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Global solutions for the gravity water
waves equation in dimension 3

By P. Germain, N. Masmoudi, and J. Shatah

Abstract

We show existence of global solutions for the gravity water waves equa-

tion in dimension 3, in the case of small data. The proof combines energy

estimates, which yield control of L2 related norms, with dispersive esti-

mates, which give decay in L∞. To obtain these dispersive estimates, we

use an analysis in Fourier space; the study of space and time resonances is

then the crucial point.

1. Introduction

We consider the three-dimensional irrotational water wave problem in the

presence of the gravity g. The velocity of the fluid is denoted by v. We assume

that the domain of the fluid is given by Ω = {(x, z) = (x1, x2, z) ∈ R3, z ≤
h(x, t)}, where the graph of the function h; i.e., S = {(x, h(x, t)), x ∈ R2}
represents the free boundary of the fluid which moves by the normal velocity

of the fluid. In this setting the Euler equation and the boundary conditions

are given by

Dtv
def
= ∂tv +∇vv = −∇p− ge3 (x, z) ∈ Ω,

∇ · v = 0 (x, z) ∈ Ω,
(E)

∂th+ v · ∇(x,z)(h− z) = 0 x ∈ R2,

p|S = 0.
(BC)

Since the flow is assumed to be irrotational, the Euler equation can be

reduced to an equation on the boundary, and thus the system of equations

(E-BC) reduces to a system defined on S. This is achieved by introducing the

potential ψH where v = ∇ψH. Denoting the trace of the potential on the free

boundary by ψ(x, t) = ψH(x, h(x, t), t), the system of equations for ψ and h

are [SS99]

(WW)


∂th = G(h)ψ,

∂tψ = −gh− 1
2 |∇ψ|

2 + 1
2(1+|∇h|2)

(G(h)ψ +∇h · ∇ψ)2 ,

(h, ψ)(t = 2) = (h0, ψ0),
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where G(h) =
»

1 + |∇h|2N , N being the Dirichlet-Neumann operator asso-

ciated with Ω. In the sequel we take g = 1 for simplicity.

Before stating our result we introduce the Calderón operator Λ
def
= |D|,

the complex function u
def
= h+ iΛ1/2ψ, its initial data u0

def
= h0 + iΛ1/2ψ0, and

its profile f
def
= eitΛ

1/2
u. Then

Theorem. Let δ denote a small constant and N a big enough integer.

Define the norm

||u||X
def
= sup

t≥2
t ‖u‖W 4,∞ + t−δ ‖u‖HN + t−δ ‖xf‖L2 + ‖u‖L2 .

There exists an ε > 0 such that if the data satisfies ‖e−i(t−2)Λ1/2
u0‖X < ε, then

there exists a unique global solution u of (WW) such that ‖u‖X . ε.

The estimates leading to the above theorem give easily that the solutions

scatter.

Corollary 1.1. There exists a constant C0 such that under the condi-

tions of the previous theorem, there exists f∞ ∈ HN−NC0δ∩L2(x2−C0δdx) such

that f(t)→ f∞ in HN−NC0δ ∩ L2(x2−C0δdx) as t→∞.

Some comments on the stated results. Our approach in writing this article

has not been to strive for a minimal N ; rather, we chose to give a proof as

concisely as possible, by allowing at some places losses of derivatives. The fact

that the data for (WW) are given at t = 2 does not have a deep significance; it

is simply a matter of convenience to avoid writing 1/(2 + t) when performing

estimates, since the L∞ decay of 1/t given by the linear part of the equation

is not integrable at 0. The precise conditions on the constants δ,N, ε under

which the theorem holds are, as an inspection of the proof reveals: δ less than a

universal constant δ0, 1
N . δ, and ε . δ. Finally, we notice that the condition

on u0 in the theorem is satisfied if, for instance, u0 ∈W 6,1 ∩HN ∩ L2(x2dx).

There is an extensive body of literature on local well posedness and en-

ergy estimates for (WW) in Sobolev spaces starting with the work of Nalimov

[Nal74] for small data in 2 dimensions (see also H. Yoshihara [Yos82]). The first

breakthrough in solving the well posedness for general data came in the work

of S. J. Wu [Wu97], [Wu99] who solved the problem in 2 and 3 dimensions.

There are many other works on local well posedness. We mention the work of

W. Craig [Cra85], T. J. Beal, T. Hou, and J. Lowengrub [BHL93], M. Ogawa

and A. Tani [OT02], G. Schneider and E. C. Wayne [SW02], D. Lannes [Lan05],

D. Ambrose and N. Mamoudi [AM07], [AM09], and P. Zhang and Z. Zhang

[ZZ08]. We also mention that for the full system (E), there are well posed-

ness results given by D. Christodoulou and H. Lindblad [CL00], D. Coutand

and S. Shkoller [CS07], and J. Shatah and C. Zeng [SZ08]. Recently S. J. Wu
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proved almost global existence for small data for (WW) in two space dimen-

sions [Wu09a].

Our proof of global existence is based on the method of space-time reso-

nances introduced in [GMS09]. It is the key notion to understand the long time

behavior of solutions to the water waves problem. The space-time resonance

method brings together the normal forms method [Sha85] and the vector fields

method [Kla85], and is illustrated below.

Space-time resonances. If one considers a nonlinear dispersive equation

on Rn,

∂tu = iL
(1

i
∇
)
u+ au2 + · · · ,

solutions can be represented in Fourier space in terms of Duhamel’s formula

(1.1) f̂(t, ξ) = û0(ξ) +

∫ t

0

∫
eisϕ(ξ,η)af̂(s, η)f̂(s, ξ − η) + · · · dηds,

where ϕ = −L(ξ) + L(η) + L(ξ − η), f̂(ξ) = e−iL(ξ)tû and where û denotes

the Fourier transform of u. The reason for writing the equation in terms of

f̂ rather then û is that f̂ is expected to be nonoscillatory and thus for the

quadratic terms the oscillatory behavior, is restricted to eisϕ(ξ,η).

Now consider a slightly more general situation by adding a symbol m(ξ, η)

in the above integrand, thus turning the product into a pseudoproduct (this

more general formulation will be important for the water waves problem):

(1.2) f̂(t, ξ) = û0(ξ) +

∫ t

0

∫
eisϕ(ξ,η)am(ξ, η)f̂(s, η)f̂(s, ξ − η) + · · · dηds.

• Time resonances correspond to the classical notion of resonances, which

is well known from ODE theory. Thus quadratic time resonant frequencies are

defined by

T = {(ξ, η);ϕ(ξ, η) = 0} = {(ξ, η);L(η) + L(ξ − η) = L(ξ)}.

In other words, time resonances correspond to stationary phase in s in (1.2).

In the absence of time resonant frequencies, one can integrate by parts in time

to eliminate the quadratic nonlinearity in favor of a cubic nonlinearity. The

absence of time resonances for sufficiently high degree usually indicates that

the asymptotic behavior of solutions to the nonlinear equation is similar to the

asymptotic behavior of linear solutions.

However, for dispersive equations, time resonance can only tell part of

the story. The reason is that time resonances are based upon plane wave

solutions to the linear equation ei(L(ξ)t+ξ·x), while we are usually interested in

spatially localized solutions. For this reason we introduced the notion of space

resonances.
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• Space resonances only occur in a dispersive PDE setting. The physical

phenomenon underlying this notion is the following. Wave packets correspond-

ing to different frequencies may or may not have the same group velocity. If

they do, these wave packets are called space resonant and they might interact

since they are localized in the same region of space. If they do not, they are not

space resonant and their interaction will be very limited since their space-time

supports are (asymptotically) disjoint. If one considers two linear solutions u1

and u2 whose data are wave packets localized in space around the origin and

in frequency around η and ξ − η, respectively, then the solutions u1 and u2 at

large time t will be spatially localized around (−∇L(η)t) and (−∇L(ξ − η)t).

Thus quadratic spatially resonant frequencies are defined as

S = {(ξ, η);∇L(η) = ∇L(ξ − η)} = {(ξ, η);∇ηϕ(ξ, η) = 0};

in other words, space resonances correspond to stationary phase in η in (1.2).

Spatial localization can be measured by computing weighted norms, namely∥∥∥xku(0, ·)
∥∥∥

2
=
∥∥∥∂kξ û(0, ·)

∥∥∥
2

for the data, or
∥∥∥xkf(t, ·)

∥∥∥
2

=
∥∥∥∂kξ f̂(t, ·)

∥∥∥
2

for the

solution.

This leads to the observation that if there are no space resonant frequen-

cies, then one can capture the spatial localization of the solution by integrating

by parts in η in equation (1.2).

• Space-time resonances correspond to space and time resonances occur-

ring at the same point in Fourier space. The space-time resonant set is given

by

R = T ∩S .

It is clear from the above description that the asymptotic behavior of nonlinear

dispersive equations, of the type considered here, is governed to a large part by

the space-time resonant set R. Thus if the set R 6= ∅ and the dispersive time

decay is weak, then one faces serious difficulties in proving that small solutions

exist globally and behave asymptotically like linear solutions. An important

additional structure is then provided by null forms.

• Null forms were first identified by Klainerman [Kla85] and Christo-

doulou [Chr86] for nonlinear wave equations. How can we interpret this idea

in the context of space-time resonances? A possibility is the following. In order

to estimate f in a weighted space, one has to apply ∂ξ to (1.2). Distributing ∂ξ,

different terms arise; the most difficult one carries a factor s. It corresponds

to ∂ξ hitting the phase and generates a term s∂ξφ in the integrand. To get rid

of this factor, one would like to integrate by parts, either in s, or in ξ. This is

possible under the “divisibility” condition

m(ξ, η)∂ξφ(ξ, η) = A(ξ, η)φ(ξ, η) +B(ξ, η)∂ηφ(ξ, η).
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What should be required of A and B? It is hard to give a definitive answer.

It is, of course, sufficient if they are smooth and bounded; but we only need

them to be sufficiently nice to allow the estimates to be closed. We understand

the above divisibility property as a null condition. Such a property is used, for

instance, for the quadratic term when estimating (5.2d); for the cubic term, it

is derived in (3.6) and then used to estimate (7.6d).

• Application to the water waves problem. The quadratic term can be

treated fairly easily by an integration by parts in time. We next move on

to study the cubic interactions where we have similar definitions of T , S ,

and R. The resonance structure of cubic terms is more subtle, but they can be

estimated by the same method. Notice that the integration by parts procedure,

in addition to introducing multipliers with nonsmooth symbols, introduces new

singularities due to the nonsmoothness of the dispersion relation which is given

by |ξ|
1
2 . After dealing with these difficulties, the problem is reduced to studying

the asymptotic behavior of quartic and higher order terms. But for quartic

terms, the dispersion is strong enough to overcome any effect of resonance;

thus we are able to prove global existence.

• Connection with the vector fields method. The vector fields method, in-

troduced by Klainerman [Kla85], is based on deducing decay estimates from

weighted estimates. These weighted estimates are obtained via vector fields

which commute with the equation. Conceptually, this is related to space reso-

nances, as defined above, for the following reason: In order to take advantage

of the absence of space resonances, we need to control f in weighted spaces.

At a technical level the connection might be less clear, and we would like to

make it more explicit here. By an easy computation,

xf = xe−itL(D)u = e−itL(D) [x+ t (∇L) (D)]u.

In other words, our approach could be recast in terms of the “pseudo-differential

vector field” J = x − t (∇L) (D). In the case of the water wave problem,

L(ξ) = |ξ|1/2, as we shall see, and J becomes x− 1
2 it

∇
|D|3/2 . In order to see even

more clearly the connection with the classical vector fields method, notice that

J · ∇ = x · ∇+
1

2
it|D|1/2.

Since the linear part of the equation equates ∂t to i|D|1/2, the above is effec-

tively very close to x · ∇ + 1
2 t∂t, which is the standard “scaling” vector field.

The “rotation” vector fields can be recovered in a similar fashion.

Plan of the article. In order to prove the existence result, we will prove

the a priori estimate ‖u‖X <∞.
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The organization of the article is as follows. Section 2 contains energy

estimates (control of the HN part of the X norm), using the formalism de-

veloped in [SZ08]. Most of the rest of the paper is dedicated to controlling

the L2(x2dx) and L∞ parts of the X norm. Section 3 is the first step in this

direction: the space-time resonant structure of the quadratic and cubic terms

in the nonlinearity of (WW) is studied. In Section 4, a normal form transform

is performed. This leads to distinguishing four kinds of terms: quadratic, cu-

bic weakly resonant, cubic strongly resonant, and quartic and higher-order, or

remainder terms. Quadratic terms are treated in Section 5, weakly resonant

cubic terms are treated in Section 6, strongly resonant cubic terms are treated

in Section 7, and quartic and higher-order terms are treated in Section 8.

Finally, scattering (Corollary 1.1) is proved in Section 9.

The appendices contain more technical developments needed in the main

body. Some classical harmonic analysis results are recalled in Appendix A

and results on standard pseudo-product operators are given in Appendix B.

Particular classes of bilinear and trilinear pseudo-product operators are defined

and studied in Appendices C and D respectively. Estimates on the Dirichlet-

Neumann operator are proved in Appendix E, and finally Appendix F gives

bounds on the quartic and higher order terms in the nonlinearity of (WW).

Note added after the submission of this paper. Several month after our

manuscript was submitted, S. Wu [Wu09b] uploaded a paper to arxiv.org prov-

ing global existence for a different set of data. Theorem 1 given in the present

article has some advantages over S. Wu’s:

1) The decay required at infinity from derivatives of the data is much

smaller.

2) We are able to obtain scattering.

3) The method used here is very general and could be applied to general

dispersive equations.

On the other hand, Wu’s result is more general in some respects:

1) The smallness condition on the surface elevation is imposed on its steep-

ness ∇h rather than on its amplitude h.

2) Her assumptions do not require vanishing mean/moments conditions

on the velocity.

With these type of data S. Wu was able to obtain global existence without

scattering. Our method can be easily adapted to remove the moment condition

as shown in the addendum on page 749. However removing the smallness of

the amplitude condition will require considerable more work since we based

our proof on the energy conservetion which has a term h in it.

Notation. Throughout this manuscript we will use the following notation.
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A . B or B & A means that that A ≤ C0B for a constant C0.

A ∼ B means that A . B and B . A.

A� B or B � A means that A ≤ ε0B for a small enough constant ε0.

We denote by c (respectively C) small enough (respectively big enough)

constants whose values may change from one line to the other.

We use standard function spaces; their definitions are (see Appendix A

for the definition of the Littlewood-Paley operators Pj)

• Homogeneous Besov spaces Ḃs
p,q: ‖f‖Ḃsp,q

def
= [

∑
j(2

js‖Pjf‖p)q]1/q.
• Homogeneous Hölder spaces Ċα, with 0 < α < 1: equivalent to Ḃα

∞,∞.

• Inhomogeneous Besov spaces Bs
p,q:

‖f‖Bsp,q
def
= ‖P<0f‖p +

ñ∑
j≥0

Ä
2js‖Pjf‖p

äq ô1/q

.

• Inhomogeneous Sobolev spaces W k,p: ‖f‖Wk,p
def
= ‖f‖Lp + ‖∇kf‖Lp .

• Inhomogeneous Sobolev spaces HN : equivalent to WN,2 or BN
2,2.

We also make use of the standard embedding relation between these

spaces, and first of all of the Sobolev embedding theorem: if 1 ≤ p < q ≤ ∞
and k > 2

q −
2
p , then ‖f‖p . ‖f‖Wk,q .

The energy estimate will be reproduced along the lines of [SZ08]; thus in

deriving the energy estimates we will adhere to the same notation as in [SZ08].

• A∗: the adjoint operator of an operator; A1 ·A2 = trace(A1(A2)∗) for two

operators.

• D and ∂: differentiation with respect to spatial variables.

• ∇X : the directional directive in the direction X.

• Dt = ∂t + vi∂xi : the material derivative along the particle path.

• S={(x, h(x)) ∈ R3;h : R2→R}: a surface in R3 given as the graph of h.

• Ω = {(x, z) ∈ R3; z ≤ h(x)}: the region in R3 bounded by S.

• N : the outward unit normal vector to S = ∂Ω.

• ⊥ and >: the normal and the tangential components to S of the relevant

quantities. Dw = ∇>w for any w tangent S: the covariant differentiation

on S ⊂ R3.

• Π: the second fundamental form of S, Π(w) = ∇wN ; Π(X,Y ) = Π(X)·Y .

• κ: the mean curvature of S, i.e., κ = trace Π.

• fH: the harmonic extension of f defined on S into Ω.

• N (f) = ∇NfH : S → R: the Dirichlet-Neumann operator.

• ∆S = traceD2: the Beltrami-Lapalace operator on S.

• (−∆)−1: the inverse Laplacian on Ω with zero Dirichlet data.
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The decay and weighted estimates will be carried out using harmonic

analysis techniques, where we employ standard notations and denote by

• f̂ or Ff : the Fourier transform of a function f .

• m(D)f = F−1m(ξ)(Ff)(ξ): the Fourier multiplier with symbol m. In

particular Λ = |D|.
• A(x1, . . . , xn): a smooth scalar or vector-valued function in all its argu-

ments (x1, . . . , xn).

• A(x1, . . . , xn)[y]: a function that is linear in y and smooth in (x1, . . . , xn).

• A(x1, . . . xn)[y, z]: a function that is bilinear in (y, z) and smooth in

(x1, . . . , xn).

2. Local existence and energy estimates

There are a variety of methods that have been developed to prove local

well posedness and to obtain energy estimates for (E-BC) in Sobolev spaces.

For example in [SZ11], local well posedness was established in Hm for m > 5/2.

The success of all of these methods hinges upon finding the appropriate cancel-

lations needed to isolate the highest order derivative term with the appropriate

Rayleigh-Taylor sign condition. Here we follow the method developed in [SZ08]

to obtain higher energy estimates. The idea is the following: since the system

is reduced to the boundary we apply the surface Laplacian ∆S to (BC) in-

stead of partial derivatives. This leads to an evolution equation for the mean

curvature κ.

Conserved energy. We start by deriving the conserved energy of the (E-

BC) system. Observe that the Euler system in the presence of gravity can be

written as

∂tv + v · ∇v = −∇p− ge3
def
= −∇q,

where q = pvv + ghH,

pvv ∈ Ḣ1(Ω) : −∆pvv = trace[(Dv)2] pvv
∣∣∣
S

= 0,

hH ∈ Ḣ1(Ω) : −∆hH = 0 hH
∣∣∣
S

= h.

This splitting of q is natural since pvv is the Lagrange multiplier of the volume

preserving condition (div v = 0), and g∇hH is the variational derivative of the

potential energy V =
∫

Ω∩{z>0}
−

∫
Ωc∩{z<0}

gz dxdz.

Proposition 2.1. The conservation of energy for (E-BC) system is

E =

∫
Ω

1

2
|v|2dxdz + V =

∫
S

1

2
ψNψ +

1

2
gh2(1 + |∇h|2|)−

1
2 dS = constant.
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Proof. The fact that E is conserved is a consequence of the Lagrangian

formulation of the Euler equations. Here we will present a direct proof. Dif-

ferentiating with respect to t,

dE

dt
=

∫
Ω
v · ∂v

∂t
dxdz +

∫
S

1

2
|v|2v ·N dS + g

∫
S
hv ·N dS

= −
∫

Ω
v · ∇|v|

2

2
+ v · ∇q dxdz +

∫
S

1

2
|v|2v ·N dS + g

∫
S
hv ·N dS

= −
∫
S
qv ·N dS + g

∫
S
hv ·N dS = 0. �

Note that the conservation of energy implies bounds on N
1
2ψ and on h

in L2(S). Thus to derive higher energy estimates on ψ and h, we need to

relate the Dirichlet to Neumann operator N to differentiation on S. This is

done by standard estimate on harmonic functions on Ω, which implies that as

far as estimates are concerned, N behaves like
√
−∆S plus lower order terms.

These estimates were carried out in [SZ08] without detailing explicitly how

the constants in the inequalities depend on the various norms of the solution.

Here we will detail how the constants in the energy inequalities depend on

several derivatives of the solution in the L∞ norm. For the remainder of this

section, we assume that S is given by the graph of a smooth function h and

that ‖h‖W 5,p(R2) ≤ ε0 for some 2 < p < 4 and ε0 sufficiently small. Thus for

any ` ≥ 0, we do not need to distinguish between H`(S) and H`(R2), i.e., for

any ϕ ∈ H`(S), we have

‖ϕ‖H`(S) + ‖h‖H`(S) ∼ ‖ϕ‖H`(R2) + ‖h‖H`(R2).

Proposition 2.2. For any ϕ defined on S,

‖Nϕ‖W 2,∞(R2) . ‖Dϕ‖W 3,∞ + ‖Λ
1
2ϕ‖L∞ .(2.1)

The proof of this proposition follows from standard arguments applied to

double layer potential and will be given in Appendix E. Note that inequal-

ity (2.1) can be improved by using Cα norms, however (2.1) is sufficient for our

purpose. One should compare the above proposition to the detailed behavior

of N as an analytic function of h obtained in [CN00].

Based on this proposition and the work done in [SZ08], we make the

following observations.

• Since ∆Sh = (1+|∇h|2)−2[(1+|∂2h|2)∂2
1h−2∂1h∂2h∂

2
12h+(1+|∂1h|2)∂2

2h]

and the mean curvature is given by κ = −(1+ |∇h|2)
1
2 ∆Sh, then for k ≥ ` ≥ 2,

‖h‖2H`(R2) ∼
∫
S
h2 + h(−∆`

S)h dS ∼
∫
S
h2 + κ(−∆S)`−2κ dS.

• By defining

‖ϕ‖H`+1/2(S) = ‖ϕ‖H`(R2) + ‖Λ
1
2D`ϕ‖L2(R2)
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(recall that D is the covariant derivative on S), from the single layer potential

formula (F.3) it is easy to see that

‖ϕ‖L2(S) + ‖Λϕ‖L2(R2) ∼ ‖ϕ‖L2(R2) + ‖Nϕ‖L2(R2)

and by interpolation,

‖ϕ‖H`+1/2(S) ∼ ‖ϕ‖H`(S) + ‖N
1
2D`ϕ‖L2(R2).

• For any function g defined on Ω and for any function ϕ defined on S,

D2ϕH(N,N) = N 2(ϕ)− 2∇N (−∆)−1(DNH ·D2ϕH)(2.2)

−N (N) · (N (ϕ)N +∇>ϕ),

∆g = ∆Sg + κ∇Ng +D2g(N,N) on S,(2.3)

=⇒ (−∆S −N 2)ϕ = κN (ϕ)− 2∇N (−∆)−1(DNH ·D2ϕH)(2.4)

−N (N) · (N (ϕ)N +∇>ϕ).

Consequently, from equation (2.4), N 2 is like −∆S plus lower order terms

(involving derivatives of h), since after integrating by parts twice, we have∫
S
ϕ(−∆Sϕ)− |Nϕ|2 dS

=

∫
S
κϕN (ϕ) + ϕN (N) · (N (ϕ)N +∇>ϕ) dS − 2

∫
Ω
DNH(∇ϕH) · ∇ϕH dx.

Therefore for ` ≥ 2,

‖ϕ‖2H`(S) + ‖h‖2H` ∼
∫
S
|ϕ|2 + |N `ϕ|2 dS + ‖h‖2H` .

• Since the Euler flow is assumed to be irrotational, then from [SZ08,

eq. (3.6)],

(2.5) Dtκ = −(∆S∇ψH) ·N − 2Π · ((D>|S)∇ψH),

and from Proposition 4.3 of [SZ08], we have

Proposition 2.3. ‖∇ψH‖H`−1/2(S) . ‖Dtκ‖H`−5/2(S) + ‖h‖H`−1/2 +
√
E

for ` ≥ 3.

Sketch of the proof. Since the above statement is contained in the afore

cited proposition, we will only present the idea of the proof: on S, split ν = N ·
∇∇ψH into tangential and normal components, compute the surface divergence

and curl of these quantities, and use (2.5)

−(∆S ∇ψH) ·N = Dtκ+ 2Π · ((D>∇ψH)

to obtain the stated estimate.
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Let ν> and ν⊥ denote the tangential and normal components of ν. The

tangential divergence of ν> is given by1

(2.6) D·ν> = (∆S ∇ψH)·N+(D>∇ψH)·Π = −Dtκ+O
( ∑
j=1,2

|Djψ|+|Djh|
)2

and the tangential curl by

ω>ν (X1) ·X2 = Π(X1) · (X2 · ∇∇ψH)−Π(X2) · (X1 · ∇∇ψH)(2.7)

= O
( ∑
j=1,2

|Djψ|+ |Djh|
)2
,

where {X1, X2} an orthonormal frame of TS. Thus

(2.8) ‖Dν>‖H`−5/2 . ‖Dtκ‖H`−5/2(S) + ‖Dψ‖H`−3/2 + ‖Dh‖H`−3/2 +
√
E.

To bound ν⊥ let ν̃ = NH · ∇∇ψH, and note that

Nν⊥ = ∇N (∇NH (∇ψH) ·NH)−∆−1[∆(∇NH (∇ψH) ·NH)],

D · ν> = ∇ · ν̃ − κν⊥ −∇N (∇NH (∇ψH ·NH) +N ·D(∇ψH)(N (N)).

Since ∇ · ν̃ = D(∇ψH) ·DNH, we obtain Nν⊥ = −D · ν> +O(
∑
j=1,2 |Djψ|+

|Djh|)2, which together with (2.8) imply

‖DN · ∇∇ψH‖H`−5/2(S) = ‖Dν‖H`−5/2(S) . ‖Dtκ‖H`−5/2(S)

+ ‖Dψ‖H`−3/2(S) + ‖Dh‖H`−3/2(S) +
√
E.

Since N is equivalent to one derivative in norm, we obtain the stated bound.

�

These observations imply

Proposition 2.4. Assume that v = ∇ψH and h solve the (E-BC) system.

Then for ` ≥ 3,

‖h(t)‖H`(S) + ‖v(t)‖H`−1/2(S) ∼ ‖Dtκ(t)‖H`−5/2(S) + ‖κ(t)‖H`−2(S) +
√
E.

Commutators estimates. From [SZ08], we have for any function f defined

on Ω and ϕ defined on S, and where S is moving by the normal component of

the velocity v = ∇ψH,

Dt∇f = ∇Dtf − (D2ψH)(∇f),(2.9)

DtϕH = (Dtϕ)H + ∆−1(2D2ψH ·D2ϕH),(2.10)

Dt∆
−1f = ∆−1Dtf + ∆−1(2D2ψH ·D2∆−1f).(2.11)

1Here we introduced the notation A = O(B) to mean ‖A‖Hs . ‖B‖Hs . Thus A =

O(
∑

j=1,2 |D
jψ| + |Djh|)2 imply ‖A‖Hs . (‖Dψ‖W1,∞ + ‖Dh‖W1,∞)(‖Dψ‖Hs + ‖Dh‖Hs).
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These equations lead to the following commutators formulas:

[∆S ,Dt]f = 2D2f · ((D>|TS)∇ψH) +∇>f ·∆S∇ψH − κ∇∇>f∇ψH ·N,
(2.12)

[Dt,N ]f = ∇N∆−12D2ψH ·D2fH

(2.13)

− 2D2ψH(∇fH, N) +∇fH ·ND2ψH(N,N),

which together with (2.4) imply that for s ≥ 2, these commutators are bounded

operators on spaces given in equations (4.23) and (A.14) of [SZ08]. Am-

plifications of these bounds are given in the proposition below. Recall that

u = h+ iΛ1/2ψ.

Proposition 2.5. Assume that v = ∇ψH and h solve the (E-BC) sys-

tem. Let w(t) = (Λ
1
2h(t), v(t)) defined on S. Then the following commutator

estimates hold :

‖[∆S ,Dt]f(t)‖H`(S) . ‖u(t)‖W 3,∞‖f(t)‖H`+2(S) + ‖f(t)‖W 3,∞‖w(t)‖H`+2(S),

(2.14)

‖[N ,Dt]f(t)‖H`(S) . ‖u(t)‖W 2,∞‖f(t)‖H`+1(S) + ‖f(t)‖W 2,∞‖w(t)‖H`+2(S),

(2.15)

‖[∆S ,N ]f(t)‖H`(S) . ‖u(t)‖W 4,∞‖f(t)‖H`+2(S) + ‖f(t)‖W 3,∞‖w(t)‖H`+5/2(S).

(2.16)

Proof. From equation (2.12) we note that [∆S ,Dt] is an operator of order

2 with coefficients depending on second derivatives of h and ∇ψH on S. Thus

by Hölder and Sobolev inequalities, we conclude that

‖[∆S ,Dt]f(t)‖H`(S) . (‖∇ψH‖W 2,∞ + ‖h‖W 2,∞)‖f(t)‖H`+2

+ ‖f(t)‖W 2,∞(‖∇ψH‖H`+2 + ‖h‖H`+2),

and by Proposition 2.2, we conclude that inequality (2.14) holds. The proof

of (2.15) differs from the above by the way in which we treat w = ∆−12D2ψH ·
D2fH. This is done by applying vector fields Xa, which are tangential to S, to

the equation

∆w = 2D2ψH ·D2fH, w|S = 0

to obtain ‖∇X`
aw‖L2 bounds. The proof of (2.16) is similar to the proof of

(2.15).

Remark. Proposition 2.5 holds with ` replaced by `+ 1
2 . This follows from

the definition of H`+ 1
2 .

Equation for κ and energy estimates. In the presence of gravity, the evo-

lution of κ can be derived from [SZ08] and [SZ11, §6, problem II].
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Proposition 2.6. The evolution equation of the mean curvature κ is

given by

(2.17) D2
tκ+ (−∇Np)Nκ = R,

where R = O(
∑2

0 |Dj∇ψH|2 + |Djh|2) in norm.

Proof. From [SZ08] equation (3.15), we have

D2
tκ = −Dt∆Sv ·N − 2Π · (D>|SDtv)(2.18)

+ ∆S∇ψH · (D2ψH)(N)> + 2[D
Ä
((D2ψH)(N))>

ä
+ Π((D>|S∇ψH)>)] · (D>|S∇ψH) + 2Π · (D∇ψH|S)2

− 2((D2ψH)∗(N))> ·Π((D2ψH)∗N)>).

From the equation for [Dt,∆S ], (2.14), and Euler’s equations Dtv = −∇p −
ge3, we obtain

D2
tκ = N ·∆S∇p+ R̃,

where R̃ = O(
∑2

0 |Dj∇ψH|2 + |Djh|2) in norm. Computing N ·∆S∇p,

N ·∆S∇p =N ·∆∇p+N · (∆S∇p−∆∇p)

=∇N∆p−N · (κ∇N∇p+D2(∇p)(N,N)

=∇N∆p−NH · (κH∇NH∇p+D2(∇p)(NH, NH))

=∇N∆p−∇N (κH∇NHp+D2p(NH, NH))

+∇NpNκ+ κ∇p · ∇NNH + 2D2p(N,∇NNH).

Since ∆p = −tr(Dv)2 = −1
2∆|∇ψH|2 and p|S = 0, then

‖κH∇NHp+D2p(NH, NH)‖H`(S) = ‖∆p−∆Sp‖H`(S) = ‖tr(Dv)2‖H`(S),

‖∆(κH∇NHp+D2p(NH, NH))‖H`−3/2(Ω) . ‖tr(Dv)2‖2H`+1/2(Ω)‖κ‖H`−1(S),

which implies that N ·∆S∇p = ∇NpNκ + ˜̃R, where ˜̃R = O(
∑2

0 |Dj∇ψH|2 +

|Djh|2). This gives the stated evolution equation for κ. �

Based on this equation, we define the high energy Ek(t) =
∫
S ekdS + E

for k ≥ 3 as

∫
S
ekdS =

∫
S

[N (−∆S)kDtκ](−∆S)kDtκ+ (−∇Np)|N (−∆S)kκ|2 dS

=〈N (−∆S)kDtκ, (−∆S)kDtκ〉+ 〈(−∇Np)N (−∆S)kκ,N (−∆S)kκ〉,

(2.19)

where 〈, 〉 denotes the inner product on L2(S). Note that since

q = pv,v + ghH ⇒ −∇Np = −∇Nq + gN · e3 ≥ g − cε0,

Dtκ ∈ H2k+ 1
2 , κ ∈ H2k+1 ⇒ ∇ψH ∈ H2k+ 5

2 (S), and h ∈ H2k+3,

then Ek ∼ ‖∇ψH‖2H2k+5/2(S)
+ ‖h‖2

H2k+3(S)
.
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Proposition 2.7. For t ≥ 2,

(2.20) Ek(t) . Ek(2) +

∫ t

2
‖u(s)‖W 4,∞Ek(s) ds.

Proof. To compute Dtek, we proceed as follows.

• |Dt∇Np|L∞ ≤ |u(t)|W 4,∞ . This follows from the identity ∇p = ∇pv,v +

∇hH − ge3 and the fact that

pv,v = −∆−1D2ψH ·D2ψH,

Dt∆
−1f = ∆−1Dtf + ∆−1(2D2ψHD

2∆−1f).

• DtN (∆S)kκ = NDt(−∆)kκ+ [Dt,N ](−∆S)kκ. From (2.15), we have

|〈[Dt,N ](−∆S)kκ,N (−∆S)kκ〉| ≤ |u|W 4,∞ Ek(t).

• NDt(−∆S)kκ=N (−∆S)kDtκ+
k−1∑
i=0

N (−∆S)i[Dt,−∆S ](−∆S)k−i−1κ.

Since [Dt,∆S ] is a second order operator, we have from (2.14)

〈NDt(−∆S)kκ,N (−∆S)kκ〉 = 〈N (−∆S)kDtκ,N (−∆S)kκ〉
+O(|u|W 4,∞ Ek(t)).

• Computing ∂t〈N (−∆S)kDtκ, (−∆S)kDtκ〉,

∂t〈N (−∆S)kDtκ, (−∆S)kDtκ〉 = 2〈Dt(−∆S)kDtκ,N (−∆S)kDtκ〉

+ 〈[Dt,N ](−∆S)kDtκ, (−∆S)kDtκ〉.

Since [Dt,N ] is a first order operator, we have from (2.15)

|〈[Dt,N ](−∆S)kDtκ, (−∆S)kDtκ〉| ≤ |u|W 4,∞ Ek(t).

• Dt(−∆S)kDtκ = (−∆S)kD2
tκ+

k−1∑
i=0

(−∆S)i[Dt,−∆S ](−∆S)k−i−1Dtκ.

Since [Dt,N ] is a second order operator, we have by (2.14)

〈Dt(−∆S)kDtκ,N (−∆S)kDtκ〉 = 〈(−∆S)kD2
tκ,N (−∆S)kDtκ〉

+O(|u|W 4,∞ Ek(t)).

Using equation (2.17), we obtain

d

dt
Ek = 2〈(−∇p)N (−∆S)kκ− (−∆S)k(∇Np)Nκ,N (−∆S)kDtκ〉

+O(|u|W 4,∞ Ek(t)).
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Commuting ∇Np and N with (−∆S)k and using the fact that [N ,∆S ] is a

second order operator with error bounds given in (2.16), we conclude that

d

dt
Ek(t) = O(|u|W 4,∞ Ek(t))

and thus

Ek(t) ≤ Ek(2) +

∫ t

2
C(ε0)|u|W 4,∞ Ek(t) ds. �

Thus from the assumption ‖h‖W 5,p(R2) ≤ ε0, reference [SZ11], and a lim-

iting argument to go from smooth initial data to data in HN where N =

2k + 3� 5/2, we have local well posedness and the energy estimate stated in

the above proposition.

3. Space time resonances of quadratic and cubic terms

Expanding (WW) in powers of h and ψ, setting g = 1, and keeping track

of quadratic and cubic terms, we obtain

(3.1)


∂th = Λψ −∇ · (h∇ψ)− Λ(hΛψ)

− 1
2

(
Λ(h2Λ2ψ) + Λ2(h2Λψ)− 2Λ(hΛ(hΛψ))

)
+R1,

∂tψ = −h− 1
2 |∇ψ|

2 + 1
2 |Λψ|

2 + Λψ(hΛ2ψ − Λ(hΛψ)) +R2,

whereR1 andR2 are of order 4. We refer to the book of Sulem and Sulem [SS99]

for the above expansion. (Also see the remark at the end of Appendix F.)

Writing the equation in Fourier space. Recall that

u
def
= (h+ iΛ

1
2ψ), u0

def
= e−2iΛ1/2

(h0 + iΛ
1
2ψ0),

and

f
def
= eitΛ

1/2
u = eitΛ

1/2
(h+ iΛ1/2ψ).

Writing Duhamel formula for f in Fourier space yields

f̂(t, ξ) = û0(ξ) +
∑

τ1,2=±

2∑
j=1

cj,τ1,τ2

∫ t

2

∫
eisφτ1,τ2mj(ξ, η)(3.2)

×‘f−τ1(s, η)‘f−τ2(s, ξ − η) dη ds

+
∑

τ1,2,3=±

4∑
j=3

cj,τ1,τ2,τ3

∫ t

2

∫∫
eisφτ1,τ2,τ3mj(ξ, η, σ)

×‘f−τ1(s, η)‘f−τ2(s, σ)‘f−τ3(s, ξ − η − σ) dη dσ ds

+

∫ t

2
eis|ξ|

1/2“R(s, ξ) ds,
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where cj,±,± and cj,±,±,± are complex coefficients, f+
def
= f , f−

def
= f̄ , and

R
def
= R1 + iΛ

1
2R2 is the remainder term of order 4. The phases are given by

φ±,±(ξ, η) = |ξ|1/2 ± |η|1/2 ± |ξ − η|1/2,

φ±,±,±(ξ, η, σ) = |ξ|1/2 ± |η|1/2 ± |σ|1/2 ± |ξ − η − σ|1/2,

and the multilinear symbols are defined by

m1(ξ, η)
def
=

1

|η|1/2
(ξ · η − |ξ||η|) ,

m2(ξ, η)
def
=

1

2

|ξ|1/2

|η|1/2|ξ − η|1/2
(η · (ξ − η) + |η||ξ − η|) ,

m3(ξ, η, σ)
def
= −1

2
|ξ|
Ä
|ξ − η − σ|3/2 + |ξ||ξ − η − σ|1/2

− 2|ξ − η||ξ − η − σ|1/2
ä
,

m4(ξ, η, σ)
def
= |ξ|1/2|η|1/2

Ä
|ξ − η − σ|3/2 − |ξ − η||ξ − η − σ|1/2

ä
.

Note that m1 and m2 are homogeneous of degree 3/2 and that m3 and m4

are homogeneous of degree 5/2. Also, note that since these multilinear forms

are homogeneous, we only need to estimate them on the sphere |ξ|2 + |η|2 = 1

or |ξ|2 + |η|2 + |σ|2 = 1 and extend all estimates by homogeneity. Moreover

the exact form of the above equation is not really important; thus in order to

focus on the information which is relevant to us, we shall ignore from now on

the distinction between f+ and f− whenever this notation occurs.

Examination of the quadratic symbols. The symbols m1 and m2 have two

important features: they vanish when one of the Fourier coordinates (ξ, η, or

ξ−η) is zero, and they are not smooth. These two facts are made more precise

in the following lines.

Notice that the vanishing of m1 and m2 is crucial. As we will see, it

corresponds to a null property on the time resonant set. On the other hand,

the lack of smoothness is a hindrance, since it prevents one from applying the

standard Coifman-Meyer theorem [CM78].

We always use the convention that A stands for a smooth function in all

its arguments and start with m1:

• If |η| � |ξ| ∼ 1, m1(ξ, η) = |η|1/2A
Ä
|η|1/2, η|η| , ξ

ä
.

• If |ξ| � |η| ∼ 1, m1(ξ, η) = |ξ|A
Ä
ξ
|ξ| , η

ä
.

• If |ξ − η| � |ξ| ∼ 1, m1(ξ, η) = |ξ − η|2A
Ä
|ξ − η|1/2, ξ−η|ξ−η| , ξ

ä
.

Now m2:

• If |η| � |ξ| ∼ 1, m2(ξ, η) = |η|1/2A
Ä
|η|1/2, η|η| , ξ

ä
.

• If |ξ| � |η| ∼ 1, m2(ξ, η) = |ξ|5/2A
Ä
η, ξ
ä
.

• If |ξ − η| � |ξ| ∼ 1, m2(ξ, η) = |ξ − η|1/2A
Ä
|ξ − η|1/2, ξ−η|ξ−η| , ξ

ä
.
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Space and time resonances. We define the bilinear and trilinear time res-

onant sets as

T±,± = {φ±,± = 0}, T±,±,± = {φ±,±,± = 0}

respectively. We define the bilinear and trilinear space resonant sets as

S±,± = {∇ηφ±,± = 0}, S±,±,± = {∇η,σφ±,±,± = 0}

respectively. The bilinear and trilinear space-time resonant sets are given by

R±,± = S±,± ∩T±,±, R±,±,± = S±,±,± ∩T±,±,±

respectively.

Examination of the quadratic phases. The phase φ++ = |ξ|1/2 + |η|1/2 +

|ξ − η|1/2 is better behaved than the others, since it only vanishes at (ξ, η) =

(0, 0). Therefore we focus on the three other quadratic phases, namely φ−−,

φ−+, and φ+−. Up to multiplication by −1 and permutation of the three

Fourier variables η, ξ, and ξ − η, these three phases are the same. Let us

consider

φ−−(ξ, η) = |ξ|1/2 − |η|1/2 − |ξ − η|1/2.

A small computation shows that

T−− = {η = 0 or ξ − η = 0},

and the vanishing of φ−− may be described as follows:

(3.3)

if |η| � |ξ| ∼ 1, φ−−(ξ, η) = |η|1/2A
Ç
|η|1/2, η

|η|
, ξ

å
with A(0, ·, ·) = −1

(the case ξ − η = 0 being identical up to an obvious change of variables).

Finally, along the surface {ξ = 0}, φ−− does not vanish, but is not smooth:

(3.4)

if |ξ| � |η| ∼ 1, φ−−(ξ, η) = A
Ç
|η|1/2, η

|η|
, ξ

å
+ |ξ|1/2A′

Ç
|η|1/2, η

|η|
, ξ

å
with A(0, ·, ·) = −2|η|1/2. As we shall see, it turns out that quadratic terms

can be treated simply by a normal form transform, thus there is no need to

investigate the quadratic space resonant set.

Examination of the cubic phases. Cubic phases fall into two categories.

Some have relatively few time resonances, which we call ‘weakly resonant

phases,’ and some give a large space-time resonant set, which we call ‘strongly

resonant phases.’
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The weakly resonant phases : φ+++, φ−++, φ+−+, φ++−, φ−−−. As in the

case of quadratic phases, the phase φ+++ = |ξ|1/2+|η|1/2+|σ|1/2+|ξ−η−σ|1/2
is easily dealt with, since it only vanishes at (ξ, η, σ) = (0, 0, 0).

The four other quadratic phases, φ−++, φ+−+, φ++−, φ−−−, are identical,

up to multiplication by −1 and permutation of the four Fourier variables ξ, η,

σ, ξ − η − σ. Let us therefore focus on

φ−−−(ξ, η, σ) = |ξ|1/2 − |η|1/2 − |σ|1/2 − |ξ − η − σ|1/2.

It is easily seen that

T−−− = {η = σ = 0 or σ = ξ − η − σ = 0 or η = ξ − η − σ = 0}.

The vanishing of φ−−− on this set can be more precisely described as follows:

(3.5) if |η|, |σ| � |ξ| ∼ 1, φ−−− = −|η|1/2 − |σ|1/2 +A(ξ, η, σ)[η + σ].

(Recall that A(ξ, η, σ)[η + σ] stands for a function smooth in its three first

arguments and linear in the fourth.) The other cases σ = ξ − η − σ = 0 and

η = ξ − η − σ = 0 are the same up to a change of variables. Finally, φ−−− is

not smooth along the axes {ξ = 0}⋃{η = 0}⋃{σ = 0}⋃{ξ − η− σ = 0}. In a

neighborhood of these axes it can be written in a form similar to (3.4).

As for the quadratic phases, it turns out that a normal form transform

is sufficient to treat the weakly resonant cubic terms; therefore, we do not

investigate the space resonant set.

The strongly resonant phases : φ−−+, φ−+−, φ+−−. Once again, these

three phases are identical up to a permutation of the Fourier variables η, σ,

and ξ − η − σ. We therefore focus on one of them, namely

φ−−+ = |ξ|1/2 − |η|1/2 − |σ|1/2 + |ξ − η − σ|1/2.

In this case, the time resonant T−−+ set has dimension 5, and φ−−+ vanishes

at order 1 on it. This makes a normal form transform almost necessarily

unbounded. We therefore need to turn to the space resonant set, which is

S−−+ = {ξ = η = σ},

and this set is contained in T−−+. In other words, S−−+ = R−−+ and it has

dimension equal to 2 and the phase vanishes at order 1. Therefore an argument

based on an integration by parts in the η and σ seems doomed to fail.
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The way out of this problem appears if one develops ∂ξφ−−+, ∂ηφ−−+ and

∂σφ−−+ in a neighborhood of S−−+. Namely, if |η − ξ|, |σ − ξ| � |ξ| ∼ 1,

∂ηφ−−+ =
1

2
|ξ|3/2

(
(σ − ξ) +

3

2
(ξ − σ) · ξ

|ξ|
ξ

|ξ|
+A(ξ, η, σ)[(η − ξ, σ − ξ), (η − ξ, σ − ξ)]

)
,

∂σφ−−+ =
1

2|ξ|3/2
(
(η − ξ) +

3

2
(ξ − η) · ξ

|ξ|
ξ

|ξ|
+A(ξ, η, σ)[(η − ξ, σ − ξ), (η − ξ, σ − ξ)]

)
,

∂ξφ−−+ =
1

2|ξ|3/2
(
(2ξ − η − σ) +

3

2
(η + σ − 2ξ) · ξ

|ξ|
ξ

|ξ|
+A(ξ, η, σ)[(η − ξ, σ − ξ), (η − ξ, σ − ξ)

)
.

(In the above expressions, A is smooth in the three first arguments and bilinear

in the arguments between brackets.) The above expressions imply that ∂ξφ =

−∂ηφ− ∂σφ up to second order terms. Therefore, if |η − ξ|, |σ − ξ| � |ξ| ∼ 1,

(3.6) ∂ξφ−−+ = A(ξ, η, σ)[∂ηφ−−+, ∂σφ−−+].

This identity will enable us to convert ξ derivatives of φ into η and σ derivatives

of φ. The former occur when applying ∂ξ to our multilinear expression (which

corresponds to the x weight) and are problematic since they come with a t or

s factor. The latter are harmless; an integration by parts gets rid of them. See

Section 7 for the details.

4. Normal form transform

Integrate by parts in s the quadratic terms of (3.2) with the help of the

formula 1
iφ±,±

∂se
isφ±,± = eisφ±,± . Doing so, the ∂s derivative will hit f̂(s, η) or

f̂(s, ξ−η); then use (3.2) to substitute for ∂sf̂(s, η) or ∂sf̂(s, ξ−η). This gives∫ t

2

∫
eisφτ1,τ2ml(ξ, η)f̂(s, η)f̂(s, ξ − η) dηds

=

∫
eisφτ1,τ2

ml(ξ, η)

iφτ1,τ2
f̂(s, η)f̂(s, ξ − η) dη

òt
2

−
∫ t

2

∫
eisφτ1,τ2

ml(ξ, η)

iφτ1,τ2
∂s
î
f̂(s, η)f̂(s, ξ − η)

ó
dηds

=

∫
eisφτ1,τ2

ml(ξ, η)

iφτ1,τ2
f̂(s, η)f̂(s, ξ − η) dη

òt
2

−
∑

τ̃1,τ̃2=±

∑
j=1,2

c
τ̃1,τ̃2,j

×
ß∫ t

2

∫∫
e
isφ

τ1,τ̃1,τ̃2
ml(ξ, η)

iφτ1,τ2
mj(ξ − η, σ)f̂(s, η)f̂(s, σ)f̂(s, ξ − η − σ) dη dσ ds

+

∫ t

2

∫∫
eis(|ξ|

1/2+τ1|η|1/2)ml(ξ, η)

iφτ1,τ2
f̂(s, η)“Q(ξ − η) dη ds

™
+ {symmetric terms},
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where the “symmetric terms” come from the fact that ∂s may hit either

f̂(s, ξ − η) or f̂(s, η). Thus these symmetric terms look very much like the

above ones with η and ξ − η exchanged. The term Q corresponds to terms of

order 3 and higher in e−itΛ
1/2
∂tf , i.e.,“Q(t, ξ)

def
=

∑
τ1,2,3=±

4∑
j=3

ci,τ1,τ2,τ3∫∫
mj(ξ, η, σ)û(t, η)û(t, σ)û(t, ξ − η − σ) dη dσ + “R(t, ξ).

The normal form transform that we just performed gives quadratic (without

time integration), cubic, and higher order terms. Also, cubic and higher order

terms occurring in (3.2) need to be taken into account. In the end, we see that

f can be written as a sum of quadratic terms of the type

(4.1)

∫
eitφ±,±

ml(ξ, η)

iφ±,±
f̂(t, η)f̂(t, ξ − η) dη

∣∣∣∣∣
t

2

with l = 1, 2

(here it is understood that the symbol ± stands each time for either + or −),

cubic terms of the type

∫ t

2

∫∫
eisφ±,±,±

ml(ξ, η)

iφ±,±
mj(ξ − η, σ)f̂(s, η)f̂(s, σ)f̂(s, ξ − η − σ) dη dσ ds

(4.2a)

with l, j = 1, 2,∫ t

2

∫∫
eisφ±,±,±ml(ξ, η, σ)f̂(s, η)f̂(s, σ)f̂(s, ξ − η − σ) dη dσ ds(4.2b)

with l = 3, 4, and terms of order 4 of the type∫ t

2
eis|ξ|

1/2“R(s, ξ) ds,(4.3a) ∫ t

2

∫∫
eis(|ξ|

1/2+τ1|η|1/2)ml(ξ, η)

iφτ1,τ2
f̂(s, η)“Q(s, ξ − η) dη ds.(4.3b)

In the sequel, g1 will denote a generic quadratic term (without time inte-

gration) of the type (4.1), g2 will denote a generic cubic term of the type (4.2a)

or (4.2b) with a weakly resonant phase (see the definition in §3), g3 will denote

a generic cubic term of the type (4.2a) or (4.2b) with a strongly resonant phase,

and g4 will denote terms of order 4 (or higher) of the type (4.3a) or (4.3b).

The next four sections will be devoted to the proof the following proposition.

Proposition 4.1. Assume that ‖u‖X . ε. Then for 1 ≤ i ≤ 4, we have

sup
t≥2

t
∥∥∥e−itΛ1/2

gi
∥∥∥
W 4,∞

+ t−δ ‖xgi‖L2 ≤ ‖u‖2X .
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The proof of this proposition will be given in Sections 5-8 respectively for

g1, g2, g3 and g4. This will end the proof of our main theorem 1 since the

estimates of ‖u‖L2 and t−δ‖u‖HN were proved in Section 2.

5. Estimates for the quadratic terms

In this section, we prove Proposition 4.1 for the term g1. We derive the

desired estimates in L∞ and L2(x2dx) for terms of the form (4.1). We recall

that we denote a generic term of this type by

(5.1) “g1(t, ξ)
def
=

∫
eitφµ(ξ, η)f̂(t, η)f̂(t, ξ − η) dη,

where

φ
def
= φ±,± and µ(ξ, η)

def
=

ml(ξ, η)

iφ±,±
,

with the index l equal to 1 or 2, and ± either + or −. The estimate for the other

term coming from (4.1), namely
∫
ei2φµ(ξ, η)f̂(2, η)f̂(2, ξ − η) dη, is trivial.

Of course, we adopt this lighter notation because the precise value of ±
or l will not affect the argument which follows.

Preliminary observations and reductions. Let us first consider the symbol

µ(ξ, η) occurring in the definition of g1. Regardless of the precise indices l and

±,±, it is

• homogeneous of degree 1,

• smooth if none of η, ξ, ξ − η vanish,

• of the form µ(ξ, η) = A
(
|η|1/2, η|η| , ξ

)
if |η| � |ξ| ∼ 1,

• of the form µ(ξ, η) = A
(
|ξ − η|1/2, ξ−η|ξ−η| , ξ

)
if |ξ − η| � |ξ| ∼ 1,

• of the form µ(ξ, η) = |ξ|1/2A
(
|ξ|1/2, ξ|ξ| , η

)
if |ξ| � |η| ∼ 1.

The last three points follow from the developments given in Section 3. Thus

we conclude that µ belongs to the class B1; see Appendix C for the definition.

Next, define a cut off function χ(ξ, η) which is valued in [0, 1], homoge-

neous of degree 0, smooth outside of (0, 0), and such that χ(ξ, η) = 0 in a

neighborhood of {η = 0} and χ(ξ, η) = 1 in a neighborhood of {ξ − η = 0} on

the sphere. Then one can split g1 as follows:“g1(ξ) =

∫
eitφχ(ξ, η)µ(ξ, η)f̂(t, η)f̂(t, ξ − η) dη

+

∫
eitφ [1− χ(ξ, η)]µ(ξ, η)f̂(t, η)f̂(t, ξ − η) dη.

By symmetry, it suffices to consider the first term of the above right-hand side,

which corresponds to a region where |η| & |ξ|, |ξ − η|. (The interest of that
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condition is that ξ derivatives always hit f̂(ξ − η), which corresponds to low

frequencies.) Thus in the following, we shall consider that“g1(ξ) =

∫
eitφχ(ξ, η)µ(ξ, η)f̂(t, η)f̂(t, ξ − η) dη,

which means in physical space, using the notation introduced in Appendix B,

that

g1 = eitΛ
1/2
Bχµ(u, u).

Actually, depending on the ±,± appearing in φ±,±, the u can be u or ū; but

as indicated in Section 3, for simplicity of notation, we ignore this distinction.

Also, it is important to notice here that µχ ∈ B̃1, , since µ ∈ B1 and χ ∈ B̃0.

Quantities controlled by the X norm. Before estimating the term g1 in X,

we give some general estimates that will be useful in the whole proof. Inter-

polating between the different components of the X norm gives the following

lemma. Let Pj , P>j , P≤j denote the Littlewood-Paley projections defined in

Section A.

Lemma 5.1. (i) If 2 ≤ p ≤ ∞ and k < N + 2
p − 1, then ‖∇kP>ju‖p .

2
j
(
−N+k+1− 2

p

)
tδ‖u‖X .

(ii) If 2 ≤ p≤∞ and k < N+ 2
p−1, then ‖∇ku‖p . t

−1+ 2
p

+ k

N+2
p−1

[
δ− 2

p
+1
]
‖u‖X .

(iii) If 1 < p ≤ 2, then ‖f‖p . t
(
2
p
−1
)
δ‖u‖X .

Proof. The proof of (i) is a standard application of (A.1) and (A.2):∥∥∥∇kP>ju∥∥∥
p
≤
∑
`>j

2`k ‖P`u‖p .
∑
`>j

2
`(−N+k+1− 2

p
)‖u‖HN

. 2
j(−N+k+1− 2

p
)‖u‖HN . 2

j(−N+k+1− 2
p

)
tδ‖u‖X .

For (ii), we estimate separately low and high frequencies:

‖∇ku‖p ≤ ‖P≤j∇ku‖p + ‖P>j∇ku‖p . 2jk‖u‖p + 2
j(−N+k+1− 2

p
)
tδ‖u‖X

. 2jkt
−1+ 2

p ‖u‖X + 2
j(−N+k+1− 2

p
)
tδ‖u‖X .

Optimizing the above inequality over j gives the desired conclusion. Finally,

(iii) follows from interpolating Lp spaces between weighted L2 spaces. �

Bound for ∇ke−itΛ1/2
g1 in L∞ with 0 ≤ k ≤ 4. The idea for this estimate,

as for many estimates which follow, is to use Sobolev embedding in order to

make sure that Lebesgue indices are finite when applying Theorem C.1.
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Using successively Sobolev embedding, Theorem C.1, and Lemma 5.1, one

gets ∥∥∥∇ke−itΛ1/2
g1

∥∥∥
∞
.
∥∥∥∇ke−itΛ1/2

g1

∥∥∥
W 1,8

=
∥∥∥∇kBχµ(u, u)

∥∥∥
W 1,8

. ‖Λk+1u‖W 1,16‖u‖16 .
1

t
‖u‖2X .

Bound for xg1 in L2. In Fourier space, xg1 reads

F(xg1) =∂ξ

ï∫
eitφχ(ξ, η)µ(η, ξ)f̂(t, η)f̂(t, ξ − η) dη

ò
(5.2a)

=

∫
eitφχ(ξ, η)µ(η, ξ)f̂(t, η)∂ξ f̂(t, ξ − η) dη(5.2b)

+

∫
eitφ∂ξ [χ(ξ, η)µ(η, ξ)] f̂(t, η)f̂(t, ξ − η) dη(5.2c)

+

∫
eitφt∂ξφ(ξ, η)χ(ξ, η)µ(η, ξ)f̂(t, η)f̂(t, ξ − η) dη.(5.2d)

Bound for (5.2b) in L2. Using successively Sobolev embedding, Theo-

rem C.1, and Lemma 5.1, one gets

‖(5.2b)‖2 =
∥∥∥Bχµ (u, e±itΛ1/2

xf
)∥∥∥

2
.
∥∥∥Bχµ (u, e±itΛ1/2

xf
)∥∥∥

W 1, 43

. ‖Λu‖W 1,4 ‖xf‖2 . ‖u‖
2
X .

Bound for (5.2c) in L2. Let us take a closer look at χ(ξ, η)µ(η, ξ). This

is a symbol in B̃1, which furthermore vanishes at order 1
2 in ξ = 0. Therefore,

by Lemma C.3,

∂ξ [χ(ξ, η)µ(η, ξ)]=µ1 +
1

|ξ|1/2
µ2 +

1

|ξ − η|
µ3 with (µ1, µ2, µ3) ∈ B̃0×B̃1/2×B̃1.

Thus

(5.2c) =

∫
eitφµ1(η, ξ)f̂(t, η)f̂(t, ξ − η) dη(5.3a)

+

∫
eitφ

1

|ξ|1/2
µ2(η, ξ)f̂(t, η)f̂(t, ξ − η) dη(5.3b)

+

∫
eitφ

1

|ξ − η|
µ3(η, ξ)f̂(t, η)f̂(t, ξ − η) dη.(5.3c)

The term (5.3a) is easily estimated, so we skip it, and consider next the

term (5.3b):

‖(5.3b)‖2 =

∥∥∥∥ 1

Λ1/2
Bµ2(u, u)

∥∥∥∥
2
. ‖Bµ2(u, u)‖4/3 .

∥∥∥Λ1/2u
∥∥∥

4
‖u‖2 . ‖u‖

2
X .
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Finally, we need to estimate the term (5.3c). By Theorem C.1 and Lemma A.1,

‖(5.3c)‖2 =

∥∥∥∥Bµ3 Åu, eitΛ1/2 1

Λ
f

ã∥∥∥∥
2
. ‖Λu‖4

∥∥∥∥eitΛ1/2 1

Λ
f

∥∥∥∥
4

. ‖Λu‖4 ‖f‖4/3 . ‖u‖
2
X .

Bound for (5.2d) in L2. Since ∂ξφ = 1
2

ξ
|ξ|3/2 ±

1
2

ξ−η
|ξ−η|3/2 , and keeping in

mind that µ vanishes at order 1/2 in ξ, the symbol appearing in (5.2d) can be

written

∂ξφ(ξ, η)χ(ξ, η)µ(η, ξ)
def
= µ1(ξ, η) +

1

|ξ − η|1/2
µ2(ξ, η) with (µ1, µ2)∈B̃1/2×B̃1.

We show how to estimate the term associated to the symbol 1
|ξ−η|1/2µ2(ξ, η),

the symbol µ1(ξ, η) being easier to treat. Using successively Theorem C.1,

Lemma A.1, and Lemma 5.1, one gets∥∥∥∥∥F
∫
eitφt

1

|ξ − η|1/2
µ2f̂(t, η)f̂(t, ξ − η) dη

∥∥∥∥∥
2

= t

∥∥∥∥Bµ2 Åu, e±itΛ1/2 1

Λ1/2
f

ã∥∥∥∥
2

. t ‖Λu‖ 1
δ0

∥∥∥∥e±itΛ1/2 1

Λ1/2
f

∥∥∥∥
2

1−2δ0

. t ‖Λu‖ 1
δ0

‖f‖ 4
3−4δ0

. tt
−1+2δ0+ 1

N+2δ0−1
[1−2δ0+δ]

t(
1
2
−2δ0)δ‖u‖2X

. tδ‖u‖2X ,

where δ0 > 0 denotes a small constant. Notice that the last inequality holds

since N and δ0 have been picked to be large and small enough respectively.

6. Estimates for the weakly resonant cubic terms

In this section, we prove Proposition 4.1 for the term g2. We derive the de-

sired estimates in L∞ and L2(x2dx) for terms of the form either (4.2a) or (4.2b)

corresponding to weakly resonant phases as defined in Section 3. We recall that

we denote a generic term of this type by

(6.1) “g2(ξ, t)
def
=

∫ t

2

∫∫
eisφµ(ξ, η, σ)f̂(s, σ)f̂(s, η)f̂(s, ξ − η − σ) dη dσ ds,

where

φ = φ+++ or φ−++ or φ+−+ or φ++− or φ−−−



SOLUTIONS FOR THE GRAVITY WATER WAVES EQUATION 715

and

µ(ξ, η, σ) = mi(ξ, η, σ) or
mk(ξ, η)

iφ±,±(ξ, η)
mj(ξ − η, σ)

or
mk(ξ, ξ − η)

iφ±,±(ξ, ξ − η)
mj(ξ − η, σ),

with the indices i equal to 3 or 4, j, k equal to 1 or 2, and ± equal to + or −.

Of course, we adopt this lighter notation because the precise form of φ or

µ will not affect the argument which follows.

Preliminary observations and reductions. Start with the symbol µ(ξ, η, σ)

occurring in the definition of g2, regardless of its precise form. From Section 3

and the observations at the beginning of Section 5, we have

• it is homogeneous of degree 5/2 in (ξ, η, σ);

• it is smooth except on {ξ = 0} ∪ {η = 0} ∪ {σ = 0} ∪ {ξ − η − σ

= 0} ∪ {ξ − η = 0};
• it might have a singularity for ξ − η = 0 of type, in the worst possible

case, |ξ − η|1/2;

• it vanishes to order (at least) 1/2 in ξ;

• it belongs to the class T5/2 (see Appendix D for the definition).

Next, define cutoff functions χ1, χ2, χ3 such that

• χ1, χ2, χ3 are valued in [0, 1] and χ1 + χ2 + χ3 = 1,

• χ1, χ2, χ3 are homogeneous of degree 0 and smooth outside of (0, 0, 0),

• χ1(ξ, η, σ) = 0 in a neighborhood of {σ = 0},
• χ2(ξ, η, σ) = 0 in a neighborhood of {η = 0},
• χ3(ξ, η, σ) = 0 in a neighborhood of {ξ − η − σ = 0}.

Then one can split g2 as follows:“g2(ξ) =
3∑

k=1

∫ t

2

∫∫
eisφχk(ξ, η, σ)µ(ξ, η, σ)f̂(s, σ)f̂(s, η)f̂(s, ξ − η − σ) dη dσ ds.

By symmetry, it suffices to consider the first summand (k = 1) of the above

right-hand side, which corresponds to the region |σ| & |ξ|, |η|, |ξ− η−σ|. (The

interest of that condition is that ξ derivatives always hit f̂(ξ−η−σ), which cor-

responds thus to low frequencies.) Thus in the following, we shall consider that“g2(ξ) =

∫ t

2

∫∫
eisφχ1(ξ, η, σ)µ(ξ, η, σ)f̂(s, η)f̂(s, σ)f̂(s, ξ − η − σ) dη dσ ds.

Since χ1 ∈ ‹T0 and µ ∈ T5/2, in the estimates that follow we will constantly use

that χ1µ ∈ ‹T5/2.

Finally, we will need the following lemma.
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Lemma 6.1. If φ is either φ+++, φ−++, φ+−+, φ++−, or φ−−−, then 1
φ

can be written as

(6.2)
1

φ
= ν0 +

1

|ξ|1/2
ν1 +

1

|η|1/2
ν2 +

1

|σ|1/2
ν3 +

1

|ξ − η − σ|1/2
ν4,

where (ν0, ν1, ν2, ν3, ν4) ∈ T−1/2 × T0 × T0 × T0 × T0.

Proof. Relies on (3.5). �

Remark. Depending on which one of φ+++, φ−++, φ+−+, φ++−, or φ−−−
is considered, one of the four symbols (ν1, ν2, ν3, ν4) can be taken equal to 0.

Control of e−itΛ
1/2
∂tf . The normal form transformation, i.e., integrating

by part with respect to time, introduces terms of the type e−itΛ
1/2
∂tf . This

explains the importance of the following lemma.

Lemma 6.2. If 2 ≤ p <∞ and 0 ≤ k ≤ 10, then

∥∥∥∇ke−itΛ1/2
∂tf

∥∥∥
p
. t
−2+ 2

p
+

k+5
2

N+1
p−1

(1− 1
p

+δ)
‖u‖2X .

Proof. Differentiating (3.2) with respect to t and applying e−itΛ
1/2

gives

that e−itΛ
1/2
∂tf is a sum of terms of the type∫

mj(ξ, η)û(t, η)û(t, ξ − η) dη j = 1, 2,(6.3a) ∫∫
mj(ξ, η, σ)û(t, η)û(t, σ)û(t, ξ − η − σ) dη dσ j = 3, 4(6.3b)

plus remainder terms. With the usual justifications,

∥∥∥∇k(6.3a)
∥∥∥
p
.
∥∥∥Λk+3/2u

∥∥∥
2p
‖u‖2p . t

−2+ 2
p

+
k+3

2
N+1

p−1
(1− 1

p
+δ)
‖u‖2X ,

∥∥∥∇k(6.3b)
∥∥∥
p
.
∥∥∥Λk+5/2u

∥∥∥
3p
‖u‖3p ‖u‖3p . t

−3+ 2
p

+
k+5

2
N+ 2

3p−1
(1− 2

3p
+δ)

‖u‖3X ,

and the estimate follows by using Proposition F.1 for the remainder terms. �

Bound for ∇ke−itΛ1/2
g2 in L∞ for 0 ≤ k ≤ 4. Integrating by parts in s

in (6.1), using the relation 1
iφ∂se

isφ = eisφ gives“g2(t, ξ) =

∫∫
eisφ

1

iφ
χ1(ξ, η, σ)µ(ξ, η, σ)f̂(s, σ)f̂(s, η)f̂(s, ξ − η − σ) dη dσ

òt
2

−
∫ t

2

∫∫
eitφ

1

iφ
χ1(ξ, η, σ)µ(ξ, η, σ)∂s

î
f̂(s, σ)f̂(s, η)f̂(s, ξ − η − σ)

ó
dη dσ ds.

The boundary term at s = 2 is determined by the initial data and is easy to

estimate. Next, replace 1
iφ by its decomposition on the right-hand side of (6.2).
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The term ν0 is harmless of course, and so is the term 1
|ξ|1/2 ν1, due to the van-

ishing of µ in ξ at order 1/2. The three remaining terms can be treated in

essentially the same way; thus for the sake of illustration, we only retain the

term 1
|η|1/2 ν2(ξ, η, σ). Furthermore, if one distributes the ∂s derivative occur-

ring in the second summand of the above right-hand side, it suffices to consider

one of the three resulting terms; we choose to consider the case where ∂s hits

f̂(s, σ). Thus F∇ke−itΛ1/2
g2 can be written as a sum of terms of the type∫∫

ξk
1

|η|1/2
ν2χ1µû(t, σ)û(t, η)û(t, ξ − η − σ) dη dσ,(6.4a) ∫ t

2

∫∫
ξke−i(t−s)|ξ|

1/2
(6.4b)

× 1

|η|1/2
ν2χ1µe

±is|σ|1/2∂sf̂(s, σ)û(s, η)û(s, ξ − η − σ) dη dσ ds.

Using successively Sobolev embedding, Theorem D.1, and Lemma A.1, we get

∥∥∥∇kF−1(6.4a)
∥∥∥
∞

=

∥∥∥∥∇kBν2µχ1

Å
u,

1

Λ1/2
u, u

ã∥∥∥∥
∞

.
∥∥∥∥∇kBν2µχ1

Å
u,

1

Λ1/2
u, u

ã∥∥∥∥
W 1,8

.
∥∥∥Λ5/2+ku

∥∥∥
W 1,24

∥∥∥∥ 1

Λ1/2
u

∥∥∥∥
24
‖u‖24

.
∥∥∥Λ5/2+ku

∥∥∥
W 1,24

‖u‖24/7 ‖u‖24 .
1

t
‖u‖3X .

In order to estimate (6.4b), we split it into two pieces:
∫ t−1

2 and
∫ t
t−1. The first

summand is estimated using the dispersive estimate of Lemma A.1 and point

(ii) of Theorem D.1:∥∥∥∥∥F−1
∫ t−1

2

∫∫
ξke−i(t−s)|ξ|

1/2

× 1

|η|1/2
ν2χ1µe

±is|σ|1/2∂sf̂(s, σ)û(s, η)û(s, ξ − η − σ) dη dσ ds

∥∥∥∥∥
∞

.
∫ t−1

2

ds

t− s

∥∥∥∥∥∇kBν2µχ1

Ç
e±isΛ

1/2
∂sf,

1

Λ
1
2

u, u

å∥∥∥∥∥
B2

1,∞

.
∫ t−1

2

ds

t− s

∥∥∥Λk+5/2∂sf
∥∥∥
H2

∥∥∥∥ 1

Λ
1
2

u

∥∥∥∥
4

‖u‖4

.
∫ t−1

2

1

t− s

∥∥∥Λk+5/2∂sf
∥∥∥
H2
‖u‖2 ‖u‖4 ds .

1

t
‖u‖3X .
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The second summand is estimated via Sobolev embedding:∥∥∥∥∥F−1
∫ t

t−1

∫∫
ξke−i(t−s)|ξ|

1/2
(6.5)

× 1

|η|1/2
ν2χ1µe

±is|σ|1/2∂sf̂(s, σ)û(s, η)û(s, ξ − η − σ) dη dσ ds

∥∥∥∥∥
∞

.
∫ t

t−1

∥∥∥∥∇kBν2µχ1

Å
e±isΛ

1/2
∂sf,

1

Λ1/2
u, u

ã∥∥∥∥
H2

ds

.
∫ t

t−1

∥∥∥Λk+2e±isΛ
1/2
∂sf

∥∥∥
W 2,4

∥∥∥∥ 1

Λ1/2
u

∥∥∥∥
8
‖u‖8 ds

.
∫ t

t−1

∥∥∥Λk+2e±isΛ
1/2
∂sf

∥∥∥
W 2,4
‖u‖8/3 ‖u‖8 ds .

1

t
‖u‖3X .

Bound for xg2 in L2. In Fourier space, xg2 reads

F(xg2) =∂ξ

ñ∫ t

2

∫∫
eisφχ1µf̂(s, σ)f̂(s, η)f̂(s, ξ − η − σ) dη dσ ds

ô
(6.6a)

=

∫ t

2

∫∫
eisφχ1µf̂(s, σ)f̂(s, η)∂ξ f̂(s, ξ − η − σ) dη dσ ds(6.6b)

+

∫ t

2

∫∫
eisφ∂ξ(χ1µ)f̂(s, σ)f̂(s, η)f̂(s, ξ − η − σ) dη dσ ds(6.6c)

+

∫ t

2

∫∫
eisφs(∂ξφ)χ1µf̂(s, σ)f̂(s, η)f̂(s, ξ − η − σ) dη dσ ds.(6.6d)

Bound for (6.6b) in L2. Using successively Sobolev embedding, Theo-

rem D.1, and Lemma 5.1, one gets

‖(6.6b)‖2 =

∥∥∥∥∥
∫ t

2
∇kBχ1µ

(
u, u, e±itΛ

1/2
xf
)
ds

∥∥∥∥∥
2

.
∫ t

2

∥∥∥∇kBχ1µ

(
u, u, e±itΛ

1/2
xf
)∥∥∥

W 1,4/3
ds

.
∫ t

2

∥∥∥Λk+5/2u
∥∥∥
W 1,8
‖u‖8 ‖xf‖2 ds . ‖u‖

3
X .

Bound for (6.6c) in L2. Let us look more closely at the symbol χ1µ. It

belongs to T 5/2, but it is a bit smoother than general symbols of this class;

namely, it has (in the worst case) a singularity of type |ξ−η|1/2 at ξ−η = 0, it

vanishes at order 1/2 in ξ, and it is smooth for ξ−σ = 0 and η+σ = 0. Combin-

ing these observations with Lemma D.3, we deduce that ∂ξ(χ1µ) can be written

∂ξ [(χ1µ)(ξ, η, σ)] = µ1 +
1

|ξ|1/2
µ2 +

1

|ξ − η|1/2
µ3 +

1

|ξ − η − σ|
µ4,
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with (µ1, µ2, µ3, µ4) ∈ ‹T3/2 × ‹T2 × ‹T2 × ‹T5/2. Thus

(6.6c) =

∫ t

2

∫∫
eisφµ1f̂(s, σ)f̂(s, η)f̂(s, ξ−η−σ) dη dσ ds(6.7a)

+

∫ t

2

∫∫
eisφ

1

|ξ|1/2
µ2f̂(s, σ)f̂(s, η)f̂(s, ξ−η−σ) dη dσ ds(6.7b)

+

∫ t

2

∫∫
eisφ

1

|ξ − η|1/2
µ3f̂(s, σ)f̂(s, η)f̂(s, ξ−η−σ) dη dσ ds(6.7c)

+

∫ t

2

∫∫
eisφ

1

|ξ−η−σ|
µ4f̂(s, σ)f̂(s, η)f̂(s, ξ−η−σ) dη dσ ds.(6.7d)

The term (6.7a) is easily estimated, thus we skip it and focus first on (6.7b)

and (6.7c). These two terms can be estimated in essentially the same way, ex-

cept that fractional integration is handled for the former with Lemma A.1 and

for the latter with Proposition D.4. We simply show how to deal with (6.7c):

using Proposition D.4,

‖(6.7c)‖2 ≤
∫ t

2

∥∥∥∥B 1

|ξ−η|1/2
µ3(u, u, u)

∥∥∥∥
2

ds .
∫ t

2

∥∥∥Λ2u
∥∥∥

4
‖u‖4 ‖u‖4 ds . ‖u‖

3
X .

Finally, the term (6.7d) is estimated in a very similar way to (5.3c), thus we

skip it.

Bound for (6.6d) in L2. First compute ∂ξφ =
1

2

ξ

|ξ|3/2
± 1

2

ξ − η − σ
|ξ − η − σ|3/2

.

Therefore

(6.6d)=

∫ t

2

∫∫
eisφs

1

2

ξ

|ξ|3/2
χ1µf̂(s, σ)f̂(s, η)f̂(s, ξ−η−σ) dη dσ ds(6.8a)

−
∫ t

2

∫∫
eisφs

1

2

ξ−η−σ
|ξ − η − σ|3/2

χ1µf̂(s, σ)f̂(s, η)f̂(s, ξ−η−σ) dη dσ ds.(6.8b)

Observe that in the term (6.8a), the singularity 1
2

ξ
|ξ|3/2 is cancelled by the

vanishing of the symbol χ1µ in ξ. In other words, the symbol 1
2

ξ
|ξ|3/2χ1µ be-

longs to ‹T2. With the help of Theorem C.1, this makes the estimate of (6.8a)

straightforward:

‖(6.8a)‖2 .
∫ t

2
s

∥∥∥∥∥B ξ

|ξ|3/2
χ1µ

(u, u, u)

∥∥∥∥∥
2

ds .
∫ t

2
s
∥∥∥Λ2u

∥∥∥
6
‖u‖6 ‖u‖6 ds

. ‖u‖3X
∫ t

2
ss
− 2

3
+ 2

N− 2
3
(δ+ 2

3)
s−

2
3 s−

2
3 ds . tδ‖u‖3X

since N has been taken big enough.
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The estimate of (6.8b) is a little more technical and uses fractional inte-

gration (Lemma A.1): δ0 standing for a small constant,

‖(6.8b)‖2 .
∫ t

2
s

∥∥∥∥Bχ1µ

Å
u, u,

1

Λ1/2
u

ã∥∥∥∥
2
ds

.
∫ t

2
s
∥∥∥Λ5/2u

∥∥∥
1
δ0

‖u‖ 1
δ0

∥∥∥∥eisΛ1/2 1

Λ1/2
f

∥∥∥∥
2

1−4δ0

ds

.
∫ t

2
s
∥∥∥Λ5/2u

∥∥∥
1
δ0

‖u‖ 1
δ0

‖f‖ 4
3−8δ0

ds

. ‖u‖3X
∫ t

2
ss
−1+2δ0+

5/2
N+2δ0−1

(δ−2δ0+1)
s−1+2δ0sδ(

1
2
−4δ0) . ‖u‖3Xtδ

since N has been chosen big enough and δ0 small enough.

7. Estimates for the strongly resonant cubic terms

In this section, we prove Proposition 4.1 for the term g3. We derive

the desired estimates in L∞ and L2(x2dx) for terms of the form either (4.2a)

or (4.2b) corresponding to strongly resonant phases as defined in Section 3. The

three strongly resonant phases are identical up to a permutation of the Fourier

variables. Thus, making a change of variables in the η, σ integral if needed, we

shall only consider the phase φ−−+. The generic term we consider reads

(7.1) “g3(ξ, t)
def
=

∫ t

2

∫∫
eisφµ(ξ, η)f̂(s, σ)f̂(s, η)f̂(s, ξ − η − σ) dη dσ ds,

where φ = φ−−+ and

µ(ξ, η) = mi(ξ, η, σ) or
mk(ξ, η)

iφ±,±(ξ, η)
mj(ξ − η, σ)

or
mk(ξ, ξ − η)

iφ±,±(ξ, ξ − η)
mj(ξ − η, σ),

with i equal to 3 or 4, j, k equal to 1 or 2, and ± equal to + or −.

Preliminary observations and reductions. Proceeding as in Section 6, and

keeping the same notations, matters reduce to“g3(t, ξ) =

∫ t

2

∫∫
eisφ±,±,±χ1(ξ, η, σ)µ(ξ, η, σ)f̂(s, η)f̂(s, σ)f̂(s, ξ−η−σ) dη dσ ds,

where χ1µ ∈ ‹T5/2.

Bound for xg3 in L2. In Fourier space, xg3 reads

F(xg3) =

∫ t

2

∫∫
eisφχ1µf̂(s, σ)f̂(s, η)∂ξ f̂(s, ξ − η − σ) dη dσ ds(7.2a)

+

∫ t

2

∫∫
eisφ∂ξ(χ1µ)f̂(s, σ)f̂(s, η)f̂(s, ξ − η − σ) dη dσ ds(7.2b)

+

∫ t

2

∫∫
eisφs(∂ξφ)χ1µf̂(s, σ)f̂(s, η)f̂(s, ξ − η − σ) dη dσ ds.(7.2c)
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The terms (7.2a), (7.2b), and (7.2c) can be estimated exactly as (6.6b), (6.6c),

and (6.6d) in Section 6. This gives, respectively, bounds of O(1), O(1), and

O(tδ) as t→∞, which yields the desired a priori estimate for the norm of g3 in

L2(x2dx). To derive the L∞ decay of e−itΛ
1/2
g3 however, it will be convenient

to prove first that the weighted norm of g3 in L2(x2dx) is bounded as t goes

to infinity.

Claim 7.1. The following bound holds : ‖(7.2c)‖2 . ‖u‖
3
X . As a conse-

quence, ‖xg3‖2 . ‖u‖
3
X .

In order to estimate (7.2c) without the time growth factor, the first step

is to distinguish between high and low frequencies. Denoting δ0 for a small

constant (whose precise value will be fixed later on), we split (7.2c) as follows:

(7.2c) =

∫ t

2

∫∫
eisφs(∂ξφ)χ1µ(7.3a)

×
ï
1−Θ

Å
σ

sδ0

ãò
f̂(s, σ)f̂(s, η)f̂(s, ξ − η − σ) dη dσ ds

+

∫ t

2

∫∫
eisφs(∂ξφ)χ1µΘ

Å
σ

sδ0

ã
f̂(s, σ)f̂(s, η)f̂(s, ξ − η − σ) dη dσ ds,(7.3b)

where Θ is defined in Section A. The point of such a decomposition is of

course that there only appears in (7.3b) frequencies (essentially) smaller than

sδ0 , since Supp

Å
χ1(ξ, η, σ)Θ

Å
σ
sδ0

ãã
⊂ {|ξ|, |η|, |σ| . sδ0}.

Bound for (7.3a). Due to the control in HN , it will be easy to esti-

mate (7.3a). First recall that ∂ξφ = ξ
2|ξ|3/2 + ξ−η−σ

2|ξ−η−σ|3/2 . The singularity

in ξ is canceled by µ, thus we can forget about it, replace ∂ξφ by ξ−η−σ
2|ξ−η−σ|3/2

in (7.3a), and with the help of Theorem D.1 and Lemma 5.1, estimate∥∥∥∥∥
∫ t

2

∫∫
eisφs

Å
ξ−η−σ
|ξ−η−σ|3/2

ã
χ1µ

[
1−Θ

( σ

sδ0

)]
f̂(s, σ)f̂(s, η)f̂(s, ξ−η−σ) dη dσ ds

∥∥∥∥∥
2

.

∫ t

2

s

∥∥∥∥∥BÄ ξ−η−σ
|ξ−η−σ|3/2

ä
χ1µ

(
P≥δ0 log(s)u, u, u

)∥∥∥∥∥
2

ds

.

∫ t

2

s
∥∥∥P≥δ0 log(s)Λ

5/2u
∥∥∥
8
‖u‖8

∥∥∥∥ 1

Λ1/2
u

∥∥∥∥
4

ds

.

∫ t

2

s
∥∥∥P≥δ0 log(s)Λ

5/2u
∥∥∥
8
‖u‖8 ‖f‖2 ds . ‖u‖

3
X

∫ t

2

ssδ0(−N+ 13
4 )s−

3
4 ds . ‖u‖3X .

In order for the last inequality to hold, we need

(7.4) 1 + δ0

Å
−N +

13

4

ã
− 3

4
< −1.
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Bound for (7.3b). In order to estimate (7.3b), a further partition of fre-

quency space is needed. Define

AI
def
= {∂σφ = 0} = {ξ = η},(7.5)

AII
def
= {∂ηφ = 0} = {ξ = σ},

AIII
def
= {∂ηφ = 0} ∩ {∂σφ = 0} = {ξ = η = σ}.

The associated cutoff functions are χI, χII, χIII, which are taken such that

• χI, χII, χIII are valued in [0, 1].

• χI, χII, χIII are homogeneous of degree 0 and smooth outside of (0, 0, 0).

• On the sphere |(ξ, η, σ)| = 1, χIII = 1 within a distance 1
1000 of AIII, and

χIII = 0 if the distance to AIII is more than 1
500 . Thus on SuppχIII,

equation (3.6) holds.

• On the sphere |ξ, η, σ)| = 1, χI (respectively χII) is 1 on a neighborhood

of AI (respectively AII).

Then decompose (7.3b) with the help of these cutoff functions:

(7.3b) =

∫ t

2

∫∫
eisφs(∂ξφ)χ1µΘ

Å
σ

sδ0

ã
(7.6a)

× f̂(s, σ)f̂(s, η)f̂(s, ξ−η−σ) dη dσ ds

=

∫ t

2

∫∫
eisφs(∂ξφ)χIχ1µΘ

Å
σ

sδ0

ã
(7.6b)

× f̂(s, σ)f̂(s, η)f̂(s, ξ−η−σ) dη dσ ds

+

∫ t

2

∫∫
eisφs(∂ξφ)χIIχ1µΘ

Å
σ

sδ0

ã
(7.6c)

× f̂(s, σ)f̂(s, η)f̂(s, ξ−η−σ) dη dσ ds

+

∫ t

2

∫∫
eisφs(∂ξφ)χIIIχ1µΘ

Å
σ

sδ0

ã
(7.6d)

× f̂(s, σ)f̂(s, η)f̂(s, ξ−η−σ) dη dσ ds.

The idea will be the following. On the support of the symbol of (7.6b) (re-

spectively (7.6c)), ∂ηφ (respectively ∂σφ) does not vanish, thus one should

integrate by parts in η (respectively σ). On the support of the symbol appear-

ing in (7.6d), both ∂σφ and ∂ηφ vanish, but the identity (3.6) is the remedy;

it essentially converts ∂ξφ into a combination of ∂σφ and ∂ηφ, making the

integration by parts in (η, σ) possible.

Bound for (7.6b). As explained above, in order to treat this term we shall

integrate by parts in σ using the identity ∂σφ·∂σ
is|∂σφ|2 e

isφ = eisφ. This gives (for the

sake of simplicity in the notations, we do not differentiate between standard
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product between scalars, and scalar product between vectors):

(7.6b) =

∫ t

2

∫∫
eisφ

∂ξφ∂σφ

|∂σφ|2
χIχ1µΘ

Å
σ

sδ0

ã
(7.7a)

× ∂σf̂(s, σ)f̂(s, η)f̂(s, ξ − η − σ) dη dσ ds

+

∫ t

2

∫∫
eisφ

∂ξφ∂σφ

|∂σφ|2
χIχ1µΘ

Å
σ

sδ0

ã
(7.7b)

× f̂(s, σ)f̂(s, η)∂σf̂(s, ξ − η − σ) dη dσ ds

+

∫ t

2

∫∫
eisφ∂σ

ñ
∂ξφ∂σφ

|∂σφ|2
χIχ1µΘ

Å
σ

sδ0

ãô
(7.7c)

× f̂(s, σ)f̂(s, η)f̂(s, ξ − η − σ) dη dσ ds.

In order to estimate (7.7a), observe that the symbol
∂ξφ·∂σφ
|∂σφ|2 χIχ1µ belongs to‹T5/2. Indeed, the 1

|ξ|1/2 singularity of ∂ξφ is canceled by µ, and the 1
|ξ−η−σ|1/2

singularity of ∂ξφ is canceled by ∂σφ
|∂σφ|2 . Thus, applying first (A.2) — since the

Fourier support of the integrand lies within a ball of radius comparable to sδ0

— one gets

‖(7.7a)‖2 .
∫ t

2
s
δ0
4

∥∥∥∥∥B ∂ξφ∂σφ

|∂σφ|2
χIχ1µ

(
P<δ0 log se

itΛ1/2
(xf), u, u

)∥∥∥∥∥
8/5

ds(7.8)

.
∫ t

2
s
δ0
4

∥∥∥Λ5/2P<δ0 log se
itΛ1/2

(xf)
∥∥∥

2
‖u‖16 ‖u‖16 ds

.
∫ t

2
s
δ0
4 s

5
2
δ0 ‖xf‖2 ‖u‖16 ‖u‖16 ds

. ‖u‖3X
∫ t

2
s
δ0
4 s

5
2
δ0sδs−

7
8 s−

7
8 ds . ‖u‖3X ,

where the last inequality holds provided that δ0
4 + 5

2δ0 + δ − 14
8 < −1. Thus

we choose δ0 and N such that this inequality holds, as well as (7.4).

The estimate of (7.7b) is almost identical; as for the estimate of (7.7c),

it follows in a very similar way. Let us say a word about it. The symbol

∂σ
[
∂ξφ∂σφ
|∂σφ|2 χIχ1µ

]
only contributes singularities of the type 1

|σ| ,
1

|ξ−η−σ| and
1

|ξ−σ|1/2 . We have seen many instances of how these singularities can be treated;

the same strategy is valid here.

Bound for (7.6c). It can be derived in an identical fashion.

Bound for (7.6d). For this term, we use the identity (3.6), which we

rewrite as follows: there exists a symbol ρ ∈ T0 such that

χIII∂ξφ = ρ(ξ, η, σ)[∂ηφ, ∂σφ].

(In the above, ρ is a matrix. It is linear in the arguments between brackets.)
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Using the identity χIII∂ξφ = 1
isρ(ξ, η, σ)

î
∂ηe

isφ, ∂σe
isφ
ó

to integrate by

parts in (7.6d) gives terms which can all be estimated as above. This con-

cludes the proof of claim 7.1.

Bound for ∇ke−itΛ1/2
g3 in L∞, 0 ≤ k ≤ 4. First, notice that we can not

integrate by parts in time as we did in the weakly resonant case since now

the phase vanishes on a large set. Actually, the proof of this bound follows

the steps of the previous argument, in particular Claim 7.1. Indeed, in the

previous argument, we derived a bound for ‖xg3‖2; by the same token, one

might prove bounds on ‖∇k+2xg3‖2. These two quantities barely miss to con-

trol ‖∇kg3‖Ḃ3/2
1,1

, which would give the desired L∞ decay, by the dispersive

estimate in Lemma A.1. What is needed is a little bit of additional integrabil-

ity, for instance replacing the Lebesgue index 2 by 2− δ1 for a small constant

δ1. As we will see, this is possible if one is prepared to lose a small power

of s; but a small enough power of s is harmless in that it does not prevent

the integrals over s occurring above from converging. Hence, we will prove the

same estimate as in the previous argument, but in L2−δ1 instead of L2.

In order to implement this program, we start by splitting g3 into high and

low frequencies:

g3 =

∫ t

2

∫
eisφχ1µΘ

Å
σ

sδ0

ã
f̂(s, η)f̂(s, σ)f̂(s, ξ − η − σ) dη

+

∫ t

2

∫
eisφχ1µ

ï
1−Θ

Å
σ

sδ0

ãò
f̂(s, η)f̂(s, σ)f̂(s, ξ − η − σ) dη

def
= g3,low + g3,high.

Bound for ∇ke−itΛ1/2
g3,low in L∞, with 0 ≤ k ≤ 4. Rewrite g3,low as

g3,low =

∫ t

2
G3,low(s) ds,

with the obvious definition for G3,low(s). Due to the frequency localization of

G3,low, one might even write

(7.9) g3,low =

∫ t

2
P<Cδ0 log sG3,low(s) ds.

Computing xG3,low(s) gives terms similar to those appearing inside the time

integral of (7.2a), (7.2b), (7.3b), namely

F(xG3,low(s)) =

∫∫
eisφχ1µΘ

Å
σ

sδ0

ã
(7.10a)

× f̂(s, σ)f̂(s, η)∂ξ f̂(s, ξ − η − σ) dη dσ ds
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+

∫∫
eisφ∂ξ(χ1µ)Θ

Å
σ

sδ0

ã
(7.10b)

× f̂(s, σ)f̂(s, η)f̂(s, ξ − η − σ) dη dσ ds

+

∫∫
eisφs(∂ξφ)χ1µΘ

Å
σ

sδ0

ã
(7.10c)

× f̂(s, σ)f̂(s, η)f̂(s, ξ − η − σ) dη dσ ds.

It has been proved in the previous section that all of these terms can be

bounded in L2. More precisely, an inspection of the proof there reveals that

xG3,low(s) can be written

xG3,low(s) = eisΛ
1/2‹G3,low(s) with

∥∥∥‹G3,low(s)
∥∥∥

2
.

1

s1+κ1
‖u‖3X

for some number κ1 > 0. By repeating the same argument (see, for instance,

(7.8)), one can prove that, denoting by δ1 a small enough constant whose

precise value will be set later on, we have∥∥∥‹G3,low(s)
∥∥∥

2−δ1
.

1

s1+
κ1
2

‖u‖3X .

Lemma A.1 gives∥∥∥∇`P<Cδ0 log sG3,low(s)
∥∥∥

2−δ1
=
∥∥∥∇`P<Cδ0 log se

isΛ1/2‹G3,low(s)
∥∥∥

2−δ1
(7.11)

. s`δ0
Ä
sδ0s2

ä 1
2−δ1

− 1
2
∥∥∥‹G3,low(s)

∥∥∥
2−δ1

. ‖u‖3Xs`δ0
Ä
sδ0s2

ä 1
2−δ1

− 1
2

1

s1+
κ1
2

.

Thus, choosing δ0 and δ1 small enough, and using successively the dispersive

estimate in Lemma A.1, equation (7.9), and the above bound,

∥∥∥∇ke−itΛ1/2
g3,low

∥∥∥
∞

(7.12)

.
1

t

∥∥∥∇kg3,low

∥∥∥
Ḃ

3/2
1,1

.
1

t

ï
‖xg3,low‖2−δ1 +

∥∥∥∇k+2xg3,low

∥∥∥
2−δ1

ò
.

1

t

∫ t

2

ï
‖P<Cδ0 log sxG3,low‖2−δ1 +

∥∥∥∇k+2xP<Cδ0 log sG3,low

∥∥∥
2−δ1

ò
ds

.
1

t
‖u‖3X

∫ t

2
s(k+2)δ0

Ä
sδ0s
ä 1

2−δ1
− 1

2
1

s1+
κ1
2

ds .
1

t
‖u‖3X .

Bound for ∇ke−itΛ1/2
g3,high in L∞, with 0 ≤ k ≤ 4. Rewrite g3,high as

g3,high =

∫ t

2
eisΛ

1/2‹G3,high(s) ds.
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Computing ∇`x‹G3,high(s) gives terms which can be estimated just like (7.3a).

One gets a bound of the type∥∥∥∇`x‹G3,high(s)
∥∥∥

2
.

1

s1+κ2
‖u‖3X

for a constant κ2 > 0. Following the same arguments, but going to a smaller

Lebesgue index 2− δ2 gives, provided δ2 is chosen small enough and ` ≤ 6,∥∥∥∇`x‹G3,high(s)
∥∥∥

2−δ2
.

1

s1+
κ2
2

‖u‖3X .

As above, this implies that∥∥∥∇k‹G3,high(s)
∥∥∥
Ḃ

3/2
1,1

.
1

s1+
κ2
2

‖u‖3X .

To deduce the L∞ estimate, write

∇ke−itΛ1/2
g3,high =

∫ t−1

2
∇kei(s−t)Λ1/2‹G3,high(s) ds

+

∫ t

t−1
∇kei(s−t)Λ1/2‹G3,high(s) ds.

The second summand of the above right-hand side can be estimated using

Sobolev embedding and proceeding as in (6.5). As for the first summand,

∥∥∥∥∥
∫ t−1

2
∇kei(s−t)Λ1/2‹G3,high(s) ds

∥∥∥∥∥
∞
. ‖u‖3X

∫ t−1

2

1

t− s
1

s1+
κ2
2

ds .
1

t
‖u‖3X .

(7.13)

8. Estimates for terms of order 4 and higher

In this section, we prove Proposition 4.1 for the term g4. We derive

the desired estimates in L∞ and L2(x2dx) for terms of the form (4.3a) and

(4.3b). These terms gather the contributions of order 4 and higher (in u) to the

nonlinearity, once the normal form transform of Section 4 has been performed.

Being of high order, they decay very fast and can be estimated by brute

force, leaving aside the question of resonances. Since a straightforward ap-

proach is sufficient, we only illustrate it in the case of (4.3a), which we denote

g4 =

∫ t

2
eisΛ

1/2
R(s) ds.

Bound for ∇ke−itΛ1/2
g4 in L∞ for 0 ≤ k ≤ 4. We split

∇ke−itΛ1/2
g4 =

∫ t

2
∇kei(s−t)Λ1/2

R(s) ds
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into
∫ t−1
2 +

∫ t
t−1. The first summand is bounded via the dispersive estimate of

Lemma A.1 and Proposition F.1:∥∥∥∥∥
∫ t−1

2
∇kei(s−t)Λ1/2

R(s) ds

∥∥∥∥∥
∞
.
∫ t−1

2

1

t− s
‖R(s)‖

Ḃ
k+3

2
1,1

ds .
1

t
‖u‖4X .

The second summand is bounded using Sobolev embedding and Proposi-

tion F.1:∥∥∥∥∥
∫ t

t−1
∇kei(s−t)Λ1/2

R(s) ds

∥∥∥∥∥
∞
.
∫ t

t−1

∥∥∥∇kei(s−t)Λ1/2
R(s)

∥∥∥
∞
ds

.
∫ t

t−1
‖R(s)‖H2+k ds .

1

t
‖u‖4X .

Bound for xg4 in L2. The L2 norm of xg4 can be bounded as follows:

‖xg4‖2 =

∥∥∥∥∥x
∫ t

2
eisΛ

1/2
R(s) ds

∥∥∥∥∥
2

≤
∥∥∥∥∥
∫ t

2
s

1

Λ1/2
eisΛ

1/2
R(s) ds

∥∥∥∥∥
2

+

∥∥∥∥∥
∫ t

2
eisΛ

1/2
xR(s) ds

∥∥∥∥∥
2

.
∫ t

2
s ‖R(s)‖4/3 ds+

∫ t

2
‖xR‖2 ds.

The first term in the last line above can be estimated directly using point (i)

of Proposition F.1; we leave this to the reader. The bound for the second term

follows with the help of point (ii) of Proposition F.1:∫ t

2
‖xR‖2 ds .

∫ t

2
‖〈x〉u‖2‖u‖3W 3,∞ ds

.
∫ t

2

î
‖u‖2 + s ‖f‖4/3 + ‖xf‖2

ó
‖u‖3W 3,∞ ds . ‖u‖4X .

9. Scattering

In this section, we prove the scattering result (Corollary 1.1). On the one

hand, decomposing f into terms of the form (4.1)–(4.3b) and examining them

separately, it appears that it is a Cauchy sequence in L2 in the sense that there

exists a constant κ > 0 such that

if s < t < 2s, ‖f(t)− f(s)‖2 .
1

tκ
.

On the other hand, we know that

‖f(t)‖HN∩L2(x2dx) . t
δ .

Interpolating between these two inequalities gives, for a constant C,

if s < t < 2s, ‖f(t)− f(s)‖HN−NC0δ∩L2(x2−C0δdx) . t
δ[−κC0+1].

ChoosingC0 properly makes f(t) Cauchy in time, which gives the desired result.
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Appendix A. A few results of linear harmonic analysis

Littlewood-Paley theory. Consider θ a function supported in the annulus

C(0, 3
4 ,

8
3) such that

for ξ 6= 0,
∑
j∈Z

θ

Å
ξ

2j

ã
= 1.

Also define

Θ(ξ)
def
=
∑
j<0

θ

Å
ξ

2j

ã
.

Define then the Fourier multipliers

Pj
def
= θ

Å
D

2j

ã
, P<j = Θ

Å
D

2j

ã
, P≥j = 1−Θ

Å
D

2j

ã
and similarly P≤j , P>j . This gives a homogeneous and an inhomogeneous

decomposition (for instance, in L2)∑
j∈Z

Pj = Id and P<0 +
∑
j>0

Pj = Id .

All these operators are bounded on Lp spaces:

if 1 ≤ p ≤ ∞, ‖Pjf‖p . ‖f‖p, ‖P<jf‖p . ‖f‖p, and ‖P>jf‖p . ‖f‖p.

Furthermore, for Pjf , taking a derivative is essentially equivalent to multiply-

ing by 2j :

if 1 ≤ p ≤ ∞ and α ∈ R, ‖ΛαPjf‖p ∼ 2αj‖Pjf‖p
if 1 ≤ p ≤ ∞ and ` ∈ Z, ‖∇`Pjf‖p ∼ 2`j‖Pjf‖p.

(A.1)

Also, we recall Bernstein’s lemma: if 1 ≤ q ≤ p ≤ ∞, then

(A.2) ‖Pjf‖p ≤ 2
2j
(
1
q
− 1
p

)
‖Pjf‖q and ‖P<jf‖p ≤ 2

2j
(
1
q
− 1
p

)
‖P<jf‖q .

Finally, we will need the Littlewood-Paley square and maximal function esti-

mates.

Theorem A.1. (i) If f =
∑
fj , with Supp(fj) ⊂ C(0, c2−j , C2−j) (the

latter denoting the annulus of center 0, inner radius c2−j , outer radius C2−j),

and 1 < p <∞, ∥∥∥∥∥∑
j

fj

∥∥∥∥∥
p

.

∥∥∥∥∥
ñ∑

j

f2
j

ô1/2
∥∥∥∥∥
p

.

Furthermore, denoting Sf
def
=
î∑

j(Pjf)2
ó1/2

, we have ‖Sf‖p ∼ ‖f‖p.
(ii) If 1 < p ≤ ∞, then denoting Mf(x)

def
= sup

j
|P<jf(x)|, we have

‖Mf‖p . ‖f‖p.
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Fractional integration and dispersion.

Lemma A.1. (1) (Fractional integration). If 1 < p, q < ∞, 0 < α < 2
p ,

and α = 2
p −

2
q , then

∥∥∥ 1
Λα f

∥∥∥
q
. ‖f‖p.

(2) (Dispersive estimate).
∥∥∥eitΛ1/2

f
∥∥∥
∞
. 1

t ‖f‖Ḃ3/2
1,1

.

(3) If 1 < p ≤ 2 ≤ q < ∞, 0 < α < 2
p , and α = 2

p −
2
q , then

∥∥∥ 1
Λα e

itΛ1/2
f
∥∥∥
q

. ‖f‖p.
(4) If 1 ≤ p ≤ 2, ` ≥ 0 and 2jt2 ≥ 1, then

∥∥∥∇`P<jeitΛ1/2
f
∥∥∥
p
. 2`j

Ä
2jt2
ä( 1

p
− 1

2

)
‖f‖p.

Proof. We only prove the second and fourth points, the rest being stan-

dard or elementary.

Proof of (2). First define θ̃ a smooth function, supported on an annulus

around zero, and such that for any ξ, θ(ξ)θ̃(ξ) = θ(ξ). The stationary phase

lemma gives ∥∥∥F−1eit|ξ|
1/2
θ̃(ξ)

∥∥∥
∞
.

1

t
.

This implies that

∥∥∥P0e
itΛ1/2

f
∥∥∥
∞
. ‖P0f‖1

∥∥∥F−1eit|ξ|
1/2
θ̃(ξ)

∥∥∥
∞
.

1

t
‖P0f‖1 .

By scaling, ∥∥∥PjeitΛ1/2
f
∥∥∥
∞
. 2

3
2
j 1

t
‖Pjf‖1.

This inequality gives immediately the desired conclusion.

Proof of (4). First notice that it suffices to show this result for ` = 0. It

will follow from interpolation between the L2 estimate, which is clear, and the

L1 estimate, which reads

if 2jt2 ≥ 1,
∥∥∥P<jeitΛ1/2

f
∥∥∥

1
.
Ä
2jt2
ä
‖f‖1.

By scaling, it suffices to prove this estimate if t = 1 and j ≥ 0. This is done

as follows:
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∥∥∥P<jeiΛ1/2
∥∥∥
L1→L1

.
∥∥∥∥F−1Θ

Å
ξ

2j

ã
ei|ξ|

1/2
∥∥∥∥

1

.
∥∥∥F−1Θ (ξ) ei|ξ|

1/2
∥∥∥

1
+

j∑
k=1

∥∥∥∥F−1θ

Å
ξ

2k

ã
ei|ξ|

1/2
∥∥∥∥

1

. 1 +
j∑

k=1

∥∥∥∥F−1θ

Å
ξ

2k

ã
ei|ξ|

1/2
∥∥∥∥1/2

2

∥∥∥∥x2F−1θ

Å
ξ

2k

ã
ei|ξ|

1/2
∥∥∥∥1/2

2

. 1 +
j∑

k=1

∥∥∥∥θ Å ξ2kã ei|ξ|1/2∥∥∥∥1/2

2

∥∥∥∥∂2
ξ

ï
θ

Å
ξ

2k

ã
ei|ξ|

1/2
ò∥∥∥∥1/2

2

. 1 +
j∑

k=1

2k/2
Ä
1 + 2−k

ä1/2
. 2j/2. �

Appendix B. Some general facts on pseudo-product operators

Let us first give the definition of pseudo-product operators, which were

introduced by Coifman and Meyer; we only consider the bilinear and trilinear

cases, which are of interest for our problem. Bilinear (respectively trilinear)

operators are defined via their symbol m(ξ, η) (respectively m(ξ, η, σ)) by

Bm(ξ,η)(f1, f2)
def
= F−1

∫
m(ξ, η)f̂1(η)f̂2(ξ − η)dη,

Bm(ξ,η,σ)(f1, f2, f3)
def
= F−1

∫
m(ξ, η, σ)f̂1(σ)f̂2(η)f̂3(ξ − η − σ) dη dσ.

The fundamental theorem of Coifman and Meyer [CM78] states, under a

natural condition, that these operators have the same boundedness properties

as the ones given by Hölder’s inequality for the standard product.

Theorem B.1. Let n be either 2 or 3, and suppose that m satisfies

(B.1) ∂α1
ξ1
· · · ∂αnξn m(ξ1, . . . , ξn) .

1

(|ξ1|+ · · ·+ |ξn|)|α1|+···+|αn|

for sufficiently many multi-indices. Then

‖Bm(f1, . . . , fn)‖r . ‖f1‖p1 · · · ‖fn‖pn

if
1

r
=

1

p1
+ · · ·+ 1

pn
, 1 < p1 · · · pn ≤ ∞ and 0 < r <∞.

The class of symbols allowed by the Coifman-Meyer theorem (typically,

symbols homogeneous of degree 0 and smooth outside the origin) does not

contain the symbols occurring in our analysis of the water wave problem. We

will therefore be led to introducing a new class of symbols in Section C.
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In the trilinear case, amongst other discrepancies with the Coifman-Meyer

case, these new symbols will exhibit flag singularities, to which we now turn.

What is a flag singularity? If one considers two bilinear symbols m1 and

m2, and one trilinear symbol m3, all of Coifman-Meyer type, the new symbol

m(ξ, η, σ) = m3(ξ, η, σ)m1(ξ, η)m2(ξ−η, σ) does not satisfy the Coifman-Meyer

estimates (in a neighborhood of ξ = η = 0 and ξ − η − σ = σ = 0). This type

of symbol is said to have a flag singularity. The following theorem gives the

boundedness of such operators. A result of Muscalu [Mus07] is slightly less

general, but we are able to give a simpler proof since the range of Lebesgue

exponents we are interested in is smaller.

Theorem B.2. If m1(ξ, η), m2(ξ, η), and m3(ξ, η, σ) are symbols satisfy-

ing the estimate (B.1), then∥∥∥Bm3(ξ,η,σ)m1(ξ,η)m2(ξ−η,σ)(f, g, h)
∥∥∥
p
. ‖f‖p1‖g‖p2‖h‖p3

for 1 < p, p1, p2, p3 <∞ and 1
p1

+ 1
p2

+ 1
p3

= 1
p .

Proof. Step 1: Partition of the frequency space. Set

m(ξ, η, σ) = m3(ξ, η, σ)m1(ξ, η)m2(ξ − η, σ).

First observe that there are certain regions of the (ξ, η, σ) plane where m sat-

isfies the Coifman-Meyer estimates (B.1); then the Coifman-Meyer theorem

applies, and the desired estimate is proved. Thus, using a cutoff function, we

can reduce the problem to the regions where the Coifman-Meyer estimate (B.1)

does not hold for m, namely

A1 ∪A2
def
= {|ξ|+ |η| � |σ|} ∪ {|ξ − η|+ |σ| � |ξ|}.

We further observe that on A1 (respectively on A2), m2(ξ− η, σ) (respectively

m1(ξ, η)) satisfies the Coifman-Meyer estimate in (ξ, η, σ). Thus with the help

of cutoff functions, we can reduce matters to symbols of one of the two following

types:

χA1(ξ, η, σ)m̃3(ξ, η, σ)m1(ξ, η) (where χA1 localizes near A1),(B.2a)

χA2(ξ, η, σ)m̃3(ξ, η, σ)m2(ξ − η, σ) (where χA2 localizes near A2),(B.2b)

where m̃3 stands for m3m2 or m3m1. Estimates for one of these symbols can

be deduced from the other by duality and using that for any two symbols µ

and ν, and 〈·, ·〉 denoting the standard (complex) scalar product,

〈Bµ(ξ,η,σ)ν(ξ,η)(f1, f2, f3) , f4〉 = 〈Bµ(−σ,ξ−η−σ,−ξ)ν(−σ,ξ−η−σ)(f̄4, f3, f2) , f̄1〉.
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Therefore, we simply prove estimates for the symbol (B.2a). We define the

cutoff function χA1 by

(B.3) BχA1
(ξ,η,σ)(f, g, h) =

∑
|k−k′|≤1

P<k−100 (PkfPk′h)P<k−100g.

We will suppress the index k′ in the sequel and just take k′ = k to make

notations lighter.

Step 2: Series expansion for the symbol m̃3. Expanding the symbol

m̃3(ξ, η, σ) near (η, ξ) = 0 gives

m̃3(ξ, η, σ) =
M−1∑
|α+β|=0

Φα,β(σ)ξαηβ +R(ξ, η, σ),

where Φα,β(σ) = ∂α+β

∂αξ∂βη
m3(0, 0, σ) has homogeneous bounds of degree −|α+β|,

i.e., satisfies |∂γσΦα,β| . |σ|−|γ|−|α+β|, and the remainder R is such that

(B.4)
∣∣∣∂βη,ξ∂γσR(ξ, η, σ)

∣∣∣ = O

(
(|ξ|+ |η|)M−|β|

|σ|M+|α|

)
.

This estimate implies that if M is chosen big enough, then the symbol resulting

from the multiplication of R and m1χA1 is of Coifman-Meyer type; thus we can

forget about it. Therefore it suffices to treat the summands of the first term

of the above right-hand side. To simplify notations a little in the following, we

simply consider the case α = 0, and therefore we get symbols of the type

(B.5) m(ξ, η, σ) = χA1(ξ, η, σ)Φi(σ)ηim1(ξ, η) ,

where Φi has homogeneous bounds of degree −i, and m1 satisfies the Coifman-

Meyer estimates.

Step 3: Paraproduct decomposition for the symbol m1. Proceeding as in

the original proof of Coifman and Meyer [CM78], we will now perform a para-

product decomposition of m and then expand the resulting symbols scale-by-

scale. Write

Bm1(f, g)=
∑
j

Bm1(PjfP<j−1g)+
∑
j

Bm1(P<j−1fPjg)+
∑
|j−`|≤1

Bm1(Pjf, P`g).

Next consider the symbol of one of the elementary bilinear operators above, for

instance Bm1(Pj ·, P<j−1·). Denote mj
1(ξ, η) for this symbol, which is compactly

supported (in (ξ, η)), and expand it in Fourier series

mj
1(ξ, η) = χ(2−j(ξ, η))

∑
p,q∈Z2

ajp,qe
ic2−j(p,q)·(ξ,η),

where we denoted c for a constant, χ for a cutoff function, and ajp,q for the

Fourier coefficients.
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It is now possible to forget about the summation over p, q because of

the fast decay of the coefficients ajp,q, which results from the smoothness of

the symbol. Indeed, the complex exponentials eic2
−j(p,q).(ξ,η) correspond in

physical space translations, which add polynomial factors to the estimates to

come. These polynomial factors are offset by the decay of the ap,q. This leads to

replacing ajp,q by aj ∈ `∞. It is now possible to consider that the aj are actually

constant in j. If this is not the case, it essentially corresponds to composing

one of the argument functions by a Calderón-Zygmund operator bounded on

Lebesgue spaces, which is harmless. For these reasons, it will suffice to treat

the case when m1 corresponds to one of the three paraproduct operators

(f, g) 7→
∑
j

PjfP<j−1g,
∑
j

P<j−1fPjg,
∑
j

PjfPjg.

(We suppressed the index ` in the last summation to make notations lighter

by taking ` = j.)

Step 4: Derivation of the model operators. Combining this last line with

(B.5), we see that the operators of interest for us become∑
j,k

P<k−100Pj (Φi(D)PkfPkh)∇iP<j−1P<k−100g,(B.6)

∑
j,k

P<k−100P<j−1 (Φi(D)PkfPkh)∇iPjP<k−100g,

∑
j,k

P<k−100Pj (Φi(D)PkfPkh)∇iPjP<k−100g.

We now make some observations which allow us to simplify the above operators.

• First remark that Φi(D)Pk, ∇iPj and ∇iP<j can be written respectively

2−ik‹Pk, 2ij
˜̃
Pj and 2ij‹P<j with obvious notations. Since the operators

with tildes have similar properties to the operators without tildes, we will

in the following forget about the tildes.

• Next notice that due to the Fourier space support properties of the dif-

ferent terms above, it is possible to restrict the summation to j ≤ k− 97.

• Finally, since P<k−100Pj = Pj and P<j−1P<k−100 = P<j−1 for j ≤ k−103,

it is harmless to forget about the P<k−100 operators in the above sums.

All these remarks lead to the following simplified versions of the above opera-

tors: ∑
k≥j+97

2i(j−k)Pj (PkfPkh)P<j−1g,(B.7)

∑
k≥j+97

2i(j−k)P<j−1 (PkfPkh)Pjg,

∑
k≥j+97

2i(j−k)Pj (PkfPkh)Pjg.
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Step 5: The case i = 0. If i = 0, observe that, due to the Fourier support

properties of the Littlewood-Paley operators, the operators in (B.7) are equal

respectively to

∑
j

Pj

(∑
k

PkfPkh

)
P<j−1g,(B.8)

∑
j

P<j−1

(∑
k

PkfPkh

)
Pjg,

∑
j

Pj

(∑
k

PkfPkh

)
Pjg

up to a difference term which is Coifman-Meyer. But the operators in (B.8)

are simply compositions of bilinear Coifman-Meyer operators. Thus the desired

bounds follow for them.

Step 6: The case i > 0. If i > 0, we see that it suffices to prove uniform

estimates in J ≥ 0 for the operators∑
j

Pj (Pj+JfPj+Jh)P<j−1g,(B.9a)

∑
j

P<j−1 (Pj+JfPj+Jh)Pjg,(B.9b)

∑
j

Pj (Pj+JfPj+Jh)Pjg(B.9c)

since the desired result follows then upon summation over J . The estimate

relies on the Littlewood-Paley square and maximal function estimates (Theo-

rem A.1) and on the vector valued maximal function estimate∥∥∥∥∥∥∥
Ñ∑

j

[Mfj ]
2

é1/2
∥∥∥∥∥∥∥
p

. ‖

Ñ∑
j

f2
j

é1/2

‖p

(see Stein [Ste93, Ch. II]). For (B.9a), this gives

‖(B.9a)‖p .

∥∥∥∥∥∥∥
Ñ∑

j

[Pj (Pj+JfPj+Jh)P<j−1g]2

é1/2
∥∥∥∥∥∥∥
p

.

∥∥∥∥∥∥∥Mg

Ñ∑
j

[Pj (Pj+JfPj+Jh)]2

é1/2
∥∥∥∥∥∥∥
p
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. ‖Mg‖p2

∥∥∥∥∥∥∥
Ñ∑

j

[Pj (Pj+JfPj+Jh)]2

é1/2
∥∥∥∥∥∥∥ pp2
p−p2

. ‖g‖p2

∥∥∥∥∥∥∥
Ñ∑

j

[M (Pj+JfPj+Jh)]2

é1/2
∥∥∥∥∥∥∥ pp2
p−p2

. ‖g‖p2

∥∥∥∥∥∥∥
Ñ∑

j

[Pj+JfPj+Jh]2

é1/2
∥∥∥∥∥∥∥ pp2
p−p2

. ‖g‖p2

∥∥∥∥∥∥∥Mf

Ñ∑
j

[Pj+Jh]2

é1/2
∥∥∥∥∥∥∥ pp2
p−p2

. ‖g‖p2 ‖Mf‖p1 ‖Sh‖p3 . ‖g‖p2 ‖f‖p1 ‖h‖p3 .

The terms (B.9b) and (B.9c) can be estimated similarly. �

Appendix C. Analysis of a class of bilinear

pseudo-product operators

In this section, we define new classes of bilinear pseudo-product opera-

tors, which occur in the analysis of the water wave problem; then, we prove

boundedness of these operators.

Definition of the classes Bs and B̃s. Recall first of all the definition given

in Appendix B:

Bm(ξ,η)(f1, f2)
def
= F−1

∫
m(ξ, η)f̂1(η)f̂2(ξ − η)dη.

Before defining the classes Bs and B̃s, it will be convenient to think of a symbol

in a more symmetric way than we have been doing so far. The motivation is the

following. In order to prove a bound for the bilinear operator Bm(f, g) in Lr

one uses a duality argument and proves that for h ∈ Lr′ , we have
∫
Bm(f, g)hdx

<∞; this shows that the Fourier variables η, ξ − η,−ξ play symmetric roles.

Given a symbol m(ξ, η), we can as well write it m′(ξ, ξ− η)
def
= m(ξ, η) or,

more generally, as a function of two of the three variables (η, ξ−η,−ξ). By an

abuse of notation, we will denote indifferently m for all these symbols. Thus,

denoting (ξ1, ξ2, ξ3) for the three Fourier variables (η, ξ − η,−ξ), and picking

two indices i and j, we can always write m = m(ξi, ξj).

Definition C.1. A symbol m belongs to the class Bs if

• it is homogeneous of degree s;
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• it is smooth outside of {ξ1 = 0} ∪ {ξ2 = 0} ∪ {ξ3 = 0};
• for i = 1, 2, 3, if |ξi| � |ξi+1|, |ξi+2| ∼ 1, it is possible to write m =

A(|ξi|1/2, ξi|ξi| , ξi+1)

(where we use the convention that ξ4 = ξ1 and ξ5 = ξ2).

Thus, roughly speaking, symbols in B0 are of Coifman-Meyer type except

along the coordinate axes, where they are allowed to have a singularity like

Mihlin-Hörmander (linear!) multipliers.

Notice that given the boundedness properties of Mihlin-Hörmander mul-

tipliers and Coifman-Meyer operators, Theorem C.1 in the next section, which

gives boundedness of bilinear operators with symbols in B0, should be no sur-

prise.

We now define a new class of symbols, which corresponds to bilinear op-

erators of paraproduct type.

Definition C.2. A symbol m belongs to the class B̃s if

• it belongs to Bs;
• it satisfies the following support property: Suppm(ξ, η) ⊂ {|η| & |ξ|}.

The interest of the class B̃s is the following: taking derivatives of Bµ(f, g)

corresponds to multiplying it by ξ in Fourier space. If m ∈ B̃s, then the support

restriction on m means that ξ is always dominated by η. Thus one expects (see

next section for a precise formulation) something like |∇kBm(f, g)| . |∇kf ||g|.

Calculus with symbols in Bs and B̃s. We begin with the action of deriva-

tives on Bs.

Lemma C.3. (i) If µ ∈ Bs, one can write

∂ξµ(η, ξ) = µ1 +
1

|ξ|
µ2 +

1

|ξ − η|
µ3 with (µ1, µ2, µ3) ∈ Bs−1 × Bs × Bs.

(ii) If µ ∈ Bs and ν ∈ Bs′ , then µν ∈ Bs+s′ .

Proof. (ii) follows from the definition of Bs. To prove (i), one notes that

∂ξµ contributes µ1 if |η| is the smallest variable, it contributes µ2
|ξ| if |ξ| is the

smallest variable, and it contributes µ3
|ξ−η| if |ξ− η| is the smallest variable. �

Finally, the following theorem gives the crucial boundedness properties of

operators with symbols in Bs and B̃s.

Theorem C.1. (i) If m belongs to the class B0, then

‖Bm(f, g)‖r . ‖f‖p‖g‖q if 1
p + 1

q = 1
r and 1 < p, q, r <∞.

(ii) If m belongs to the class B̃s and if k is an integer, then∥∥∥∇kBm(f, g)
∥∥∥
r
. ‖Λk+sf‖p‖g‖q if 1

p + 1
q = 1

r and 1 < p, q, r <∞.
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Remark. Since Riesz transforms are not bounded on L∞, the statement

of the above theorem becomes wrong if any of the indices p, q, r are ∞. We

need to go around this difficulty when deriving estimates for the water wave

system, and this unfortunately makes estimates a bit longer.

Proof. To begin with (i), let m be a symbol in B0. Away from {ξ1 = 0}
∪ {ξ2 = 0} ∪ {ξ3 = 0}, the Coifman-Meyer theorem [CM78] can be applied to

m and gives the desired result. We will simply consider the case |η| � |ξ| (the

other cases can be reduced to this one by duality); thus in the following, we

consider

B′(f, g)
def
=
∑
j

Bm (P<j−100f, Pjg) .

By definition of the class B0, m can be written in the set |η| � |ξ| as m(ξ, η) =

A
Ä
|η|1/2, η|η| , ξ

ä
or, by homogeneity, m(ξ, η) = A

Ä |η|1/2
|ξ|1/2 ,

η
|η| ,

ξ
|ξ|

ä
. Expanding

this expression in |η|
1/2

|ξ|1/2 yields

m(ξ, η) =
M∑
k=1

|η|k/2

|ξ|k/2
mk

Ç
η

|η|
,
ξ

|ξ|

å
+ remainder.

First notice that the mk are smooth and homogeneous of degree 0. Second,

observe that for M big enough, the singularity of the remainder at η = 0 be-

comes so weak that the remainder satisfies estimates of Coifman-Meyer type;

thus we take M big enough and forget about the remainder. Denoting the

spherical harmonics (Z`)`∈N and expanding mk in spherical harmonics (see for

instance Stein and Weiss [SW71]) leads to

m(ξ, η) =
M∑
k=1

∑
`,`′∈N

αk,`,`′
|η|k/2

|ξ|k/2
Z`

Ç
η

|η|

å
Z`′

Ç
ξ

|ξ|

å
.

By the Mihlin-Hörmander multiplier theorem, the operators Z`
Ä
D
Λ

ä
are

bounded on Lebesgue spaces, with bounds growing polynomially in `; on the

other hand, the smoothness of m entails fast decay in (`, `′) of the coefficients

αk,`,`′ . In the end, we can thus ignore the summation over `, `′, and k, as well

as the multipliers such as Z`
Ä
η
|η|

ä
, since they are linear and can be factored out.

In other words, it suffices to treat the case m = |η|k/2
|ξ|k/2 . The bilinear operator

B′ then becomes ∑
j

Λ−k/2
î
P<j−100Λ

k/2fPjg
ó
.

It is now routine to get the desired estimate using slight extensions of the

Littlewood-Paley square and maximal function estimates (Theorem A.1):
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∥∥∥∥∑
j

Λ−k/2
î
P<j−100Λ

k/2fPjg
ó ∥∥∥∥

r
.
∥∥∥∥ (∑j

2−jk(P<j−100Λ
k/2fPjg)2

) 1
2

∥∥∥∥
r

(C.1)

.
∥∥∥∥ supj

∣∣∣2−jk/2P<j−100Λ
k/2f(x)

∣∣∣ (∑
j
(Pjg)2

)1/2
∥∥∥∥
r

.
∥∥∥∥ supj 2−jk/2P<j−100Λ

k/2f

∥∥∥∥
p

∥∥∥∥ (∑j
(Pjg)2

)1/2
∥∥∥∥
q
. ‖f‖p‖g‖q.

In order to prove (ii), consider a symbol m in B̃s, and simply observe that

∇kBm(f, g) = Bξkm(f, g) = B ξk

|η|k+s
m

(Λk+sf, g).

Due to the support condition satisfied by m, the symbol ξk

|η|k+sm belongs to

B0, therefore applying (ii) gives∥∥∥∇kBm(f, g)
∥∥∥
r

=

∥∥∥∥B ξk

|η|k+s
m

(Λk+sf, g)

∥∥∥∥
r
.
∥∥∥Λk+sf

∥∥∥
p
‖g‖q . �

Appendix D. Analysis of a class of

trilinear pseudo-product operators

In this section, we turn to the trilinear operators which occur in the anal-

ysis of the water-wave problem: we define new classes of symbols adapted to

them, and prove their boundedness.

Definition of the classes Ts and T̃s. As in the quadratic case, it will be

convenient to put on an equal footing the four Fourier variables ξ, η, σ, ξ−η−σ.

We adopt the following convention:

(1) First, we call a1 = −ξ, a2 = η, a3 = σ, a4 = ξ − η − σ.

(2) Then, we partition the (ξ, η, σ) space into regions where the (|ai|) are

essentially ordered. (In other words, for each of these regions there is a

permutation τ such that |aτ(1)| . |aτ(2)| . |aτ(3)| . |aτ(4)|.)
(3) Finally, we set ξi = aτ(i).

In other words, (ξi) is a convenient labeling of −ξ, η, σ, ξ − η − σ since it

satisfies |ξ1| . |ξ2| . |ξ3| . |ξ4| and ξ1 + ξ2 + ξ3 + ξ4 = 0 .

As in the quadratic case, we abuse notations by indifferently denoting

m for the symbol m(ξ, η, σ) or its expression in any coordinate system, for

instance m(ξ1, ξ2, ξ3).

Definition D.1. A symbol m belongs to the class Ts if

• m is homogeneous of degree s;

• m is smooth outside a conical neighborhood Oij ⊃ {ξ1 = 0}∪ {ξi + ξj = 0}
for (i, j) = (1, 2), (1, 3) or (2, 3);
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• for |ξ1| ∼ |ξ2| � |ξ3| ∼ 1, and |ξ1 + ξ2| ∼ |ξ1| if (i, j) = (1, 2), m =

A (ξ1, ξ2)A (ξ1, ξ2, ξ3) (flag singularity);

• for |ξ1| � |ξ2|, |ξ3|, |ξ4| ∼ 1, m = A
(
|ξ1|1/2, ξ1|ξ1| , ξ2, ξ3

)
;

• for |ξi + ξj | � |ξ1|, |ξ2|, |ξ3|, |ξ4| ∼ 1, m = A
(
|ξi + ξj |1/2, ξi+ξj|ξi+ξj | , ξ1, ξ2, ξ3

)
;

• for |ξ1| � |ξ2| � |ξ3|, |ξ4| ∼ 1, m = A
Å
|ξ1|1/2

|ξ|1/22

, ξ1|ξ1| , |ξ2|1/2, ξ2|ξ2| , ξ3

ã
;

• for |ξ1 + ξ2| � |ξ1| � |ξ3|, |ξ4| ∼ 1, m=A
(
|ξ1+ξ2|1/2
|ξ1|1/2

, ξ1+ξ2
|ξ1+ξ2| , |ξ1|1/2, ξ1|ξ1| , ξ3

)
.

Remark. One should think of symbols in T0 as being of Coifman-Meyer

type, except that they might exhibit flag singularities, and they are allowed to

have singularities like Mihlin-Hörmander (linear!) multipliers along the coor-

dinate axes and along one axis corresponding to the sum of two coordinates

being zero.

Though this definition is quite involved, it somehow corresponds to the

simplest class containing all the symbols which occur in the analysis of the

water waves problem. For instance, symbols of the type mk(ξ,η)
φ±,±(ξ,η)mj(ξ − η, σ)

(which appear in §6) contribute singularities of the type ξ
|ξ| if one of the co-

ordinates vanishes, flag singularities, and singularities along one axis ξi + ξj .

This already accounts for nearly all points of the above definition.

How does one prove that these symbols are associated to bounded oper-

ators (Theorem D.1)? It is important in the proof that symbols in T0 can, by

power or Fourier series expansions, be reduced to tensorial products of func-

tions of one ξi only; in other words, it is possible to separate variables. Notice

that symbols of the form (for instance) ξ
|ξ|

η
|η| could not be treated by such a

method; but such behavior is not possible in the class Ts.

We next define a new class of symbols, which somehow corresponds to

paraproduct operators.

Definition D.2. A symbol m belongs to the class ‹Ts if

• it belongs to Ts;
• it satisfies the following support property: Suppm(ξ, η, σ) ⊂ {|σ| &
|ξ|, |η|}.

Calculus with symbols in Ts and T̃s. We begin with the action of deriva-

tives on Ts.

Lemma D.3. (i) If µ ∈ Ts, one can write

∂ξµ(ξ, η, σ) = µ1 +
1

|ξ|
µ2 +

1

|ξ − η|
µ3 +

1

|ξ − σ|
µ4 +

1

|ξ − η − σ|
µ5

with (µ1, µ2, µ3, µ4, µ5) ∈ Ts−1 × Ts × Ts × Ts × Ts.
(ii) If µ ∈ Ts and ν ∈ Ts′ , then µν ∈ Ts+s′ .
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Proof. Follows from the definition of Ts. Actually, due to the fact that µ

is smooth outside a neighborhood of Oij for (i, j) = (1, 2), (1, 3) or (2, 3), we

also have that µ3 = 0 or µ4 = 0. �

Finally, the following theorem gives the crucial boundedness properties of

operators with symbols in Ts and ‹Ts.
Theorem D.1. (i) If m belongs to the class T0, then

‖Bm(f1, f2, f3)‖r . ‖f1‖p1‖f2‖p2‖f3‖p3
if 1

p1
+ 1

p2
+ 1

p3
= 1

r and 1 < p1, p2, p3, r <∞,

‖Bm(f1, f2, f3)‖Ḃ0
1,∞
. ‖f1‖p1‖f2‖p2‖f3‖p3 if 1

p1
+ 1

p2
+ 1

p3
= 1.

(ii) If m belongs to the class ‹Ts, and if k is an integer, then∥∥∥∇kBm(f1, f2, f3)
∥∥∥
r
. ‖Λk+sf1‖p1‖f2‖p2‖f3‖p3

if 1
p1

+ 1
p2

+ 1
p3

= 1
r and 1 < p1, p2, p3, r <∞,∥∥∥∇kBm(f1, f2, f3)

∥∥∥
Ḃ0

1,∞
. ‖Λk+sf1‖p1‖f2‖p2‖f3‖p3

if 1
p1

+ 1
p2

+ 1
p3

= 1 and 1 < p1, p2, p3 <∞.

Remark. The above estimates, involving Besov spaces, come as a substi-

tute for estimates in L1, which are wrong. (For instance, the Riesz transform

is not bounded on L1.) In the same way, one can get substitutes for estimates

in L∞.

Proof. The proof of (i) is very similar to that of Theorem B.2 and The-

orem C.1. First, partition the frequency space in order to distinguish the

different regions appearing in the definition of Ts. Then, in each of these re-

gions, expand the symbol in order to separate variables. Finally, perform the

desired estimates using the Littlewood-Paley theorem.

In the region |ξ1| ∼ |ξ2| � |ξ3| ∼ 1, and |ξ1 + ξ2| ∼ |ξ1| if (i, j) = (1, 2), it

suffices to apply Theorem B.2 on symbols with flag singularities.

Let us also sketch how one deals with the region |ξ1| � |ξ2| � |ξ3|, |ξ4|.
Expanding the symbol A

Ä |ξ1|1/2
|ξ|1/22

, ξ1|ξ1| , |ξ2|1/2, ξ2|ξ2| , ξ3

ä
in power series in |ξ1|1/2

|ξ2|1/2

and |ξ2|1/2, and in spherical harmonics in ξ1
|ξ1| and ξ2

|ξ2| , gives

∑
k,k′

∑
`,`′

Ç
|ξ1|
|ξ2|

åk/2
|ξ|k

′/2
2 Z`

Ç
ξ1

|ξ1|

å
Z`′

Ç
ξ2

|ξ2|

å
Φkk′``′(ξ3),

where the functions Φkk′``′ are homogeneous of degree −k′

2 and decay fast with

the indices `, `′ by smoothness of A.



SOLUTIONS FOR THE GRAVITY WATER WAVES EQUATION 741

The above sum over k, k′ can be taken to be finite, the remainder giving

a Coifman-Meyer operator. Furthermore, it is easily checked that the powers(
|ξ1|
|ξ2|

)k/2
and |ξ|k

′/2
2 appearing above cancel with the homogeneity of Φkk′``′ ;

thus it is possible to ignore the sum over k and k′.

As for the sum over `, `′, we rely on the fast decay of the functions Φkk′``′ ,

which offsets the polynomial growth of the bounds (in Lebesgue spaces) of the

Fourier multipliers Z`
(
ξ1
|ξ1|

)
and Z`′

(
ξ2
|ξ2|

)
; thus it is possible to ignore the sum

over ` and `′.

Finally, up to rotation of the Fourier variables, and a duality argument,

it is possible to assume that (ξ1, ξ2, ξ3) = (σ, η, ξ − η − σ).

The above considerations lead to the model operator

B(f, g, h) =
∑

0≤k,k′≤N

∑
j

∑
j′<j−100

P<j′−100f Pj′g Pjh.

The boundedness of this operator is easily established; it is essentially a com-

position of paraproducts.

The extension to Besov spaces based on L1 follows from boundedness from

L1 to Ḃ1
0,∞ of Mihlin-Hörmander type Fourier multipliers.

Finally, point (ii) is proved just like Theorem C.1 was proved. �

Finally, we need the following proposition, which combines fractional in-

tegration and flag singularity.

Proposition D.4. (i) If m(ξ, η, σ) ∈ T0, 0 < α < 2, and 1 < p1, p2, p3,

r <∞, then∥∥∥∥B 1
|ξ−η|αm(ξ,η,σ)(f1, f2, f3)

∥∥∥∥
r
.‖f1‖p1‖f2‖p2‖f3‖p3 for 1

p1
+ 1
p2

+ 1
p3
− 1

2α = 1
r .

(ii) If m(ξ, η, σ) ∈ T̃s, 0 < α < 2, and 1 < p1, p2, p3, r <∞, then∥∥∥∥∇kB 1
|ξ−η|αm(ξ,η,σ)(f1, f2, f3)

∥∥∥∥
r
. ‖Λk+sf1‖p1‖f2‖p2‖f3‖p3

for 1
p1

+ 1
p2

+ 1
p3
− 1

2α = 1
r .

Proof. The proof follows the pattern of the proofs of Theorem B.2, The-

orem C.1, and Theorem D.1. In the end, it thus somehow reduces to the case

m = 1, for which the estimate is clear since

B|ξ−η|−α(f1, f2, f3) = f2
1

Λα
(f1f3).

Thus, by Hölder’s inequality and Lemma A.1,∥∥∥∥B 1
|ξ−η|α

(f1, f2, f3)

∥∥∥∥
r
. ‖f2‖p2

∥∥∥∥ 1

Λα
(f1f3)

∥∥∥∥ p2−r
p2r

. ‖f1‖p1‖f2‖p2‖f3‖p3 . �
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Appendix E. Proof of Proposition 2.2

Let a = (x, z) ∈ Ω and b = (y, h(y)) ∈ S. Then ψH can be represented by

the double layer potential

ψH(a)=

∫
S

µ(b)N ·∇G(a−b)dS(b) =
1

2
µ(b0)+

∫
S

(µ(b)−µ(b0))N ·∇G(a−b)dS(b),

where G(a − b) = 1
4π |a − b|

−1 is the Newtonian potential and b0 is an arbi-

trary point on S. By defining K(x, y) =
»

1 + |∇h(y)|2N(b) · ∇G(b0 − b) for

b0 = (x, h(x)) ∈ S and b = (y, h(y)) ∈ S, we have

(E.1)

K(x, y) = −∇h(y)·(x−y)+h(x)−h(y)

4π(|x−y|2+(h(x)−h(y))2)
3
2∫

|K(x, y)|(1 + |x− y|
1
2 ) dg ≤ ‖h‖W 2,∞ + ‖∇h‖Lp . ε0

for 2 < p < 4, and from standard singular integral calculations [Fol95] as

a→ b0, we have

(E.2)
1

2
µ(x) +

∫
µ(y)K(x, y)dy = ψ(x).

From (E.1) it is clear that the operator with kernel K maps L∞ → L∞ and

Ċα → Ċα for 0 < α ≤ 1
2 . A Neumann series expansion for µ gives

(E.3)

‖µ‖L∞ . ‖ψ‖L∞ ,‖µ‖Ċα . ‖ψ‖Ċα.
To obtain estimates on derivatives of µ, we change variables from y to z = x−y
in (E.2) and write J(x, z) = K(x, x + z). Since ∂xJ(x, z) satisfies inequal-

ity (E.1) with one additional derivative on h, i.e.,∫
|∂xJ(x, z)|(1 + |z|

1
2 )dz . ‖h‖W 3,∞ + ‖∇h‖W 1,p . εo,

then differentiating (E.2) with respect to x gives

1

2
∂µ(x) +

∫
∂µ(x− z)J(x, z)dz +

∫
µ(x− z)∂xJ(x, z)dz = ∂ψ(x),

which implies ‖∂µ‖L∞ . ‖∂ψ‖L∞ + ‖µ‖
Ċ

1
2
. ‖∂ψ‖L∞ + ‖ψ‖

Ċ
1
2

by (E.3).

Repeating the above argument twice, we obtain

‖∂µ‖C2 . ‖∂ψ‖C2 + ‖ψ‖
Ċ

1
2
.

Next we estimate Nψ. To do this we fix a point b0 ∈ S and use normal co-

ordinates in a neighborhood of S to restrict a near the boundary to the line

a = b0 + νN(b0). Thus

N(b0) · ∇ψH(a) =

∫
S

(µ(b)− µ(b0))D2G(N(b), N(b0))(a− b)dS(b).
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For |b−b0| large and ν small, |D2G(a−b)| . |b−b0|−3; thus the above integral

can be bounded by ‖µ‖
Ċ

1
2
. For |b− b0| small, we write

N(b0) = θ(b, b0)N(b) + γ(b, b0)τ, where τ ∈ Tb0S.

The term involving τ is integrable due to the vanishing of γ(b0, b0). By

repeating the argument that led to inequality (E.3), we obtain∣∣∣∣ ∫
S

(µ(b)− µ(b0))D2G(N(b), γτ)(a− b)dS(b)

∣∣∣∣ . ‖µ‖Ċ1/2 . ‖ψ‖Ċ1/2 .

The kernel of the remaining term,

I =

∫
S

(µ(b)− µ(b0))D2G(N(b), N(b))(νN(b0) + b0 − b)dS(b),

is hypersingular as ν → 0 and can be dealt with by using the identity

0 = ∆G = ∆SG+ κN · ∇G+D2G(N,N)

for ν < 0. This allows us to re-express I as

I =

∫
S

Dµ(b)DG(νN(b0)+b0−b)−(µ(b)−µ(b0))κN(b)·∇G(νN(b0)+b0−b) dS,

which is a singular kernel and can be bounded as before:

‖I‖ . ‖∂µ‖
Ċ

1
2

+ ‖µ‖
Ċ

1
2
. ‖∂ψ‖

Ċ
1
2

+ ‖ψ‖
Ċ

1
2
.

By repeating the above argument after applying tangential derivatives to

N(b0) · ∇ψ, we obtain

‖Nψ‖W 2,∞(S) ≤ ‖Dψ‖C3 + ‖ψ‖
Ċ

1
2
.

This proves inequality (2.1).

Appendix F. Estimates on the remainder term R

Recall that R is the remainder term defined at the beginning of Section 3.

More explicitly, recalling that u = h+ iΛ1/2ψ, R consists of the terms of order

4 and higher in u of the nonlinearity

(F.1) G(h)ψ + iΛ1/2

ñ
−1

2
|∇ψ|2 +

1

2(1 + |∇h|2)
(G(h)ψ +∇h · ∇ψ)2

ô
.

The following proposition gives bounds on R.



744 P. GERMAIN, N. MASMOUDI, and J. SHATAH

Proposition F.1. If ‖u‖W 3,∞ is small enough, then

(i)
∥∥∥∇kR∥∥∥

r
.
∥∥∥∇k+2u

∥∥∥
p

∥∥∥∇k+2u
∥∥∥
q
‖u‖2W 3,∞(F.2)

if 1
p + 1

q = 1
r and 1 ≤ p, q, r <∞;

(ii) ‖xR‖2 . ‖〈x〉u‖2‖u‖
3
W 3,∞ .

Remark. Both of the above estimates say that R behaves roughly like a

four-fold product of some derivatives of u. Both of them are far from be-

ing optimal, except for one point: in estimate (ii), the weighted norm on the

right-hand side does not carry any derivatives.

We will only prove (ii), the estimate (i) being much easier. Furthermore,

we observe that if the bound (ii) can be proved with R replaced by the fourth-

order terms of G(h)ψ, it follows easily for R. Indeed, a look at the nonlinear-

ity (F.1) shows that R essentially consists of products of G(h) with derivatives

of u, but this is easily treated. Thus we will in the following prove (ii) with R

replaced by terms of order four and higher of G(h).

Given a harmonic function ψH in Ω, it can be represented via a single

layer potential ρ as2

(F.3) ψH(x, z) =
1

2π

∫
ρ(y)(|x− y|2 + |z − h(y)|2)−1/2 dy if (x, z) ∈ Ω.

Then

(F.4) G(h)ψ = ρ− 1

2π

∫
ρ(y)
∇h(x) · (x− y) + h(y)− h(x)

(|x− y|2 + |h(x)− h(y)|2)3/2
dy.

Notice that the kernel is very similar to the one given in (E.1).

Expanding (F.3) in h, after evaluating on the boundary (x, h(x)) and ap-

plying Λ, we get

Λψ(x) = ρ(x) +
∑
n≥1

αnΛ

∫
ρ(y)
|h(x)− h(y)|2n

|x− y|2n+1
dy,

def
= ρ+

∑
Kn(ρ).

(Recall that Λ = |D|.) Using Neumann series, ρ can be expressed as

ρ = Λψ +
∑

N∈N,(m1···mN )∈NN
βm1···mNKm1 · · ·KmNΛψ,

where |βm1···mN | ≤ Cm1+···+mN . In order to obtain weighted estimates, we will

need the following claim, whose proof we postpone for the moment.

2Note that in our representation ρ differs from the standard ρ by a factor of
√

1 + |∇h|2.
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Claim F.2. If n ≥ 1, then

‖xKnΛψ‖2 ≤ Cn ‖〈x〉u‖2 ‖u‖
2n−1
W 3,∞ ,(F.5a)

‖〈x〉KnZ‖2 ≤ Cn‖〈x〉Z‖2 ‖h‖2n−1
W 3,∞ .(F.5b)

Assuming the claim, Proposition F.1 follows. Indeed, the contribution of
1
2ρ in (F.4) to R is given by∑

m1+···+mN≥2

βm1···mNKm1 · · ·KmNΛψ,

and this can be estimated using the claim. In order to estimate the contri-

bution of the second summand of (F.4), the same procedure can be applied:

expand the kernel in powers of h, and use the bound on the expansion of ρ in

powers of h which follows from the claim.

Proof of (F.5a) in Claim F.2.

Step 1: A paraproduct inequality.

Lemma F.3. We have for A ≥ 0 and B ≥ 1,

‖x∇AΛf∇Bg‖2(F.6)

≤ ‖Λ1/2f‖WA+B+1,∞ ‖〈x〉g‖2 + ‖〈x〉Λ1/2f‖2 ‖g‖WA+B+1,∞ ,

(F.7) ‖x∇A+1f∇Bg‖2 ≤ ‖f‖WA+B+2,∞ ‖〈x〉g‖2 + ‖〈x〉f‖2 ‖g‖WA+B+2,∞ .

Proof. We focus on the first inequality, the second one being proved in an

identical way. Using the paraproduct decomposition, we write

x∇AΛf∇Bg = x
[∑

j

∇AΛPjf∇BP≤jg +
∑
j

∇AΛP<jf∇BPjg
]
.

Notice that

x∇BP<jg = ∇B−1‹P<jg +∇BP<jxg,

x∇AΛP<jf = ΛA−
1
2 ‹P<jΛ1/2f +∇AΛ1/2P<jxΛ

1/2f

(where we denote ‹P<j for a symbol of the type λ
Ä
D
2j

ä
, with λ smooth and

supported in B(0, C)). Thus

x∇AΛf∇Bg =
∑
j

∇AΛPjf(∇B−1‹P≤jg +∇BP≤jxg)

+ (ΛA−
1
2 ‹P<jΛ1/2f +∇AΛ1/2P<jxΛ

1/2f)∇BPjg.
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This implies

‖x∇AΛf∇Bg‖2 ≤
∑
j

2j(A+1)‖Pjf‖∞(2j(B−1)‖g‖2 + 2jB‖xg‖2)

+ (2j(A−1/2)
∥∥∥Λ1/2f

∥∥∥
2

+ 2j(A+ 1
2

)‖xΛ1/2f‖2)2jB‖Pjg‖∞

≤ ‖Λ1/2f‖WA+B+1,∞‖〈x〉g‖2 + ‖〈x〉Λ1/2f‖2 ‖g‖WA+B+1,∞ ,

proving (F.6). The proof of (F.7) is very similar. �

Step 2: Splitting of the integral. To bound KnΛψ for n ≥ 1, choose a

smooth cutoff function χ equal to 1 on B(0, 1) and 0 outside of B(0, 2), then

split the integral

KnΛψ = Λ

∫
Λψ(y)

|h(x)− h(y)|2n

|x− y|2n+1
χ(x− y) dy(F.8a)

+ Λ

∫
Λψ(y)

|h(x)− h(y)|2n

|x− y|2n+1
(1− χ(x− y)) dy.(F.8b)

Observe that since ‖xΛf‖2 ≤ ‖x∇f‖2 + ‖f‖2, we can replace Λ
∫

by ∇
∫

in

our estimate.

Step 3: Estimate of (F.8b): The case |x − y| & 1. In this region, the

cancellation contained in h(x)− h(y) is not needed; thus it suffices to replace

(h(x) − h(y))2n by the general term given by the expansion of this power,

namely h(x)`h(y)2n−`. We get∫
Λψ(y)∇x

ñ
(1− χ(x− y))

h(x)`h(y)2n−`

|x− y|2n+1

ô
dy.

For ` = 0, the above integral is given by∫
|h(y)|2nΛψ(y)∇x

1− χ(x− y)

|x− y|2n+1
dy = Γ ∗ (Λψh2n),

where Γ satisfies ‖〈x〉Γ‖L1 . 1. Therefore

x(Γ ∗ (Λψh2n)) = (xΓ )︸ ︷︷ ︸
L1

∗ (Λψh2n)︸ ︷︷ ︸
L2︸ ︷︷ ︸

L2

+ Γ︸︷︷︸
L1

∗ (xΛψh2n)︸ ︷︷ ︸
L2︸ ︷︷ ︸

L2

,

and the conclusion follows since

‖xΛψh2n‖2 . ‖xh‖2 ‖Λψ‖∞ ‖h‖2n−1
∞ .

For ` ≥ 1, the most problematic term is when ∇x hits h(x), since otherwise

we have added decay in x− y. It reads∫
Λψ(y)(1−χ(x−y))

∇h(x)h(x)`−1h(y)2n−`

|x− y|2n+1
dy = ∇h(x)h(x)`−1Γ1∗(Λψh2n−`),
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where Γ1 decays at least like |x|−3. For ` = 1, we have

‖x(∇h)(Γ1 ∗ (Λψh2n−1)‖L2 . ‖∇h‖L∞‖|x(Γ1 ∗ (Λψh2n−1)‖L2 ,

which can be estimated by

x(Γ1 ∗ (Λψh2n−1)) = (xΓ1)︸ ︷︷ ︸
L4/3

∗ (Λψh2n−1)︸ ︷︷ ︸
L4/3︸ ︷︷ ︸

L2

+ Γ1︸︷︷︸
L1

∗ (xΛψh2n−1)︸ ︷︷ ︸
L2︸ ︷︷ ︸

L2

.

Since L2(〈x〉2dx) ↪→L
4
3 (dx), this yields the desired estimate, as in the case `=0.

For ` ≥ 2, the bound follows in an even simpler way; thus we skip this case.

Step 4: Estimate for (F.8a): The case |x−y| . 1. We use Taylor’s formula

h(y)− h(x)

|x− y|
= ∇h(x)

y − x
|y − x|

+

∫ 1

0
∇2h(x+ t(y − x))

(y − x)2

|y − x|
(1− t)dt

to deal with the singular integral. More precisely, we substitute the above

expression for each factor h(x) − h(y) in (F.8a); subsequently expanding the

product gives 22n terms. We start with the one involving
(
∇h · y−x|y−x|

)2n
, writ-

ing it as

∇x
∫
Λψ(y)

χ(x− y)

|x− y|

Ç
∇h(x) · y − x

|y − x|

å2n

dy(F.9a)

= ∇x
∫

(Λψ(y)− Λψ(x))
χ(x− y)

|x− y|

Ç
∇h(x) · y − x

|y − x|

å2n

dy(F.9b)

+∇x
Ç
Λψ(x)

∫
χ(x− y)

|x− y|

Ç
∇h(x) · y − x

|y − x|

å2n

dy

å
.(F.9c)

The term (F.9c) can be written as

∇
Ç
Λψ(x)

∑
Nj=1,2

∂N1h · · · ∂N2nh

∫
χ(x− y)

|x− y|
(y − x)N1

|y − x|
· · · (y − x)N2n

|y − x|
dy

å
= ∇

Ä
Λψ(x)

∑
γN1···N2n∂N1h · · · ∂Nnh

ä
,

which is easy to bound by (F.6). To bound part (F.9b), we note that if ∇x
hits Λψ(x) one gets

∇Λψ(x)

∫
χ(x− y)

|x− y|

Ç
∇h(x) · y − x

|y − x|

å2n

dy,

which is similar to part (F.9c). If ∇x hits ∇h(x), one gets∫
(Λψ(y)− Λψ(x))

χ(x− y)

|x− y|

Ç
∇2h(x)

y − x
|y − x|

åÇ
∇h(x) · y − x

|y − x|

å2n−1

dy,
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which can be written as a sum of terms of the type

C∇2h(x)∇h(x)2n−1Λψ or ∇2h(x)∇h(x)2n−1K∗Λψ, K an integrable kernel

and thus can be treated by Lemma F.3.

If ∇x hits the function of (x− y), we turn ∇x into −∇y and integrate by

parts to get ∫
∇Λψ(y)

χ(y − x)

|y − x|

Ç
∇h(x) · y − x

|y − x|

å2n

dy,

which can be written as a sum of terms of the type

∇h(x)2nK ∗ Λψ, K an integrable kernel

and can be bounded by Lemma F.3.

All the remaining terms in the expansion of (F.8a), after substituting the

Taylor expansion, involve at least one power of
∫ 1

0 ∇2h · · · , i.e.,

∇x
∫
Λψ(y)χ(x− y)|x− y|`−1

Ç ∫ 1

0
∇2h(x+ t(y − x))(1− t)dt

å`
∇h(x)2n−` dy

for ` ≥ 1. (Here we abused notation by writing |x−y|`−1 instead of the correct

multilinear expression in x− y involving scalar products.) Regardless of what

term is hit by ∇x, we estimate the above in the following manner:

1) Split ψ into low and high frequencies

ψ = ψlow + ψhigh
def
= P<0ψ + P≥0ψ.

2) If ψ is low frequency, estimate directly after putting the weight on ψ.

3) If ψ is high frequency, remove one derivative from ψ by integration by

parts (thus getting Rψ, R Riesz transform), then estimate after putting

the weight on ψ.

Thus if ψ is low frequency, we take the derivatives of h in L∞ and get the bound

‖〈x〉Λψlow‖2 ‖h‖2nW 3,∞ ,

and if ψ is high frequency, integrate by parts in y using Λψ = ∇yRψ and get

the bound

‖〈x〉Rψhigh‖2 ‖h‖2nW 3,∞ .

The estimate follows since

‖〈x〉Λψlow‖2 + ‖〈x〉Rψhigh‖2 . ‖〈x〉Λ1/2ψ‖2.

This completes the proof of (F.5a).
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Proof of (F.5b) in Claim F.2. The proof of the inequality (F.5b) is very

similar to that of inequality (F.5a), which was the object of the previous sec-

tion. One additional ingredient is however needed, which reduces to the bound-

edness of the operator

T : Z 7→ ∇
∫
Z(y)

|h(x)− h(y)|2n

|x− y|2n+1
χ(x− y) dy on L2.

In order to prove it, observe that T is a singular integral operator if h belongs

to W 2,∞. By the David and Journé T1 theorem, its boundedness over L2 will

follow from the belonging of T (1) and T ∗(1) to BMO. Since T is antisymmetric,

it suffices to check that T1 belongs to BMO. But T1 is given by

∇
∫ |h(x)− h(y)|2n

|x− y|2n+1
χ(x− y) dy,

which, as one sees easily, is bounded in L∞ provided h ∈W 3,∞.

Remark. Equations (3.1) can also be easily derived from (F.3) and (F.4).

Using the fact that Λ =
∑
Ri∂i, where Ri’s are the Riez potentials, one can

show that

Λψ(x) = p.v.
1

π

∫
R2

ψ(x)− ψ(y)

|x− y|3
dy.

Thus from (F.3), ρ = Λψ− Λ
2 [h2Λ2ψ− 2hΛ(hΛψ) +Λ(h2Λψ)] + · · · , and from

(F.4),

G(h)ψ = Λψ −∇ · (h∇ψ)− Λ(hΛψ)

− 1

2
[Λ(h2Λ2ψ) + Λ2(h2Λψ)− 2Λ(hΛ(hΛψ))] + · · · ,

which is the first part of (3.1). The second part follows immediately from the

first.

Appendix G. Addendum

As was stated in the introduction we did not attempt to optimize the set of

initial data for which our results hold. The following remark shows that our re-

sult can trivially be extended to include different set of initial data, for instance

‖u0‖HN + ‖Λ
3
4

+γxu0‖L2 + ‖u0‖Ḃ11/2
1,1

≤ ε,

where γ and ε are fixed small positive numbers. In order to give a precise

statement, let us define a new norm, ‹X, by

||u||
X̃

def
= sup

t≥2
t ‖u‖W 4,∞ + t−δ ‖u‖HN + t−δ

∥∥∥Λ 3
4

+γxf
∥∥∥
L2

+ ‖u‖L2 ,

where δ denotes a small constant and N denotes a big enough integer. This new

norm differs from the norm in the paper by 3/4+γ derivatives in the weighted

L2 part and thus allows slower decaying data however less oscillating.
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Theorem. There exists an ε>0 such that if the data satisfies ‖eitΛ1/2
u0‖X̃

< ε, then there exists a unique global solution u of (WW) such that ‖u‖
X̃
. ε.

To prove the new theorem above, only a few elements in the paper need

to be modified. In particular, one needs to apply Λ
3
4

+γx instead of x to the

profile. In the spirit of Leibniz rule for fractional derivatives, one can distrib-

ute Λ3/4+γ . Then the only terms which require a modification are (5.2d) and

(5.3c) for the quadratic interactions; (6.7), (6.8), (7.3), and (7.7) for the cubic

interactions; and the remainder term (the last inequality in §8).

Before we show how to modify the estimates, we make two simple obser-

vations. First by Hardy’s inequality,∥∥∥xΛ 3
4

+γf
∥∥∥

2
.
∥∥∥Λ 3

4
+γxf

∥∥∥
2

;

thus ‖u‖
X̃

controls
∥∥∥xΛ 3

4
+γf

∥∥∥
2
. Second, from Lemma A.1(2),

‖eitΛ1/2
f0‖∞ .

1

t
‖f0‖Ḃ3/2

1,1

(G.1)

⇒
∥∥∥eitΛ1/2

f0

∥∥∥
Lp
.

1

t
1− 2

p

‖Λ
1
2 f0‖αL2‖〈x〉Λ

3
2
− 3
p

+γ
f0‖1−αL2

for 2 < p <∞, and small enough α > 0 and γ > 0. Specifically for 2 < p <∞,

0 < α < 2/p, and 0 < β, satisfying α+ β − αβ < 2/p, we have

t
1− 2

p

∥∥∥eitΛ1/2
f0

∥∥∥
Lp

. ‖Λ
3
2
− 3
p f0‖B0

p′,p′
. ‖Λ1/2f0‖αL2‖Λ

1
1−α ( 3

2
− 3
p
−α

2
)
f0‖1−αB0

r,r

. ‖Λ1/2f0‖αL2‖Λ
1

1−α ( 3
2
− 3
p
−α

2
)
f0‖1−αWβ,r

. ‖Λ1/2f0‖αL2(‖Λ
1

1−α ( 3
2
− 3
p
−α

2
)+β

f0‖Lr + ‖Λ
1

1−α ( 3
2
− 3
p
−α

2
)+β

f0‖L2r/(2+rβ )1−α

. ‖Λ1/2f0‖αL2‖〈x〉Λ
3
2
− 3
p

+γ
f0‖1−αL2 ,

where 1/p+ 1/p′ = 1, 1/p′ = α/2 + (1− α)/r, and γ = α(1− 3
p)/(1− α) + β.

In the last inequality, we have used that 1 < 2r
2+rβ < r < 2.

To estimate Λ3/4+γ(5.3c), it suffices to rely on fractional integration (see

Lemma A.1(3)):∥∥∥(Λ3/4+γ(5.3c))
∥∥∥

2
=

∥∥∥∥Λ3/4+γBµ3

Å
u, eitΛ

1/2 1

Λ
f

ã∥∥∥∥
2

.
∥∥∥Λ7/4+γu

∥∥∥
16
7

∥∥∥∥eitΛ1/2 1

Λ
f

∥∥∥∥
16

.
∥∥∥Λ7/4+γu

∥∥∥
16
7

∥∥∥Λ 3
4

+γf
∥∥∥
( 15
16

+ γ
2 )
−1 . ‖u‖2

X̃
.
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To estimate Λ3/4+γ(5.2d), we bound using (G.1), with p = 12 and f0 =
1

Λ1/2 f :

t

∥∥∥∥Λ3/4+γBµ2

Å
u, e±itΛ

1/2 1

Λ1/2
f

ã∥∥∥∥
2
. t

∥∥∥Λ7/4+γu
∥∥∥

12
5

∥∥∥∥e±itΛ1/2 1

Λ1/2
f

∥∥∥∥
12

. tt
− 1

6
+ 2

N− 1
6

[δ+ 1
6

]
‖u‖

X̃

∥∥∥∥e±itΛ1/2 1

Λ1/2
f

∥∥∥∥
12

. tt
− 1

6
+ 2

N− 1
6

[δ+ 1
6

]
t−

5
6 tδ(1−α)‖u‖2

X̃
. tδ‖u‖2

X̃
.

To estimate Λ3/4+γ(6.6b), we also rely on fractional integration:∥∥∥Λ3/4+γ(6.6b)
∥∥∥

2
=

∥∥∥∥∥
∫ t

2
∇k+3/4+γBχ1µ

(
u, u, e±itΛ

1/2
xf
)
ds

∥∥∥∥∥
2

.
∫ t

2

∥∥∥Λk+13/4+γu
∥∥∥

16/(3+4γ)
‖u‖16/(3+4γ)

∥∥∥eitΛ1/2
xf
∥∥∥

8
1−4γ

.
∫ t

2

∥∥∥Λk+13/4+γu
∥∥∥

16/(3+4γ)
‖u‖16/(3+4γ)

∥∥∥Λ3/4+γxf
∥∥∥

2
ds

. ‖u‖3
X̃
.

The bound on Λ3/4+γ(6.8b) is similar to the bound on Λ3/4+γ(5.2d) above:∥∥∥Λ3/4+γ(6.8b)
∥∥∥

2
.
∫ t

2
s

∥∥∥∥Λ3/4+γBχ1µ

Å
u, u,

1

Λ1/2
u

ã∥∥∥∥
2
ds

.
∫ t

2
s
∥∥∥Λ13/4+γu

∥∥∥
24
5

‖u‖ 24
5

∥∥∥∥∥eisΛ
1/2

Λ1/2
f

∥∥∥∥∥
12

ds

. ‖u‖3
X̃

∫ t

2
ss
− 7

12
+ k
N−14/24

(δ+ 14
24

)
s−

7
12 s−

5
6

+(1−α)δ) ds . ‖u‖3
X̃
tδ.

The bound on Λ3/4+γ(7.7a) is derived in a straightforward fashion:

∥∥∥Λ3/4+γ(7.7a)
∥∥∥

2
.
∫ t

2
sδ0(1+γ)

∥∥∥∥∥B ∂ξφ∂σφ

|∂σφ|2
χIχ1µ

(
P<δ0 log se

itΛ1/2
(xf), u, u

)∥∥∥∥∥
8/5

ds

.
∫ t

2
sδ0(1+γ)

∥∥∥Λ5/2P<δ0 log se
itΛ1/2

(xf)
∥∥∥

2
‖u‖16 ‖u‖16 ds

.
∫ t

2
s

11δ0
4

∥∥∥Λ3/4+γxf
∥∥∥

2
‖u‖16 ‖u‖16 ds

. ‖u‖3
X̃

∫ t

2
s

11δ0
4 sδs−

7
8 s−

7
8 ds . ‖u‖3

X̃
.

Finally, the remainder term can be bounded as follows:

‖xΛ3/4+γR‖2 . ‖xR‖2 + ‖xΛ2R‖2
. ‖xu‖8/(1−4γ)‖u‖W 4,8/(3+4γ)‖u‖2W 4,∞ . t−5/4+2γ+2δ‖u‖4

X̃
.
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