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The dimension and structure of the space
of harmonic 2-spheres in the m-sphere

By Luis Fernández

Abstract

We prove the conjecture, posed in 1993 by Bolton and Woodward, that

the dimension of the space of harmonic maps from the 2-sphere to the 2n-

sphere is 2d + n2. We also give an explicit algebraic method to construct

all harmonic maps from the 2-sphere to the m-sphere.

1. Introduction

A harmonic map is a map ϕ : M → N between Riemannian manifolds

that extremizes the energy functional
∫
D |dϕ|2d vol over compact domains D

in M ; this functional generalizes the Dirichlet integral. Examples of harmonic

maps include harmonic functions, geodesics and minimal surfaces. Harmonic

maps have been used to prove important results in geometry, including rigidity

results (see, for example, [16]).

In this paper we study the space of harmonic maps from S2 to Sm. Since

a harmonic map from a 2-sphere is automatically weakly conformal (see, for

example, [26]), a map from a 2-sphere is harmonic if and only if it is a minimal

branched immersion [12].

Following the twistor lift approach initiated by Calabi in [6], the moduli

space of harmonic 2-spheres in Sm was studied, among other sources, in [1],

[2], [10], [11], [17], [20], [21], [23], [24], [25]. It is known that the space of

linearly full (i.e., not lying in a proper sub-sphere) harmonic maps from S2

to S2n of degree d is isomorphic to two copies of the space SO(2n + 1,C)

when d = n(n + 1)/2, and it is empty if d < n(n + 1)/2. Apart from these

remarkable results, not much is known for arbitrary d and n. The dimension

was only known when n = 2 [20], [23], [24], [25] and n = 3 [9].

In [3], Bolton and Woodward conjectured, using heuristic arguments, that

the dimension of the space of linearly full harmonic 2-spheres of degree d in

S2n is 2d + n2. In this paper we give a proof of this conjecture. To this end,

we first find a completely explicit algebraic method to construct any harmonic
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map from S2 to S2n. The idea is to generalize the methods used in [2], [4],

[5], [20], [23], [24], [25], where harmonic maps from S2 to S4 are constructed,

via the twistor lift approach, using holomorphic maps from S2 to CP3 satis-

fying a differential system; this is possible because the twistor space of S4 is

biholomorphic to CP3. Hence, a completely explicit algebraic construction is

obtained, allowing the study of the dimension and structure of the space of

harmonic maps from S2 to S4.

In the case n > 2, the twistor space of the 2n-sphere is certainly not bi-

holomorphic to any complex projective space. Nevertheless, these two spaces

are birationally equivalent, and it turns out that this is sufficient in order to

do a local study. In fact, the moduli space of harmonic maps from S2 to S2n

of a given degree d is locally isomorphic to a space of holomorphic maps from

S2 to CPn(n+1)/2 of degree d and satisfying a particular differential system,

namely equation (7). This differential system, in a different form, also appears

in [5], [13].

The next step is to study the space of solutions of this differential system.

As a space of maps from the 2-sphere to complex projective space, we can

restrict our work to tuples of polynomials, as in [20]. The näıve approach—

namely to use the standard basis for polynomials and convert the differen-

tial system into a large set of quadratic equations on the coefficients of the

polynomials—does not work because the system is too big. However, a differ-

ent kind of basis for the space of polynomials leads to a description of the set

of solutions essentially as a determinantal variety on a set of parameters that

determine the polynomials, or alternatively, as the set of integral elements of

an exterior differential system in the space of parameters.

With this description, and using elementary intersection theory, we find

that 2d+n2 is a lower bound for the dimension of the space of harmonic maps

from S2 to S2n.

To prove that 2d + n2 is also an upper bound, we introduce the concept

of extendable harmonic map. A similar concept also appears in [18] (as ‘maps

with extra eigenvalues’) and [19] (as ‘collapses of maps’). A harmonic map

from S2 to S2n is extendable if, after embedding S2n into S2(n+1) geodesically,

the map can be obtained as a suitable deformation through linearly full har-

monic maps whose codomain is S2(n+1). These deformations provide a local

projection from the set of harmonic maps into S2(n+1) to the set of harmonic

maps into S2n. This projection is used to produce an inductive procedure to

show that 2d+n2 is an upper bound of the dimension of the space of harmonic

maps from S2 to S2n.

It is worth noting that the proof implies that the dimension of the set

of linearly full harmonic maps from S2 to S2n is pure, i.e., all irreducible

components have the same dimension.
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The paper is organized as follows. In Section 2 we review Calabi’s twistor

construction. Section 3 describes how to translate the problem into the study

of maps into complex projective space. To prove that this translation is good

enough for our purposes is highly technical, so for expository reasons we post-

pone it to Section 7. In Section 4 we give an explicit algebraic recipe to

construct all harmonic maps from S2 to spheres. Finally, in Section 5 we use

this construction to prove Bolton and Woodward’s conjecture for the linearly

full case, and in Section 6 we consider the nonlinearly full case.

Acknowledgements. I would like to express my gratitude to Professors

Q.-S. Chi, J. Bolton, A. Rodŕıguez, J. C. Wood and M. C. Cuéllar for their

guidance, comments, inspiration and support, as well as to the referees for

many useful observations. A good part of this work was done while employed

at Universidad de los Andes in Bogotá, Colombia.

2. Preliminaries

Recall ([7], for example) that a map ϕ : S2 → Sm ⊂ Rm+1 is harmonic

if ∆S2
ϕ = λϕ for some function λ : S2 → R. Such a map is called linearly

full if its image does not lie in a proper geodesic sub-sphere of Sm. Using the

topology of S2, Calabi showed in [6] that for ϕ : S2 → Sm to be linearly full,

m must be an even number 2n.

We do a quick review of the twistor construction in [6]. The twistor

space of the 2n sphere, denoted Zn (or Zn(C2n+1)), is the complex manifold

of n-dimensional linear subspaces of C2n+1 that are isotropic with respect to

the complex bilinear product

(1) (z,w) = ((z1, . . . , z2n+1), (w1, . . . , w2n+1)) =
2n+1∑
k=1

zkwk.

In other words, Zn is the submanifold of the Grassmannian of n-planes in

C2n+1 given by

Zn = {P ∈ Gr(n,C2n+1) : (v, w) = 0 for all v, w ∈ P}.

We will use 〈z,w〉 := (z,w) to denote the Hermitian product in C2n+1, and

the word ‘perpendicular’ will always mean perpendicular with respect to this

Hermitian product.

The manifold Zn is a complex submanifold of Gr(n,C2n+1), so we can

restrict the Plücker embedding Pl : Gr(n,C2n+1) → PΛnC2n+1 to Zn. This

restriction (also denoted by Pl) has degree 2 [1], [21]. The tangent plane of

Zn at a point P is the subspace of the tangent plane to the Grassmannian at

P—which can be described as TPGr(n,C2n+1) = Hom(P, P⊥)—given by [21]

TPZn = {L ∈ Hom(P, P⊥) : (Lu, u) = 0 ∀u ∈ P}.
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There is a projection π : Zn → S2n defined as follows: For P ∈ Zn, π(P )

is the unique real unit vector in C2n+1 such that {π(P ), P1, . . . , Pn, P̄1, . . . , P̄n}
is a positively oriented basis of C2n+1, where {P1, . . . , Pn} is a basis of P . Note

that in [10], π is denoted by π+, and π− is used to denote the map −π (i.e., π

composed with the antipodal map).

Given a linearly full harmonic map ϕ : S2 → S2n and isothermic coordi-

nates (z, z̄) in S2, Calabi defined ψ : S2 → Zn by

ψ := Span

ß
∂ϕ

∂z̄
, . . . ,

∂nϕ

∂z̄n

™
and proved that ψ is well defined and is holomorphic and horizontal (i.e., per-

pendicular to the fibers of π). In other words, ∂ψ/∂z belongs to the subspace

[21]

(2) HPZn = {L ∈ TPZn : L(P ) ⊥ P̄}.

In addition, ψ satisfies π ◦ψ = ϕ or −ϕ and it is linearly full, in the sense that

the image of ψ is not contained in any submanifold of the form

(3) ZFn := {W ⊕ F ∈ Zn : W ∈ Zr((F ⊕ F̄ )⊥)} ∼= Zr,

where F is an (n− r)-dimensional subspace of C2n+1, with r < n (see [10]).

Conversely, if ψ : S2 → Zn is holomorphic, horizontal and linearly full,

then π ◦ ψ and −π ◦ ψ are harmonic and linearly full. Therefore, we have a

2-to-1 correspondence between linearly full harmonic maps from S2 to S2n and

linearly full holomorphic horizontal maps from S2 to Zn.

Since H2(Zn,Z) = Z [1], [21], the homology class induced by ψ is a positive

multiple d = deg(ψ) of a generator of H2(Zn,Z). The number d is called the

twistor degree of ϕ; since the Plücker embedding has degree 2, we have that

the degree of the curve Pl ◦ ψ in PΛnC2n+1 is twice the twistor degree of ϕ,

and so the number d can also be characterized as Area(ϕ(S2))/4π [21].

Hence both harmonic and holomorphic and horizontal maps are graded

by the degree. Let

Harmf
d(S2, S2n) = {Linearly full harmonic maps from S2 to S2n of area 4πd},

HHf
d(S2,Zn) = {Horizontal, holomorphic, full maps

from S2 to Zn of degree d},

and let

Harmf,+
d (S2, S2n) = {π ◦ ψ : ψ ∈ HHf

d(S2,Zn)},

Harmf,−
d (S2, S2n) = {−π ◦ ψ : ψ ∈ HHf

d(S2,Zn)}.

The results discussed above then imply
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Theorem 1 ([6], [1], [10]).

Harmf
d(S2, S2n) = Harmf,+

d (S2, S2n) tHarmf,−
d (S2, S2n).

For most of the remainder of this paper we will study the properties of

HHf
d(S2,Zn). First we translate the condition of horizontality into a differen-

tial system in projective space. This will be done in the following section.

3. Translation of the problem

In [8], a birational map from CPNn (where Nn := n(n + 1)/2) to Zn was

constructed. Composition with the inverse of this map translates the problem

of finding holomorphic and horizontal maps into Zn to solving a system of

differential equations on CPNn . We review here some of the main results,

referring to [8] for some of the proofs.

Let β = {E0, E1, . . . , En, E1, . . . , En} be a basis of C2n+1 such that

(4)

(E0, E0) = 1, (E0, Ei) = (E0, Ei) = (Ei, Ej) = (Ei, Ej) = 0, (Ei, Ej) = δij ;

i.e., β is a unitary basis where 2n of the vectors are pairwise conjugate. In this

paper, these bases will be called isotropic bases.

Let E be the isotropic n-plane spanned by the vectors Ei, 1 ≤ i ≤ n,

and let UE be the open subset of Zn consisting of planes whose orthogonal

projection over E is onto. Then every P ∈ UE can be written as the graph of

a map from E to E⊥. Namely, P can be written as the span of n vectors of

the form

αiE0 + Ei +
n∑
k=1

cikEk, 1 ≤ i ≤ n,

where αi, cik are complex numbers. Since P is isotropic, we have

αiαj + cij + cji = 0, 1 ≤ i, j ≤ n,

which implies that cij = −(αiαj +τij)/2 for some τij ∈ C satisfying τij = −τji.
This defines a bijective, holomorphic map from an affine open subset of

CPNn onto UE , which can be extended to a birational map bβ : CPNn → Zn.

We use the subscript β to emphasize the dependency on the basis β chosen.

Explicitly, using homogeneous coordinates in CPNn , bβ : CPNn → Zn is the

birational map that takes

[s : α1 : · · · : αn : τ12 : · · · : τ1n : τ23 : · · · : τn−1,n]

to the n-plane generated by the vectors

α`
s
E0 + E` −

n∑
k=1

Å
α`αk
2s2

+
τ`k
2s

ã
Ek, 1 ≤ ` ≤ n
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where, by definition, τji = −τij for 1 ≤ i ≤ j ≤ n. Using matrix notation in

the basis β, bβ is therefore the n-plane spanned by the rows of the matrix

(5)â
α1
s 1 0 · · · 0 − α2

1
2s2

−α1α2
2s2
− τ12

2s · · · −α1αn
2s2
− τ1n

2s
α2
s 0 1 · · · 0 −α2α1

2s2
+ τ12

2s − α2
2

2s2
· · · −α2αn

2s2
− τ2n

2s
...

...
...

. . .
...

...
...

. . .
...

αn
s 0 0 · · · 1 −αnα1

2s2
+ τ1n

2s −αnα2
2s2

+ τ2n
2s · · · − α2

n
2s2

ì
,

or in shorter notation,

(6) (α/s, In, −(α tα+ sT )/2s2),

where the superscript t on the left denotes the transpose, α = t(α1, . . . , αn),

and T is the skew-symmetric matrix whose ij-entry is τij , 1 ≤ i, j ≤ n.

This map is just a common way to parametrize Zn (see, e.g., [15, p. 235]).

An alternative way to see this map appears in [13]: Zn is the quotient of

SO(2n+ 1,C) by the isotropy subgroup (Gc)0 at a point of Zn. If (gc)0 is the

Lie subalgebra of this subgroup, the vector space so(2n+ 1,C) can be written

as the direct sum of (gc)0 and a nilpotent subalgebra n parametrized by the

complex quantities αi, τjk, with the property that ξ3 = 0 for all ξ ∈ n. The

map shown above is just the equivalence class in SO(2n+ 1,C)/(Gc)0 ' Zn of

the exponential map restricted to n.

Given ψ ∈ HHf
d(S2,Zn), we would like to define ψ̃ := b−1

β ◦ ψ, thus trans-

lating the problem from maps to Zn into maps to CPNn , as in the following

diagram:

S2 S2n.
ϕ -

Zn

?

ψ

ψ̃

π

��
��

�
��*

�
�
�
�
�
���

?
π

?

CPNn

bβ

Figure 1. Lifts of harmonic maps.

There is, however, an initial problem: b−1
β is only birational, so it is not

defined in the whole of Zn, so it may not be defined in the image of ψ at all.

Due to the fact that ψ is linearly full, it turns out that this never happens.

Lemma 1. If ψ ∈ HHf
d(S2,Zn) and β is an isotropic basis, then the image

of ψ is contained in the image of bβ except for finitely many points.

Proof. See [8, Lemma 2.4]. �
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Thus, given ψ ∈ HHf
d(S2,Zn), the birational map b−1

β ◦ ψ is well defined

except at finitely many points, and therefore it can be completed to give a map

ψ̃ : S2 → CPNn . It is clear that ψ̃ is holomorphic. The condition of horizon-

tality for ψ translates into a system of differential equations on the functions

s, αi, τjk. To find this system, let us first recall how to describe ψ′(z) as an

element of Hom(P, P⊥), where P = ψ(z) and the dashes denote derivatives

with respect to the variable z: if c is a curve in C2n+1 such that c(z) ∈ ψ(z),

then ψ′(z) takes the vector c(z) ∈ P to the perpendicular projection of c′(z)

into P⊥.

In our case, ψ can be described as the span of the rows of the matrix

(α/s, In, −(α tα + sT )/2s2). To simplify the notation, let γ = α/2s and

R = T/2s. Then we can write the curve c(z) as

tx
Ä
2γ, In, −(2γ tγ +R)

ä
where, for our purposes, x ∈ Cn can be taken as constant. The linear map

ψ′(z) takes this vector to the projection of

tx
Ä
2γ′, On, −(2γ′ tγ + 2γ

t
γ′ +R′)

ä
on P⊥, where On denotes the zero n×n matrix. Since ψ′(z) is in the horizontal

subspace HPZn of TPZn defined by expression (2), we must have

projP⊥
Ä
tx
Ä
2γ′, On, −(2γ′ tγ + 2γ

t
γ′ +R′)

ää
⊥ P̄ ,

where the symbol ‘⊥’ means perpendicular with respect to the Hermitian prod-

uct 〈z,w〉 := (z,w) for z,w ∈ C2n+1, with ( , ) defined by formula (1). This

implies that for all v ∈ P ,Ä
projP⊥

Ä
tx
Ä
2γ′, On, −(2γ′ tγ + 2γ

t
γ′ +R′)

ää
, v
ä

= 0.

Since P is isotropic, the projection operator in the last equation is irrelevant.

On the other hand, v can be written as ty (2γ, In, −(2γ tγ + R)) for some

y ∈ Cn, so the condition of horizontality of ψ is equivalent to the conditionÄ
tx
Ä
2γ′, On, −(2γ′ tγ + 2γ

t
γ′ +R′)

ä
, ty

Ä
2γ, In, −(2γ tγ +R)

ää
= 0

for all x, y ∈ Cn. Computing this product—remember that each row vector

on the left-hand side of the last expression is written in terms of an isotropic

basis β as in (4)—we obtain tx (2γ′ tγ−2γ tγ′−R′) y = 0 for all x, y ∈ Cn. This

implies

2γ′ tγ − 2γ
t
γ′ = R′,

or in terms of the original functions,

α′ tα− α t
α′ = sT ′ − s′T.

Thus we have the following
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Proposition 1. Let ψ ∈ HHf
d(S2,Zn). Then ψ̃ := β−1 ◦ ψ = [s : α1 :

· · · : αn : τ12 : · · · : τn−1,n] satisfies

t
α′α− tαα′ = sT ′ − s′T,

or in components

(7) α′iαj − αiα′j = sτ ′ij − s′τij .

In addition, linear fullness of ψ translates into the condition

(8) W

ÇÅ
α1

s

ã′
, . . . ,

Å
αn
s

ã′å
6≡ 0,

where W denotes the Wronskian.

Conversely, if ψ̃ : S2 → CPNn is holomorphic and satisfies conditions (7)

and (8), then ψ := bβ ◦ ψ̃ is linearly full, holomorphic and horizontal.

Proof. For the Wronskian condition, see [8, Prop. 2.2 and Th. 2.3]. Note

that for notational convenience, the τij used in this paper differ from the ones

defined in [8] by a factor of 2 in order to get rid of the annoying factor of 2

appearing in equation 2.17 of [8]. �

Definition 1. Let

PDf
d(S2,CPNn) =

{
[s : α1 : · · · : αn : τ12 : · · · : τn−1,n] algebraic maps

of degree d satisfying α′iαj − αiα′j = sτ ′ij − s′τij ,

and

Å
αi
s

ã′
, 1 ≤ i ≤ n, independent

}
.

Then we have well-defined maps

Bβ : PDf
d(S2,CPNn) −→

∞⋃
k=0

HHf
k(S2,Zn)

ψ̃ −→ ψ = bβ ◦ ψ̃
and

Cβ : HHf
d(S2,Zn) −→

∞⋃
k=0

PDf
k(S2,CPNn)

ψ −→ ψ̃ = b−1
β ◦ ψ.

These maps are algebraic, and clearly Bβ ◦ Cβ and Cβ ◦ Bβ are equal to the

identity in their respective domains.

We would like these maps to preserve the degree d, but this is not always

the case (see [8]). However, it turns out that a slightly weaker result holds.

First note that all the functions s, αi and τjk, 1 ≤ i, j, k ≤ n can be considered

as coprime polynomials in one complex variable z of maximum degree d. For



THE SPACE OF HARMONIC 2-SPHERES IN THE m-SPHERE 1101

reasons that will become clear in Section 4, we define the following subvariety

of PDf
d(S2,CPNn).

Definition 2. Let

PDf
d,0(S2,CPNn) =

¶
[s : α1 : · · · : αn : τ12 : · · · : τn−1,n] ∈ PDf

d(S2,CPNn)

with s =
d∏
`=1

(z − z`), z` ∈ C distinct, and α1(z`) 6= 0, ∀`
}
.

Then PDf
d,0(S2,CPNn) is open in PDf

d(S2,CPNn), and the following im-

portant result holds.

Theorem 2. Given ψ ∈ HHf
d(S2,Zn), there exists a basis β and an open

set Uβ 3 ψ such that Bβ : PDf
d,0(S2,CPNn)→ Uβ is an algebraic isomorphism.

The proof of this theorem is complicated and technical, so we will post-

pone it to Section 7. Now we continue translating the problem of describing

harmonic maps from S2 to S2n into a suitable ‘parameter space’ via a simple

algebraic construction.

4. Explicit algebraic construction

In this section we analyze the system of equations (7) given by

α′iαj − αiα′j = sτ ′ij − s′τij , 1 ≤ i, j ≤ n

and the condition (8) given by

W

ÇÅ
α1

s

ã′
, . . . ,

Å
αn
s

ã′å
6≡ 0,

where the functions s, αi, τjk are polynomials in one complex variable z of

maximum degree d and without common factors.

This analysis will lead to an explicit algebraic construction of any linearly

full harmonic map from S2 to S2n. The approach is quite simple: solve system

(7) for the polynomials τij and find a smaller more compact condition on the

remaining polynomials.

System (7) is equivalent to the conditions

(9) α′iαj − αiα′j = s2
Å
τij
s

ã′
, 1 ≤ i < j ≤ n,

which is equivalent to

(10)
α′iαj − αiα′j

s2
has no residues

and

(11) τij = s

∫ α′iαj − αiα′j
s2

dz is a polynomial of degree ≤ d.
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It is not easy to translate condition (10) into a simple formula unless we

assume something about the zeros of s. This is actually the motivation for the

definition of PDf
d,0(S2,CPNn). From this point on we will assume that s has

d distinct complex zeros located at {z1, . . . , zd}. This requirement allows us to

find a simple formula for the residues of (αjα
′
i − αiα′j)/s2, as follows.

Lemma 2. The function (α′iαj − αiα′j)/s2 has residues only at z`, 1 ≤
` ≤ d, and

res
z=z`

α′iαj − αiα′j
s2

=
1

s′

Ç
α′iαj − αiα′j

s′

å′
|z=z`

.

Proof. It is clear that the residues of (α′iαj − αiα′j)/s2 are only at the z`.

To find the value of the residue at z`, use the formula

res
z=z`

α′iαj − αiα′j
s2

= lim
z→z`

Ç
(z − z`)2

α′iαj − αiα′j
s2

å′
.

The right-hand side gives

lim
z→z`

Ç
(z − z`)2

α′iαj − αiα′j
s2

å′
= lim

z→z`

Ç
s′

(z − z`)2

s2

α′iαj − αiα′j
s′

å′
= lim

z→z`

Ç
s′

(z − z`)2

s2

å′Çα′iαj − αiα′j
s′

å
|z=z`

+
1

s′

Ç
α′iαj − αiα′j

s′

å′
|z=z`

.

It is elementary to show that the first term of the last expression is 0. This

proves the lemma. �

The following lemma translates system (7) into a completely algebraic

condition.

Lemma 3. The polynomials s, αi, τjk are solutions of the system (7) if

and only if s divides W (s, αi, αj), and τij is given by formula (11), 1 ≤ i, j ≤ n.

Proof. Suppose that α′iαj − αiα′j = sτ ′ij − s′τij . Differentiating, we obtain

α′′i αj − αiα′′j = sτ ′′ij − s′′τij .

This implies

s′′(αiα
′
j − α′iαj)− s′(αiα′′j − α′′i αj) = s′′(s′τij − sτ ′ij)− s′(s′′τij − sτ ′′ij)

= s(s′τ ′′ij − s′′τ ′ij).

Thus,

W (s, αi, αj) = s(α′iα
′′
j − α′′i α′j)− s′(αiα′′j − α′′i αj) + s′′(αiα

′
j − α′iαj)

= s(α′iα
′′
j − α′′i α′j + s′τ ′′ij − s′′τ ′ij).

This proves the ‘only if’ part. Note that it holds in general, i.e., without the

restriction that s has simple zeros.
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Now we prove the ‘if’ part. If s|W (s, αi, αj), then s|(s′′(α′iαj − αiα′j) −
s′(α′′i αj − αiα′′j )). Since

s′′(α′iαj − αiα′j)− s′(α′′i αj − αiα′′j ) = −(s′)3 1

s′

Ç
α′iαj − αiα′j

s′

å′
and since s′(z`) 6= 0, 1 ≤ ` ≤ d, we have that the function

1

s′

Ç
α′iαj − αiα′j

s′

å′
must vanish at the points z`, 1 ≤ ` ≤ d. Thus, by Lemma 2, (α′iαj − αiα′j)/s2

has no residues at the zeros of s, so it cannot have residues at all. Hence,∫ α′iαj − αiα′j
s2

is a rational function whose poles are simple and at the zeros of s. Furthermore,

an elementary calculation shows that the functions

τij = tij0s+ s

∫ α′iαj − αiα′j
s2

,

where tij0 are arbitrary integration constants, are polynomials of degree less

than or equal to d. �

Now we analyze the condition s |W (s, αi, αj) further. This condition is

satisfied if and only if W (s, αi, αj) = 0 at the points z`, 1 ≤ ` ≤ d, which

happens if and only if the three vectors

t(s(z`), α1(z`), . . . , αn(z`)),
t(s′(z`), α

′
1(z`), . . . , α

′
n(z`)),

t(s′′(z`), α
′′
1(z`), . . . , α

′′
n(z`))

are linearly dependent for each `. Or equivalently, if and only if for each `,

1 ≤ ` ≤ d, there exist complex numbers p`, q`, r` not all equal to 0 such that

p`s(z`) + r`s
′(z`) + q`s

′′(z`) = 0,(12)

p`α(z`) + r`α
′(z`) + q`α

′′(z`) = 0,(13)

where α := t(α1, α2, . . . , αn) ∈ (C[z]d)
n, as before.

Since s(z`) = 0 and s′(z`) 6= 0, equation (12) is equivalent to r` =

−q`s′′(z`)/s′(z`). Renaming the constants, solving equations (12) and (13)

is therefore equivalent to solving

(14) p`α(z`)− q`(s′′(z`)α′(z`)− s′(z`)α′′(z`)) = 0, 1 ≤ ` ≤ d.

Since s is monic with distinct roots at z1, . . . , zd ∈ C, the polynomials

{s, s/(z − z1), . . . , s/(z − zd)} form a basis of C[z]d, and we can write

(15) s =
d∏
`=1

(z−z`), αi = ai0s+
d∑
`=1

ai`
s

z − z`
, τjk = tjk0s+

d∑
`=1

tjk`
s

z − z`
,

for some complex numbers ai`, tjk`, with 1 ≤ i, j, k ≤ n and 0 ≤ ` ≤ d.
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The idea now is to introduce expressions (15) into equation (14). But first

we translate condition (8) in terms of the quantities z`, ai`, tjk`.

Lemma 4. Suppose that d ≥ n. Then

W

ÇÅ
α1

s

ã′
, . . . ,

Å
αn
s

ã′å
6≡ 0 ⇐⇒ Rank

à
a11 a21 . . . an1

a12 a22 . . . an2
...

...
. . .

...

a1d a2d . . . and

í
= n.

Proof. Since all the functions involved are rational, the vanishing of the

Wronskian implies linear dependence [22]. Notice that αi(z`) = ai` s
′(z`). Thus

W

ÇÅ
α1

s

ã′
, . . . ,

Å
αn
s

ã′å
≡ 0

⇐⇒
n∑
i=1

bi

Å
αi
s

ã′
= 0 for some b1, . . . , bn ∈ C not all 0

⇐⇒
n∑
i=1

biαi = cs, b1, . . . , bn ∈ C not all 0, for some c ∈ C

⇐⇒
n∑
i=1

biαi(z`) = 0, 1 ≤ ` ≤ d, b1, . . . , bn ∈ C not all 0

⇐⇒
n∑
i=1

biai`s
′(z`) = 0, 1 ≤ ` ≤ d, b1, . . . , bn ∈ C not all 0

⇐⇒ Rank

à
a11 a21 . . . an1

a12 a22 . . . an2
...

...
. . .

...

a1d a2d . . . and

í
< n. �

The following proposition provides an explicit way to construct maps in

PDf
d,0(S2,CPNn) in terms of the quantities s`, ai`, tjk`.

Proposition 2. Let ψ̃ : S2 → CPNn be a holomorphic curve of degree d,

and write

ψ̃ = [s : α1 : · · · : αn : τ12 : · · · : τn−1,n],

where s, αi, τjk are coprime polynomials in z ∈ C. Suppose that s has only

simple roots at z1, . . . , zd ∈ C, and write

s =
d∏
`=1

(z − z`), αi = ai0s+
d∑
`=1

ai`
s

z − z`
, τjk = tjk0s+

d∑
`=1

tjk`
s

z − z`
.

Then ψ̃ ∈ PDf
d,0(S2,CPNn) if and only if the following conditions hold.
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(i) ai`
∑
u6=`

aju
(z` − zu)2

− aj`
∑
u6=`

aiu
(z` − zu)2

= 0, 1 ≤ i, j ≤ n.

(ii) tjk` = ak0aj` − aj0ak` +
∑
r 6=`

aj`akr − ak`ajr
z` − zr

, 1 ≤ j, k ≤ n.

(iii) a1` 6= 0, 1 ≤ ` ≤ d.

(iv) Rank

à
a11 a21 . . . an1

a12 a22 . . . an2
...

...
. . .

...

a1d a2d . . . and

í
= n.

Proof. In view of Lemma 4 and the discussion leading to equations (12)

and (13), ψ̃ = [s : α1 : · · · : τ12 : · · · ] ∈ PDf
d,0(S2,CPNn) if and only if (iii) and

(iv) hold, τij is given by equation (11), and for each `, 1 ≤ ` ≤ d, there are

complex numbers p`, q` not both zero such that equation (14) holds, i.e.,

p`α(z`)− q`(s′′(z`)α′(z`)− s′(z`)α′′(z`)) = 0, 1 ≤ ` ≤ d.

Note that if q` = 0 for some `, then α1(z`) = 0, which is false by assumption.

Introduce the expressions (15) into equations (11) and (12). Long and

straightforward computations then show that equation (11) is equivalent to

(ii) and that, for 1 ≤ j ≤ n,

s′′(z`)α
′
j(z`)−s′(z`)α′′j (z`)=2

∑
u6=`

aju
(s′(z`))

2

(z` − zu)2
+aj`

Ç
(s′′(z`))

2

2
− s′(z`)s

′′′(z`)

3

å
.

Hence equation (14) is equivalent to
(16)

p`aj`s
′(z`)− q`

Ñ
2
∑
u6=`

aju
(s′(z`))

2

(z` − zu)2
+ aj`

Ç
(s′′(z`))

2

2
− s′(z`)s

′′′(z`)

3

åé
= 0.

Now we simplify this expression. Since q` and s′(z`) are nonzero for 1 ≤ ` ≤ d,

we can divide equation (16) by −2q`(s
′(z`))

2 to obtain

λ`aj` +
∑
u6=`

aju
(z` − zu)2

= 0, 1 ≤ j ≤ n, 1 ≤ ` ≤ d,

where λ`, 1 ≤ ` ≤ d, are suitable constants.

Up to this point every step is reversible, so it only remains to prove that

the last equation is equivalent to (i). Thus let 1 ≤ i, j ≤ n. Then we have

ai`
∑
u6=`

aju
(z` − zu)2

= −λ`ai`aj` = aj`
∑
u6=`

aiu
(z` − zu)2

as desired. Conversely, suppose that

ai`
∑
u6=`

aju
(z` − zu)2

= aj`
∑
u6=`

aiu
(z` − zu)2

, 1 ≤ i, j ≤ n.
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Since a1` 6= 0 for all `, defining

λ` = − 1

a1`

∑
u6=`

a1u

(z` − zu)2

we have

λ`aj` +
∑
u6=`

aju
(z` − zu)2

= 0, 1 ≤ j ≤ n, 1 ≤ ` ≤ d. �

Remark. Equation (i) of Proposition 2 can be written, in matrix notation,

as

(17)

â
λ1

1
(z1−z2)2

· · · 1
(z1−zd)2

1
(z2−z1)2

λ2 · · · 1
(z2−zd)2

...
...

. . .
...

1
(zd−z1)2

1
(zd−z2)2

· · · λd

ìà
a11 a21 . . . an1

a12 a22 . . . an2
...

...
. . .

...

a1d a2d . . . and

í
= 0.

Note that the definition of λ` is implicit in the previous formula. This essen-

tially describes equation (i) of Proposition 2 as a determinantal variety. We

will use this description when we calculate the dimension of PDf
d,0(S2,CPNn).

An alternative and interesting way to think of equation (i) of Proposition 2

is the following. Let Z = {(z1, . . . , zd) ∈ Cd : zi 6= zj if i 6= j}. Consider the

exterior differential system in Z generated algebraically by the forms

ω` :=
∑
u6=`

1

(zu − z`)2
dzu ∧ dz`, 1 ≤ ` ≤ d.

Then the columns of the matrix (ai`)i` form a basis for the integral elements

of this exterior differential system. It may be interesting to explore this point

of view in order to understand more deeply the structure of Harmf
d(S2, S2n).

Note that the construction above provides the following ‘recipe’: to con-

struct every linearly full harmonic map from S2 to S2n of a given degree d,

1) Find a meromorphic function g : S2 → S2 bounded at∞ (g corresponds

to α1/s above) with only simple poles at z1, z2, . . . , zd ∈ C and with

residue a1` 6= 0 at z` such that

dim ker

â
λ1

1
(z1−z2)2

· · · 1
(z1−zd)2

1
(z2−z1)2

λ2 · · · 1
(z2−zd)2

...
...

. . .
...

1
(zd−z1)2

1
(zd−z2)2

· · · λd

ì
≥ n,

where λ` =
∑
u6=`

−a1u

a1`
(zu − z`)2.
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2) Find vectors t(ai1, . . . , aid) ∈ Cd, 2 ≤ i ≤ n, in the kernel of the matrix

above such that the set {t(ai1, . . . , aid), 1 ≤ i ≤ n} is linearly indepen-

dent.

3) Choose arbitrary complex numbers ai0, 1 ≤ i ≤ n, and tij0, 1 ≤ i <

j ≤ n, and write s, αi, τjk as in expression (15), with the tjk` given by

expression (ii) of Proposition 2.

4) Choose an isotropic basis β, and let ψ : S2 → Zn be given by the span

of the rows of the matrix (5).

5) Let ϕ = π ◦ ψ. Then π is harmonic, linearly full and has degree d.

Using this recipe one can construct completely explicit examples of har-

monic maps. Note that the main difficulty is to find the function g of item 1).

In fact, once this function is found, the rest of the procedure is essentially lin-

ear. Exact (i.e., not approximate) examples of such functions g can be found

for given values of d, n and the distinct complex numbers z1, . . . , zd. In fact,

for n = 2, d = 3 it is possible to find a formula that gives all such functions g:

if the (3× 3 in this case) matrix in condition 1) above has nullity 2, then it is

easy to first find the λ` and then a vector t(a11, . . . , a1d) with nonzero entries

in the kernel of that matrix. Then let g(z) =
∑d
`=1 a1`/(z − z`). This gives a

family of functions depending on two nonzero complex parameters c1, c2:

g(z) = c1

Ç
(z2 − z3)2

z − z3
− (z2 − z1)2

z − z1

å
+ c2

Ç
(z3 − z2)2

z − z2
− (z3 − z1)2

z − z1

å
.

For d = 4, n = 2, one can obtain a similar, yet more complicated, formula.

For higher values of n and d (of course with d ≥ n(n + 1)/2), given distinct

numbers z1, . . . , zd one strategy is to solve equation (17) (which is quadratic

in the λ` and aj`) by giving arbitrary values to some of the variables—so some

equations become linear—and solving for the others. With this procedure and

the help of a computer one can find examples, for instance, when n = 3, d ≥ 8

and when n = 4, d ≥ 12. The formulas, however, generally involve very large

numbers.

We do not know the meaning of the condition on the meromorphic function

g in 1) above. It is interesting that much of the information about the space of

harmonic maps from S2 to S2n is encoded in this function. The function g is, in

the terminology of the next section, extendable in the sense that from it, using

the process above, one can generate harmonic maps into higher dimensional

spheres.

Now we define the parameter space that we will analyze in the next section.

Definition 3. Let PSSnd ⊂ Cd+(d+1)n+(d+1)n(n−1)/2 be the quasi-affine va-

riety given, in the coordinates

(z1, · · · zd, a10, · · · a1d, a20, · · · , · · · , and, t120, · · · , t12d, t130, · · · , · · · tn−1,n,d),
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by the conditions

• z1, . . . , zd distinct;

• a1,` 6= 0 for 1 ≤ ` ≤ d;

• ai0 and tjk0 arbitrary for all i, j, k;

•

à
λ1

1
(z1−z2)2

··· 1
(z1−zd)2

1
(z2−z1)2

λ2 ··· 1
(z2−zd)2

...
...

. . .
...

1
(zd−z1)2

1
(zd−z2)2

··· λd

íÑ a11 a21 ... an1
a12 a22 ... an2
...

...
. . .

...
a1d a2d ... and

é
= 0, λi ∈ C;

• Rank

Ñ a11 a21 ... an1
a12 a22 ... an2
...

...
. . .

...
a1d a2d ... and

é
= n;

• tjk` = ak0aj` − aj0ak` +
∑
r 6=`

aj`akr − ak`ajr
z` − zr

.

For convenience, we will use the short notation (z,a, t) to denote an ele-

ment of PSSnd .

Although PSSnd and PDf
d,0(S2,CPNn) are not algebraically equivalent,

there is an algebraic map from PSSnd to PDf
d,0(S2,CPNn). Thus we have

Theorem 3. The space PSSnd has the same dimension as PDf
d,0(S2,CPNn).

Proof. Proposition 2 implies that the algebraic map

PSSnd −→PDf
d,0(S2,CPNn)(18)

(z,a, t)−→ [s : α1 : · · ·αn : τ12 : · · · : τn−1,n],

where s =
d∏
`=1

(z−z`), αi = ai0s+
d∑
`=1

ai`
s

z − z`
, τjk = tjk0s+

d∑
`=1

tjk`
s

z − z`
,

is onto and finite-to-one (the inverse image of any point in PDf
d,0(S2,CPNn)

is given by all the possible permutations of the ‘`’ index in expression (18)).

Therefore, the two spaces have the same dimension. �

In view of this theorem, it only remains to find the dimension of PSSnd in

order to prove Bolton and Woodward’s conjecture. This is done in the next

section.

5. Study of solutions in parameter space

We will first find that the dimension of PSSnd is at least 2d + n2. The

methods used are elementary intersection theory. For convenience, we will use
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the notation

Σz,λ :=

â
λ1

1
(z1−z2)2

· · · 1
(z1−zd)2

1
(z2−z1)2

λ2 · · · 1
(z2−zd)2

...
...

. . .
...

1
(zd−z1)2

1
(zd−z2)2

· · · λd

ì
.

Proposition 3. The dimension of PSSnd is at least 2d+ n2.

Proof. Let Z = {z = (z1, . . . , zd) ∈ Cd : zi 6= zj if i 6= j}, and consider

the maps

PSSnd
ν1−→ Z × Cd ν2−→ Symd(C)

given by

ν1(z,a, t)=

Ñ
z,

1

a11

∑
u6=1

−a1u

(zu − z1)2
, . . . ,

1

a1d

∑
u6=d

−a1u

(zu − zd)2

é
, ν2(z,λ)=Σz,λ.

The image of ν2 ◦ ν1 is the open subset of the quasi-affine variety¶
Σz,λ : (z,λ) ∈ Z × Cd

©
∩ {M ∈ Symd(C) with nullity at least n}

consisting of matrices that have an element in the kernel whose components

are all different from 0. (Note that this is needed so that (a11, . . . , a1d) has

this property.) The dimension of the set of matrices of the form Σz,λ is 2d−1,

and the codimension of the set of symmetric matrices with nullity at least n is

n(n+ 1)/2. The set PSSnd is not empty, so ν2 ◦ ν1(PSSnd ) is not empty, so

dim(ν2 ◦ ν1(PSSnd )) ≥ 2d− 1− n(n+ 1)

2
.

The fiber of the map ν2 over Σz,λ has dimension 1 everywhere (namely

ν−1
2 (Σz,λ) = {(z1 + u, . . . , zd + u, λ1, . . . , λd) : u ∈ C}), so

dim(ν1(PSSnd ) ≥ 2d− n(n+ 1)

2
.

The fiber of the map ν1 over any point (z,λ) ∈ Z×Cd consists of all tuples

(z,a, t) such that the n vectors t(ai1, . . . , aid), 1 ≤ i ≤ n, span ker (Σz,λ), ai0,

1 ≤ i ≤ n and tij0, 1 ≤ i < l ≤ n are arbitrary complex numbers, and the rest

of the tij` are given by expression (ii) of Proposition 2. This set is isomorphic to

an open subset of Cn2×Cn×Cn(n−1)/2, so it has dimension n2 +n+n(n−1)/2.

Therefore,

dim(PSSnd ) ≥ 2d− n(n+ 1)

2
+ n2 + n+ n(n− 1)/2 = 2d+ n2. �

The opposite inequality, namely that dim(Harmd(S
2, S2n)) ≤ 2d + n2,

appears at the end of [18]. Before this came to our knowledge, a proof of this

fact was found, so we include it here for the sake of completeness. It seems
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also that this fact was essentially known by Bolton and Woodward, at least

for some particular cases.

The methods we use are actually very similar to those in [18] (namely

doing induction on n), and the concept of ‘k-extendable maps’ defined below

turns out to be a particular case of the concept of ‘maps with k pairs of extra

eigenfunctions’ used in [18]. It may be, in fact, that these two definitions are

equivalent.

Definition 4. An element (z,a, t)∈PSSnd is ‘k-extendable’ if dim(ker(Σz,λ))

= n+ k. The set of k-extendable elements in PSSnd will be denoted by E (≥k)
n,d .

The term ‘k-extendable’ comes from the fact that an element of PSSnd
can be extended to an element of PSSn+k

d . A different way to say this is the

following. Consider the projections

(z, a10, · · · , an+1,d, . . . , t12d, . . . , tn,n+1,d) ∈ PSSn+1
d

↓ pn
(z, a10, · · · , an,d, . . . , t12d, . . . , tn−1,n,d) ∈ PSSnd

given by deletion of all the components an+1` and tj,n+1,`, 1 ≤ ` ≤ d, 1 ≤ j ≤ n.

Then E (≥k)
n,d = pn+k ◦ · · · ◦ pn(PSSn+k

d ).

The corresponding objects in PDf
d,0(S2,CPNn) are as follows. The projec-

tions pn correspond to

[s : α1 : · · · : αn : αn+1 : τ12 : · · · : τ1,n+1 : τ23 : · · · : τn,n+1] ∈ PDf
d,0(S2,CPNn+1)

↓
[s : α1 : · · · : αn : τ12 : · · · : τ1,n : τ23 : · · · : τn−1,n] ∈ PDf

d,0(S2,CPNn)

given by deletion of all the components that have n+ 1 as subscript. It is well

defined since α1 is not zero at the zeros of s, and s has degree d. Then an

element in PDf
d,0(S2,CPNn) is k-extendable if it is in the image of k consecutive

projections.

The projection pn : PSSn+1
d → E (≥1)

n,d ⊆ PSSnd is onto. Therefore, by

computing the dimension of the fibers of pn and the dimension of E (≥1)

n,d we will

be able to find a relation between the dimensions of PSSn+1
d and PSSnd .

Lemma 5. The variety E (≥1)

n,d has codimension at least 1 in PSSnd .

Proof. Suppose not. Then E (≥1)

n,d would contain some open subset of PSSnd ,

and then there would be a point φ ∈ E (≥1)

n,d such that every continuous curve φu

in PSSnd with φ0 = φ would be contained in E (≥1)

n,d for u in a neighborhood of 0.

We will prove that this is not the case. Let φ = (z,a, t) ∈ E (≥1)

n,d . Then

the corresponding matrix Σz,λ has nullity greater than or equal to n+ 1. Let

q := d−n and let ` be the rank of Σz,λ, so ` < q. By reordering the indexes we

can assume that the first ` columns of Σz,λ are linearly independent. Consider
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the matrix

Σu
z,λ = Σz,λ +

Ö
0 0 0

0 u Iq−l 0

0 0 0

è
obtained by adding u ∈ C to the diagonal entries of Σz,λ from `+ 1 to q. The

nullity of this matrix is at least d − q = n. For 1 ≤ i, j, k ≤ n, 1 ≤ ` ≤ d,

let (aui`)i` be a continuous family of matrices of rank n whose columns are in

the kernel of Σu
z,λ and such that a0

i` = ai`, let aui0 = ai0, let tuij` be given by

the formula in Proposition 2(ii) and let tujk0 = tjk0. Then the curve φu =

(z`, a
u
i`, t

u
jk) ∈ PSSnd constructed this way satisfies φ0 = φ, and for u 6= 0, it is

not hard to see that the matrix Σu
z,λ has nullity n. Therefore, φu 6∈ E (≥1)

n,d for

u 6= 0. This proves the lemma. �

Proposition 4. The dimension of PSSnd is less than or equal to 2d+n2.

Proof. We proceed by induction. The case n = 1 is straightforward since

PDf
d,0(S2,CP1) is an open subset of the set of meromorphic functions of degree

d from S2 to CP1, and therefore it has dimension 2d+ 1. The cases n = 2 and

n = 3 were proved in [20], [23], [24], [25] and [9] respectively.

Suppose that the dimension of PSSnd is less than or equal to 2d + n2.

Consider the projection

pn : PSSn+1
d → E (≥1)

n,d .

Note that pn(E (≥k)
n+1,d) = E (≥k+1)

n,d . Thus pn restricts to

PSSn+1
d \ E (≥1)

n+1,d → E
(≥1)

n,d \ E
(≥2)

n,d .

This restriction is onto, so we can find the dimension of PSSn+1
d by adding the

dimension of E (≥1)

n,d \ E
(≥2)

n,d and the dimension of the fiber.

Let φ = (z,a, t) ∈ E (≥1)

n,d \ E
(≥2)

n,d ⊂ PSSnd . Then p−1
n (φ) consists of those

(z`, ai`, tjk`) ∈ PSSn+1
d , where 1 ≤ i, j, k ≤ (n+ 1) and 0 ≤ ` ≤ d, obtained by

inserting an+1,`, tj,n+1,`, 0 ≤ ` ≤ d, 1 ≤ j ≤ n, in the appropriate slots in the

original (z,a, t), where

• t(an+1,1, an+1,2, . . . , an+1,d) ∈ ker(Σz,λ).

• tj,n+1,`, 1 ≤ j ≤ n, 1 ≤ ` ≤ d are given by Proposition 2(ii).

• an+1,0 and tj,n+1,0, 1 ≤ j ≤ n, are arbitrary complex numbers.

Therefore, p−1
n (φ) is isomorphic to an open subset of ker(Σz,λ), which has

dimension n+ 1 since φ ∈ E (≥1)

n,d \ E
(≥2)

n,d , times C×Cn, and therefore p−1
n (φ) has

dimension n+ 1 + 1 + n = 2n+ 2.

On the other hand, Lemma 5 implies that the dimension of pn(PSSn+1
d \

E (≥1)

n+1,d) = E (≥1)

n,d \ E
(≥2)

n,d is less than or equal to dim(PSSnd )− 1 and that PSSn+1
d

and PSSn+1
d \ E (≥1)

n+1,d have the same dimension. Putting it all together, we
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obtain

dim(PSSn+1
d ) = dim(PSSn+1

d \ E (≥1)

n+1,d)

≤ dim(Image of pn) + dim(Fiber of pn)

≤ (dim(PSSnd )− 1) + 2n+ 2

≤ 2d+ n2 + 2n+ 1

= 2d+ (n+ 1)2. �

Theorem 4. The space Harmf
d(S2, S2n) has pure dimension 2d+ n2.

Proof. In each irreducible component, Theorem 3 and Propositions 3 and 4

show that PDf
d,0(S2,CPNn) has pure dimension 2d+n2. Then Theorem 2 shows

that every element of HHf
d(S2,Zn) is contained in an open subset of dimension

2d+ n2, so HHf
d(S2,Zn) has pure dimension 2d+ n2. Finally, use Theorem 1

to identify Harmf,+
d (S2, S2n) and Harmf,−

d (S2, S2n) with HHf
d(S2,Zn). �

6. The nonlinearly full case

In order to complete the study of the dimension of the moduli space of

harmonic maps from S2 to Sm, we need to consider the set Harmd(S
2, Sm) of

all (full and nonfull) harmonic maps from S2 to Sm. Evidently,

Harmd(S
2, Sm) = Harmf

d(S2, Sm) tHarmnf
d (S2, Sm),

where Harmnf
d (S2, Sm) denotes the set of nonfull maps. Note that when m is

odd, the set Harmf
d(S2, Sm) is empty [6]. So it is clear that the properties of

these sets are quite different depending on the parity of m.

The variety of all holomorphic and horizontal maps from S2 to Zn will be

denoted HHd(S
2,Zn), and HHnf

d (S2,Zn) will denote the subvariety of nonfull

maps.

It is convenient to split the space of nonfull harmonic maps into pieces

corresponding to the dimension of the sphere where the image of the map lies,

as follows.

Definition 5. For ` ≤ m, let

Harm
(≤`)
d (S2, Sm) =

¶
ϕ ∈ Harmd(S

2, Sm) : ϕ(S2) ⊆ Sm ∩ V,

for some V ∈ Gr(`+ 1,Rm+1)
©
,

and let

Harm
(2k)
d (S2, Sm) = Harm

(≤2k)
d (S2, Sm) \Harm

(≤2(k−1))
d (S2, Sm).
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The corresponding objects in HHnf
d (S2,Zn) are

HH
(≤k)
d (S2,Zn) =

¶
ψ ∈ HHnf

d (S2,Zn) : ψ(S2) ⊂ ZFn
for some F ∈ Gr(n− k,C2n+1)

©
and

HH
(k)
d (S2,Zn) = HH

(≤k)
d (S2,Zn) \HH

(≤k−1)
d (S2,Zn),

where, for F ∈ Gr(n− r,C2n+1), ZFn := {W ⊕ F ∈ Zn : W ∈ Zr((F ⊕ F̄ )⊥)}.

These definitions also appear in [10]. Note that the set Harm
(2k)
d (S2, Sm)

consists of maps that are linearly full in some 2k-dimensional geodesic sub-

sphere of Sm.

The map π : Zn → S2n induces surjective maps

Π± : HHd(S
2,Zn)→ Harmf,±

d (S2, S2n) tHarmnf
d (S2, S2n)

defined by Π±(ψ) = ±π◦ψ. Note that Π± map the variety HH
(k)
d (S2,Zn) onto

Harm
(2k)
d (S2, S2n) for k < n and take HH

(n)
d (S2,Zn) ≡ HHf

d(S2,Zn) bijectively

onto Harmf,±
d (S2, S2n) (Theorem 1).

Directly from the definition, and using the fact that Harm
(≤2k+1)
d (S2, Sm)

= Harm
(≤2k)
d (S2, Sm) [6], we have [10]

Harmd(S
2, S2n) = Harmf,+

d (S2, S2n) tHarmf,−
d (S2, S2n)

t Harm
(2(n−1))
d (S2, S2n) tHarm

(2(n−2))
d (S2, S2n) t · · · tHarm

(2)
d (S2, S2n).

and

Harmd(S
2, S2n+1) = Harm

(2n)
d (S2, S2n+1)

t Harm
(2(n−1))
d (S2, S2n+1) t · · · tHarm

(2)
d (S2, S2n+1).

Now we address what is meant by the dimension of these sets. For the

linearly full case this was clear: we implicitly assumed that Harmf,±
d (S2, S2n)

had the structure induced by the bijective maps Π±. In the nonlinearly full

case, if k < n− 1, the maps Π± : HH
(k)
d (S2,Zn)→ Harm

(2k)
d (S2, S2n) are onto

but not bijective; furthermore, when m is odd, we need to discuss the structure

of Harm
(2k)
d (S2, Sm) before being able to study its dimension.

A natural topological structure for the sets Harmd(S
2,Sm) and HHd(S

2,Zn)

is the compact-open topology. On the other hand, since Zn is a subvariety of

degree 2 [1] of P(ΛnC2n+1) ' CPMn (where Mn :=
(2n+1

n

)
− 1) via the Plücker

embedding, the space HHd(S
2,Zn) is a subvariety of the space of holomorphic

maps of degree 2d from S2 to CPMn , which is regarded as the projectivization

of the set of (Mn + 1)-tuples of coprime polynomials in z with maximum

degree exactly 2d. Therefore, HHd(S
2,Zn) is a quasi-projective subvariety of

P(C[z]Mn+1
2d ) and, in particular, each irreducible component is a topological
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manifold, maybe with singularities. (In fact this topology coincides with the

compact-open topology.) It is shown in [10] that the maps Π± : HHd(S
2,Zn)→

Harmd(S
2, S2n) are continuous and closed. Further, Π± : HH

(k)
d (S2,Zn) →

Harm
(2k)
d (S2, S2n) is a fiber bundle with fiber SO(2(n − k),R)/U(n − k). For

any m, we also have the fiber bundle

ρk : Harm
(2k)
d (S2, Sm)→Gr(2k + 1,Rm+1)

ϕ→ (2k + 1)-subspace where ϕ(S2) lies,

with fiber Harmf,+
d (S2, S2k). Hence the sets Harm

(2k)
d (S2, Sm) are finite di-

mensional topological manifolds away from possible singular points. This is all

the structure we need in order to calculate their dimension.

In addition, the space HHd(S
2,Zn) has an analytic structure as a subvari-

ety of P(C[z]Mn+1
2d ), and so does Harmd(S

2, Sm) as a subvariety of the manifold

C∞(S2, Sm). With these structures, the maps Π± are real analytic submer-

sions, and the bundles described above are real analytic, of course away from

the (possible) singular locus. (See [19] for the n = 2 case; for n > 2 it is

similar.)

Further, for k ≥ n − 1, the complex structure of HH
(k)
d (S2,Zn) can be

transferred to Harm
(2k)
d (S2, S2n) via the diffeomorphisms Π±. However, for

k < n − 1, we do not know if the spaces Harm
(2k)
d (S2, S2n) admit a complex

structure; we use complex instead of real dimension in the theorem below just

to have a more compact statement.

Now we find the dimension of Harm
(2k)
d (S2, Sm) using the fiber bundle

given by ρk explained above.

Theorem 5. When m = 2n is even,

dimC(Harm
(2k)
d (S2, S2n)) = 2d+ n2 − (n− k)(n− k − 1).

In particular,

dimC(Harmd(S
2, S2n)) = 2d+ n2.

When m = 2n+ 1 is odd,

dimR(Harm
(2k)
d (S2, S2n+1)) = 2[2d+ n2 − (n− k)(n− k − 1)] + 2k + 1.

In particular,

dimR(Harmd(S
2, S2n+1)) = 2(2d+ n2) + 2n+ 1.

Proof. The fiber of the surjective map

ρk : Harmd(S
2, S2k)→ Gr(2k + 1,Rm+1)
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is Harmf,+
d (S2, S2k)) at every point. Therefore

dimR(Harm
(2k)
d (S2, Sm))=dimR(Harmf,+

d (S2, S2k)) + dimR(Gr(2k + 1,Rm+1))

=2(2d+ k2) + (2k + 1)(m− 2k),

so for m even,

dimR(Harm
(2k)
d (S2, S2n)) = 2[2d+ n2 − (n− k)(n− k − 1)],

and therefore

dimC(Harm
(2k)
d (S2, S2n)) = 2d+ n2 − (n− k)(n− k − 1),

and for m odd,

dimR(Harm
(2k)
d (S2, S2n+1)) = 2[2d+ n2 − (n− k)(n− k − 1)] + 2k + 1. �

It is an interesting fact that dimC(Harmnf
d (S2, S2n)) is 2d+ n2, i.e., equal

to dimC(Harmf
d(S2, S2n)).

7. Proof of Theorem 2

We fix the following notation.

• If S is a subset of a vector space, we will use 〈S〉 to denote the span of S.

• For an isotropic basis β = {E0, E1, . . . , En, Ē1, . . . , Ēn} of C2n+1, the sub-

spaces 〈E1, . . . , En〉 and 〈Ē1, . . . , Ēn〉 will be denoted by Eβ and Ēβ, respec-

tively.

• Given two subspaces V1, V2 of CN , we will denote (‘ISO’ refers to ‘isotropic’)

HomISO(V1, V2) := {L ∈ Hom(V1, V2) : (L(v1), v1) = 0 ∀v1 ∈ V1}.

• Let ψ ∈ HHf
d(S2,Zn), and let β be an isotropic basis of C2n+1. The compo-

nents of Cβ(ψ) corresponding to s and α1 in homogeneous coordinates (i.e.,

the first and second components) will be denoted by (Cβ(ψ))s and (Cβ(ψ))α1 ,

respectively. In other words, writing Cβ(ψ) = [s : α1 : · · · : αn : τ12 : · · · :

τn−1,n], define

(Cβ(ψ))s := s and (Cβ(ψ))α1 := α1.

The proof of Theorem 2 goes as follows:

(i) Show that Bβ(PDf
d,0(S2,CPNn)) ⊂ HHf

d(S2,Zn). This is done in Proposi-

tion 5.

(ii) Show that Bβ(PDf
d,0(S2,CPNn)) is open in HHf

d(S2,Zn) and that every

ψ ∈ HHf
d(S2,Zn) is in the image of Bβ for some basis β. This is done in

Lemma 9, after preparing it with several lemmas.

Since Bβ is algebraic and has algebraic inverse Cβ, this will prove the theorem.

The following proposition asserts that Bβ(ψ̃) has the same degree as ψ̃

when ψ̃ ∈ PDf
d,0(S2,CPNn). Its proof is unexpectedly simple.
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Proposition 5. Let β be an isotropic basis of CNn .

(i) If ψ̃ ∈ PDf
d(S2,CPNn), then the degree of Bβ(ψ̃) is at least d.

(ii) Bβ(PDf
d,0(S2,CPNn)) ⊂ HHf

d(S2,Zn).

Proof. Let ψ̃ = [s : α1 : · · · : αn : τ12 : · · · : τn−1,n] ∈ PDf
d(S2,CPNn),

and let ψ = B(ψ̃) = bβ ◦ ψ̃. We need to prove that the degree of ψ is d, or

equivalently, composing with the Plücker embedding, that the degree of Pl ◦ψ
is 2d.

The map Pl◦ψ = Pl◦ bβ ◦ ψ̃ : S2 → PΛnC2n+1 is given, in a suitable basis

of ΛnC2n+1, by the projectivization of the vector whose components are the

n× n minors of the n× (2n+ 1) matrix

(α/s, In, −(α tα+ sT )/2s2)

(notation as in expressions (5) and (6)). To study the degree of Pl ◦ ψ, we

will multiply the components of the vector formed by the n by n minors of

this matrix by a suitable homogenizing factor h so as to obtain a vector whose

components are polynomials without common factors. Since all the minors of

the matrix above are homogeneous rational functions of degree 0, and since

one of them is 1, the degree of Pl ◦ ψ must be equal to the degree of the

homogenizing factor h.

Note that the expressions α2
i /s

2, 1 ≤ i ≤ n, and τ2
jk/s

2, 1 ≤ j, k ≤ n,

appear as minors of the matrix (α/s, In, −(α tα + sT )/2s2). Since s, αi and

τjk cannot vanish simultaneously, h must be a multiple of s2. This implies that

the degree of Bβ(ψ̃) is at least d, proving (i).

If ψ ∈ PDf
d,0(S2,CPNn), we can use the assumption that s has simple

zeros z1, z2, . . . , zd and α1(zm) 6= 0, 1 ≤ m ≤ d. Since the denominators of

all the minors divide a power of s, the homogenizing factor h can only have

roots at the zeros z1, z2, . . . , zd of s. Performing row operations on the matrix

(α/s, In,−(α tα+sT )/2s2) does not alter the map Pl◦ψ. So to row i, 2 ≤ i ≤ n,

let us add the first row times the factor

−α1αi + sτ1i

α2
1

so as to obtain zeros in the n+ 2 column, rows 2 to n.

Then, for 2 ≤ i ≤ n, the (i, 1)-entry of the new matrix becomes τ1i/α1,

the (i, 2)-entry becomes
−α1αi + sτ1i

α2
1

,

the (i, n+ 2)-entry becomes 0 and the (i, j)-entry, n+ 3 ≤ j ≤ 2n+ 1, becomes

α1τji + αiτ1j + αjτi1
2sα1

− τ1iτ1j

2α2
1

.
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Here is where the magic appears: since ψ̃ ∈ PDf
d,0(S2,CPNn), the equations

α′1αj − α1α
′
j = sτ ′1j − s′τ1j ,

α′jαi − αjα′i = sτ ′ji − s′τji,

α′iα1 − αiα′1 = sτ ′i1 − s′τi1

must hold for 1 < i, j < n. (When i = j, define τij = 0.) Multiplying the first

equation by αi, the second by α1, the third by αj , and adding, the left-hand

side cancels, and we obtain the equation

s′(α1τji + αiτ1j + αjτi1) = s(α1τ
′
ji + αiτ

′
1j + αjτ

′
i1).

Therefore, the matrix obtained after doing these row operations and multiply-
ing the first row by 2s2 is given by
(19)Ü

2sα1 2s2 0 · · · 0 −α2
1 (−α1αj − sτ1j)1jÄ

τ1i
α1

ä
i1

(
−α1αi+sτ1i

α2
1

)
i2

In−1 0
(
α1τ

′
ji+αiτ

′
1j+αjτ

′
i1

2s′α1
− τ1iτ1j

2α2
1

)
ij

ê
.

As before, multiply the components of the vector formed by the n × n

minors of this matrix by a suitable homogenizing factor ĥ to obtain a vector

whose components are polynomials without common factors. The same argu-

ment as before shows that ĥ can only vanish at the zeros of s′ and α1, which

by hypothesis are different from those of s.

But then the component corresponding to Eβ (i.e., the minor of columns

2 to n+ 1) is, on the one hand equal to the homogenizing factor h (which has

zeros only at the zeros of s), and on the other hand equal to 2s2ĥ. Since this

last expression only vanishes to order 2 at the zeros of s, the homogenizing

factor h must be a constant multiple of s2. Since s has degree d, h has degree

2d, and we conclude that the degree of Pl ◦ ψ is 2d, which implies that the

degree of ψ = Bβ(ψ̃) is d. �

Now we must prove two things: first, that Bβ(PDf
d,0(S2,CPNn)) is open

in HHf
d(S2,Zn), and second, that every ψ ∈ HHf

d(S2,Zn) is in the image

of Bβ(PDf
d,0(S2,CPNn)) for some β. What we will actually do is, given ψ ∈

HHf
d(S2,Zn), describe an open subset of HHf

d(S2,Zn) containing ψ (essentially

the set of those ψ̂ so that dim(ψ̂(z) ∩ Ēβ) ≤ 1 ∀z) and show that it equals

Bβ(PDf
d,0(S2,CPNn)).

First we need some tools. Note that the ‘trouble’ for ψ̃ = Bβ(ψ) only

happens at the zeros of its first component s. These points correspond, for

the map ψ, to incidence with the n-plane Ēβ. This motivates the following

definition.
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Definition 6. For F ∈ Zn, let

I(≥k)
F = {P ∈ Zn : dim(F ∩ P ) ≥ k},
I(k)

F = {P ∈ Zn : dim(F ∩ P ) = k}.

The relationship between the vanishing of s and the variety I(≥1)

Ēβ
is clarified

in the following lemma.

Lemma 6.

(i) Let ψ ∈ HHf
d(S2,Zn), and let β = {E0, E1, . . . , En, Ē1, . . . , Ēn} be an

isotropic basis of CNn . Write Cβ(ψ) = [s : α1 : · · · : αn : τ12 : · · · : τn−1,n].

Then

ψ(z) ∈ I(≥1)

Ēβ
=⇒ s(z) = 0.

(ii) Let ψ̃ = [s : α1 : · · · : αn : τ12 : · · · : τn−1,n] ∈ PDf
d(S2,CPNn). Then, if s

has only simple zeros (in particular if ψ̃ ∈ PDf
d,0(S2,CPNn)),

s(z) = 0 =⇒ (Bβ(ψ̃))(z) ∈ I(1)

Ēβ
.

Proof. (i) If s(z) 6= 0, then ψ(z) is the span of the vectors

α`
s
E0 + E` −

n∑
k=1

Å
α`αk
2s2

+
τ`k
2s

ã
Ek, 1 ≤ ` ≤ n,

with s, αi and τjk evaluated at z. This implies ψ(z)∩ Ēβ = {0}, and therefore

ψ(z) 6∈ I(≥1)

Ēβ
.

(ii) As in the proof of Proposition 5, if s(z) = 0 and α1(z) 6= 0, then Bβ(ψ̃)

can be expressed as the subspace spanned by the rows of the matrix (19):á
0 0 0 · · · 0 −α2

1 (−α1αj)1jÄ
τ1i
α1

ä
i1

Ä−αi
α1

ä
i2

In−1 0

Å
α1τ ′ji+αiτ

′
1j+αjτ

′
i1

2s′α1
− τ1iτ1j

2α2
1

ã
ij

ë
,

where all the functions involved are evaluated at z. (Note that since s has

only simple roots, s′(z) does not vanish.) This implies that (Bβ(ψ̃))(z)∩ Ēβ =

〈−α1(α1Ē1 + · · ·+ αnĒn)〉, and therefore (Bβ(ψ̃))(z) ∈ I(1)

Ēβ
.

If s(z) = 0 and α1(z) = 0, note that since ψ̃ satisfies equation (7), and since

s has only simple roots, not all the αi, 1 ≤ i ≤ n, can vanish simultaneously at

any of the zeros of s, for otherwise equation (7) would imply that the τij also

vanish at that point, which is impossible. Therefore, we can proceed as in the

proof of Proposition 5 to obtain an expression similar to (19) using αi instead

of α1 and then use the same argument as in the last paragraph. �
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Now the idea is the following. The variety I(≥1)

Ēβ
generates the codimension

2 homology of Zn. Therefore, a map ψ ∈ HHf
d(S2,Zn) will intersect I(≥1)

Ēβ
at

exactly d points, counted with multiplicity. If we are able to choose a basis β

so that ψ intersects I(≥1)

Ēβ
transversely and only in I(1)

Ēβ
, it will do so at d distinct

points, and therefore s will have d distinct roots; with some additional light

conditions on β, this will imply that Cβ(ψ) lies in PDf
d,0(S2,CPNn).

It is for this reason that we now study some properties of the sets I(≥k)
Ēβ

.

The following is well known.

Lemma 7. Let F ∈ Zn. The set I(≥k)
F is a subvariety of Zn of codimension

k(k + 1)/2 and I(k)

F is an open subvariety of I(≥k)
F .

Proof. Let {F1, F2, . . . , Fn} be a basis of F . Then I(≥k)
F can be expressed

as

I(≥k)
F = {P ∈ Zn : Pl(P )∧Fi1 ∧Fi2 ∧· · ·∧Fin−k+1

= 0, 1 ≤ i1, . . . , in−k+1 ≤ n}.

Thus I(≥k)
F is a projective variety. This description also shows that, for all k,

I(≥k+1)

F is a proper closed subvariety of I(≥k)
F . Hence, since I(≥k)

F = I(k)

F ∪ I
(≥k+1)

F ,

I(k)

F must be an open subvariety of I(≥k)
F .

To compute the dimension of I(≥k)
F , consider the incidence correspondence

Ψk = {(Γ, P ) : Γ ⊂ P} ⊂ Gr(k, F )×Zn.

The projection into the first factor is onto with the fiber over Γ ∈ Gr(k, F )

being the set of pairs (Γ,Γ⊕W ) where W is an isotropic (n−k)-plane lying in

(Γ ⊕ Γ̄)⊥. This set is isomorphic to Zn−k and hence irreducible of dimension

(n− k)(n− k + 1)/2. Hence Ψk is irreducible of dimension

k(n− k) + (n− k)(n− k + 1)/2 = n(n+ 1)/2− k(k + 1)/2

(see for example [14, Lecture 11]). Since the variety I(≥k)
F is the image of Ψk

under the second projection, which is one-to-one except in the closed sub-

set I(≥k+1)

F ⊂ I(≥k)
F , we have that I(≥k)

F is also irreducible with codimension

k(k + 1)/2. �

The following lemma gives a criterion for transversality. It is also proved

that I(≥1)

F generates the codimension 2 homology of Zn.

Lemma 8. Let F ∈ Zn and let P ∈ I(1)

F . Write P = 〈P1〉 ⊕ P ′, where

P1 ∈ P ∩ F and P ′ ⊥ P1. Let 0 6= P0 ∈ (P ⊕ P̄ )⊥ with P0 = P̄0. Then

(i) P⊥ = 〈P0〉 ⊕ 〈P̄1〉 ⊕ (P + F ) ∩ P⊥.
(ii) TPZn=Hom(〈P1〉, 〈P0〉)⊕Hom(P ′, 〈P0〉)⊕HomISO(P, 〈P̄1〉⊕(P+F )∩P⊥).

(Recall that HomISO(V1, V2) was defined at the beginning of Section 7.)
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(iii) TP I
(1)

F = Hom(P ′, 〈P0〉)⊕HomISO(P, 〈P̄1〉⊕ (P +F )∩P⊥). Therefore, I(1)

F

is regular.

(iv) (Criterion for transversality). Let γ : S2 → Zn be a holomorphic curve

such that P = γ(z) ∈ I(1)

F for some z ∈ S2. Let 0 6= P1 ∈ P ∩ F , and

suppose that γ′(z)(P1) ∈ (P ⊕ P̄ )⊥. Then γ intersects I(1)

F transversely at

P if and only if γ′(z)(P1) 6= 0.

(v) The variety I(≥1)

F intersects a generator of H2(Zn,Z) = Z [21] transversely

in a single point. Therefore, a curve in Zn that intersects I(≥1)

F transversely

and only at regular points of I(≥1)

F has degree equal to the number of points

of intersection.

Proof. (i) It is clear that P⊥ ⊇ 〈P0〉+ 〈P̄1〉+ (P + F ) ∩ P⊥. In addition,

since P +F has dimension 2n− 1, (P +F )∩P⊥ must have dimension at least

n− 1, so we only have to prove linear independence.

Suppose that a0P0+a1P̄1+vP +vF = 0, where a0, a1 ∈ C, vP ∈ P , vF ∈ F ,

and vP + vF ∈ (P + F ) ∩ P⊥. Since (P1, P0) = (P1, vP ) = (P1, vF ) = 0, we

must have 0 = (P1, a0P0 + a1P̄1 + vP + vF ) = a1 (P1, P̄1), so a1 = 0.

Therefore, a0P0 + vP = −vF , so since (P0, vP ) = (vP , vP ) = (vF , vF ) = 0,

we must have a2
0 (P0, P0) = (a0P0 + vP , a0P0 + vP ) = (vF , vF ) = 0, so a0 = 0

and therefore vP + vF = 0.

(ii) Let L ∈ Hom(P, P⊥). Then L can be written as L = L0 + L1, where

L0 ∈ Hom(P, 〈P0〉) and L1 ∈ Hom(P, 〈P̄1〉 ⊕ (P + F ) ∩ P⊥).

The map L0+L1 is in TPZn if and only if, for all u ∈ P , (L0(u)+ L1(u), u)

= 0. Since (L0(u), u) = 0 for all u ∈ P , (L0(u)+L1(u), u) = 0 if and only if

(L1(u), u) = 0, i.e., if and only if L0 ∈ Hom(P, 〈P0〉) = Hom(〈P1〉, 〈P0〉) ⊕
Hom(P ′, 〈P0〉), L1 ∈ HomISO(P, 〈P̄1〉 ⊕ (P + F ) ∩ P⊥).

(iii) The geometric idea is the following. Given a curve in I(≥1)

F , any curve

in C2n+1 tracing the intersection between the given curve and F must have

derivative contained in F , which essentially implies the claim.

More algebraically, the variety I(≥1)

F ⊂ Zn is the zero locus of f(Q) =

Pl(Q) ∧ Pl(F ). Thus TP I
(1)

F consists of those L ∈ TPZn such that dfP (L) = 0.

We need to prove that L(P1) ∈ (F + P ) ∩ P⊥.

So let L ∈ TPZn and let {P2, . . . , Pn} be a basis of P ′. Take curves ci(t)

in C2n+1 such that ci(0) = Pi and c′i(0) = L(Pi) ∈ P⊥, 1 ≤ i ≤ n. Then, since

P1 ∈ F ,

dfP (L) =
d

dt |t=0

c1(t) ∧ · · · ∧ cn(t) ∧ Pl(F )

= c′1(0) ∧ P2 ∧ · · · ∧ Pn ∧ Pl(F )

=L(P1) ∧ P2 ∧ · · · ∧ Pn ∧ Pl(F )

which is 0 if and only if L(P1) ∈ (F + P ) ∩ P⊥. This proves the claim.
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(iv) Since TP I
(1)

F has codimension 1 in TPZn, proving transversality is

equivalent to showing that 0 6= γ′(z) 6∈ TP I(1)

F . Using the hypotheses on γ and

part (iii), γ′(z)∈TP I(1)

F if and only if γ′(z)(P1)∈((P+F )∩P⊥)∩(P⊕P̄ )⊥={0}.
(v) The curve G : CP1 → Zn given by

G([w0 : w1]) =

Æ
w0w1P0 + w2

0P1 −
w2

1

2
P̄1

∏
⊕ Pl(P ′)

is a generator of H2(Zn,Z) [21]. This curve intersects I(≥1)

F only at P , i.e.,

when w0 = 1, w1 = 0.

Let g(z) ∈ G([1 : z]) be the curve g(z) = zP0 +P1− z2P̄1. Then g(0) = P1

and g′(0) = P0 6= 0, which implies that 0 6= G′([1 : 0])(P1) = P0 ∈ (P ⊕ P̄ )⊥,

and therefore, by (iv), the curve G intersects TP I
(1)

F transversely at a single

point. �

Suppose that ψ ∈ HHf
d(S2,Zn). In view of the previous lemma, our goal

is now to find a basis β such that ψ intersects Ēβ = 〈Ē1, . . . , Ēn〉 transversely

at d points and with some additional properties. This is what we do in the

following lemma.

Lemma 9. Given ψ ∈ HHf
d(S2,Zn) there exists a basis β such that the

image of ψ intersects I(≥1)

Ēβ
only at I(1)

Ēβ
and transversely, such that (Cβ(ψ))α1 is

not 0 at the points of intersection, and such that (Cβ(ψ))s is not 0 at the point

∞ ∈ S2.

Proof. The idea is to show that the set of elements Ē ∈ Zn that are ‘bad’

(meaning that ψ intersects I(≥2)

Ē
, or intersects I(≥1)

Ē
nontransversely, etc.) is a

proper closed subset of Zn so its complement is nonempty.

To this end, consider the following subvarieties of Zn:

A1 =
¶
Ē ∈ Zn : ψ(z) ∈ I(≥1)

Ē
for some z ∈ S2

and ψ′(z)(P1) = 0 for some 0 6= P1 ∈ ψ(z) ∩ Ē
}
,

A2 = {Ē ∈ Zn : ψ intersects I(≥2)

Ē
}.

To study A1, consider the incidence correspondence

Ψ1 = {(z, P1, Ē) ∈ S2×(C2n+1\{0})×Zn : P1 ∈ Ē∩ψ(z) and ψ′(z)(P1) = 0}.

Then A1 = π3(Ψ1), where π3 denotes projection on the third factor. We calcu-

late the dimension of π3(Ψ1) as follows. Consider the incidence correspondence“Ψ1 = {(z, P1) ∈ S2 × (C2n+1 \ {0}) : P1 ∈ ψ(z) and ψ′(z)(P1) = 0}.

Projection in “Ψ1 into the first factor is clearly onto S2, and the fiber over

z ∈ S2 is the set of pairs (z, P1) such that P1 6= 0 is in the kernel of ψ′(z) :

ψ(z) → (ψ(z))⊥. Since ψ ∈ HHf
d(S2,Zn), ψ′(z) is horizontal so the image of

ψ′(z) lies in (ψ(z) ⊕ ψ(z))⊥. Hence the kernel of ψ′(z) has dimension n − 1
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except at the finite set of points where ψ is singular, where it has dimension n.

This implies that “Ψ1 has dimension n.

Now look at the projection π12 : Ψ1 → “Ψ1 defined by π12(z, P1, Ē) =

(z, P1). This projection is onto, and its fiber over a point (z, P1) ∈ “Ψ1 is given

by {(z, P1, Ē) : Ē 3 P1}. Given 0 6= P1 ∈ C2n+1 isotropic, we have

{Ē ∈ Zn : Ē 3 P1} = {P1 ⊕ Ē′ : Ē′ ∈ Z((P1 ⊕ P̄1)⊥)},

which is isomorphic to Zn−1 and therefore has dimension n(n − 1)/2. This

implies that Ψ1 has dimension n+ n(n− 1)/2 = n(n+ 1)/2.

Finally consider the projection π3 : Ψ1 → Zn on the third factor. The

fiber of this projection over Ē ∈ Zn consists of the triples (z, P1, Ē) such that

ψ(z) ∈ I(≥1)

Ē
, and 0 6= P1 ∈ Ē ∩ ker(ψ′(z)). The set of z ∈ S2 satisfying the

first condition is finite (because ψ is linearly full) and, for each z in this set,

the set of P1 satisfying the second condition has dimension at least 1. This

implies that A1 = π3(Ψ1) is a subvariety of Zn with codimension at least 1.

To study A2, use the incidence correspondence given by

Ψ2 = {(z, Ē) ∈ S2 ×Zn : ψ(z) ∈ I(≥2)

Ē
}.

Note that A2 = π2(Ψ2), where π2 denotes the projection on the second factor.

Projection over the first factor in Ψ2 is onto, and the fiber over z ∈ S2 is the

set of pairs (z, Ē) such that Ē ∈ I(≥2)

ψ(z), which has codimension 3 in Zn. Hence

dim(Ψ2) = dim(Zn)−2, which implies that π2(Ψ2) = A2 must be a subvariety

of Zn of codimension at least two.

Therefore, we have that A1 and A2 are proper subvarieties of Zn. If β

is any basis such that Ēβ ∈ Zn is outside of these two sets, then ψ does not

intersect I(≥2)

Ēβ
, ψ intersects I(≥1)

Ēβ
only in I(1)

Ēβ
, and by Lemma 8(iv), ψ intersects

I(1)

Ēβ
transversely.

Now we have to deal with the remaining constraints. Let

A3 = I(1)

ψ(∞) ∩ (Zn \ (A1 ∪ A2)).

The quasi-algebraic variety A3 has codimension 1, and if β is any basis such

that Ēβ 6∈ A3, then Lemma 8(v), together with Lemma 6(i), implies that

(Cβ(ψ))s has only d simple zeros, located at the points z where ψ(z) ∈ I(1)

Ēβ
.

Since ψ ∈ A3, ψ(∞) 6∈ I(1)

Ēβ
, Lemma 6(ii) implies that (Cβ(ψ))s is not 0 at

infinity.

Finally, let β = {E0, E1, . . . , En, Ē1, . . . , Ēn} be a basis such that Ēβ ∈ Zn
is outside of A3. For convenience, write (Cβ(ψ)) = [s : α1 : · · · : αn : τ12 : · · · :
τn−1,n]. Since s has only simple zeros, equation (7) implies that at least one

of the αi, 1 ≤ i ≤ n, must be nonzero at the zeros of s. Therefore, we can

find a matrix (aij)ij ∈ U(n) such that a11α1 + · · ·+ a1nαn is not zero where s
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vanishes. Then the basis

β′ =

®
E0,

n∑
i=1

a1iEi, . . . ,
n∑
i=1

aniEi,
n∑
i=1

ā1iĒi, . . . ,
n∑
i=1

āniĒi

´
is isotropic and satisfies Ēβ′ = Ēβ 6∈ A3 and (Cβ′(ψ))α1 = a11α1 + · · ·+ a1nαn,

which by hypothesis does not vanish at the zeros of s. �

We restate Theorem 2 here and complete its proof.

Theorem 2. Given ψ ∈ HHf
d(S2,Zn), there exists a basis β and an open

set Uβ ⊆ HHf
d(S2,Zn) containing ψ such that

Bβ : PDf
d,0(S2,CPNn)→ Uβ

is an algebraic isomorphism.

Proof. Let β be a basis with the properties of Lemma 9. Then consider

the set

Uβ = {ψ̂ ∈ HHf
d(S2,Zn) : Im(ψ̂) ∩ I(≥2)

Ēβ
= ∅, ψ̂ intersects I(1)

Ēβ
transversely,

(Cβ(ψ̂))s(∞) 6= 0, and (Cβ(ψ̂))α1(z) 6= 0 at the points of intersection}.

The set Uβ ⊆ HHf
d(S2,Zn) is defined by open conditions and it is nonempty

since ψ ∈ Uβ.

So let ψ̂ ∈ Uβ, and write Cβ(ψ̂) = [s : α1 : · · · : αn : τ12 : · · · : τn−1,n].

Since ψ̂ intersects I(≥1)

Ēβ
transversely and only in I(1)

Ēβ
, which by Lemma 8(iii)

is regular, Lemma 8(v) implies that ψ̂ intersects I(1)

Ēβ
only at d distinct points

{ψ̂(z1), . . . , ψ̂(zd)}.
Now Lemma 6(ii) implies that s(z`) = 0, 1 ≤ ` ≤ d. Since s(∞) 6= 0,

z` ∈ C for 1 ≤ ` ≤ d. Also, since ψ̂ ∈ Uβ, α1(zi) 6= 0, and therefore the

degree of Cβ(ψ̂) is at least d. But on the other hand, Proposition 5(i) asserts

that this degree cannot exceed d. Therefore, Cβ(ψ̂) has degree d, s has d

distinct roots zm ∈ C and α1(z`) 6= 0 for 1 ≤ ` ≤ d. This implies that

Cβ(Uβ) ⊆ PDf
d,0(S2,CPNn).

On the other hand, from Proposition 5(ii) and Lemma 6(ii) it follows that

Bβ(PDf
d,0(S2,CPNn)) ⊆ Uβ. Since Cβ is, by definition, the inverse of Bβ and

they are both algebraic, the proof is complete. �
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