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The Weil-Petersson geodesic flow
is ergodic

By K. Burns, H. Masur, and A. Wilkinson

Abstract

We prove that the geodesic flow for the Weil-Petersson metric on the

moduli space of Riemann surfaces is ergodic (and in fact Bernoulli) and

has finite, positive metric entropy.

Introduction

This paper is about the dynamical properties of the Weil-Petersson geo-

desic flow for the moduli space of Riemann surfaces. Our main result is that

this flow is ergodic: any invariant set must have volume zero or full volume.

Ergodicity implies that a randomly chosen, unit speed Weil-Petersson geodesic

in moduli space becomes equidistributed over time. What is more, the tangent

vectors to such a geodesic also become equidistributed in the space of all unit

tangent vectors to moduli space.

To state our result more precisely and to put it in context, we first review

the basic setup from Teichmüller theory. Let S be a surface of genus g ≥ 0 with

n ≥ 0 punctures, and letM(S) be the moduli space of conformal structures on

S, up to conformal equivalence. Assume that 3g + n ≥ 4, which implies that

in each conformal class there is complete hyperbolic metric. Then M(S) has

the alternate description of the moduli space of hyperbolic structures on S,

up to isometry. The orbifold universal cover ofM(S) is the Teichmüller space

Teich(S) of marked conformal structures on S.

It is a classical result due to Fricke and Klein that Teich(S) is homeomor-

phic to a ball of dimension 6g − 6 + 2n. Teichmüller space carries a natural

complex structure via a special embedding of Teich(S) into a complex repre-

sentation variety QF (S), called quasifuchsian space. Under this map, called

the Bers embedding, the image of Teich(S) sits as a complex subvariety (in-

deed there is a biholomorphic equivalence QF (S) ∼= Teich(S)×Teich(S)). The

orbifold fundamental group of M(S) is the mapping class group MCG(S) of

orientation-preserving homeomorphisms of S modulo isotopy. The mapping

class group acts holomorphically on Teich(S). The stabilizer of each point is

finite, which gives M(S) the structure of a complex orbifold.
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A naturally defined and well-studied metric on Teichmüller space, and

the focus of this paper, is the Weil-Petersson metric gWP, which is the Kähler

metric induced by the Weil-Petersson symplectic form ωWP and the almost

complex structure J on Teich(S):

gWP(v, w) = ωWP(v, Jw).

We refer to the Weil-Petersson metric as the WP metric, for short. The WP

metric is invariant under MCG(S) and so descends to a metric on M(S). It

has finite volume determined by the volume form |ω∧3g−3+n
WP |.

A striking feature of the WP metric is its intimate connections with hy-

perbolic geometry, among them:

• the hyperbolic length of a closed geodesic (for a fixed free homotopy

class on S) is a convex function along WP geodesics in Teich(S) [42];

• in Fenchel-Nielsen coordinates (`i, τi)
3g−3+n
i=1 on Teich(S), the WP sym-

plectic form ωWP has the simple expression [40]

ωWP =
1

2

3g−3+n∑
i=1

d`i ∧ dτi;

• the growth of the hyperbolic lengths of simple closed curves on S is

related to the WP volume of M(S) [26]; and

• the WP metric has a formulation in terms of dynamical invariants of

the geodesic flow on hyperbolic surfaces [5], [25].

The Weil-Petersson metric has several notable features that make it an

interesting geometric object of study in its own right. The WP metric is neg-

atively curved, but incomplete. The sectional curvatures are neither bounded

away from 0 (except in the simplest cases of (g, n) = (1, 1) and (0, 4)), nor

bounded away from −∞. The WP geodesic flow thus presents a naturally-

occurring example of a singular hyperbolic dynamical system, for which one

might hope to reproduce the known properties of the geodesic flow for a com-

pact, negatively curved manifold, such as: ergodicity, equidistribution of closed

orbits, exponentially fast mixing and decay of correlations, and central limit

theorem.

We summarize the previous literature on the WP geodesic flow. Wolpert

[41] showed that the geodesic flow is defined for all time on a full volume sub-

set of the the unit tangent bundle T 1Teich(S) and thus descends to a volume-

preserving flow on the finite volume quotientM1(S) := T 1Teich(S)/MCG(S).

Pollicott, Weiss, and Wolpert [29] proved in the case (g, n) = (1, 1) that the

geodesic flow is transitive on M1(S) and periodic orbits are dense in M1(S)

[29]. Brock, Masur, and Minsky [7] proved transitivity and denseness of pe-

riodic orbits for arbitrary (g, n) and also showed that the topological entropy

of the geodesic flow is infinite (that is, unbounded on compact invariant sets).
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Hamenstädt [13] proved a measure-theoretic version of density of closed orbits:

the set of invariant Borel probability measures for the WP geodesic flow that

are supported on a closed orbit is dense in the space of all ergodic invariant

probability measures.

In this paper, we prove

Theorem 1. Let S be a Riemann surface of genus g ≥ 0, with n ≥ 0

punctures. Assume that 3g + n ≥ 4. The Weil-Petersson geodesic flow on

M1(S) is ergodic (and in fact Bernoulli) with respect to WP volume and has

finite, positive measure-theoretic entropy.

The Bernoulli property means that the time-1 map of the geodesic flow is

abstractly isomorphic (as a measure-preserving system) to a Bernoulli process

on a finite alphabet. In particular, it is mixing of all orders. An interesting

open question is to determine the rate of mixing of this flow.

Our basic approach to proving Theorem 1 is as follows. The WP geodesic

flow ϕt preserves a finite probability volume m on M1(S), and one can show

using properties of the WP metric that log ‖Dϕ1‖ is integrable with respect

to the measure m. The Multiplicative Ergodic Theorem of Oseledec (cf. [18,

Th. S.2.9]) then implies that there is a full volume subset Ω ⊂ M1(S) such

that for every v ∈ Ω and every nonzero tangent vector ξ ∈ TvM1(S), the limit

λ(ξ) := lim
t→∞

1

t
log ‖Dvϕt(ξ)‖

exists and is finite. The real number λ(ξ) is called the (forward) Lyapunov

exponent of ϕt at ξ. Observe that if ξ is in the line bundle Rϕ̇(v) tangent to the

orbits of the flow, then λ(ξ) = 0. We say that ϕt is nonuniformly hyperbolic

if for almost every v ∈ Ω and every ξ ∈ TvM1(S) \ Rϕ̇(v), the Lyapunov

exponent λ(ξ) is nonzero.

Using the fact that the WP sectional curvatures are negative, we estab-

lish that the WP geodesic flow is nonuniformly hyperbolic. Nonuniform hy-

perbolicity is the starting point for a rich ergodic theory of volume-preserving

diffeomorphisms and flows, developed first by Pesin for closed manifolds and

expanded by Sinai, Katok-Strelcyn, Chernov, and others to systems with sin-

gularities, such as the WP geodesic flow. The basic argument for establish-

ing ergodicity of such systems originates with Eberhard Hopf and his proof

of ergodicity for geodesic flows for closed, negatively curved surfaces [15]. His

method was to study the Birkhoff averages of continuous functions along leaves

of the stable and unstable foliations of the flow. This type of argument has

been used since then in increasingly general contexts and has come to be known

as the Hopf Argument.

The core of the Hopf Argument is very simple. Suppose that ψt is a C∞

flow defined on a full measure subset Ω of a Riemannian manifold V , preserving
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a finite volume on V . For any x ∈ Ω, one defines the stable and unstable sets

Ws(x) =
{
x′ ∈ Ω : lim

t→∞
d(ψt(x), ψt(x

′)) = 0
}

and

Wu(x) =
{
x′ ∈ Ω : lim

t→−∞
d(ψt(x), ψt(x

′)) = 0
}
.

The stable (respectively unstable) sets partition Ω into measurable subsets.

The first step in the Hopf Argument is to observe that for any continuous

function f : V → R with compact support, the forward and backward upper

Birkhoff averages

fs = lim sup
T→+∞

1

T

∫ T

0
f ◦ ψt dt and fu = lim sup

T→−∞

1

T

∫ T

0
f ◦ ψt dt

have the property that fs is constant on any stable setWs(x) and fu is constant

on any unstable set Wu(x). Both functions fs and fu are evidently invariant

under the flow ψt, and the Birkhoff and von Neumann Ergodic Theorems

(cf. [18, Th. 4.1.2 and Prop. 4.1.3]) imply that fs = fu almost everywhere. To

show that ψt is ergodic it suffices to show that fs is constant almost everywhere

for every continuous f with compact support. The fundamental idea is to use

the properties of the equivalence relation generated by the stable sets, the

unstable sets, and the flow to conclude that fs = fu must be constant.

In the next step in the Hopf Argument, one assumes some form of hyper-

bolicity of the flow, which will imply that the stable and unstable sets are in fact

smooth manifolds. In the original context of Hopf’s argument, V = Ω = T 1S

is the unit tangent bundle of a compact, negatively curved surface S and ψt is

the geodesic flow. In this setting, the stable and unstable sets have a particu-

larly nice description. For almost every unit vector v, the stable and unstable

Busemann functions bsv and buv are globally defined C∞ functions. The stable

and unstable sets are the orthogonal vectors to the level sets of these functions

or equivalently the gradients of these functions on the level sets. They are C∞,

globally defined, and for ∗ ∈ {s, u}, the collection

W∗ := {W∗(v) : v ∈ T 1S}

defines a C1 foliation of T 1S. At each point v ∈ T 1S, the tangent space

TvT
1S is spanned by the tangents to Ws(v),Wu(v) and the direction ψ̇(v) of

the flow. A local argument in C1 charts using Fubini’s theorem shows that any

ψt-invariant function that is almost everywhere constant along leaves of Ws

andWu must be locally almost everywhere constant, and hence globally almost

everywhere constant, since T 1S is connected. In particular, the function fs is

constant for any continuous, compactly supported f , and so ψt is ergodic.
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Hopf’s original argument does not generalize immediately to geodesic flows

for higher-dimensional compact, negatively curved manifolds. In this higher-

dimensional setting, the stable and unstable foliationsWs andWu exist, again

arise from the level sets of Busemann functions, and have C∞ leaves. In

general, however, they fail to be C1 foliations (except when the curvature is

1/4-pinched) and so the argument using Fubini’s theorem in local C1 charts

fails.

In the late 1960’s Anosov [1] overcame this obstacle by proving that for

any compact, negatively curved manifold, the foliations Ws and Wu are abso-

lutely continuous. Absolute continuity, a strictly weaker property than C1, is

sufficient to carry out a Fubini-type argument to show that any ψt-invariant

function almost everywhere constant along leaves of Ws and Wu is locally

constant. See Section 3 for a more detailed discussion of absolute continuity.

Anosov thereby proved that the geodesic flow for any compact manifold of

negative sectional curvatures is ergodic.

There is an extensive literature devoted to extending the Hopf Argument

beyond the uniformly hyperbolic setting of geodesic flows on compact neg-

atively curved manifolds. For smooth flows defined everywhere on compact

manifolds, Pesin [28] introduced an ergodic theory of nonuniformly hyperbolic

systems. In short, Pesin theory shows that if ψt : V → V preserves a finite

volume and is nonuniformly hyperbolic, then almost everywhere the stable

and unstable sets are smooth manifolds. The family of stable manifolds is

measurable and absolutely continuous in a suitable sense.

From Pesin theory, one deduces that a nonuniformly hyperbolic diffeo-

morphism of a compact manifold has countably many ergodic components of

positive measure. More information about the flow can be used in some con-

texts to deduce ergodicity. The obstruction to using the full Hopf Argument

in this setting is that stable manifolds are defined only almost everywhere, and

they may be arbitrarily small in diameter, with poorly controlled curvatures,

etc.

In a somewhat different direction than Pesin theory, Sinai [35] introduced

methods for proving ergodicity of hyperbolic flows with singularities and ap-

plied them in his study of the n-body problem of celestial mechanics. Here the

flow ψt locally resembles the geodesic flow for a compact, negatively curved

manifold, but globally encounters discontinuities and places where the norms

of the derivatives ‖Dψt‖ and ‖D2ψt‖ become unbounded.

Introducing new techniques in the Hopf argument, Sinai was able to show

that for several important classes of systems, including some billiards and flows

connected to the n-body system, ergodicity holds. These arguments have since

been generalized to much larger classes of singular hyperbolic systems and

singular, nonuniformly hyperbolic systems.
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In the singular, nonuniformly hyperbolic setting, all aspects of Hopf’s ar-

gument require careful revisiting. The mere existence of local stable manifolds

is a delicate matter and depends in a strong way on the growth of the deriv-

ative of ψt near the singularities. To give a sense of how delicate these issues

can be, we remark that

• for compact surfaces of nonpositive curvature and genus g ≥ 2, it is

unknown whether the geodesic flow is always ergodic (even though it

is always transitive);

• there exist complete, finite volume surfaces of pinched negative curva-

ture (but unbounded derivative of curvature) whose stable foliations

are not even Hölder continuous [2];

• for C1 nonuniformly hyperbolic systems that are not C2, stable sets

can fail to be manifolds [31];

• nonuniformly hyperbolic systems on compact manifolds can fail to be

ergodic and can even have infinitely many ergodic components with

positive measure [10].

A general result providing for the existence and absolute continuity of local

stable and unstable manifolds for singular, nonuniformly hyperbolic systems

was proved by Katok-Strelcyn [19]. We will use this work in an important way

in this paper.

Returning to the context of the present paper, the WP geodesic flow is

a singular, nonuniformly hyperbolic system. To prove that it is ergodic, the

first step is to verify the Katok-Strelcyn conditions to establish existence and

absolute continuity of local stable and unstable manifolds. In particular, one

needs to control the norm of the first two derivatives of the geodesic flow in a

neighborhood of the boundary of M1(S).

To control the first derivative, we use the asymptotic expansions of Wolpert

for the WP curvature and covariant derivative found in [41], [43], [37], combined

with a careful analysis of the solutions to the WP Jacobi equations. This is the

content of Theorem 4.1. The precise estimates obtained by Wolpert appear to

be essential for these calculations.

Since Wolpert’s expansions of the WP metric are only to second order, and

we need third order control to estimate the second derivative of the flow, we

borrow ideas of McMullen in [24]. There is a nonholomorphic (in fact totally

real) embedding of Teich(S) into quasifuchsian space QF (S), under which the

WP symplectic form has a holomorphic extension. This holomorphic form is

the derivative of a one-form that is bounded in the Teichmüller metric. Using

the Cauchy Integral Formula and a comparison formula between Teichmüller

and WP metrics, one can then obtain bounds on all derivatives of the WP

metric. This is the content of Proposition 5.1. These bounds are adequate to
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control the second derivative of the geodesic flow, using the bounds on the first

derivative already obtained.

Once the conditions of [19] have been verified, we are guaranteed the

almost everywhere existence of absolutely continuous families Ws and Wu of

local stable and unstable manifolds. Nonetheless these stable and unstable

manifolds may not have uniform size. At this point, we use negative curvature

and another key property of the WP metric called geodesic convexity to show

that in fact Ws and Wu have well-controlled uniform size.

As a by-product of our arguments, we obtain that the WP Busemann

function is C∞ for almost every tangent direction to Teich(S) (see Proposi-

tion 3.11). The local geometry of Ws and Wu is sufficiently nice that Hopf’s

original argument can be used with small modifications. In particular, none of

the more complicated local ergodicity arguments, such as the “Hopf chains”

developed by Sinai, are necessary. We also obtain positive, finite entropy of

the WP flow using results of Katok-Strelcyn and Ledrappier-Strelcyn in [19].

The paper does not quite follow the structure of this outline. Rather than

restricting to the special case of the WP metric, we instead develop an abstract

criterion for ergodicity of the geodesic flow for an incomplete, negatively curved

manifold. This has the advantage of clarifying the issues involved and also

might allow for further applications. This is carried out in Section 3, which

may be read independently of the rest of the paper. The remainder of the

paper is devoted to setting up and verifying the conditions in Section 3 in the

case of the Weil-Petersson metric.

We remark that Pollicott and Weiss [30] gave a fairly complete outline of

how to prove ergodicity for the Weil-Petersson metric in the cases (g, n) = (1, 1)

and (0, 4). They say that the missing ingredients are the bounds on the first

and second derivatives of the geodesic flow, which are two of the major steps

accomplished in this paper in the case of general (g, n).

0.1. The case of the punctured torus. Several interesting features of the

WP metric are already present in the simplest cases (g, n) = (1, 1) and (0, 4),

where S is the once-punctured torus or the four-times punctured sphere. In

these cases, Teich(S) is the upper half space H andM(S) is the classical moduli

space of elliptic curves H/PSL(2,Z), which is a sphere with one puncture and

two cone singularities of order 2 and 3.

The mapping class group MCG(S) is the modular group SL(2,Z). Due

to the presence of torsion elements in PSL(2,Z), the space M(S) is not a

manifold, but the finite branched cover H/Γ[k] for k ≥ 3 is a manifold [34],

where Γ[k] is the level-k congruence subgroup

Γ[k] = {A ∈ PSL(2,Z) | A ≡ I mod k}.

The tangent bundle to Teich(S) is canonically identified with PGL(2,R).
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There are global coordinates (`, τ) in Teich(S), the so-called Fenchel-

Nielsen coordinates, which have the asymptotic (first-order) expansions

`(z) ∼ 1

Im(z)
and τ(z) ∼ Re(z)

Im(z)
, as Im(z)→∞,

and the WP form has the first-order asymptotic expansion

ωWP =
1

2
d` ∧ dτ ∼ 1

Im(z)3
dz ∧ dz, as Im(z)→∞.

Since the complex structure on Teich(S) is the standard one on H, we obtain

the expansion

g2
WP ∼

|dz|2

Im(z)3
.

A neighborhood of the cusp in M(S) is formed by taking the quotient of the

points above the line Im(z) = Im(z0), for Im(z0) sufficiently large, by the

mapping class element z 7→ z+1. A model for this neighborhood is the surface

of revolution for the curve {y = x3 : x > 0} about the x-axis.

From the form of the metric one can see the incompleteness: a vertical

ray to the cusp at infinity starting at Imz = y0 has length ∼ 2y
−1/2
0 ∼ 2`1/2.

Moreover the curvature K satisfies K ∼ − 3
2` → −∞ as Im(z) → ∞. These

precise rates of divergence for the minimum sectional curvature hold as well in

higher genus and will be crucial to our investigations.

Pollicott and Weiss [30] studied the model case of a negatively curved sur-

face whose singularities coincide with a surface of revolution for a polynomial

and proved ergodicity of the geodesic flow in this case.
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1. Background on Teichmüller theory, Quasifuchsian space,

and Weil-Petersson geometry

Much of the discussion in this section is based on McMullen’s paper [24].

Useful background can be found in [27] and the course notes [23].

1.1. Riemann surfaces and tensors of type (r, s). We begin with some

preliminary facts about Riemann surfaces. A Riemann surface is a topological

surface equipped with an atlas of charts into C with holomorphic transition

maps. Suppose that X is a Riemann surface of genus g with n punctures.

We assume that 3g + n ≥ 4. Uniformization implies that X is conformally
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equivalent to a quotient H/Γ, where H denotes the upper half plane and Γ is

a discrete subgroup of PSL(2,R). The hyperbolic metric ρ̃ on H given by

ρ̃(z) =
|dz|
Imz

descends to a metric ρ on H/Γ of finite area, which is the unique Riemann-

ian metric of constant curvature −1 on X that induces the same conformal

structure.

Denote by κ the holomorphic cotangent bundle and by κ−1 the holomor-

phic tangent bundle of X, both of which are holomorphic complex line bundles

over X. For r an integer, we denote by κr the |r|-fold complex tensor product

⊗|r|κ if r ≥ 0 and ⊗|r|κ−1 if r < 0.

A tensor of type (r, s) on X is a section of the complex line bundle κr⊗κs
over X. This leads to the construction of Lp norms on the space of measurable

(r, s) tensors, defined as follows. For ψ an (r, s) tensor and p ≥ 1, we define

‖ψ‖p :=

Å∫
X
ρ2−p(r+s)|ψ|p

ã1/p

, ‖ψ‖∞ := ess sup
X
ρ−(r+s)|ψ|.

These norms will give rise to the Teichmüller (p = 1) and WP (p = 2) metrics

on Teichmüller space, which we now define.

1.2. Teichmüller and Moduli spaces. A marked complex structure is a Rie-

mann surface X together with a homeomorphism f : S → X, where S is a fixed

Riemann surface. Given a marking surface S of genus g with n punctures, we

define the Teichmüller space Teich(S) to be the set of equivalence classes of

marked complex structures f : S → X, where f1 : S → X1 and f2 : S → X2 are

equivalent if there is a conformal map h : X1 → X2 isotopic to f2f
−1
1 .

Uniformization gives an identification of Teich(S) with an open compo-

nent of the representation variety of homomorphisms from π1(S) into the real

Lie group PSL(2,R), modulo conjugacy; this identification gives Teich(S) a

real analytic structure. Teich(S) also carries a compatible complex analytic

structure, which we shall describe a little later.

The mapping class group MCG(S) is the set of equivalence classes of ori-

entation-preserving diffeomorphisms of S modulo isotopy, which forms a group

under composition. MCG(S) acts properly by diffeomorphisms of Teich(S) via

precomposition with the marking homeomorphisms f : S → X; the quotient

M(S) = Teich(S)/MCG(S) is easily seen to be the moduli space of Riemann

surfaces homeomorphic to S, modulo conformal equivalence. The MCG(S)-

stabilizer of any point in Teich(S) is finite. In denoting an element of Teich(S),

we will often omit the marking given by the equivalence class of maps f : S → X

and refer only to the target Riemann surfaceX. We do this because the tangent

space and cotangent spaces at a point do not depend on the marking, but only

on the target X.
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We review the definition of the Weil-Petersson norms on the tangent and

cotangent spaces TXTeich(S) and T ∗XTeich(S) at a point X ∈ Teich(S). An

integrable meromorphic quadratic differential on X is a tensor of type (2, 0)

that has a local representation of the form q(z)dz2, where q(z) is holomorphic

on X and has at most simple poles at the punctures. We define Q(X) to be

the vector space of integrable meromorphic quadratic differentials φ on X.

A Beltrami differential on X is a measurable tensor of type (−1, 1), which

has a local representation of the form b(z)dz/dz. Note that the product of a

Beltrami differential with a quadratic differential is a (1, 1)-tensor. Let M(X)

be the vector space of all measurable Beltrami differentials µ on X with the

property that
∫
X |φµ| < ∞ for every φ ∈ Q(X). We then have a natural

complex pairing of the space M(X) with Q(X) given by

(1) 〈φ, µ〉 =

∫
X
φµ for φ ∈ Q(X), µ ∈M(X).

In view of the fact that elements of Q(X) have finite Lp norm for every 1 ≤ p ≤
∞, it follows that elements of M(X) are precisely those Beltrami differentials

µ on X of finite Lq norm for 1 ≤ q ≤ ∞.

We have the fundamental isomorphisms of vector spaces

TXTeich(S) ∼= M(X)/Q(X)⊥ and T ∗XTeich(S) ∼= Q(X),

where Q(X)⊥ = {µ ∈M(X) : 〈µ, φ〉 = 0, ∀φ ∈ Q(X)}.
Having described these identifications, we now can define the WP norm.

The Weil-Petersson metric on T ∗XTeich(S) is defined by the L2 norm

‖φ‖WP = ‖φ‖2 =

Å∫
X
ρ−2|φ|2

ã1/2

.

Note that the definition of the WP metric involves both conformal and hy-

perbolic data from X; this feature makes the WP metric somewhat tricky to

work with. On the other hand, the hyperbolic input from the metric ρ leads to

the delicate and beautiful connections between the WP metric and hyperbolic

geometry and dynamics discussed in the introduction.

The WP norm on the tangent space TXTeich(S) is induced by the pairing

(1) via the formula

‖v‖WP = sup
φ∈Q(X), ‖φ‖WP=1

Re(〈φ, µ〉)

for any µ ∈M(X) representing the tangent vector v ∈ TXTeich(S).

1.3. The bundle of projective structures on S. A projective structure on a

surface X is an atlas of charts into C whose overlaps are Möbius transforma-

tions (elements of PSL(2,C)); note that a projective structure determines a

unique complex structure. Fix as above a Riemann surface S of genus g with

n punctures. A marked projective structure is a homeomorphism f : S → X,
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where X is endowed with a projective structure. We say that two marked

structures f1 : S → X1 and f2 : S → X2 are equivalent if there is a projective

isomorphism from X1 to X2 homotopic to f2f
−1
1 . Denote by Proj(S) the space

of equivalence classes of projective structures marked by S.

It is a classical fact that Proj(S) has the structure of a complex manifold

that arises from its embedding into the representation variety of homomor-

phisms from π1(S) into PSL(2,C), modulo conjugacy (see [16]). The map that

assigns to each marked projective structure the compatible marked conformal

structure defines a fibration π : Proj(S)→ Teich(S). The fiber ProjX(S) over

X is an affine space modelled on Q(X). In particular, there is a well-defined

difference β1−β2 ∈ Q(X), for β1, β2 ∈ ProjX(S), which defines a holomorphic

map from ProjX(S)× ProjX(S) to Q(X).

1.4. Quasifuchsian space. Let S = H/Γ be a hyperbolic Riemann surface

with Γ < PSL(2,R), and denote by S the hyperbolic Riemann surface L/Γ,

where L is the lower half plane. Since Γ is a Fuchsian group, it acts on the

Riemann sphere Ĉ fixing H, L, and the real axis/circle at infinity R∞ = Ĉ \
(H∪L). Following McMullen [24], we define quasifuchsian space QF (S) to be

the product

QF (S) = Teich(S)× Teich(S).

ThenQF (S) parametrizes marked quasifuchsian groups equivalent to Γ(S).

A quasifuchsian group is a Kleinian group Γ(X,Y ) with a domain of disconti-

nuity Ω(X,Y ) consisting of two components whose quotients by Γ(X,Y ) are

X and Y respectively.

We thus have a “quasifuchsian uniformization” map

σ : Teich(S)× Teich(S)→ Proj(S)× Proj(S)

that sends (X,Y ) to the projective structures on X and Y inherited from

Ω(X,Y ) from the action of Γ(X,Y ). The map σ is a section of the bundle

Proj(S)× Proj(S)→ QF (S). We write

σ(X,Y ) = (σQF (X,Y ), σQF (X,Y )).

We define the Fuchsian locus F (S) to be the image of Teich(S) under the

antidiagonal embedding α̂(X) = (X,X) ∈ QF (S).

The complex structure on Teich(S) is then defined via the Bers embedding :

fixing X ∈ Teich(S), we define βX : Teich(S)→ Q(X) by

βX(Y ) = σQF (X,Y )− σF (X).

The map βX is an embedding, and the pullback of the complex structure on

Q(X) gives a complex structure on Teich(S) that is independent of X (that

is, two different Xs give isomorphic structures). Recall that Q(X) is a Banach

space when endowed with any Lp norm.
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We have defined a complex structure on Teich(S), which induces a con-

jugate complex structure on Teich(S). The complex structure on QF (S) is

defined to be the product complex structure. The Fuchsian locus F (S) is then

a totally real submanifold of QF (S). It can be checked that the fibration

Proj(S) → Teich(S) is holomorphic with respect to these structures. Hence,

for a fixed Y ∈ Teich(S), the map X 7→ σQF (X,Y ) gives a holomorphic sec-

tion of Proj(S) over Teich(S). This section gives an isomorphism between the

cotangent bundle T ∗Teich(S) and an open subset of Proj(S).

We will use the quasifuchsian uniformization section σ in a crucial way to

estimate higher derivatives of the WP metric in Section 5. We record here the

properties that we will use.

Theorem 1.1. The holomorphic section σ satisfies the following proper-

ties :

(1) σQF (X,X) = σF (X);

(2) for any Y,Z ∈ Teich(S), the map X 7→ σQF (X,Y )−σQF (X,Z) defines

a bounded holomorphic 1-form on Teich(S) in the L∞ norm ;

(3) for each Z ∈ Teich(S), the 1-form θWP(X) = σF (X) − σQF (X,Z) =

−βX(Z) satisfies d(iθWP) = ωWP.

The boundedness of the 1-form in (2) follows from Nehari’s bound (see

Theorem 2.2 in [24]). The last statement is due to McMullen [24, Th. 7.1].

1.5. Fenchel-Nielsen coordinates. Continue to denote by S a marked Rie-

mann surface of genus g with n punctures. We define here a natural system

of global coordinates on Teich(S), called Fenchel-Nielsen coordinates, in which

the Kähler form ωWP takes a simple form.

Recall that a curve in S is nonperipheral if it is not homotopic to a loop

surrounding a single puncture. A pants decomposition of S is a collection P

of 3g − 3 + n pairwise disjoint, homotopically nontrivial, nonperipheral, and

homotopically distinct simple closed curves. The complement of these curves

is a collection of surfaces called pairs of pants. Topologically, a pair of pants

is a three-times punctured sphere. A pair of pants has one of three types of

conformal structure depending on whether each puncture is locally modelled

on the punctured plane or on the complement of a closed disk in the plane, in

which case we say that the boundary component is a circle. A pair of pants

with j boundary circles has a j-dimensional space of hyperbolic structures,

parametrized by the hyperbolic lengths of the boundary circles.

We introduce notation that will be used throughout the paper. If f : S→X

is a marked Riemann surface and α is a homotopically nontrivial, nonperiph-

eral, simple closed curve in S, we denote by `α(X) the hyperbolic length in

X of the unique geodesic in the homotopy class of f∗[α]. This geodesic length
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function is intimately connected with the WP metric and is used to define

Fenchel-Nielsen coordinates.

Fix a pair of pants decomposition P = {α1, . . . , α3g−3+n} of S. The

Fenchel-Nielsen coordinates

(`α, τα)α∈P : Teich(S)→ (R>0 × R)3g−3+n

determined by P are defined as follows. For f : S → X a marked Riemann

surface and α ∈ P , we define `α(X) to be the geodesic length as above and

τα(X) to be the twist parameter, which records the relative displacement in

how the pairs of pants are glued together along α to obtain the hyperbolic

metric on X. More precisely, a full Dehn twist about the curve α changes

τα by the amount `α. One must adopt a convention for how this relative

displacement τ is measured, as it is intrinsically only well defined up to a

constant, but this does not introduce any serious issues. These give global

coordinates on Teich(S), a fact which shows that Teich(S) is homeomorphic

to R6g−6+2n.

The Fenchel-Nielsen coordinates are natural with respect to the WP met-

ric. Wolpert [40] proved that for any pants decomposition P , we have ωWP =
1
2

∑
α∈P d`α ∧ dτα. An ingredient in the proof of this formula is the important

fact that the vector field ∂/∂τα, which generates the Dehn twist flow about α,

is the symplectic gradient of the Hamiltonian function 1
2`α:

1

2
d`α = ωWP

Å
·, ∂

∂τα

ã
,

or equivalently

grad `α = −2J
∂

∂τα
.

This fundamental relationship is the starting point for many of Wolpert’s deep

asymptotic expansions for the WP metric, which we discuss in more detail in

Section 4.

1.6. The Deligne-Mumford compactification of moduli space. As mentioned

earlier, Teich(S) is incomplete with respect to the WP distance [39]. This oc-

curs precisely because it is possible to shrink a simple closed curve α to a point

and leave Teichmüller space along a WP geodesic in finite time — indeed, the

time it takes is on the order of `
1/2
α . This fact allows one to prove [22] that the

completion of Teich(S) is the augmented Teichmüller space, denoted Teich(S).

The mapping class group MCG(S) acts on Teich(S) and the quotient M(S)

is the Deligne-Mumford compactification of the moduli space M(S) and gives

the completion on the quotient.

Augmented Teichmüller space Teich(S) is obtained by adjoining lower-

dimensional Teichmüller spaces of noded Riemann surfaces, which gives it the

structure of a stratified space. The combinatorics of this stratification are
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encoded by a symplicial complex C(S) called the curve complex. We review

this construction here.

We first define the curve complex C(S), which is a 3g− 4 +n-dimensional

simplicial complex. The vertices of C(S) are homotopy classes of homotopically

nontrivial, nonperipheral, simple closed curves on S. We join two vertices by

an edge if the corresponding pair of curves has disjoint representatives. More

generally, a k simplex σ ∈ C(S) consists of k + 1 distinct vertices that have

disjoint representatives. We note that in the sporadic cases of the punctured

torus (g, n) = (1, 1) and four-times punctured sphere (g, n) = (0, 4), C(S)

is just an infinite discrete set of vertices, since there do not exist disjoint

homotopically distinct curves on the underlying surface S. Except in these

sporadic cases, C(S) is a connected locally infinite complex.1 Note that a

maximal simplex in C(S) defines a pants decomposition of S. The mapping

class group MCG(S) acts on C(S).

A noded Riemann surface is a complex space with at most isolated sin-

gularities, called nodes, each possessing a neighborhood biholomorphic to a

neighborhood of (0, 0) in the curve

{(z, w) ∈ C2 : zw = 0}.

Removing the nodes of a noded Riemann surface Y yields a (possibly discon-

nected) punctured Riemann surface, which we will usually denote by Ŷ . The

components of Ŷ are called the pieces of Y .

Given a simplex σ ∈ C(S), a marked noded Riemann surface with nodes

corresponding to σ is a noded Riemann surface Xσ equipped with a continuous

mapping f : S → Xσ so that f |S\σ is a homeomorphism to X̂σ. Two marked

noded Riemann surfaces [f1 : S → X1
σ] and [f2 : S → X2

σ] are equivalent if there

is a biholomorphic node-preserving map h : X1
σ → X2

σ such that f1◦h is isotopic

to f2. We denote by Tσ the set of equivalence classes [f : S → Xσ] with nodes

at σ. We adopt the convention that when σ = ∅, then T is the Teichmüller

space Teich(S) of unnoded surfaces. Then the augmented Teichmüller space is

Teich(S) = T ∪
⋃

σ∈ C(S)

Tσ.

(The space Teich(S) should not be confused with Teich(S), which was intro-

duced in §1.4.)

1In the sporadic cases there is more than one possible definition of C(S); in another, very

standard definition in these cases, one adds edges joining curves that intersect minimally

(once in the case of the torus and twice in the case of the sphere). The resulting 1-complex

is the Farey graph in both cases.
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Notational convention. If the topological type of the surface S is fixed,

T will denote the augmented space Teich(S). We also denote by ∂T the

boundary T \ T . We denote by π : TT → T the natural projection. As

with the elements of Teich(S), we will frequently abuse notation and omit the

marking when referring to an element of T .

To describe a neighborhood of a point [f : S → Xσ] in Teich(S), we give

coordinates adapted to the simplex σ. For any such σ, let P be a maximal

simplex in C(S) (i.e., a pants decomposition) containing σ, and let (`α, τα)α∈P
be the corresponding Fenchel-Nielsen coordinates on Teich(S). Then the ex-

tended Fenchel-Nielsen coordinates for P are obtained by allowing the lengths

`α to range in R≥0 and taking the quotient by identifying (0, t) with (0, t′) in

each R factor corresponding to the curves in σ.

This also defines a topology on Teich(S). We note that the space is not

locally compact. A neighborhood of a noded surface allows for the twists τα
corresponding to the curves α ∈ σ to be arbitrary real numbers.

2. Background on the geodesic flow

Let M be a Riemannian manifold. As usual, 〈v, w〉 denotes the inner

product of two vectors and ∇ is the Levi-Civita connection defined by the Rie-

mannian metric. It is the unique connection that is symmetric and compatible

with the metric.

The covariant derivative along a curve t 7→ c(t) in M is denoted by Dc,
D
dt

or simply ′ if it is not necessary to specify the curve. If V (t) is a vector field

along c that extends to a vector field “V on M , we have

V ′(t) = ∇ċ(t)“V .
Given a smooth map (s, t) 7→ α(s, t), we let D

∂s denote covariant differentiation

along a curve of the form s 7→ α(s, t) for a fixed t. Similarly, D
∂t denotes

covariant differentiation along a curve of the form t 7→ α(s, t) for a fixed s.

The symmetry of the Levi-Civita connection means that

D

∂s

∂α

∂t
(s, t) =

D

∂t

∂α

∂s
(s, t)

for all s and t.

The curve c is a geodesic if it satisfies the equation Dcċ(t) = 0. Since

this equation is a first order ODE in the variables (c, ċ), a geodesic is uniquely

determined by its initial tangent vector. Geodesics have constant speed, since

we have d
dt〈ċ(t), ċ(t)〉 = 2〈Ḋcċ(t), ċ(t)〉 = 0 if c is a geodesic.

The Riemannian curvature tensor R is defined by

R(A,B)C = (∇A∇B −∇B∇A −∇[A,B])C.
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The sectional curvature of the 2-plane spanned by vectors A and B is defined

by

K(A,B) =
〈R(A,B)B,A〉
‖A ∧B‖2

.

The action of the Levi-Civita connection extends to covectors and tensors

in such a way that the product rule holds. In particular,

(∇WR)(X,Y )Z

= ∇W (R(X,Y )Z)−R(∇WX,Y )Z −R(X,∇WY )Z −R(X,Y )∇WZ.

Similarly, the second derivative ∇2
X,Y T of a tensor T is defined by the

product rule formula

∇X(∇Y T ) = ∇2
X,Y T +∇∇XY T.

We will use this later in the case T = R. If T is a vector field Z, a short

calculation using the symmetry of the Levi-Civita connection yields

∇2
X,Y Z −∇2

Y,XZ = R(X,Y )Z.

2.1. Vertical and horizontal subspaces and the Sasaki metric. The tangent

bundle TTM to TM may be viewed as a bundle over M in three natural ways

shown in the following commutative diagram:

TTM
DπM

//

κ

��

πTM◦πM

%%

TM

πM

��

TM
πM

// M.

The first is via the composition of the natural bundle projections πTM :

TTM → TM and πM : TM → M . The second is via the composition of

the derivative map DπM : TTM → TM with πM . The third involves a map

κ : TTM → TM , often called the connector map, which is determined by the

Levi-Civita connection. If ξ ∈ TTM is tangent at t = 0 to a curve t 7→ V (t) in

TM and c(t) = πM (V (t)) is the curve of footpoints of the vectors V (t), then

κ(ξ) = DcV (0).

The vertical subbundle is the subbundle ker(DπM ). It is naturally identi-

fied with TM via the map κ. The horizontal subbundle is the subbundle ker(κ).

It is naturally identified with TM via the map DπM and is transverse to the

vertical subbundle. If v ∈ TpM , we may identify TvTM with TpM × TpM via

the map DπM × κ : TTM → TM × TM .

Each element of TvTM can thus be represented uniquely by a pair (v1, v2)

with v1 ∈ TpM and v2 ∈ TpM . Put another way, every element ξ of TvTM

is tangent to a curve V : (−1, 1) → TM with V (0) = v. Let c = πM ◦
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V : (−1, 1)→M be the curve of basepoints of V in M . Then ξ is represented

by the pair

(ċ(0), DcV (0)) ∈ TpM × TpM.

These coordinates on the fibers of TTM restrict to coordinates on TT 1M .

Regarding TTM as a bundle over M in this way gives rise to a natural

Riemannian metric on TM , called the Sasaki metric. In this metric, the inner

product of two elements (v1, w1) and (v2, w2) of TvTM is defined:

〈(v1, w1), (v2, w2)〉Sas = 〈v1, v2〉+ 〈w1, w2〉.

This metric is induced by a symplectic form ω on TTM . For vectors (v1, w1)

and (v2, w2) in TvTM , we have

ω((v1, w1), (v2, w2)) = 〈v1, w2〉 − 〈w1, v2〉.

This symplectic form is the pullback of the canonical symplectic form on the

cotangent bundle T ∗M by the map from TM to T ∗M induced by identifying

a vector v ∈ TpM with the linear function 〈v, ·〉 on TpM .

Sasaki [33] showed that the fibers of the tangent bundle are totally geodesic

submanifolds of TTM with the Sasaki metric. A parallel vector field along a

geodesic of M (viewed as a curve in TM) is a geodesic of the Sasaki metric.

Such a geodesic is orthogonal to the fibers of TM . If v ∈ TpM and v′ ∈ Tp′M ,

we can join them by first parallel translating v along a geodesic from p to p′

to obtain w ∈ Tp′M and then moving from w to v′ along a line in Tp′M . If v′

is close to v, we can choose the geodesic so that its length is d(p, p′). It follows

easily from Topogonov’s comparison theorem [8, Th. 2.2] that

dSas(v, v
′) � d(p, p′) + ‖w − v′‖,

as v′ → v, where the rate of convergence is controlled by the curvatures of the

Sasaki metric in a neighborhood of v. The notation a � b, here and in the rest

of the paper, means that the ratios a/b and b/a are bounded from above by a

constant. In this case the constant is 2.

2.2. The geodesic flow and and Jacobi fields. For v ∈ TM , let γv denote

the unique geodesic γv satisfying γ̇v(0) = v. The geodesic flow ϕt : TM → TM

is defined by

ϕt(v) = γ̇v(t)

wherever this is well defined. The geodesic flow is always defined locally. Since

the geodesic flow is Hamiltonian, it preserves a natural volume form on T 1M

called the Liouville volume form. When the integral of this form is finite, it

induces a unique probability measure on T 1M called the Liouville measure or

Liouville volume.
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Consider now a one-parameter family of geodesics, that is a map α :

(−1, 1)2 →M with the property that α(s, ·) is a geodesic for each s ∈ (−1, 1).

Denote by J(t) the vector field

J(t) =
∂α

∂s
(0, t)

along the geodesic γ(t) = α(0, t). Then J satisfies the Jacobi equation

J ′′ +R(J, γ̇)γ̇ = 0,

in which ′ denotes covariant differentiation along γ. Since this is a second order

linear ODE, the pair of vectors (J(0), J ′(0)) ∈ Tγ(0)M × Tγ(0)M uniquely

determines the vectors J(t) and J ′(t) along γ(t). A vector field J along a

geodesic γ satisfying the Jacobi equation is called a Jacobi field.

The pair (J(0), J ′(0)) corresponds in the manner described above to the

tangent vector at s = 0 to the curve V (s) = ∂α
∂t (s, 0). To see this, note that

V (s) is a vector field along the curve c(s) = α(s, 0), so V ′(0) corresponds to

the pairÅ
ċ(0), Dc

∂α

∂t
(s, 0)

ã
=

Å
J(0),

D

∂s

∂α

∂t
(s, 0)

ã
=

Å
J(0),

D

∂t

∂α

∂s
(s, 0)

ã
= (J(0), J ′(0)).

In the same way one sees that (J(t), J ′(t)) corresponds to the tangent vector

at s = 0 to the curve s 7→ ∂α
∂t (s, t) = ϕt ◦ V (s), which is Dϕt(V

′(0)).

To summarize the preceding discussion, there is a one-to-one correspon-

dence between elements of TvTM and Jacobi fields along the geodesic γ with

γ̇(0) = v. Note that the pair (J(t), J ′(t)) defines a section of TTM over γ(t).

We have the following key proposition.

Proposition 2.1. The image of the tangent vector (v1, v2) ∈ TvTM un-

der the derivative of the geodesic flow Dvϕt is the tangent vector (J(t), J ′(t)) ∈
Tϕt(v)TM , where J is the unique Jacobi field along γ satisfying J(0) = v1 and

J ′(0) = v2.

Any vector field of the form J(t) = (a+ bt)γ̇(t) is a Jacobi field, since in

that case R(J, γ̇) = 0 and the Jacobi equation reduces to J ′′ = 0, which holds

since γ̇′ = 0. Conversely, any Jacobi field that is always tangent to γ must have

this form. Computing the Wronskian of the Jacobi field γ̇ and an arbitrary

Jacobi field J shows that 〈J ′, γ̇〉 is constant. It follows that if J ′(t0) ⊥ γ̇(t0) for

some t0, then J ′(t) ⊥ γ̇(t) for all t. Similarly if J(t0) ⊥ γ̇(t0) and J ′(t0) ⊥ γ̇(t0)

for some t0, then J(t) ⊥ γ̇(t) and J ′(t) ⊥ γ̇(t) for all t; in this case we call J a

perpendicular Jacobi field.

An easy consequence of the above discussion is that any Jacobi field J

along a geodesic γ can be expressed uniquely as J = J‖ + J⊥, where J‖ is a

Jacobi field tangent to γ and J⊥ is a perpendicular Jacobi field.
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2.3. Matrix Jacobi and Riccati equations. Choose an orthonormal basis

e1 = γ̇(0), e2, . . . , en at 0 for the tangent space at γ(0) and parallel transport

the basis along γ(t). Let R(t) be the matrix whose entries are

Rjk(t) = 〈R(ej(t), e1(t))e1(t), ek(t)〉.

Any Jacobi field can be written in terms of the basis as J(t) =
∑n
k=1 y

kek(t),

and the Jacobi equation can be written as

d2yk

dt2
(t) +

∑
j

yj(t)Rjk(t) = 0.

A solution is determined by values and derivatives at 0 of the yk.

Let J (t) denote any matrix of solutions to the Jacobi equation. When

the matrix J is nonsingular, we can define

U = J ′J −1.

Then U satisfies the matrix Riccati equation

(2) U ′ + U2 +R = 0,

where R is the matrix above. A standard calculation using the Wronskian

shows that the operator U = J ′J −1 is symmetric if and only if for any two

columns Ji, Jj of J , we have

ωR2n((Ji, J
′
i), (Jj , J

′
j)) = 0,

where ωR2n is the standard symplectic form on Rn.

2.4. Perpendicular Jacobi fields and invariant subbundles. There are two

natural subbundles of TTM that are invariant under the derivative Dϕt of the

geodesic flow, the first containing the second. The first is the tangent bundle

TT 1M to the unit tangent bundle of M . Under the natural identification

TvTM ∼= TxM ×TxM for v ∈ T 1
xM , the subspace TvT

1M is the set of all pairs

(w0, w1) such that 〈v, w1〉 = 0. To see this, note that if α(s, t) is a variation

of geodesics generating the Jacobi field J along the geodesic γ, with γ̇(0) = v

and ‖∂α/∂t(s, t)‖ = 1 for all s, t, then

0 =
D

∂s

∥∥∥∥∂α∂t
∥∥∥∥2
∣∣∣∣∣
(0,0)

= 2

Æ
D2

∂s∂t
α,
∂α

∂t

∏∣∣∣∣∣
(0,0)

= 2

Æ
D2

∂t∂s
α,
∂α

∂t

∏∣∣∣∣∣
(0,0)

= 2〈J ′(0), γ̇(0)〉.

The Dϕt-invariance of TT 1M follows from the ϕt-invariance of T 1M . It is

reflected in the fact, noted at the end of Section 2.2, that 〈J ′(t), γ̇〉 is constant

for any Jacobi field J along a geodesic γ.
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The second natural invariant subbundle is the orthogonal complement

ϕ̇⊥ in TT 1M to the vector field ϕ̇ generating the geodesic flow. Under the

natural identification TvTM ∼= TxM × TxM , for v ∈ T 1
xM , the vector ϕ̇(v)

is (v, 0), and the subspace ϕ̇⊥(v) is the set of all pairs (w0, w1) such that

〈v, w0〉 = 〈v, w1〉 = 0. The Dϕt-invariance of ϕ̇⊥ follows from the observation,

made at the end of Section 2.2, that a Jacobi field J with J(t0) ⊥ γ̇(t0) and

J ′(t0) ⊥ γ̇(t0) for some t0 is perpendicular to γ for all t.

To summarize, the space of all perpendicular Jacobi fields along γ corre-

sponds to the orthogonal complement to the direction of the geodesic flow ϕ̇(v)

at the point v = γ̇(0) ∈ T 1M . To estimate the norm of the derivative Dϕt on

TT 1M , it suffices to restrict attention to vectors in the invariant subspace ϕ̇⊥;

that is, it suffices to estimate the growth of perpendicular Jacobi fields along

geodesics.

2.5. Consequences of negative curvature and unstable Jacobi fields. If the

sectional curvatures of the Riemannian metric are negative along γ, then it

follows from the Jacobi equation that 〈J ′′, J〉 > 0 for any Jacobi field with the

property that J(t) and γ̇(t) are linearly independent. This has the following

consequence; for a proof, see [12].

Lemma 2.2. If the sectional curvatures are negative along γ, then the

functions ‖J(t)‖ and ‖J(t)‖2 are strictly convex for any nontrivial perpendic-

ular Jacobi field J along γ.

We also have the following results from [11, §1.10]. Let γ : (−∞, a]→M

be a geodesic ray along which the sectional curvatures of the Riemannian metric

are always negative. Then, for each w ∈ γ̇(a)⊥, there is a unique perpendicular

Jacobi field J+,w along γ such that J+,w(a) = w and

‖J+,w(t)‖ ≤ ‖w‖ for all t ≤ a.

Since ‖J+,w(t)‖ is a strictly convex function of t by Lemma 2.2, ‖J+,w(t)‖ must

be strictly increasing for t ≤ a. In fact J+,w = limτ→−∞ J+,w,τ , where J+,w,τ

is the Jacobi field such that J+,w,τ (a) = v and J+,w,τ (τ) = 0. We call J+,w an

unstable Jacobi field.

For each t ≤ a, there is a linear map U+(t) : γ̇(t)⊥ → γ̇(t)⊥ such that

J ′+(t) = U+(t)(J+(t))

for every unstable Jacobi field J+. A Jacobi field along γ is unstable if and

only if it satisfies J ′ = U+J .

Proposition 2.3. The operators U+(t) are symmetric and positive defi-

nite. They satisfy the matrix Riccati equation (2). Thus

U ′+ + U2
+ +R = 0.
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In other words, for any vector w ∈ γ̇(t)⊥, we have

〈w,U ′+(w)〉 = −〈R(w, γ̇)γ̇, w〉 − 〈w,U2
+(w)〉.

We call U+ the unstable solution of the Riccati equation along the ray γ.

If v ∈ T 1M is a vector such that γv(t) is defined for all t < 0, then we define

U+(v) to be the operator U+(0) associated to the ray γv : (−∞, 0]→M .

If γ is a geodesic in a complete Riemannian manifold with negative cur-

vature, the unstable Jacobi fields along γ are obtained by varying γ through

geodesics β such that d(β(t), γ(t)) ≤ d(β(0), γ(0)) for t < 0. These geodesics

are orthogonal to a family of immersed hypersurfaces whose lifts to the uni-

versal cover of M are called horospheres. The operators U+(t) are the second

fundamental forms of horospheres.

There is an analogous definition of stable Jacobi fields and the stable so-

lution of the Riccati equation along a ray γ : [a,∞). If γ : (−∞,∞) → M is

a complete geodesic, the unstable Jacobi fields along γ are the stable Jacobi

fields along the geodesic t 7→ γ(−t). We define U−(v) analogously to U+(v);

it is symmetric and negative definite. The norm of a stable Jacobi field J(t)

defined on a ray γ : [a,∞)→M is strictly decreasing for t ≥ a.

Let

D = {v ∈ T 1M : γv(t) is defined for all t}.
If v ∈ D, both U+(v) and U−(v) exist. This allows us to define a splitting of

the 2n − 1-dimensional space TvT
1M as the direct sum of a one-dimensional

space E0(v) and two spaces Eu(v) and Es(v) each of dimension n − 1. The

space E0(v) is Rϕ̇(v), and we will have Eu(v)⊕ Es(v) = ϕ̇(v)⊥. In our usual

coordinates, E0(v) is spanned by (v, 0) while

Eu(v) = {(w,U+(v)w) : w ∈ v⊥} and Es(v) = {(w,U−(v)w) : w ∈ v⊥}.

The splitting at v is mapped to the splitting at ϕt(v) by Dϕt.

The next proposition shows that while the splitting TDT
1M = Eu⊕E0⊕

Es is defined only over the set D, the geometry of this splitting is locally

uniformly controlled.

Proposition 2.4. There exists a continuous function δ : T 1M → R>0

such that for all v ∈ D, if (w,w′) ∈ Eu(v), then

〈w,w′〉 ≥ δ(v)‖(w,w′)‖2Sas,

and if (w,w′) ∈ Es(v), then

〈w,w′〉 ≤ −δ(v)‖(w,w′)‖2Sas.

Proof. It will suffice to show that the functions

δu(v)= inf
(w,w′)∈Eu(v)\{0}

〈w,w′〉
‖(w,w′)‖2Sas

and δs(v)= inf
(w,w′)∈Es(v)\{0}

− 〈w,w′〉
‖(w,w′)‖2Sas
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are locally uniformly bounded away from 0 for v ∈ D. We prove the statement

for δs.

Suppose that δs is not locally bounded away from 0. Then there would

be v ∈ D, a sequence of vectors vn in D with limn→∞ vn = v, and a sequence

ξn ∈ Es(vn) such that ξn converges to a vector ξ = (w,w′) with 〈w,w′〉 = 0.

By renormalizing we may assume that ‖ξn‖Sas = ‖ξ‖Sas = 1 for each n.

Since v ∈ D, there exists τ > 0 such that γv(t) is defined for |t| < τ . Let

J be the Jacobi field along the geodesic γv determined by ξ, and let Jn be the

(stable) Jacobi field along γvn defined by ξn. Then (‖J‖2)′(0) = 2〈w,w′〉 = 0.

On the other hand, since ξn → ξ and ‖Jn(t)‖ is a decreasing function of t for

each n, we see that ‖J‖ is nonincreasing on (−τ, τ). It follows from this and

the strict convexity of ‖J‖2 given by Lemma 2.2 that the function ‖J‖2 cannot

have a critical point in the interval (−τ, τ). �

This proposition has the following corollary, which will be used for the

Hopf argument in Section 3.

Corollary 2.5. Let δ : T 1M → R>0 be the function given by Proposi-

tion 2.4. The continuous conefields

Cu(v) = {(w,w′) ∈ ϕ̇⊥(v) : 〈w,w′〉 ≥ δ(v)‖(w,w′)‖2Sas}

and

Cs(v) = {(w,w′) ∈ ϕ̇⊥(v) : 〈w,w′〉 ≤ −δ(v)‖(w,w′)‖2Sas},
defined for v ∈ T 1M , intersect only at the origin and satisfy

Eu(v) ⊂ Cu(v) and Es(v) ⊂ Cs(v)

for all v ∈ D.

3. A general criterion for ergodicity of the geodesic flow

In this section we establish a general criterion for ergodicity of the geodesic

flow on a negatively curved manifold, not necessarily complete. In the sections

that follow we will verify that the hypotheses of our criterion hold for a quotient

of Teichmuller space in the WP metric that is a finite branched cover of moduli

space.

If R is the curvature tensor of a Riemannian metric on a manifold M ,

then for x ∈M , we define

‖Rx‖= sup
v1,v2,v3∈T 1

xN
‖Rx(v1, v2)v3‖, ‖∇Rx‖= sup

v1,v2,v3,v4∈T 1
xN
‖∇v1Rx(v2, v3)v4‖

and

‖∇2Rx‖ = sup
v1,...,v5∈T 1

xM
‖∇2

v1,v2Rx(v3, v4)v5‖,
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where ∇2R is the second covariant derivative of the curvature tensor ∇2
X,YR =

∇X∇YR−∇∇XYR.

Let M be a contractible Riemannian manifold, negatively curved, possibly

incomplete. Let Γ be a group that acts freely and properly discontinuously on

M by isometries, and denote by N the quotient manifold N = M/Γ. We

denote by d both the path metric on M and the quotient metric on N , which

is just the path metric for the induced Riemannian metric on N . The quotient

map p : M → N is a covering map and a local isometry.

Recall that the completion X of a metric space (X, d) is the set of all

Cauchy sequences 〈xn〉 in X modulo the equivalence relation

〈xn〉 ∼ 〈yn〉 ⇐⇒ lim
n→∞

d(xn, yn) = 0,

with the induced metric d(〈xn〉, 〈yn〉) = limn→∞ d(xn, yn). LetM be the metric

completion of M , and let N be the completion of N . Let ∂N = N \ N . We

will use d to denote the metric on all of these spaces.

Consider the following additional six assumptions on M and N :

I. M is a geodesically convex : for every p, p′ ∈ M , there is a unique

geodesic segment in M connecting p to p′.

II. N is compact.

III. ∂N is volumetrically cusplike: there exist constants C > 1 and ν > 0

such that

Vol ({p ∈ N : d(p, ∂N) < ρ}) ≤ Cρ2+ν

for every ρ > 0.

For the final three assumptions we assume there exist constants C > 1 and

β > 0 such that

IV. N has controlled curvature: for all x ∈ N , the curvature tensor R

satisfies

max{‖Rx‖, ‖∇Rx‖, ‖∇2Rx‖} ≤ Cd(x, ∂N)−β.

V. N has controlled injectivity radius : for every x ∈ N ,

inj(x) ≥ C−1d(x, ∂N)β.

VI. The derivative of the geodesic flow is controlled : for every infinite ge-

odesic γ in N and every t ∈ [0, 1],

‖Dγ̇(0)ϕt‖ ≤ Cd (γ ([−t, t]) , ∂N)−β .

Note that if II and III hold, then N has finite volume. In this case, we denote by

m the Riemannian volume (measure) on N , normalized so that m(T 1N) = 1.

The main result in this section is
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Theorem 3.1. Under assumptions I–VI, the geodesic flow ϕt on T 1N is

m-a.e. defined for all time t. It is nonuniformly hyperbolic and ergodic (and

in fact Bernoulli). The entropy h(ϕt) of ϕt is positive and finite, in fact equal

to the sum of the positive Lyapunov exponents of ϕt with respect to m, counted

with multiplicity.

Remark. It seems that assumption II (compactness of N) can be relaxed

to the assumption that N has finite diameter, but we have not verified all of the

details. We also remark that in applying Theorem 3.1, verifying assumptions

IV–VI is where the work lies. In the case of the WP metric, assumptions I–

III are either already known or follow in a straightforward way from known

results.

Proof of Theorem 3.1. We first establish several properties of M that can

be proved from assumptions I–III alone. The first such property is CAT(0).

A metric space X is CAT(0) if it is a geodesic space and and every geodesic

triangle in X satisfies the CAT(0) inequality with the comparison Euclidean

triangle (see [6, p.159]).

Lemma 3.2. If I holds, then M and M are both CAT(0) spaces.

Proof. The fact that M is CAT(0) follows from [6, Th. II.1A.6] and

Alexandrov’s Patchwork [6, Prop. II.4.9]. The metric completion of a CAT(0)

space is CAT(0), by [6, Cor. II.3.11]. �

Proposition 3.3 (The flow is a.e. defined for all time). If I–III hold,

then for almost every v ∈ T 1M , there exists an infinite geodesic (necessarily

unique) tangent to v.

Before proving this we state and prove another lemma that will be useful

later as well. Let π : T 1N → N be the natural projection. Let

Uρ = {v ∈ T 1N : d(π(v), ∂N) < ρ},

and let S+(ρ) be the set of all tangent vectors that flow into Uρ in some forward

time 0 ≤ t ≤ 1.

Lemma 3.4. If I–III hold, then for ρ < 1,

m(S+(ρ)) = O(ρ1+ν).

Proof. Consider the “shell” S+
k (ρ) of vectors v that flow into Uρ at times

between kρ and (k + 1)ρ. Any vector in this shell is in U2ρ at time (k + 1)ρ.

Volume-preservation of the flow implies that the the volume of S+
k (ρ) is at

most the volume of U2ρ, which is O(ρ2+ν), by assumption III. The set S+(ρ)

is contained in a union of the shells S+
0 (ρ), . . . , S+

m(ρ), where m is O(ρ−1). It

follows that the volume of S+(ρ) is O(ρ−1ρ2+ν) = O(ρ1+ν). �



THE WEIL-PETERSSON GEODESIC FLOW 859

Proof of Proposition 3.3. The set of vectors such that the flow is not de-

fined for some 0 ≤ t ≤ 1 is contained in S+(ρ) for all ρ > 0. By Lemma 3.4

this set has measure 0. It follows that the set of vectors for which the flow is

defined for all time has full measure. �

Suppose that v ∈ TM determines an infinite geodesic ray γv : [0,∞)→M

tangent to v at 0. Since M is a CAT(0) space, the functions bsv,t : M → R
defined by

bsv,t(y) = d(y, γv(t))− t
converge uniformly on compact sets as t→∞ to a function bsv : M → R, called

a (stable) Busemann function [6, Lemma II.8.18]. For a fixed v, the Busemann

function bsv is clearly Lipschitz continuous, with Lipschitz norm 1. If we assume

that I holds, then we can say more.

Proposition 3.5. Assume that I holds. For any v that determines an

infinite geodesic ray γv , the function bsv is convex and C1, and ‖ grad bsv‖ ≡ 1.

For every y ∈M , the unit vector

wsv(y) := − grad bsv(y)

defines an infinite geodesic ray γwsv(y) : [0,∞)→M tangent to wsv(y) at 0 with

the property that

d(γv(t), γwsv(y)(t)) ≤ d(γv(0), y)

for all t ≥ 0.

Proof. Since γv is an infinite ray, and M is a geodesically convex Riemann-

ian manifold, the functions bsv,t are convex, C1 and have the property that

‖ grad bsv,t(y)‖ = 1 for every y ∈ M . Since M is nonpositively curved, and bsv,t
converges uniformly on compact sets in M to bsv, the desired properties of C1

smoothness of bsv, convexity and ‖ grad bsv‖ ≡ 1 follow from [4, Lemma 3.4, and

the following remark]. The final conclusion follows from [6, Prop. II.8.2]. �

Suppose that v ∈ T 1M determines an infinite geodesic ray. Proposi-

tion 3.5 implies that for each t ∈ R, the set Hsv(t) := (bsv)
−1(t) is a connected,

codimension-1, complete C1 submanifold of M , called a stable horosphere at

level t. For such a v, we define

Ws(v) = {wsv(y) : y ∈ Hsv(0)}.

The set of basepoints π(Ws(v)) in M is the horosphere Hsv(0), and Ws(v) is

a continuous, codimension-1 submanifold of T 1M . Similarly, if γv projects

to a backward recurrent geodesic ray in N , we define the unstable Busemann

function and unstable manifold

buv (y) = lim
t→∞

d(y, γv(−t))− t and Wu(v) = {wuv (y) : y ∈ Huv (0)},
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where wuv (y) = − grad buv (y) and Huv (t) := (buv )−1(t) is the unstable horosphere

at level t determined by v.

Our next proposition justifies the terminology “stable and unstable man-

ifolds” for Ws(v) and Wu(v). The results stated up to this point all hold

true when M is nonpositively curved, but the proposition uses the negative

curvature assumption on M in an essential way.

We say that a geodesic ray γ : [0,∞)→ N is (forward) recurrent if the tan-

gent vector γ̇(0) is an accumulation point for the tangent vectors {γ̇(t) : t > 0}.
We similarly define backward recurrence for a geodesic ray γ : (−∞, 0] → N .

An infinite geodesic is recurrent if it is both forward and backward recurrent.

Under assumptions I–III, Proposition 3.3 and Poincaré recurrence imply that

almost every v ∈ T 1N determines an infinite recurrent geodesic γv : R → N

with γ̇v(0) = v.

Proposition 3.6 (Contraction of horospheres). Assume I–III. Let v ∈
TxM be tangent to an infinite geodesic ray γv whose projection to N is forward

recurrent. Let y ∈ M be any other point, and let w = wsv(y) ∈ TyM . Then w

is tangent to an infinite geodesic ray γw : [0,∞)→M and

lim
t→∞

d(γv(t), γw(t+ bsv(y))) = 0.

Moreover,

lim
t→∞

dSas(ϕt(v), ϕt+bsv(y)(w)) = 0.

In particular, if γv projects to a forward recurrent geodesic ray in N , then

for every t > 0, ϕt(Ws(v)) = Ws(ϕt(v)), and for every w ∈ Ws(v), we have

limt→∞ dSas(ϕt(v), ϕt(w)) = 0.

Similarly, if v is tangent to a backward ray γv : (−∞, 0]→M whose pro-

jection is recurrent, then w = wuv (w) is tangent to a backward ray γw : (−∞, 0]

→M and

lim
t→−∞

dSas(ϕt(v), ϕt+bsv(y)(w)) = 0.

In particular, for every w ∈ Wu(v), we have limt→−∞ dSas(ϕt(v), ϕt(w)) = 0.

Before beginning the proof, we remark that in [9] a property called non-

refraction was proved for the WP metric. Using that result, a short proof of

the above proposition was given in the WP case in [7].

Proof. Let γv : [0,∞) → M be an infinite geodesic ray whose projection

to N is recurrent, and let x = γv(0) be the footpoint of v. Suppose that

x′ ∈ M is another point, and let v′ = wsv(x
′). Since M is CAT(0), the dis-

tance d(γv(t), γv′(t)) is a convex function of t; since it is bounded, it must be

nonincreasing, and hence bounded above for all t by d(x, x′). We claim that

if d(x, x′) < d(x, ∂M), then the image of γv′ must lie entirely in M . Since the
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projection of γv to N is recurrent, there exist sequences gn ∈ Γ and tn → ∞
such that

d(x, gnγv(tn)) < d(x, ∂M)− d(x, x′).

Then

d(x, gnγv(tn)) < d(x, ∂M)− d(γv(tn), γv′(tn))

= d(x, ∂M)− d(gnγv(tn), gnγv′(tn)),

which implies, by the triangle inequality, that d(x, gnγv′(tn)) < d(x, ∂M).

Hence gnγv′(tn) ∈ M , and so γv′(tn) ∈ M . Geodesic convexity of M implies

that γv′ [0, tn] ⊂M , for all n, which proves the claim.

Now a standard ruled surface argument using geodesic convexity and the

negative curvature of M (see, e.g., [7, Th. 4.1], where it is proved in the WP

context) shows that for every γv that projects to a recurrent geodesic ray

in N , and any y ∈ M with the property that γwsv(y)[0,∞) ⊂ M , the distance

d(γwsv(y)(t), γv[0,∞)) is strictly decreasing in t and tends to 0 as t→∞. (Alter-

nately, one can show this using Jacobi fields). What is more, this convergence

takes place in the tangent bundle

lim
t→∞

dSas(γ̇wsv(y)(t), γ̇v[0,∞)) = 0.

Now suppose that y ∈ M is an arbitrary point. Connect y to x = γv(0)

by a geodesic arc σ in M . Fix ε0 > 0 such that d(x, ∂M) < ε0. We claim that

if x′ is any point on σ that satisfies

lim
t→∞

d(γwsv(x′)(t), γv[0,∞)) = 0,

then for any point y′ on σ such that d(x′, y′) < ε0/3, we have

lim
t→∞

d(γwsv(y′)(t), γv[0,∞)) = 0.

From the claim it follows that limt→∞ dSas(γ̇wsv(y)(t), γ̇v[0,∞)) = 0.

To prove the claim, suppose that x′ and y′ are given. Since the distance

d(γwsv(x′)(t), γwsv(y′)(t)) is bounded for all t > 0 and convex, it is nonincreasing,

and hence bounded above by ε0/3 for all t > 0. If T > 0 is sufficiently large,

then the distance from γwv(x′)(t) to γv is less than ε0/3 for all t > T . Since

γv projects to a recurrent ray in N , there exist gn ∈ Γ and tn →∞ such that

d(γv(tn), gnx) < ε0/3. It follows that γwsv(y′)(tn) ∈ M when tn > T , which

implies that γwv(y′)[0,∞) ⊂M . The claim follows.

A simple application of the triangle inequality shows that the property

limt→∞ d(γwsv(y)(t), γv[0,∞)) = 0 implies that

lim
t→∞

d(γv(t), γwsv(y)(t+ bsv(y))) = 0.

Since limt→∞ dSas(γ̇wsv(y)(t), γ̇v[0,∞)) = 0 for every y ∈M , we conclude that

lim
t→∞

dSas(ϕt(v), ϕt+bsv(y)(w
s
v(y)) = 0. �
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The proof of Theorem 3.1 now proceeds in several steps. The first is to es-

tablish nonuniform hyperbolicity. This is a classical result for closed manifolds

with negative curvature; see, e.g., [18, §17.6].

We need the following lemma.

Lemma 3.7. Assume that hypotheses I–III hold. Let ϕ1 be the time-1 map

of the geodesic flow. Then∫
T 1N

log+ ‖Dϕ1‖ dm <∞ and

∫
T 1N

log− ‖Dϕ1‖ dm <∞.

Proof. Lemma 3.4 implies that for n ≥ 1, m(S+(1/n)) = O((1/n)1+ν).

On S+(1/n) we have log+ ‖Dϕ1‖ = O(log n), and hence∫
S+(1/n)

log+ ‖Dϕ1‖ dm = O(log n/n1+ν).

Summing over n gives the first half of the conclusion. The second half follows

from the first and equivariance of the geodesic flow under the m-preserving

involution u 7→ −u: if w = ϕ1(v), then −v = ϕ1(−w). �

It follows from the lemma that log ‖Dϕ1‖ is integrable. Consequently

Oseledec’s theorem can be applied to the cocycle Dϕ1. It implies that for

m-almost every v ∈ T 1N , there exist k(v) ≤ 2n− 1 real numbers

λ1(v) < λ2(v) < · · · < λk(v)(v)

and a Dϕt-invariant splitting TvT
1N =

⊕k(v)
i=1 Ei(v) such that for every nonzero

vector ξ ∈ Ei(v),

lim
t→±∞

1

t
log ‖Dvϕt(ξ)‖ = λi(v).

The functions k(v), λi(v), and Ei(v) depend measurably on v. The numbers

λi(v) are called the Lyapunov exponents of ϕt at v and Ei(v) the Lyapunov

subspaces. Since the orthocomplement ϕ̇⊥ is Dϕt-invariant and the restriction

of Dϕt preserves a natural symplectic form, the Lyapunov exponents of ϕt
are paired: if λ is a Lyapunov exponent, then so is −λ. Moreover, since the

generating vector field ϕ̇ is preserved by Dϕt, it follows that

lim
t→±∞

1

t
log ‖Dvϕt(ξ)‖ = 0

for any ξ tangent to the orbits.

For v ∈ T 1N such that the geodesic γv(t) is defined for all t, let Eu(v) be

the subspace of TvT
1N spanned by the unstable perpendicular Jacobi fields at

v and let Es(v) be the subspace spanned by the stable perpendicular Jacobi

fields at v. These spaces each have dimension n− 1, and

TvT
1N = Es(v)⊕ E0(v)⊕ Eu(v),
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where E0(v) is the one-dimensional subbundle tangent to the orbits of the flow

ϕt. The splitting at v is mapped to the splitting at ϕt(v) by Dϕt.

Lemma 3.8. There is a ϕt-invariant set Λ0 ⊂ T 1N of full measure with

respect to m such that for every v ∈ Λ0, we have

Es(v) =
⊕

λi(v)<0

Ei(v) and Eu(v) =
⊕

λi(v)>0

Ei(v).

Proof. We choose Λ0 to be the set of vectors v ∈ T 1N such that

(1) ϕt(v) is defined for all t,

(2) the exponents λi(v) are defined for i = 1, . . . , k(v), and

(3) v is uniformly forward and backward recurrent under the flow ϕt.

The last property means the following:

(3′) For any neighborhood U of v, there is δ > 0 such that for all large

enough T , the sets R+(T ) = {t ∈ [0, T ] : ϕt(v) ∈ U} and R−(T ) =

{t ∈ [0, T ] : ϕ−t(v) ∈ U} both have Lebesgue measure at least δT .

This ensures that both sets contain finite subsets of cardinality at least

δT − 1 in which distinct elements differ by at least 1.

Properties (1)–(3) hold for m-almost all vectors in v ∈ T 1N . For (1) this

is Proposition 3.3, for (2) it is a part of Oseledec’s theorem, and for (3) it

follows from a standard argument using the Birkhoff ergodic theorem.

Since the set Λ0 is invariant under the involution u 7→ −u and the deriva-

tive of this involution maps Es(u) to Eu(−u), it will suffice to prove the second

statement. To this end, recall that if J is a nonzero unstable Jacobi field along

a geodesic γ, then ‖J(t)‖ is a strictly increasing convex function. Given v ∈ Λ0,

we can choose a neighborhood U of v and η > 0 such that if J(t) is an unstable

Jacobi field along a geodesic γ with γ̇(0) ∈ U , then ‖J(1)‖ ≥ (1 + η)‖J(0)‖.
With δ chosen as in (3′), we obtain

‖J(T )‖ ≥ (1 + η)δT−1‖J(0)‖

for any unstable Jacobi field J(t) along the geodesic γv(t). �

We summarize the consequences of the discussion since Lemma 3.7 in the

following

Proposition 3.9 (Nonuniform hyperbolicity). Under assumptions I–VI,

the geodesic flow is nonuniformly hyperbolic. On the full measure, ϕt-invariant

subset Λ0 ⊂ T 1N defined above, there is a measurable Dϕt-invariant splitting

of the tangent bundle

TΛ0(T 1N) = Es ⊕ E0 ⊕ Eu

such that for every v ∈ Λ0,

(1) E0(v) is tangent to the orbits of the flow : E0(v) = Rϕ̇(v);
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(2) Eu(v) is spanned by the unstable perpendicular Jacobi fields at v, and

Es(v) is spanned by the stable perpendicular Jacobi fields at v; and

(3) for every nonzero ξu ∈ Eu(v), ξs ∈ Eu(v),

lim
t→∞

1

t
log ‖Dvϕt(ξ

u)‖ > 0, and lim
t→∞

1

t
log ‖Dvϕt(ξ

s)‖ < 0,

and the limits are finite.

This completes the first step. The next is to introduce the local stable

and unstable manifolds.

Proposition 3.10 (Existence and absolute continuity of families of local

stable manifolds). Assume I–VI. Let n = dim(N), and let Λ0 ⊂ T 1N be given

by Proposition 3.9. There exist a full volume, ϕt-invariant subset Λ1 ⊂ Λ0, a

measurable function r : Λ1 → R>0, and measurable families of C∞, (n − 1)-

dimensional embedded disks Ws
loc = {Ws

loc(v) : v ∈ Λ1} and Wu
loc = {Wu

loc(v) :

v ∈ Λ1} with the following properties. For each v ∈ Λ1,

(1) Ws
loc(v) is tangent to Es(v) and Wu

loc(v) is tangent to Eu(v) at v;

(2) for all t > 0,

ϕt(Ws
loc(v)) ⊂ Ws

loc(ϕt(v)) and ϕ−t(Wu
loc(v)) ⊂ Wu

loc(ϕ−t(v));

(3) w ∈ Ws
loc(v) if and only if dSas(v, w) < r(v) and

lim
t→∞

dSas(ϕt(v), ϕt(w)) = 0;

(4) w ∈ Wu
loc(v) if and only if dSas(v, w) < r(v) and

lim
t→−∞

dSas(ϕt(v), ϕt(w)) = 0.

Moreover, for ∗ ∈ {s, u}, the family W∗loc is absolutely continuous. In particu-

lar,

(5) if Z ⊂ T 1N has volume m(Z) = 0, then for m-almost every v ∈ Λ1,

the set Z ∩W∗loc(v) is a zero set in W∗loc(v) (with respect to the induced

(n− 1)-dimensional Riemannian volume); and

(6) if D ⊂ T 1N is any C1-embedded, n-dimensional open disk, and B ⊂ D
has induced Riemannian volume zero in D, then m(Sat∗loc(B)) = 0,

where

Sat∗loc(B) :=
⋃

{v∈Λ1 :W∗
loc

(v)∩B 6=∅}
W∗loc(v).

The conclusions of Proposition 3.10 will follow from the main results in

[19]. To apply these results, it is necessary to verify a list of hypotheses, some

of a technical nature, concerning the C3 properties of the Sasaki metric and

the geodesic flow. We defer the verification of these properties, assuming I–

VI, to Appendix B and now show how Proposition 3.10 can be used to prove

ergodicity of ϕt. Properties (5) and (6) in Proposition 3.10 are the heart of



THE WEIL-PETERSSON GEODESIC FLOW 865

the matter in proving ergodicity. Property (5) is a form of “leafwise absolute

continuity” and (6) is a form of “transverse absolute continuity.”

Properties (5) and (6) are obvious ifWs
loc(v) andWu

loc(v) depend smoothly

on v, as they do for the geodesic flow of a manifold of constant negative cur-

vature. But this is rarely the case. Examples of compact manifolds for which

the bundles Es and Eu are only Hölder continuous have been given by Anosov

[1] and Hasselblatt [14], and their techniques extend to the present context.

However, these examples do not appear to rule out the curious and extremely

unlikely possibility that the bundles are smooth for the special case of the WP

metric.

Let Ω1 be the full measure set of v ∈ T 1M such that γv projects to

a (forward and backward) recurrent geodesic in TN . Each v ∈ Ω1 has a

stable manifold Ws(v) and an unstable manifold Wu(v). For δ < inj(π(v′)),

where v′ = Dp(v) ∈ Dp(Ω1), denote by W∗(v, δ) the connected component of

W∗(v)∩BT 1M (v, δ) containing v, where BT 1M (v, δ) is the Sasaki ball of radius

δ in T 1M centered at v. We denote by Ws(v′, δ) the projection Dp(Ws(v, δ));

it is an (n− 1)-dimensional embedded disk.

Notice that for every v ∈ Ω1, if v′ = Dp(v) belongs to the full measure

set Λ1 of Proposition 3.10, then the local stable manifold Ws
loc(v

′) through v′

must coincide with Ws(v′, r(v′)), where r : Λ1 → R>0 is the function given by

Proposition 3.10.

At this point, we have established the almost everywhere existence of the

global, complete submanifolds Ws(v) and Wu(v) in T 1M , invariant under the

flow, but we have not shown them to have any absolute continuity properties.

On the other hand, the local Pesin stable and unstable manifolds Ws
loc(v) and

Wu
loc(v) have good absolute continuity properties, but they are not complete

submanifolds — they are open disks with measurably varying radii. To prove

ergodicity, we would like a collection of complete subbmanifolds forming an

absolutely continuous (almost everywhere) foliation with controlled geometry.

The key step in showing this is to use this almost everywhere coincidence of the

global submanifolds with the local Pesin disks to obtain absolute continuity of

the global foliation. This is the content of the next proposition.

Proposition 3.11 (Smoothness and absolute continuity of horospherical

laminations). Assume I–VI. There is a full volume subset Ω2 ⊂ Ω1 such that

for ∗ ∈ {s, u} and for v ∈ Ω2, the Busemann function b∗v : M → R is C∞. The

leaves of the lamination W∗ = {W∗(v) : v ∈ Ω2} are C∞ submanifolds of T 1M

diffeomorphic to Rn−1.

Let Λ2 = Dp(Ω2). The family of manifolds

{W∗(v, δ) : v ∈ Λ2, δ < inj(π(v))}

has the following absolute continuity properties :



866 K. BURNS, H. MASUR, and A. WILKINSON

(1) if Z ⊂ T 1N has volume m(Z) = 0, then for m-almost every v ∈ Λ2

and every δ < inj(π(v)), the set Z ∩W∗(v, δ) is a zero set in W∗(v, δ)
(with respect to the induced (n− 1)-dimensional Riemannian volume);

and

(2) if D ⊂ T 1N is any smoothly embedded, n-dimensional open disk and

B ⊂ D has induced Riemannian volume zero in D, then for any δ <
1
2 infv∈D inj(π(v)), we have m(Sat∗(B, δ)) = 0, where

Sat∗(B, δ) :=
⋃

{v∈Λ2 :W∗(v,δ)∩B 6=∅}
W∗(v, δ).

Proof. We first show that Ws(v) is a C∞ submanifold of T 1M for almost

every v ∈ T 1M . For any ε > 0, there exists a compact set ∆ε ⊂ Λ1 of measure

m(∆ε) > 1−ε such that the restriction of the function r from Proposition 3.10

to ∆ε is continuous and bounded from below by a constant rε > 0. Fix ε > 0,

and let ∆s
ε ⊂ ∆ε be the set of vectors v′ ∈ ∆ε such that ϕkn(v′) ∈ ∆ε for a

sequence of integers kn →∞. Poincaré recurrence implies that m(∆ε\∆s
ε) = 0.

Fix v′ ∈ ∆s
ε∩Dp(Ω1). Let v ∈ Dp−1(v′) be an arbitrary lift of v′ to T 1M ,

and let w ∈ Ws(v). We show thatWs(v) is C∞ in a neighborhood of w; as w is

arbitrary, this implies that Ws(v) is C∞. Since v′ = Dp(v) ∈ ∆s
ε, there exists

a sequence kn →∞ such that ϕkn(v′) ∈ ∆ε. At the same time, Proposition 3.6

implies that

lim
t→∞

dSas(ϕt(v), ϕt(w)) = 0,

and so for n sufficiently large, dSas(ϕkn(v), ϕkn(w)) < rε/2, where rε > 0

is the lower bound on the restriction of r to ∆ε. But this implies that

Dp(ϕkn(w)) ∈ Ws
loc(ϕkn(v′)). Since ϕkn is a diffeomorphism, we conclude

that there is a neighborhood of w in Ws(v) that is diffeomorphic to the C∞

submanifold Ws
loc(ϕkn(v′)). Since w was arbitrary, this implies that Ws(v) is

a C∞ submanifold of T 1M . The intersection Λs2 :=
⋂
ε>0 ∆s

ε ∩Dp(Ω1) is a full

volume subset of T 1N , and we have shown that for every v ∈ Ωs
2 := Dp−1(Λs2),

the submanifold Ws(v) is C∞.

For each v ∈ Ωs
2, consider the map ψ from Hsv × R to M that sends (y, t)

to π(ϕt(w
s
v(y))), where wsv(y) = − grad bsv(y). SinceWs(v) is C∞, the function

wsv(y) is C∞ along Hsv; it follows that ψ is a diffeomorphism. In the coordinates

on M given by ψ, the Busemann function bsv assigns the value −t to the point

(x, t). It follows that bsv is C∞ for every v ∈ Ωs
2. Similarly, there is a set Ωu

2 of

full measure such that buv is C∞ for every v ∈ Ωu
2 . Setting Ω2 = Ωu

2 ∩ Ωs
2, we

obtain the full measure set where the conclusions of the proposition will hold.

We establish the absolute continuity properties of Ws; analogous argu-

ments show the properties for Wu. The preceding arguments show that for
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every v ∈ Λ2, there exists an integer k ≥ 0 such that

(3) ϕk(Ws(v, δ)) ⊂ Ws
loc(ϕk(v)) for every δ < inj(π(v)).

For a fixed k ≥ 0, denote by Xk the set of v ∈ Λ2 for which (3) holds. Then

Λ2 =
⋃
k≥0Xk.

Suppose that m(Z) = 0 for some Z ⊂ T 1N . Then the set Ẑ =
⋃
k≥0 ϕk(Z)

also has measure 0. It follows from Proposition 3.10 that for almost every

w ∈ Λ1, the induced Riemannian measure of Ẑ in Ws
loc(w) is zero. But this

implies, in particular, that for every k ≥ 0 and for almost every v ∈ Xk, the

induced Riemannian measure of ϕk(Z) ⊂ Ẑ in ϕk(Ws(v, δ)) ⊂ Ws
loc(ϕk(v)) is

zero; hence the induced volume of Z inWs(v, δ) is 0 for all δ < inj(π(v)). This

establishes (1).

Suppose that D is a C1-embedded, n-dimensional disk in T 1N . Fix δ <
1
2 infv∈D inj(π(v)). Suppose that B ⊂ D has induced Riemannian volume 0.

Let

Bk = B ∩
⋃

w∈Xk

Ws(w, δ)

and note that

Sats(B, δ) =
⋃
k≥0

Sats(Bk, δ);

hence it suffices to show that m(Sats(Bk, δ)) = 0 for all k ≥ 0.

Fix k ≥ 0. For each w ∈ Bk, there is an n-dimensional open ball

Dw ⊂ D centered at w in the induced Riemannian metric in D such that⋃k
j=0 ϕj(Dw) ⊂ T 1N . Since ϕk is a diffeomorphism, the set ϕk(Bk ∩Dw) has

induced Riemannian volume zero in the n-dimensional disk ϕk(Dw). It follows

from Proposition 3.10 that m(Satsloc(ϕk(Bk ∩Dw))) = 0, and so

m (ϕ−k (Satsloc(ϕk(Bk ∩Dw)))) = 0.

But (3) implies that

Sats(Bk ∩Dw, δ) ⊂ ϕ−k (Satsloc(ϕk(Bk ∩Dw))) ,

and so m(Sats(Bk ∩Dw, δ)) = 0. Now fix a countable cover {Dwi : wi ∈ Bk}
of Bk in D by such balls (this is possible by the Besicovitch covering theorem,

since D is an embedded C1 submanifold). Then

Sats(Bk, δ) ⊂
⋃
i

Sats(Bk ∩Dwi , δ),

and so m(Sats(Bk, δ)) = 0. Conclusion (2) follows. �

We remark that Propositions 3.6 and 3.11 show that the horospheresH∗v(0)

are the level sets of regular values of C∞ functions. Consequently they are

complete submanifolds of T 1M . As remarked above, the smooth manifolds

given by Propositon 3.11 may be open and hence have boundary.
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Proof of ergodicity. Assume I–VI. The proof that ϕt is ergodic is an adap-

tation of the standard “Hopf Argument,” along the lines of the proof of local

ergodicity in [17]. To prove ergodicity, it suffices to show that for every con-

tinuous function f : T 1N → R with compact support,

lim
T→∞

1

T

∫ T

0
f(ϕt(v)) dt =

∫
T 1N

f dm for m-a.e. v ∈ T 1N.(4)

Indeed, if (4) holds for a dense set of functions f in L2, then by continuity of

the projection f 7→ B(f) = limT→∞
1
T

∫ T
0 f ◦ ϕt dt, (4) will hold for every f in

L2.

Fix then a continuous function f with compact support, and define mea-

surable functions fs and fu by

fs(v) = lim sup
T→∞

1

T

∫ T

0
f(ϕt(v)) dt and fu(v) = lim sup

T→∞

1

T

∫ 0

−T
f(ϕt(v)) dt.

The Birkhoff Ergodic Theorem implies that there is a set G ⊂ T 1N of full

measure such that for every v ∈ G, we have fs(v) = fu(v) = B(f)(v). Since

f is continuous with compact support, and the leaves of Ws are contracted by

ϕt, it follows that fs is constant along leaves of Ws. Similarly, fu is constant

along leaves of Wu. Finally, all three functions fs, fu, and B(f) are invariant

under the flow ϕt.

Now fix a arbitrary element v ∈ T 1N . We will show that there is a

neighborhood Uv of v on which B(f) is almost everywhere constant. Since

T 1N is connected, this will imply that B(f) is almost everywhere constant on

T 1N . Since
∫
T 1N B(f) dm =

∫
T 1N f dm, it will then follow that (4) holds, and

so ϕ is ergodic.

Let δ=δ(v)= 1
4 min{inj(π(v)), d(v, ∂N)}, and let V be the δ-neighborhood

of v in T 1N . For w ∈ Λ2 ∩ V , consider the set

Nδ(w) = Satu
Ä
ϕ(−δ,δ) (Ws(w, δ)) , δ

ä
.

We claim

(a) for almost every w ∈ Λ2 ∩ V , B(f) is almost everywhere constant on

Nδ(w);

(b) there is a neighborhood Uv ⊂ V of v such that for almost every w ∈ Uv,
the set Nδ(w) ∩ Uv has full measure in Uv.

Together, these statements imply that there is a neighborhood Uv of v on which

B(f) is a.e. constant, completing the proof of ergodicity.

We first establish part (a) of this claim. Let G be the full measure subset

of vectors in Λ2 where the limit (4) exists and fu = fs = B(f). The abso-

lute continuity property (1) of Ws in Proposition 3.11 implies that for almost

every w ∈ V ∩ Λ2, the intersection G ∩Ws(w, δ) has full volume in Ws(w, δ)

(that is, its complement has induced volume 0). Fix such a w. On Ws(w, δ),
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fs takes a constant value fs ≡ a. On the full volume subset G ∩ Ws(w, δ),

fu coincides with fs and therefore also takes the constant value a. Since fu is

ϕt-invariant and ϕt is a C∞ flow, fu takes the constant value a on the full mea-

sure subset G′ := ϕ(−δ,δ) (G ∩Ws(w, δ)) of the n-dimensional C∞ submanifold

D = ϕ(−δ,δ) (Ws(w, δ)).

But fu is constant along Wu manifolds and so takes the constant value

a on Satu(G′, δ). Since Wu satisfies the absolute continuity property (2) in

Proposition 3.11 and G′ has full measure in D, it follows that Satu(G′, δ) has

full measure in Satu(D, δ) = Nδ(w). Hence fu is constant on a full measure

subset of Nδ(w). Since fu = B(f), a.e., it follows that B(f) is almost every-

where constant on Nδ(w), proving part (a).

We next establish part (b) of the claim. Let Cu and Cs be the closed,

continuous conefields spanning ϕ̇⊥ over T 1N that are given by Corollary 2.5.

For ∗ ∈ {u, s}, the absolute continuity property (1) of W∗ implies that for

almost every w ∈ Λ2 ∩ V , the disk W∗(w, δ) is almost everywhere tangent to

E∗, which by Corollary 2.5 is contained in the continuous conefield C∗. Hence

for almost every w, the tangent bundle T (W∗(w, δ)) is everywhere contained in

C∗. The invariance ofWs under ϕt implies that for almost every w ∈ Λ2∩V , the

tangent bundle to the disk D(w) = ϕ(−δ,δ) (Ws(w, δ)) is everywhere contained

in Cs ⊕ E0. The line field E0 = Rϕ̇ is smooth on the whole of T 1N , while

Eu ⊕ Es at any v is the orthogonal complement of E0 everywhere that the

subspaces Eu and Es are defined. By Corollary 2.5, the conefields Cu and Cs
intersect only at 0. It follows that there exists a neighborhood Uv ⊂ V of v

such that for any w,w′ ∈ Λ2 ∩ Uv,

Wu(w′, δ) ∩D(w) 6= ∅;

in other words, for every w ∈ Λ2∩Uv, the set Nδ(w) = Satu(D(w), δ) intersects

Λ2 ∩ Uv in a full measure subset. This completes the proof of part (b) of the

claim and the proof of ergodicity. �

Proof of the Bernoulli property. Recall that a contact form on a 2n + 1-

dimensional manifold is a differential one-form β with the property that β ∧
(dβ)n is nondegenerate. A contact flow is a flow that preserves a contact form.

It is a well-known fact that every geodesic flow ϕt, when restricted to the unit

tangent bundle, is a contact flow; the one-form that assigns the value 1 to ϕ̇

and vanishes on ϕ̇⊥ is contact and is Dϕt-invariant. This follows from the fact

that ϕt preserves the symplectic form on the full tangent bundle and that ϕ̇⊥

is Dϕt-invariant.

Theorem 3.6 of [17] states that any ergodic, nonuniformly hyperbolic con-

tact flow defined on an invariant, positive volume subset of a compact contact

manifold is Bernoulli on that subset. Compactness is a simplifying assumption

in the proof, and the same proof works for a nonuniformly hyperbolic contact
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flow that satisfies the conclusions of Proposition 3.10. Returning to the context

of Theorem 3.1, we have just proven that the geodesic flow is nonuniformly

hyperbolic and ergodic. Since it is contact, it is therefore Bernoulli. �

This completes the proof of the ergodicity/Bernoulli conclusion in Theo-

rem 3.1. In Appendix B, we complete the verification of the hypotheses of [19]

and prove the conclusion that ϕt has finite, positive entropy. �

4. Bounds on the derivative of ϕ1 in the WP metric

In this section we use the notation of Section 1.6, omitting the dependence

on S. For each unit WP tangent vector v ∈ T 1T and t ≥ 0, we denote by

ρt(v) the minimum WP distance from the geodesic segment π(ϕ[−t,t](v)) in T
to the singular locus ∂T . If ϕ[−t,t](v) is not defined on the interval because

the geodesic hits the singular locus in this time interval, then we set ρt(v) = 0.

The main result of this section is

Theorem 4.1. There are constants β > 0, 0 < δ ≤ 1, ρ0 > 0, and C ≥ 1

such that if τ ∈ [0, δ] and v ∈ T 1T satisfies ρt(v) ∈ (0, ρ0), then

‖Dvϕτ‖WP ≤ C(ρτ (v))−β.

Since it will not cause confusion, we omit the subscript “WP” from the

notation for inner product, norm, and distance functions in this section. These

subscripts will return in Section 5, where we need comparisons between the

WP and Teichmüller metric.

4.1. Bounding the derivative of the geodesic flow. Theorem 4.1 is based

on an estimate on the derivative of the geodesic flow that holds in any manifold

with negative curvature. The estimate is not optimal, but will suffice for our

purposes. There are simpler bounds on the derivative of the geodesic flow in

[21] and the appendix of [3], but they are not adequate for us.

Theorem 4.2. Let M be a negatively curved manifold, and for τ ≤ 1, let

γ : [−τ, τ ] → M be a geodesic. Let κ : [−τ, τ ] → R>0 be a Lipschitz function

such that for −τ ≤ t ≤ τ , the sectional curvature of any plane containing γ̇(t)

is greater than −κ(t)2, and let u : [−τ, τ ]→ [0,∞) be the solution of the Riccati

equation

u′ + u2 = κ2

such that u(−τ) = 0. Then

‖Dγ̇(0)φτ‖ ≤ 1 + 2(1 + u(0)2)
(
1 +
»

1 + u(τ)2
)

exp

Å∫ τ

0
u(s)ds

ã
.

This theorem is proved at the end of this subsection. To prove Theorem 4.1

we will apply Theorem 4.2 to the WP geodesic segment γv : [−τ, τ ]→ T with
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a suitable choice of the function κ. In Proposition 4.22 we show, using results

of Wolpert, that there are universal constants Q,L ≥ 1 such that if v and τ

satisfy the hypotheses of Theorem 4.1, then we can chose the positive Lipschitz

function κ of Theorem 4.2 to have the following properties:

(κ1) κ is Q-controlled on [−τ, τ ], by which we mean that κ is differentiable

from the right and there is a constant Q ≥ 1 such that

DRκ ≥
1−Q2

Q
κ2;

(κ2) there is a constant L > 0 such that∫ τ

−τ
κ(t) dt ≤ L| ln(ρτ (v))|;

(κ3) there is a constant P > 0 such that

κ(τ) ≤ P (ρτ (γ̇(0)))−1.

Assuming these estimates, we have

Proof of Theorem 4.1. We first observe that if u is the solution of u′+u2 =

κ2 with κ Lipschitz and Q-controlled and u(−δ) = 0, then u ≤ Qκ on [−δ, δ].
For if u(t) = Qκ(t) for some t, then u′(t) = (1−Q2)κ2(t) ≤ DRQκ(t).

Now Theorem 4.1 follows immediately from Theorem 4.2 and the estimates

(κ2) and (κ3). �

Proof of Theorem 4.2. Let X and Y be the fundamental solutions of the

matrix Jacobi equation

J ′′(t) +R(t)J (t) = 0

such that X ′(−τ) = 0, Y(τ) = 0, and X (0) = Id = Y(0). The matrices

U(t) = X ′(t)X−1(t) and V (t) = Y(t)′Y−1(t) are symmetric since it is obvious

that the condition given in Section 2.3 is satisfied by X at −τ and by Y at

τ . Moreover U(−τ) = 0, and it follows from [11, §1.10] that U(t) is positive

definite for each t ∈ (−τ, τ ].

Lemma 4.3. ‖U(t)‖ ≤ u(t) for each t ∈ [−τ, τ ].

Proof. For each unit vector e ∈ Rdim(M)−1, let ue(t) = 〈U(t)e, e〉. Then

ue(−τ) = 0 and ue > 0 on (−τ, τ ] for each e. Since U is symmetric, ‖U‖ =

supe ue. The matrix Riccati equation, the symmetry of U , the assumption that

−κ2 is a lower bound for the sectional curvatures, and Cauchy-Schwarz give

u′e = 〈U ′e, e〉 = 〈Re, e〉 − 〈U2e, e〉 ≤ κ2 − 〈Ue, Ue〉 ≤ κ2 − 〈Ue, e〉2 = κ2 − u2
e.

It follows that ue ≤ u on [−τ, τ ] for each e. Hence ‖U‖ ≤ u. �
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Lemma 4.4. For any nontrivial orthogonal Jacobi field X such that X ′(−τ)

= 0, we have

‖(X(τ), X ′(τ))‖Sas

‖(X(0), X ′(0))‖Sas
≤
»

1 + ‖U(τ)‖2 exp

Å∫ τ

0
‖U(t)‖ dt

ã
.

Proof. We have ‖X ′‖ ≤ ‖U‖‖X‖ by the definition of U . Hence

‖(X(τ), X ′(τ))‖Sas =
»
X(τ)2 +X ′(τ)2 = ‖X(τ)‖

»
1 + ‖U(τ)‖2.

Since ‖X‖′(t) = 〈X ′(t), X(t)/‖X(t)‖〉 ≤ ‖X ′(t)‖, we have

‖X(τ)‖
‖X(0)‖

≤ exp

Ç∫ τ

0

‖X ′(t)‖
‖X(t)‖

dt

å
≤ exp

Å∫ τ

0
‖U(t)‖ dt

ã
.

Putting these last two inequalities together gives the desired estimate. �

Lemma 4.5. For any orthogonal Jacobi field Y such that Y (τ) = 0, we

have

(5) ‖Y ′(0)‖ ≥ ‖Y (0)‖/τ ≥ ‖Y ′(τ)‖.

Proof. ‖Y ‖ is convex, by Lemma 2.2, and decreases from ‖Y (0)‖ to 0

across the interval [0, τ ]. Hence

−‖Y ‖′(0) ≥ ‖Y (0)‖/τ ≥ − lim
t→τ−

‖Y ‖′(t).

Since ‖Y ‖′ = 〈Y ′, Y/‖Y ‖〉, the Cauchy-Schwarz inequality gives ‖Y ′(0)‖ ≥
−‖Y ‖′(0). Since Y (τ) = 0, we have Y (t) = (t− τ)Y ′(τ) + o(|t− τ |) for t near

τ , whence

lim
t→τ−

‖Y ‖′(t) = − lim
t→τ−

‖Y ′(t)‖ = −‖Y ′(τ)‖. �

Two immediate consequences of this lemma are

(1) All eigenvalues of V (0) are less than or equal to −1, and hence all

eigenvalues of U(0)− V (0) are greater than or equal to 1.

(2) If Y is as in the Lemma, then ‖(Y (τ), Y ′(τ))‖Sas ≤ ‖(Y (0), Y ′(0))‖Sas.

We now consider an arbitrary orthogonal Jacobi field (J, J ′) and in the

next lemma decompose it as

(J, J ′) = (X,X ′) + (Y, Y ′),

where X ′(τ) = 0 and Y (τ) = 0.

Lemma 4.6. The decomposition of the Jacobi field (J, J ′) as (X,X ′) +

(Y, Y ′), as above, satisfies ‖(X(0), X ′(0))‖Sas≤2(1+‖U(0)‖2)‖(J(0), J ′(0))‖Sas.
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Proof. Let v = J(0), v′ = J ′(0) and w = [U(0) − V (0)]−1[v′ − U(0)v].

Then

(v, v′) = (v, U(0)v) + (0, v′ − U(0)v)

= (v, U(0)v) + (w − w, [U(0)− V (0)]w)

= (v + w,U(0)(v + w))− (w, V (0)w).

This is the desired decomposition. Since ‖[U(0)− V (0)]−1‖ ≤ 1 by (1) above,

we obtain

‖(X(0), X ′(0))‖Sas ≤ ‖v + w‖(1 + ‖U(0)‖)1/2

≤ (‖v‖+ ‖v′‖+ ‖U(0)‖‖v‖)(1 + ‖U(0)‖2)1/2

≤
√

2(‖v‖+ ‖v′‖)(1 + ‖U(0)‖2)

≤ 2‖(J(0), J ′(0))‖Sas(1 + ‖U(0)‖2),

as desired. �

Using (2) above, we see that

‖(J(τ), J ′(τ))‖Sas ≤ ‖(X(τ), X ′(τ))‖Sas + ‖(Y (τ), Y ′(τ))‖Sas

≤ ‖(X(τ), X ′(τ))‖Sas + ‖(Y (0), Y ′(0))‖Sas

≤ ‖(X(τ), X ′(τ))‖Sas

+ ‖(J(0), J ′(0))‖Sas + ‖(X(0), X ′(0))‖Sas.

The theorem now follows from Lemmas 4.3, 4.6, and 4.4. �

The remainder of this section is devoted to work leading up to the proof

of Proposition 4.22, whose proof will conclude that of Theorem 4.1. We be-

gin with the next two subsections which summarize work of Wolpert in an

important constellation of papers [43], [41], [37], [42].

4.2. Combined length bases. Wolpert’s precise estimates for the WP met-

ric are stated in terms of a local system of vector fields on T that are especially

adapted to the pinched curves in nearby strata. To define this system of vector

fields in a neighborhood in T of a stratum Tσ, where σ ∈ C, one first chooses

carefully a complementary collection of curves χ (disjoint from the curves in σ,

but not necessarily from each other) so that the length functions `β for β ∈ χ
give local coordinates on Tσ. The pair (σ, χ) is called a combined length basis.

Having found a combined length basis (σ, χ), the vector fields in the neighbor-

hood of Tσ are defined using the almost complex structure J and the length

functions `α and `β for α ∈ σ and β ∈ χ. For the purposes of our arguments, it

is important that these choices be made uniformly. Here we describe Wolpert’s

construction of combined length basis and explain how they can be chosen in

a uniform manner by using the compactness of M.
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If χ is an arbitrary finite collection of vertices in C and X ∈ T , we define

`χ(X) = min
β∈χ

`β(X) and `χ(X) = max
β∈χ

`β(X).

For X ∈ T , we continue to denote by `(X) the systole of X, which is the length

of the shortest closed hyperbolic geodesic in X. Let B be the set of pairs (σ, χ),

where σ ∈ C and χ is a collection of simple closed curves in S such that each

β ∈ χ is disjoint from every α ∈ σ. (We allow for the possibility that χ = ∅.)
For each simple closed curve α in S, the root length function

`1/2α : T → R>0

plays an important role in various asymptotic expansions of the WP metric.

Wolpert proved that the functions `α and `
1/2
α are convex along WP geodesics

in T (see Corollary 3.4 and Example 3.5 of [42] and Corollary 8.2 of [38]). In

[36] Wolf gave another proof of the convexity of `α. The WP gradient of `
1/2
α

defines a vector field

λα = grad `1/2α .

Following Wolpert, we say that (σ, χ) ∈ B is a combined (short and relative)

length basis at X ∈ T if the collection

{λα(X), Jλα(X), grad `β(X)}α∈σ,β∈χ
is a basis for TXT .

For each η > 0, let

U(η) = {X ∈ T | `(X) < η},

which is a deleted open neighborhood of ∂T in T .

Proposition 4.7. There exist constants c > 1, η, δ > 0 and a countable

collection U of open sets in T with the following properties :

(1) For each U ∈ U , there exists a combined length basis (σ, χ) ∈ B such

that for every X ∈ U ,

1/c < `χ(X) ≤ `χ(X) < c.

(2) For each X ∈ U(η), there exists U ∈ U such that for any Y ∈ T ,

d(X,Y ) < δ =⇒ Y ∈ U.

In particular, the sets in U cover U(η).

Before proving this proposition, we discuss further the properties of the

WP metric in a neighborhood of the boundary strata of T . Let σ ∈ C be a

simplex, and consider a marked noded Riemann surface f : S → Xσ represent-

ing an element of the boundary stratum Tσ. Recall that the hyperbolic surface

X̂σ is obtained from Xσ by deleting its nodes. If β is a simple closed curve in

S that is disjoint from the curves in σ, then f∗[β] is uniquely represented as a
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closed geodesic on X̂σ. In this way, the definition of `β extends continuously

to the boundary stratum Tσ; for such β, we define `β([f : S → Xσ]) to be the

hyperbolic length of the geodesic representative of f∗[β] on X̂σ. For Xσ ∈ Tσ,

we can also define a relative systole `(Xσ) to be the infimum of `β(X̂σ), taken

over all curves β disjoint from the curves in σ.

Recall that the boundary stratum Tσ is isomorphic to a product of Te-

ichmüller spaces. In particular, Tσ itself carries a WP metric, which is the

product of the WP metrics on the Teichmüller spaces of the pieces of Xσ for

any Xσ ∈ Tσ. We say that χ is a relative length basis at Xσ if (σ, χ) ∈ B and

the functions {`β}β∈χ give local coordinates for Tσ at Xσ. Equivalently, χ is a

relative length basis at Xσ if the vectors {grad `β(Xσ)}β∈χ in the induced WP

metric on Tσ span the tangent space TXσTσ. The following proposition is well

known; see, for example, Section 4 of [42].

Proposition 4.8 (Existence of relative length bases). For each σ ∈ C
and each marked noded Riemann surface Xσ ∈ Tσ , there exists (σ, χ) ∈ B such

that χ is a relative length basis at Xσ .

We remark that, unlike Fenchel-Nielsen coordinates, the local coordinates

{`β}β∈χ never extend to a global coordinate system on Tσ. The reason is that

there are points in Tσ where the geodesic representatives of the curves in χ

cross each other orthogonally. At these points, the coordinate system hits a

singularity. Proposition 4.8 ensures, however, that if one works locally, these

issues can be ignored. Wolpert proves

Theorem 4.9 ([42, Cor. 4.5]). The WP metric is comparable to a sum of

differentials of geodesic-length functions for a simplex σ of short geodesics and

corresponding relative length basis χ as follows :

〈 , 〉 �
∑
α∈σ

(d`1/2α )2 + (d`1/2α ◦ J)2 +
∑
β∈χ

(d`β)2,

where, given Xσ ∈ Tσ and χ, there is a neighborhood U of Xσ in T in which

the comparison holds uniformly.

This has the immediate corollary

Corollary 4.10. If χ is a relative length basis at Xσ ∈ Tσ , then there

is a neighborhood V of Xσ in T such that for every X ∈ V ∩ T , (σ, χ) is a

combined length basis at X .

Proof of Proposition 4.7. Let P : T → M be the quotient map from T
to the Deligne-Mumford compactificationM under the action of the mapping

class group MCG. Note that P (U(η)) is a deleted open neighborhood of ∂M in

M. Since the action of the mapping class group on C has finitely many orbits,
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we can choose a finite number of simplices σ1, . . . , σk ∈ C such that ∂T is the

union of the translates by the mapping class group of the sets Tσ1 , . . . , Tσk .

For each X ∈ Tσi , we can choose a simplex χ such that (τ, χ) ∈ B and

(τ, χ) gives a combined length basis at each point of some neighborhood U(X)

of X; this is Corollary 3.5. The neighborhood can be chosen small enough so

that there is a constant c(X) > 1 such that

1/c(X) < `χ(Y ) ≤ `χ(Y ) < c(X)

for all Y ∈ U(X). SinceM is compact, we can choose a finite number of points

X1, . . . , XN such that the sets PU(Xi) coverM. The set U in the statement of

Proposition 3.2 can be chosen to be the collection of all translates by elements

of the mapping class group of the sets U(Xi). The desired constant c is the

maximum of the constants c(Xi). Part (2) is obvious from the way in which U
was chosen. We started with a finite cover of a compact set and then translated

them by the mapping class group. �

4.3. First and second order properties of the WP metric. For each c > 1

and (σ, χ) ∈ B, let

Ω(σ, χ, c) = {X ∈ T | `σ∪χ(X) < c, and 1/c < `χ(X) }.

Wolpert proved key estimates on the WP metric in Ω(σ, χ, c), which we sum-

marize in the following three propositions.

The first set of estimates expands upon and refines the statement in The-

orem 4.9.

Proposition 4.11 (First order estimates). [43] Fix c > 1. For any

(σ, χ) ∈ B, the following estimates hold uniformly on Ω(σ, χ, c):

(1) If α, α′ ∈ σ, then

〈Jλα, Jλα′〉 = 〈λα, λα′〉 =
1

2π
δα,α′ +O((`α`α′)

3/2).

(2) If α, α′ ∈ σ and β ∈ χ, then

〈λα, Jλα′〉 = 〈Jλα, grad `β〉 = 0.

(3) If β, β′ ∈ χ, then

〈grad `β, grad `β′〉 � 1.

Moreover, 〈grad `β, grad `β′〉 extends continuously to Tσ .

(4) If α ∈ σ and β ∈ χ, then

〈λα, grad `β〉 = O(`3/2α ).
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(5) If X ∈ Ω(σ, χ, c), then

d(X, Tσ) =

(
2π
∑
α∈σ

`α(X)

)1/2

+O

(∑
α∈σ

`5/2α (X)

)
.

The second set of Wolpert’s estimates are formulas for covariant deriva-

tives, which are described in the next proposition. In each formula in the next

proposition, the error term is a vector, and the expression v = O(a) means

that the WP length of v is O(a).

Proposition 4.12 (Second order estimates). [43] Fix c > 1. For any

(σ, χ) ∈ B, the following estimates hold uniformly on Ω(σ, χ, c):

(1) for any vector v ∈ TΩ(σ, χ, c), and α ∈ σ, we have

∇vλα =
3

2π`
1/2
α

〈v, Jλα〉Jλα +O(`3/2α ‖v‖WP);

(2) for β ∈ χ and α ∈ σ, we have

∇λα grad `β = O(`1/2α ), ∇Jλα grad `β = O(`1/2α );

(3) for β, β′ ∈ χ, ∇grad `β grad `β′ extends continuously to Tσ .

The final set of Wolpert’s estimates we use involve the WP curvature

tensor.

Proposition 4.13 (Bounds on curvature). [43] Fix c > 1. For any

(σ, χ) ∈ B, the following estimates hold uniformly on Ω(σ, χ, c). For all α ∈ σ,

we have

(6) 〈R(λα, Jλα)Jλα, λα〉 =
3

16π2`α
+O(`α).

Moreover for any quadruple (v1, v2, v3, v4) ∈ {λα, Jλα, grad `β}4α∈σ,β∈χ that is

not a curvature-preserving permutation of (λα, Jλα, Jλα, λα) for some α ∈ σ,

we have

(7) 〈R(v1, v2)v3, v4〉 = O(1).2

4.4. Curvature estimates along a geodesic. Fix a unit speed WP geodesic

γ : I → T in Teichmüller space. For each simple closed curve α, we define

functions fα = fα,γ : I → R>0 and rα = rα,γ : I → R>0 by

fα(t) = `1/2α (γ(t)), and r2
α(t) = 〈λα, γ̇(t)〉2 + 〈Jλα, γ̇(t)〉2.

2Wolpert actually proves more: each vector vi appearing in this expression that is of the

form λα or Jλα introduces a multiplicative bound o(`α) in the curvature tensor. This means

that there are sectional curvatures that are arbitrarily close to 0.
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Roughly, rα measures the speed of the geodesic γ in the complex line field

spanned by {λα, Jλα}. Wolpert used the function rα to study the behavior of

geodesics terminating in the boundary strata of T . We will use rα and fα to

bound sectional curvatures along γ. In the next few lemmas we summarize the

key properties of rα and fα that will be used in the sequel.

The first property is an immediate consequence of part (5) of Proposi-

tion 4.11 and explains the significance of the quantity fα.

Lemma 4.14. Fix c > 1. For every (σ, χ) ∈ B and any γ, if γ(t) ∈
Ω(σ, χ, c), then

d(γ(t), Tσ) =

(
2π
∑
α∈σ

f2
α(t)

)1/2

+O

(∑
α∈σ

f5
α(t)

)
.

The next two lemmas will allow us to bound the variations of rα and fα
along a geodesic. As was pointed out to us by Scott Wolpert, the next lemma

can be seen as the WP analogue of the first Clairaut equation for the model

surface of revolution for y = x3 discussed in the introduction (see [37]).

Lemma 4.15. Fix c > 1. For every (σ, χ) ∈ B and any γ, if γ(t) ∈
Ω(σ, χ, c), then

r′α(t) = O(f3
α(t))

for every α ∈ σ.

Proof. Since the WP metric is Kähler, the almost complex structure J is

parallel, and so we have

2rα(t)r′α(t) = 2〈λα, γ̇(t)〉
≠
D

∂t
λα, γ̇(t)

∑
+ 2〈Jλα, γ̇(t)〉

≠
J
D

∂t
λα, γ̇(t)

∑
.

By part (1) of Proposition 4.12, we have

D

∂t
λα=〈γ̇, Jλα〉

3

2πfα
Jλα+O(f3

α) and J
D

∂t
λα=−〈γ̇, Jλα〉

3

2πfα
λα+O(f3

α).

Plugging this into the formula for 2rα(t)r′α(t) and noting that

max{|〈λα, γ̇〉|, |〈Jλα, γ̇〉|} < rα,

we get

2rα(t)r′α(t) =
3

πfα
〈λα, γ̇〉〈γ̇, Jλα〉2−

3

πfα
〈λα, γ̇〉〈γ̇, Jλα〉2+O(rαf

3
α) = O(rαf

3
α).

�

Lemma 4.16. Fix c > 1. For every (σ, χ) ∈ B and any γ, if γ(t) ∈
Ω(σ, χ, c), then

r2
α(t) = (f ′α(t))2 +

2π

3
fα(t)f ′′α(t) +O(f4

α(t))

for every α ∈ σ.
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Proof. Since λα = grad `
1/2
α , it follows that

f ′α = 〈λα, γ̇〉.

Differentiating this expression, using part (1) of Proposition 4.12 we obtain

f ′′α =
d

dt
〈λα, γ̇〉 = 〈∇γ̇λα, γ̇〉 =

3

2πfα(t)
〈γ̇, Jλα〉2 +O(f3

α).

Now multiply this last expression by 2π
3 fα and add it to the above expression

for f ′2α . The result then follows from the definition of r2
α. �

Let

k
2
(t) = sup

v∈T 1
γ(t)
T
−〈R(v, γ̇(t))γ̇(t), v〉.

We next bound k
2

in terms of rα and fα.

Lemma 4.17. Fix c > 1. For any (σ, χ) ∈ B and any unit speed geodesic

γ, if (σ, χ) is a combined length basis in U ⊂ Ω(σ, χ, c) and γ(t) ∈ U , then

k
2
(t) =

∑
α∈σ

O

Ç
r2
α(t)

f2
α(t)

å
.

Proof. Since (σ, χ) is a combined length basis, we can write v∈T 1Ω(σ, χ, c)

and γ̇ as

v =
∑
α∈σ

(aαλα + bαJλα) +
∑
β∈χ

cβ grad `β

and

γ̇ =
∑
α∈σ

(Aαλα +BαJλα) +
∑
β∈χ

Cβ grad `β.

Now v and γ̇ are unit vectors. The above estimates on the metric say that all

coefficients aα, bα, cβ, Aα, Bα, Cβ are O(1). Moreover, by these same estimates

and the definition of rα, we have

r2
α =

1

4π2
(A2

α +B2
α) +O(f3

α).

It now follows from Proposition 4.13 that

−〈R(v, γ̇)γ̇, v〉 = −
∑
α∈σ

(a2
αBα

2 +Aα
2b2α)〈R(λα, Jλα)Jλα, λα〉+O(1)

=
∑
α∈σ

O

Ç
r2
α

f2
α

å
+O(1). �
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4.5. Estimates on rα/fα. We now estimate rα/fα. In vew of the previous

lemma, this will give us control over k
2
.

Proposition 4.18. Fix c > 1. There is a constant A = A(c) > 0 such

that for any (σ, χ) ∈ B, for any unit speed WP segment γ : [−δ, δ]→ Ω(σ, χ, c),

with 0 ≤ δ ≤ 1, and any α ∈ σ, we have

rα(t)

fα(t)
≤ Amax

Ç
1,

rα(t0)

rα(t0)|t− t0|+ fα(t0)

å
for 0 ≤ t ≤ δ,

where t0 is the unique time in [0, δ] such that fα(t) ≥ fα(t0) for 0 ≤ t ≤ δ.

Proof of Proposition 4.18. The time t0 is uniquely defined since fα(t) is a

convex function of t. It will suffice to prove the proposition under the additional

assumption that fα(t) is increasing for t ≥ 0. If t0 = 0, we apply this restricted

form of the proposition directly to the geodesic γ; if t0 = δ, we apply it to the

geodesic t 7→ γ(δ − t); and if 0 < t0 < δ, we consider both of the geodesics

t 7→ γ(t− t0) and t 7→ γ(t0 − t).
We choose C ≥ 1 large enough so that

(C1) the O(f4
α) term in the equation r2

α = (f ′α)2 + 2π
3 fαf

′′
α +O(f4

α) given by

Lemma 4.16 is at most Cf4
α;

(C2) rα
C ≤

1
2 ;

(C3) |r′α| ≤ Cf3
α (which is possible by Lemma 4.15).

Conditions (C1) and (C2) give a lower bound on f ′′α when rα/fα ≥ C and

|f ′α| is small.

Lemma 4.19. If rα
fα
≥ C and |f ′α| ≤ rα

2 , then f ′′α ≥ 3
4π

r2α
fα

.

Proof. By (C1) and (C2),

r2
α = (f ′α)2 +

2π

3
fαf

′′
α +O(f4

α) ≤ r2
α

4
+

2π

3
fαf

′′
α +

r2
α

4C
≤ r2

α

2
+

2π

3
fαf

′′
α. �

We continue with the proof of Proposition 4.18. Recall that we are as-

suming t0 = 0. We have that fα(t) is increasing for t ≥ 0. We shall show

that
rα(t)

fα(t)
≤ max

Ç
4C,

32πrα(0)

fα(0) + trα(0)

å
for 0 ≤ t ≤ δ.

If rα(t)
fα(t) ≤ 4C for 0 ≤ t ≤ δ, we are done. Otherwise, let

b = sup

®
t ∈ [0, δ] :

rα(t)

fα(t)
≥ 4C

´
.

Since rα(t)
fα(t) ≤ 4C for b ≤ t ≤ δ, it will suffice to show that

(8)
rα(t)

fα(t)
≤ 32πrα(0)

fα(0) + trα(0)
for 0 ≤ t ≤ b.
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The following lemma is based on the existence of the value b defined above.

We show that the function rα is approximately constant and rα/fα is large on

the interval [0, b].

Lemma 4.20. For 0 ≤ t ≤ b, we have

(i) rα(0)
2 ≤ rα(t) ≤ 2rα(0),

(ii) rα(t)
fα(t) ≥ C .

Proof. By (C3), |r′α| ≤ Cf3
α on the interval [0, b]. Since b ≤ δ ≤ 1 and

fα is increasing on [0, b], we have |rα(b) − rα(t)| ≤ Cf3
α(b) for 0 ≤ t ≤ b. The

definition of b and (C2) ensure that fα(b) ≤ rα(b)
2C ≤ 1

4 . Hence

|rα(b)− rα(t)|
rα(b)

≤ Cf3
α(b)

2Cfα(b)
=

1

2
f2
α(b) ≤ 1

32
.

Thus 31
32 ≤

rα(t)
rα(b) ≤

33
32 for 0 ≤ t ≤ b, and (i) follows easily. Claim (ii) follows

from (i) since rα(b)/fα(b) ≥ 2C and fα is increasing on [0, b]. �

Using this lemma, we see that inequality (8) will follow if we prove

(9) 16πfα(t) ≥ fα(0) + trα(0) for 0 ≤ t ≤ b.

Lemma 4.20(i) ensures that rα(0) > 0, so we can set a = fα(0)
rα(0) . Now for

0 ≤ t ≤ min(a, b), we have

fα(0) + trα(0) ≤ fα(0) + arα(0) = 2fα(0) ≤ 2fα(t)

since fα is increasing on [0, δ]. This gives (9) for 0 ≤ t ≤ min(a, b).

We are done if a ≥ b. It remains to show that if a ≤ b, then inequality (9)

also holds for a ≤ t ≤ b. Since fα is convex and (9) already holds for t = a, it

will suffice to show that if a ≤ b, then

(10) 16πf ′α(a) ≥ rα(0).

We may assume that 4f ′α(a) ≤ rα(0), since otherwise there is nothing to

prove. Then f ′α(t) ≤ f ′α(a) ≤ rα(0)/4 for 0 ≤ t ≤ a, because fα is convex and

increasing on [0, a]. Since a ≤ b, we can now apply Lemma 4.20(ii) to see that

on [0, a], we have

f ′α(t) ≤ rα(0)/4 ≤ rα(t)/2 and
rα(t)

fα(t)
≥ C.

Thus both hypotheses of Lemma 4.19 are satisfied on [0, a]. Lemmas 4.19

and 4.20 give us

f ′′α(t) ≥ 3

4π

r2
α(t)

fα(t)
≥ 3

16π

r2
α(0)

fα(t)
>

1

8π

r2
α(0)

fα(t)
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for 0 ≤ t ≤ a. Since f ′α ≤ rα(0)/4 on [0, a], we have

fα(a) ≤ fα(0) + arα(0)/4 = fα(0) + fα(0)/4 < 2fα(0),

and hence

f ′′α(t) ≥ 1

16π

r2
α(0)

fα(0)

for 0 ≤ t ≤ a. Finally, since fα is increasing on [0, a], we have f ′α(0) ≥ 0 and

f ′α(a) ≥ a

16π

r2
α(0)

fα(0)
=
rα(0)

16π
,

which is the desired inequality (10). �

Combining Lemma 4.17 and Proposition 4.18, we obtain the immediate

corollary

Corollary 4.21. Fix c > 1. There is a constant B = B(c) > 0 such

that for any (σ, χ) ∈ B, if (σ, χ) is a combined length basis in an open set

U ⊂ Ω(σ, χ, c) and γ : [−δ, δ]→ U is a unit-speed WP geodesic segment, then

k(t) ≤ Bmax
α∈σ

Ç
1,

rα(tα)

rα(tα)|t− tα|+ fα(tα)

å
for 0 ≤ t ≤ δ,

where tα is the unique time in [−δ, δ] such that fα(t) ≥ fα(tα) for −δ ≤ t ≤ δ.

4.6. Controlled bounds on the curvature. In this subsection we show that

it is possible to choose an upper bound κ for k with the properties (κ1), (κ2),

and (κ3) used in the proof of Theorem 4.1. This will complete the proof of

Theorem 4.1.

We begin with some simple properties of controlled functions. If κ is

Q-controlled, then it is Q′-controlled for all Q′ > Q. If κ is Q-controlled, then

so is t 7→ κ(t − t0) for any t0, and for any A > 0, the function Aκ is Q−1
A +

1-controlled. The maximum of two Q-controlled functions is Q-controlled.

Moreover κ is 1-controlled if κ ≡ 1 and 2-controlled if κ(t) = 1
|t|+a , where

a > 0.

Proposition 4.22. There exist constants P,Q,L ≥ 2 and δ ∈ (0, 1)

such that for any positive δ′ < δ and any geodesic segment γ : (−δ′, δ′) → T ,

there exists a Q-controlled function κ : (−δ′, δ′) → R>0 such that for every

t ∈ (−δ′, δ′),

(1) k
2
(t) ≤ κ2(t), where k

2
(t) = supv∈T 1

γ(t)
T −〈R(v, γ̇(t))γ̇(t), v〉;

(2)
∫ δ′
−δ′ κ(s) ds ≤ L| ln(ρδ′(γ̇(0)))|; and

(3) κ(δ′) ≤ P (ρδ′(γ̇(0)))−1, where ρδ′(γ̇(0)) is the distance from the geo-

desic segment γ[−δ′, δ′] to ∂T .
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Proof. Let c, η and δ be the constants and let U be the collection of open

sets in T given by Proposition 4.7. We write

T = U(η) tΘ.

The set Θ = T \ U(η) lies in the thick part of Teichmüller space in which the

WP sectional curvatures are negative and bounded below by a constant −b2.

By shrinking the value of δ if necessary, we may assume that for every X ∈ Θ

and Y ∈ T , if d(X,Y ) < δ, then

sup
v,w∈T 1

Y T
−〈R(v, w)w, v〉 < b2.

Let B = B(c) > 0 be the constant given by Corollary 4.21.

Fix δ′ < δ. It follows from Proposition 4.7 that if γ : (−δ′, δ′) → T is a

unit-speed WP geodesic, then either γ(0) ∈ Θ, or

γ(−δ′, δ′) ⊂ U

for some U ∈ U .

If γ(0) ∈ Θ, then we define κ to be the constant function b. Then by

construction we have k
2 ≤ κ2. Since the WP distance from any point in T to

∂T is bounded above by a uniform constant, it also follows that in this case∫ δ′

−δ′
κ(s) ds = 2bδ′ = O(| ln(ρδ′(γ̇(0)))|)

and

κ(δ′) = O(ρδ′(γ̇(0)))−1.

Suppose on the other hand that γ(δ′, δ′) ⊂ U for some U ∈ U . Let (σ, χ)

be the combined length basis in U given by Proposition 4.7 satisfying

1/c < `χ(X) ≤ `χ(X) < c

for every X ∈ U . For α ∈ σ, define κα : (−δ′, δ′)→ R>0 by

κα(t) =
rα(tα)

rα(tα)|t− tα|+ fα(tα)
,

where tα is the unique time in [−δ′, δ′] such that fα(t) ≥ fα(tα) for t ∈ [−δ′, δ′].
Observe that κα is a 2-controlled function and attains its maximum value of
rα(tα)
fα(tα) at t = tα.

Applying Corollary 4.21, we obtain that for all t ∈ (−δ′, δ′),

k(t) ≤ Bmax
α∈σ
{1, κα}.

We define κ : (−δ′, δ′)→ R>0 by

κ = Bmax
α∈σ
{1, κα}.
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Since κα is 2-controlled, for each α, it follows that κ is 1
B + 1-controlled. By

its construction κ satisfies the inequality k
2
< κ2 on (−δ′, δ′).

It remains to estimate the integral of κ over the interval (−δ′, δ′). Simple

integration shows that∫ δ′

−δ′
κα(s) ds=O(max{δ′, |ln(fα(tα))|)})

since rα(tα) = O(1).

Note that fα(tα) is the minimum value of the function `
1/2
α along the

geodesic segment γ[−δ, δ]. Lemma 4.14 implies that there exists a constant

r > 0 such that fα(tα) ≥ rρδ′(γ̇(0)). This implies that∫ δ′

−δ′
κ(s) ds≤Bmax

α∈σ
{2δ′,

∫ δ′

−δ′
κα(s) ds} = O(| ln(ρδ′(γ̇(0)))|).

Similarly,

κ(δ′) ≤ Bmax
α∈σ
{1, rα(tα)

fα(tα)
} = O(ρδ′(γ̇(0)))−1. �

5. Higher order control of the WP metric

In this section, we show how to control higher order derivatives of the WP

metric. This will verify assumption IV in Theorem 3.1. The main result in

this section is

Proposition 5.1. There exist C, β1 > 0 such that for any X0 ∈ T , the

WP curvature tensor RWP satisfies

max{‖(∇RWP)X0‖, ‖(∇2RWP)X0‖} ≤ Cρ
−β1
0 ,

where ρ0 = ρ0(X0) is the distance from X0 to the singular locus ∂T .

We remark that similar bounds on higher derivatives of the WP curvature

tensor can also be obtained using the methods in this section.

5.1. Estimates on the WP metric in special coordinates. Following [24],

we introduce coordinates on Teich(S) in which we can bound the derivatives of

the WP metric. In this subsection we denote by N the complex dimension of

Teich(S). Let ∆N denote the Euclidean unit polydisk in CN . We will denote

by z = (z1, . . . , zN ) an element of ∆N , where zk is a complex coordinate, and

by xk = Re(zk), yk = Im(zk) the real coordinates. Let ei be the vector field

∂/∂xi for 1 ≤ i ≤ N and ∂/∂yi−N for N + 1 < i ≤ 2N . The main content of

this subsection is the proof of the following proposition.

Proposition 5.2. There exists C ≥ 1 such that for any X0 ∈ Teich(S),

there is a holomorphic embedding ψ = ψX0 : ∆N → Teich(S) with the following

properties :
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(1) ψ(0) = X0.

(2) Setting Gij(z) = (ψ∗gWP)z(ei, ej) for z ∈ ∆N , we have

(a) ‖G−1(z)‖ ≤ C`(X0)−2; and

(b) for any i, j ∈ {1, . . . , 2N} and any k ≥ 0,

sup
(ξ1,...,ξk)∈{x1,...,xN ,y1,...,yN}k

∣∣∣∣∣ ∂kGi,j
∂ξ1 · · · ∂ξk

(z)

∣∣∣∣∣ ≤ Ck! .

We will use Proposition 5.2 to bound the covariant derivatives of the WP

curvature in terms of the the distance to the singular strata.

Proof. The Teichmüller cometric on the cotangent bundle T ∗Teich(S) is

the Finsler metric that is given on each cotangent space T ∗XTeich(S) by the L1

norm on Q(X):

‖φ‖T = ‖φ‖1 =

∫
X
|φ|.

The Teichmüller norm on TTeich(S) is then induced by the standard pairing

(1) between quadratic and Beltrami differentials.

The following lemma is proved in [24] and follows from Nehari’s bound

and the fact that the Teichmüller and Kobayashi metrics agree on the image

of the Bers embedding.

Lemma 5.3 (cf. [24, Th. 2.2 and Proof of Th. 8.2]). There exists C0≥1 such

that for any X0 ∈ Teich(S), there is a holomorphic embedding ψ = ψX0 : ∆N →
Teich(S), sending 0 ∈ ∆N to X0 and such that for every v ∈ T∆N , we have

1

C0
‖v‖ ≤ ‖Dψ(v)‖T ≤ C0‖v‖,

where ‖ · ‖ is the Euclidean norm on ∆N and ‖ · ‖T is the Teichmüller Finsler

norm on Teich(S).

Fix a point X0 ∈ Teich(S), and let ψ = ψX0 be the holomorphic embed-

ding given by this lemma. This is a holomorphic embedding satisfying part (1)

of Proposition 5.2. Since the metric gWP on Teich(S) is Kähler with respect

to the 2-form ωWP and ψ is holomorphic, it follows that the pullback metric

ψ∗gWP on ∆N is Kähler with respect to the pullback form ψ∗ωWP and the

standard almost complex structure on ∆N .

To establish Part (2) of Proposition 5.2, we need a comparison between

the Teichmüller and WP metrics. For a given Riemann surface X, recall that

`(X) denotes the length of the shortest simple closed curve in the hyperbolic

metric.

Lemma 5.4. There exists C > 0 such that for any X ∈ Teich(S) and any

tangent vector [µ] ∈ TXTeich(S), we have

‖µ‖WP ≥ C`(X)‖µ‖T .
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A more refined analysis can improve the exponent of `(X) in Lemma 5.4

to 1/2, but that will not be needed. We are grateful to Scott Wolpert for

suggesting the proof given here.

Proof of Lemma 5.4. We establish the dual statement of Lemma 5.4 in

the Teichmüller and WP cometrics: there exists C > 0 such that for any

φ ∈ Q(X),
‖φ‖WP ≤ C`(X)−1‖φ‖T .

To this end, write X = H2/Γ, normalized so that the covering transformation

corresponding to the shortest curve is the transformation T (z) = λz. Then

log λ = `(X). Fix a Dirichlet fundamental domain D for the action of Γ

centered at the point i. For ` sufficiently small, by the collar lemma, the union

of `(X)−1 copies of D contains a ball B of fixed radius centered at any point

z of D. Then for any φ ∈ Q(X), the Cauchy integral formula gives that

|φ(z)| = O

Å∫
B
|φ|
ã

= O(`(X)−1‖φ‖T ),

with the last estimate following from the fact that B is covered by at most

`(X)−1 copies of D.

On the other hand, we can bound the L2 norm by the L∞ norm as follows.

Since the hyperbolic metric ρ is bounded away from 0, the above bound for

|φ(z)| on D gives

‖φ‖2WP =

∫
X

|φ|2

ρ2
= O(`(X)−2‖φ‖2T ). �

Part (2a) of the proposition now follows immediately from Lemma 5.4.

The proof of part (2b) uses, in a crucial way, results of McMullen in [24].

Using the embedding ψ, we define an embedding Ψ: ∆N ×∆N → QF (S) by

Ψ(z, w) = (ψ(z), ψ(w)).

Since ψ is holomorphic and X 7→ X is antiholomorphic, the map Ψ is holo-

morphic. Note that the image of the antidiagonal {(z, z) : z ∈ ∆N} under Ψ

lies in the Fuchsian locus F (S) ⊂ QF (S). Denote by α : ∆N → ∆N ×∆N the

antidiagonal embedding α(z) = (z, z) and by α̂ : Teich(S)→ QF (S) the antidi-

agonal embedding α̂(X) = (X,X). Then we have the following commutative

diagram:

∆N ×∆N

Ψ

''

∆N

α

88

ψ

&&

QF (S)

Teich(S).

α̂
77
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Note that the maps α and α̂ are not holomorphic, although their deriva-

tives are bounded in the Euclidean and Teichmüller metrics, respectively.

Since Teich(S) and QF (S) are complex manifolds, so are their cotangent

bundles T ∗Teich(S) and T ∗QF (S), and T ∗QF (S) = T ∗Teich(S)⊕T ∗Teich(S).

Fixing Z ∈ Teich(S), we define a map τ : QF (S)→ T ∗Teich(S) by

τ(X,Y ) = σQF (X,Y )− σQF (X,Z).

Since T ∗Teich(S) embeds as the first factor in T ∗QF (S), we may regard τ as

a 1-form on QF (S), which by Theorem 1.1 in the introduction is holomorphic

and bounded in the Teichmüller Finsler norm on Teich(S). Furthermore, the

1-form θ = −α̂∗τ on Teich(S) is a primitive for the WP Kähler form

d(iθ) = ωWP.

Pulling the holomorphic 1-form τ back to ∆N×∆N , we thus obtain a holomor-

phic 1-form κ = Ψ∗τ . Then κ is bounded in the Euclidean metric on ∆N ×∆N

since τ is bounded in the Teichmüller metric, and the Euclidean metric is

comparable to the Ψ-pullback of the Teichmüller metric, by Lemma 5.3. This

bound is independent of X0. Moreover, the commutativity of the diagram

above implies

Lemma 5.5. The holomorphic 2-form Ω = d(i κ) on ∆N × ∆N satisfies

α∗Ω = ψ∗ωWP, which is the Kähler 2-form for the pullback metric ψ∗gWP. The

holomorphic 2-form Ω = d(i κ) on ∆N ×∆N satisfies α∗Ω = ψ∗ωWP, which is

the Kähler 2-form for the pullback metric ψ∗gWP.

We now finish the proof of Proposition 5.2. In complex coordinates

(z1, . . . , zN , w1, . . . , wN ) on ∆N ×∆N one can write

κ =
N∑
i=1

aidzi,

where ai : ∆N ×∆N → C are bounded holomorphic functions. Now

Ω = d(i κ) =
N∑

j,k=1

i
∂aj
∂zk

dzk ∧ dzj + i
∂aj
∂wk

dwk ∧ dzj ,

and so

α∗Ω =
N∑

j,k=1

i
∂aj
∂zk

dzk ∧ dzj + i
∂aj
∂zk

dzk ∧ dzj .

The Euclidean coefficients of the Kähler metric ψ∗gWP are hence linear com-

binations, with bounded coefficients, of ∂aj/∂zk and ∂aj/∂zk, which in turn

are pullbacks of the complex partial derivatives ∂aj/∂zk and ∂aj/∂wk. Since

the aj are bounded holomorphic functions, Cauchy’s Theorem implies that
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the derivatives ∂aj/∂zk and ∂aj/∂wk are bounded for ‖(z, w)‖ < 1/2. It fol-

lows that the (real) partial derivatives of ai are bounded for ‖z‖ < 1/2. The

same applies to all higher order partial derivatives (where the bound for the

kth order derivatives incorporates a factor of k!). By rescaling the map ψ by

a dilation, we may assume that these estimates hold for all z ∈ ∆N . This

completes the proof of (2). �

5.2. Proof of Proposition 5.1. Fix X0 ∈ Teich(S) and local coordinates

ψ = ψX0 as in Proposition 5.2. For z ∈ ∆N , let G(z) = GX0(z) = (Gij(z)) be

the matrix for the pullback metric ψ∗gWP, and let Gij(z) =
(
G(z)−1

)
ij .

The curvature tensor for G can be calculated in these Euclidean coor-

dinates using the Christoffel symbols and the Riemannian curvature tensor

coefficients, all of which can be expressed as sums of products of the coef-

ficients Gij and first and second order partial derivatives of the coefficients

Gij . Since ‖Dψ‖ and ‖Dψ−1‖ are bounded by Lemma 5.3, the quantities

‖(∇RWP)ψ(z)‖ and ‖(∇2RWP)ψ(z)‖ can therefore be bounded by a (universal)

polynomial function of the quantities |Gij(z)|, |Gij(z)| and∣∣∣∣∣ ∂kGi,j
∂ξ1 · · · ∂ξk

(z)

∣∣∣∣∣
for k = 1, . . . , 4. But Proposition 5.2 implies that the entries Gij(z) are

O(`(X0)−2) and the entries Gij(z) and their first k derivatives are O(1); the

conclusion of Proposition 5.1 then follows. �

6. Ergodicity and finite entropy of the WP geodesic flow

Fix a Riemann surface S. Let T = Teich(S), MCG = MCG(S), and

M =M(S). We describe here first how the results of Section 6 can be applied

to obtain ergodicity and finite entropy of the geodesic flow on the quotient

M1 = T 1T /MCG. Note that the results in Section 3 cannot be applied directly

with M = T and Γ = MCG since MCG does not act freely on T . Our strategy

is to prove ergodicity first for a finite branched cover T 1T /MCG[3]. Here

MCG[k] is the level k congruence subgroup

MCG[k] = {φ ∈ MCG : φ∗ = 0 acting on H1(S,Z/kZ)},

which is clearly a finite index subgroup of MCG. It is a well-known fact that for

k ≥ 3, MCG[k] is torsion-free and so acts freely and properly discontinuously

by isometries on T [34]. The quotient T 1T /MCG[k] has finite volume. We

obtain ergodicity for the flow on T 1T /MCG[k] for any k ≥ 3 using the setup

of the previous section.
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6.1. Ergodicity of the flow on T 1(T /MCG[k]). Fix k ≥ 3. To establish er-

godicity and finite metric entropy of the WP geodesic flow on T 1(T /MCG[k]),

we show that assumptions I–VI of Theorem 3.1 in Section 3 are satisfied for

M = T , Γ = MCG[k] and the WP metric. We recall that the distance from

X ∈ T to the singular locus ∂T is comparable to `(X)1/2 (Proposition 4.11,

part (5)).

The fact that in the Weil-Petersson metric T is geodesically convex was

proved by Wolpert [42]. Since the completion M of M is compact and

T /MCG[k] is a finite branched cover of M, it follows that the completion

of T /MCG[k] is compact as well. Hence assumptions I and II hold true.

The curvature bound in assumption IV is due to Wolpert and was stated

as Proposition 4.13. The bounds on ‖∇RWP‖ and ‖∇2RWP‖ in assumption IV

are the content of Proposition 5.1. Assumption VI was proved in Theorem 4.1.

It remains to prove assumptions III and V. For X ∈ T , we continue to denote

by ρ0(X) the WP distance from X to ∂T .

Verifying assumption III. ∂ (T /MCG[k]) is volumetrically cusplike.

Given ρ > 0, let

Eρ = {X ∈ T /MCG[k] : ρ0(X) ≤ ρ}.

Lemma 6.1. We have Vol(Eρ) = O(ρ4)

Proof. Fix a pants decomposition σ that includes the short curves. For

each curve α ∈ σ, denote by xα the function satisfying 2π2x2
α = `α, where

`α is the length function. The theorem on p. 284 in [42] gives the asymptotic

expansion
g(·, ·) �

∑
σ

4dx2
α + x6

αdθ
2
α,

where θα is the twist function. This gives that the volume element, which is

the square root of the determinant of the metric |g|1/2, is of the order
∏
α x

3
α.

For the short curves, xα is comparable to the distance to the boundary stratum

in which α is pinched. Thus we have Vol(Eρ) = O(ρ4). �

Verifying assumption IV. T /MCG[k] has controlled injectivity radius.

For α ∈ C, denote by τα ∈ MCG the Dehn twist about the curve α.

Given a simplex σ = {α1, . . . , αp} ∈ C(S), let Γ(σ) = 〈τ1, . . . , τp〉 be the

abelian group generated by the Dehn twists about the αi. Given ε > 0 let

Ω(σ, ε) = {X : ∀α ∈ σ, `α(X) < ε}.

Lemma 6.2. There exists j0 ≥ 1 with the following property. For each

ε > 0, there exists c0 > 0 such that if φ ∈ MCG[k] and dWP(X,φ(X)) < c0,

then there exists σ ∈ C(S) such that

(1) X ∈ Ω(σ, ε), and

(2) for some j ≤ j0, φj ∈ Γ(σ).
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Proof. Let ε > 0 be given. Let j0 be the product of (3g − 3 + n)! and

the product of the maximum orders of finite order elements on surfaces of

lower complexity. The first conclusion (1) holds since MCG[k] acts properly

discontinuously without fixed points. Now suppose the second statement (2)

is not true; i.e., there exist ε, a sequence Xm ∈ Ω(σ, ε), and a sequence φm
such that dWP(Xm, φ(Xm))→ 0 and yet for all j ≤ j0, φjm /∈ Γ(σ).

Passing to a subsequence and applying an element ψm ∈ Γ(σ), we can

assume there is σ such that Xm converges to a noded surface Xσ. For β ∈ σ,

we have `φm(β)(φm(Xm)) = `β(Xm) → 0. This implies that for m sufficiently

large, φm(β) ∈ σ as well. Then for some j ≤ j0, the mapping class φjm preserves

the individual curves of σ.

The classification of elements of MCG implies that the restriction of φjm
to each piece of Xσ is the composition of Dehn twists about boundary curves

with an element that is either pseudo-Anosov or finite order. If it is finite

order in each piece, then raising φjm to a higher power we can assume φjm is the

product of Dehn twists, hence in Γ(σ), contrary to assumption. Thus φjm must

be pseudo-Anosov on some piece. But then there is a uniform lower bound [9,

Th. 7.6] for dWP(Xσ, φ
j
m(Xσ)) and thus a lower bound for dWP(Xm, φm(Xm))

for m sufficiently large, a contradiction. �

Lemma 6.3. There is a constant c > 0 such that for any X ∈ T /MCG[k],

inj(X) ≥ cρ0(X)3.

Proof. By Proposition 15 of [41] there is a positive constant c > 0 such

that for X ∈ Ω(σ, ε), dWP(X,Γ(σ)(X)) ≥ cρ0(X)3. This bounds the injectivity

radius from below. �

Applying Theorem 3.1, we have now proved

Theorem 6.4. The Weil-Petersson flow on T 1T /MCG[k] is ergodic and

has finite entropy.

6.2. Ergodicity of the flow on M1(S): Proof of Theorem 1. The manifold

T /MCG[k] is a finite branched cover over M. Let h : X → X be a conformal

automorphism of finite order, and let F (h) be the fixed point set of the induced

action on T . It is known [32] that if S is compact and h is not the hyperelliptic

involution in genus 2, then F (h) has complex dimension at most 3g − 5. In

fact F (h) is the Teichmüller space of the quotient orbifold X/h. In genus 2 the

action induced by the hyperelliptic involution fixes every point of T . In the

noncompact case where S has punctures, the complex dimension of F (h) is at

most 3g − 4. Let F denote the union of the fixed point sets of the actions of

all finite order elements of MCG(S), excluding the genus 2 hyperellipic case.

This is a countable union of lower-dimensional Teichmüller spaces.
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Lemma 6.5. F is a closed subset of T , of codimension at least 2.

Proof. We have already seen that each fixed point set has real codimension

at least 2 so we need only check that the union is locally finite. Fix a compact

set K ⊂ T . By the proper discontinuity of the action of MCG on T , there

cannot be an infinite set of finite order elements each with a fixed point in K.

Thus K is intersected by only finitely many of the fixed point sets F (h), and

so the union of these sets is closed. �

We now finish the proof of ergodicity. Since the fixed point set of MCG

has codimension at least 2, the geodesic flow is defined almost everywhere on

the quotient M1. If one has a positive measure invariant set in E ⊂ M1,

then the lift of E is a positive measure invariant measure set in T 1T /MCG[k],

which by ergodicity must have 0 or full measure. The same is then true for E.

Hence the geodesic flow on M1 is ergodic. Moreover, any nontrivial factor of

a Bernoulli flow is Bernoulli, and so the the geodesic flow on M1 is Bernoulli

as well.

Since the geodesic flow on T 1T /MCG[k] covers the geodesic flow on a full

measure subset of M1, it follows that the entropy of the flow on M1 is also

finite. This completes the proof of Theorem 1. �

7. Appendix A: Bounding the second derivative of the geodesic flow

In this appendix we give precise estimates relating the norm of the first

derivative of the geodesic flow, local bounds on the derivative of curvature,

and the norm of the second derivative of the geodesic flow. The results here

will be used in Appendix B.

7.1. More on the Sasaki metric and statement of the general result. Let M

be a Riemannian manifold, and let π : TM → M be the canonical projection.

The Sasaki metric on T 1M induces a Sasaki metric on TT 1M , which for brevity

we will also call the Sasaki metric (although strictly speaking it is some sort of

Sasaki Sasaki metric). In general we will denote the Sasaki distance on T 1M

by dSas and on TT 1M by dSas.

Recall that for v ∈ T 1M , each vector ξ ∈ TvT 1M can be naturally iden-

tified with a pair (u,w) ∈ T 1
π(v)M × T 1

π(v)M . The distance dSas on TT 1M

induced by this metric can be estimated as follows. Let ξ0 = (u0, w0) ∈
(T 1
π(v0)M)2 and ξ1 = (u1, w1) ∈ (T 1

π(v1)M)2 be tangent vectors in TT 1M based

at v0 and v1 respectively. Let σ be a Sasaki geodesic in T 1M from v0 to v1. Let

Pσ : T 1
π(v0)M → T 1

π(v1)M be parallel translation along the curve of basepoints

π ◦ σ in M . The following lemma follows from the discussion in Section 2.
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Lemma 7.1. For each v0, there exists an ε>0 such that if dSas(v0, v1)<ε,

then

dSas(ξ0, ξ1)≤ dSas(v0, v1) + ‖u1 − Pσ(u0)‖+ ‖w1 − Pσ(w0)‖
≤ 2 dSas(ξ0, ξ1).

The main result in this section is

Proposition 7.2. Let M be an m-dimensional Riemannian manifold,

possibly incomplete, and let t0 ≤ 1 be a positive number. Let γ : [−t0, t0]→M

be a unit-speed geodesic segment.

Suppose that there exist constants C1, C2, C3 > 1, and ε0 > 0 such that

for all t ∈ (−t0, t0),

(1) if v ∈ T 1M satisfies dSas(v, γ̇(0)) < ε0, then

max{‖Dvϕt‖, ‖Dϕt(v)ϕ−t‖} ≤ C1;

(2) if p ∈M satisfies d(p, γ(t)) < ε0, then

‖Rp‖ ≤ C2 and ‖∇Rp‖ ≤ C3.

Then there exists ε1 > 0 such that for every t ∈ (−t0, t0), for every pair

v0, v1 ∈ T 1M with dSas(vi, γ̇(0)) < ε1, and for all ξi ∈ T 1
viT

1M , (i = 0, 1), we

have

dSas(Dϕt(ξ0), Dϕt(ξ1)) ≤ (8mC4
1C

2
2C3) dSas(ξ0, ξ1).

7.2. Variations of solutions to linear ODEs. To prove Proposition 7.2, we

first treat the linearized version of the problem. We begin with a basic fact

about solutions to linear ODEs. Consider a second-order linear ODE

x′′(t) = −R(t)x(t),(11)

where R : [0, T ] → L(Rm) is continuous. In our application R(t) will be a

matrix representing the sectional curvature operator along a geodesic γ and

(11) will be the Jacobi equation in a suitably chosen coordinate system along γ.

Then (11) can be transformed into a first order system in the standard way

by introducing the variable z(t) =
(
x(t)
y(t)

)
∈ R2m and the additional constraint

x′(t) = y(t). Then z satisfies the first order ODE

z′(t) =

Ç
0 I

−R(t) 0

å
z(t).(12)

The fundamental solution F (t) to this equation has the property that if x(t)

is a solution to (11) with initial values x(0) = x0, x′(0) = y0, then
(
x(t)
x′(t)

)
=

F (t) ( x0y0 ).

The following is a basic fact from the theory of ODEs.
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Proposition 7.3. Let Fi : [0, T ] → L(R2m) be the fundamental solution

to the differential equation x′′(t) = −Ri(t)x(t) for i = 0, 1. Then

‖F0(T )− F1(T )‖ ≤ T‖F0‖0‖F−1
0 ‖0‖R0 −R1‖0‖F1‖0.

7.3. Proof of Proposition 7.2. We now return to the setting of differential

geometry and finish the proof of Proposition 7.2. Let γ : [−t0, t0] → M be

given. We start with a lemma.

Lemma 7.4. Under the assumptions of Proposition 7.2 suppose p0, p1 ∈
M satisfy d(pi, γ(t)) < ε0. Then for all vi, wi ∈ T 1

piM , i = 0, 1, the curvature

tensor R satisfies

‖R(v0, w0)w0‖ ≤ C2

and

dSas(R(v0, w0)w0, R(v1, w1)w1) ≤ C3(dSas(v0, v1) + dSas(w0, w1)).

Proof. This follows in a straightforward way from the Mean Value Theo-

rem and the hypotheses that ‖Rp‖ ≤ C2 and ‖∇Rp‖ ≤ C3 for all p ∈ M with

d(p, γ(t)) < ε0. �

Let v0, v1 ∈ T 1M be unit tangent vectors in a neighborhood of γ̇(0), and

let σ : (−2, 2)→ T 1M be a Sasaki geodesic with σ(0) = v0 and σ(1) = v1. Each

σ(s) determines a unit speed geodesic γs : (−t0, t0) → M with γ̇s(0) = σ(s).

In this way σ determines a variation of geodesics α : (−2, 2) × (−t0, t0) → M

with the property that α(s, t) = γs(t).

We may assume that the norms of the derivatives of α are uniformly

bounded from above by a constant, say 1. For s ∈ (−2, 2), let Ls(t) =

∂α/∂s(s, t) be the induced Jacobi field along γs. Choose ε1 such that if

dSas(vi, γ̇(0)) < ε1 for i = 0, 1, then dSas(γ̇(t), γ̇s(t)) < ε0 for all (s, t) ∈
(−2, 2) × (−t0, t0), where ε0 is given by the hypotheses of the proposition. If

dSas(vi, γ̇(0)) < ε1, then for any (s, t) ∈ (−2, 2)× (−t0, t0), we have

dSas(γ̇s(t), γ̇0(t))≤
∫ s

0
‖(Lu(t), L′u(t)))‖Sas du.

Since σ is a Sasaki geodesic, the above inequality is an equality in the case of

t = 0; that is, ∫ s

0
‖(Lu(0), L′u(0))‖Sas du = dSas(γ̇s(0), γ̇0(0)).

By the assumed bound (1) on the first derivative of the geodesic flow (which

bounds the growth of Jacobi fields), we also have that ‖(Lu(t), L′u(t))‖Sas ≤
C1‖(Lu(0), L′u(0))‖Sas for any u, t, and so∫ s

0
‖(Lu(t), L′u(t)))‖Sas du ≤ C1

∫ s

0
‖(Lu(0), L′u(0))‖Sas du.
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Putting these inequalities together, we obtain

dSas(γ̇s(t), γ̇0(t)) ≤ C1dSas(γ̇s(0), γ̇0(0)).(13)

Our goal is to bound the Lipschitz norm of the derivative of the time-t map

of the geodesic flow ϕt at γ̇0(0). The conclusion of Proposition 7.2 will follow

if we show that for any (s, t) ∈ (−2, 2) × (−t0, t0), and any ξ0 ∈ T 1
γ̇0(0)T

1M

and ξs ∈ T 1
γ̇s(0)T

1M , we have

(14) dSas(Dϕt(ξ0), Dϕt(ξs)) ≤ (4mC4
1C

2
2C3) dSas(ξ0, ξs).

Recall that under the standard identification of ξs ∈ Tγ̇s(0)TM with a pair

(us, ws) ∈ (Tγs(0)M)2, the vector Dγ̇s(0)ϕt(ξs) is identified with (Js(t), J
′
s(t)),

where Js is the solution to the (second-order) Jacobi equation

J ′′ +R(J, γ̇s)γ̇s = 0(15)

with initial condition (Js(0), J ′s(0)) = (us, ws).

To analyze the variation of solutions to this ODE, we fix convenient coor-

dinates for the tangent bundle to the geodesic γs in order to express (15) as a

matrix equation of the form (11). To this end, let {ej(0, 0) : j = 1, . . . ,m} be

an orthonormal frame at γ0(0) = α(0, 0) spanning the tangent space Tγ0(0)M .

We first parallel translate this frame along α(s, 0) to obtain an orthonormal

frame {ej(s, 0)} at γs(0) for s ∈ (−2, 2). We next parallel translate the frame

{ej(s, 0)} along γs(t), for t ∈ (−t0, t0), to obtain a frame {ej(s, t)} at each

point α(s, t).

Lemma 7.5. For j ∈ {1, . . . ,m}, we have

dSas(ej(0, t), ej(s, t)) ≤ d(γ0(0), γs(0)) + 2C1C2 dSas(γ̇0(0), γ̇s(0))

for all (s, t) ∈ (−2, 2)× (−t0, t0).

Proof. Fix j. Our construction of ej (using parallel translation) gives that

for all s, t,

D

∂s
ej(s, 0) = 0 and

D

∂t
ej(s, t) = 0.(16)

We would like to estimate D
∂sej(s, t) for general s, t. To do this, we first estimate

D
∂t

D
∂sej(s, t).

It follows directly from the definition of the Riemannian curvature tensor

and the joint integrability of the pair {Ls, γ̇s} that

R(Ls(t), γ̇s(t))ej(s, t) =
D

∂t

D

∂s
ej(s, t)−

D

∂s

D

∂t
ej(s, t) =

D

∂t

D

∂s
ej(s, t),

where we have used the second part of (16) in the last step. Applying the bound

‖R(Ls(t), γ̇s(t))ej‖ ≤ C2‖Ls(t)‖, we obtain that
∥∥∥D∂t D∂sej(s, t)∥∥∥ ≤ C2‖Ls(t)‖.
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Integrating this expression with respect to t, we then have the bound∥∥∥∥D∂sej(s, t)
∥∥∥∥ ≤ ∥∥∥∥D∂sej(s, 0)

∥∥∥∥+ C2

∫ t

0
‖Ls(u)‖ du = C2

∫ t

0
‖Ls(u)‖ du.

Integrating again, this time with respect to s, and using Lemma 7.1 and (13),

we obtain

dSas(ej(0, t), ej(s, t)) ≤ d(γ0(t), γs(t)) +

∫ s

0

∥∥∥∥D∂sej(u, t)
∥∥∥∥ du

≤ d(γ0(0), γs(0)) +

∫ s

0

∫ t

0
‖L′w(u)‖ du dw

+ C2

∫ s

0

∫ t

0
‖Lw(u)‖ du dw

≤ d(γ0(0), γs(0)) + 2C2

∫ s

0

∫ t

0
‖(Lw(u), L′w(u))‖Sas du dw

≤ d(γ0(0), γs(0)) + 2C1C2

∫ s

0
‖(Lw(0), L′w(0))‖Sas dw

= d(γ0(0), γs(0)) + 2C1C2 dSas(γ̇0(0), γ̇s(0)),

which is the desired bound. �

For (s, t) ∈ (−2, 2)×(−t0, t0), the frame {ej(s, t)} gives an isometric linear

isomorphism between Rm and Tα(s,t)M :

(x1, . . . , xm) 7→
m∑
j=1

xjej(s, t).

This in turn induces, for each (s, t), an isometric linear isomorphism

Is,t : R2m → Tγ̇s(t)TM
∼= Tα(s,t)M × Tα(s,t)M.

Lemma 7.5 has the following immediate corollary.

Corollary 7.6. For each (s, t) ∈ (2, 2)× (−t0, t0) and each (Euclidean)

unit vector z ∈ R2m, we have

dSas(Is,t(z), I0,t(z)) ≤ d(γ0(0), γs(0)) + 2C1C2 dSas(γ̇0(0), γ̇s(0)).

Expressing the Jacobi equation (15) along γs in the coordinates on TγsM

given by Is,t, we obtain the ODE

x′′(t) = −Rs(t)x(t),(17)

where (Rs(t))i,j =〈R (ei(s, t), γ̇s(t)) γ̇s(t), ej(s, t) 〉 . Denote by Fs : (−t0, t0)→
L(R2m) the fundamental solution to (17). Proposition 7.3 implies that for any

(s, t) ∈ (−2, 2)× (−t0, t0), we have

‖F0(t)− Fs(t)‖ ≤ ‖F0‖0‖F−1
s ‖0‖R0 −Rs‖0‖Fs‖0.



896 K. BURNS, H. MASUR, and A. WILKINSON

Now the main hypotheses of the proposition, when combined with 7.5,

(13), and the triangle inequality, can be seen to give the upper bound

‖R0(t)−Rs(t)‖≤ (mC1C
2
2C3) dSas(γ̇0(0), γ̇s(0))

(where we omit the details), and so

‖F0(t)− Fs(t)‖ ≤ (mC1C
2
2C3)‖F0‖0‖Fs‖0‖F−1

s ‖0dSas(γ̇0(0), γ̇s(0))

for all (s, t) ∈ (−2, 2)×(−t0, t0). The bounds on the first derivative of ϕt imply

that for all (s, t) ∈ (−2, 2)× (−t0, t0), we have max{‖Fs(t)‖, ‖F−1
s (t)‖} ≤ C1,

which implies that

‖F0(t)− Fs(t)‖ ≤ (mC4
1C

2
2C3) dSas(γ̇0(0), γ̇s(0)).

Finally, suppose that ξ0 = I0,0(z0) and ξs = Is,0(zs) are arbitrary unit

tangent vectors to T 1M based at γ̇0(0) and γ̇s(0), respectively (where z0, zs
are Euclidean unit vectors in R2m). Since D

∂sIs,0 = 0, Lemma 7.1 implies that

the Sasaki distance dSas(ξ0, ξs) between ξ0 and ξs is uniformly comparable to

‖z0 − z1‖+ dSas(γ̇0(0), γ̇s(0)); in particular,

‖z0 − z1‖+ dSas(γ̇0(0), γ̇s(0)) ≤ 2 dSas(ξ0, ξs).(18)

Using Corollary 7.6 and our previous estimates, we may then conclude

that

dSas(Dϕt(ξ0), Dϕt(ξs)) = dSas(I0,t (F0(t)z0) , Is,t (Fs(t)zs))

≤ dSas(I0,t (F0(t)z0) , I0,t (Fs(t)zs)) + dSas(I0,t (Fs(t)zs) , Is,t (Fs(t)zs))

≤ ‖F0(t)z0 − Fs(t)zs‖+ ‖Fs(t)zs‖ (d(γ0(0), γs(0)) + 2C1C2 dSas(γ̇0(0), γ̇s(0)))

≤ ‖(F0(t)− Fs(t))z0‖+ ‖Fs(t)(z0 − zs)‖
+ C1 (d(γ0(0), γs(0)) + 2C1C2 dSas(γ̇0(0), γ̇s(0)))

≤ (mC4
1C

2
2C3) dSas(γ̇0(0), γ̇s(0)) + C1‖z0 − zs‖

+ C1 (d(γ0(0), γs(0)) + 2C1C2 dSas(γ̇0(0), γ̇s(0)))

≤ (mC4
1C

2
2C3) dSas(γ̇0(0), γ̇s(0)) + C1‖z0 − zs‖+ 3C2

1C2 dSas(γ̇0(0), γ̇s(0))

≤ (4mC4
1C

2
2C3) (‖z0 − zs‖+ dSas(γ̇0(0), γ̇s(0)))

≤ (8mC4
1C

2
2C3) dSas(ξ0, ξs),

where we used (18) in the last step. This proves the desired inequality (14)

and completes the proof of Proposition 7.2.

8. Appendix B: Proof of Proposition 3.10: verifying the conditions

of Katok-Strelcyn-Ledrappier

In this appendix we prove Proposition 3.10. We assume the conditions I–

VI in Theorem 3.1. Let V ⊂ T 1N be the set of v ∈ T 1N such that ϕt(v) ∈ T 1N

for all t ∈ (−1, 1). Fix t0 ∈ (0, 1) and consider the restriction of the time-t0
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map ϕt0 to V . To prove Proposition 3.10, we verify that the main hypotheses

in [19] hold for the map ϕt0 : V → T 1N . The main results in [19] then imply

the conclusions of Proposition 3.10. To paraphrase [19], the conditions we will

verify ensure that the set of singularities of the map ϕt0 is “thin” and that the

first and second derivatives of ϕt0 grow moderately near this set.

In the setup of [19], the background hypotheses are: X is a compact metric

space, and V is an open and dense subset of X carrying a Riemann structure

with controlled singularities near X \ V . In our application, V is the set

described above, endowed with the Sasaki Riemann structure, and X = T 1N

is the completion of T 1N in the Sasaki distance metric dSas. We first verify

that X is compact, which establishes condition (A) of [19].

Lemma 8.1. (T 1N, dSas) is compact.

Proof. Let 〈vn,m〉m be a sequence of elements of T 1N, where for each m≥1,

〈vn,m〉 is a Sasaki Cauchy sequence in T 1N . Since dSas(v, w) ≥ d(π(v), π(w)),

it follows that for each m, the sequence 〈π(vn,m)〉 is Cauchy in N ; since N

is compact, by passing to a subsequence in the m’s, we may assume that

〈π(vn,m)〉m converges to a Cauchy sequence 〈xn〉 in N . What this means is

that for every ε > 0, there exists an m0 > 0 such that for m ≥ m0, we have

lim
n→∞

d(π(vn,m), xn) < ε.

Now for each n, consider the collection {v̂n,m | m ≥ 1} ⊂ T 1
xnN obtained

by parallel translating each vn,m along a geodesic from Tπ(vn,m)N to TxnN .

Using compactness of T 1
xnN and a diagonal argument, we obtain a subsequence

mk such that for each n, v̂n,mk converges as k →∞ to an element v̂n ∈ T 1
xnN ,

uniformly in n; that is, for every ε > 0, there exists k0 > 0 such that for all

k > k0, we have

lim
n→∞

‖v̂n,mk − v̂n‖ < ε.

Since the Sasaki distance dSas(vn,mk , v̂n) is bounded by d(π(vn,mk), xn) +

‖v̂n,mk − v̂n‖, it follows that for every ε > 0, there exists a k1 > 0 such that

for all k ≥ k1,

lim
n→∞

dSas(vn,mk , v̂n)≤ lim
n→∞

d(π(vn,m), xn) + ‖v̂n,mk − v̂n‖ < 2ε.

Hence 〈vn,mk〉mk converges as k → ∞ to the Sasaki Cauchy sequence 〈v̂n〉 ∈
T 1N . �

Clearly V is an open and dense subset of T 1N . Let S = T 1N \ V . The

Sasaki distance from v to the singular set S is bounded above by the distance

from π(v) to ∂N .
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8.0.1. More (yet) on the Sasaki metric. Condition (B) in [19], which con-

cerns the Riemann structure on V , has three parts that require verification.

In this subsection, we establish bounds on the derivatives of the Sasaki expo-

nential map exp : TV → V , which we will then use to verify these conditions

as well as later conditions on ϕt0 . To control the Sasaki exponential map, we

will need to control the first three derivatives of the Sasaki metric; these can

be related to the higher order derivatives of the metric on N via the following

lemma.

Lemma 8.2. There exists a cubic polynomial C : R3 → R such that for

any Riemannian manifold N and any v ∈ T 1
xN , the Sasaki curvature tensor

RSas satisfies

‖(RSas)v‖+ ‖∇(RSas)v‖ ≤ C(‖Rx‖, ‖∇Rx‖, ‖∇2Rx‖),

where R is the Riemannian curvature tensor on N .

Proof. The sectional curvatures of the Sasaki metric on the unit tan-

gent bundle can be computed as follows [20]. We use the usual identifica-

tion T(x,u)TN ∼= TxN × TxN . Let Π be a plane in T(x,u)T
1N , and choose an

orthonormal basis {(v1, w1), (v2, w2)} for Π satisfying ‖vi‖2 + ‖wi‖2 = 1 for

i = 1, 2 and 〈v1, v2〉 = 〈w1, w2〉 = 0. Then the Sasaki sectional curvature of Π

is given by

KSas(Π) = 〈Rx(v1, v2)v2, v1〉+ 3〈Rx(v1, v2)w2, w1〉+ ‖w1‖2‖w2‖2

− 3

4
‖Rx(v1, v2)u‖2 +

1

4
‖Rx(u,w2)v1‖2 +

1

4
‖Rx(u,w1)v2‖2

+
1

2
〈Rx(u,w1)w2, Rx(u,w2)v1〉 − 〈Rx(u,w1)v1, Rx(u,w2)v2〉

+ 〈(∇v1R)x(u,w2)v2, v1〉+ 〈(∇v2R)x(u,w1)v1, v2〉.

The conclusion now follows from the Chain Rule and well-known identities

relating the sectional curvatures with the norm of the curvature tensor. �

The next lemma will be used to bound the derivative of the Sasaki expo-

nential map.

Lemma 8.3. Let Y be a Riemannian manifold, and let J be a Jacobi field

along a geodesic γ : [−δ0, δ0]→ Y satisfying J(0) = 0 and ‖J ′(0)‖ = 1. Suppose

that

sup
|t|<δ0

‖Rγ(t)‖ ≤ R0

for some R0 > 1. Let ε ∈ (0, 1) be given, and let t0 = min{δ0, ε/(3R0)}. Then

for all |t| ≤ t0, we have

(1− ε)|t| ≤ ‖J(t)‖ ≤ (1 + ε)|t| and ‖J ′(t)‖ ≤ 1 + ε.
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Proof. Let a(t) = ‖J(t)‖, and let b(t) = ‖J ′(t)‖. Then the Cauchy-

Schwarz inequality implies

|(a2)′| = |2aa′| = |2〈J, J ′〉| ≤ 2ab,

and since |t| < δ0,

|(b2)′| = |2bb′| = |2〈J ′, J ′′〉| = |2〈J ′, R(γ̇, J)γ̇〉| ≤ 2R0ab.

We conclude that wherever |a| and |b| are not zero, we have |a′| ≤ b and

|b′| ≤ R0a.

We are assuming that a(0) = 0 and b(0) = 1. Without loss of generality,

assume that |a(t)| > 0 for t > 0. (Otherwise, we may replace t = 0 with a

positive value of t in the following argument.) From this we obtain the integral

inequality for t ≥ 0:

|a′(t)| ≤ 1 +

∫ t

0
|b′(s)| ds ≤ 1 +R0

∫ t

0
a(s) ds.(19)

Suppose that, for some t1 ∈ (0, t0), we have |a′(t)| < 1 + ε for all t ∈ [0, t1) and

|a′(t1)| = 1 + ε. Then a(t) < (1 + ε)t for all t ∈ [0, t1). Combined with (19),

this gives that

|a′(t1)| ≤ 1 +R0

∫ t1

0
(1 + ε)s ds < 1 +

R0(1 + ε)

2
t21 < 1 + ε

since ε ∈ (0, 1) implies that

t21 < t20 ≤
ε2

9R2
0

<
2ε

R0(1 + ε)
.

This contradicts our assumption that |a′(t1)| = 1 + ε. We conclude that

|a′(t)| < 1 + ε for all t ∈ (0, t0); similarly, |a′(t)| < 1 + ε for all t ∈ (−t0, 0).

From this we conclude that a(t) ≤ (1 + ε)|t| for all |t| ≤ t0.

We now prove the lower bound. Since b(0) = 1 and |b′(t)| ≤ R0a(t), for

|t| ≤ t0, we have

b(t) ≥ 1− (1 + ε)R0t
2

2
.

On the other hand, we know that

(a2)′′ = 2b2 − 2〈R(J, γ̇)γ̇, J〉 ≥ 2b2 − 2R0a
2

> 2

[Ç
1− (1 + ε)R0t

2

2

å2

− (1 + ε)2R0t
2

]
> 2[1− 2(1 + ε)2R0t

2]

(using the lower bound for b(t) and upper bound of (1 + ε)|t| for a(t)). Now,

since

t2 ≤ t20 ≤
ε2

9R2
0

<
ε2

2(1 + ε)2R0
,

we find that
(a2)′′(t) > 2[1− 2(1 + ε)2R0t

2] > 2(1− ε2).
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But then 2a(t)a′(t) = (a2)′(t) > 2(1− ε2)|t|, and again using the upper bound

on a, we get

a′(t) >
(1− ε2)|t|

a(t)
>

(1− ε2)|t|
(1 + ε)|t|

= 1− ε;

hence a(t) > (1− ε)|t|.
Finally, since b(0) = 1 and |b′| ≤ R0a ≤ R0(1 + ε), it follows that |b(t)| ≤

1 + |t|R0(1 + ε), and so for |t| < |t0|, we have |b(t)| ≤ 1 + ε(1 + ε)/3 < 1 + ε.

The final conclusion follows. �

We apply this lemma to the Sasaki exponential map exp : TV → V to

obtain

Proposition 8.4. There exist constants δ1 > 0 and k1 > 1 such that

for every v0 ∈ V , if dSas(v0, S) < δ1, then for all v ∈ V with dSas(v, v0) <

dSas(v0, S)k1 ,

1− dSas(v0, S) ≤ ‖Dv exp−1
v0 ‖

−1 ≤ ‖Dξ expv0 ‖ ≤ 1 + dSas(v0, S),

where ξ = exp−1
v0 (v).

Proof. Let v0 ∈ V and ξ = exp−1
v0 (v). Let ξ̂ = ξ

‖ξ‖ be the unit vector

in the direction of ξ. Suppose ξ′ ∈ T 1
v0V is an orthogonal unit vector. Let

a(s, t) = (ξ̂ + sξ′)t be the one-parameter family of rays through the origin in

Tv0V . Let

α(s, t) = expv0 ◦ a(s, t)

be the one-parameter family of image geodesics in V . We consider the corre-

sponding Jacobi field J(t) along α(0, t) defined by J(t) = ∂α(s, t)/∂s at s = 0.

Clearly J(0) = 0 and J ′(0) = ξ′. Setting t1 = ‖ξ‖, by the chain rule we have

‖J(t1)‖ = ‖t1Dξ expv0(ξ′)‖.

Thus we have to bound ‖J(t1)
t1
‖ above and below.

By Lemma 8.2, the sectional curvatures of the Sasaki metric on the unit

tangent bundle are bounded polynomially in terms of the absolute value of the

curvature and the derivative of the curvature of the original metric. Assump-

tion IV gives a bound for these latter quantities, and therefore a polynomial

bound on the curvatures in the Sasaki metric, in the reciprocal of the distance

to the singular set S. It follows that there exist k0 > 1 and δ0 > 0 such that

for all v ∈ V with dSas(v, S) < δ0, the Sasaki curvature tensor RSas satisfies

‖(RSas)v‖ < dSas(v, S)−k0 .

Let k1 = k0+2. Then there exists δ1 ∈ (0, 1/3) such that if dSas(v0, S) < δ1

and

dSas(v0, v) ≤ dSas(v0, S)k1 ,
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then the maximum norm R0 of the Sasaki curvature tensor along the geodesic

joining v0 to v also satisfies R0 < dSas(v0, S)−k0 . Lemma 8.3 implies that

1− ε ≤
∥∥∥∥∥J(t1)

t1

∥∥∥∥∥ < 1 + ε,(20)

provided ε > 3R0|t1| = 3R0dSas(v0, v). Hence if dSas(v0, S) < δ1 and dSas(v, v0)

≤ dSas(v0, S)k1 , then (20) holds for ε = dSas(v0, S), since

3R0dSas(v0, v)<3dSas(v0, S)−k0 · dSas(v0, S)k1 =3dSas(v0, S)2 < dSas(v0, S) = ε.

�

The next proposition gives bounds on the second derivative of exp, which

we will later use to verify condition (1.3) of [19].

Proposition 8.5. There exist constants δ2 > 0 and k2 > 1 such that for

every v0 ∈ V , if dSas(v0, S) < δ2, then for all ξi, ηi ∈ Tv0V with (ξ1, η1) 6=
(ξ2, η2) and max{‖ξi‖, ‖ηi‖} < dSas(v0, S)k2 for i = 1, 2, we have

dSas(v0, S)k2 ≤
dSas

(
Dξ1 expv0(η1), Dξ2 expv0(η2)

)
‖ξ1 − ξ2‖+ ‖η1 − η2‖

≤ dSas(v0, S)−k2 .

Proof. Suppose that v0 ∈ V is fixed and v1 lies in a neighborhood of v0. Let

ξ1 = exp−1
v0 (v1). For ξ2 ∈ Tv0V , the map Dξ2 expv0 is a linear transformation

between Tv0V and Tv2V , where v2 = expv0(ξ2). The Sasaki connection defines

a trivialization of the bundle TV in a neighborhood of the fiber over v1; in these

coordinates, a vector η2 ∈ Tv2V is sent to the pair (v2, Pv2,v1(η2)) ∈ V × Tv1V ,

where Pv2,v1 : Tv2V → Tv1V is parallel translation along the unique local ge-

odesic from v2 to v1. The Sasaki metric dSas on TV is comparable in this

trivializing neighborhood to the product metric on V ×Tv1V . In these coordi-

nates, there is a well-defined second derivative D2
ξ1

expv0 : Tv0V ×Tv0V → Tv1V

obtained by differentiating the second component of Dξ expv0 with respect to

ξ and evaluating at ξ1. By the Mean Value Theorem, to prove the conclu-

sions of the proposition, it suffices to bound ‖D2
ξ expv0(η, η)‖ from above and

below for all ξ in a neghborhood of the origin in Tv0V and η a unit vector

perpendicular to ξ.

To this end, fix v0 ∈ V and v ∈ V in a neighborhood of v0, and let

ξ = exp−1
v0 (v). Let ξ̂ = ξ

‖ξ‖ be the unit vector in the direction of ξ, and suppose

η ∈ T 1
v0V is an orthogonal unit vector. As in the proof of Proposition 8.4, we

consider the variation of geodesics

α(s, t) = expv0 ◦ a(s, t),

where a(s, t) = (ξ̂ + sη)t. Define Z, J , and Q by

Z(s, t)=
D

∂t
α(s, t), J(s, t)=

D

∂s
α(s, t), Q(s, t) =

D2

∂s2
α(s, t)=

D

∂s
J(s, t).
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The chain rule implies that

Q(0, t) = D2
a(0,t) expv0(tη, tη),

and so

‖D2
ξ expv0(η, η)‖ =

1

‖ξ‖2
‖Q(0, ‖ξ‖)‖

since ξ = a(0, ‖ξ‖).
Observe that for s fixed, J(s, ·) is a Jacobi field down the geodesic α(s, ·)

and so satisfies the Jacobi equation

D2

∂t2
J = RSas(Z, J)Z.

From this, the definition of Q, and symmetries of the curvature tensor it follows

that

D2

∂t2
Q =

D2

∂t2
D

∂s
J = RSas(Z, J)J ′ +

D

∂t
(RSas(Z, J)J) +

D

∂s

D2

∂t2
J

= RSas(Z, J)J ′ +
D

∂t
(RSas(Z, J)J) +

D

∂s
RSas(Z, J)Z

= RSas(Z, J)J ′ +

ÅÅ
D

∂t
RSas

ã
(Z, J)J +RSas(Z, J

′)J +RSas(Z, J)J ′
ã
,

+

ÅÅ
D

∂s
RSas

ã
(Z, J)Z +RSas(J

′, J)Z +RSas(Z,Q)Z +RSas(Z, J)J ′
ã

=

Å
D

∂t
RSas

ã
(Z, J)J+

Å
D

∂s
RSas

ã
(Z, J)Z+4RSas(Z, J)J ′+RSas(Z,Q)Z,

where ′ denotes the derivative with respect to t, and we have also used the facts

that Z ′ = 0 and (D/∂s)Z = J ′ . Then ‖Q′′(0, t)‖ ≤ C1(t) + ‖Q(0, t)‖C2(t),

where

C1(t) = ‖ (∇RSas)expv0 (tξ̂) ‖ (‖J(0, t)‖+ ‖J(0, t)‖2)

+ 4‖ (RSas)expv0 (tξ̂) ‖‖J(0, t)‖ ‖J ′(0, t)‖

and

C2(t) = ‖ (RSas)expv0 (tξ̂) ‖.

Assumption IV and Lemma 8.2 imply that there exists k0 > 1 such that

max{‖ (RSas)v0 ‖, ‖ (∇RSas)v0 ‖} < dSas(v0, S)−k0 .

Fix δ2 ∈ (0, 1/22) such that if dSas(v0, S) < δ2, then

sup
|t|≤dSas(v0,S)k0+1

max{‖ (RSas)expv0 (tξ) ‖, ‖ (∇RSas)expv0 (tξ) ‖} < dSas(v0, S)−k0−1.

Assume that dSas(v0, S) < δ2. Lemma 8.3 implies that for |t| < dSas(v0, S)k0+2,

both ‖J(0, t)‖ and ‖J ′(0, t)‖ are bounded by 2, and so

C1(t) ≤ 22 dSas(v0, S)−k0−1 < dSas(v0, S)−k0−2
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and

C2(t) ≤ dSas(v0, S)−k0−1 < dSas(v0, S)−k0−2.

Let q(t)=‖Q(0, t)‖, and let r(t)=‖Q′(0, t)‖. As in the proof of Lemma 8.3,

we have that

|qq′| = |〈Q,Q′〉| ≤ qr and |rr′| ≤ |〈Q′, Q′′〉| ≤ r(C1 + qC2).

Note that q(0) = r(0) = 0. An analysis similar to that in the proof of

Lemma 8.3 (whose details we omit) shows that for |t| < dSas(v0, S)k0+2, we

have

q(t) ≤ t2dSas(v0, S)−k0−2.

Hence, if ‖ξ‖ ≤ dSas(v0, S)k0+2, then

‖D2
ξ expv0(η, η)‖ =

q(‖ξ‖)
‖ξ‖2

≤ dSas(v0, S)−k0−2.

Hence an upper bound for the ratio in the conclusion of the proposition holds,

with the exponent k2 = k0 + 2. A lower bound for this ratio on the order

of dSas(v0, S)−k2 follows from the upper bound on ‖D2
v expv0 ‖ we have just

obtained, the upper bounds on ‖Dv exp−1
v0 ‖ and ‖Dξ expv0 ‖ given by Propo-

sition 8.4, and the fact that for an invertible matrix-valued function ξ 7→ A(ξ),

one has

Dξ(A
−1) = −A−1(ξ)(DξA)A−1(ξ).

The details are left to the reader. �

8.0.2. Verifying condition (B) in [19]. For v ∈ V , let inj(v) denote the

radius of injectivity of the Sasaki exponential map expv : TvV → V . Since

dSas(v, w) ≥ d(π(v), π(w)), the controlled injectivity assumption V implies

that

inj(v) ≥ inj(π(v)) ≥ Cd(π(v), ∂N)β ≥ CdSas(v, S)β.

This implies condition (Ba) of [19]. Conditions (Bb) and (Bc) in [19] follow in

a straightforward way from Proposition 8.4.

8.0.3. Verifying conditions (1.1)–(1.4) of [19]. Conditions (1.1)–(1.4) of

[19] concern the volume of the singular set S and the behavior of ϕt0 near S.

Condition (1.1) of [19], which concerns the volume of a neighborhood of S,

follows directly from Lemma 3.4. Condition (1.2) of [19], concerning the in-

tegrability of log+ ‖Dϕt0‖, follows immediately from Lemma 3.7. Condition

(1.4) of [19] requires a bound on ‖Dv0ϕt0‖ on the order of dSas(v0, S)−β for

some β > 0. This follows in a straightforward way from assumption VI. This

leaves condition (1.3).

Fix v0 ∈ V , and let Φ = Φv0 : Tv0V → Tϕt0 (v0)V be defined by

Φ = exp−1
ϕt0 (v0) ◦ϕt0 ◦ expv0 .
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Condition (1.3) of [19] requires a bound on the second derivative of Φ as an

inverse power of the distance to the singular set, which follows from the next

proposition.

Proposition 8.6. There exist constants δ3 > 0 and k3 > 1 such that

for every v0 ∈ V , if dSas(v0, S) < δ3, then for all v ∈ V with dSas(v, v0) <

dSas(v0, S)k3 ,

‖D2
ξΦv0‖ < dSas(v0, S)−k3 ,

where ξ = exp−1
v0 (v).

Proof. Choose constants k2 > 1 and δ2 > 0 satisfying the conclusions of

Proposition 8.5 and such that if dSas(v0, S) < δ2, then for every |t| ≤ t0,

sup
dSas(v,ϕt(v))≤dSas(ϕt(v),S)k2

max{‖ (RSas)v ‖, ‖ (∇RSas)v ‖} < dSas(v0, S)−k2 .

By assumption VI, there exist δ3 < min{δ2, 1/(8n)} and k′2 > k2 such that for

dSas(v0, S) < δ3 and all |t| ≤ t0,

max{‖Dv0ϕt‖, ‖Dv0ϕ−t‖} ≤ dSas(v0, S)−k
′
2 .

Proposition 7.2 implies that if ξ, ξ′ ∈ TV satisfy dSas(πV (ξ), πV (ξ′)) <

dSas(vt, S)k2 , then

dSas(Dϕt(ξ), Dϕt(ξ
′)) ≤ (8n) dSas(v0, S)−4k′2−3k2 dSas(ξ0, ξ1)

≤ dSas(v0, S)−7k′2 .dSas(ξ0, ξ1).

To bound the norm ‖D2
ξΦv0‖ it suffices to bound the Lipschitz constant of

the map DξΦv0 in a small neighborhood of ξ. This in turn is bounded by the

product of the Lipschitz constants of the three factors D exp−1
ϕt0 (v0), Dϕt0 and

D expv0 in the composition defining DξΦv0 .

The Lipschitz constants for D expv0 and D exp−1
ϕt0 (v0) are both bounded

by Proposition 8.5 on the order of dSas(v0, S)−k2 . We have just shown that the

Lipschitz constant for Dϕt0 is bounded on the order of dSas(v0, S)−7k′2 . Hence

the Lipschitz constant of DξΦv0 is bounded on the order of dSas(v0, S)−k4 for

k4 = 2k2 + 7k′2. �

This completes the verification of the hypotheses in [19] implying the

conclusions of Proposition 3.10.

8.1. Additional conditions in [19] implying finite, positive entropy. The

final conclusion of Theorem 3.1 that remains to be proved concerns the entropy

of ϕ. The positivity of the entropy follows from [19] and the hypotheses we have

just verified. Finitude of the entropy requires that an additional hypothesis

— Condition (C) — hold. As stated in [19], condition (C) is the requirement

that the capacity of the space X = T 1N be finite. In fact, a slightly weaker
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condition is required, which is given by the following proposition. Recall that

Uρ, for ρ > 0, denotes the set of v ∈ T 1N such that d(π(v), ∂N) < ρ.

Proposition 8.7. There exists q > 1 such that if ρ0 > 0 is sufficiently

small, then for any ρ < ρ0 there is a cover of T 1N \ Uρ0 by open balls of

radius ρ, whose cardinality does not exceed ρ−q .

Proof. Proposition 8.4 implies that there exist δ > 0 and k > 1 such that

for ρ0 < δ and all v ∈ T 1N \Uρ0 , the derivative of the Sasaki exponential map

Dξ expv and its inverse have norm bounded by 2 for all ‖ξ‖ < ρk0. Hence on

a ball of radius ρk0 in T 1N \ Uρ0 , the Sasaki metric is uniformly comparable

to Euclidean; in particular, the volume of a ball of radius ρ ≤ ρk0 is bounded

below by c−1ρn, where c > 1 is a universal constant.

The Vitali Covering Lemma states that if B is any collection of balls in a

metric space, then there exists a subcollection B′ ⊂ B such that the elements

of B′ are pairwise disjoint, and⋃
B∈B′

5B ⊃
⋃
B∈B

B,

where 5B denotes the ball concentric with B of 5 times the radius.

Let B be a finite cover of the set T 1N \ Uρ0 by metric balls of radius ρk,

and let B′ be a subcollection of disjoint balls supplied by the Vitali lemma.

Then the collection {5B : B ∈ B′} is a covering of T 1N \Uρ0 by balls of radius

5ρk. If ρ0 was chosen sufficiently small, then 5ρk < ρ, and the balls in this

cover can be expanded to give a cover by balls of radius ρ. The cardinality

of this cover equals the cardinality of B′; this number can be bounded above

using the volume

(
#B′

)
× (c−1ρnk) ≤

∑
B∈B′

m(B) = m

Ñ ⋃
B∈B′

B

é
≤ m(T 1N) = 1.

Thus #B′ ≤ cρ−nk for all ρ < ρ0. This implies the conclusion of the proposi-

tion, with q = nk + 1. �
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