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Abstract

The Muskat problem models the evolution of the interface between two

different fluids in porous media. The Rayleigh-Taylor condition is natural

to reach linear stability of the Muskat problem. We show that the Rayleigh-

Taylor condition may hold initially but break down in finite time. As a

consequence of the method used, we prove the existence of water waves

turning.

1. Introduction

The Muskat problem [25] models the evolution of an interface between

two fluids of different characteristics in porous media by means of Darcy’s law:

(1)
µ

κ
u = −∇p− (0, gρ),

where (x, t) ∈ R2 × R+, u = (u1(x, t), u2(x, t)) is the incompressible velocity

(i.e., ∇·u = 0), p = p(x, t) is the pressure, µ(x, t) is the dynamic viscosity, κ is

the permeability of the isotropic medium, ρ = ρ(x, t) is the liquid density, and

g is the acceleration due to gravity. More precisely, the interface separates the

domains Ω1 and Ω2 defined by

(µ, ρ)(x1, x2, t) =

(µ1, ρ1), x ∈ Ω1(t)

(µ2, ρ2), x ∈ Ω2(t) = R2 − Ω1(t),

and µ1, µ2, ρ1, ρ2, are constants. This physical situation is also related to the

evolution of two fluids of different characteristics in a Hele-Shaw cell [22], due

to the fact that the laws which model both phenomena are mathematically

analogous [30].

This paper is concerned with the case µ1 = µ2 which provides weak solu-

tions of the following transport equation

ρt + u · ∇ρ = 0,(2)

ρ0 = ρ(x, 0), x ∈ R2,
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where initially the scalar ρ0 is given by

(3) ρ0 = ρ(x1, x2, 0) =

ρ1 in Ω1(0) = {x2 > f0(x1)}
ρ2 in Ω2(0) = {x2 < f0(x1)}.

Let the free boundary be parametrized by

∂Ωj(t) = {z(α, t) = (z1(α, t), z2(α, t)) : α ∈ R},

where
z(α, t)− (α, 0)

is 2π-periodic in the space parameter α or, an open contour vanishing at in-

finity:

lim
α→±∞

(z(α, t)− (α, 0)) = 0,

with initial data z(α, 0) = z0(α) = (α, f0(α)). From Darcy’s law, we find that

the vorticity is concentrated on the free boundary z(α, t), and is given by a

Dirac distribution as follows:

∇⊥ · u(x, t) = ω(α, t)δ(x− z(α, t)),

with ω(α, t) representing the vorticity strength i.e., ∇⊥ ·u is a measure defined

by

〈∇⊥ · u, η〉 =

∫
ω(α, t)η(z(α, t))dα,

with η(x) a test function.

Then z(α, t) evolves with an incompressible velocity field coming from the

Biot-Savart law:
u(x, t) = ∇⊥∆−1∇⊥ · u(x, t).

As (x, t) approaches a point z(α, t) on the contour the velocity u agrees,

modulo tangential terms, with the Birkhoff-Rott integral:

BR(z, ω)(α, t) =
1

2π
PV

∫
(z(α, t)− z(β, t))⊥

|z(α, t)− z(β, t)|2
ω(β, t)dβ.

This yields an appropriate contour dynamics system:

zt(α, t) = BR(z, ω)(α, t) + c(α, t)∂αz(α, t),(4)

where the term c represents the change of parametrization and does not modify

the geometric evolution of the curve [23].

The well-posedness is not guaranteed in general; in fact such a result turns

out to be false for some initial data. Rayleigh [29] and Saffman-Taylor [30] gave

a condition that must be satisfied for the linearized model in order to have a

solution locally in time, namely that the normal component of the pressure

gradient jump at the interface has to have a distinguished sign. This is known

as the Rayleigh-Taylor condition:

σ(α, t) = −(∇p2(z(α, t), t)−∇p1(z(α, t), t)) · ∂⊥α z(α, t) > 0,
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where ∇pj(z(α, t), t) denotes the limit gradient of the pressure obtained ap-

proaching the boundary in the normal direction inside Ωj(t). We call σ(α, t)

the Rayleigh-Taylor of the solution z(α, t).

Understanding the problem as weak solutions of (1)–(2) plus the in-

compressibility of the velocity, we find that the continuity of the pressure

(p2(z(α, t), t) = p1(z(α, t), t)) follows as a mathematical consequence, making

unnecessary to impose it as a physical assumption. (For more details, see [13]

and [12].) For the surface tension case, there is a jump discontinuity of the

pressure across the interface which is modeled to be equal to the local curvature

times the surface tension coefficient:

p2(z(α, t), t)− p1(z(α, t), t)) = τκ(α, t).

This is known as the Laplace-Young condition, which makes the initial value

problem more regular. Then there are no instabilities [20], but fingering phe-

nomena arise [28], [19].

By means of Darcy’s law, we can find the following formula for the differ-

ence of the gradients of the pressure in the normal direction and the strength

of the vorticity:

σ(α, t) = (ρ2 − ρ1)∂αz1(α, t),(5)

ω(α, t) = −(ρ2 − ρ1)∂αz2(α, t).

Above, g is taken equal to 1 for the sake of simplicity.

Then, if we choose an appropriate term c in equation (4) (see §2 below),

the dynamics of the interface satisfies

(6) zt(α, t) =
ρ2 − ρ1

2π
PV

∫
(z1(α, t)− z1(β, t))

|z(α, t)− z(β, t)|2
(∂αz(α, t)− ∂αz(β, t))dβ.

A wise choice of parametrization of the curve is to have ∂αz1(α, t) = 1.

(For more details see [13].) This yields the denser fluid below the less dense

fluid if ρ2 > ρ1, and therefore the Rayleigh-Taylor condition holds as long as the

interface is a graph. This fact has been used in [13] to show local existence in

the stable case (ρ2 > ρ1), together with ill-posedness in the unstable situation

(ρ2 < ρ1). Local existence for the general case (µ1 6= µ2) is shown in [12],

which was also treated in [33], [1].

From (6) it is easy to find the evolution equation for the graph:

ft(α, t) =
ρ2−ρ1

2π
PV

∫
R

(α− β)

(α− β)2+(f(α, t)−f(β, t))2
(∂αf(α, t)−∂αf(β, t))dβ,

(7)

f(α, 0) = f0(α).
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The above equation can be linearized around the flat solution to find the fol-

lowing nonlocal partial differential equation:

ft(α, t) = −ρ
2 − ρ1

2
Λf(α, t),

f(α, 0) = f0(α), α ∈ R

where the operator Λ is the square root of the Laplacian. This linearization

shows the parabolic character of the system.

Furthermore, the stable system gives a maximum principle ‖f‖L∞(t) ≤
‖f‖L∞(0) [14]; decay rates are obtained for the periodic case:

‖f‖L∞(t) ≤ ‖f0‖L∞e−Ct,
and also for the case on the real line (flat at infinity):

‖f‖L∞(t) ≤ ‖f0‖L∞
1 + Ct

.

There are several results on global existence for small initial data (small com-

pared to 1 in several norms more regular than Lipschitz [9], [34], [31], [13],

[19]) taking advantage of the parabolic character of the equation for small

initial data. In [8] it is shown in the stable case that global existence for

solutions holds if the first derivative of the initial data is smaller than an ex-

plicitly computable constant greater than 1/5. Furthermore, if ‖f0‖L∞ < ∞
and ‖∂αf0‖L∞ < 1, then there exists a global-in-time solution that satisfies

f(α, t) ∈ C([0, T ]× R) ∩ L∞([0, T ];W 1,∞(R))

for each T > 0. In particular f is Lipschitz continuous.

Moreover, equation (7) yields an L2 decay:

‖f‖2L2(t)+
ρ2 − ρ1

2π

∫ t

0
ds

∫
R
dα

∫
R
dβ ln

Ç
1 +

(f(β, s)− f(α, s)

β − α

)2
å

= ‖f0‖2L2 ,

which does not imply, for large initial data, a gain of derivatives in the system

(see [8]). We will see below that the solutions to the Muskat problem with

initial data in H4 become real analytic immediately despite the weakness of

the above decay formula.

The main result we present here is

Theorem 1.1. There exists a nonempty open set of initial data in H4

with Rayleigh-Taylor strictly positive σ>0 such that in finite time the Rayleigh-

Taylor σ(α, t) of the solution of (6) is strictly negative for all α in a nonempty

open interval.

The geometry of this family of initial data is far from trivial. Numerical

simulations performed in [16] show that there exist initial data with large

steepness for which a regularizing effect appears. In fact, as will be explained

in Section 2, the first evidence of a change of sign in the Rayleigh-Taylor has

been experimentally found in a model with two interfaces.
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We proceed as follows. First, in Section 3, we assume initial conditions

at time t = t0 that satisfy the Rayleigh-Taylor (σ > 0) and the arc-chord

condition, and for which the boundary z initially belongs to H4. Let C1 be the

constant in the arc-chord condition, let C2 be an upper bound for the H4 norm

of the initial data and let c3 be a lower bound for σ. Then there exists t1 > t0,

with t1 depending only on C1, C2, c3, such that the Muskat problem has a

solution for time t ∈ [t0, t1], satisfying also the arc-chord and Rayleigh-Taylor

conditions. Moreover, for t0 < t ≤ t1, the solution z(α, t) is real analytic in a

strip S(t) = {α+ iζ : |ζ| ≤ c(t− t0)}, where c depends only on C1, C2, c3.

Our goal in Section 4 is to show that the region of analyticity does not

collapse to the real axis as long as the Rayleigh-Taylor is greater than or equal

to 0. This allows us to reach a regime for which the boundary z develops a

vertical tangent.

Section 5 is devoted to showing the existence of a large class of analytic

curves for which there exists a point where the tangent vector is vertical and

the velocities indicate that the curves are going to turn over and reach the

unstable regime for a small time. Plugging these initial data into a Cauchy-

Kowalewski theorem indicates that the analytic curves turn over. Therefore

the unstable regime is reached.

Finally, in Section 6, a perturbative argument allows us to conclude that

we can find curves in H4 close enough to the special class of analytic curves

described in Section 5, which satisfy the arc-chord and Rayleigh-Taylor condi-

tions. Then we can show the existence of the curves passing the critical time

and actually turning over. Therefore the unstable regime is reached for an

entire H4-neighborhood of initial data.

Remark 1.2. In a forthcoming paper (see [5]) we will exhibit a particular

initial datum for which we will show that once the curve reaches the unstable

regime, the strip of analyticity collapses in finite time and the solution breaks

down. In Section 8 we provide a very brief sketch of our proof of breakdown

of smoothness for the Muskat equation. These results were announced in [6].

Remark 1.3. The same approach can be done for the water waves problem,

which shows that, starting with some initial data given by (α, f0(α)), in finite

time the interface reaches a regime in which it is no longer a graph. There-

fore there exists a time t∗ where the solution of the free boundary problem

parametrized by (α, f(α, t)) satisfies ‖fα‖L∞(t∗) = ∞ (see §7). This scenario

is known in the literature as wave breaking [7] and there are numerical simu-

lations showing this phenomenon [4].

Remark 1.4. We conjecture that a result analogous to Theorem 1.1 holds,

in which surface tension is included. We may simply use the same initial data

as in Theorem 1.1 and take the coefficient of surface tension to be very small.
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The solutions are presumably changed only slightly by the surface tension

(although we do not have a proof of this plausible assertion). Consequently,

we believe that Muskat solutions with small surface tension can turn over.

A similar remark applies to water waves (see Theorem 7.1). There exist

initial data for which water waves with surface tension turn over. A rigorous

proof may be easily supplied, since local existence (backwards and forward in

time) is known for water waves with surface tension (see [3]).

2. The contour equation and numerical simulations

Here we present the evolution equation in terms of the free boundary that

is going to be used throughout the paper and the numerical experiment that

motivated the theorem.

2.1. The equation of motion. By Darcy’s law,

∇⊥ · u = −(ρ2 − ρ1)∂αz2(α)δ(x− z(α)),

and Biot-Savart yields

(8) zt(α) = −(ρ2 − ρ1)

2π
PV

∫
R

(z(α)− z(α− β))⊥

|z(α)− z(α− β)|2
∂αz2(α− β)dβ.

For the first coordinate above, one finds

(ρ2 − ρ1)

2π
PV

∫
R

(z2(α)− z2(α− β))

|z(α)− z(α− β)|2
∂αz2(α− β)dβ

= −(ρ2 − ρ1)

2π
PV

∫
R

(z1(α)− z1(α− β))

|z(α)− z(α− β)|2
∂αz1(α− β)dβ

using the identity

PV

∫
R
∂β
Ä

ln(|z(α)− z(α− β)|2)
ä
dβ = 0.

Therefore,

zt(α) = −(ρ2 − ρ1)

2π
PV

∫
R

(z1(α)− z1(α− β))

|z(α)− z(α− β)|2
∂αz(α− β)dβ.

Here we point out that in the Biot-Savart law the perpendicular direction

appears, but after the above integration by parts, we only see the tangential

direction.

Adding the tangential term

(ρ2 − ρ1)

2π
PV

∫
R

(z1(α)− z1(α− β))

|z(α)− z(α− β)|2
dβ∂αz(α),

we find that the contour equation is given by

zt(α) =
(ρ2 − ρ1)

2π
PV

∫
R

z1(α)− z1(α− β)

|z(α)− z(α− β)|2
(∂αz(α)− ∂αz(α− β))dβ.
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For the 2π periodic interface, the equation becomes

(9)

zt(α) =
(ρ2 − ρ1)

4π

∫ π

−π

sin(z1(α)− z1(α− β))(∂αz(α)− ∂αz(α− β))

cosh(z2(α)− z2(α− β))− cos(z1(α)− z1(α− β))
dβ.

In order to see (9) we take z(α) = z1(α) + iz2(α); it is easy to rewrite (8) as

follows:

zt(α) = −(ρ2 − ρ1)

2πi
PV

∫
R

∂αz2(β)

z(α)− z(β)
dβ.

The classical identity(1

z
+
∑
k≥1

z

z2 − (2πk)2

)
=

1

2 tan(z/2)

allows us to conclude that

zt(α) =
(ρ2 − ρ1)

4π

∫
T

(sinh(z2(α)− z2(β)),− sin(z1(α)− z1(β)))

cosh(z2(α)− z2(β))− cos(z1(α)− z1(β))
∂αz2(β)dβ,

where T = R/2πZ.

Analogously, using the equality

(ρ2 − ρ1)

4π
PV

∫
R

sinh(z2(α)− z2(β))

cosh(z2(α)− z2(β))− cos(z1(α)− z1(β))
∂αz2(β)dβ

= −(ρ2 − ρ1)

4π
PV

∫
R

sin(z1(α)− z1(β))

cosh(z2(α)− z2(β))− cos(z1(α)− z1(β))
∂αz1(β)dβ

and adding the appropriate tangential term, we obtain equation (9).

2.2. The scenario motivated by the numerics. Our investigations started

with the idea that interesting new phenomena may arise if we study three

fluids, separated by two interfaces. Careful numerical studies indicated that

one of the interfaces may turn over. In attempting to prove analytically the

turnover indicated by the numerics, we discovered that a turnover can occur

also for a single interface, i.e., for the Muskat problem. This section describes

one of our numerical experiments.

Proceeding as in the preceding section, one can derive the equations mod-

eling the evolution of two interfaces separating three fluids with different den-

sities ρj (j = 1, 2, 3). More precisely, assume that both interfaces can be

parametrized by graphs (α, f(α, t)) and (α, g(α, t)), with f lying above g.

These equations read in the periodic case; cf. [16], [15] (this scenario has been

recently also considered in [18]):

ft(α, t) = ρ̄1 I[f(·, t), f(·, t)] + ρ̄2 I[f(·, t), g(·, t)], f(α, 0) = f0(α),(10)

gt(α, t) = ρ̄2 I[g(·, t), g(·, t)] + ρ̄1 I[g(·, t), f(·, t)], g(α, 0) = g0(α),
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where ρ̄j = (ρj+1 − ρj)/(4π), j = 1, 2, and, for given functions u(α), v(α),
(11)

I[u, v] := PV

∫
T

(∂αu(α)−∂αv(α− β)) tan(β/2)(1−tanh2((u(α)−v(α−β))/2))

tan2(β/2)+tanh2((u(α)−v(α− β))/2)
dβ.

The first terms I[f(·, t), f(·, t)] and I[g(·, t), g(·, t)] in (10) give the velocity of a

unique interface. The cross terms I[f(·, t), g(·, t)] and I[g(·, t), f(·, t)] take into

account the interaction of the two interfaces, and their contribution is getting

bigger when the curves are getting closer. This, together with the diffusive

behavior reported in [16] for the equation

(12) ft(α, t) = ρ̄1I[f(·, t), f(·, t)], f(α, 0) = f0(α),

and the mean conservation for f and g, motivate the choice of the follow-

ing initial data, in the hope that some nonregularizing effect arises from the

interaction of the two interfaces
(13)

f0(α) =


0.1− sin3

Ç
π(α−M1 + r1)

2r1

å
, if α ∈ [M1 − r1,M1 + r1],

0.1, otherwise

and

(14)

g0(α) =


sin3

Ç
π(α−M2 + r2)

2r2

å3

− 0.92, if α ∈ [M2 − r2,M2 + r2],

g0(α) = −0.92, otherwise.

The choice of parameters M1 = π + 0.1, r1 = 0.7, M2 = π/1.2, r2 = 0.3,

ρ̄1 = 20π, and ρ̄2 = π/20 yielded a strong growth of the derivative in the the

lower interface as the two curves approach, as shown in Figure 1. Moreover,

after introducing a small modification in the lower interface so that the tangent

at a certain point becomes actually infinite, and evaluating the normal velocity

relative to this point along the modified curve, we obtain the result plotted in

Figure 2. This graphic clearly indicates that the velocity field is forcing the

interface to turn over.

The numerical approximation of (10) addresses as a main difficulty the

absolute lack of knowledge about the behavior of the solutions to (10). Indeed,

the goal of our experiments is precisely the search for some singular behavior.

The nonlocal terms make the computations expensive, and special care has to

be taken in order to evaluate the integrands in a neighborhood of β = 0. For

this, we used Taylor expansions locally and computed exactly the principal

value. In this situation, adaptivity is strongly indicated, both in space and

time, since a good indicator of a singular behavior will be given either by a

sudden accumulation of spatial nodes or a sudden reduction of the time steps.
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Figure 1. Left : Solutions to (10) with initial data (13)–(14) at

times t = 0 (dashed blue), t = 3.46 · 10−4 (red points) and

t = 7.66 · 10−4 (black). Right : Solutions at t = 1.04 · 10−3

(dashed red) and t = 1.84 · 10−3 (black)

2.8 2.9 3 3.1
−1

−0.8
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−0.4

−0.2

0

Figure 2. Zoom of the interface, modified so that its tangent is

vertical at a single point P, and the normal velocity along the

curve, minus that at P, scaled by a factor of 100.

In order to attain the highest resolution in the integration of (10) and com-

pute the solutions shown in Figure 1, cubic spline interpolation of the curves

f(·, t) and g(·, t) with periodic boundary conditions was used. This provides

a C2 interpolant of each interface at every time and allows, in particular, the

evaluation of the convolution terms at any β ∈ [0, 2π]. Then, adaptive quad-

rature can be applied to approximate the integrals and evaluate the derivative

at any time. In the experiments reported, adaptive Lobatto quadrature was

used, by means of the MATLAB routine quadl. For the time integration,

the embedded Runge-Kutta formula due to Dormand and Prince, DOPRI5(4),

was implemented, since the problem was not found to be particularly stiff;

see for instance [21]. The time stepping was combined with a spatial node
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redistribution after every successful step. For the redistribution of the spatial

nodes an algorithm following [17] was implemented, with some modifications

taking into account that both interfaces are graphs. For several tolerance re-

quirements and different choices of the parameters involved in the full adaptive

routine, the integration always failed at a certain critical time, suggesting the

explosion of the derivative at a certain point of the lower interface and the lack

of validity of (10), once this curve stops being a graph.

The phenomenon described above and the explicit representations of the

maximum of the solutions derived in [14] motivated the search for special

initial data, which allowed us to understand that this behavior also arises in

the one-interface case.

3. Instant analyticity

Here we show the main estimates that provide local-existence and instant

analyticity for a single curve that satisfies initially the arc-chord and Rayleigh-

Taylor conditions. We consider the function

F (z)(α, β) =
β2

|z(α)− z(α− β)|2
, α, β ∈ R,

and in the periodic setting

F (z)(α, β) =
||β||2

2(cosh(z2(α)− z2(α− β))− cos(z1(α)− z1(α− β)))
, α, β∈T,

where ||x|| = dist(x, 2πZ).

If F (z) ∈ L∞, then we say that the curve satisfies the arc-chord condition,

and the L∞ norm of F is called the arc-chord constant.

Let us clarify the meaning of the above arc-chord condition. Fix t, and

assume that z(α, t) is a smooth function of α. Suppose F ∈ L∞. Letting β tend

to zero, we conclude that |∂αz(α, t)| is bounded below. Since also z is smooth,

|∂αz(α, t)| is also bounded above. Consequently, the numerator in the fraction

defining F is comparable to the square of the arc-length between z(α, t) and

z(α−β, t). On the other hand, the denominator of that fraction is comparable

to the square of the length of the chord joining z(α, t) to z(α − β, t). Thus,

the boundedness of F expresses the standard arc-chord condition for the curve

z(·, t) together with a lower bound for |∂αz(α, t)|.

Theorem 3.1. Let z(α, 0)=z0(α)∈H4, F (z0)(α, β)∈L∞ and ∂αz1(α, 0)

> 0 (R-T). Then there is a solution of the Muskat problem z(α, t) defined for

0 < t ≤ T that continues analytically into the strip S(t) = {α + iζ : |ζ| < ct}
for each t. Here, c and T are determined by upper bounds of the H4 norm

and the arc-chord constant of the initial data and a positive lower bound of
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∂αz1(α, 0). Moreover, for 0 < t ≤ T , the quantity∑
±

∫
(|z(α± ict)− (α+ ict, 0)|2 + |∂4

αz(α± ict)|2)dα

is bounded by a constant determined by upper bounds for the H4 norm and the

arc-chord constant of the initial data and a positive lower bound of ∂αz1(α, 0).

Above, | · | is the modulus of a complex number or a vector in C2.

Proof. For the proof we consider the contour z ∈ H4 with z − (α, 0)

periodic and ∂αz1(α, 0) > 0. In the case of the real line similar arguments

hold. The Muskat equation reads

(15) zt(α) =

∫ π

−π

sin(z1(α)− z1(α− β))(∂αz(α)− ∂αz(α− β))

cosh(z2(α)− z2(α− β))− cos(z1(α)− z1(α− β))
dβ,

where we suppose ∂αz1(α, 0) > 0. We also take ρ2 − ρ1 = 4π since we are

studying the case ρ2 > ρ1. For the complex extension, one finds

zt(α+iζ)

(16)

=

∫ π

−π

sin(z1(α+iζ)− z1(α+iζ − β))(∂αz(α+iζ)− ∂αz(α+iζ − β))

cosh(z2(α+iζ)− z2(α+iζ − β))− cos(z1(α+iζ)− z1(α+iζ − β))
dβ.

We will use energy estimates. Consider

S(t) = {α+ iζ ∈ C : α ∈ T, |ζ| < ct}

for c given below:1

‖z‖2L2(S)(t) =
∑
±

∫
T
|z(α± ict, t)− (α± ict, 0)|2dα,

‖z‖2Hk(S)(t) = ‖z‖2L2(S)(t) +
∑
±

∫
T
|∂kαz(α± ict, t)|2dα,

where k ≥ 2 as an integer, and

F (z)(α+ iζ, β)

(17)

=
||β||2

2(cosh(z2(α+ iζ)− z2(α+ iζ − β))− cos(z1(α+ iζ)− z1(α+ iζ − β)))
,

with norm

‖F (z)‖L∞(S)(t) = sup
α+iζ∈S(t),β∈T

|F (z)(α+ iζ, β)|.

1At the end of the proof we can take any c < minα(∂αz1(α, 0)/|∂αz(α, 0)|2).
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Next, we define as follows:

‖z‖2S(t) = ‖z‖2H4(S)(t) + ‖F (z)‖L∞(S)(t).

We shall analyze the evolution of ‖z‖H4(S)(t).

Before starting the energy estimates, we mention an idea used previously,

e.g., in the proof of (6.3) in [12]. Suppose A(α, β) is a C1(T) function, and

suppose f(α) belongs to L2(T). To estimate

(18)

∫ π

−π
A(α, α− β)

1

2
cot

Å
β

2

ã
f(α− β)dβ,

we break up this integral as the sum of

(19) A(α, α)

∫ π

−π

1

2
cot

Å
β

2

ã
f(α− β)dβ

and

(20)

∫ π

−π

ß
[A(α, α− β)−A(α, α)]

1

2
cot

Å
β

2

ã™
f(α− β)dβ.

The integral in (19) is simply the Hilbert transform of f , and the quan-

tity in curly brackets in (19) is bounded. This idea will be used repeat-

edly, with A(α, β) arising from derivatives ∂kαz(α, t) up to order 2 and with

f(α) = ∂4
αzµ(α, t) (µ = 1, 2). Whenever we use this scheme, we will simply

say that “a Hilbert transform arises.” For similar simple ideas used below, we

refer the reader to the term J1 in p. 485 in [12].

Then, using above scheme, for the low order terms in derivatives, it is easy

to find that

(21)
1

2

d

dt

∫
T
|z(α± ict), t)− (α± ict, 0)|2dα ≤ C(‖z‖S(t) + 1)k.

In (21) and in several of the estimates, k denotes a enough large universal

constant.

Next, we check that

1

2

d

dt

∫
T
|∂4
αz(α± ict, t)|2dα =

∑
j=1,2

1

2

d

dt

∫
T
|∂4
αzj(α± ict, t)|2dα,

where

1

2

d

dt

∫
T
|∂4
αzj(α± ict, t)|2dα(22)

= <
∫
T
∂4
αzj(α± ict, t)

(
∂t(∂

4
αzj)(α± ict, t)± ic∂5

αzj(α± ict, t)
)
dα.

In order to simplify the exposition we write z(α, t) = z(α) for a fixed t,

we treat both coordinates at the same time, we write (x1, x2) · (x3, x4) =

x1x3 + x2x4 for xj ∈ C, j = 1, . . . , 4, we denote α± ict = γ, and we define

Q(γ, β) = cosh(z2(γ)− z2(γ − β))− cos(z1(γ)− z1(γ − β)).
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Then we split the right-hand side of (22) by writing

I1 = <
∫
T
∂4
αz(γ) · ∂4

αzt(γ)dα

and

I2 = <
∫
T
∂4
αz(γ) · ic∂5

αz(γ)dα.

In I1 we will find the R-T and use it to absorb I2. We will decompose I1 in

order to find the terms of at least fourth order. In order to estimate the lower

order terms, we refer the reader to the paper [12] (see, e.g., Lemma 6.1). We

have I1 = J1 + J2 + J3+ l.o.t., where

‖l.o.t.‖L2(T) ≤ C(‖z‖S + 1)k,

and J1, J2, J3, are defined as follows:

J1 = <
∫
T
∂4
αz(γ)

·
( ∫

T
A(γ, β)

∂4
αz1(γ)− ∂4

αz1(γ − β)

Q(γ, β)
(∂αz(γ)− ∂αz(γ − β))dβ

)
dα,

where A(γ, β) = cos(z1(γ)− z1(γ − β)),

J2 = −<
∫
T
∂4
αz(γ)

·
( ∫

T

sin(z1(γ)− z1(γ − β))

(Q(γ, β))2
(∂αz(γ)− ∂αz(γ − β))B(γ, β)dβ

)
dα,

where

B(γ, β) = (sin(z1(γ)−z1(γ−β)), sinh(z2(γ)−z2(γ−β)))·(∂4
αz(γ)−∂4

αz(γ−β)),

and

J3 = <
∫
T
∂4
αz(γ) ·

( ∫
T

sin(z1(γ)− z1(γ − β))

Q(γ, β)
(∂5
αz(γ)− ∂5

αz(γ − β))dβ
)
dα.

We split J1 = K1 +K2 further, where

K1 = <
∫
T
∂4
αz(γ) · ∂4

αz1(γ)
(
PV

∫
T

A(γ, β)

Q(γ, β)
(∂αz(γ)− ∂αz(γ − β))dβ

)
dα,

K2 = −<
∫
T
∂4
αz(γ) ·

(
PV

∫
T

A(γ, β)

Q(γ, β)
(∂αz(γ)− ∂αz(γ − β))∂4

αz1(γ − β)dβ
)
dα.

Taking into account the complex extension of the arc-chord condition, it is

easy to deal with K1 to obtain

K1 ≤ (‖z‖S(t) + 1)k.
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In K2 it is possible to find a “Hilbert transform” applied to ∂4
αz1 as in (18),

and therefore an analogous estimate follows. We are done with J1. For J2, we

obtain similarly

J2 ≤ (‖z‖S(t) + 1)k.

Next, we split J3 = K3 +K4, where

K3 = <
∫
T
∂4
αz(γ) · ∂5

αz(γ)
(
PV

∫
T

sin(z1(γ)− z1(γ − β))

Q(γ, β)
dβ
)
dα,

K4 = −<
∫
T
∂4
αz(γ) ·

(
PV

∫
T

sin(z1(γ)− z1(γ − β))

Q(γ, β)
∂5
αz(γ − β)dβ

)
dα.

We have to be careful, because K3 for real curves is harmless, but for complex

curves we need to use the dissipative term to cancel out a dangerous term. We

denote

(23) f(γ) = PV

∫
T

sin(z1(γ)− z1(γ − β))

Q(γ, β)
dβ.

Therefore K3 = L1 + L2, where

L1 =

∫
T
<(f)(<(∂4

αz)<(∂5
αz) + =(∂4

αz)=(∂5
αz))dα,

L2 =

∫
T
=(f)(−<(∂4

αz)=(∂5
αz) + =(∂4

αz)<(∂5
αz))dα.

An easy integration by parts allows us to get

L1 = −1

2

∫
T
<(∂αf)|∂4

αz|2dα ≤ C(‖z‖S(t) + 1)k.

For L2, we find

L2 =

∫
T
=(∂αf)<(∂4

αz)=(∂4
αz)dα+ 2

∫
T
=(f)=(∂4

αz)<(∂5
αz))dα.

The first term on the right is easy to dominate by C(||z||S + 1)k. We denote

the second one by M1. We claim that

(24) M1 ≤ C(‖z‖S(t) + 1)k +K‖=(f)‖H2(S)‖Λ1/2∂4
αz‖2L2(S)

for K > 0 universal constant. To see this, we rewrite

M1 = −2

∫
T
=(f)=(∂4

αz)<(Λ(H(∂4
αz)))dα

which yields

M1 = −2

∫
T

Λ1/2(=(f)=(∂4
αz))<(Λ1/2(H(∂4

αz)))dα,
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and therefore

M1 ≤2‖Λ1/2(=(f)=(∂4
αz))‖L2(S)‖Λ1/2∂4

αz‖L2(S)

≤C‖=(f)‖H2(S)(‖∂4
αz‖L2(S) + ‖Λ1/2(∂4

αz)‖L2(S))‖Λ1/2∂4
αz‖L2(S)

≤C(‖z‖S(t) + 1)k +K‖=(f)‖H2(S)‖Λ1/2∂4
αz‖2L2(S).

Finally we find that

(25) K3 ≤ C(‖z‖S(t) + 1)k +K‖=(f)‖H2(S)‖Λ1/2∂4
αz‖2L2(S).

We will use the thickness of the strip to control the unbounded term above.

For K4, we decompose further: K4 = L3 + L4 + L5 + L6, where

L3 = −<
∫ π

−π
∂4
αz(γ)

·
∫ π

−π

β2

Q(γ, β)

1

β

Ç
sin(z1(γ)− z1(γ − β))

β
− ∂αz1(γ)

å
∂5
αz(γ − β)dβdα,

L4 = −<
∫ π

−π
∂4
αz(γ) · ∂αz1(γ)

∫ π

−π

Ç
β2

Q(γ, β)
− 2

|∂αz(γ)|2

å
1

β
∂5
αz(γ − β)dβdα,

L5 = −<
∫ π

−π
∂4
αz(γ) · ∂αz1(γ)

|∂αz(γ)|2
∫ π

−π

Ç
2

β
− 1

tan(β/2)

å
∂5
αz(γ − β)dβdα,

L6 = −<
∫ π

−π
∂4
αz(γ) · ∂αz1(γ)

|∂αz(γ)|2
Λ(∂4

αz)(γ)dα.

Inside L3, L4, and L5 we can integrate by parts, and therefore

L3 + L4 + L5 ≤ C(‖z‖S(t) + 1)k.

In L6 we use the splitting L6 = M2 +M3, where

M2 =

∫
T
=
Ç
∂αz1

|∂αz|2

å
(−<(∂4

αz) · =(Λ(∂4
αz)) + =(∂4

αz) · <(Λ(∂4
αz)))dα,

M3 = −
∫
T
<
Ç
∂αz1

|∂αz|2

å
(<(∂4

αz) · <(Λ(∂4
αz)) + =(∂4

αz) · =(Λ(∂4
αz)))dα.

In M2 it is easy to find a commutator formula:

M2 =

∫
T

ñ
−Λ

Ç
=
Ç
∂αz1

|∂αz|2

å
<(∂4

αz)

å
+ =

Ç
∂αz1

|∂αz|2

å
<(Λ(∂4

αz))

ô
· =(∂4

αz)dα,

and the appropriate estimate follows. We find that M2 ≤ C(||z||S + 1)k. For

M3, we write M3 = N1 +N2, where

N1 = −
∫
T

ñ
<
Ç
∂αz1

|∂αz|2

å
−m(t)

ô
(<(∂4

αz) · <(Λ(∂4
αz)) + =(∂4

αz) · =(Λ(∂4
αz)))dα,

N2 = −m(t)‖Λ1/2(∂4
αz)‖2L2(S),
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where

m(t) = min
γ
<
Ç
∂αz1(γ)

|∂αz(γ)|2

å
.

We use the pointwise estimate [10]:

(26) 2gΛ(g)− Λ(g2) ≥ 0.

Therefore,

N1 ≤
1

2

∥∥∥∥∥Λ
Ç
<
Ç
∂αz1

|∂αz|2

åå ∥∥∥∥∥
L∞(S)

‖∂4
αz‖2L2(S) ≤ C(‖z‖S(t) + 1)k

as long as

<
Ç
∂αz1(γ)

|∂αz(γ)|2

å
> 0.

Remember that initially <
Ä
∂αz1(γ)
|∂αz(γ)|2

ä
is greater than zero (R-T). We will prove

that it is going to keep like that for a short time. For I2, we find as before

I2 =c

∫
T
(=(∂4

αz)(γ)·<(∂5
αz)(γ)−<(∂4

αz)(γ)·=(∂5
αz)(γ))dα ≤ c‖Λ1/2(∂4

αz)‖2L2(S).

Finally

1

2

d

dt

∫
T
|∂4
αz(α± ict)|2dα

≤ C(‖z‖S(t) + 1)k + (c+K‖=(f)‖H2(S)(t)−m(t))‖Λ1/2(∂4
αz)‖2L2(S)(t).

Note that ‖=(f)‖H2(S)(0) = 0. If c−m(0) < 0, we will show that

c+K‖=(f)‖H2(S)(t)−m(t) < 0

for short time. It yields

1

2

d

dt

∫
T
|∂4
αz(α± ict)|2dα ≤ C(‖z‖S(t) + 1)k,

as long as c + K‖=(f)‖H2(S)(t) − m(t) < 0. Using Sobolev estimates, we

proceed as in [12, §8] to show that

d

dt
‖F (z)‖L∞(S) ≤ C(‖z‖S(t) + 1)k.

From the two inequalities above and (21) it is easy to obtain a priori energy

estimates that depend upon the negativity of c+K‖=(f)‖H2(S)(t)−m(t). We

get bona fide energy estimates as follows. We denote

‖z‖2RT (t) = ‖z‖2S(t) + 1/(m(t)− c−K‖=(f)‖H2(S)(t)).

At this point, it is easy to find that

− d

dt
‖=(f)‖H2(S)(t) ≤ C(‖z‖S(t) + 1)k
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using (23), and therefore (see [12, §9] for more details)

d

dt
‖z‖RT (t) ≤ C(‖z‖RT (t) + 1)k.

It follows that

‖z‖RT (t) ≤ ‖z‖RT (0) + 1

(1− C(‖z‖RT (0) + 1)kt)1/k
− 1,

providing the a priori estimate with C and k universal constants.

We approximate the problem as follows:

zεt (α, t)=φε ∗
∫

sin(φε ∗ zε1(α)−φε ∗ zε1(β))(∂α(φε ∗ zε)(α)−∂β(φε ∗ zε)(β))

cosh(zε2(α)−zε2(β))−cos(zε1(α)−zε1(β))
dβ,

zε(α, 0)=φε ∗ z0(α),

where φε(x) = φ(α/ε)/ε, φ is the heat kernel and ε > 0. Picard’s theorem

yields the existence of a solution zε(α, t) in C
(
[0, T ε);H4

)
which is analytic in

the whole space for z0 satisfying the arc-chord condition and ε small enough.

Using the same techniques we have developed above we obtain a bound for

zε(α, t) in H4 in the strip S(t) for a small enough T which is independent of ε.

We need arc-chord, R-T, z0 ∈ H4, and c−m(0) < 0. Then we can pass to the

limit.

4. Getting all the way to breakdown of Rayleigh-Taylor

This section is devoted to proving the following theorem.

Theorem 4.1. Let z(α, 0) = z0(α) be an analytic curve in the strip

S = {α+ iζ ∈ C : |ζ| < h(0)},

with h(0) > 0 and satisfying :

• the arc-chord condition, F (z0)(α+ iζ, β) ∈ L∞(S × R);

• the Rayleigh-Taylor condition, ∂αz
0
1(α) > 0;

• the curve z0(α) is real for real α;

• the functions z0
1(α)− α and z0

2(α) are periodic with period 2π;

• the functions z0
1(α)− α and z0

2(α) belong to H4(∂S).

Then there exist a time T and a solution of the Muskat problem z(α, t) defined

for 0 < t ≤ T that continues analytically into some complex strip for each fixed

t ∈ [0, T ]. Here T is either a small constant depending only on ||z0||S or it is

the first time a vertical tangent appears, whichever occurs first.

Thus our Muskat solution is analytic as long as ∂αz1(α, t) ≥ 0.
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We will use the following

Lemma 4.2. Let ϕ(α ± iζ) =
∑N
k=−N Ake

ikα∓kζ . Then, for ζ > 0, we

have

∂

∂ζ

∑
±

∫
T
|ϕ(α± iζ)|2dα ≥ 1

10

∑
±

∫
T

Λϕ(α± iζ)ϕ(α± iζ)dα(27)

− 10

∫
T

Λϕ(α)ϕ(α)dα,

where Λϕ(α± iζ) =
∑N
k=−N |k|Akeikαe∓kζ .

Proof. First we shall compute the left-hand side in the frequency space:∑
±

∫
T
|ϕ(α± iζ)|2dα = 4π

N∑
k=−N

|Ak|2 cosh(2|k|ζ).

On the other hand, we have that∑
±

∫
T

Λϕ(α± iζ)ϕ(α± iζ)dα = 4π
N∑

k=−N
|k||Ak|2 cosh(2|k|ζ),

while ∫
T

Λϕ(α)ϕ(α)dα = 2π
N∑

k=−N
|k||Ak|2.

Differentiating in ζ we obtain

∂

∂ζ

∫
T
|ϕ(α± iζ)|2dα = 8π

N∑
k=−N

|k||Ak|2 sinh(2|k|ζ).

The lemma holds since sinh(ζ) ≥ cosh(ζ)− 1 for any ζ > 0.

Corollary 4.3. Let ϕ(α ± iζ, t) =
∑N
k=−N Ak(t)e

ikαe∓kζ and h(t) > 0

be a decreasing function of t. Then

∂

∂t

∑
±

∫
T
|ϕ(α± ih(t))|2dα ≤ h′(t)

10

∑
±

∫
T

Λϕ(α± ih(t))ϕ(α± ih(t))dα

−10h′(t)

∫
T

Λϕ(α)ϕ(α)dα+ 2<
∑
±

∫
T
ϕt(α± ih(t))ϕ(α± ih(t))dα.

This corollary allows us to prove Theorem 4.1.

Proof of Theorem 4.1. The norms ‖z‖Hk(S) and ‖z‖S are defined as before

using the new strip S(t) defined by

S(t) = {α+ iζ ∈ C : |ζ| < h(t)},

where h(t) is a positive decreasing function of t.

We use the Galerkin approximation of equation (15), i.e.,

∂tz
[N ](ζ, t) = ΠN [J [z[N ]]](ζ, t),
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where ζ ∈ S(t), ΠN will be specified below, and

J [z](α, t) =

∫ π

−π

sin(z1(α)− z1(β))(∂αz(α)− ∂αz(β))

cosh(z2(α)− z2(β))− cos(z1(α)− z1(β))
dβ.

We impose the initial condition

z[N ](α, 0) = z[N ](α).

Here, for a large enough positive integer N , we define z[N ](α, 0) from z0(α) by

using the projection

ΠN :
∞∑
−∞

Ake
ikα 7→

N∑
−N

Ake
ikα.

We define z[N ](α) by stipulating that

z
[N ]
1 (α)− α = ΠN [z0

1(α)− α]

and

z
[N ]
2 (α) = ΠN [z0

2(α)].

For N large enough, the functions z[N ](α, 0) satisfy the arc-chord and Rayleigh-

Taylor condition.

We shall consider the evolution of the most singular quantity∑
±

∫
T
|∂4
αz

[N ](α± ihN (t), t)|2dα,

where hN (t) is a smooth positive decreasing function on t, with hN (0) = h(0),

which will be given below. Also we denote

SN (t) = {α+ iζ ∈ C : |ζ| < hN (t)}.

From now on, we will drop the dependency on N from z[N ] and hN (t) in
our notation. We will return to the previous notation in the discussion below
at the end of the section. Taking the derivative with respect to t yields

d

dt

∫
α∈T

∣∣∂4αzµ(α± ih(t), t)
∣∣2 dα

= 2<
∫
α∈T

∂4αzµ(α± ih(t), t)
{
∂t∂

4
αzµ(α± ih(t), t) + ih′(t)∂5αzµ(α± ih(t), t)

}
dα

= 2<
∫
α∈T

∂4αzµ(α± ih(t), t)
{
∂4αΠN [Jµ[z]](α± ih(t), t) + ih′(t)∂5αzµ(α± ih(t), t)

}
dα

= 2<
∫
α∈T

∂4αzµ(α± ih(t), t)
{

ΠN [∂4αJµ[z]](α± ih(t), t) + ih′(t)∂5αzµ(α± ih(t), t)
}
dα

= 2<
∫
α∈T

∂4αzµ(α± ih(t), t)
{
∂4αJµ[z](α± ih(t), t) + ih′(t)∂5αzµ(α± ih(t), t)

}
dα,
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since ∂4
αzµ(α± ih(t), t) is a trigonometric polynomial in the range of ΠN . Here

µ = 1, 2.

Using the above corollary, we have that

d

dt

∑
±

∫
α∈T

∣∣∣∂4
αzµ(α± ih(t), t)

∣∣∣2 dα
≤ h′(t)

10

∑
±

∫
T

Λ(∂4
αzµ)(α± ih(t)) · ∂4

αzµ(α± ih(t))dα

− 10h′(t)

∫
T

Λ(∂4
αzµ)(α) · ∂4

αzµ(α)dα

+ 2
∑
±
<
∫
T
∂4
αJµ[z](α, t)(α± ih(t)) · ∂4

αzµ(α± ih(t))dα.

We shall study in detail the most singular term in ∂4
αJ [z](α, t), i.e.,

∂4
αJ [z](α± ih(t), t)

=

∫ π

−π

sin(z1(α± ih(t), t)− z1(β, t))(∂5
αz(α± ih(t), t)− ∂5

βz(β, t))

cosh(z2(α± ih(t), t)− z2(β, t))− cos(z1(α± ih(t), t)− z1(β, t))
dβ

+ l.o.t. ≡ X + l.o.t.,

where ||l.o.t.||L2(T) ≤ C(||z||S(t) + 1)k (see [12] and our previous discussion of

(18)). We split X in to the following terms:

X =

∫ π

−π
K(α± ih(t), β)(∂5

αz(α± ih(t), t)− ∂5
βz(β, t))dβ

+ σ̃(α± ih(t), t)

∫ π

−π
cot

Ç
α± ih(t)− β

2

å
(∂5
αz(α± ih(t), t)−∂5

βz(β, t))dβ

≡ X1 +X2,

where

K(α, β) =
sin(z1(α, t)− z1(β, t))

cosh(z2(α, t)− z2(β, t))− cos(z1(α, t)− z1(β, t))

− ∂αz1(α, t)

(∂αz2(α, t))2 + (∂αz1(α, t))2
cot

Å
α− β

2

ã
and

σ̃(α, t) =
∂αz1(α, t)

(∂αz1(α, t))2 + (∂αz2(α, t))2
.

Let us denote

Γ±(t) = {ζ ∈ C : ζ = α± ih(t), α ∈ T}.
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Since K(α, β) is a holomorphic function in α and β, with α, β ∈ S(t), for

fixed t, we have that

X1 =

∫ π

π
K(α± ih(t), β)∂5

αz(α± ih(t), t)dβ

−
∫ π

π
K(α± ih(t), β)∂5

αz(β, t)dβ

≡X11 +X12,

and integration by parts shows that the term X12 satisfies ||X12||L2(T) ≤
C(||z||S + 1)k. In addition, we can write X11 as follows

X11 =

∫
w∈Γ±(t)

K(α± ih(t), w)∂5z(α± ih(t), t)dw

= PV

∫
w∈Γ±(t)

sin(z1(α± ih(t), t)− z1(w, t))∂5z(α± ih(t), t)

Q(α± ih(t), α± ih(t)− w)
dw

− ∂5
αz(α± ih(t), t)σ(α± ih(t), t)PV

∫
w∈Γ±(t)

cot

Ç
α± ih(t)− w

2

å
dw

= PV

∫ π

−π

sin(z1(α± ih(t), t)− z1(β ± ih(t), t))∂5z(α± ih(t), t)

Q(α± ih(t), α− β)
dβ,

where, as before, we define

Q(α± ih(t), β) = cosh(z2(α± ih(t), t)− z2(α± ih(t)− β, t))
− cos(z1(α± ih(t), t)− z1(α± ih(t)− β, t)).

We call

f(α± ih(t), t) =PV

∫ π

−π

sin(z1(α± ih(t), t)− z1(β ± ih(t), t))

Q(α± ih(t), α− β)
dβ

=PV

∫ π

−π

sin(z1(α± ih(t), t)− z1(α± ih(t)− β, t))
Q(α± ih(t), β)

dβ.

Thus

X11 = ∂5z(α± ih(t), t)f(α± ih(t), t).

Also we can write X2 in the following way:

X2 = σ̃(α± ih(t), t)

∫ π

−π
cot

Ç
α± ih(t)− β

2

å
(∂5
αz(α± ih(t), t)− ∂5

βz(β, t))dβ

= σ̃(α± ih(t), t)

∫
w∈Γ±(t)

cot

Ç
α± ih(t)− w

2

å
· (∂5

αz(α± ih(t), t)− ∂5
βz(w, t))dw

= σ̃(α± ih(t), t)P.V.

∫
w∈Γ±(t)

cot

Ç
α± ih(t)− w

2

å
∂5
αz(α± ih(t), t)dw
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− σ̃(α± ih(t), t)P.V.

∫
w∈Γ±(t)

cot

Ç
α± ih(t)− w

2

å
∂5
αz(w, t)dw

= −σ̃(α± ih(t), t)P.V.

∫ π

−π
cot

Å
α− β

2

ã
∂5
αz(β ± ih(t), t)dβ

= −σ̃(α± ih(t), t)P.V.

∫ π

−π

1

2
csc2

Å
α− β

2

ã
· (∂4

αz(α± ih(t), t)− ∂4
αz(β ± ih(t), t))dβ

and finally

X2 =− 2πσ̃(α± ih(t), t)(Λ∂4
αz)(α± ih(t), t).

Then we find two dangerous terms:

I1 = 2<
∫
T
f(α± ih(t), t)(∂4

αzµ)(α± ih(t)) · (∂5
αzµ)(α± ih(t))dα

and

I2 = −4π<
∫
T
σ̃(α± ih(t), t)Λ(∂4

αzµ)(α± ih(t)) · ∂4
αzµ(α± ih(t))dα.

The rest can be bounded by C(‖z‖S + 1)k(t) as in the previous section. In

order to bound I1 and I2 we use the following commutator estimate:

(28) ||Λ
1
2 (fg)− fΛ

1
2 g||L2(T) ≤ C||Λ1+εf ||L2(T)||g||L2(T)

for f(α) =
∑N
−N fke

ikx and g(α) =
∑N
−N gke

ikx, where ε > 0 and C does not

depend on N . The proof of (28) will be left to the reader.

First we estimate I1. We denote γ = α+ ih(t):

I1 = 2<
∫ π

−π
f(γ, t)∂4

αzµ(γ, t)∂5
αzµ(γ, t)dα

= 2

∫ π

−π
<(f(γ))

{
<(∂4

αzµ(γ, t))∂α(<(∂4
αzµ(γ, t)))

+ =(∂4
αzµ(γ, t))∂α(=(∂4

αzµ(γ, t)))
}
dα

− 2

∫ π

−π
=(f(γ))

{
<(∂4

αzµ(γ, t))∂α(=(∂4
αzµ(γ, t)))

+ =(∂4
αzµ(γ, t))∂α(<(∂4

αzµ(γ, t)))
}
dα

≡ I11 + I12.

Integrating by parts we have that ||I11||L2(T) ≤ C(||z||S + 1)k. In order to

estimate I12 we note that f(γ, t) is real for real γ. Then

=(f(α± ih(t), t)) = h(t)f̃±(α, t),

where

||f̃±||H2(T) ≤ C(||z||S(t) + 1)k.
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Then we can write∫ π

−π
=(f(γ))<(∂4

αzµ(γ, t))∂α(=(∂4
αzµ(γ, t)))dα

= h(t)

∫ π

−π
f̃±(α, t)<(∂4

αzµ(γ, t))∂α(=(∂4
αzµ(γ, t)))dα

= −h(t)

∫ π

−π
f̃±(α, t)<(∂4

αzµ(γ, t))ΛH(=(∂4
αzµ(γ, t)))dα

= −h(t)

∫ π

−π
Λ

1
2 (f̃±(α, t)<(∂4

αzµ)(γ, t))Λ
1
2H(=(∂4

αzµ(γ, t)))dα

= −h(t)

∫ π

−π

{
Λ

1
2 (f̃±(α, t)<(∂4

αzµ)(γ, t))

− f̃±(α)Λ
1
2<(∂4

αzµ)
}

Λ
1
2H(=(∂4

αzµ(γ, t)))dα

− h(t)

∫ π

−π
f̃±(α)Λ

1
2<(∂4

αzµ)Λ
1
2H(=(∂4

αzµ(γ, t)))dα

≤ h(t)

∥∥∥∥Λ 1
2 (f̃±(·, t))<(∂4

αzµ(· ± ih(t), t))

− f̃±(·, t)Λ
1
2<(∂4

αzµ(· ± ih(t)))

∥∥∥∥
L2(T)

× ||Λ
1
2H(=(∂4

αzµ(· ± ih(t), t)))||L2(T)

+ h(t)||f̃±||L∞(T)||Λ
1
2<(∂4

αzµ(· ± ih(t)))||L2(T)

× ||Λ
1
2H=(∂4

αzµ(· ± ih(t)))||L2(T).

Using estimate (28) yields∫ π

−π
=(f(γ))<(∂4

αzµ(γ, t))∂α(=(∂4
αzµ(γ, t)))dα

≤ h(t)||Λ1+εf̃±||L2(T)

× ||<(∂4
αzµ(· ± ih(t), t))||L2(T)||Λ

1
2 (=(∂4

αzµ(· ± ih(t), t)))||L2(T)

+ h(t)||f̃±||L∞(T)||Λ
1
2<(∂4

αzµ(· ± ih(t)))||L2(T)||Λ
1
2=(∂4

αzµ(· ± ih(t))||L2(T)

≤ Ch(t)(||z||S + 1)k + Ch(t)(||z||S + 1)k||Λ
1
2∂4

αzµ(· ± ih(t), t)||2L2(T)

= Ch(t)(||z||S + 1)k + Ch(t)(||z||S + 1)k
∫ π

−π
∂4
αzµ(γ, t)Λ∂4

αzµ(γ, t)dα.

Now I1 is equal to the integral to the left, plus a similar integral that can be

bounded in a similar way.

Thus we obtain that

(29)
∑
±
I1 ≤ C(‖z‖S + 1)k + Ch(t)(‖z‖S + 1)k‖Λ1/2∂4

αz‖2L2(S).
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By assumption the R-T σ̃ is bigger than zero for real values. In order to

avoid problems with the imaginary part we may write

∂αz1(α± ih(t), t)

(∂αz1(α± ih(t)))2 + (∂αz2(α± ih(t)))2
=

∂αz1(α, t)

|∂αz(α, t)|2
+ h(t)g±(α, t),

where

||g±||H2(T) ≤ C(||z||S + 1)k.

One finds

I2 = −2<
∫
T

∂αz1(α)

|∂αz(α)|2
Λ(∂4

αzµ)(α± ih(t)) · ∂4
αzµ(α± ih(t))dα

− h(t)2<
∫
T
g±(α, t)Λ(∂4

αzµ)(α± ih(t)) · ∂4
αzµ(α± ih(t))dα.

The first term above can be treated as in Section 3, taking advantage of

inequality (26). Here we just need ∂αz1(α) ≥ 0. The second term can be

treated using inequality (28) as with the term I1. We find that∑
±
I2 ≤ C(||z||S + 1)k + Ch(t)‖g±‖H2(S)‖Λ1/2∂4

αz‖2L2(S),

and therefore

(30)
∑
±
I2 ≤ C(||z||S + 1)k + Ch(t)(‖z‖S + 1)k‖Λ1/2∂4

αz‖2L2(S).

Using (29) and (30), we have that

d

dt

∑
±

∫
T
|∂4
αzµ(α± ih(t))|2dα

≤ C(‖z‖S(t) + 1)k − 10h′(t)

∫
T

Λ(∂4
αzµ)(α) · ∂4

αzµ(α)dα

+

Å
C(‖z‖S(t) + 1)kh(t) +

1

10
h′(t)

ã ∫
T

Λ(∂4
αzµ)(α± ih(t)) · ∂4

αzµ(α± ih(t))dα.

Choosing

h(t) = h(0) exp(−10C

∫ t

0
(‖z‖S + 1)k(r)dr),

we eliminate the most dangerous term. The other term in the expression above

involves with a function on the real line and it is easily controlled. Indeed∫
T

Λ∂4
αzµ(α) · ∂4

αzµ(α) ≤ C

h(t)

∑
±

∫
T
|∂4
αzµ(α± ih(t))|2dα,

as one sees by examining the Fourier expansion of ∂4
αzµ(α, t).

Thus∣∣∣∣10h′(t)

∫
T

Λ(∂4
αzµ)(α) · ∂4

αzµ(α)dα

∣∣∣∣ ≤ C |h′(t)|h(t)
||z||2S ≤ C(||z||S + 1)k+2,
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and we finally obtain

d

dt

∑
±

∫
T
|∂4
αz(α± ih(t))|2dα ≤ C(‖z‖S(t) + 1)k+2.

Recovering the dependency on N in our notation, we have that

(31)
d

dt

∑
±

∫
T
|∂4
αz

[N ](α± ihN (t))|2dα ≤ C(‖z[N ]‖SN (t) + 1)k+2.

As in the previous section, we can obtain a bound of the evolution of the

arc-chord condition that depends on C(‖z[N ]‖SN (t) + 1)k+2.

This estimate is true whenever t ∈ [0, TN ], where TN is the maximal time

of existence of the solution z[N ]. In addition, inequality (31) shows that we

can extend these solutions in H4(S) up to a small enough time T independent

of N and depending on the initial data.

The above calculation shows that the strip may shrink but does not col-

lapse as long as ∂αz1(α, t) ≥ 0.

5. From an analytic curve in the stable regime

to an analytic curve in the unstable regime

In this section we show that there exist some initial data which are analytic

curves satisfying the arc-chord and R-T conditions such that the solution of the

Muskat problem reaches the unstable regime. In order to do it we will prove the

local existence of solutions for analytic initial data without assuming the R-T

condition. Then we will construct some suitable initial data for our purpose.

Theorem 5.1. Let z0 be an analytic curve satisfying the arc-chord con-

dition. Then there exists an analytic solution for the Muskat problem in some

interval [−T, T ] for a small enough T > 0.

Remark 5.2. Notice that in Theorem 5.1 there is no assumption on the

R-T condition. The proof we use here is analogous to the one in [32] based

on Cauchy-Kowalewski theorems [26], [27]. (For an application to the Euler

equation see [2].) Here we cannot parametrize the curve as a graph, so we have

to change the argument substantially in the proof in order to deal with the

arc-chord condition.

Proof. We use the same notation as before. Let {Xr}r>0 be a scale of

Banach spaces given by R2-valued real functions f that can be extended into

the complex strip Sr = {α+ iζ ∈ C : |ζ| < r} such that the norm

‖f‖2r =
∑
±

∫
T
|f(α± ir)− (α± ir, 0)|2dα+

∫
T
|∂4
αf(α± ir)|2dα

is finite and f(α)− (α, 0) is 2π-periodic.
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Let z0(α) be a curve satisfying the arc-chord condition and z0(α) ∈ Xr0

for some r0 > 0. Then, we will show that there exist a time T > 0 and

0 < r < r0 so that there is a unique solution to (16) in C([0, T ];Xr).

It is easy to check that Xr ⊂ Xr′ for r′ ≤ r due to the fact that ‖f‖r′ ≤
‖f‖r. A simple application of the Cauchy formula gives

(32) ‖∂αf‖r′ ≤
C

r − r′
‖f‖r

for r′ < r. Next, we write equation (16) as follows:

zt(α+ iζ, t) = G(z(α+ iζ, t)),

with

G(z(α+ iζ, t))

=

∫ π

−π

sin(z1(α+ iζ)− z1(α+ iζ − β))(∂αz(α+ iζ)− ∂αz(α+ iζ − β))

cosh(z2(α+ iζ)− z2(α+ iζ − β))− cos(z1(α+ iζ)− z1(α+ iζ − β))
dβ.

We take 0 ≤ r′ < r and we introduce the open set O in Sr given by

(33) O = {z, ω ∈ Xr : ‖z‖r < R, ‖F (z)‖L∞(Sr) < R2},

with F (z)(α+ iζ, β, t) given by (17). Then the function G for G : O → Xr′ is

a continuous mapping. In addition, there is a constant CR (depending on R

only) such that

‖G(z)‖r′ ≤
CR
r − r′

‖z‖r,(34)

‖G(z2)−G(z1)‖r′ ≤
CR
r − r′

‖z2 − z1‖r,(35)

and

(36) sup
α+iζ∈Sr,β∈T

|G(z)(α+ iζ)−G(z)(α+ iζ − β)| ≤ CR|β|

for z, zj ∈ O. The above inequalities can be proved by estimating as in previous

sections. Then they yield the proof of Theorem 5.1. The argument is analogous

to [26] and [27]. We have to deal with the arc-chord condition so we will point

out the main differences. For initial data z0 ∈ Xr0 satisfying arc-chord, we can

find a 0 < r′0 < r0 and a constant R0 such that ‖z0‖r′0 < R0 and

(37)

2
cosh(z0

2(α+ iζ)− z0
2(α+ iζ − β))− cos(z0

1(α+ iζ)− z0
1(α+ iζ − β))

||β||2
>

1

R2
0

for α+ iζ ∈ Sr′0 . We take 0 < r < r′0 and R0 < R to define the open set O as in

(33). Therefore, we can use the classical method of successive approximations:

(38) zn+1(t) = z0 +

∫ t

0
G(zn(s))ds
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for G : O → Xr′ and 0 < r′ < r. We assume by induction that

‖zk‖r(t) < R, and ‖F (zk)‖L∞(Sr)(t) < R

for k ≤ n and 0 < t < T with T = min(TA, TCK) and TCK the time obtained

in the proofs in [26] and [27], and TA determined below. Now, we will check

that ‖F (zn+1)‖L∞(Sr)(t) < R for suitable TA. The rest of the proof follows in

the same way as in [26] and [27].

Definitions (38) and (17) easily imply that

|(F (zn+1)(α+ iζ, β, t))−1|

≥ |(F (z0)(α+ iζ, β, t))−1| − CR(t2 + t) ≥ 1

R2
0

− CR(t2 + t).

To see this, we just use the formulas for cos(a+b) and cosh(a+b), and bounds

for the functions cosh(x)−1
x2

, 1−cos(x)
x2

, sinh(x)
x , sin(x)

x , for bounded x. Therefore,

taking

0 < TA < min

{
1,

√Ç
1

R2
0

− 1

R2

å
1

2CR

}
,

we obtain ‖F (zn+1)‖L∞(Sr)(t) < R. This completes the proof of Theorem 5.1.

The next step will be the construction of analytic initial data such that

a. ∂αz1(α) > 0 if α 6= 0, b. ∂αz1(0) = 0,

c. ∂αz2(0) > 0, d. ∂αv1(0) < 0.

Also z1(α)− α and z2(α) are 2π-periodic.

Here vµ(α, t), with µ = 1, 2, are the velocities given by

vµ(α, t)=

∫ π

−π

sin(z1(α)− z1(β))

cosh(z2(α)− z2(β))− cos(z1(α)− z1(β))
(∂αzµ(α)−∂αzµ(β))dβ.

Notice that in this situation the graph f : R→ R, defined by the equation

z2(α) = f(z1(α)), has a vertical tangent at the point z(0). See the figure below

for an example. We shall prove the following lemma.

Lemma 5.3. There exists a curve z(α) = (z1(α), z2(α)) with the following

properties :

(i) z1(α) − α and z2(α) are analytic 2π − periodic functions and z(α)

satisfies the arc-chord condition,

(ii) z(α) is odd, and

(iii) ∂αz1(α) > 0 if α 6= 0, ∂αz1(0) = 0 and ∂αz2(0) > 0,
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such that

(∂αv1)(0)

(39)

=

Ç
∂α

∫ π

−π

sin(z1(α)−z1(β))

cosh(z2(α)−z2(β))−cos(z1(α)−z1(β))
(∂αz1(α)−∂αz1(β))dβ

å∣∣∣∣∣
α=0

< 0.

Proof. We shall assume that z(α) is a smooth curve satisfying Proper-

ties (ii) and (iii). Differentiating the expression for the horizontal component

of the velocity, it is easy to obtain

(∂αv1)(α) = ∂α

∫ π

−π

sin(z1(α)− z1(α− β))

cosh(z2(α)− z2(α− β))− cos(z1(α)− z1(α− β))

× (∂αz1(α)− ∂αz1(α− β))dβ

=

∫ π

−π

cos(z1(α)− z1(α− β))(∂αz1(α)− ∂αz1(α− β))2

cosh(z2(α)− z2(α− β))− cos(z1(α)− z1(α− β))
dβ

+

∫ π

−π

sin(z1(α)− z1(α− β))(∂2
αz1(α)− ∂2

αz1(α− β))

cosh(z2(α)− z2(α− β))− cos(z1(α)− z1(α− β))
dβ

−
∫ π

−π
sin((z1(α)− z1(α− β)))(∂αz1(α)− ∂αz1(α− β))

× sinh(z2(α)− z2(α− β))(∂αz2(α)− ∂αz2(α− β))

(cosh(z2(α)− z2(α− β))− cos(z1(α)− z1(α− β)))2
dβ

−
∫ π

−π
sin((z1(α)− z1(α− β)))(∂αz1(α)− ∂αz1(α− β))

× sin(z2(α)− z2(α− β))(∂αz1(α)− ∂αz1(α− β))

(cosh(z2(α)− z2(α− β))− cos(z1(α)− z1(α− β)))2
dβ.
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Evaluating this expression at α = 0, we have that

(∂αv1)(0) =

∫ π

−π

cos(z1(β))(∂αz1(β))2 + sin(z1(β))∂2
αz1(β)

cosh(z2(β))− cos(z1(β))
dβ

−
∫ π

−π
sin(z1(β))∂αz1(β)

sin(z1(β))∂αz1(β)−sinh(z2(β))(∂αz2(0)−∂αz2(β))

(cosh(z2(β))− cos(z1(β)))2
dβ.

Integration by parts yields∫ π

−π

sin(z1(β))∂2
αz1(β)

cosh(z2(β))− cos(z1(β))
dβ

= −
∫ π

−π
cos(z1(β))

(∂αz1(β))2

cosh(z2(β))− cos(z1(β))
dβ

+

∫ π

−π
sin(z1(β))∂αz1(β)

sin(z1(β))∂αz1(β) + sinh(z2(β))∂αz2(β)

(cosh(z2(β))− cos(z1(β)))2
dβ.

The above integrals converge because z1 and z2 satisfy Properties (ii)

and (iii). Therefore we obtain that

(∂αv1)(0) = ∂αz2(0)

∫ π

−π

sin(z1(β)) sinh(z2(β))

(cosh(z2(β))− cos(z1(β)))2
∂αz1(β)dβ(40)

= 2∂αz2(0)

∫ π

0

sin(z1(β)) sinh(z2(β))

(cosh(z2(β))− cos(z1(β)))2
∂αz1(β)dβ.

From expression (40) we can control the sign of (∂αv1)(0). In order to

clarify the proof we shall take

z1(β) = − sin(β) + β.

We construct the function z2(β) in the following way.

Let β1 and β2 be real numbers satisfying 0 < β1 < β2 < π, and let z∗(β)

be a smooth function on [−π, π] with the following properties:

a. z∗(β) is odd, b. (∂βz
∗)(0) > 0,

c. z∗(β) > 0 if β ∈ (0, β1), d. z∗(β) < 0 if β ∈ (β1, β2],

e. z∗(β) ≤ 0 if β ∈ [β2, π].

For a positive real number b to be fixed later, we define a piecewise smooth

function z̃(β) on [−π, π] by setting

z̃(β) = bz∗(β) if |β| ≤ β1,

z̃(β) = z∗(β) if β1 < |β| < π.

Then ∫ π

β1

sin(z1(β)) sinh(z̃(β))

(cosh(z̃(β))− cos(z1(β)))2
∂αz1(β)dβ
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is negative and independent of b, while∫ β1

0

sin(z1(β)) sinh(z̃(β))

(cosh(z̃(β))− cos(z1(β)))2
∂αz1(β)dβ

tends to zero as b→∞.

Therefore, we can fix b large enough so that∫ π

0

sin(z1(β)) sinh(z̃(β))

(cosh(z̃(β))− cos(z1(β)))2
∂αz1(β)dβ < 0.

It is now easy to approximate z̃(β) in L2[−π, π] by an odd, real-analytic 2π-

periodic function such that∫ π

0

sin(z1(β)) sinh(z2(β))

(cosh(z2(β))− cos(z1(β)))2
∂αz1(β)dβ < 0,

and ∂αz2(0) > 0.

The conclusions of Lemma 5.3 follow, thanks to (40).

Theorem 5.1 and Lemma 5.3 allow us to show the breakdown of the R-T

condition.

Theorem 5.4. Let z0 a curve satisfying the requirements of Lemma 5.3.

Then there exists an analytic solution of the Muskat problem satisfying the arc-

chord condition in some interval [−T, T ] such that for small enough T > 0, we

have that

(i) ∂αz1(α,−t) > 0 for all α, and

(ii) ∂αz1(0, t) < 0

for all t ∈ (0, T ]. In addition, ∂αz2(0, t) > 0 in [−T, T ].

Proof. We use Theorem 5.1 to obtain the existence and from Lemma 5.3,

we have that

(∂t∂αz1)(0, 0) < 0.

Remark 5.5. For t ∈ [−T, 0], our solution satisfies

min
α
∂αz1(α, t) > c|t|.

This follows easily, since ∂αz1(α, 0) has a nondegenerate minimum at α = 0,

and ∂t∂αz1(0, 0) < 0.

6. From a curve in H4 in the stable regime

to an analytic curve in the unstable regime

Finally we show that there exists an open set of initial data in the H4

topology satisfying the arc-chord and R-T conditions such that the solution

for the Muskat problem reaches the unstable regime. This section is devoted

to proving Theorem 1.1.
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Proof of Theorem 1.1. The idea is simply to take a small H4-neighborhood

of the initial data of an analytic solution. Let z0 be a curve as in Lemma 5.3.

Let z(α, t) with t ∈ [−T, T ] for some T > 0, the solution for equation (6) given

by Theorem 5.1. We consider the curve wεδ(α) = ((wεδ(α)1, (w
ε
δ(α))2) which

is a small perturbation in H4(T) of the curve z(α, t) at time t = −δ, with

0 < δ < T ; i.e.,

||wεδ(·)− z(·,−δ)||H4 = ||ηεδ ||H4 ≤ ε.
Also, wεδ(α) satisfies the R-T condition

σwε
δ
(α) ≡ (ρ2 − ρ1)∂α(wεδ)1(α) > 0

if 0 < δ ≤ δ0 and 0 < ε ≤ ε(δ). From now on, we take ε and δ to satisfy this

condition. Also, we may take ε(δ) < ε0.

Since z(α, 0) = z0(α) is a smooth curve satisfying the arc-chord condition,

we can assume that there exist ε0 > 0 and 0 < δ0 < T such that

(41) sup
0<ε≤ε0, 0<δ≤δ0

||wεδ(·)||H4(T) ≤ C(z0, ε0, δ0)

and

(42) sup
0<ε≤ε0, 0<δ≤δ0

||F (wεδ)||L∞(T) ≤ C(z0, ε0, δ0).

Now, let the curve wε(α, t) be the solution to the equation

∂tw
ε(α, t) =

∫
sin((wε)1(α, t)− (wε)1(β, t))

cosh((wε)2(α, t)− (wε)2(β, t))− cos((wε)1(α, t)− (wε)1(β, t))

× (∂αw
ε(α, t)− ∂αwε(β, t))dβ,

wε(α,−δ) = wεδ(α).

From Theorems 3.1 and 4.1 and inequalities (41) and (42), we see that we can

choose ε0 and δ small enough in such a way that wε(α, t) is well defined for all

0 < ε < ε0 in t ∈ [−δ, 0], unless wε(α, t) loses the R-T condition. That means

there exist some point α0 and some time t0 ∈ [−δ, 0] satisfying σwε(α0, t0) < 0.

Also, for small enough ε0 and fixed δ, we have that

(43) σwε(α) ≥ a > 0,

where a is a real number independent of ε. The numbers ε0 and δ are fixed for

the rest of the proof.

If there exist times t such that there exists some point α0 with σwε(α0, t)

= 0, we denote the first of these times to be T ε ∈ (−δ,∞). Also we set

T̃ ε = min{T ε, 0} and Iε = [−δ, T̃ ε]. Due to (43), we have that

inf
0<ε<ε(δ)

T̃ ε > tb > −δ

for some number tb.
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From the proof of Theorems 3.1 and 4.1 we know that there exists a

function h(t), given by the expression

h(t) =

ca(t+ δ) −δ ≤ t ≤ ta
ca(ta + δ)e−Ca(t−ta) t > ta,

where ta (small enough), ca and Ca are constants which only depend on the

constant C(z0, ε0, δ) (see (41) and (42)), such that wε(α, t) is an analytic func-

tion in the strip
S(t) = {ζ ∈ C : |=(ζ)| < h(t)},

and also
(||wε(·, t)||S + 1)k ≤ Ca

for some large enough k and t ∈ [ta, T̃
ε] (notice that the constants ta, ca and

Ca do not depend on ε).

In this situation we claim the following:

d

dt

∫ π

−π
|∂4
α(wε(α± ih(t), t)− z(α± ih(t), t))|2dα(44)

≤ C
(
||∂4

α(wε(· ± ih(t), t)− z(· ± ih(t), t))||2L2(T)

+ ||wε(·+ ih(t), t)− z(·+ ih(t), t)||2L2(T)

)
for t ∈ Iε, where C is a constant just depending on C(z0, ε0, δ).

We will prove this inequality at the end of the section. Let us assume that

(44) holds.

We notice that we can always choose either a subsequence {εn}∞1 with

εn → 0 when n → ∞ such that T εn < 0 for all n, or a subsequence {εm}∞1
with εm → 0 when m → ∞ such that T εm ≥ 0 for all m. (The case in which

there exist only a finite number of times T ε can be treated as this last case.)

We deal with these two cases, I and II, separately.

I. T ε < 0 for all ε. From inequality (44) we can take ε small enough such

that

wε(α, T ε)− z(α, T ε)
has norm ≤ Cε in H4(S(T ε)).

Note that

0 = min
α
∂α(wε)1(α, T ε) ≥ −Cε+ min

α
∂αz

0
1 ≥ −Cε+ c|T ε|

by the remark at the end of Section 5. Thus, |T ε| < Cε.

Then

z(α, T ε)− z0(α)

has norm ≤ Cε in H4(S(0)); therefore

|(∂α(vwε)1)(α0, T
ε)− (∂α(vz0)1)(0)| ≤ Cε,
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and we can conclude that

(∂α(vwε)1)(α0, T
ε) < 0.

Here we recall that

(vwε)1 = ∂tw
ε(α, t)

=

∫
sin((wε)1(α, t)− (wε)1(β, t))(∂αw

ε(α, t)− ∂αwε(β, t))dβ
cosh((wε)2(α, t)− (wε)2(β, t))− cos((wε)1(α, t)− (wε)1(β, t))

.

Applying the same argument as in Section 5 to the curve wε(α, T ε) we

finish the proof of Theorem 1.1 in the case T ε < 0 for all ε.

II. T ε ≥ 0 for all ε. Then we can apply a Cauchy-Kowalewski theorem to

the initial data

wε(α, 0)− z(α, 0)

satisfying

||wε − z||S(0) ≤ Cε.
For t > 0 small enough, z(α, t) is in the unstable regime. We achieve the

conclusion of Theorem 1.1 by continuity with respect to the initial data.

The rest of the section is devoted to proving inequality (44). We shall

denote γ = α+ih(t) and d(γ, t) = ∂4
α(w(γ, t)−z(γ, t)) (we omit the superscript

ε in the notation), and we recall that w(α, t) and z(α, t) are real for real α

(therefore we obtain similar similar estimates for γ = α − ih(t)). In order to

prove inequality (44) we have to compute the following quantity:

d

dt

∫ π

−π
|d(γ, t)|2dα = 2<

ß∫ π

−π
d(γ, t)dt(γ, t)dα

™
+ 2<

ß
ih′(t)

∫ π

−π
d(γ, t)∂αd(γ, t)dα

™
.

Again we treat in detail the most singular term in dt(γ, t). Recall K(α, β) from

Section 3 and write Kw and Kz for corresponding expressions arising from z

and w. Then we have that

dt(γ, t) =

∫ π

−π
Kw(γ, γ − β)∂5

α(w(γ, t)− w(γ − β, t))dβ

−
∫ π

−π
Kz(γ, γ − β)∂5

α(z(γ, t)− z(γ − β, t))dβ + l.o.t.(α, t),

where

2<
ß∫ π

−π
d(γ, t)l.o.t.(α)dα

™
≤ C(||d(·+ ih(t), t)||2L2(T) + ||w(·+ ih(t), t)− z(·+ ih(t), t)||2L2(T)).

Here C is a constant which just depends on ε0 and δ.
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We can write∫ π

−π
Kw(γ, γ − β)∂5

α(w(γ, t)− w(γ − β, t))dβ

−
∫ π

−π
Kz(γ, γ − β)∂5

α(z(γ, t)− z(γ − β, t))dβ

=

∫ π

−π
Kw(γ, γ − β)∂5

α((w(γ, t)− z(γ, t))− (w(γ − β, t)− z(γ − β, t)))dβ

+

∫ π

−π
{Kz(γ, γ − β)−Kw(γ, γ − β)} ∂5

α(z(γ, t)− z(γ − β, t))dβ

=

∫ π

−π
Kw(γ, γ − β)∂α(d(γ, t)− d(γ − β, t))dβ

+

∫ π

−π
{Kz(γ, γ − β)−Kw(γ, γ − β)} ∂5

α(z(γ, t)− z(γ − β, t))dβ

≡ X1(α, t) +X2(α, t).

Therefore,

d

dt

∫ π

−π
|d(γ, t)|2dα

≤ C||d(·+ ih(t), t)||2L2(T) + 2<
ß∫ π

−π
d(γ, t)X1(α, t)dα

™
+ 2<

ß∫ π

−π
d(γ, t)X2(α, t)dα

™
+ 2<

ß
ih′(t)

∫ π

−π
d(γ, t)∂αd(γ, t)dα

™
.

Following the computations in Section 3 when t ∈ [−δ, ta] and those in Section 4

when t ∈ [ta, T̃
ε], we have that

d

dt

∫ π

−π
|d(γ, t)|2dα ≤ C||d(·+ ih(t), t)||2L2(T) + 2<

ß∫ π

−π
d(γ, t)X2(α, t)dα

™
.

In addition,∣∣∣∣∣ sin(w1(γ)− w1(γ − β))

cosh(w2(γ)− w2(γ − β))− cos(w1(γ)− w1(γ − β))

− sin(z1(γ)− z1(γ − β))

cosh(z2(γ)− z2(γ − β))− cos(z1(γ)− z1(γ − β))

∣∣∣∣∣
=

∣∣∣∣∣
®ñ
Kw(γ, γ − β)− ∂αw

1(γ)

(∂αw1(γ))2 + (∂αw1(γ))2
cot

Å
β

2

ãô
−
ñ
Kz(γ, γ − β)− ∂αz

1(γ)

(∂αz1(γ))2 + (∂αz1(γ))2
cot

Å
β

2

ãô´
+

®
∂αw

1(γ)

(∂αw1(γ))2 + (∂αw1(γ))2
− ∂αz

1(γ)

(∂αz1(γ))2 + (∂αz1(γ))2

´
cot

Å
β

2

ã∣∣∣∣∣
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≤
(
||d(·+ ih(t), t)||L2(T)

+ ||w(·+ ih(t), t)− z(·+ ih(t), t)||L2(T)

)ß
C + C

∣∣∣∣cot

Å
β

2

ã∣∣∣∣™ .
Also,

|∂5
αz(α± ih(t), t)− ∂5

αz(α± ih(t)− β, t)| ≤ C
∣∣∣∣tan

Å
β

2

ã∣∣∣∣
since z is the analytic unperturbed solution. Therefore,

2<
ß∫ π

−π
d(γ, t)X2(α, t)dα

™
≤ C(||d(·+ ih(t), t)||2L2(T) + ||w(·+ ih(t), t)− z(·+ ih(t), t)||2L2(T)).

We are done.

7. Turning water waves

Let us consider an incompressible irrotational flow satisfying the Euler

equations

(45) ρ(vt + v · ∇v) = −∇p− gρ(0, 1),

where ρ satisfies (2), (3), and ρ1 = 0. This system of equations provides the

motion of the interface for the water wave problem (see [3], [24] and references

therein), whose contour equation is given by

(46) zt(α, t) = BR(z, ω)(α, t) + c(α, t)∂αz(α, t),

and

ωt(α, t) = −2∂tBR(z, ω)(α, t) · ∂αz(α, t)− ∂α
Ç
|ω|2

4|∂αz|2

å
(α, t) + ∂α(c ω)(α, t)

(47)

+ 2c(α, t)∂αBR(z, ω)(α, t) · ∂αz(α, t)− 2g∂αz2(α, t).

The values of z(α, t) and ω(α, t) are given at an initial time t0: z(α, t0) = z0(α)

and ω(α, t0) = ω0(α). For more details, see [11].

As an application of Section 5, we can consider initial data given by a graph

(α, f0(α)) and show that in finite time the interface evolution reaches a regime

where the contour only can be parametrized as z(α, t) = (z1(α, t), z2(α, t)),

for α ∈ R, with ∂αz1(α, t) < 0 for α ∈ I, a nonempty interval. This implies

that there exists a time t∗ where the solution of the free boundary problem

reparametrized by (α, f(α, t)) satisfies ‖fα‖L∞(t∗) =∞.

Theorem 7.1. There exists a nonempty open set of initial data z0(α) =

(α, f0(α)) and ω0(α), with f0 ∈ H5 and ω0 ∈ H4, such that in finite time t∗

the solution of the water wave problem (46), (47) given by (α, f(α, t)) satisfies
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‖fα‖L∞(t∗) = ∞. The solution can be continued for t > t∗ as z(α, t) with

∂αz1(α, t) < 0 for α ∈ I , a nonempty interval.

Proof. Let us consider a curve z∗(α) ∈ H5 satisfying Properties (i), (ii),

and (iii) of Lemma 5.3. We point out that analyticity is not required here. In

order to find a velocity with property (39) we pick for water waves ω(α, t∗) =

−∂αz∗2(α) and a suitable z(α, t∗) = z∗(α) as an initial datum. Notice that

the tangential term does not affect the evolution. Then, with the appropriate

c(α, t), we can apply the local existence result in [11]: There exists a solution

of the water wave problem with z(α, t) ∈ C([t∗ − δ, t∗ + δ];H5), ω(α, t) ∈
C([t∗ − δ, t∗ + δ];H4), and δ > 0 small enough. The initial data promised by

Theorem 7.1 are any sufficiently small perturbations of z(α, t) and ω(α, t) at

time t = t∗ − δ.

8. Breakdown of smoothness

In [5] we will exhibit a solution z(α, t) of the Muskat equation, with the

following properties:

(i) At time t0, the interface is real-analytic and satisfies the arc-chord and

Rayleigh-Taylor conditions.

(ii) At time t1 > t0, the interface turns over.

(iii) At time t2 > t1, the interface no longer belongs to C4, although it is

real-analytic for all times t ∈ [t0, t2).

In this section we provide a brief sketch of our proof of the existence of such a

Muskat solution.

Our Muskat solution z(α, t) will be a small perturbation of a Muskat

solution z00(α, t), with the following properties:

(iv) z00(α, t) is real analytic in α, for |=α| < ε00 and |τ | ≤ τ00.

(v) For t ∈ [−τ00, 0), z00(α, t) satisfies the Rayleigh-Taylor and arc-chord

conditions.

(vi) For t = 0, the curve z00(α, t) has a vertical tangent at α = 0.

(vii) For t ∈ (0, τ00], the curve z00(α, t) fails to satisfy the Rayleigh-Taylor

condition.

This paper constructs Muskat solutions z00 satisfying (iv), (v), (vi), and (vii).

Our problem is to pass from z00 to a nearby Muskat solution z satisfying (i),

(ii), and (iii). The idea is as follows.

So far, we have studied the analytic continuation of Muskat solutions to

a time-varying strip

S(t) = {|=α| ≤ h(t)}
in the complex plane. In our forthcoming paper [5], we will study the analytic

continuation of a Muskat solution to a carefully chosen time-varying domain



RAYLEIGH-TAYLOR BREAKDOWN FOR THE MUSKAT PROBLEM 945

of the form

(48) Ω(t) = {|=α| ≤ h(<α, t)},

defined for t ∈ [−τ10, τ ]. Here, τ is a small enough positive number.

For t ∈ [−τ10, τ ], we will work with the space H4(Ω(t)), consisting of all

analytic functions F : Ω(t) 7→ C2 whose derivatives up to order 4 belong to

L2(∂Ω(t)).

We will pick our time-varying domain Ω(t) in (48) so that h(x, t) > 0

for all (x, t) ∈ R/2πZ × [−τ10, τ) and h(x, τ) > 0 for all x ∈ R/2πZ \ {0},
but h(0, τ) = 0. Thus, the domain Ω(t) has ‘thickness’ zero at the origin.

Consequently, H4(Ω(τ)) is not contained in C4(R/2πZ).

We will also take τ < τ00 and h(x, t) < ε00, so that the Muskat solution

z00(α, t) continues analytically to Ω(t), for each t ∈ [−τ10, τ ].

We can therefore pick an ‘initial’ curve z0(α), such that

(viii) z0(α)− z00(α, τ) belongs to H4(Ω(τ)) and has small norm, yet

(ix) z0(α) does not belong to C4(R/2πZ).

We solve the Muskat problem backwards in time, with the ’initial’ condition

(x) z(α, τ) = z0(α).

By a more elaborate version of the analytic continuation arguments used in

this paper, we find that our Muskat solution exists and continues analytically

into Ω(t), for all t ∈ [t∗, τ ] (for a suitable time t∗); moreover,

(xi) z(α, t)− z00(α, t) has small norm in H4(Ω(τ)), for all t ∈ [t∗, τ ].

Here, either

(xii) t∗ = −τ10 or

(xiii) a modified Rayleigh-Taylor condition, adapted to the time-varying

domain, fails at time t∗.

We can rule out (xiii), thanks to (xi), together with our understanding of z00(t)

and Ω(t).

Thus, we obtain a Muskat solution z(α, t), satisfying (ix), (x), (xi), and

(xii). Properties (i), (ii), and (iii) of z(α, t) now follow easily.
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[8] P. Constantin, D. Córdoba, F. Gancedo, and R. Strain, On the global

existence for the Muskat problem, 2012, to appear in JEMS.

[9] P. Constantin and M. Pugh, Global solutions for small data to the Hele-

Shaw problem, Nonlinearity 6 (1993), 393–415. MR 1223740. Zbl 0808.35104.

Available at http://stacks.iop.org/0951-7715/6/393.
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[16] D. Córdoba, F. Gancedo, and R. Orive, A note on interface dynamics

for convection in porous media, Phys. D 237 (2008), 1488–1497. MR 2454601.

Zbl 1143.76574. http://dx.doi.org/10.1016/j.physd.2008.03.042.

[17] D. G. Dritschel, Contour dynamics and contour surgery: numerical algorithms

for extended, high-resolution modelling of vortex dynamics in two-dimensional,

inviscid, incompressible flows, Comput. Phys. Rep. 10 (1989), 77–146. http://dx.

doi.org/10.1016/0167-7977(89)90004-X.

[18] J. Escher, A. V. Matioc, and B.-V. Matioc, A generalised Rayleigh-Taylor

condition for the Muskat problem, 2010, preprint. arXiv 1005.2511.

[19] J. Escher and B.-V. Matioc, On the parabolicity of the Muskat problem: well-

posedness, fingering, and stability results, Z. Anal. Anwend. 30 (2011), 193–218.

MR 2793001. Zbl 1223.35199. http://dx.doi.org/10.4171/ZAA/1431.

[20] J. Escher and G. Simonett, Classical solutions for Hele-Shaw models with

surface tension, Adv. Differential Equations 2 (1997), 619–642. MR 1441859.

Zbl 1023.35527.

[21] E. Hairer, S. P. Nørsett, and G. Wanner, Solving Ordinary Differential

Equations. I. Nonstiff problems, Springer Ser. Comput. Math. 8, Springer-Verlag,

New York, 1987. MR 0868663. Zbl 1185.65115.

[22] Hele-Shaw, On the motion of a viscous fluid between two parallel plates, Trans.

Royal Inst. Nav. Archit. 40,21 (1989).

[23] T. Y. Hou, J. S. Lowengrub, and M. J. Shelley, Removing the stiffness

from interfacial flows with surface tension, J. Comput. Phys. 114 (1994), 312–

338. MR 1294935. Zbl 0810.76095. http://dx.doi.org/10.1006/jcph.1994.1170.

[24] D. Lannes, A stability criterion for two-fluid interfaces and applications, 2010,

preprint. arXiv 1005.4565.

[25] M. Muskat, Two fluid systems in porous media. The encroachment of water

into an oil sand, Physics 5 (1934), 250–264. JFM 60.1388.01.

[26] L. Nirenberg, An abstract form of the nonlinear Cauchy-Kowalewski theorem,

J. Differential Geometry 6 (1972), 561–576. MR 0322321. Zbl 0257.35001.

[27] T. Nishida, A note on a theorem of Nirenberg, J. Differential Geom. 12 (1977),

629–633 (1978). MR 0512931. Zbl 0368.35007. Available at http://projecteuclid.

org/getRecord?id=euclid.jdg/1214434231.

[28] F. Otto, Viscous fingering: an optimal bound on the growth rate of the mixing

zone, SIAM J. Appl. Math. 57 (1997), 982–990. MR 1462048. Zbl 0901.76082.

http://dx.doi.org/10.1137/S003613999529438X.

[29] L. Rayleigh, On the instability of jets, Proc. Lond. Math. Soc. 10 (1879). http:

//dx.doi.org/10.1112/plms/s1-10.1.4.

[30] P. G. Saffman and G. Taylor, The penetration of a fluid into a porous medium

or Hele-Shaw cell containing a more viscous liquid, Proc. Roy. Soc. London. Ser.

A 245 (1958), 312–329. (2 plates). MR 0097227. Zbl 0086.41603.

http://www.ams.org/mathscinet-getitem?mr=2679821
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1198.35176
http://dx.doi.org/10.1007/s00220-010-1084-x
http://www.ams.org/mathscinet-getitem?mr=2454601
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1143.76574
http://dx.doi.org/10.1016/j.physd.2008.03.042
http://dx.doi.org/10.1016/0167-7977(89)90004-X
http://dx.doi.org/10.1016/0167-7977(89)90004-X
http://www.arxiv.org/abs/1005.2511
http://www.ams.org/mathscinet-getitem?mr=2793001
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1223.35199
http://dx.doi.org/10.4171/ZAA/1431
http://www.ams.org/mathscinet-getitem?mr=1441859
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1023.35527
http://www.ams.org/mathscinet-getitem?mr=0868663
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1185.65115
http://www.ams.org/mathscinet-getitem?mr=1294935
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0810.76095
http://dx.doi.org/10.1006/jcph.1994.1170
http://www.arxiv.org/abs/1005.4565
http://www.emis.de/cgi-bin/JFM-item?60.1388.01
http://www.ams.org/mathscinet-getitem?mr=0322321
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0257.35001
http://www.ams.org/mathscinet-getitem?mr=0512931
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0368.35007
http://projecteuclid.org/getRecord?id=euclid.jdg/1214434231
http://projecteuclid.org/getRecord?id=euclid.jdg/1214434231
http://www.ams.org/mathscinet-getitem?mr=1462048
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0901.76082
http://dx.doi.org/10.1137/S003613999529438X
http://dx.doi.org/10.1112/plms/s1-10.1.4
http://dx.doi.org/10.1112/plms/s1-10.1.4
http://www.ams.org/mathscinet-getitem?mr=0097227
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0086.41603
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