2 such that x

is not an endpoint of β. Set E = ∂α0 ∪ ∂α1 ∪ ∂β. Let f : E → ∂H3 be such

that d(f(αi), f(β)) = d(αi, β), i = 0, 1. Then there exists a unique Möbius

transformation T such that f = T on E.

Proof. We can assume that the restriction of f to ∂α0∪∂α1 is the identity.

If ∂β ⊂ ∂α0 ∪ ∂α1, then |E| = 3 and we are finished. If ∂β ∩ ∂α0 = {y} for

some y, then we can write ∂β = (y, z) (or (z, y)), and then ∂f(β) = (y, z′) (or

respectively (z′, y)). But then z = z′ because d(f(α1), f(β)) = d(α1, β) (here

we use Lemma 2.9); likewise if ∂β ∩ ∂α1 6= ∅.
If ∂β ∩ (∂α0 ∪ ∂α1) = ∅, then by Lemma 2.9, ∂β = (y, z) and ∂f(β) =

(y′, z′) and z = T0(y) = T1(y), z′ = T0(y′) = T1(y′), where Ti translates along

αi, and then T−1
0 ◦ T1 has x as one of its fixed points, so the other must be y,

so y′ = y, so f(β) = β. �

Now we are ready to prove Lemma 2.8.

Proof. First suppose that λ has two distinct leaves α, β with a common

endpoint x. Then there is a unique T ∈ PSL(2,C) for which T = f on

∂α∪∂β. By Proposition 2.2 we have T (γ) = f(γ), whenever γ ∈ λ and x does

not belong to ∂γ. Because λ is nonelementary, we can find at least one such

γ.

Now suppose δ ∈ λ and x ∈ ∂δ. We want to show T (δ) = f(δ). We

can find T ′ ∈ PSL(2,C) such that T ′ = f on ∂α ∪ ∂δ. By Proposition 2.2,

T ′(γ) = f(γ), so T and T ′ agree on ∂α ∪ ∂δ, so T = T ′, so f(δ) = T (δ), and

we are done.

Now suppose that any two distinct leaves of λ have disjoint closures. Then

we can find three leaves αi, i = 0, 1, 2, with no common orthogonal (because

λ is nonelementary). By Proposition 2.1 we can find a unique T ∈ PSL(2,C)

such that T = f on E =
⋃2
i=0 ∂αi, or T = f ◦ιλ on E. In the latter case we can

replace f with f ◦ ιλ. In either case we can assume that T is not the identity.

Now given any β ∈ λ, we want to show that f(β) = β. For i = 1, 2, let

Qi be the 180 degree rotation around Oi, the common orthogonal to α0 and

αi. If f(β) 6= β, then f(β) = −Qi(β) for i = 1, 2, and so Q−1
0 ◦ Q1 fixes the

endpoints of β. But Q−1
0 ◦Q1 fixes the endpoints of α0, and β 6= α0, so this is

impossible. So f(β) = β for every β, and we are finished. �

We observe that Lemma 2.8 holds even if we do not require the lamination

to be closed.

Definition 2.5. Let λ be a geodesic lamination on H2. An effective radius

for λ is a number M > 0 such that every open hyperbolic disc of radius M in

H2 intersects λ in a (not necessarily closed) nonelementary sublamination.



1148 J. KAHN and V. MARKOVIC

We observe that the condition that the intersection of λ and the open

disc centred at z of radius M is nonelementary is open in both z and λ. The

following proposition follows easily from this observation.

Proposition 2.3. Let Λ be a family of geodesic laminations on H2 such

that

(1) if λ ∈ Λ and g ∈ PSL(2,R), then g(λ) ∈ Λ;

(2) Λ is closed (and hence compact) in the Hausdorff topology on the space

of geodesic laminations modulo PSL(2,R);

(3) if λ ∈ Λ, then λ is nonelementary.

Then we can find M > 0 such that M is an effective radius for every

λ ∈ Λ.

We call such a family a closed invariant family of nonelementary lami-

nations. For any R1 > 0, we let Λ(R1) be the closure of
⋃
R≥R1

C0(R) under

properties 1 and 2 in Proposition 2.3. We observe that taking the Hausdorff

closure just adds the translates of all the C0,t under PSL(2,R), where C0,t was

defined in the previous subsection. Hence Λ(R1) is a closed invariant family of

nonelementary laminations.

We say that a lamination λ is unflippable if it has two distinct leaves with

a common endpoint or if the involution ιλ is not continuous. The latter oc-

curs if and only if there is a point of ∂λ that is the limit of a sequence leaves

of λ whose diameter go to zero (or λ has two distinct leaves with a common

endpoint). This will always occur when λ is invariant by a nonelementary

Fuchsian group G and λ has a recurrent (or closed) leaf in H2/G. In partic-

ular, a nonempty lamination λ that is invariant under a cocompact group is

unflippable (and nonelementary). We conclude that all of the laminations in

Λ(R1) are unflippable.

We can now prove that a quasisymmetric map that locally preserves com-

plex distances on an unflippable lamination is Möbius.

Proposition 2.4. Suppose that λ is an unflippable nonelementary lami-

nation. Suppose that M is an effective radius for λ and f : ∂H2 → ∂H3 is a

continuous embedding such that d(f(α), f(β)) = d(α, β), for all α, β ∈ λ, such

that d(α, β) ≤ 3M . Then f is the restriction of a Möbius transformation.

Proof. For z ∈ H2, let Dz be the open disc of radius M centred at z,

and let λz be the leaves of λ that meet Dz. Because M is an effective radius,

λz is nonelementary. Therefore there is a unique Tz ∈ PSL(2,C) such that

either Tz = f on ∂λz or Tz = f ◦ ιλ on ∂λz. Now if d(z, z′) ≤ M , then

d(f(α), f(β)) = d(α, β) for all α, β ∈ λz ∪ λz′ , and λz ∪ λz′ is nonelementary,

so Tz = Tz′ . We conclude that there is one T ∈ PSL(2,C) such that T = f or
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T = f ◦ ιλ on all of ∂λ. But in the latter case, ιλ would be continuous, which

is impossible since λ is unflippable. �

We now characterize the sequences of K-quasiconformal maps whose di-

latations do not go to 1.

Lemma 2.10. Let K1 > K > 1. Suppose that for m ∈ N, fm : ∂H2 → ∂H3

is K1-quasisymmetric but not K-quasisymmetric. Then, after passing to a

subsequence if necessary, we have that there exist hm, qm ∈ PSL(2,C) such

that qm ◦ fm ◦ hm → f∞ : ∂H2 → ∂H3 is a K1-quasisymmetric map and f∞ is

not a restriction of a Möbius transformation on ∂H2.

Proof. Fix a, b, c, d ∈ ∂H2 such that the cross ratio of these four points is

equal to 1. Since fm is not K-quasisymmetric, there exist points am, bm, cm, dm
∈ ∂H2 whose cross ratio is equal to one and such that the cross ratio of the

points fm(am), fm(bm), fm(cm), fm(dm) ∈ ∂H3 stays outside some closed disc

U centred at the point 1 ∈ C for every m. We let hm be the Möbius transfor-

mation that maps a, b, c, d to am, bm, cm, dm. We then choose qm ∈ PSL(2,C)

such that qm ◦ fm ◦ hm fixes the points a, b, c. Then for each m, the map

qm ◦ fm ◦ hm is K1-quasisymmetric and it fixes the points a, b, c.

The standard normal family argument states that given L > 1, a sequence

of L-quasisymmetric maps that all fix the same three distinct points, converges

uniformly to a L-quasisymmetric map (after passing onto a subsequence if

necessary). Therefore, we have qm ◦ fm ◦ hm → f∞. Moreover the cross ratio

of the points f∞(a), f∞(b), f∞(c), f∞(d) lies outside the disc U , and so we

conclude that f∞ is not a Möbius transformation on ∂H2. �

We can now conclude the constant of quasisymmetry for f is close to 1

when f changes the complex distance of neighbouring geodesics a sufficiently

small amount.

Theorem 2.4. Let Λ be a closed invariant family of unflippable nonele-

mentary laminations, and let K1≥K>1. Then there exist δ=δ(K1,K,Λ)>0

and T = T (Λ) such that the following holds. If λ ∈ Λ and f : ∂H2 → ∂H3 is a

K1-quasisymmetric map, and

|d(f(α), f(β))− d(α, β)| ≤ δ

for all α, β ∈ λ such that d(α, β) ≤ T , then f is K-quasisymmetric.

Proof. By Proposition 2.3, we can find M = M(Λ) > 0 such that M is

an effective radius for every λ ∈ Λ. We let T = 3M . Suppose that there is no

good δ. Then we can find λm ∈ Λ, fm (for m ∈ N) such that

|d(f(α), f(β))− d(α, β)| → 0,m→∞,
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uniformly for all α, β ∈ λm for which d(α, β) ≤ T , but for which f is not

K-quasisymmetric. Passing to a subsequence and applying Lemma 2.10, we

obtain λm → λ∞ ∈ Λ and fm → f∞ : ∂H2 → ∂H3 such that f∞ is a K1-

quasisymmetric map that is not a Möbius transformation on ∂H2. Moreover

d(f∞(α), f∞(β)) = d(α, β) for all α, β ∈ λ∞ with d(α, β) ≤ T = 3M . Then

by Proposition 2.4, f∞ is a Möbius transformation, a contradiction. �

We can now derive a corollary, which is our object for this section.

Theorem 2.5. Let K1 ≥ K > 1, and let R1 = 10. There exists δ1 =

δ1(K,K1) > 0 and a universal constant T1 such that the following holds. Sup-

pose that R ≥ R1, f : ∂H2 → ∂H3 is a K1-quasisymmetric map, and

|d(f(α), f(β))− d(α, β)| ≤ δ1

for all α, β ∈ C0(R) such that d(α, β) ≤ T1. Then f is K-quasisymmetric.

This follows immediately from Theorem 2.4, because Λ(R1) is a closed

invariant family of unflippable noninvariant laminations. Observe that T1 =

3M1 is a universal constant, whereM1 is the effective radius of every lamination

in Λ(R1).

2.9. Proof of Theorem 2.2. In this section we will verify that Assump-

tion 2.1 holds when the quasisymmetry constant for fτ is close to 1. This

will permit us, thanks to Lemma 2.6, to verify the hypotheses of Theorem 2.5

and thereby improve the quasisymmetry constant for fτ . We thus obtain an

inductive argument for Theorem 2.2.

This lemma is an abstraction of its corollary, Corollary 2.1, where A,B,C

will be C0(0), Ci(0), Cn+1(0).

Lemma 2.11. For all δ2, T1 > 0 we can find K > 1 such that if

(1) A,B,C are oriented geodesics in H2, d(A,C) > 0, and B separates A

and C ;

(2) d(A,C) ≤ T1;

(3) O is the common orthogonal for A and C ;

(4) x = A ∩O, y = B ∩O;

(5) f : ∂H2 → ∂H3 is K-quasisymmetric;

(6) ∂A′ = f(∂A), ∂B′ = f(∂B), and ∂C ′ = f(∂C) (taking into account

the order of the endpoints);

(7) O′ is the common orthogonal to A′ and C ′, and x′ = A′ ∩O′;
(8) N is the common orthogonal to O′ and B′, and y′ = N ∩O′;

then d(O′, B′) ≤ δ2 and |dO′(x′, y′)− d(x, y)| ≤ δ2.

Proof. First suppose that d(A,C) is small, say d(A,C) ≤ T2 for some

T2 > 0, and f is 2-quasisymmetric. Then by applying a Möbius transformation
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to the range and domain of f , we can assume that ∂A = ∂A′ = {0,∞} and

1 ∈ ∂O, 1 ∈ ∂O′ (and hence ∂O = ∂O′ = {−1, 1}). Note that while f(0) = 0

and f(∞) =∞, f(1) is not necessarily equal to 1. It follows that ∂C = {c, 1
c},

for c real and small (we can assume c > 0), and ∂C ′ = {c′, 1
c′ }, where c′ is

small and c′ = f(c), 1
c′ = f(1

c ).

We let ∂B = {b0, b1}, where b0,
1
b1
∈ (0, c). Then |f(b0)| < 10|c′| and

|f(b1)| > 1
10 |

1
c′ | because f is 2-quasisymmetric and f fixes 0,∞. Therefore,

by choosing T2 to be small enough we can arrange that d(O′, B′), d(x, y) and

d(x′, y′) are as small as we want, so we conclude that for every δ2 > 0, there

exists T2 > 0 such that if d(A,C) ≤ T2 and f is 2-quasisymmetric, then

d(O′, B′), |d(x, y)− d(x′, y′)| < δ2.

So we need only show that for every δ2 and T1, there exists K > 1 such that

if d(A,C) ∈ [T2, T1], where T2 = T2(δ2), and all other hypotheses hold, then

(23) d(O′, B′), |d(x, y)− d(x′, y′)| < δ2.

Suppose that this statement is false. Then we can find a sequence of

An, Bn, Cn, and fn for which fn is Kn-quasisymmetric, Kn → 1, but for which

(23) does not hold. Then normalizing and passing to a subsequence we obtain

A,B,C in the limit, and fn → id. So A′n → A′ = A, B′n → B′ = B, and

C ′n → C ′ = C. Moreover, because the common orthogonal to two geodesics

varies continuously when the complex distance is nonzero, On → O and O′n →
O′, so d(O′, B′n) → 0 and d(B′n, O) 6= 0. Also N ′n → N , (xn, yn, x

′
n, y
′
n) →

(x, y, x′, y′), and x′ = x, y′ = y, so

|d(x′n, y
′
n)− d(xn, yn)| → 0.

We conclude that (23) holds for large enough n, a contradiction. �

Assume that for some τ ∈ D, the representation ρτ : π1(S0)→ PSL(2,C)

is quasifuchsian, and let fτ : ∂H2 → ∂H3 be the normalised equivariant qua-

sisymmetric map (that conjugates ρ0(π1(S0)) to ρτ (π1(S0))).

Here we show that Assumption 2.1 holds if fτ is sufficiently close to being

conformal.

Corollary 2.1. Given T1 we can find K1 > 1 such that if fτ is K1-

quasisymmetric, then the following holds. Let C0(0), Cn+1(0) be geodesics in

C0(R) such that d(C0(0), Cn+1(0)) ≤ T1, and let Ci(0) ∈ C0(R), i = 1, . . . , n,

denote the intermediate geodesics. Also, O(0), O(τ), zi(0), zi and Ci(τ) are

defined as usual. Then

|d(zi, zi+1)− d(zi(0), zi+1(0))| < e−5

4

and d(O,Ci) ≤ e−5

4 .
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Proof. We apply the previous lemma with δ2 = e−5

16 . Then d(O,Ci) <
e−5

16 .

Furthermore,

|d(z′0, z
′
i)− d(z0(0), zi(0))| < e−5

16
and

|d(z′0, z
′
i+1)− d(z0(0), zi+1(0))| < e−5

16
,

so

|d(z′i, z
′
i+1)− d(zi(0), zi+1(0))| < e−5

8
.

Moreover

d(zi, zi+1) ≤ d(z′i, z
′
i+1) + d(O,Ci) + d(O,Ci+1),

and therefore

|d(zi, zi+1)− d(zi(0), zi+1(0))| < e−5

4
. �

We are now ready to complete the proof of Theorem 2.2. Let R > R1 = 10.

Since the space of quasifuchsian representations of the group π1(S0) is open (in

the space of all representations), there exists 0 < ε1 < 1 so that the disc D(0, ε1)

(of radius ε1 and centred at 0) is the maximal disc such that fτ is K1-quasi-

symmetric on all of D(0, ε1), where K1 is the constant from Corollary 2.1. We

can choose such ε1 to be positive because the map f0 is 1-quasisymmetric and

given any K > 1 we can find an open neighbourhood of 0 in the τ plane such

that in that neighbourhood we have that every fτ is K-quasisymmetric.

By that corollary, Assumption 2.1 holds for fτ for all τ ∈ D(0, ε1). Let

C0(0), Cn+1(0) ∈ C0(R) be such that d(C0(0), C0(n + 1)) ≤ T1, where T1 is

the constant from Theorem 2.5. From Lemma 2.6, for R large enough and for

every τ ∈ D(0, ε1), we have

|d′O(C0, Cn+1)| ≤ 109T1e
T1 .

This yields

(24) |dO(C0, Cn+1)− dO(0)(C0(0), Cn+1(0))| ≤ 109ε1T1e
T1

for every τ ∈ D(0, ε1).

Let 0 < δ1 = δ1(
√
K1,K1) be the corresponding constant from Theo-

rem 2.5. We show

ε1 ≥
δ1

109T1eT1
.

Assume that this is not the case. Then from (24) we have that for every

τ ∈ D(0, ε1), the map fτ is
√
K1-quasisymmetric (and hence for τ ∈ D(0, ε1)).

This implies that fτ isK1-quasisymmetric for every τ ∈ D(0, ε) for some ε > ε1.

But this contradicts the assumption that D(0, ε1) is the maximal disc so that

every fτ is K1-quasisymmetric.
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Set

ε̂ =
δ1

109T1eT1
.

Then for every τ ∈ D(0, ε̂) and for R large enough, the map fτ is K1-quasi-

symmetric.

We prove the other estimate in Theorem 2.2 as follows. First of all, by

the Slodkowski extension theorem (for the statement and proof of this theorem

see [6]), we can extend the maps fτ to quasiconformal maps of the sphere ∂H3

such that the Beltrami dilatation

µτ (z) =
∂fτ
∂fτ

(z)

varies holomorphically in τ for every fixed z ∈ ∂H3. Observe that µ0(z) = 0,

and |µτ (z)| < 1 for every τ and z. (Recall that the absolute value of the

Beltrami dilatation of any quasiconformal map is less than 1.) For a fixed z,

we then apply the Schwartz lemma to the function µτ (z), and this yields the

desired estimate from Theorem 2.2.

3. Surface group representations in π1(M3)

3.1. Labelled collection of oriented skew pants. From now on M3 = H3/G
is a fixed closed hyperbolic three manifold and G a suitable Kleinian group.

By Γ∗ and Γ we denote respectively the collection of oriented and unoriented

closed geodesics in M3. By −γ∗ we denote the opposite orientation of an

oriented geodesic γ∗ ∈ Γ∗.

Let Π0 be a topological pair of pants. Recall (from the beginning of

Section 2) that a pair of pants in a closed hyperbolic three manifold M3 is

an injective homomorphism ρ : π1(Π0)→ π1(M3), up to conjugacy. A pair of

pants in M3 is determined by (and determines) a continuous map f : Π0 →M3,

up to homotopy. Moreover, the representation ρ induces a representation

ρ : π1(Π0)→ PSL(2,C),

up to conjugacy.

Fix an orientation and a base point on Π0. We equip Π0 with an orien-

tation preserving homeomorphism ω : Π0 → Π0 of order three that permutes

the cuffs and let ωi(C), i = 0, 1, 2, denote the oriented cuffs of Π0. We may

assume that the base point of Π0 is fixed under ω. By ω : π1(Π0) → π1(Π0)

we also denote the induced isomorphism of the fundamental group. (Observe

that the homeomorphism ω : Π0 → Π0 has a fixed point that is the base point

for Π0 so the isomorphism of the fundamental group is well defined.) Choose

c ∈ π1(Π0) to be an element in the conjugacy class that corresponds to the

cuff C such that ω−1(c)cω(c) = id.
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Definition 3.1. Let ρ : π1(Π0) → PSL(2,C) be a faithful representation.

We say that ρ is an admissible representation if ρ(ωi(c)) is a loxodromic Möbius

transformation, and

hl(ωi(C)) =
l(ωi(C))

2
,

where l(ωi(C)) is chosen so that −π < Im(l(ωi(C))) ≤ π.

Definition 3.2. Let ρ : π1(Π0) → G be an admissible representation. A

skew pants Π is the conjugacy class Π = [ρ]. The set of all skew pants is

denoted by Π.

For Π ∈ Π, we define R(Π) ∈ Π as follows. Let ρ : π1(Π0) → G be

a representation such that [ρ] = Π, and set ρ(ωi(c)) = Ai ∈ G. Define the

representation ρ1 : π1(Π0)→ G by ρ1(ω−i(c)) = A−1
i . We verify that ρ1 is well

defined, and we let R(Π) = [ρ1]. The mapping R : Π → Π is a fixed point

free involution.

For Π ∈ Π such that Π = [ρ], we let γ∗(Π, ωi(c)) ∈ Γ∗ denote the ori-

ented geodesic that represents the conjugacy class of ρ(ωi(c)). Observe the

identity γ∗(R(Π), ωi(c)) = −γ∗(Π, ω−i(c)). The set of pairs (Π, γ∗), where

γ∗ = γ∗(Π, ωi(c)), for some i = 0, 1, 2, is called the set of marked skew pants

and denoted by Π∗.

There is the induced (fixed point free) involution R : Π∗ → Π∗, given

by R(Π, γ∗(Π, ωi(c))) = (R(Π), γ∗(R(Π), ω−i(c))). Another obvious mapping

rot : Π∗ → Π∗ is given by rot(Π, γ∗(Π, ωi(c))) = (Π, γ∗(Π, ωi+1(c))).

Definition 3.3. Let L be a finite set of labels. We say that a map lab :

L → Π∗ is a legal labeling map if the following holds:

(1) there exists an involution RL : L → L such that R(lab(a)) = lab(RL(a)),

(2) there is a bijection rotL : L → L such that rot(lab(a)) = lab(rotL(a)).

Example. Let NΠ denote the collection of all formal sums of oriented skew

pants from Π over nonnegative integers. We say that W ∈ NΠ is symmetric if

W = n1(Π1 +R(Π1))+n2(Π2 +R(Π2))+ · · ·+nm(Πm+R(Πm)), where ni are

positive integers and Πi ∈ Π. Every symmetric W induces a canonical legal

labeling defined as follows. The corresponding set of labels is L = {(j, k) : j =

1, 2, . . . , 2(n1 +n2 + · · ·+nm); k = 0, 1, 2}. (Observe that the set L has 6(n1 +

· · ·+nm) elements.) Set lab(j, k) = (Πs, γ
∗(Πs, ω

k(c))) if j is odd and if 2(n1 +

· · ·+ ns−1) < j ≤ 2(n1 + · · ·+ ns). Set lab(j, k) = (R(Πs), γ
∗(R(Πs), ω

−k(c)))

if j is even, and 2(n1 + · · ·+ns−1) < j ≤ 2(n1 + · · ·+ns). The bijection RL is

given by RL(j, k) = (j + δ(j), k), where δ(j) = +1 if j is even and δ(j) = −1

if j is odd. The bijection rotL is defined accordingly.
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Definition 3.4. Let σ : L → L be an involution. We say that σ is ad-

missible with respect to a legal labeling lab if the following holds. Let a ∈ L,

and let lab(a) = (Π1, γ
∗) for some Π1 ∈ Π, where γ∗ = γ(Π1, ω

i(c)) for some

i ∈ {0, 1, 2}. Then lab(σ(a)) = (Π2,−γ∗), where Π2 ∈ Π is some other skew

pants.

Observe that every legal labeling has an admissible involution σ : L → L,

given by σ(a) = RL(a).

Suppose that we are given a legal labeling lab : L → Π∗ and an admissible

involution σ : L → L. We construct a closed topological surface S0 (not

necessarily connected) with a pants decomposition C0, and a representation

ρlab,σ : π(S0) → G as follows. Each element of L determines an oriented cuff

in C0. Each element in the orbit space L/ rotL gives a copy of the oriented

topological pair of pants Π0. The pairs of pants are glued according to the

instructions given by σ, and this defines the representation ρlab,σ. One can

check that after we glue the corresponding pairs of pants we construct a closed

surface S0. Moreover, S0 is connected if and only if the action of the group of

bijections 〈RL, rotL, σ〉 is minimal on L (that is L is the smallest invariant set

under the action of this group).

Let a ∈ L. Then (Π, γ∗) = lab(a) and (Π1,−γ∗) = lab(σ(a)) for some

skew pants Π,Π1 ∈ Π. Also γ∗ = γ∗(Π, ωi(c)) and −γ∗ = γ∗(Π1, ω
j(c)). Set

hl(a) = hl(ωi(C)),

where the half-length hl(ωi(C)) is computed for the representation that cor-

responds to the skew pants Π.

It follows from our definition of admissible representations that hl(a) =

hl(σ(a)). Set l(a) = l(ωi(C)). Then l(a) = l(σ(a)) and

hl(a) =
l(a)

2
.

3.2. The unit normal bundle of a closed geodesic. Next, we discuss in more

details the structure of the unit normal bundle N1(γ) of a closed geodesic

γ ⊂M3. (For the readers convenience we will repeat several definitions given

at the beginning of Section 2.) The bundle N1(γ) has an induced differentiable

structure and it is diffeomorphic to a torus. Elements of N1(γ) are pairs (p, v),

where p ∈ γ and v is a unit vector at p that is orthogonal to γ. The disjoint

union of all the bundles is denoted by N1(Γ).

Fix an orientation γ∗ on γ. Consider C as an additive group and for

ζ ∈ C, let Aζ : N1(γ) → N1(γ) be the mapping given by Aζ(p, v) = (p1, v1)

where p1 and v1 are defined as follows. Let γ̃∗ be a lift of γ∗ to H3 and let

(p̃, ṽ) ∈ N1(γ̃) be a lift of (p, v). We may assume that γ̃∗ is the geodesic
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between 0,∞ ∈ ∂H3. Let Aζ ∈ PSL(2,C) be given by Aζ(w) = eζw for

w ∈ ∂H3. Set (p̃1, ṽ1) = Aζ(p̃, ṽ). Then (p̃1, ṽ1) is a lift of (p1, v1).

If A1
ζ : N1(γ) → N1(γ) and A2

ζ : N1(γ) → N1(γ) are the actions that

correspond to different orientations on γ, then on N1(γ) we have A1
ζ = A2

−ζ =

(A2
ζ)
−1, ζ ∈ C. Unless we specify otherwise, by Aζ we denote either of the two

actions.

The group C acts transitively on N1(γ). Let l(γ) be the complex trans-

lation length of γ such that −π < Im(l(γ)) ≤ π. (By definition Re(l(γ)) > 0.)

Then Al(γ) = id on N1(γ). This implies that the map A l(γ)
2

is an involution

which enables us to define the bundle N1(
√
γ) = N1(γ)/A l(γ)

2

. The disjoint

union of all the bundles is denoted by N1(
√

Γ).

The additive group C acts on N1(
√
γ) as well. There is a unique complex

structure on N1(
√
γ) so that the action Aζ is by biholomorphic maps. With

this complex structure, we have

N1(
√
γ) ≡ C/

Ç
l(γ)

2
Z + 2πiZ

å
.

The corresponding Euclidean distance on N1(
√
γ) is denoted by dis. Then for

|ζ| small, we have dis((p, v), (Aζ(p, v))) = |ζ|. There is also the induced map

Aζ : N1(
√

Γ) → N1(
√

Γ), ζ ∈ C, where the restriction of Aζ on each torus

N1(
√
γ) is defined above.

Let (Π, γ∗) ∈ Π∗, and let γ∗k be such that (Π, γ∗k) = rotk(Π, γ∗), k = 1, 2.

Let δ∗k be an oriented geodesic (not necessarily closed) in M3 such that δ∗k is

the common orthogonal of γ∗ and γ∗k and so that a lift of δ∗k is a side in the

corresponding skew right-angled hexagon that determines Π (see Section 2).

The orientation on δ∗k is determined so that the point δ∗k ∩ γ∗k comes after the

point δ∗k ∩ γ∗. Let pk = δ∗k ∩ γ∗, and let vk be the unit vector vk at pk that

has the same direction as δ∗k. Since the pants Π is the conjugacy class of

an admissible representation in sense of Definition 3.1, we observe that A l(γ)
2

exchanges (p1, v1) and (p2, v2), and so the class [(pk, vk)] ∈ N1(
√
γ) does not

depend on k ∈ {1, 2}. Define the map

foot : Π∗ → N1(
√

Γ)

by

footγ(Π) = foot(Π, γ∗) = [(pk, vk)] ∈ N1(γ).

Observe that foot(Π, γ∗) = foot(R(Π, γ∗)).

Let S0 be a topological surface with a pants decomposition C0, and let

ρ : π1(S0)→ G be a representation such that the restriction of ρ on the funda-

mental group of each pair of pants satisfies the assumptions of Definition 3.1.

(Recall that G is the Kleinian group such that M3 ≡ H3/G.) Let Π0
i , i = 1, 2
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be two pairs of pants from the pants decomposition of S0 that both have a

given cuff C ∈ C0 in its boundary. By (Π1, γ
∗) and (Π2,−γ∗) we denote the

corresponding marked pants in Π∗. Let s(C) denote the corresponding reduced

complex Fenchel-Nielsen coordinate for ρ. Let A1
ζ be the action on N1(

√
γ)

that corresponds to the orientation γ∗. Fix ζ0 ∈ C to be such that

A1
ζ0(foot(Π1, γ

∗)) = foot(Π2,−γ∗).

Such ζ0 is uniquely determined up to a translation from the lattice l(γ)
2 Z+2iπZ.

If A2
ζ is the other action, then we have

A2
ζ0(foot(Π2,−γ∗)) = (Π1, γ

∗),

since A1
ζ ◦ A2

ζ = id. That is, the choice of ζ0 does not depend on the choice of

the action Aζ . Then s(C) ∈ C/( l(γ)
2 Z + 2πiZ) and

(25) s(C) = (ζ0 − iπ),

Ç
mod

l(γ)

2
Z + 2πiZ

å
.

The rest of the paper is devoted to proving the following theorem.

Theorem 3.1. There exist constants q > 0 and K > 0 such that for

every ε > 0 and for every R > 0 large enough, the following holds. There

exist a finite set of labels L, a legal labeling lab : L → Π, and an admissible

involution σ : L → L such that for every a ∈ L, we have

|hl(a)− R

2
| < ε,

and
dis(A1+iπ(foot(lab(a))), foot(lab(σ(a)))) ≤ KRe−qR,

where dis is the Euclidean distance on N1(
√
γ).

Remark. The constant q depends on the manifold M3. In fact, it only

depends on the first eigenvalue for the Laplacian on M3.

Given this theorem we can prove Theorem 1.1 as follows. We saw that ev-

ery legal labeling together with an admissible involution yields a representation

ρ(lab, σ) : π1(S0)→ G, where G is the corresponding Kleinian group and S0 is

a closed topological surface. (If S0 is not connected, we pass onto a connected

component.) By the above discussion the reduced complex Fenchel-Nielsen

coordinates (hl(C), s(C)) satisfy the assumptions of Theorem 2.1. (Observe

that KRe−qR = o( 1
R), when R →∞.) Then Theorem 1.1 follows from Theo-

rem 2.1.

3.3. Transport of measure. Let (X, d) be a metric space. By M(X) we

denote the space of positive, finite Borel measures on X with compact support.

For A ⊂ X and δ > 0, let

Nδ(A) = {x ∈ X : there exists a ∈ A such that d(x, a) ≤ δ}
be the δ-neighbourhood of A.
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Definition 3.5. Let µ, ν ∈ M(X) be two measures such that µ(X) =

ν(X), and let δ > 0. Suppose that for every Borel set A ⊂ X, we have

µ(A) ≤ ν(Nδ(A)). Then we say that µ and ν are δ-equivalent measures.

It appears that the definition is asymmetric in µ and ν. But this is not

the case. For any Borel set A ⊂ X, the above definition yields ν(A) ≤ ν(X)−
ν
Ä
Nδ(X \ Nδ(A))

ä
≤ µ(X) − µ(X \ Nδ(A)) = µ(Nδ(A). This shows that the

definition is in fact symmetric in µ and ν.

The following propositions follow from the definition of equivalent mea-

sures.

Proposition 3.1. Suppose that µ and ν are δ-equivalent. Then for any

K > 0, the measures Kµ and Kν are δ-equivalent. If, in addition, we assume

that measures ν and η are δ1-equivalent, then µ and η are (δ + δ1)-equivalent.

Proposition 3.2. Let (T,Λ) be a measure space, and let fi : T → X ,

i = 1, 2, be two maps such that d(f1(t), f2(t)) ≤ δ for almost every t ∈ T . Then

the measures (f1)∗Λ and (f2)∗Λ are δ-equivalent.

In the remainder of this subsection we prove two theorems, each repre-

senting a converse of the previous proposition in a special case. The following

theorem is a converse of Proposition 3.2 in the special case of discrete measures.

Theorem 3.2. Suppose that A and B are finite sets with the same number

of elements and equipped with the standard counting measures ΛA and ΛB
respectively. Suppose that there are maps f : A→ X and g : B → X such that

the measures f∗ΛA and g∗ΛB are δ-equivalent for some δ > 0. Then one can

find a bijection h : A→ B such that d(g(h(a)), f(a)) ≤ δ for every a ∈ A.

Proof. We use the Hall’s marriage theorem, which states the following.

Suppose that Rel ⊂ A×B is a relation. For every Q ⊂ A we let

Rel(Q) = {b ∈ B : there exists a ∈ Q such that (a, b) ∈ Rel}.

If |Rel(Q)| ≥ |Q| for every Q ⊂ A, then there exists an injection h : A → B

such that (a, h(a)) ∈ Rel for every a ∈ A. This is Hall’s marriage theorem.

In the general case of this theorem the sets A and B need not have the same

number of elements. However, in our case they do, so the map h is a bijection.

Define Rel ⊂ A×B by saying that (a, b) ∈ Rel if d(f(a), g(b)) ≤ δ. Then

Rel(Q) = {b ∈ B : there exists a ∈ Q such that d(f(a), g(b)) ≤ δ}

for every Q ⊂ A. Therefore |Rel(Q)| = (g∗ΛB)(Nδ(f(Q))) ≥ (f∗ΛA)(f(Q)) =

|Q|, since f∗ΛA and g∗ΛB are δ-equivalent. This means that the hypothesis

of the Hall’s marriage theorem is satisfied, and one can find the bijection

h : A→ B such that d(g(h(a)), f(a)) ≤ δ. �
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Let a, b ∈ C be two complex numbers such that T (a, b) = C/(aZ+ ibZ) is

a torus. We let z = x + iy denote a point in C. (Sometimes we use (x, y) to

denote a point in R2 ≡ C.)

Let φ be a positive C0 function on T (a, b). As usual, by φ(x, y) dx dy we

denote the corresponding two form on the torus T (a, b). By λφ we denote the

measure on T (a, b) given by

λφ(A) =

∫
A
φ(x, y) dx dy

for any measurable set A. We abbreviate this equation dλφ = φdx dy. By λ

we denote the standard Lebesgue measure on T (a, b); that is, λ = λφ for φ ≡ 1.

In the following lemma we show that any C0 measure that is close to

the Lebesgue measure is obtained by transporting the Lebesgue measure by a

diffeomorphism that is C0 close to the identity.

Lemma 3.1. Let g : R2 → R be a C0 function on C that is well defined

on the quotient T (1, 1) = C/(Z + iZ), and such that

(1) for some 0 < δ < 1
3 , we have

1− δ ≤ g(x, y) ≤ 1 + δ

for all (x, y) ∈ R2;

(2) the following equality holds :∫ 1

0

∫ 1

0
g(x, y) dx dy = 1.

Then we can find a C1 diffeomorphism h : T (1, 1)→ T (1, 1) such that

(1) g(x, y) = Jac(h)(x, y), that is g(x, y) dx dy = h∗(dx dy), where h∗(dx dy)

is the pull-back of the two form dx dy by the diffeomorphism h and Jac(h)

is the Jacobian of h.

(2) The inequality

|h(z)− z| ≤ 4δ

holds for every z = x+ iy ∈ C.

Proof. We define the map h : R2 → R2 by h(x, y) = (h1(x, y), h2(x, y)),

where

h1(x, y) =

∫ x

0

Ç∫ 1

0
g(s, t) dt

å
ds

and

h2(x, y) =

∫ y
0 g(x, t) dt∫ 1
0 g(x, t) dt

.

Since g(x+1, y) = g(x, y+1) = g(x, y), we find that h(x+1, y)−h(x, y) = (1, 0)

and h(x, y+ 1)−h(x, y) = (0, 1), so h descends to a map from T (1, 1) to itself.
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Furthermore, we find that

∂h1

∂x
=

∫ 1

0
g(x, t) dt;

∂h1

∂y
= 0

and
∂h2

∂y
=

g(x, y)∫ 1
0 g(x, t) dt

,

which is sufficient to conclude that

Jac(h)(x, y) = g(x, y).

Therefore, the map h : T (1, 1)→ T (1, 1) is a local diffeomorphism and thus a

covering map of degree n, where

n =

∫
T (1,1)

Jac(x, y) dx dy.

Since Jac(h)(x, y) = g(x, y) and∫
T (1,1)

g(x, y) dx dy = 1,

it follows that n = 1; that is, h is a diffeomorphism.

On the other hand, for x, y ∈ [0, 1],

|h1(x, y)− x| ≤ δx ≤ δ

and

h2(x, y)− y ≤ y(1 + δ)

1− δ
− y ≤ 3δy ≤ 3δ,

since δ < 1
3 , and

y − h2(x, y) ≤ y − y(1− δ)
1 + δ

≤ 2δy ≤ 2δ.

Therefore, |h2(x, y)− y| ≤ 3δ. Combining the estimates for |h1(x, y)− x| and

|h2(x, y)− y|, we find that

|h(z)− z| ≤ |h1(x, y)− x|+ |h2(x, y)− y| ≤ 4δ.

This completes the proof. �

The following theorem is a corollary of the of the previous lemma.

Theorem 3.3. Let µ ∈ M(T (a, b)) be a measure whose Radon-Nikodym

derivative dµ
dλ (z) is a C0 function on the torus T (a, b) such that for some K > 0

and 1
3 > δ > 0, we have µ(T (a, b)) = Kλ(T (a, b)) and

K ≤
∣∣∣∣dµdλ

∣∣∣∣ ≤ K(1 + δ), everywhere on T (a, b).

Then µ is 4δ(|a|+ |b|)-equivalent to the measure Kλ.
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Proof. By µ we also denote the lift of the corresponding measure to the

universal cover C. Then dµ = g1(x, y)dx dy, where g1(x, y) = dµ
dλ (x, y) is the

Radon-Nikodym derivative. The function g1 is C0 on C, and g1 is well defined

on the quotient C/(aZ + biZ) = T (a, b).

Let L : T (1, 1)→ T (a, b) be the standard affine map. Let

g(x, y) =
1

K
(g1 ◦ L)(x, y).

Then g(x, y) satisfies the assumptions of the previous lemma. Let h be the

corresponding diffeomorphism from Lemma 3.1, and let h1 = L ◦ h ◦ L−1.

Then (h1)∗µ = Kλ on T (a, b). Since the affine map L is (|a|+ |b|) bi-Lipschitz

we conclude that

|h1(z)− z| ≤ 4δ(|a|+ |b|)

for every z ∈ C, so µ is 4δ(|a|+ |b|)-equivalent to Kλ. �

3.4. Measures on skew pants and the ∂̂ operator.

Definition 3.6. ByMR0 (Π) we denote the space of positive Borel measures

with finite support on the set of oriented skew pants Π such that the involution

R : Π → Π preserves each measure in MR0 (Π). By M0(N1(
√

Γ)) we denote

the space of positive Borel measures with compact support on the manifold

N1(
√

Γ). (A measure fromM0(N1(
√

Γ)) has a compact support if and only if

its support is contained in at most finitely many tori N1(
√
γ) ⊂ N1(

√
Γ).)

We define the operator

∂̂ :MR0 (Π)→M0(N1(
√

Γ))

as follows. The set Π is a countable set, so every measure from µ ∈ MR0 (Π)

is determined by its value µ(Π) on every Π ∈ Π. Let Π ∈ Π, and let γ∗i ∈
Γ∗, i = 0, 1, 2, denote the corresponding oriented geodesics so that (Π, γ∗i ) ∈
Π∗. Let αΠ

i ∈ M0(N1(
√

Γ)) be the atomic measure supported at the point

foot(Π, γ∗i ) ∈ N1(
√
γi), where the mass of the atom is equal to 1. Let

αΠ =
2∑
i=0

αΠ
i ,

and define

∂̂µ =
∑

Π∈Π

µ(Π)αΠ.

We call this the ∂̂ operator on measures. The total measure of ∂̂µ is three

times the total measure of µ.

Let α ∈ M0(N1(
√

Γ)). Choose γ∗ ∈ Γ∗, and recall the action Aζ :

N1(
√

Γ) → N1(
√

Γ), ζ ∈ C. Let (Aζ)∗α denote the push-forward of the
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measure α. We say that α is δ-symmetric if the measures α and (Aζ)∗α are

δ-equivalent for every ζ ∈ C.

Theorem 3.4. There exists q > 0 and D1, D2 > 0, so that for every

1 ≥ ε > 0 and every R > 0 large enough, there exists a measure µ ∈ MR0 (Π)

with the following properties. If µ(Π) > 0 for some Π ∈ Π, then the half-

lengths hl(ωi(C)) that correspond to the skew pants Π satisfy the inequality∣∣∣∣hl(ωi(C))− R

2

∣∣∣∣ ≤ ε.
There exists a measure β ∈M0(N1(

√
Γ)) such that the measure ∂̂µ and β are

D1e
−R

8 -equivalent and such that for each torus N1(
√
γ), there exists a constant

Kγ ≥ 0 so that

Kγ ≤
∣∣∣∣dβdλ

∣∣∣∣ ≤ Kγ(1 +D2e
−qR), almost everywhere onN1(

√
γ),

where λ is the standard Lebesgue measure on the torus N1(
√
γ) = C/

Ä
l(γ)

2 Z +

2iπZ
ä
.

Remark. This theorem holds in two dimensions as well. That is, in the

statement of the above theorem we can replace a closed hyperbolic three man-

ifold M3 with any hyperbolic closed surface.

We prove this theorem in the next section. But first we prove Theorem 3.1

assuming Theorem 3.4.

Proposition 3.3. There exist q > 0, D > 0, so that for every 1 ≥ ε > 0

and every R > 0 large enough, there exists a measure µ ∈ MR0 (Π) with the

following properties :

(1) µ(Π) is a rational number for every Π ∈ Π.

(2) If µ(Π) > 0 for some Π ∈ Π, then the half-lengths hl(ωi(C)) that corre-

spond to the skew pants Π satisfy the inequality |hl(ωi(C))− R
2 | ≤ ε.

(3) The measures ∂̂µ and (A1+iπ)∗∂̂µ are DRe−qR-equivalent.

Proof. Assume the notation and the conclusions of Theorem 3.4. First

we show that the measures ∂̂µ and (A1+iπ)∗∂̂µ are DRe−qR-equivalent. Let

γ ∈ Γ be a closed geodesic such that β(N1(
√
γ)) > 0; that is, the support of β

has a nonempty intersection with the torus

N1(
√
γ) ≡ C/

Ç
l(γ)

2
Z + 2πiZ

å
.

The Lebesgue measure λ on N1(
√
γ) is invariant under the action Aζ . This,

together with Theorem 3.3, implies that for any ζ ∈ C, the measure (Aζ)∗β
is
Ä
2π +

∣∣∣ l(γ∗)2

∣∣∣äD2e
−qR-equivalent with the measure K ′λ for some K ′ > 0,
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where D2 is from the previous theorem. Since
∣∣∣ l(γ∗)2

∣∣∣ ≤ R
2 + 1, we have that

the measures (Aζ)∗β and K ′λ are C1Re
−qR-equivalent for some C1 > 0.

On the other hand, the measures (Aζ)∗β and (Aζ)∗∂̂µ are D1e
−R

8 -equiva-

lent. From Proposition 3.1 we conclude that the measures (Aζ)∗∂̂µ and K ′λ are

D2(Re−qR + e−
R
8 )-equivalent, for every ζ ∈ C, and for some constant D2 > 0.

Again, since λ is invariant under Aζ and from Proposition 3.1, we conclude

that ∂̂µ is DRe−qR-symmetric for some constant D > 0. (This assumption can

be made without loss of generality.) In particular, we have that the measures

∂̂µ and (A1+iπ)∗∂̂µ are DRe−qR-equivalent.

Both measures ∂̂µ and (A1+iπ)∗∂̂µ are atomic (with finitely many atoms),

so it follows from the definition that the measures ∂̂µ and (A1+iπ)∗∂̂µ are

DRe−qR-equivalent if and only if a finite system of linear inequalities with in-

teger coefficients has a real valued solution. Then the standard rationalization

procedure (see [7, Prop. 2.4] and [3]) implies that this system of equations has a

rational solution, so we may assume that that the measure µ from Theorem 3.4

has rational weights. This proves the proposition. �

3.5. Proof of Theorem 3.1. First we make several observations about an

arbitrary measure ν ∈ MR0 (Π). The measure ν is supported on finitely many

skew pants Π ∈ Π. Moreover, ν(Π) = ν(R(Π)) for every Π ∈ Π. Let Π+

and Π− be disjoint subsets of Π such that Π+ ∪ Π− = Π, and R(Π+) =

Π−. (There are many such decompositions of Π.) Let ν+ and ν− denote the

restrictions of ν on the sets Π+ and Π− respectively. Then ∂̂ν+ = ∂̂ν− and

∂̂ν = 2∂̂ν−. (This follows from the fact that foot(Π, γ∗) = foot(R(Π),−γ∗).)
Therefore, if the measure ∂̂ν is δ-symmetric then so are the measures ∂̂ν+ and

∂̂ν−.

Let µ be the measure from Proposition 3.3. Then µ has rational weights.

We multiply µ by a large enough integer and obtain the measure µ′ such that

the weights µ′(Π) are even numbers, Π ∈ Π. Then ∂̂µ′ and (A1+iπ)∗∂̂µ
′ are

DRe−qR-equivalent. For simplicity, we set µ = µ′.

Since µ is invariant under reflection and the weights are even integers, we

see that µ ∈ NΠ is a R-symmetric formal sum. Let lab : L → Π∗ denote the

corresponding legal labeling (see the example at the beginning of this section).

It remains to define an admissible involution σ : L → L.

Fix γ∗ ∈ Γ∗. Let X+ ⊂ L such that a ∈ X+ if lab(a) = (Π, γ∗), where Π ∈
Π+. DefineX− similarly, and let f+/− : X+/− → Π∗ denote the corresponding

restriction of the labeling map lab on the set X+/−. (Observe that f+ =

R ◦ f− ◦ RL.)

Denote by α+ the restriction of ∂̂µ+ on N1(
√
γ). (Define α− similarly.)

Observe that α+ = α−. Then by the definition of L, the measure α+/− is the

∂̂ of the push-forward of the counting measure on X+/− by the map f+/−.
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Define g : X− → N1(
√
γ) by g = A1+iπ ◦ f−. Then the measure

(A1+iπ)∗α
− is the push-forward of the counting measure on X− by the map

g. Since α+ and (A1+iπ)∗α
− are 2DRe−qR-equivalent, by Theorem 3.2 there

is a bijection h : X+ → X− such that dis(g(h(b)), f+(b)) ≤ 2DRe−qR for any

b ∈ X+. (Recall that dis denotes the Euclidean distance on N1(
√
γ∗).)

We define σ : X+ ∪ X− → X+ ∪ X− by σ(x) = h(x) for x ∈ X+ and

σ(x) = h−1(x) for x ∈ X−. The map σ : (X+ ∪ X−) → (X+ ∪ X−) is an

involution. By varying γ∗ we construct the involution σ : L → L. It follows

from the definitions that σ is admissible and that the pair (lab, σ) satisfies the

assumptions of Theorem 3.1.

4. Measures on skew pants and the frame flow

We start by outlining the construction of the measures from Theorem 3.4.

Fix a sufficiently small number ε > 0, and let r � 0 denote any large enough

real number. Set R = 2(r − log 4
3). We let Πε,R be the set of skew pants Π in

M3 for which |hl(δ)− R
2 | < ε for all δ ∈ ∂Π. In this section we will construct

a measure µ on ΠDε,R (for some universal constant D > 0) and a measure βδ
on each N1(

√
δ) such that for r large enough, we have∣∣∣∣K(δ)

dβδ
dEuclδ

− 1

∣∣∣∣ ≤ e−qr,

and the measures ∂̂µ|N1(
√
δ) and βδ are Ce−

r
4 equivalent, where Euclδ is the

Euclidean measure on N1(
√
δ), the unique probability measure invariant under

C/(2πiZ + l(δ)Z) action.

Let F(H3) denote the set of (unit) 2-frames Fp = (p, u, n), where p ∈ H3

and the unit tangent vectors u and n are orthogonal at p. By gt, t ∈ R, we

denote the frame flow that acts on F(H3) and by Λ the invariant Liouville

measure on F(H3). We then define a bounded nonnegative affinity function

a = aε,r : F(H3) × F(H3) → R with the following properties (for r large

enough):

(1) a(Fp, Fq) = a(Fq, Fp) for every Fp, Fq,∈ F(H3).

(2) a(A(Fp), A(Fq)) = a(Fp, Fq) for every A ∈ PSL(2,C).

(3) If a(Fp, Fq) > 0, and Fp = (p, u, n) and Fq = (q, v,m), then

|d(p, q)− r| < ε,

Θ(n@ q,m) < ε,

Θ(u, v(p, q)) < Ce−
r
4 , Θ(v, v(q, p)) < Ce−

r
4 ,

where Θ(x, y) denotes the unoriented angle between vectors x and y,

and v(p, q) denotes the unit vector at p that is tangent to the geodesic

segment from p and q. Here n@q denotes the parallel transport of n

along the geodesic segment from p (where n is based) to q.
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(4) For every co-compact group G < PSL(2,C), we have∣∣∣∣∣∣∑A∈Ga(Fp, A(Fq))−
1

Λ(F(H3)/G)

∣∣∣∣∣∣ < e−qGr.

The last property will follow from the exponential mixing of the frame

flow on F(H3)/G.

Now let Fp = (p, u, n) and Fq = (q, v,m) be two 2-frames in F(M3) =

F(H3)/G, where M3 is a closed hyperbolic three manifold and G is the corre-

sponding Kleinian group. Let γ be a geodesic segment in M3 between p and

q. We let ‹Fp be an arbitrary lift of Fp to F(H3), and let ‹Fq be the lift of Fq
along γ. We let aγ(Fp, Fq) = a(‹Fp, ‹Fq). By properties (1) and (2) this is well

defined. Moreover, for any Fp, Fq ∈ F(M3),

(26)

∣∣∣∣∣∣∑γ aγ(Fp, Fq)−
1

Λ(F(M3))

∣∣∣∣∣∣ < e−qr

by property (4).

We define ω : F(H3) → F(H3) by ω(p, u, n) = (p, ω(u), n), where ω(u) is

equal to u rotated around n for 2π
3 , using the right-hand rule. Observe that

ω3 is the identity and we let ω−1 = ω. To any frame F we associate the

tripod T = (F, ω(F ), ω2(F )), and likewise to any frame F we associate the

“anti-tripod” T = (F, ω(F ), ω2(F )). We have the similar definitions for frames

in F(M3).

Let θ-graph be the 1-complex comprising three 1-cells (called h0, h1, h2)

each connecting two 0-cells (called p and q). A connected pair of tripods

is a pair of frames Fp = (p, u, n), Fq = (q, v,m) from F(M3), and three

geodesic segments γi, i = 0, 1, 2, that connect p and q in M3. We abbreviate

γ = (γ0, γ1, γ2), and we let

bγ(Tp, Tq) =
2∏
i=0

aγi(ω
i(Fp), ω

i(Fq)).

We say (Tp, Tq, γ) is a well-connected pair of tripods along the triple of segments

γ if bγ(Tp, Tq) > 0.

For any connected pair of tripods (Tp, Tq, γ), there is a continuous map

from the θ-graph to M3 that is obvious up to homotopy (map p to p and

q to q, and hi to γi). If (Tp, Tq, γ) is a well-connected pair of tripods, then

this map will be injective on the fundamental group π1(θ− graph). Moreover,

the resulting pair of skew pants Π has the half-lengths Dε close to R
2 , where

R = 2(r − log 4
3) (then the cuff lengths of the skew pants Π are close to R)

and D is a universal constant. Recall that the collection of skew pants whose

half-lengths are Dε close to R
2 (for some large R and fixed ε) is called ΠDε,R.
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We write Π = π(Tp, Tq, γ), so π maps well-connected pairs of tripods to

pairs of skew pants in ΠDε,R. We define the measure µ̃ on well-connected

tripods by

dµ̃(Tp, Tq, γ) = bγ(Tp, Tq) dλT (Tp, Tq, γ),

where λT (Tp, Tq, γ) is the product of the Liouville measure Λ (for F(M3)) on

the first two terms and the counting measure on the third term. The measure

λT is infinite but aγ(Tp, Tq) has compact support, so µ̃ is finite. We define the

measure µ on ΠDε,R by µ = π∗µ̃. This is the measure from Theorem 3.4.

It remains to construct the measure βδ and show the Ce−
r
4 -equivalence

of βδ and ∂̂µ|N1(
√
δ). To any frame F we associate the bipod B = (F, ω(F )),

and likewise to any frame F we associate the “anti-bipod” B = (F, ω(F )). We

have the similar definitions for frames in F(M3).

We say that (Bp, Bq, γ0, γ1) is a well-connected pair of bipods along the

pair of segments γ0 and γ1 if

aγ0(Fp, Fq)aγ1(ω(Fp), ω(Fq)) > 0.

Then the closed curve γ0∪γ1 is homotopic to a closed geodesic in M3. Given a

closed geodesic δ∈Γ we let Sδ be the set of well-connected bipods (Bp,Bq,γ0,γ1)

such that γ0∪γ1 is homotopic to δ. (Note that Sδ is an open subset of the space

of connected bipods which is the space of quadruples (Bp, Bq, γ0, γ1), where Bp
and Bq are tripods and γ0 and γ1 are geodesic segments in M3 connecting the

points p and q.) The set Sδ of connected bipods carries the natural measure

λB which is the product of the Liouville measures on the first two terms and

the counting measure on the third and fourth.

Remark. One can show that if ε is small in terms of the injectivity radius

of M3, then for two bipods Bp and Bq in F(M3) there exists at most one pair

of segments (γ0, γ1) such that (Bp, Bq, γ0, γ1) is a well-connected pair of bipods

and that γ0 ∪ γ1 is homotopic to δ. However, we do not use this.

Next, we define the action of the torus C/(2πiZ+ l(δ)Z) on Sδ that leaves

the measure λB invariant.

Let Tδ be the open solid torus cover associated to δ (so δ lifts to a closed

geodesic δ̃ in Tδ). Given a pair of well-connected bipods in Sδ, each bipod lifts

in a unique way to a bipod in F(Tδ) such that the pair of the lifted bipods

is well connected in Tδ. We denote by S̃δ the set of such lifts, so S̃δ is in

one-to-one correspondence with Sδ. There is a natural action of the torus

C/(2πiZ+ l(δ)Z) on both N1(δ) (= N1(δ̃)) and on F(Tδ), and hence on S̃δ as

well. Since S̃δ and Sδ are in one-to-one correspondence, we have the induced

action of C/(2πiZ+ l(δ)Z) on Sδ. This action leaves invariant the measure λB
on Sδ.



NEARLY GEODESIC SURFACES 1167

For either choice of hl(δ) there is a natural action of C/(2πiZ + l(δ)Z)

on N1(
√
δ) via C/(2πiZ + hl(δ)Z). We define in Section 4.7 a map fδ : Sδ →

N1(
√
δ) with two important properties. The first one is that fδ is equivariant

with respect to the action of C/(2πiZ + l(δ)Z). The second property is as

follows.

Let Cδ be the set of well-connected tripods (Tp, Tq, γ) for which γ0 ∪ γ1 is

homotopic to δ, and let χ : Cδ→Sδ be the forgetting map, so χ(Tp,Tq,γ0,γ1,γ2)

= (Bp, Bq, γ0, γ1). Then for any pair of well-connected tripods T = (Tp, Tq, γ)

∈ Cδ,

(27) |fδ(χ(T ))− footδ(π(T ))| < Ce−
r
4 ,

where π(T ) is the skew pants defined above. (Recall that the map footδ(Π)

that associates the foot to a pair of marked skew pants (Π, δ), δ ∈ ∂Π, was

defined in Section 3.) In other words, the map fδ predicts feet of the skew

pants π(T ) (just by knowing the pair of well-connected bipods χ(T )) up to an

error of Ce−
r
4 . This Ce−

r
4 comes from property (3) of the affinity function a

defined above.

There are two more natural measures on Sδ. The first is χ∗(µ̃|Cδ). The

second is νδ, defined on Sδ by

dνδ(Bp, Bq, γ0, γ1) = aγ0(Fp, Fq)aγ1(ω(Fp), ω(Fq)) dλB(Fp, Fq, γ0, γ1),

where we recall that λB(Fp, Fq, γ0, γ1) is the product of the Liouville measure

on the first two terms and the counting measure on the last two. The two

measures satisfy the fundamental inequality

(28)

∣∣∣∣ dχ∗(µ̃|Cδ)
dνδ(Bp, Bq, γ0, γ1)

− 1

Λ(F(M3))

∣∣∣∣ < Ce−qr

because the total affinity between ω2(Fp) and ω2(Fq) (summing over all positive

connections γ2) is exponentially close to 1
Λ(F(M3))

by the inequality (26) above.

Moreover, since λB and the product aγ0(Fp, Fq)aγ1(ω(Fp), ω(Fq)) are both

invariant under the action of C/(2πiZ+ l(δ)Z), we see that νδ is also invariant

under the action of C/(2πiZ + l(δ)Z). Therefore (fδ)∗νδ is as well because fδ
is C/(2πiZ + l(δ)Z) equivariant. It follows that (fδ)∗(νδ) = KδEuclδ for some

constant Kδ. Therefore, by (47),

(29)

∣∣∣∣d(fδ)∗(µ̃|Cδ)
dK ′δEuclδ

− 1

∣∣∣∣ < Ce−qr,

where K ′δ = Kδ/Λ(F(M3)).

This measure (fδ)∗(µ̃|Cδ) is our desired measure βδ; it is Ce−
r
4 -equivalent

to the measure ∂̂µ|N1(
√
δ) because the later measure is just (footδ)∗π∗(µ̃|Cδ),

and as we already said

|fδ(χ(T ))− footδ(π(T ))| < Ce−
r
4

for every tripod T in Cδ.
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We define a(Fp, Fq) in Section 4.4, and we prove that the skew pants

π(Tp, Tq, γ) ∈ ΠDε,R (for some universal constant D > 0) when bγ(Tp, Tq) > 0

in Sections 4.5 and 4.6, using preliminaries developed in Sections 4.1 and 4.2.

We define fδ and prove (27) in Section 4.7, using preliminaries developed in

Section 4.3. Finally we prove equation (29) in Section 4.8.

4.1. The Chain Lemma. Let T 1(H3) denote the unit tangent bundle. El-

ements of T 1(H3) are pairs (p, u), where p ∈ H3 and u ∈ T 1
p (H3). For

u, v ∈ T 1
p (H3), we let Θ(u, v) denote the unoriented angle between u and v.

The function Θ takes values in the interval [0, π]. For a, b ∈ H3, we let v(a, b) ∈
T 1
a (H3) denote the unit vector at a that points toward b. If v ∈ T 1

a (H3), then

v@ b ∈ T 1
b (H3) denotes the vector parallel transported to b along the geodesic

segment connecting a and b. By (a, b, c) we denote the hyperbolic triangle with

vertices a, b, c ∈ H3. For two points a, b ∈ H3, we let |ab| = d(a, b).

Proposition 4.1. Let a, b, c ∈ H3 and v ∈ T 1
a (H3). Then the inequalities

Θ(v @ b@ c@ a, v) ≤ Area(abc) ≤ |bc|
hold, where Area(abc) denotes the hyperbolic area of the triangle (a, b, c).

Proof. It follows from the Gauss-Bonnet theorem that the inequality Θ(v@

b @ c @ a, v) ≤ Area(abc) holds for every v ∈ T 1
a (H3). Moreover, if v is in the

plane of the triangle (a, b, c), then the equality Θ(v@ b@ c@ a, v) = Area(abc)

holds.

We now prove that in every hyperbolic triangle the length of a side is

greater than the area of the triangle; that is, we prove |bc| ≥ Area(abc). Con-

sider the geodesic ray that starts at b and that contains a, and let a′ ∈ ∂H2 be

the point where this ray hits the ideal boundary. Then the triangle (a, b, c) is

contained in the triangle (a′, b, c), so it suffices to show that Area(a′, b, c) ≤ |bc|.
Thus we may assume that the vertex a is a point on ∂H2.

Considering the standard model of the upper half-plane H2 = {z ∈ C :

Im(z) > 0}, we can assume that a = ∞ and that the geodesic segment (bc)

lies on the unit circle {z ∈ C : |z| = 1}. By the first part of the proposition we

know that Area(abc) is equal to α, where α is the unoriented angle between

the Euclidean lines lb and lc, where lb contains 0 and b and lc contains 0 and c

(0 ∈ C denotes the origin). Since b and c lie on the unit circle, we have that α is

also equal to the Euclidean length of the arc of the unit circle between b and c.

On the other hand, the hyperbolic length of this arc (which is the geodesic

segment (bc) between b and c in the hyperbolic metric) is strictly larger than α

because the density of the hyperbolic metric is y−1|dz|, which is greater than

1 on the unit circle. We have

Area(abc) ≤ α ≤ |bc|,
which proves the proposition. �
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The following claim will be used in the proof of Theorem 4.1 below.

Claim 4.1. Let a, b, c ∈ H3. Then the inequality

Θ(v(c, a), v(b, a)@c) ≤ Θ(v(a, b), v(a, c))+Area(abc) ≤ Θ(v(a, b), v(a, c))+|bc|

holds.

Proof. We have

Θ(v(c, a), v(b, a) @ c) = Θ(v(c, a) @ a, v(b, a) @ c@ a)

= Θ(−v(a, c), v(b, a) @ c@ a)

≤ Θ(−v(a, c),−v(a, b))+Θ(−v(a, b), v(b, a) @ c@ a)

= Θ(v(a, c), v(a, b))+Θ(−v(a, b) @ b, v(b, a) @ c@ a@ b)

= Θ(v(a, c), v(a, b))+Θ(v(b, a), v(b, a) @ c@ a@ b).

By the previous proposition we have Θ(v(b, a), v(b, a)@c@a@b) ≤ Area(abc) ≤
|bc|, and we are finished. �

The following two propositions are elementary and follow from the cosh

rule for hyperbolic triangles.

Proposition 4.2. Let (a, b, c) be a hyperbolic triangle such that |ab| = l1
and |bc| = η. Then for l1 large and η small enough, the inequality

Θ(v(a, b), v(a, c)) ≤ Dηe−l1

holds for some constant D > 0.

Proposition 4.3. Let (a, b, c) be a hyperbolic triangle, and set |ab| = l1,

|cb| = l2 and |ac| = l. Let η = π −Θ(v(b, a), v(b, c)). Then for l1 and l2 large,

we have

(1) |(l−(l1+l2))+log 2−log(1+cos η)| ≤ De−2 min{l1,l2} for any 0 ≤ η ≤ π
2 ,

(2) |l − (l1 + l2)| ≤ Dη for η small,

(3) Θ(v(a, c), v(a, b)) ≤ Dηe−l1 for η small,

(4) Θ(v(c, a), v(c, b)) ≤ Dηe−l2 for η small

for some constant D > 0.

The following theorem (the “Chain Lemma”) allows us to estimate the

geometry of a segment that is formed from a chain of long segments that nearly

meet at their endpoints. It will be used in Section 4.2 to estimate the complex

length of a closed geodesic formed from a closed chain of such segments.

Theorem 4.1. Suppose that ai, bi ∈ H3, i = 1, . . . , k, and

(1) |aibi| ≥ Q;

(2) |biai+1| ≤ ε;
(3) Θ(v(bi, ai) @ ai+1,−v(ai+1, bi+1)) ≤ ε.
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Suppose also that ni ∈ T 1
ai(H

3) is a vector at ai normal to v(ai, bi) and

Θ(ni @ bi, ni+1 @ bi) ≤ ε.

Then for ε small and Q large and some constant D > 0,∣∣∣∣∣∣|a1bk| −
k∑
i=1

|aibi|

∣∣∣∣∣∣ ≤ kDε,(30)

Θ(v(a1, bk), v(a1, b1))<kDεe−Q and Θ(v(bk, a1), v(bk, ak))<kDεe
−Q,(31)

Θ(v(a1, ak), v(a1, b1)) < 2kDεe−Q if k > 1,(32)

Θ(nk, n1 @ ak) ≤ 5kε.(33)

We can think of the sequence of geodesic segments from ai to bi as

forming an “ε-chain,” and we can think of the broken segment connecting

a1, b1, a2, b2, . . . , ak, bk as the concatenation of the ε-chain, and the geodesic

segment from a1 to bk (or ak) as the geodesic representative of the concate-

nation. Then the Chain Lemma is describing the relationship between the

concatenation of an ε-chain and its geodesic representative, and also estimat-

ing the discrepancy between parallel transport along the concatenation and

transport along its geodesic representative.

Proof. By induction. Suppose that the statement is true for some k ≥ 1.

We need to prove the above inequalities for k + 1.

We first prove inequalities (31) and (32). By the triangle inequality we

have

Θ(v(a1,bk), v(a1,bk+1))≤Θ(v(a1, bk), v(a1,ak+1)) + Θ(v(a1,ak+1), v(a1,bk+1)).

By Proposition 4.2 we have Θ(v(a1, bk), v(a1, ak+1)) ≤ D1εe
−Q, where

D1 is the constant from Proposition 4.2. By (34) and Proposition 4.3 we

have Θ(v(a1, ak+1), v(a1, bk+1)) ≤ 2D2εe
−Q, where D2 is from Proposition 4.3.

Together this shows

Θ(v(a1, bk), v(a1, bk+1)) ≤ Dεe−Q.

Then by the triangle inequality and the induction hypothesis, we have

Θ(v(a1, bk+1),v(a1, b1)) ≤ Θ(v(a1,bk), v(a1,b1)) + Θ(v(a1, bk), v(a1, bk+1))

≤ kDεe−Q +Dεe−Q = (k + 1)Dεe−Q,

which proves the first inequality in (31). The second one follows by symmetry.

Inequality (32) follows from (31) and Proposition 4.2.

Next, we prove inequality (30). By the triangle inequality, we have

Θ(v(a1, ak+1), v(a1, bk)) ≤ Θ(v(a1, ak+1), v(a1, b1)) + Θ(v(a1, b1), v(a1, bk)),
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and then applying (31) and (32), we get

Θ(v(a1, ak+1), v(a1, bk)) ≤ 2(k + 1)Dεe−Q + kDεe−Q < ε

for Q large enough. Then by Claim 4.1, we have

Θ(v(ak+1, a1), v(bk, a1) @ ak+1) ≤ Θ(v(a1, ak+1), v(a1, bk)) + |bkak+1| ≤ 2ε.

Combining this inequality with assumption (3) of the theorem, and by the

triangle inequality we obtain Θ(v(ak+1, a1),−v(ak+1, bk+1)) ≤ 3ε. Therefore

the inequality

(34) π −Θ(v(ak+1, a1), v(ak+1, bk+1)) ≤ 3ε

holds. (Observe that the same inequality holds for all 1 ≤ i ≤ k.)

It follows from Proposition 4.3 and (34) that
∣∣∣|a1ak+1| + |ak+1bk+1| −

|a1bk+1|
∣∣∣ ≤ 3D1ε, where D1 is the constant from Proposition 4.3. Since by the

triangle inequality ∣∣∣|a1bk| − |a1ak+1|
∣∣∣ ≤ ε,

we obtain ∣∣∣|a1bk|+ |ak+1bk+1| − |a1bk+1|
∣∣∣ ≤ Dε.

This proves the induction step for the inequality (30).

It remains to prove (33). Using the induction hypothesis and the as-

sumptions in the statement of this theorem, we obtain the following string of

inequalities:

Θ(nk+1, n1 @ ak+1) = Θ(nk+1 @ bk, n1 @ ak+1 @ bk)

≤ Θ(nk+1 @ bk, nk @ bk) + Θ(nk @ bk, n1 @ ak+1 @ bk)

≤ ε+ Θ(nk @ bk, n1 @ ak+1 @ bk)

≤ ε+ Θ(nk @ bk, n1 @ ak @ bk)

+ Θ(n1 @ ak @ bk, n1 @ ak+1 @ bk)

≤ (5k + 1)ε+ Θ(n1 @ ak @ bk, n1 @ ak+1 @ bk)

≤ (5k + 1)ε+ Θ(n1 @ ak @ bk, n1 @ bk)

+ Θ(n1 @ bk, n1 @ ak+1 @ bk).

By (34) we have

Θ(n1 @ ak @ bk, n1 @ bk) ≤ 3ε,

and by Claim 4.1 we have

Θ(n1 @ bk, n1 @ ak+1 @ bk) ≤ ε.

Combining these estimates gives

Θ(nk+1, n1 @ ak+1) ≤ (5k + 5)ε,

which proves the induction step for (33). �
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4.2. Corollaries of the Chain Lemma. For X ∈ PSL(2,C), we write X(z)

= az+b
cz+d , where ad − bc = 1. The following proposition will provide the bridge

between the Chain Lemma and Lemma 4.1.

Proposition 4.4. Let p, q∈H3 and A∈PSL(2,C) be such that A(p)=q.

Suppose that for every u ∈ T 1
p (H3) we have Θ(A(u), u @ q) ≤ ε. Then for ε

small enough and d(p, q) large enough, and for some constant D > 0, we have

(1) the transformation A is loxodromic;

(2) |l(A)− d(p, q)| ≤ Dε;
(3) if axis(A) denotes the axis of A, then d(p, axis(A)), d(q, axis(A)) ≤ Dε.

Proof. We may assume that the points p and q lie on the geodesic that

connects 0 and∞, such that q is the point with coordinates (0, 0, 1) in H3, and

p is (0, 0, x) for some 0 < x < 1. Let B ∈ PSL(2,C) be given by B(z) = Kz,

where logK = d(p, q). Since K is a positive number, it follows that for every

u ∈ T 1
p (H3), the identity B(u) = u@ q.

Let A = C ◦ B, where C ∈ PSL(2,C) fixes the point (0, 0, 1) ∈ H3. It

follows that for every u ∈ T 1
(0,0,1)(H

3), we have Θ(u,C(u)) ≤ ε. This implies

that for some a, b, c, d ∈ C, ad− bc = 1, we have

C(z) =
az + b

cz + d
,

and |a− 1|, |b|, |c|, |d− 1| ≤ D1ε for some constant D1 > 0. Then

A(z) =
a
√
Kz + b√

K√
Kcz + d√

K

,

and we find

tr(A) = a
√
K +

d√
K
,

where tr(A) denotes the trace of A. Since |a − 1|, |d − 1| ≤ D1ε, we see that

for K large enough, the real part of the trace tr(A) is a positive number > 2,

which shows that A is loxodromic. On the other hand, tr(A) = 2 cosh( l(A)
2 ).

This shows that |l(A)− logK| ≤ D2ε for some constant D2 > 0.

Let z1, z2 ∈ C denote the fixed points of A. We find

z1,2 =
(a− d

K )±
»

(a− d
K )2 + 4bc

K

2c
.

Then for K large enough, we have

|z1| ≤ ε, |z2| ≥
3

ε
.

This shows that d(q, axis(A)) = d((0, 0, 1), axis(A)) ≤ D3ε, for some constant

D3 > 0. The inequality d(p, axis(A)) ≤ D3ε follows by symmetry. �
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The following lemma is a corollary of Theorem 4.1 and the previous propo-

sition. It provides an estimate for the complex length of the closed geodesic

that is freely homotopic to the concatenation of a closed chain of geodesic

segments.

Lemma 4.1. Let ai, bi ∈ H3, i ∈ Z such that

(1) |aibi| ≥ Q;

(2) |biai+1| ≤ ε;
(3) Θ(v(bi, ai) @ ai+1,−v(ai+1, bi+1)) ≤ ε.

Suppose also that ni ∈ T 1
ai(H

3) is a vector at ai normal to v(ai, bi) and

Θ(ni @ bi, ni+1 @ bi) ≤ ε.

Suppose there exists A ∈ PSL(2,C) and k > 0 be such that A(ai) = ai+k,

A(bi) = bi+k, and A(ni) = ni+k, i ∈ Z. Then for ε small and Q large, A is a

loxodromic transformation and

(35)

∣∣∣∣∣∣l(A)−
k∑
i=0

|aibi|

∣∣∣∣∣∣ ≤ kDε
for some constant D>0. Moreover, ai, bi∈NDkε(axis(A)), where NDkε(axis(A))

⊂ H3 is the Dkε neighbourhood of axis(A).

We can think of taking ai, bi ∈ H3/A (or even in some hyperbolic 3-mani-

fold N) and i ∈ Z/kZ. We must then describe the geodesic segments from ai
to bi, which we will use to determine v(bi, ai) and ni @ bi, and so forth. (As

long as the injectivity radius of N is greater than ε, there are unique choices of

geodesic segments from bi to ai+1 with length less than ε.) We then think of

this sequence of segments as a “closed ε-chain” and axis(A)/A as its geodesic

representative.

Proof. Let v0 = v(a0, b0). Observe that A(v0) = v(ak, bk). First we show

that the inequality Θ(A(v0), v0 @ ak) ≤ 4ε holds for Q large enough.

Recall that for Q large enough, the inequality (34) holds (see the proof of

Theorem 4.1); that is, we have

π −Θ(v(ak, a0), v(ak, bk)) ≤ 3ε.

Since Θ(v(ak, a0),−v(ak, bk)) = Θ(v(a0, ak), v(ak, bk) @ a0), we have

Θ(v(a0, ak), v(ak, bk) @ a0) ≤ 3ε.

On the other hand, it follows from (32) that for Q large enough, we have

Θ(v(a0, ak), v(a0, b0)) ≤ ε,
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so by the triangle inequality we obtain

Θ(v(a0, b0), v(ak, bk) @ a0) ≤ Θ(v(a0, ak), v(a0, b0))

+ Θ(v(a0, ak), v(ak, bk) @ a0)

≤ 4ε.

Since v(ak, bk) @ a0 @ ak = v(ak, bk), we find Θ(v(a0, b0), v(ak, bk) @ a0) =

Θ(v0 @ak, A(v0)). Thus we have proved the inequality Θ(v0 @ak, A(v0)) ≤ 4ε.

Next, from (33) we find Θ(nk, n0 @ ak) ≤ 4kε. Since v0 is normal to n0,

and the parallel transport preserves angles, it follows that

(36) Θ(u@ ak, A(u)) ≤ 4kDε, for every vector u ∈ T 1
a0(H3).

On the other hand, the inequality

(37)

∣∣∣∣∣∣d(a0, A(a0))−
k∑
i=0

|aibi|

∣∣∣∣∣∣ ≤ kDε
follows from (30). The lemma now follows from Proposition 4.4. �

4.3. Preliminary propositions. In this subsection we will prove two results

in hyperbolic geometry (Lemmas 4.2 and 4.3) that we will use in Section 4.7.

The following proposition is elementary.

Proposition 4.5. Let α be a geodesic in H3, and let p1, p2 ∈ H3 be two

points such that d(p1, p2) ≤ C and d(pi, α) ≥ s, i = 1, 2, for some constants

C, s > 0. Let ηi be the oriented geodesic that contains pi and is normal to α

and that is oriented from α to pi. Then there exists a constant D > 0, that

depends only on C , such that |dα(η1, η2)| ≤ De−s.

Let α and β be two oriented geodesics in H3 such that d(α, β) > 0, and let

γ be their common orthogonal that is oriented from α to β. We observe that

both α and β are mapped to −α and −β respectively, by a 180 degree rotation

around γ. Let t ∈ R and let q : R→ β be parametrization by arc length such

that q0(0) = β∩γ. Let δ(t) be the geodesic that contains q0(t) and is orthogonal

to α, and is oriented from α to q0(t). The following proposition follows from

the symmetry of α and β around γ. Recall that the complex distance is well

defined (mod 2πi), so we can always choose a complex distance such that its

imaginary part is in the interval (−π, π].

Proposition 4.6. Assume that α 6= β. Then d(q0(t1), α) = d(q0(t2), α)

if and only if |t2| = |t1|. Moreover, if for some t ∈ R, we can choose the

complex distance dα(δ(−t), δ(t)) such that

−π < Im
Ä
dα(δ(−t), δ(t))

ä
< π,
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then

(38) dα(δ(−t), γ) =
1

2
dα(δ(−t), δ(t)).

Remark. Observe that if α and β do not intersect we can always choose

the complex distance dα(δ(−t), δ(t)) such that

−π < Im
Ä
dα(δ(−t), δ(t))

ä
< π.

Assuming the above notation we have the following.

Proposition 4.7. Let s(t) = d(q0(t), α). Suppose that d(α, β) ≤ 1. Then

for s(t) large enough, we have

s(t+ h) = s(t) + h+ o(1) as t→∞,
s(t+ h) = s(t)− h+ o(1) as t→∞

for any |h| ≤ s(t)
2 .

Proof. By the triangle inequality, we have

s(t) = d(q0(t), α)

≤ d(q0(t), q0(0)) + d(q0(0), α)

≤ |t|+ 1

since d(q0(0), α) = d(α, β) ≤ 1. That is, we have

(39) s(t) ≤ |t|+ 1.

It follows from (39) that s(t) large implies that |t| is large.

Recall the following formula (9) from Section 1:

sinh2(d(q0(t), α)) = sinh2(d(α, β)) cosh2(t) + sin2(Im[dγ(α, β)]) sinh2(t).

Combining this with (39), we get

e2s(t) = e2t
Ä

sinh2(d(α, β)) + sin2(Im[dγ(α, β)])
ä

+O(1),

which proves the proposition. �

We can define the foot of the geodesic β on α as the normal to α pointing

along γ. The lemma below estimates how the foot of β on α moves when β is

moved (and β is very close to α).

Let ε ∈ D be a complex number, and let r > 0. Assume that

(40) dγ(α, β) = e−
r
2

+ε.

Then there exists ε0 > 0 such that for every for |ε| < ε0, for every r > 1, and

for every t ∈ R, we can choose the complex distance dα(δ(−t), δ(t)) such that

(41) − π

4
< Im dα(δ(−t), δ(t)) < π

4
.
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Let β1 be another geodesic with a parametrization by arc length q1 : R→
β1. We let γ1 denote the common orthogonal between α and β1 that is oriented

from α to β1. We have

Lemma 4.2. Assume that α and β satisfy (40). Let C > 0, and suppose

that for some t1, t
′
1, t2, t

′
2 ∈ R, where t1 < 0 < t2, we have

(1) d(q1(t′1), q0(t1)), d(q1(t′2), q0(t2)) ≤ C ;

(2) |d(q0(t1), α)− d(q0(t2), α)| ≤ C ;

(3) d(q0(t1), α) > r
4 − C .

Then for |ε| < ε0 and for r large, we have

dα(γ, γ1) ≤ De−
r
4

for some constant D > 0, where D only depends on C .

Proof. The constants Di defined below all depend only on C. From (40)

we have d(α, β) < e−
r
2

+1. Since

d(q1(t′1), q0(t1)), d(q1(t′2), q0(t2)) ≤ C,

it follows that for r large we have d(α, β1) = o(1) and, in particular, we have

d(α, β1)< 1. By the triangle inequality we obtain |d(q1(t′1), α) − d(q1(t′2), α)|
≤ D1. Then it follows from the previous proposition that the inequalities

|t2 + t1|, |t′2 + t′1| ≤ D2 hold. This implies that d(q0(−t1), q1(−t′1)) ≤ D3.

Let δ1(t) be the geodesic that contains q1(t) and is orthogonal to α, and

is oriented from α to q1(t). Now we apply Proposition 4.5 and find that

|dα(δ(−t1), δ1(−t′1))| ≤ D4e
− r

4 .

Similarly

|dα(δ(t1), δ1(t′1))| ≤ D4e
− r

4 .

It follows from (41) and the above two inequalities that for r large, we can

choose the complex distance dα(δ1(−t′1), δ1(t′1)) such that

−π
3
< Im dα(δ1(−t′1), δ1(t′1)) <

π

3
.

In particular, we can choose the complex distances

dα(δ(−t1), δ(t1)) and dα(δ1(−t′1), δ1(t′1))

such that the corresponding imaginary parts belong to the interval (−π, π),

and such that∣∣∣dα(δ(−t1), δ(t1))− dα(δ1(−t′1), δ1(t′1))
∣∣∣ ≤ 2D4e

− r
4 .

The proof now follows from Proposition 4.6 and the triangle inequality. �
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Lemma 4.3. Let A ∈ PSL(2,C) be a loxodromic transformation with the

axis γ. Let p, q ∈ (∂H3 \ endpoints(A)), and denote by α1 the oriented geodesic

from p to q, and by α2 the oriented geodesic from q to A(p). We let δj be the

common orthogonal between γ and αj , oriented from γ to αj . Then

dγ(δ1, δ2) = (−1)j
l(A)

2
+ kπi

for some k ∈ {0, 1} and some j ∈ {1, 2}.

Alternatively, we can think of p and q as points on the ideal boundary of

H3/A, and α1 and α2 as two geodesics from p to q, such that α1 · (α2)−1 is

freely homotopic to the core curve of the solid torus H3/A.

Proof. Let α3 be the oriented geodesic from A(p) to A(q), and let δ3 be

the common orthogonal between γ and α3 (oriented from γ to α3). Consider

the right-angled hexagon H1 with the sides L0 = γ, L1 = δ1, L2 = α1, L3 = q,

L4 = α2, and L5 = δ2. Let H2 be the right-angled hexagon with the sides

L′0 = γ, L′1 = δ3, L′2 = α3, L′3 = A(p), L′4 = α2, and L′5 = δ2. Note that H1

is a degenerate hexagon since the common orthogonal between α1 and α2 has

shrunk to a point on ∂H3. The same holds for H2. We note that the cosh

formula is valid in degenerate right-angled hexagons and every such hexagon

is uniquely determined by the complex lengths of its three alternating sides.

Denote by σk and σ′k the complex lengths of the sides Lk and L′k respec-

tively. By changing the orientations of the sides Lk and L′k if necessary, we can

arrange that σ1 = σ′1, σ5 = σ′5 and σ3 = σ′3 = 0 (see Section 2.2 in [12]). This

shows that the hexagons H1 and H2 are isometric modulo the orientations of

the sides, and this implies the equality σ0 = σ′0. On the other hand, changing

orientations of the sides can change the complex length of a side by changing

its sign and/or adding πi. This proves the lemma. �

4.4. The two-frame bundle and the well-connected frames. Let F(H3) de-

note the two frame bundle over H3. Elements of F(H3) are frames F = (p, u, n),

where p ∈ H3 and u, n ∈ T 1
p (H3) are two orthogonal vectors at p (here T 1(H3)

denotes the unit tangent bundle). The group PSL(2,C) acts naturally on

F(H3). For (pi, ui, ni), i = 1, 2, we define the distance function D on F(H3)

by

D((p1, u1, n1), (p2, u2, n2)) = d(p1, p2) + Θ(u′1, u2) + Θ(n′1, n2),

where u′1, n
′
1 ∈ T 1

p2(H3), are the parallel transports of u1 and v1 along the

geodesic that connects p1 and p2. One can check that D is invariant under

the action of PSL(2,C). (We do not claim that D is a metric on F(H3).) By

Nε(F ) ⊂ F(H3) we denote the ε ball around a frame F ∈ F(H3).

Recall the standard geodesic flow gr : T 1(H3) → T 1(H3), r ∈ R. The

flow action extends naturally on F(H3); that is, the map gr : F(H3)→ F(H3)
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is given by gr(p, u, n) = (p1, u1, n1), where (p1, u1) = gr(p, u) and n1 is the

parallel transport of the vector n along the geodesic that connects p and p1.

The flow gr on F(H3) is called the frame flow. The space F(H3) is equipped

with the Liouville measure Λ, which is invariant under the frame flow and under

the PSL(2,C) action. Locally on F(H3), the measure Λ is the product of the

standard Liouville measure for the geodesic flow and the Lebesgue measure on

the unit circle.

Recall that M3 = H3/G denotes a closed hyperbolic three manifold, and

G from now on denotes an appropriate Kleinian group. We identify the frame

bundle F(M3) with the quotient F(H3)/G. The frame flow acts on F(M3) by

the projection.

It is well known [2] that the frame flow is mixing on closed three manifolds

of variable negative curvature. In the case of constant negative curvature the

frame flow is known to be exponentially mixing. This was proved by Moore

in [10] using representation theory (see also [11]). The proof of the following

theorem follows from the spectral gap theorem for the Laplacian on closed

hyperbolic manifold M3 and Proposition 3.6 in [10]. (We thank Livio Flaminio

and Mark Pollicott for explaining this to us.)

Theorem 4.2. There exists a q > 0 that depends only on M3 such that

the following holds. Let ψ, φ : F(M3) → R be two C1 functions. Then for

every r ∈ R, the inequality∣∣∣∣Λ(F(M3))

∫
F(M3)

(g∗rψ)(x)φ(x) dΛ(x)

−
∫

F(M3)

ψ(x) dΛ(x)

∫
F(M3)

φ(x) dΛ(x)

∣∣∣∣ ≤ Ce−q|r|

holds, where C > 0 only depends on the C1 norm of ψ and φ.

Remark. In fact, one can replace the C1 norm in the above theorem by

the (weaker) Hölder norm (see [10]).

For two functions ψ, φ : F(M3)→ R we set

(ψ, φ) =

∫
F(M3)

ψ(x)φ(x) dΛ(x).

From now on, r � 0 denotes a large positive number that stands for

the flow time of the frame flow. Also let ε > 0 denote a positive number

that is smaller than the injectivity radius of M3. Then the projection map

F(H3)→ F(M3) is injective on every ε ball Nε(F ) ⊂ F(H3).

Fix F0 ∈ F(H3), and let Nε(F0) ⊂ F(H3) denote the ε ball around the

frame F0. Choose a C1 function fε(F0) : F(H3) → R that is positive on
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Nε(F0), supported on Nε(F0), and such that

(42)

∫
F(H3)

fε(F0)(X) dΛ(X) = 1.

For every F ∈ F(H3), we define fε(F ) by pulling back fε(F0) by the cor-

responding element of PSL(2,C). For F ∈ F(M3), the function fε(F ) :

F(M3)→ R is defined accordingly. (It is well defined since every ball Nε(F ) ⊂
F(H3) embeds in F(M3).) Moreover, the equality (42) holds for every fε(F ).

The following definition tells us when two frames in F(H3) are well con-

nected.

Definition 4.1. Let Fj = (pj , uj , nj) ∈ F(H3), j = 1, 2, be two frames,

and set g r
4
(pj , uj , nj) = (p̂j , ûj , n̂j). Define

aH3(F1, F2) =
Ä
g∗r

2
fε(p̂1, û1, n̂1), fε(p̂2,−û2, n̂2)

ä
.

We say that the frames F1 and F2 are (ε, r)-well connected (or just well con-

nected if ε and r are understood) if aH3(F1, F2) > 0.

The preliminary flow by time r
4 to get (p̂j , ûj , n̂j) is used to get the esti-

mates needed for Propositions 4.8 and 4.9.

Definition 4.2. Let Fj = (pj , uj , nj) ∈ F(M3), j = 1, 2, be two frames,

and let γ be a geodesic segment in M3 that connects p1 and p2. Let p̃1 ∈ H3 be a

lift of p1, and let p̃2 denotes the lift of p2 along γ. By ‹Fj = (p̃j , ũj , ñj) ∈ F(H3)

we denote the corresponding lifts. Set aγ(F1, F2) = aH3(‹F1, ‹F2). We say that

the frames F1 and F2 are (ε, r)-well connected (or just well connected if ε and

r are understood) along the segment γ if aγ(F1, F2) > 0.

The function aγ(F1, F2) is the affinity function from the outline above.

Let Fj = (pj , uj , nj)∈F(M3), j= 1, 2, and let g r
4
(pj , uj , nj) = (p′j , u

′
j , n
′
j).

Define

a(F1, F2) =
Ä
g∗− r

2
fε(p

′
1, u
′
1, n
′
1), fε(p

′
2,−u′2, n′2)

ä
.

Then

a(F1, F2) =
∑
γ

aγ(F1, F2),

where γ varies over all geodesic segments in M3 that connect p1 and p2. (Only

finitely many numbers aγ(F1, F2) are nonzero.) One can think of a(F1, F2)

as the total probability that the frames F1 and F2 are well connected, and

aγ(F1, F2) represents the probability that they are well connected along the

segment γ. The following lemma follows from Theorem 4.2.
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Lemma 4.4. Fix ε > 0. Then for r large and any F1, F2 ∈ F(M3), we

have
a(F1, F2) =

1

Λ(F(M3))
(1 +O(e−q r

2 )),

where q > 0 is a constant that depends only on the manifold M3.

4.5. The geometry of well-connected bipods. There is natural order three

homeomorphism ω : F(H3)→ F(H3) given by ω(p, u, n) = (p, ω(u), n), where

ω(u) is the vector in T 1
p (H3); that is, orthogonal to n and such that the ori-

ented angle (measured anticlockwise) between u and ω(u) is 2π
3 . (The plane

containing the vectors u and ω(u) is oriented by the normal vector n.) An

equivalent way of defining ω is by the right-hand rule. The homeomorphism ω

commutes with the PSL(2,C) action and it is well defined on F(M3) by the

projection. The distance function D on F(M3) is invariant under ω.

To every Fp = (p, u, n) ∈ F(M3) we associate the bipod Bp = (Fp, ω(Fp)

and the anti-bipod Bp = (Fp, ω(Fp). (We recall that ω = ω−1.) We have the

following definition.

Definition 4.3. Given two frames Fp = (p, u, n) ∈ F(M3) and Fq =

(q, v,m) ∈ F(M3), let Bp and Bq denote the corresponding bipods. Let

γ = (γ0, γ1), be a pair of geodesic segments in M3, each connecting the points

p and q. We say that the bipods Bp and Bq are (ε, r)-well connected along the

pair of segments γ if the pairs of frames Fp and Fq, and ω(Fp) and ω(Fq), are

(ε, r)-well connected along the segments γ0 and γ1 respectively.

Lemma 4.5. Let Fp = (p, u, n) and Fq = (q, v,m) be two frames in M3.

Suppose that the corresponding bipods Bp and Bq are (ε, r)-well connected along

a pair of geodesic segments γ0 and γ1 that connect p and q in M3; that is, we

assume aγ0(Fp, Fq) > 0 and likewise aγ1(ω(Fp), ω(Fq)) > 0. Then for r large,

the closed curve γ0 ∪ γ1 is homotopic to a closed geodesic δ ∈ Γ, and the

following inequality holds : ∣∣∣l(δ)− 2r + 2 log
4

3

∣∣∣ ≤ Dε
for some constant D > 0. Moreover,

d(p, δ), d(q, δ) ≤ log
√

3 +Dε.

Proof. We define, for i = 0, 1, Fp̂i = (p̂i, ûi, n̂i) by g r
4
(ωi(Fp)). Like-

wise, we let Fq̂i = (q̂i, v̂i, “mi) by g r
4
(ωi(Fq)). Because ωi(Fp) and ωi(Fq)

are well connected, we can find Fp′i ∈ Nε(Fp̂i) and Fq′i ∈ Nε(Fq̂i) such that

g r
2
(p′i, u

′
i, n
′
i) = (q′i,−v′i,m′i). Moreover, there is a homotopy condition that is

satisfied, namely that the concatenation of the ε-chainÄ
g[0, r

4
](pi, ui),g[0, r

2
](p
′
i, u
′
i),g[0, r

4
](q̂i,−v̂i

ä
,

is homotopic rel endpoints to γi.
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q′0

ηp ηq

q′1

v′0
p̂0

q

p′0

q̂1

p̂1

p′1 u′1

ωu

p

ωv

vu

q̂0

Figure 3. The closed ε-chain for two well-connected bipods

We let ηp be the geodesic segment from p̂0 to p̂1 that is homotopic rel

endpoints to

g[0, r
4

](p̂0,−û0) · g[0, r
4

](p, u).

Then n̂0 and n̂1 are parallel along ηp (because they are orthogonal to the plane

of the immersed triangle we have formed), and the angle between ηp and −ûi
(at p̂i) is less than De−

r
4 . Moreover,∣∣∣∣l(ηp)− r

2
+ log

4

3

∣∣∣∣ ≤ De− r4 .
We likewise define ηq and make the same observation.

We refer the reader to Figure 3 for an illustration of our construction.

The segments ηp, g[0, r
2

](p
′
1, u
′
1), η−1

q , g[0, r
2

](q
′
0, v
′
0), form a closed ε-chain,

and we are therefore in a position to apply Lemma 4.1. We take

(a0, b0, a1, b1, a2, b2, a3, b3) = (p̂0, p̂1, p
′
1, q
′
1, q̂1, q̂0, q

′
0, p
′
0)

(and connect ai to bi by the aforementioned segments), and we let (n0,n1,n2,n3)

= (n̂0, n
′
1,m

′
1,m

′
0). We can easily verify that the hypotheses of Lemma 4.1 are

satisfied, and we conclude that γ0 ∪ γ1 is freely homotopic to a closed geodesic

δ, and the following inequalities∣∣∣l(δ)− 2r + 2 log
4

3

∣∣∣ ≤ Dε
and

d(p̂i, δ), d(q̂i, δ) ≤ Dε
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hold. It follows that the projection of p onto ηp is exponentially close to δ, and

therefore

d(p, δ), d(q, δ) ≤ log
√

3 +Dε. �

4.6. The geometry of well-connected tripods. Let P, P1, P2 ∈ F(H3). We

call P the reference frame and P1, P2 the moving frames. Let F1 ∈ F(H3), and

r large. Then the frame F2 = L(F1, P1, P2, r) is defined as follows.

Let ‹F1 = g r
4
(F1). Let “F1 ∈ Nε(‹F1) denote the frame such that for some

M1 ∈ PSL(2,C), we have M1(P ) = ‹F1 and M1(P1) = “F1. Set g r
2
(“F1) =

(q̂,−v̂, “m) and “F2 = (q̂, v̂, “m). Let ‹F2 denote the frame such that for some

M2 ∈ PSL(2,C), we have M2(P ) = ‹F2 and M2(P2) = “F2. Set g− r
4
(‹F2) =

F2 = (q, v,m). Observe that the frame F2 only depends on F1, P1, P2, and r.

Recall from Section 3 that Π0 denotes an oriented topological pair of pants

equipped with a homeomorphism ω0 : Π0 → Π0, of order three that permutes

the cuffs. By ωi0(C), i = 0, 1, 2, we denote the oriented cuffs of Π0. For each

i = 0, 1, 2, we choose ωi0(c) ∈ π1(Π0) to be an element in the conjugacy class

that corresponds to the cuff ωi0(C) such that ω0
0(c)ω1

0(c)ω2
0(c) = id.

Fix a frame P ∈ F(H3), and fix six frames P ji ∈ Nε(P ), i = 0, 1, 2, j = 1, 2,

where Nε(P ) is the ε neighbourhood of P . Denote by (P ji ) the corresponding

six-tuple of frames. We define the representation

ρ(P ji ) : π1(Π0)→ PSL(2,C)

as follows.

Choose a frame F 0
1 = (p, u, n) ∈ H3, and let F2 = L(F 0

1 , P
1
0 , P

2
0 , r). De-

note by F j1 , j = 1, 2, given by ω(F 1
1 ) = L(ω−1(F2), P 2

1 , P
1
1 , r) and ω2(F 2

1 ) =

L(ω−2(F2), P 2
2 , P

1
2 , r). Let Ai ∈ PSL(2,C) given by A0(F 0

1 ) = F 1
1 , A1(F 1

1 ) =

F 2
1 and A2(F 2

1 ) = F 0
1 . Observe A2A1A0 = id. We define ρ(P ji ) = ρ by

ρ(ωi(c)) = Ai. Up to conjugation in PSL(2,C), the representation ρ(P ji ) de-

pends only on the six-tuple (P ji ) and r. Observe that if P ji = P , for all i, j, then

H3/ρ(P ji ) is a planar pair of pants whose all three cuffs have equal length, and

the half-lengths of the cuffs that correspond to this representation are positive

real numbers.

We will use the following lemma to show that the skew pants that corre-

sponds to a pair of well-connected tripods (see the definition below) is indeed

in ΠDε,R for some universal constant D > 0.

Lemma 4.6. Fix a frame P ∈ F(H3), and fix P ji ∈ Nε(P ), i = 0, 1, 2,

j = 1, 2. Set ρ(P ji ) = ρ. Then∣∣∣hl(ωi0(C))− r + log
4

3

∣∣∣ ≤ Dε
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for some constant D > 0, where hl(ωi0(C)) denotes the half-lengths that cor-

respond to the representation ρ. In particular, the transformation ρ(ωi0(c)) is

loxodromic.

Proof. It follows from Lemma 4.5 that∣∣∣l(ωi0(C))− 2r + 2 log
4

3

∣∣∣ ≤ Dε,
where l(ωi0(C)) denotes the cuff length of ρ(ωi0(c)) = Ai.

We have hl(ωi(C)) = l(ωi(C))
2 + kπi for some k ∈ {0, 1}. It remains to

show that k = 0.

Let t ∈ [0, 1], and let P ji (t) be a continuous path in Nε(P ) such that

P ji (1) = P ji , and P ji (0) = P . Set ρt = ρ(P ji (t)). Then for each t, we obtain

the corresponding number k(t) ∈ {0, 1}. Since k(0) = 0 and since k(t) is

continuous, we have k(1) = k = 0. �

To every frame F ∈ F(M3) we associate the tripod T = ωi(F ), i = 0, 1, 2,

and the anti-tripod T = ωi(F ), i = 0, 1, 2, where ω = ω−1.

Definition 4.4. Given two frames Fp = (p, u, n) and Fq = (q, v,m) in

F(M3), let Tp = ωi(Fp) and Tq = ωi(Fq), i = 0, 1, 2, be the corresponding

tripods. Let γ = (γ0, γ1, γ2) be a triple of geodesic segments in M3, each

connecting the points p and q. We say that the pair of tripods Tp and Tq
is well connected along γ if each pair of frames ωi(Fp) and ω−i(Fq) is well

connected along the segment γi.

Next we show that to every pair of well-connected tripods we can naturally

associate a skew pants in the sense of Definition 3.2. Recall from Section 3

that Π0 denotes an oriented topological pair of pants equipped with a home-

omorphism ω0 : Π0 → Π0 of order three that permutes the cuffs. By ωi0(C),

i = 0, 1, 2, we denote the oriented cuffs of Π0. For each i = 0, 1, 2, we choose

ωi0(c) ∈ π1(Π0) to be an element in the conjugacy class that corresponds to

the cuff ωi0(C) such that ω0
0(c)ω1

0(c)ω2
0(c) = id.

Let a, b ∈ Π0 be the fixed points of the homeomorphism ω0. Let α0 ⊂ Π0

be a simple arc that connects a and b, and set ωi0(α0) = αi. The union of two

different arcs αi and αj is a closed curve in Π0 homotopic to a cuff. One can

think of the union of these three segments as the spine of Π0. Moreover, there

is an obvious projection from Π0 to the spine α0 ∪α1 ∪α2, and this projection

is a homotopy equivalence.

Let Tp = (p, ωi(u), n) and Tq = (q, ωi(v),m), i = 0, 1, 2, be two tripods in

F(M3), and let γ = (γ0, γ1, γ2) be a triple of geodesic segments in M3 each

connecting the points p and q. One constructs a map φ from the spine of

Π0 to M3 by letting φ(a) = p, φ(b) = q and by letting φ : αi → γi be any

homeomorphism. By precomposing this map with the projection from Π0 to
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its spine we get a well-defined map φ : Π0 →M3. By ρ(Tp, Tq, γ) : π1(Π0)→ G
we denote the induced representation of the fundamental group of Π0.

In principle, the representation ρ(Tp, Tq, γ) can be trivial. However if the

the tripods Tp and Tq are well connected along γ, we prove below that the

representation ρ(Tp, Tq, γ) is admissible (in sense of Definition 3.1) and that

the conjugacy class [ρ(Tp, Tq, γ)] is a skew pants in terms of Definition 3.2.

Lemma 4.7. Let Tp and Tq be two tripods that are well connected along a

triple of segments γ, and set ρ = ρ(Tp, Tq, γ). Then∣∣∣hl(ωi0(C))− r + log
4

3

∣∣∣ ≤ Dε
for some constant D > 0. In particular, the conjugacy class of transformations

ρ(ωi0(C)) is loxodromic.

Proof. Observe that there exist P ji ∈Nε(P ) such that ρ(P ji ) = ρ(Tp, Tq, γ).

The lemma follows from Lemma 4.6. �

Recall that Πε,R is the set of skew pants whose half-lengths are ε close to
R
2 and that R = 2(r − log 4

3). If we write π(Tp, Tq, γ) = [ρ(Tp, Tq, γ)], then by

Lemma 4.7, π maps well-connected pairs of tripods to pairs of skew pants in

ΠDε,R.

Definition 4.5. Let Tp and Tq be two tripods that are well connected along

a triple of segments γ = (γ0, γ1, γ2). Set

bγ(Tp, Tq) =
i=2∏
i=0

aγi(ω
i(Fp)), (ω

−i(Fq)).

Observe that two tripods Tp and Tq are (ε, r)-well connected along a triple

of geodesic segments γ if and only if bγ(Tp, Tq) > 0.

We define the space of well-connected tripods as the space of all triples

(Tp, Tq, γ) such that the tripods Tp and Tq are well connected along γ. It

follows from the exponential mixing statement that given any two tripods Tp
and Tq, and for r large enough, there will exist at least one triple of segments

γ so that Tp and Tq are well connected along γ. (In fact, it can be shown that

there will be many such segments.)

We define the measure µ̃ on the set of well-connected tripods by

(43) dµ̃(Tp, Tq, γ) = bγ(Tp, Tq) dλT (Tp, Tq, γ),

where λT (Tp, Tq, γ) is the product of the Liouville measure Λ (for F(M3)) on

the first two terms and the counting measure on the third term. The measure

λT is infinite (since there are infinitely many geodesic segments between any

two points p, q ∈ M3), but bγ(Tp, Tq) has compact support (that is, only

finitely many such triples of connections γ are “good”), so µ̃ is finite.
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Recall that R = 2(r − log 4
3) (see the discussion after Lemma 4.7 above).

We define the measure µ on ΠDε,R by µ = π∗µ̃. This is the measure from

Theorem 3.4. It follows from the construction that this measure is invariant

under the involution R : Π → Π (see Section 3 for the definition); that is,

µ ∈MR0 (Π).

In order to prove Theorem 3.4 it remains to construct the corresponding

measure β ∈M0(N1(
√

Γ)) and prove the stated properties.

4.7. The “predicted foot” map fδ . By Fp = (p, u, n) and Fq = (q, v,m)

we continue to denote two frames in F(M3). Suppose the frames ωi(Fp) and

ωi(Fq) are well connected along the geodesic segments γi, i = 0, 1. In our

terminology this means that the bipods Bp and Bq are well connected along

the segments γ0 and γ1. Let δ2 ∈ Γ denote the closed geodesic in M3 freely

homotopic to γ0∪γ1. We now associate the “geometric feet” to (Bp, Bq, γ0, γ1).

We first define the geodesic ray αp : [0,∞) →M3 by αp(0) = p, α′p(0) =

ω(u), and we likewise define the geodesic ray αq : [0,∞) →M3 by αq(0) = q,

α′q(0) = ω(v). Then for t ∈ [0,∞) and i = 0, 1, we let βti be the geodesic

segment homotopic relative endpoints to the piecewise geodesic arc (αp[0, t])
−1·

γi · αq[0, t]). (The endpoints of both segments βt1 and βt2 are αp(t) and αq(t),

and β0
i = γi.) We let β∞i be the limiting geodesic of βti , when t → ∞. For

each t > 0 and i = 0, 1, there is an obvious choice of common orthogonal from

δ2 to βti , which varies continuously with t ∈ [0,∞]. We let f ti ∈ N1(δ2) be the

foot of this common orthogonal at δ2, and we let fi = f∞i .

For a closed geodesic δ ∈ Γ, let Tδ denote the solid torus whose core

curve is δ. As an alternative point of view, we can lift γ0 ∪ γ1 to a closed

curve in the solid torus Tδ2 . (There is a unique such lift to a closed curve

in Tδ2 .) We can then lift Fp and Fq, and also αp[0,∞] and αq[0,∞], where

αp(∞), αq(∞) ∈ ∂Tδ2 . Then we define βti (and β∞i ) as before, and there will

be unique common orthogonals from (the lift of) δ2 to βti , t ∈ [0,∞].

By Lemma 4.3 we see that dδ2(f0, f1) = hl(δ2), so f0 and f1 represent the

same point in N1(
√
δ2). Therefore, we have defined the mapping

(Bp, Bq, γ0, γ1) 7→ fδ2(Bp, Bq, γ0, γ1) ∈ N1(
√
δ2)

on the set of all well-connected bipods such that the γ0 ∪ γ1 is homotopic to

δ2. We think of the vector fδ2(Bp, Bq, γ0, γ1) ∈ N1(
√
δ2) as the geometric foot

of (Bp, Bq, γ0, γ1).

Assume now that we are given a third geodesic segment γ2 between p

and q (also known as the third connection) such that (Tp, Tq, γ) is a pair of

well-connected tripods along the triple of segments γ = (γ0, γ1, γ2). Above,

we have defined the skew pants Π = π(Tp, Tq, γ) such that ∂Π = δ0 + δ1 + δ2,

where δi is homotopic to γi−1 ∪ γi+1 (using the convention γi = γi+3).
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Let hi ∈ N1(δ2), i = 0, 1, denote the foot of the common orthogonal

from δ2 to δi. Recall that since dδ2(h0, h1) = hl(δ2), the projections of h0 and

h1 to N1(
√
δ2) agree and, as before, we let footδ2(Π) ∈ N1(

√
δ2) denote this

projection. We say that footδ2(Π) is the foot of the skew pants Π on the cuff δ2.

We will now verify that on N1(
√
δ2) we have dδ2(f0, h1) = dδ2(f1, h0) =

O(e−
r
4 ). This will imply that the pairs {h0, h1} and {f0, f1} project to vectors

in N1(
√
δ2) that are e−

r
4 close.

Proposition 4.8. With the above notation we have that for r large and

ε small, the inequalities

dis(f0, h1), dis(f1, h0) ≤ De−
r
4

hold for some universal constant D > 0.

Proof. Assume that we are given a skew pants Π = π(Tp, Tq, γ), where

γ = (γ0, γ1, γ2) is a triple of good connections. Recall that δi is a cuff of Π

that is homotopic to γi−1 ∪ γi+1. Then for i = 0, 1, the geodesics δ2 and δi
(or more precisely the appropriate lifts of δ2 and δi to the solid torus cover

corresponding to δ2) satisfy (40).

On the other hand, since γ2 is a good connection, and from the definition

of a good connection between two frames, it follows that for some universal

constant E > 0, the segment β
r
4
0 (considered in the solid torus cover Tδ2) has

the endpoints E close to δ1. Similarly, the segment β
r
4
1 has the endpoints E

close to δ0. The inequality dis(f0, h1), dis(f1, h0) ≤ De−
r
4 now follows from

Lemma 4.2. �

For each skew pants Π = π(Tp, Tq, γ), we let

fδ2(Π) = fδ2(Tp, Tq, γ) = fδ2(Bp, Bq, γ0, γ1).

That is, we have defined the map (Π, δ∗) 7→ fδ(Π, δ) ∈ N1(
√
δ) on the set of all

marked skew pants Π∗Dε,R that contain the geodesic δ in its boundary. Recall

that we have already defined the mapping (Π, δ∗) 7→ footδ(Π, δ) ∈ N1(
√
δ).

Proposition 4.9. Let (π(Tp, Tq, γ), δ∗) ∈ Π∗. Then for r large and ε

small, we have

d(footδ(π(Tp, Tq, γ), fδ(Tp, Tq, γ)) ≤ De−
r
4

for some constant D > 0.

Proof. It follows from Proposition 4.8. �

Given skew pants Π = π(Tp, Tq, γ), the new foot fδ2(Tp, Tq, γ) “predicts”

the location of the old foot footδ2(Tp, Tq, γ) (up to an exponentially small error

in r) without knowing the third connection γ2.
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4.8. The proof of Theorem 3.4. Fix δ ∈ Γ. For a given measure α on

N1(
√

Γ) we let αδ denote the restriction of α on N1(
√
δ). It remains to con-

struct the measure β on N1(
√

Γ) from Theorem 3.4 and estimate the Radon-

Nikodym derivative of βδ with respect to the Euclidean measure on N1(
√
δ).

Recall that (Bp, Bq, γ0, γ1) is a well-connected pair of bipods along the

pair of segments γ0 and γ1 if

aγ0(F1, F2)aγ1(ω(F1), ω(F2)) > 0.

We define the set Sδ by saying that (Fp, Fq, γ0, γ1) ∈ Sδ if (Bp, Bq, γ0, γ1) is

a well-connected pair of bipods along a pair of segments γ0 and γ1 such that

γ0 ∪ γ1 is homotopic to δ. In the previous subsection we have defined the map

fδ : Sδ → N1(
√
δ).

Recall that that the bundle N1(
√
δ) has the natural C/(2πiZ + l(δ)Z)

action by isometries. Now, we define the action of the torus C/(2πiZ + l(δ)Z)

on Sδ so that the map fδ becomes equivariant with respect to the torus actions

on Sδ and N1(
√
δ); that is, for each τ ∈ C/(2πiZ + l(δ)Z), we have

(44) fδ(τ + (Bp, Bq, γ0, γ1)) = τ + fδ(Bp, Bq, γ0, γ1),

where τ +(Bp, Bq, γ0, γ1) denotes the new element of Sδ (obtained after apply-

ing the action by τ to (Bp, Bq, γ0, γ1)).

Let Tδ be the open solid torus cover associated to δ (so δ has a unique

lift to a closed geodesic in Tδ which we denote by δ̂(δ)). Given a pair of well-

connected bipods in Sδ, each bipod lifts in a unique way to a bipod in F(Tδ)
such that the pair of the lifted bipods is well connected in Tδ. We denote by

S̃δ the set of such lifts, so S̃δ is in one-to-one correspondence with Sδ.

We observe that the group of automorphisms of the solid torus Tδ is

isomorphic to the group of isomorphisms of the unit normal bundle N1(δ);

that is, in turn isomorphic to C/(2πiZ + l(δ)Z) which acts on both N1(δ)

and on F2(Tδ) so as to map S̃δ to itself. Since S̃δ and Sδ are in one-to-one

correspondence, we have the induced action of C/(2πiZ + l(δ)Z) on Sδ. The

equivariance (44) follows from the construction.

Let Cδ be the space of well-connected tripods (Tp, Tq, γ), where γ =

(γ0, γ1, γ2), such that γ0 ∪ γ1 is homotopic to δ. Let χ : Cδ → Sδ be the

forgetting map (the term forgetting map refers to forgetting the third connec-

tion γ2), so χ(Tp, Tq, γ0, γ1, γ2) = (Bp, Bq, γ0, γ1).

It follows from Proposition 4.9 that for any pair of well-connected tripods

T = (Tp, Tq, γ) ∈ Cδ, we have

(45) |fδ(χ(T ))− footδ(π(T, γ))| < Ce−
r
4 ,

where π(T, γ) is the corresponding skew pants.



1188 J. KAHN and V. MARKOVIC

Next, we define the measure νδ on Sδ by

dνδ(Bp, Bq, γ0, γ1) = aγ0(Fp, Fq)aγ1(ω(Fp), ω(Fq)) dλB(Bp, Bq, γ0, γ1),

where λB is the measure on Sδ defined as the product of the Liouville measures

on the first two terms and the counting measure on the other two terms.

We make two observations. The first one is that λB is invariant under

the C/(2πiZ + l(δ)Z) action on Sδ. The second one is as follows. Let τ ∈
C/(2πiZ + l(δ)Z). For (Bp, Bq, γ0, γ1) ∈ Sδ, we let

(Bp(τ), Bq(τ), γ0(τ), γ1(τ)) = τ + (Bp, Bq, γ0, γ1)

denote the corresponding element of Sδ. It follows from the definition of the

affinity functions that

aγ0(Fp, Fq)aγ1(ω(Fp), ω(Fq)) = aγ0(τ)(Fp(τ), Fq(τ))aγ1(τ)(ω(Fp(τ)), ω(Fq(τ)))

for any τ . These two observations show that the measure νδ is invariant under

the C/(2πiZ + l(δ)Z) action on Sδ.

Since the map fδ is invariant under the C/(2πiZ+l(δ)Z) actions (see (44)),

it follows from the above two observations that the measure (fδ)∗νδ is invariant

under the C/(2πiZ+ l(δ)Z) action on N1(
√
δ). Therefore, the measure (fδ)∗νδ

is equal to a multiple of the Euclidean measure Euclδ on N1(
√
δ). We write

(46) (fδ)∗νδ = EδEuclδ

for some constant Eδ ≥ 0.

The other natural measure on Sδ is defined as follows. Let χ : Cδ → Sδ
be the forgetting map (defined above). Recall that µ̃ is the measure (defined

by (43) above) on the space of well-connected tripods given by

dµ̃(Tp, Tq, γ) = bγ(Tp, Tq) dλT (Tp, Tq, γ),

where λT (Tp, Tq, γ) is the product of the Liouville measure Λ (for F(M3)) on

the first two terms and the counting measure on the third term. Then we get

a new measure on Sδ by χ∗(µ̃|Cδ), where µ̃|Cδ is the restriction of µ̃ to the

set Cδ.

The two measures satisfy∣∣∣∣∣dχ∗(µ̃|Cδ)dνδ

∣∣∣∣∣ =
∑
γ2

aγ2(ω2(Fp), ω
2(Fq))

= a(ω2(Fp), ω
2(Fq)).

But by the mixing we have

a(ω2(Fp), ω
2(Fq)) =

1

Λ(F(M3))
(1 +O(e−qr)),
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so we find that for some constant C = C(ε,M3) > 0, we have∣∣∣∣∣dχ∗(µ̃|Cδ)dνδ
− 1

Λ(F(M3))

∣∣∣∣∣ < Ce−qr,

which implies

(47)
1

Λ(F(M3))
(1− Ce−qr)νδ ≤ χ∗(µ̃|Cδ) ≤

1

Λ(F(M3))
(1 + Ce−qr)νδ.

Applying the mapping (fδ)∗, and from (46), we obtain

Eδ
Λ(F(M3))

(1− Ce−qr)Euclδ ≤ f∗(χ∗(µ̃|Cδ)) ≤
Eδ

Λ(F(M3))
(1 + Ce−qr)Euclδ.

We let

βδ = f∗(χ∗(µ̃|Cδ)).
It follows that the Radon-Nikodym derivative of βδ satisfies desired inequal-

ity from Theorem 3.4. On the other hand, it follows from (45) that βδ and

∂̂µ|N1(
√
δ) are O(e−

r
4 ) equivalent. This completes the proof.
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