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Mixed Tate motives over Z

By Francis Brown

Abstract

We prove that the category of mixed Tate motives over Z is spanned

by the motivic fundamental group of P1 minus three points. We prove a

conjecture by M. Hoffman which states that every multiple zeta value is a

Q-linear combination of ζ(n1, . . . , nr), where ni ∈ {2, 3}.

1. Introduction

LetMT (Z) denote the category of mixed Tate motives unramified over Z.

It is a Tannakian category with Galois group GMT . Let MT ′(Z) denote the

full Tannakian subcategory generated by the motivic fundamental group of

P1\{0, 1,∞} and denote its Galois group by GMT ′ . The following conjecture

is well known.

Conjecture 1. The map GMT →→ GMT ′ is an isomorphism.

Some consequences of this conjecture are explained in [1, §25.5–25.7]. In

particular, it implies a conjecture due to Deligne and Ihara on the outer ac-

tion of Gal(Q/Q) on the pro-` fundamental group of P1\{0, 1,∞}. Another

consequence is that the periods of MT (Z) are Q[ 1
2πi ]-linear combinations of

multiple zeta values

(1.1) ζ(n1, . . . , nr) =
∑

0<k1<...<kr

1

kn1
1 . . . knrr

, where ni ≥ 1, nr ≥ 2.

On the other hand, M. Hoffman proposed a conjectural basis for the Q-

vector space spanned by multiple zeta values in [6]. The algebraic part of this

conjecture is

Conjecture 2. Every multiple zeta value (1.1) is a Q-linear combination

of

(1.2) {ζ(n1, . . . , nr), where n1, . . . , nr ∈ {2, 3}}.

In this paper we prove Conjectures 1 and 2 using motivic multiple zeta

values. These are elements in a certain graded comodule HMT+ over the affine

ring of functions on the prounipotent part of GMT and are graded versions of

the motivic iterated integrals defined in [5]. We denote each motivic multiple
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zeta value by a symbol

(1.3) ζm(n1, . . . , nr), where ni ≥ 1, nr ≥ 2,

and its period is the multiple zeta value (1.1). Note that in our setting ζm(2)

is not zero, by contrast with [5]. Our main result is the following.

Theorem 1.1. The set of elements

(1.4) {ζm(n1, . . . , nr), where ni ∈ {2, 3}}

are a basis of the Q-vector space of motivic multiple zeta values.

Since the dimension of the basis (1.4) coincides with the known dimension

for HMT+ in each degree, this implies Conjecture 1. Conjecture 2 follows from

Theorem 1.1 by applying the period map. Both conjectures together imply the

following

Corollary 1.2. The periods of every mixed Tate motive over Z are

Q[ 1
2πi ]-linear combinations of ζ(n1, . . . , nr), where n1, . . . , nr ∈ {2, 3}.

1.1. Outline. The structure of the de Rham realization of GMT is well

known: there is a split exact sequence

1 −→ GU −→ GMT −→ Gm −→ 1,

where GU is a prounipotent group whose Lie algebra is free, generated by one

element σ2n+1 in degree −2n− 1 for all n ≥ 1. Let AMT be the graded affine

ring of GU over Q. It is a cofree commutative graded Hopf algebra cogenerated

by one element f2n+1 in degree 2n+1 for all n ≥ 1. Consider the free comodule

over AMT defined by

HMT+ = AMT ⊗Q Q[f2],

where f2 is in degree 2, has trivial coaction, and is an artefact to keep track

of even Tate twists (since multiple zeta values are real numbers, we need not

consider odd Tate twists). In keeping with the usual terminology for multiple

zeta values, we refer to the grading on HMT+ as the weight, which is one

half the motivic weight. After making some choices, the motivic multiple zeta

values (1.3) can be viewed as elements of HMT+ defined by functions on a

certain subscheme of the motivic torsor of paths of P1\{0, 1,∞} from 0 to 1.

They have a canonical period given by a coefficient in Drinfel′d’s associator,

and the element ζm(2), which is nonzero in our setting, corresponds to f2.

Let H ⊆ HMT+ denote the subspace spanned by the motivic multiple

zetas. By Ihara, the action of GU on the motivic torsor of paths is determined

by its action on the trivial de Rham path from 0 to 1. The dual coaction

(1.5) ∆ : H −→ AMT ⊗Q H

can be determined by a formula due to Goncharov [5].
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Let H2,3 ⊆ H be the vector subspace spanned by the elements (1.4). We

define an increasing filtration F• on H2,3, called the level, by the number of

arguments ni in ζm(n1, . . . , nm) which are equal to 3. We show that H2,3 and

the F`H2,3 are stable under the action of GU , and that GU acts trivially on

the grF` (H2,3). As a consequence, the action of GU on F`H2,3/F`−2H2,3 factors

through the abelianization Gab
U of GU . By construction, grF` H

2,3
N is spanned by

elements (1.4) indexed by the words in the letters 2 and 3, with ` letters 3, and

m letters 2, where 3`+2m = N . Let (grF` H2,3)∼ be the vector space generated

by the same words. The commutative Lie algebra LieGab
U is generated by one

element in every degree −2i− 1 (i ≥ 1). We compute their actions

(1.6) ∂N,` : grF` H
2,3
N −→

⊕
1<2i+1≤N

grF`−1H
2,3
N−2i−1

by constructing maps

(1.7) ∂∼N,` : (grF` H
2,3
N )∼ −→

⊕
1<2i+1≤N

(grF`−1H
2,3
N−2i−1)∼,

such that the following diagram commutes:

(grF` H
2,3
N )∼ −→ ⊕

1<2i+1≤N (grF`−1H
2,3
N−2i−1)∼

↓ ↓
grF` H

2,3
N −→ ⊕

1<2i+1≤N grF`−1H
2,3
N−2i−1.

Using the explicit formula for the coaction (1.5), we write the maps ∂∼N,` as

matrices MN,` whose entries are linear combinations of certain rational num-

bers cw ∈ Q, where w is a word in {2, 3} which has a single 3. The numbers

cw are defined as follows. We prove that for all a, b ∈ N, there exist numbers

αa,bi ∈ Q such that

(1.8) ζm(2, . . . , 2︸ ︷︷ ︸
a

, 3, 2, . . . , 2︸ ︷︷ ︸
b

) = αa,bn ζm(2n+1)+
n−1∑
i=1

αa,bi ζm(2i+1)ζm(2, . . . , 2︸ ︷︷ ︸
n−i

),

where n = a + b + 1. For any word w of the form 2{a}32{b}, the number cw
is the coefficient αa,bn of ζm(2n + 1) in (1.8). At this point we use a crucial

arithmetic result due to Don Zagier [9], who proved an explicit formula for

ζ(2, . . . , 2, 3, 2, . . . , 2) in terms of ζ(2i+ 1) and powers of π of the same shape

as (1.8). Since the transcendence conjectures for multiple zeta values are not

known, this does not immediately imply a formula for the coefficients αa,bi .

However, in Section 4 we show how to lift Zagier’s theorem from real numbers to

motivic multiple zeta values, which yields a precise formula for the coefficients

αa,bi , and in particular, cw. From this, we deduce that the cw satisfy certain

2-adic properties. By exploiting these properties, we show that the matrices

MN,`, which are rather complicated, are in fact upper-triangular to leading

2-adic order. From this, we show that the maps (1.6) are invertible for ` ≥ 1,
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and Theorem 1.1 follows by an induction on the level. The proof also shows

that the level filtration is dual to the filtration induced by the descending

central series of GU .

P. Deligne has obtained analogous results in the case P1\{0, µN ,∞}, where

µN is the set of N th roots of unity, and N = 2, 3, 4, 6 or 8 [3]. His argument

uses the depth filtration and proves that it is dual to the filtration induced by

the descending central series of GU . Note that in the case N = 1 this is false,

starting from weight 12.

The notes [2] might serve as an introduction to this paper.

2. Motivic multiple zeta values

2.1. Preliminaries. With the notation of [4, §5.13], let 0Π1 denote the

de Rham realization of the motivic torsor of paths on P1\{0, 1,∞} from 0

to 1 (with tangent vectors 1, −1 respectively). It is the functor which to

any Q-algebra R associates the set 0Π1(R) of group-like series in the algebra

R〈〈e0, e1〉〉 of noncommutative formal power series in two generators. Its ring

of affine functions over Q is isomorphic to

(2.1) O(0Π1) ∼= Q〈e0, e1〉,

which is a commutative, graded algebra equipped with the shuffle product. To

every word w in the letters e0, e1 corresponds the function which maps a series

S ∈ 0Π1(R) to the coefficient of w (viewed as a word in e0, e1) in S.

Let dch ∈ 0Π1(R) denote the de Rham image of the straight line from

0 to 1 ([4, §5.16]). It is a group-like formal power series in e0 and e1. The

coefficients of words beginning with e1 and ending in e0 are the multiple zeta

values, and dch is also known as the Drinfel′d associator. The coefficients of e0

and e1 vanish, and from this, all the other coefficients are uniquely determined.

Evaluation at dch is a homomorphism

(2.2) dch : O(0Π1) −→ R

which maps a word w in e0, e1 to the coefficient of w in dch.

Since O(0Π1) is the de Rham realization of an (ind-) mixed Tate motive

over Z, the group GMT acts upon 0Π1 ([4, §5.12]). The group GMT ′ in the

introduction is the quotient of GMT by the kernel of this action. Let GU ′ denote

the corresponding quotient of GU . We shall denote the graded ring of affine

functions on GU ′ over Q by

A = O(GU ′).
The action GU ′ × 0Π1 → 0Π1 of the prounipotent part of GMT ′ gives rise to a

coaction

(2.3) O(0Π1) −→ A⊗Q O(0Π1).
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Now let A denote the group of automorphisms of the de Rham fun-

damental groupoid of P1\{0, 1,∞} with base points 0, 1 and which respects

e0 ∈ Lie (0Π0) and e1 ∈ Lie (1Π1). The action of GMT on 0Π1 factors through

the action of A on 0Π1. The latter was computed by Y. Ihara as follows (see [4,

§5.15]). Let 011 denote the identity element in 0Π1. There is an isomorphism

of schemes

(2.4) a 7→ a.011 : A
∼−→ 0Π1.

Via this identification, the action of A on 0Π1 can be computed explicitly. The

morphism (2.4) induces a linear morphism from the Lie algebra of A to the Lie

algebra of 0Π1. It transforms the Lie bracket of Lie(A) into Ihara’s bracket.

The dual coaction

(2.5) O(0Π1)
∆−→ O(A)⊗Q O(0Π1) ∼= O(0Π1)⊗Q O(0Π1)

was computed by Goncharov in [5, Th. 1.2], except that the two right-hand

factors are interchanged. The formula involves O(aΠb) for all a, b ∈ {0, 1},
but it can easily be rewritten in terms of O(0Π1) only. (This is the content of

Properties I0, I1, I3 below.) It follows that the coaction (2.3) is obtained by

composing ∆ of (2.5) with the map

O(0Π1)−→A(2.6)

φ 7→ g 7→ φ(g.011)

applied to the left-hand factor of O(0Π1)⊗QO(0Π1). Note that since Gm acts

trivially on 011, the map (2.6) necessarily loses information about the weight

grading.

2.2. Definition of motivic MZVs. Let I ⊂ O(0Π1) be the kernel of the map

dch (2.2). It describes the Q-linear relations between multiple zeta values. Let

JMT ⊆ I be the largest graded ideal contained in I which is stable under the

coaction (2.3).

Definition 2.1. Define the graded coalgebra of motivic multiple zeta values

to be

(2.7) H = O(0Π1)/JMT .

A word w in the letters 0 and 1 defines an element in (2.1). Denote its image

in H by

(2.8) Im(0;w; 1) ∈ H,

which we shall call a motivic iterated integral. For n0 ≥ 0 and n1, . . . , nr ≥ 1,

let

(2.9) ζmn0
(n1, . . . , nr) = Im(0; 0, . . . , 0︸ ︷︷ ︸

n0

, 1, 0, . . . , 0︸ ︷︷ ︸
n1

, . . . , 1, 0, . . . , 0︸ ︷︷ ︸
nr

; 1).



954 FRANCIS BROWN

In the case when n0 = 0, we shall simply write this ζm(n1, . . . , nr) and call

it a motivic multiple zeta value. As usual, we denote the grading on H by a

subscript.

The coaction (2.3) induces a coaction ∆ : H → A⊗QH. By the discussion

at the end of Section 2.1, it can be computed from (2.5); i.e., the following

diagram commutes:

(2.10)

O(0Π1) −→ A⊗Q O(0Π1)

↓ ↓
H −→ A⊗Q H.

Furthermore, the map dch (2.2) factors through H. The resulting homomor-

phism from H to R shall be called the period map, which we denote by

(2.11) per : H −→ R.

Remark 2.2. The ideal JMT could be called the ideal of motivic relations.

A homogeneous linear combination R ⊂ O(0Π1) of words is a relation between

motivic multiple zetas if

1) R holds numerically (i.e., per(R) = 0),

2) R′ holds numerically for all transforms R′ of R under the coaction (2.3).

This argument is used in Section 4 to lift certain relations from multiple zetas

to their motivic versions, and can be made into a kind of numerical algorithm

(see [2]).

2.3. The role of ζm(2). It is also convenient to consider the dual point of

view. Let Y = SpecH. It is the Zariski closure of the GMT -orbit of dch, i.e.,

Y = GMT .dch.

Thus Y is a subscheme of the extension of scalars 0Π1 ⊗Q R, but is in fact

defined over Q since dch is Betti-rational. Let τ denote the action of Gm on

0Π1. The map τ(λ) multiplies elements of degree d by λd. Let us choose a

rational point γ ∈ Y(Q) which is even, i.e., τ(−1)γ = γ (see [4, §5.20]). Since

GU ′ is the quotient of GU through which it acts on Y, we obtain an isomorphism

GU ′ × A1 ∼−→Y(2.12)

(g, t) 7→ g τ(
√
t).γ.

The parameter t is retrieved by taking the coefficient of e0e1 in the series

g τ(
√
t).γ. Thus (2.12) gives rise to an isomorphism of graded algebra comod-

ules

H ∼= A⊗Q Q[ζm(2)],(2.13)

which depends on γ, where ∆(ζm(2)) = 1 ⊗ ζm(2) (Lemma 3.2). Most of our

constructions will not in fact depend on this choice of γ, but we may fix it once
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and for all. Since the leading term of dch is 011, we have limt→0 τ(t)dch = 011,

which shows that

GU ′ .011 ⊆ Y.
Thus the map H → A is induced by (2.6) and sends ζm(2) to zero.

Definition 2.3. Let us denote the graded ring of affine functions on GU
over Q by

AMT = O(GU )

and define HMT+ = AMT ⊗Q Q[f2], where the elements fk2 are in degree 2k.

Thus HMT+ is a graded algebra comodule over AMT , and its grading shall be

called the weight hereafter. We shall also denote the coaction by

(2.14) ∆ : HMT+ −→ AMT ⊗Q HMT+ .

It is uniquely determined by the property ∆f2 = 1⊗ f2.

In conclusion, the inclusion A → AMT which is dual to the quotient map

GU → GU ′ induces an injective morphism of graded algebra comodules

H −→ HMT+(2.15)

which sends ζm(2) to f2, by (2.13). The map (2.15) implicitly depends on the

choice of γ. Abusively, we sometimes identify motivic multiple zeta values with

their images under (2.15), i.e., as elements in HMT+ .

2.4. Main properties. In order to write down the formula for the coaction

on the motivic iterated integrals, we must slightly extend the notation (2.8).

For all sequences a0, . . . , an+1 ∈ {0, 1}, we define elements

(2.16) Im(a0; a1, . . . , an; an+1) ∈ Hn
which are given by (2.8) if a0 = 0 and an+1 = 1, and are uniquely extended to

all sets of indices ai ∈ {0, 1} as follows. For any a, b ∈ {0, 1}, write

Ia,b =
∑

n≥0,ai∈{0,1}
Im(a; a1, . . . , an; b)ea1 . . . ean

and demand that Ia,b = 1 if a = b, and Ia,b = I−1
b,a .

We summarize the properties satisfied by (2.16) for later reference.

I0: If n ≥ 1, then Im(a0; a1, . . . , an; an+1) = 0 if a0 = an+1 or a1 = · · · = an.

I1: Im(a0; a1) = 1 for all a0, a1 ∈ {0, 1} and ζm(2) = f2.

I2: Shuffle product (special case). For k ≥ 0, n1, . . . , nr ≥ 1, we have

ζmk (n1, . . . , nr) = (−1)k
∑

i1+...+ir=k

Ç
n1 + i1 − 1

i1

å
. . .

Ç
nr + ir − 1

ir

å
ζm(n1 + i1, . . . , nr + ir).
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I3: Reflection formulae. For all a1, . . . , an ∈ {0, 1},

Im(0; a1, . . . , an; 1) = (−1)nIm(1; an, . . . , a1; 0) = Im(0; 1− an, . . . , 1− a1; 1).

The motivic multiple zeta values of [5] are, up to a possible sign, the images of

(2.16) under the map π : H → A which sends ζm(2) to zero. We have shown

(see (2.5), (2.10))

Theorem 2.4. The coaction for the motivic multiple zeta values

(2.17) ∆ : H → A⊗Q H

is given by the same formula as [5, Th. 1.2], with the factors interchanged. In

particular, if a0, . . . , an+1 ∈ {0, 1}, then ∆ Im(a0; a1, . . . , an; an+1) equals

(2.18)∑
i0<i1<...<ik+1
i0=0,ik+1=n+1

π
( k∏
p=0

Im(aip ; aip+1, . . , aip+1−1; aip+1)
)
⊗ Im(a0; ai1 , . . , aik ; an+1),

where the first sum is also over all values of k for 0 ≤ k ≤ n.

Lastly, the period map per : H → R can be computed as follows:

per
Ä
Im(a0; a1, . . . , an; an+1)

ä
=

∫ an+1

a0

ωa1 . . . ωan ,

where ω0 = dt
t , ω1 = dt

1−t , and the right-hand side is a shuffle-regularized iter-

ated integral (e.g., [4] §5.16). Note that the sign of ω1 varies in the literature.

Here, the signs are chosen such that the period of the motivic multiple zeta

values are

(2.19) per
Ä
ζm(n1, . . . , nr)

ä
= ζ(n1, . . . , nr) when nr ≥ 2.

2.5. Structure of HMT+ . The structure of MT (Z) is determined by the

data

Ext1
MT (Z)(Q(0),Q(n)) ∼=

®
Q if n ≥ 3 is odd,

0 otherwise

and the fact that the Ext2’s vanish. Thus MT (Z) is equivalent to the cate-

gory of representations of a group scheme GMT over Q, which is a semi-direct

product

GMT ∼= GU oGm,

where GU is a prounipotent group whose Lie algebra LieGU is isomorphic to the

free Lie algebra with one generator σ2i+1 in every degree −2i−1 for i ≥ 1. Let

AMT be the graded ring of functions on GU , where the grading is with respect

to the action of Gm. Since the degrees of the σ2i+1 tend to minus infinity,

no information is lost in passing to the graded version (LieGU )gr of LieGU
(Proposition 2.2 (ii) of [4]). By the above, AMT is noncanonically isomorphic
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to the graded dual of the universal envelopping algebra of (LieGU )gr over Q.

We shall denote this by

U ′ = Q〈f3, f5, . . .〉.

Its underlying vector space has a basis consisting of noncommutative words in

symbols f2i+1 in degree 2i + 1, and the multiplication is given by the shuffle

product x . The coproduct is given by the following deconcatenation formula:

∆ : U ′→U ′ ⊗Q U ′(2.20)

∆(fi1 . . . fin) =
n∑
k=0

fi1 . . . fik ⊗ fik+1
. . . fin

when n ≥ 0. Let us consider the following universal comodule:

(2.21) U = Q〈f3, f5, . . .〉 ⊗Q Q[f2],

where f2 is of degree 2, commutes with all generators f2n+1 of odd degree, and

the coaction ∆ : U → U ′⊗Q U satisfies ∆(f2) = 1⊗ f2. The degree will also be

referred to as the weight. By the above discussion, there exists a noncanonical

isomorphism

(2.22) φ : HMT+ ∼= U

of algebra comodules which sends f2 to f2. These notations are useful for

explicit computations, for which it can be convenient to vary the choice of

map φ (see [2]).

Lemma 2.5. Let dk = dimUk, where Uk is the graded piece of U of

weight k. Then

(2.23)
∑
k≥0

dkt
k =

1

1− t2 − t3
.

In particular, d0 = 1, d1 = 0, d2 = 1, and dk = dk−2 + dk−3 for k ≥ 3.

Proof. The Poincaré series of Q〈f3, f5, . . .〉 is given by 1
1−t3−t5−... =

1−t2
1−t2−t3 .

If we multiply by the Poincaré series 1
1−t2 for Q[f2], we obtain (2.23). �

Definition 2.6. It will be convenient to define an element f2n ∈ U2n, for

n ≥ 2, by

f2n = bnf
n
2 ,

where bn ∈ Q× is the constant in Euler’s relation ζ(2n) = bnζ(2)n.

Let us denote the Lie coalgebra of indecomposable elements of U ′ by

(2.24) L =
U ′>0

U ′>0U ′>0

,
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and for any N ≥ 1, let πN : U ′>0 → LN denote the quotient map followed by

projection onto the graded part of weight N . For any r ≥ 1, consider the map

(2.25) D2r+1 : U −→ L2r+1 ⊗Q U

defined by composing ∆′ = ∆− 1⊗ id with π2r+1 ⊗ id. Let

(2.26) D<N =
⊕

1<2i+1<N

D2i+1.

Lemma 2.7. (kerD<N ) ∩ UN = Q fN .

Proof. Every element ξ ∈ UN can be uniquely written in the form

ξ =
∑

1<2r+1<N

f2r+1vr + cfN ,

where c ∈ Q, vr ∈ UN−2r−1, and the multiplication on the right-hand side is

the concatenation product. The graded dual of L is isomorphic to the free

Lie algebra with generators f∨2r+1 in degrees −2r − 1 dual to the f2r+1. Each

element f∨2r+1 defines a map f∨2r+1 : L → Q which sends f2r+1 to 1. By

definition,

(f∨2r+1 ⊗ id) ◦D2r+1ξ = vr

for all 1 < 2r+1 < N . It follows immediately that if ξ is in the kernel of D<N ,

then it is of the form ξ = cfN . Since D<NfN = 0, the result follows. �

3. Cogenerators of the coalgebra

3.1. Infinitesimal coaction. In order to simplify the formula (2.18), let

(3.1) L =
A>0

A>0A>0

denote the Lie coalgebra of A = H/ζm(2)H, and let π : H>0 → L denote

the quotient map. Since L inherits a weight grading from H, let LN denote

the elements of L of homogeneous weight N , and let pN : L → LN be the

projection map.

Definition 3.1. By analogy with (2.25) and (2.26), for every r ≥ 1, define

a map

D2r+1 : H −→ L2r+1 ⊗Q H
to be (π ⊗ id) ◦∆′, where ∆′ = ∆− 1⊗ id, followed by p2r+1 ⊗ id. Let

(3.2) D<N =
⊕

3≤2r+1<N

D2r+1.

It follows from this definition that the maps Dn, where n = 2r + 1, are

derivations:

(3.3) Dn(ξ1ξ2) = (1⊗ ξ1)Dn(ξ2) + (1⊗ ξ2)Dn(ξ1) for all ξ1, ξ2 ∈ H.
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By (2.18), the action of Dn on Im(a0; a1, . . . , aN ; aN+1) is given by

(3.4)
N−n∑
p=0

π
Ä
Im(ap; ap+1, . . , ap+n; ap+n+1)

ä
⊗ Im(a0; a1, . . , ap, ap+n+1, . . , aN ; aN+1).

By analogy with the Connes-Kreimer coproduct, we call the sequence of consec-

utive elements (ap; ap+1, . . . , ap+n; ap+n+1) on the left a subsequence of length n

of the original sequence and (a0; a1, . . , ap, ap+n+1, . . , aN ; aN+1) will be called

the quotient sequence.

3.2. Zeta elements and kernel of D<N .

Lemma 3.2. Let n ≥ 1. The zeta element ζm(2n+ 1) ∈ H is nonzero and

satisfies

∆ ζm(2n+ 1) = 1⊗ ζm(2n+ 1) + π(ζm(2n+ 1))⊗ 1.

Furthermore, Euler’s relation ζ(2n) = bnζ(2)n, where bn ∈ Q, holds for the

ζm’s :

(3.5) ζm(2n) = bnζ
m(2)n.

Proof. Consider ζm(N) = Im(0; 10N−1; 1), where 10N−1 denotes a 1 fol-

lowed by N − 1 zeros. By relation I0, its strict subsequences of length at

least one are killed by Im, and so ∆ ζm(N) = 1 ⊗ ζm(N) + π(ζm(N)) ⊗ 1 by

(3.4). From the structure of U , it follows that an isomorphism φ (2.22) maps

ζm(2n+ 1) to αnf2n+1 for some αn ∈ Q and ζm(2n) to βnf
n
2 for some βn ∈ Q.

Taking the period map yields αn 6= 0, and βn = ζ(2n)ζ(2)−n = bn. �

We can therefore normalize our choice of isomorphism (2.22) so that

H ⊆ HMT+ φ−→ U

maps ζm(2n+ 1) to f2n+1. By Definition 2.6, we can therefore write

(3.6) φ(ζm(N)) = fN for all N ≥ 2.

In particular, ζm(2) and ζm(2n + 1), for n ≥ 1, are algebraically independent

in H.

Theorem 3.3. Let N ≥ 2. The kernel of D<N is one-dimensional in

weight N :

kerD<N ∩HN = Q ζm(N).

Proof. This follows from Lemma 2.7, via such an isomorphism φ. �

Note that the map L → L of Lie coalgebras induced by the inclusion

A ⊆ AMT ∼= U ′ is also injective, by standard results on Hopf algebras.
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3.3. Some relations between motivic multiple zeta values. Using Theo-

rem 3.3 we lift relations between multiple zeta values to their motivic ver-

sions. Hereafter let 2{n} denote a sequence of n consecutive 2’s, and let

ζm(2{0}) = 1 ∈ H. For any word w in the alphabet {2, 3}, define the weight of

w to be 2 deg2w + 3 deg3w.

Lemma 3.4. The element ζm(2{n}) is a rational multiple of ζm(2)n.

Proof. For reasons of parity, every strict subsequence of (0; 1010 . . . 10; 1)

of odd length begins and ends in the same symbol, and corresponds to a zero

motivic iterated integral by I0. Therefore D2r+1ζ
m(2{n}) = 0 for all r ≥ 1.

By Proposition 3.3, it is a multiple of ζm(2n), that is ζm(2)n. The multiple is

equal to ζ(2{n})/ζ(2)n > 0. �

The coefficient in the lemma can be determined by the well-known formula

(3.7) ζ(2{n}) =
π2n

(2n+ 1)!
.

We need the following trivial observation, valid for n ≥ 1:

(3.8) ζm1 (2{n}) = −2
n−1∑
i=0

ζm(2{i}32{n−1−i}),

which follows immediately from relation I2.

Lemma 3.5. Let a, b ≥ 0 and 1 ≤ r ≤ a+ b. Then

D2r+1 ζ
m(2{a}32{b}) = π(ξra,b)⊗ ζm(2{a+b+1−r}),

where ξra,b is given by (sum over all indices α, β ≥ 0 satisfying α+ β + 1 = r)

ξra,b =
∑
α≤a
β≤b

ζm(2{α}32{β})−
∑
α≤a
β<b

ζm(2{β}32{α}) +
Ä
I(b ≥ r)− I(a ≥ r)

ä
ζm1 (2{r}).

The symbol I denotes the indicator function.

Proof. The element ζm(w), where w = 2{a}32{b}, is represented by the

sequence

Im(0; 10 . . . 10010 . . . 10; 1).

By parity, every subsequence of length 2r + 1 which does not straddle the

subsequence 00 begins and ends in the same symbol. Its motivic iterated

integral vanishes by I0, so it does not contribute to D2r+1. The remaining

subsequences are of the form

Im(0; 10 . . . 10︸ ︷︷ ︸
α

100 10 . . . 10︸ ︷︷ ︸
β

; 1) = ζm(2{α}32{β}),
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where α ≤ a, β ≤ b, and α+ β + 1 = r, which gives rise to the first sum, or

Im(1; 01 . . . 01︸ ︷︷ ︸
α

001 01 . . . 01︸ ︷︷ ︸
β

; 0) = −ζm(2{β}32{α}),

which gives the second sum by I3. In this case β < b. Finally, we can also have

Im(1; 01 . . . 01︸ ︷︷ ︸
r

0; 0) = −ζm1 (2{r}), or Im(0; 0 10 . . . 10︸ ︷︷ ︸
r

; 1) = ζm1 (2{r}),

which gives rise to the last two terms. The quotient sequences are the same in

all cases, and equal to Im(0; 10 . . . 10; 1). This proves the formula. �

The following trivial observation follows from Lemma 3.2:

(3.9) D2r+1ζ
m(N) = π(ζm(2r + 1))⊗ δN,2r+1, N ≥ 2, r ≥ 1,

where δi,j denotes the Kronecker delta.

Corollary 3.6. Let w be a word in {2, 3}× of weight 2n + 1 which has

many 2’s and a single 3. Then there exist unique numbers αi ∈ Q such that

(3.10) ζm(w) =
n∑
i=1

αi ζ
m(2i+ 1) ζm(2{n−i}).

Proof. By induction on the weight of w. Suppose the result is true for

1 ≤ n < N . Then for a word w = 2{a}32{b} of weight 2N + 1, the elements ξra,b
of the previous lemma, for 1 ≤ r < N , are of the form (3.10). In particular,

there exists some rational number αr such that ξra,b ≡ αr ζ
m(2r + 1) modulo

products. It follows that for 1 ≤ r < N ,

D2r+1 ζ
m(w) = αrπ(ζm(2r + 1))⊗ ζm(2{N−r})

and so the left and right-hand sides of (3.10) have the same image under

D<2N+1 by (3.3) and (3.9). By Theorem 3.3, they differ by a rational multiple

of ζm(2N + 1). �

The previous corollary leads us to the following definition.

Definition 3.7. Let w be a word in {2, 3}× of weight 2n+1 with a single 3.

Define the coefficient cw ∈ Q of ζm(w) to be the coefficient of ζm(2n + 1) in

equation (3.10). By (3.8), we can define the coefficient c12n of ζm1 (2{n}) in the

same way. It satisfies

(3.11) c12n = −2
n−1∑
i=0

c2i32n−i−1 .

Thus for any w ∈ {2, 3}× of weight 2n+ 1 which contains a single 3, we have

(3.12) π(ζm(w)) = cwπ(ζm(2n+ 1)).
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Later on, we shall work not only with the actual coefficients cw ∈ Q,

whose properties are described in the following section, but also with formal

versions Cw of these coefficients (later to be specialized to cw) purely to simplify

calculations.

Lemma 3.8. For all n ≥ 1, the coefficient c12n is equal to 2(−1)n. We

have

ζm1 (2{n}) = 2
n∑
i=1

(−1)iζm(2i+ 1)ζm(2{n−i}).

Proof. Granting the motivic stuffle product formula [7], [8] for our version

of motivic multiple zeta values in which ζm(2) is nonzero, we have

ζm(3)ζm(2{n−1}) =
n−1∑
i=0

ζm(2{i}32{n−1−i}) +
n−2∑
i=0

ζm(2{i}52{n−2−i}),

ζm(5)ζm(2{n−2}) =
n−2∑
i=0

ζm(2{i}52{n−2−i}) +
n−3∑
i=0

ζm(2{i}72{n−3−i}),

...
...

...

ζm(2n− 1)ζm(2) = ζm(2n− 1, 2) + ζm(2, 2n− 1) + ζm(2n+ 1).

Taking the alternating sum of each row gives the equation

n−1∑
i=0

ζm(2{i}32{n−1−i}) = −2
n∑
i=1

(−1)iζm(2i+ 1)ζm(2{n−i}).

This implies the lemma by (3.8). Alternatively, we can use the general method

for lifting relations from real multiple zeta values to their motivic versions

given in [2]. For this, it only suffices to consider the above relations modulo

products and modulo ζm(2) to obtain the coefficients of ζm(2n+1), which leads

to the same result. �

4. Arithmetic of the coefficients cw

The key arithmetic input is an evaluation of certain multiple zeta values

which is due to Don Zagier. Using the operators D<N we shall lift this result

to motivic multiple zetas. First, let us define for any a, b, r ∈ N,

Ara,b =

Ç
2r

2a+ 2

å
and Br

a,b =
Ä
1− 2−2r

äÇ 2r

2b+ 1

å
.

Note that Ara,b (respectively Br
a,b) only depends on r, a (resp. r, b).

Theorem 4.1 (Don Zagier [9]). Let a, b ≥ 0. Then

ζ(2{a}32{b}) = 2
a+b+1∑
r=1

(−1)r(Ara,b −Br
a,b) ζ(2r + 1) ζ(2{a+b+1−r}).
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4.1. Motivic version. To prove that the arithmetic formula lifts to the

level of motivic multiple zeta values requires showing that it is compatible

with the coaction (2.17). This is equivalent to the following compatibility

condition between the coefficients.

Lemma 4.2. For any a, b ≥ 0, and 1 ≤ r ≤ a+ b+ 1, we have∑
α≤a
β≤b

Arα,β −
∑
α≤a
β<b

Arβ,α + I(b ≥ r)− I(a ≥ r) =Ara,b,

∑
α≤a
β≤b

Br
α,β −

∑
α≤a
β<b

Br
β,α =Br

a,b,

where all sums are over sets of indices α, β ≥ 0 satisfying α+ β + 1 = r.

Proof. Exercise, using Aα+β+1
α,β = Aα+β+1

β−1,α+1 and Bα+β+1
α,β = Bα+β+1

β,α . �

We now show that Zagier’s theorem lifts to motivic multiple zetas.

Theorem 4.3. Let a, b ≥ 0. Then

(4.1) ζm(2{a}32{b}) = 2
a+b+1∑
r=1

(−1)r(Ara,b −Br
a,b) ζ

m(2r + 1) ζm(2{a+b+1−r}) .

In particular, if w = 2{a}32{b}, then the coefficient cw is given by

(4.2) cw = 2 (−1)a+b+1
Ä
Aa+b+1
a,b −Ba+b+1

a,b

ä
.

Proof. The proof is by induction on the weight. Suppose that (4.1) holds

for all a+ b < N and let a, b ≥ 0 such that a+ b = N . Then by Lemma 3.5,

D2r+1 ζ
m(2{a}32{b}) = π(ξra,b)⊗ ζm(2{a+b+1−r})

for 1 ≤ r ≤ N . The second formula in Lemma 3.5 and (3.12) implies that

π(ξra,b) =
( ∑
α≤a
β≤b

c2α32β −
∑
α≤a
β<b

c2β32α + c12rI(b ≥ r)− c12rI(a ≥ r)
)
π(ζm(2r+ 1)),

where 1 ≤ r ≤ N , and the sum is over α, β ≥ 0 satisfying α + β + 1 = r. By

induction hypothesis, and the fact that c12r = 2(−1)r, the term in brackets is

2(−1)r
[ ∑
α≤a
β≤b

(
Arα,β −Br

α,β

)
−
∑
α≤a
β<b

(
Arβ,α −Br

β,α

)
+ I(b ≥ r)− I(a ≥ r)

]
,

where all α+ β + 1 = r. By Lemma 4.2, this collapses to

2(−1)r
Ä
Ara,b −Br

a,b

ä
.

Putting the previous expressions together, we have shown that

D2r+1 ζ
m(2{a}32{b}) = 2(−1)r

Ä
Ara,b −Br

a,b

ä
π(ζm(2r + 1))⊗ ζm(2{a+b+1−r}).
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It follows by (3.3) and (3.9) that the difference

Θ = ζm(2{a}32{b})− 2
a+b+1∑
r=1

(−1)r(Ara,b −Br
a,b) ζ

m(2r + 1) ζm(2{a+b+1−r})

satisfies D2r+1Θ = 0 for all r ≤ a+ b. By Theorem 3.3, there is an α ∈ Q such

that

Θ = α ζm(2a+ 2b+ 3).

Taking the period map implies an analogous relation for the ordinary multiple

zeta values. By Theorem 4.1, the constant α is 2(−1)a+b+1(Aa+b+1
a,b −Ba+b+1

a,b ),

which completes the induction step, and hence the proof of the theorem. �

4.2. 2-adic properties of cw. The coefficients cw satisfy some arithmetic

properties which are crucial for the sequel, and follow immediately from The-

orem 4.3.

Let p be a prime number. Recall that for any rational number x ∈ Q×,

its p-adic valuation vp(x) is the integer n such that x = pn ab , where a, b are

relatively prime to p. We set vp(0) = ∞. For any word w ∈ {2, 3}×, let ‹w
denote the same word but written in reverse order.

Corollary 4.4. Let w be any word of the form 2a32b of weight 2a+2b+

3 = 2n+ 1. It is obvious from formula (4.2) that cw ∈ Z[1
2 ]. Furthermore, the

cw satisfy

(1) cw − cw̃ ∈ 2Z,

(2) v2(c32a+b) ≤ v2(cw) ≤ 0.

Proof. Property (1) follows from the symmetry Ba+b+1
a,b = Ba+b+1

b,a . Indeed,

c2a32b − c2b32a = ±2(Aa+b+1
a,b −Aa+b+1

b,a ) ∈ 2Z.

Let n = a+ b+ 1 be fixed. Clearly, v2(c2a32b) = v2(2× 2−2n ×
( 2n
2b+1

)
), and so

v2(c2a32b) = 1− 2n+ v2

Ä( 2n
2b+1

)ä
.

Writing
( 2n
2b+1

)
= 2n

2b+1

(2n−1
2b

)
, we obtain

v2(c2a32b) = 2− 2n+ v2(n) + v2

Ä(2n−1
2b

)ä
which is ≤ 0, and furthermore, v2

Ä(2n−1
2b

)ä
is minimal when b = 0. This

proves (2). �

5. The level filtration and ∂N,` operators

Definition 5.1. Let H2,3 ⊂ H denote the Q-subspace spanned by

(5.1) ζm(w), where w ∈ {2, 3}×.
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It inherits the weight grading from H. The weight of ζm(w) is 2 deg2w +

3 deg3w.

Definition 5.2. Consider the unique map

(5.2) ρ : {2, 3}× −→ {0, 1}×

such that ρ(2) = 10 and ρ(3) = 100, which respects the concatenation product.

The motivic iterated integral which corresponds to ζm(w) is Im(0; ρ(w); 1).

Lemma 5.3. The coaction (2.17) gives a map

∆ : H2,3 −→ A⊗Q H2,3.

Proof. This follows from (2.18) together with the fact that Im vanishes on

sequences which begin and end in the same symbol (I0). Thus, for w ∈ {2, 3}×,

every quotient sequence of (0; ρ(w); 1) which occurs nontrivially on the right-

hand side of the coaction is again of the form (0;w′; 1), where w′ is a word in

10 and 100. �

5.1. The level filtration.

Definition 5.4. Let w ∈ {2, 3}× be a word in the letters 2 and 3. We

define the level of w to be deg3w, the number of occurrences of the letter ‘3’

in w. Denote the induced increasing filtration on H2,3 by F•; i.e., F`H2,3 is the

Q-vector space spanned by

{ζm(w) : w ∈ {2, 3}× such that deg3w ≤ `}.

The empty word has level 0. The level counts the number of occurrences

of the sequence ‘00’ in ρ(w). Alternatively, it is given by the weight minus

twice the depth (number of 1’s) in ρ(w). Thus the level filtration takes even

(resp. odd) values in even (resp. odd) weights. The level filtration is motivic

in the following sense:

∆
Ä
F`H2,3

ä
⊆ A⊗Q F`H2,3,

since any sequence of 0’s and 1’s contains at least as many ‘00’s as any of its

quotient sequences. It follows that the maps D2r+1 : H2,3 → L2r+1 ⊗Q H2,3,

where L is the Lie coalgebra of A = H/f2H, also preserve the level filtration.

In fact, more is true.

Lemma 5.5. For all r ≥ 1, D2r+1

Ä
F`H2,3

ä
⊆ L2r+1 ⊗Q F`−1H2,3.

Proof. Let w ∈ {2, 3}× of level `, so ρ(w) contains exactly ` sequences

00. If a subsequence of odd length of (0; ρ(w); 1) begins and ends in the same

symbol, it is killed by Im by I0 and does not contribute to D2r+1. Otherwise,

it must necessarily contain at least one 00, and so the associated quotient

sequence is of strictly smaller level. �
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Thus for all r, ` ≥ 1, we obtain a map

(5.3) grF` D2r+1 : grF` H2,3 −→ L2r+1 ⊗Q grF`−1H2,3.

Note that Lemma 5.5 implies that GU respects the level filtration F and acts

trivially on the associated graded. It follows that (5.3) factors through the

one-dimensional subspace [(LieGU )ab
2r+1]∨ of L2r+1.

5.2. The maps ∂N,`. In order to simplify notations, let us define ζ2r+1 ∈
L2r+1 by

ζ2r+1 = π(ζm(2r + 1)), where r ≥ 1.

Lemma 5.6. Let r, ` ≥ 1. Then the map (5.3) satisfies

grF` D2r+1

Ä
grF` H2,3

ä
⊆ Q ζ2r+1 ⊗Q grF`−1H2,3.

Proof. Let w ∈ {2, 3}× of level `, and let Im(0; ρ(w); 1) be the correspond-

ing motivic iterated integral. From the definition of D2r+1, we have

(5.4) grF` D2r+1(ζm(w)) =
∑
γ

π(Im(γ))⊗ ζm(wγ),

where the sum is over all subsequences γ of (0; ρ(w); 1) of length 2r+1, and wγ is

the corresponding quotient sequence. If γ contains more than one subsequence

00, then wγ is of level < `−1 and so does not contribute. If γ begins and ends

in the same symbol, then Im(γ) is zero. One checks that Im(γ) can be of four

remaining types:

(1) Im(0; 10 . . . 10010 . . . 10; 1) = ζm(2{α}32{β}),

(2) Im(1; 01 . . . 01001 . . . 01; 0) = −ζm(2{α}32{β}),

(3) Im(0; 01 . . . 10; 1) = ζm1 (2{r}),

(4) Im(1; 01 . . . 10; 0) = −ζm1 (2{r}).

By Corollary 3.6 and (3.8), in every case we have π(Im(γ)) ∈ Q ζ2r+1 ⊂ L2r+1.

The coefficient of ζ2r+1 in π(Im(γ)) is either ±c2α32β or ±c12r . �

Sending ζ2r+1 to 1 gives a canonical identification of 1-dimensional vector

spaces:

(5.5) Q ζ2r+1
∼−→ Q.

Definition 5.7. For all N, ` ≥ 1, let ∂N,` be the linear map

∂N,` : grF` H
2,3
N −→

⊕
1<2r+1≤N

grF`−1H
2,3
N−2r−1

(
= grF`−1H

2,3
<N−1

)
defined by first applying ⊕

1<2r+1≤N
grF` D2r+1

∣∣∣∣
grF
`
H2,3
N
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and then sending all ζ2r+1 to 1 via (5.5). Note that since F0H2,3
0 = H2,3

0 , the

case 2r + 1 = N only plays a role when ` = 1.

Our goal is to show that the maps ∂N,` are injective for ` ≥ 1.

5.3. Matrix representation for ∂N,`.

Definition 5.8. Let ` ≥ 1, and let BN,` denote the set of words w ∈ {2, 3}×
of weight N and level `, in reverse lexicographic order for the ordering 3 < 2.

Note that as all words in BN,` have the same length, this is the same as the

lexicographic order for the ordering 2 < 3. Let B′N,` denote the set of words

w ∈ {2, 3}× of all weights ≤ N − 3 (including the empty word if ` = 1) and

level `− 1, also in reverse lexicographic order.

If we write N = 2m+ 3`, and if ` ≥ 1, then clearly

|BN,`| =
Ç
m+ `

`

å
=

∑
0≤m′≤m

Ç
m′ + `− 1

`− 1

å
= |B′N,`|.

Define a set of words

(5.6) S = {w : w ∈ {2, 3}× of level 1} ∪ {12k : k ∈ N}.

Let ` ≥ 1, and let w ∈ BN,`. By (5.4) and the proof of Lemma 5.6,

(5.7) ∂N,` ζ
m(w) =

∑
w′∈B′

N,`

fww′ζ
m(w′),

where fww′ is a Z-linear combination of numbers cw′′ ∈ Q for w′′ ∈ S.

Definition 5.9. For ` ≥ 1, let MN,` be the matrix (fww′)w∈BN,`,w′∈B′N,` ,

where w corresponds to the rows, and w′ the columns.

Note that we have not yet proved that the elements ζm(w) for w ∈ BN,` or

B′N,` are linearly independent. Nonetheless, the transpose of the matrix MN,`

represents the map ∂N,`. (The reason for writing it this way round is purely

aesthetic; see the example overleaf)

5.4. Formal coefficients. It is convenient to consider a formal version of

the map (5.7) in which the coefficients fww′ are replaced by symbols. Each ma-

trix element fww′ of MN,` is a linear combination of cw, where w ∈ S. Therefore,

let Z(S) denote the free Z-module generated by symbols Cw, where w ∈ S, and

formally define a map

∂fN,` : grF` H
2,3
N −→ Z(S) ⊗Z grF`−1H

2,3
<N−1

from the formula (5.4) by replacing the coefficient ±cw of π(Im(γ)) with its

formal representative ±Cw. Likewise, let Mf
N,` be the matrix with coefficients
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in Z(S) which is the formal version of MN,`. There is a linear map

µ : Z(S)−→Q(5.8)

Cw 7→ cw.

Then, by definition, ∂N,` = (µ⊗ id)◦∂fN,` and MN,` is obtained from the matrix

Mf
N,` by applying µ to all of its entries.

5.5. Example. In weight 10 and level 2, the matrix Mf
10,2 is as follows. The

words in the first row (resp. column) are the elements of B′10,2 (resp. B10,2) in

order.

223 232 23 322 32 3

2233 C3−C12 C23−C32−C122 C223−C322

2323 C3−C12 C23

2332 C32 C23−C32

3223 C12 C32−C23+C122 C3−C12 C23−C122 C322

3232 C12 C32 C232

3322 C12 C32−C23+C122 C322

All blank entries are zero. Let us check the entry for

ζm(3, 3, 2, 2) = Im( 0
a0

; 1
a1

00100101 0
a10

; 1
a11

).

Number the elements of the right-hand sequence a0, . . . , a11 for reference, as

shown. The nonvanishing terms in grF2 D3 correspond to the subsequences com-

mencing at a0, a1, a3, a4, a5. They all give rise to the same quotient sequence,

and we get

π(Im(0; 100; 1))⊗ Im(0; 1001010; 1) + π(Im(1; 001; 0))⊗ Im(0; 1001010; 1)

+ π(Im(0; 100; 1))⊗ Im(0; 1001010; 1) + π(Im(1; 001; 0))⊗ Im(0; 1001010; 1)

+ π(Im(0; 010; 1))⊗ Im(0; 1001010; 1)

which gives (C3−C3 +C3−C3 +C12) ζm(3, 2, 2) = C12 ζ
m(3, 2, 2). The nonzero

terms in grF2 D5 correspond to subsequences commencing at a3, a4, a5. They

give

π(Im(0; 10010; 1))⊗ Im(0; 10010; 1) + π(Im(1; 00101; 0))⊗ Im(0; 10010; 1)

+π(Im(0; 01010; 1))⊗ Im(0; 10010; 1)

which is (C32 − C23 + C122) ζm(3, 2). Finally, the only nonzero term in grF2 D7

corresponds to the subsequence commencing at a3, giving

π(Im(0; 1001010; 1))⊗ Im(0; 100; 1)

which is C322 ζ
m(3). The matrix M10,2 is obtained by replacing each Cw by cw.
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6. Calculation of ∂N,`

Let I ⊆ Z(S) be the submodule spanned by elements of the form:

(6.1) Cw − Cw̃ for w ∈ {2, 3}× of level 1 and C12k for k ∈ N,

where ‹w denotes the reversal of the word w. We show that modulo I the maps

∂fN,` act by deconcatenation.

Theorem 6.1. Let w be a word in {2, 3}× of weight N , level `. Then

∂fN,` ζ
m(w) ≡

∑
w=uv

deg3 v=1

Cv ζ
m(u) (mod I),

where the sum is over all deconcatenations w = uv, where u, v ∈ {2, 3}×, and

where v is of level 1, i.e., contains exactly one letter ‘3’.

Proof. A subsequence of length 2r+ 1 of the element Im(0; ρ(w); 1) which

corresponds to ζm(w) can be of the following types (compare the proof of

Lemma 5.6):

(1) The subsequence is an alternating sequence of 1’s and 0’s, and does

not contain any consecutive 0’s. For reasons of parity, its first and last

elements are equal. Thus by I0, this case does not contribute.

(2) The subsequence contains one set of consecutive 0’s and is of the form

(0;w′; 1), where the inital 0 and final 1 are directly above the two

arrows below:

· · · 010
↑
010 · · · 10101

↑
0 · · · .

The word w′ consists of the r+1 symbols strictly in between the arrows.

This subsequence corresponds to Im(0; 010 . . . 10; 1) which is ζm1 (2{r}).

The contribution is therefore C12r ∈ I. With similar notations, the

case

· · · 01
↑
0101 · · · 0100

↑
10 · · ·

corresponds to Im(1; 01 . . . 010; 0) and contributes −C12r ∈ I, by rela-

tion I3.

(3) The subsequence is of one of two forms:

0
a
1
b
010 · · · 100 · · · 101

a′
0
b′

and contains exactly one set of consecutive 0’s. The subsequence from

a to a′ is of the form Im(0; 1010 . . . 10010 . . . 10; 1) and contributes a

ζm(2{α}32{β}). The subsequence from b to b′ is of the form

Im(1; 010 . . . 10010 . . . 101; 0).



970 FRANCIS BROWN

Using relation I3, this contributes a (−1)2r+1ζm(2{β}32{α}). Thus the

total contribution of these two subsequences is

C2α32β − C2β32α ∈ I.

(4) The subsequence has at least two sets of consecutive 0’s. This case

does not contribute, since if the subsequence has level ≥ 2, the quotient

sequence has level ≤ `− 2 which maps to zero in grF`−1H2,3.

Thus every nontrivial subsequence is either of the form (2), or pairs up with

its immediate neighbour to the right to give a contribution of type (3). The

only remaining possibility is the final subsequence of 2r + 1 elements, which

has no immediate right neighbour. This gives rise to a single contribution of

the form

Cvζ
m(u),

where w = uv and v has weight 2r + 1. If v has level strictly greater than 1,

then by the same reasoning as (4) it does not contribute. This proves the

theorem. �

Corollary 6.2. The matrices Mf
N,` modulo I are upper-triangular. Ev-

ery entry which lies on the diagonal is of the form C32r−1 , where r ≥ 1, and

every entry lying above it in the same column is of the form C2a32b , where

a+ b+ 1 = r.

Proof. Let ` ≥ 1 and consider the map

B′N,`−1−→BN,`(6.2)

u 7→ u 32{r−1},

where r ≥ 1 is the unique integer such that the weight of u 32{r−1} is equal

to N . This map is a bijection and preserves the ordering of both B′N,`−1 and

BN,`. It follows from Theorem 6.1 that the diagonal entries of Mf
N,` modulo

I are of the form C32r−1 . Now let u ∈ B′N,`−1. All nonzero entries of Mf
N,`

modulo I in the column indexed by u lie in the rows indexed by u2{a}32{b},

where a+ b = r − 1. Since

u2{a}32{b} < u 32{r−1},

it is upper-triangular, and the entry in row u2{a}32{b} and column u is C2a32b .

�

7. Proof of the main theorem

7.1. p-adic lemma. We need the following elementary lemma.
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Lemma 7.1. Let p be a prime, and let vp denote the p-adic valuation. Let

A = (aij) be a square n× n matrix with rational coefficients such that

(i) vp(aij) ≥ 1 for all i > j(7.1)

(ii) vp(ajj) = min
i
{vp(aij)} ≤ 0 for all j.

Then A is invertible.

Proof. We show that the determinant of A is nonzero. The determinant

is an alternating sum of products of elements of A, one taken from each row

and column. Any such monomial m 6= 0 has k terms on or above the diagonal,

in columns j1, . . . , jk, and n− k terms strictly below the diagonal. By (i) and

(ii), its p-adic valuation is

vp(m) ≥ (n− k) +
k∑
r=1

vp(ajrjr).

If m is not the monomial m0 in which all terms lie on the diagonal, then k < n,

and

vp(m) >
n∑
i=1

vp(aii) = vp(m0).

It follows that vp(det(A))=vp(m0)=
∑n
i=1 vp(aii)≤0<∞, so det(A) 6=0. �

Remark 7.2. Another way to prove this lemma is simply to scale each

column of the matrix A by a suitable power of p so that (i) remains true and

so that the diagonal elements have valuation exactly equal to 0. The new

matrix has p-integral coefficients by (ii), is upper-triangular mod p, and is

invertible on the diagonal.

Theorem 7.3. For all N, ` ≥ 1, the matrices MN,` are invertible.

Proof. We show that MN,` satisfies the conditions in (7.1) for p = 2. The

entries of MN,` are deduced from those of Mf
N,` by applying the map µ of (5.8).

It follows from Corollary 4.4(1) and Lemma 3.8 that the generators (6.1) of I

map to even integers under µ; i.e.,

µ(I) ⊂ 2Z.

By Corollary 6.2, this implies that MN,` satisfies (i). Property (ii) follows from

Corollary 4.4(2), since the diagonal entries of Mf
N,` mod I are C32k , k ∈ N. �

7.2. Proof of the main theorem.

Theorem 7.4. The elements {ζm(w) : w ∈ {2, 3}×} are linearly indepen-

dent.
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Proof. By induction on the level. The elements of level zero are of the

form ζm(2{n}) for n ≥ 0, which by Lemma 3.4 are linearly independent. Now

suppose that
{ζm(w) : w ∈ {2, 3}×, w of level = `}

are independent. Since the weight is a grading on the motivic multiple zeta

values, we can assume that any nontrivial linear relation between the set of

ζm(w) for w ∈ {2, 3}× of level ` + 1 is of homogeneous weight N . By Theo-

rem 7.3, the map ∂N,`+1 is injective and therefore gives a nontrivial relation of

strictly smaller level, a contradiction. Thus {ζm(w) : w ∈ {2, 3}× of level `+1}
are linearly independent, which completes the induction step. The fact that

the operator D≤N strictly decreases the level (Lemma 5.5), and that its level-

graded pieces ∂N,` are injective, implies that there can be no nontrivial relations

between elements ζm(w) of different levels. �

It follows that

(7.2) dimH2,3
N = #{w ∈ {2, 3}× of weight N} = dN ,

where dN is the dimension of UN (2.23). The inclusions

H2,3 ⊆ H ⊆ HMT+

are therefore all equalities, since their dimensions in graded weight N are equal.

The equality H2,3 = H implies the following corollary.

Corollary 7.5. Every motivic multiple zeta value ζm(a1, . . . , an) is a

Q-linear combination of ζm(w) for w ∈ {2, 3}×.

This implies Conjecture 2. The equality H = HMT+ implies Conjecture 1.

8. A polynomial basis for motivic MZV’s

Let X be a finite set which is equipped with a total ordering. Recall

that a Lyndon word in X is an element w of X× such that w is smaller

than every strict right factor in the lexicographic ordering w < v if w = uv

(concatenation), where u, v 6= ∅.
Let X3,2 = {2, 3} with the ordering 3 < 2.

Theorem 8.1. The set of elements

{ζm(w), where w is a Lyndon word in X3,2}
form a polynomial basis for H (and hence HMT+).

By applying the period map, we obtain the following corollary.

Corollary 8.2. Every multiple zeta value is a polynomial with coeffi-

cients in Q in

{ζ(w), where w is a Lyndon word in X3,2}.
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Remark 8.3. The theorem and its corollary are also true if one takes the

alphabet {2, 3} with the ordering 2 < 3. Other bases are possible: for example,

by applying I3.

8.1. Preliminary remarks. Let X = {3, 5, 7, . . .} be the set of odd integers

> 1 with the usual ordering. Define the weight of a word w ∈ X× to be the

sum of all its letters and the level to be its length. The weight of w ∈ X×3,2 is

the sum of its letters and its level is the number of 3’s. Let LynN,`(X) (resp.

LynN,`(X3,2)) denote the set of Lyndon words on X (resp. X3,2) of weight N

and level `. Consider the map

φ : X −→X3,2(8.1)

φ(2n+ 1) = 32{n−1} for n ≥ 1.

It induces a map φ : X× → X×3,2, which preserves the weight and level.

Lemma 8.4. It induces a bijection φ : LynN,`(X) → LynN,`(X3,2) for all

N ≥ 3, ` ≥ 1.

Proof. This is a standard property of Lyndon words and follows from the

definition. �

Finally, let Lie(X) denote the free Lie algebra over Q generated by the

elements of X. It shall be viewed as a subalgebra of the free associative algebra

generated by X. There is a well-known map

LynN,`(X)−→ Lie(X)(8.2)

w 7→ λw,

such that the elements λw, as w ranges over the set of all Lyndon words in X,

form a basis for Lie(X). To define λ, one uses the fact that a Lyndon word w

of length ≥ 2 has a standard factorization w = uv, where u and v are Lyndon

and v is the strict right Lyndon factor of w of maximal length. Inductively

define λw = w if w is a single letter and λw = [λu, λv] if w = uv is the standard

factorization of w.

The main property of this map (see, e.g., [3, eq. (2.2.1)]) is that

(8.3) λw = w + terms which are strictly greater than w.

8.2. Proof of Theorem 8.1. Throughout, let N ≥ 3, ` ≥ 1. Consider the

map

ρ : LynN,`(X)−→ grF` H
2,3
N(8.4)

w 7→ ζm(φ(w))

which, to every Lyndon word in X, associates a motivic multiple zeta value.

By Lemma 8.4, its argument is a Lyndon word in X3,2.
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For all r ≥ 1, let ∂2r+1 : grF` H
2,3
N → grF`−1H

2,3
N−2r−1 denote the correspond-

ing piece of the map ∂N,` of Definition 5.7, and ∂f2r+1 its formal version (the

corresponding piece of the map ∂fN,` defined in §5.4) . Let w ∈ X×3,2. By

Theorem 6.1, we have

(8.5) ∂f2r+1ζ
m(w) ≡ Cvζm(u) (mod I),

if w = uv, where v is of level 1 and weight 2r+1, and ∂f2r+1ζ
m(w) ≡ 0 (mod I)

otherwise. Consider the unique morphism of monoids ∂ : X× → {∂3, ∂5, . . .}×
which sends the letter 2n+1 to ∂2n+1. There is a corresponding formal version

where we replace ∂2n+1 by ∂f2n+1. By composing this map with (8.2), we obtain

a map

(8.6) σ : LynN,`(X) −→ Lie(∂3, ∂5, . . .),

which sends every Lyndon word in X to a derivation on grF` H2,3. Consider the

pairing

LynN,`(X)× LynN,`(X)→ Q(8.7)

(w,w′) 7→ σw ◦ ρ(w′),

and let PN,` denote the square matrix whose rows and columns are indexed

by LynN,`(X), ordered lexicographically, with entries σw ◦ ρ(w′). To compute

PN,`, let w,w′ ∈ X× and write w′ = (2i1 + 3) . . . (2i` + 3), where ik ≥ 0. From

(8.5), one checks that

(8.8) ∂fwζ
m(φ(w′)) ≡


0 if w > w′

C32i1 . . . C32i` if w = w′

0 or C2a132b1 . . . C2a`32b` if w < w′

 (mod I),

where ak, bk are some nonnegative integers satisfying ak+bk = ik for 1 ≤ k ≤ `.
It follows from (8.3), (8.8), and Corollary 4.4 that Lemma 7.1 applies to PN,`,

and therefore it is invertible. The image of the map (8.4) is spanned by the

elements

AN,` = {ζm(w) : w ∈ LynN,`(X3,2)} ⊂ grF` H
2,3
N .

Recall that L is the Lie coalgebra of A = H/ζm(2)H and π : H>0 → L is

the quotient map. Since the elements σw ∈ Lie(∂3, ∂5, . . .) kill products, the

invertibility of PN,` implies that the image of the Lyndon elements π(AN,`) are

a basis of grF` LN for ` ≥ 1 and N ≥ 3. Since 2 is a Lyndon word in X3,2, and

ζm(2) is transcendental over A, this proves that the elements ζm(w), for w a

Lyndon word in X3,2, are algebraically independent, and completes the proof.

To prove Remark 8.3, repeat this argument with X replaced by {3, 5, 7, . . .}
in reverse order, with the set {2, 3} in the order 2 < 3 instead of X3,2, and

replacing the map φ with the one which sends 2n+ 1 to 2{n−1}3.
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Example 8.5. In weight 20, level 2, Lyn20,2(X) = {3.17, 5.15, 7.13, 9.11},
where a dot denotes the concatenation product of letters in X. Thus σ(a.b) =

[∂a, ∂b]. The elements A20,2 are of the form ζm(32{a}32{b}), where a+b = 7 and

0 ≤ a ≤ 3. The formal version of the transpose matrix P20,2, taken modulo I,

is given by

[∂3, ∂17] [∂5, ∂15] [∂7, ∂13] [∂9, ∂11]

332222222 C3C327 0 0 0

323222222 C3C2326 C32C326 0 0

322322222 C3C22325 C32C2325 C322C325 0

322232222 C3C23324 C32C22324 C322C2324 C323C324

9. Remarks

It might be interesting to try to use the matrices MN,` to compute the

multiplication law on the basis (1.2).

The geometric meaning of Theorem 4.3 is not clear. The term

(1− 2−2r)ζ(2r + 1)

which comes from Ba,b
r can be interpreted as an alternating sum and suggests

that the formula should be viewed as an identity between motivic iterated

integrals on P1\{0,±1,∞}. It would be interesting to find a direct motivic

proof of Theorem 4.3 along these lines. Apart from the final step of Section 7.2,

the only other place where we use the structure of the category MT (Z) is in

Theorem 4.3. A proof of Theorem 4.3 using standard relations would give a

purely combinatorial proof that dimHN ≥ dN .

The argument in this paper could be dualized to take place in Ihara’s

algebra, using his pre-Lie operator ([4, eq. (5.13.5)]) instead of Goncharov’s

formula (2.18). This sheds some light on the appearance of the deconcatenation

coproduct in Theorem 6.1.

Finally, we should point out that the existence of a different explicit basis

for multiple zeta values was apparently announced many years ago by J. Ecalle.
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