
Annals of Mathematics 175 (2012), 567–629
http://dx.doi.org/10.4007/annals.2012.175.2.4

Thom polynomials of Morin singularities
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Abstract

We prove a formula for Thom polynomials of Ad singularities in any

codimension. We use a combination of the test-curve model of Porteous,

and the localization methods in equivariant cohomology. Our formulas are

independent of the codimension, and are computationally effective up to

d = 6.

0. Introduction

We begin with a quick summary of the notions of global singularity theory

and the theory of Thom polynomials. For a more detailed review we refer the

reader to [1], [14].

Consider a holomorphic map f : N → K between two complex manifolds,

of dimensions n ≤ k. We say that p ∈ N is a singular point of f if the rank of

the differential dfp : TpN → Tf(p)K is less than n.

Topology often forces f to be singular at some points of N , and we

will be interested in studying such situations. Before we proceed, we intro-

duce a finer classification of singular points. Choose local coordinates near

p ∈ N and f(p) ∈ K, and consider the resulting map-germ f̌p : (Cn, 0) →
(Ck, 0), which may be thought of as a sequence of k power series in n variables

without constant terms. The group of infinitesimal local coordinate changes

Diff(Ck) × Diff(Cn) acts on the space J (n, k) of all such map-germs. We

will call Diff(Ck) × Diff(Cn)-orbits or, more generally, Diff(Ck) × Diff(Cn)-

invariant subsets O ⊂ J (n, k) singularities. For a singularity O and holomor-

phic f : N → K, we can define the set

ZO[f ] = {p ∈ N ; f̌p ∈ O},
which is independent of any coordinate choices. Then, under some additional

technical assumptions (compact N , appropriately chosen closed O, and suffi-

ciently generic f), ZO[f ] is an analytic subvariety of N . The computation of

the Poincaré dual class αO[f ] ∈ H∗(N,Z) of this set is one of the fundamen-

tal problems of global singularity theory. This is indeed useful: for example,
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if we can prove that αO[f ] does not vanish, then we can guarantee that the

singularity O occurs at some point of the map f .

This problem was first studied by René Thom (cf. [28], [12]) in the category

of smooth varieties and smooth maps; in this case cohomology with Z/2Z-

coefficients is used. Thom discovered that to every singularity O one can

associate a bivariant characteristic class τO, which, when evaluated on the pair

(TN, f∗TK) produces the Poincaré dual class αO[f ]. One of the consequences

of this result is that the class αO[f ] depends only on the homotopy class of f .

A similar result, which we will call Thom’s principle, has been used in the

holomorphic category (cf. [14], [9] and §2 of the present paper). To formulate it

in more concrete terms, denote by C[λ,θ]Sn×Sk the space of those polynomials

in the variables (λ1, . . . , λn, θ1, . . . , θk) which are invariant under the permu-

tations of the λs and the permutations of the θs. According to the structure

theorem of symmetric polynomials, C[λ,θ]Sn×Sk itself is a polynomial ring in

the elementary symmetric polynomials

C[λ,θ]Sn×Sk = C[c1(λ), . . . , cn(λ), c1(θ), . . . , ck(θ)].

Using the Chern-Weil map, a polynomial Q ∈ C[λ,θ]Sn×Sk and a pair of

bundles (E,F ) over N of ranks n and k, respectively, produces a characteristic

class Q(E,F ) ∈ H∗(N,C). Then the complex variant of Thom’s principle

reads:

For appropriate Diff(Ck)×Diff(Cn)-invariant subset O of codi-

mension m in J (n, k), there exists a homogeneous polynomial

TpO ∈ C[λ,θ]Sn×Sk of degree m, such that for a sufficiently

generic map f : N → K , the cycle ZO[f ] ⊂ N is Poincaré dual

to the characteristic class TpO(TN, f∗TK).

A precise version of this statement is described in Section 2. The polyno-

mial TpO is called the Thom polynomial of O, and the computation of these

polynomials is a central problem of singularity theory.

The structure of the Diff(Ck)×Diff(Cn)-action on J (n, k) is rather com-

plicated; even the parametrization of the orbits is difficult. There is, however, a

simple invariant on the space of orbits: to each map-germ f̌ : (Cn, 0)→ (Ck, 0),

we can associate the finite-dimensional nilpotent algebra Af̌ defined as the quo-

tient of the algebra of power series with no constant term C0[[x1, . . . , xn]] by

the ideal generated by the pull-back subalgebra f̌∗(C0[[y1, . . . , yk]]). This al-

gebra Af̌ is trivial if the map-germ f̌ is nonsingular, and it does not change

along a Diff(Ck)×Diff(Cn)-orbit (cf. §2 more details).

Combining Thom’s principle with this observation, to each finite-dimen-

sional nilpotent algebra A and pair of integers (n, k), one can associate a doubly

symmetric polynomial Tpn→kA ∈ C[λ,θ]Sn×Sk , which, in the sense described
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above, will serve as a universal Poincaré dual of those points in the source

spaces of holomorphic maps whose local nilpotent algebra is A.

The computation of Thom polynomials associated to nilpotent algebras is

difficult, but a few structural statements are known (cf. §2.6 for more details).

First, as discovered by Damon and Ronga ([8], [24]) in the 70’s, the poly-

nomial Tpn→kA lies in the subring of C[λ,θ]Sn×Sk generated by the relative

Chern classes defined by the generating series

1 + c1q + c2q
2 + · · · =

∏k
j=1(1 + θjq)∏n
i=1(1 + λiq)

.

Next, the Thom polynomial, expressed in terms of these relative Chern classes,

only depends on the codimension j = k − n. More precisely, there is a unique

polynomial TDj
A(c1, c2, . . . ) such that

Tpn→kA (λ,θ) = TDk−n
A (c1(λ,θ), c2(λ,θ), . . . ).

Finally, in a recent paper, Fehér and Rimányi observed [9] that performing

the substitution ci 7→ ci−1 in TDj
A produces TDj−1

A . This implies that to

each nilpotent algebra A one can associate a power series in infinitely many

variables, which encodes all of the Thom polynomials associated to A. This

observation served as the starting point for the present work.

In this paper, we will concentrate on the so-called Morin singularities [19],

which correspond to the situation when the algebra A is generated by a single

element. The list of these algebras is simple: Ad = tC[t]/td+1, d = 1, 2, . . . .

The goal of our paper is to compute the Thom polynomial Tpn→kAd
for

arbitrary d, n and k. For simplicity of notation, we will denote this polyno-

mial by Tpn→kd , or sometimes simply by Tpd, omitting the dependence on the

parameters n and k.

The problem of calculating Tpn→kd goes back to Thom [28]. The case d = 1

is the classical formula of Porteous: Tp1 = ck−n+1. The Thom polynomial in

the d = 2 case was computed by Ronga in [24]. More recently, an explicit

formula for Tp3 was proposed in [2], and P. Pragacz has given a sketch of a

proof of this conjecture [22]. Finally, using his method of restriction equations,

Rimányi [23] was able to treat the n = k case, and he computed Tpn→nd for

d ≤ 8 (cf. [10] for the case d = 4).

Our approach combines the test-curve model of Porteous [21] with lo-

calization techniques in equivariant cohomology [4], [26], [29]. We obtain a

formula reducing the computation of Tpn→kd to a certain problem of commu-

tative algebra, which depends on d only. This problem is trivial for d = 1, 2, 3

(cf. (0.1) below); hence we instantly recover all results known for arbitrary

n ≤ k. An important feature of our formula is that it manifestly satisfies all

three properties listed above. In particular, we obtain a tentative geometric

interpretation for the Thom series introduced by Fehér and Rimányi.
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The paper is structured as follows. We describe the basic setup and notions

of singularity theory in Section 1, essentially repeating the above constructions

using more formal notation. Next, in Section 2, using Vergne’s integral for-

mula, we introduce the notion of equivariant Poincaré dual, which provides us

with a convenient language for describing Thom polynomials. In Section 3 we

present the localization formulas of Berline-Vergne [4] and Rossmann [26] and

develop a calculus localizing equivariant Poincaré duals. With these prepara-

tions, we proceed to describe the test curve model for Morin singularities in

Section 4. This is the key part of our work, where we reinterpret and modify

this model using a double fibration in a way which allows us to compactify

our model space and apply the localization formulas. At the end of Section 5,

we summarize our constructions and results in a diagram to orient the reader.

Section 5 is a rather straightforward application of the localization techniques

of Section 3 to the double fibration constructed in Section 4. The resulting

formula (5.24), in principle, reduces the computation of our Thom polynomials

to a finite problem, but this formula is difficult to use for concrete calculations.

Remarkably, however, the formula undergoes several simplifications, which we

explain in Section 6.

The simplifications bring us to our main result: Theorem 6.16 and for-

mula (6.26). While this formula is rather simple, it still contains an unknown

quantity: a certain homogeneous polynomial “Qd in d variables, which does not

depend on n and k. The list of these polynomials begins as follows:

(0.1) “Q1 = “Q2 = “Q3 = 1, “Q4(z1, z2, z3, z4) = 2z1 + z2 − z4, . . . .

In principle, “Qd may be calculated for each concrete d using a computer

algebra program, but, at the moment, we do not have an efficient algorithm

for performing such calculations for large d. We discuss certain partial results

in the final section of our paper. These, in particular, allow us to compute “Q5

by hand and “Q6 using the computer algebra program Macaulay.

We end the paper with an application of our theorem to positivity of Thom

series. Rimányi conjectured in [23] that the Thom polynomials Tpd expressed

in terms of relative Chern classes have positive coefficients. Our formalism

suggests a stronger positivity conjecture, which we formulate in Section 7.5

and check for the first few values of d.

In closing, we note that Morin singularities are special cases of the so-

called Thom-Boardman singularities [28], [5], [17]. These are parametrized by

finite nonincreasing sequences of integers, and Morin singularities correspond

to sequences starting with 1. Our method extends to a wider class of Thom-

Boardman singularities; we hope to report on new results in this direction in

a later publication.
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1. Basic notions of singularity theory

1.1. The setup. We start with a brief introduction to singularity theory.

We suggest [16], [1], [28] as references for the subject.

Let (e1, . . . , en) be the basis of Cn, and denote the corresponding coor-

dinates by (x1, . . . , xn). Introduce the notation J (n) = {h ∈ C[[x1, . . . , xn]];

h(0)] = 0} for the algebra of power series without a constant term, and let

Jd(n) be the space of d-jets of holomorphic functions on Cn near the origin,

i.e., the quotient of J (n) by the ideal of those power series whose lowest order

term is of degree at least d+1. As a linear space, Jd(n) may be identified with

polynomials on Cn of degree at most d without a constant term.

In this paper, we will call an algebra nilpotent if it is finite-dimensional

and there exists a positive integer N such that the product of any N elements

of the algebra vanishes. The algebra Jd(n), in particular, is nilpotent, since

Jd(n)d+1 = 0.

Our basic object is Jd(n, k), the space of d-jets of holomorphic maps

(Cn, 0) → (Ck, 0). This is a finite-dimensional complex vector space, which

one can identify Jd(n)⊗Ck; hence dimJd(n, k) = k
(n+d
d

)− k. We will call the

elements of Jd(k, n) map-jets of order d, or simply map-jets. In this paper we

will always assume n ≤ k.

Eliminating the terms of degree d results in an algebra homomorphism

Jd(n) � Jd−1(n), and the chain Jd(n) � Jd−1(n) � . . . � J1(n) induces an

increasing filtration on Jd(n)∗:

(1.1) J1(n)∗ ⊂ J2(n)∗ ⊂ . . . ⊂ Jd(n)∗.

The space Ji(n)∗ may be interpreted as a set of differential operators with

constant coefficients of degree at most i, and, in particular, by taking symbols,

we have

(1.2) Jd(n)∗ ∼= Sym•dCn
def
= ⊕dl=1SymlCn,

where Syml stands for the symmetric tensor product and the isomorphism is

that of filtered GLn-modules.

One can compose map-jets via substitution and elimination of terms of

degree greater than d. This leads to the composition maps

(1.3) Jd(n, k)× Jd(m,n)→ Jd(m, k), (Ψ2,Ψ1) 7→ Ψ2 ◦Ψ1.
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When d = 1, J1(m,n) may be identified with n-by-m matrices, and (1.3)

reduces to multiplication of matrices. By taking the linear parts of map-jets,

we obtain a map

Lin : Jd(n, k)→ Hom(Cn,Ck),

which is compatible with the compositions (1.3) and matrix multiplication.

We define the set of jets with regular linear parts (for n ≤ k) as

(1.4) Σ0(n, k) = {Ψ ∈ Jd(n, k) : rank(Lin(Ψ)) = n}.
Consider now

Diffd(n) = {∆ ∈ Jd(n, n); Lin(∆) invertible}.
The composition map (1.3) endows this set with the structure of an algebraic

group, which has a faithful representation on Jd(n). Using the compositions

(1.3) again, we obtain the so-called left-right action of the group Diffd(k) ×
Diffd(n) on Jd(k, n):

[(∆L,∆R),Ψ] 7→ ∆L ◦Ψ ◦∆−1
R .

Note that the action of Diffd(n) is linear, while the action of Diffd(k) is not.

Singularity theory, in the sense that we are considering here, studies the left-

right-invariant algebraic subsets of Jd(n, k).

A natural way to form such subsets is as follows. Observe that to each

element Ψ = (P1, . . . , Pk) ∈ Jd(n, k), where Pi ∈ Jd(n) for i = 1, . . . , k, we

can associate the quotient algebra AΨ = Jd(n)/I〈P1, . . . , Pk〉: the algebra

Jd(n) modulo the ideal generated by the elements of the sequence. Since

Jd(n)d+1 = 0, we also have Ad+1
Ψ =0. We will call AΨ the nilpotent algebra1 of

the map-jet Ψ. For Ψ = 0, this nilpotent algebra is Jd(n), while for a generic

Ψ (in fact, as soon as rank[Lin(Ψ)] = n), we have AΨ = 0.

Now let A be a nilpotent algebra, as defined above. Consider the subset

(1.5) Θn→k
A = {(P1, . . . , Pk) ∈ Jd(n, k); Jd(n)/I〈P1, . . . , Pn〉 ∼= A}

of the map-jets of order d.

It is easy to show that Θk−n
A is Diffd(k) × Diffd(n)-invariant. A key ob-

servation is that although two map-jets with the same nilpotent algebra may

be in different Diffd(k) × Diffd(n)-orbits, there is a group acting on Jd(n, k)

whose orbits are exactly the sets Θn→k
A for various nilpotent algebras A. This

group is defined as the semidirect product

(1.6) Kd(n, k) = GLk(C⊕ Jd(n)) o Diffd(n),

1Instead of this algebra, it is customary to use the so-called local algebra of Ψ, which is

simply the augmentation of AΨ by the constants.
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using the natural action of Diffd(n) on Jd(n); the algebra C ⊕ Jd(n) is the

augmentation of Jd(n) by constants. The vector space Jd(n) is naturally a

module over C⊕ Jd(n), and hence Kd(n, k) acts on Jd(n, k) linearly via

(1.7) [(M,∆),Ψ] 7→ (M ·Ψ) ◦∆−1,

where “·” stands for matrix multiplication.

Proposition 1.1 ([17], [16], [1]). Two map-jets in Jd(n, k) have the same

nilpotent algebra if and only if they are in the same Kd-orbit.

Remark 1.2. Two jets in the same Kd-orbit are called contact equivalent,

or K-equivalent (cf. [1]). The term V -equivalence is also used (e.g., [15]). The

varieties ΘA are called contact singularity classes or simply contact singulari-

ties.

Since Kd is connected, ΘA is an irreducible subvariety of Jd(n, k), and it

is well known that its codimension depends only on k−n and A; see [1]. In the

present paper, we will study certain rough topological invariants of contact

singularities; these invariants depend only on the closure of the singularity

locus in Jd(n, k).

1.2. Morin singularities. In this paper, we will focus on nilpotent algebras

A generated by a single element. Such algebras form a one-parameter family

Ad = tC[t]/td+1, d = 1, 2, . . . .

The corresponding singularity classes are called the Ad-singularities or Morin

singularities [1], [19]. We introduce the simplified notation

(1.8) Θn→k
d instead of Θn→k

Ad

for these varieties, and we will omit the parameters n and k when this causes

no confusion. The following statements about Morin singularities can be found

in [1].

Proposition 1.3. • The variety Θn→k
d is nonempty for any n ≤ k,

and its closure is an irreducible variety of codimension d(k − n+ 1).

• For n ≥ d, there exist map-jets (the so-called stable jets) in Jd(n, k)

with nilpotent algebra Ad, whose left-right orbit is dense in Θn→k
d .

The second statement will allow us to use left-right orbits and contact

orbits interchangeably.

Finally, we recall that the Ad-singularities fit into the wider family of so-

called Thom-Boardman singularity classes Θd = Σ1...,1,0 with d 1’s (cf. [5], [1]).
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2. Equivariant Poincaré duals and Thom polynomials

The goal of this paper is to compute certain topological invariants of the

subvarieties Θn→k
d introduced in the previous section. In this section, we define

and describe these invariants in detail.

Let T be a complexified torus T ∼= (C∗)r, and let W be a T -module.

The equivariant Poincaré dual is an invariant Σ 7→ eP[Σ,W ]T associated

to algebraic or analytic T -invariant subvarieties of W . This invariant takes

values in homogeneous polynomials on the Lie algebra Lie(T ) of T . The central

objects of the present work, Thom polynomials, are special cases of equivariant

Poincaré duals (cf. [23], [14]).

The equivariant Poincaré dual has appeared in the literature in several

guises: as Joseph polynomial, equivariant multiplicity, multidegree, etc. One

of the first definitions was given by Joseph [13], who introduced it as the

polynomial governing the asymptotic behavior of the character of the algebra

of functions on the subvariety. Rossmann in [26] defined this invariant for

analytic subvarieties via an integral-limit representation and then used it to

write down a very general localization formula for equivariant integrals. This

formula will play an important role in our computations.

In this paper, we follow the approach of Vergne [29], who, motivated by

the work of Rossmann, defined the equivariant Poincaré dual as the integral

of the Thom form in equivariant cohomology.

We begin thus with this definition in Section 2.1, where we also list the

basic properties of this invariant. Then we describe an alternative, algebraic

definition, due to Joseph, which is useful for computations. We continue by

giving a simple example and then describing a universal property of the equi-

variant Poincaré dual. We then give the definition of the Thom polynomials

as equivariant Poincaré duals in Section 2.5 and argue that this definition is

consistent with Thom’s principle from the introduction. We end the section

with a list of properties of Thom polynomials of contact singularities.

2.1. Equivariant cohomology and the equivariant Poincaré dual. We begin

with a brief introduction to equivariant cohomology. For more details, we refer

the reader to [3].

Let T̆ ∼= U(1)n be the maximal compact subgroup of the complex torus

group T ∼= (C∗)n, and denote by t̆ the Lie algebra of T̆ . The weight lattice of

T has a canonical basis: λ1, . . . , λn ∈ t̆∗.

For a manifold M endowed with the action of T̆ , one can define a differ-

ential dT̆ on the space S•t̆∗⊗Ω•(M)T̆ of polynomial functions on t̆ with values

in T̆ -invariant differential forms by the formula

[dT̆α](X) = d(α(X))− ιX [α(X)],
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where X ∈ t̆, and ιX is contraction by the corresponding vector field on M . A

homogeneous polynomial of degree d with values in r-forms is placed in degree

2d+r, and then dT̆ is an operator of degree 1. The cohomology of this complex,

denoted by H•
T̆

(M), is called the T̆ -equivariant cohomology of M . Restricting

the complex to compactly supported (or quickly decreasing at infinity) dif-

ferential forms, one obtains the compactly supported equivariant cohomology

groups H•
T̆ ,cpt

(M). Clearly H•
T̆ ,cpt

(M) is a module over H•
T̆

(M). For the case

when M = W is an N -dimensional complex vector space and the action is

linear, one has H•
T̆

(W ) = S•t̆∗, and H•
T̆ ,cpt

(W ) is a free module over H•
T̆

(W )

generated by a single element of degree 2N :

(2.1) H•
T̆ ,cpt

(W ) = H•
T̆

(W ) · ThomT̆ (W ).

The equivariant class ThomT̆ (W ) may be normalized by the condition

1

(2π)N

∫
W

ThomT̆ (W ) = 1.

Fixing coordinates y1, . . . , yN on W , in which the T -action is diagonal with

weights η1, . . . , ηN , one can write an explicit representative of ThomT̆ (W ) as

follows:

ThomT̆ (W ) = exp

(
−1

2

N∑
i=1

|yi|2
)
·

∑
σ⊂{1,...,N}

∏
i∈σ

ηi ·
∏
i/∈σ

dyi dȳi.

We will say that an algebraic variety has dimension d if its maximal-

dimensional irreducible components are of dimension d. A T -invariant alge-

braic subvariety Σ of dimension d in W represents T̆ -equivariant 2d-cycle in

the sense that

• a compactly-supported equivariant form µ of degree 2d is absolutely

integrable over the components of maximal dimension of Σ, and
∫

Σ µ ∈
S•t̆;

• if dT̆µ = 0, then
∫
Σ µ depends only on the class of µ in H•

T̆ ,cpt
(W );

• ∫Σ µ = 0 if µ = dT̆ ν for a compactly-supported equivariant form ν.

Definition 2.1. Let Σ be an T -invariant algebraic subvariety of dimension

d in the vector space W . Then the equivariant Poincaré dual of Σ is the

polynomial on t̆ defined by the integral

(2.2) eP[Σ,W ]T =
1

(2π)d

∫
Σ

ThomT̆ (W ).

Remark 2.2. (1) The relation of this class to Poincaré duality will be

explained in Section 2.4.
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(2) This definition naturally extends to the case of an analytic subvariety

of Cn defined in the neighborhood of the origin or, more generally, to

any T -invariant cycle in Cn.

We list some basic properties of the equivariant Poincaré dual (cf. Propo-

sition 2.6). The proofs can be found in [26], [29], [18].

Proposition 2.3.

Positivity: The equivariant Poincaré dual eP[Σ,W ]T of a d-dimensional

subvariety Σ of W is a degree–(N − d) homogeneous polynomial of

λ1, . . . , λn, which may be expressed as a polynomial of the weights ηi,

i = 1, . . . , N , with nonnegative integer coefficients.

Additivity: If Σ1,Σ2 ⊂ W are two T -invariant subvarieties of dimen-

sion d having no common components of top dimension, then eP[Σ1 ∪
Σ2,W ]T = eP[Σ1,W ]T + eP[Σ2,W ]T .

Deformation invariance: If Σt is a flat algebraic family of varieties

with a T action, then, then eP[Σt,W ]T is independent of t.

Symmetry: Let T = (C∗)n be the subgroup of diagonal matrices of the

complex group GLn, and denote by λ1, . . . , λn its basic weights. If Σ is

a GLn-invariant subvariety of the GLn-module W , then the equivariant

Poincaré dual eP[Σ,W ]T is a symmetric polynomial in λ1, . . . , λn.

Complete intersections: Let the variety Σ ⊂ W be a complete in-

tersection defined by r relations f1, . . . , fr ∈ C[y1, . . . , yN ] of degrees

(weights) α1, . . . , αr ∈ t̆∗ correspondingly. Then

(2.3) eP[Σ,W ]T =
r∏
i=1

αi.

Elimination: Let Σ ⊂W be a closed T -invariant subvariety, and denote

by I(Σ) the ideal of functions vanishing on Σ. Fix a polynomial f ∈
C[y1, . . . , yN ] of weight η0, and let Σf be the variety in W ⊕ Cy0 with

ideal generated by I(Σ) and y0 − f . Then

eP[Σf ,W ⊕ Cy0]T = η0 · eP[Σ,W ]T .

Remark 2.4. We can write down the formula for complete intersections in

a different way as follows. Let E be a T -vector space with a list of weights

α1, . . . , αr, and denote by EulerT (E) the equivariant Euler class of E, i.e.,

(2.4) EulerT (E) =
r∏
i=1

αi.

Suppose that γ : W → E is an equivariant polynomial map with the property

that the differential dγ : W → E is surjective on a Zariski open part of γ−1(0).
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Then

(2.5) eP[γ−1(0),W ]T = EulerT (E).

Remark 2.5. An important special case of complete intersections are the

linear subspaces. For these, the formula (2.3) takes the following form: For

every subset i ⊂ {1, . . . , N}, we have

(2.6) eP[{yi = 0, i ∈ i},W ]T =
∏
i∈i

ηi.

2.2. Multidegrees and equivariant Poincaré duals. Another incarnation of

the equivariant Poincaré dual is the notion of multidegree, which is close in

spirit to the original construction of Joseph [13].

Let Σ be a codimension-D, T -invariant subvariety of W . Introduce the

notation S = C[y1, . . . , yN ] for the polynomial functions on W , and denote the

ideal of the functions vanishing on Σ by I(Σ); thus I(Σ) = {f ∈ C[y1, . . . , yN ];

f(p) = 0 if p ∈ Σ}.
Consider a finite (length-M), T -graded resolution of S/I(Σ) by free S-

modules:

⊕j[M ]
i=1 Swi[M ]→ · · · → ⊕j[m]

i=1 Swi[m]→ · · · → ⊕j[1]
i=1Swi[1]→ S → S/I(Σ)→ 0,

where wi[m] is a free generator of weight ηi[m], i = 1, . . . j[m], m = 1, . . . ,M .

Then the multidegree of the ideal I(Σ) is defined by the formula

(2.7) mdeg[I, S]T =
1

D!

M∑
m=1

j[m]∑
i=1

(−1)D−mηi[m]D,

where D is the codimension of Σ.

Proposition 2.6 ([26]). Let Σ ⊂ W be a T -invariant subvariety. Then

we have

eP[Σ,W ]T = mdeg[I(Σ),C[y1, . . . , yN ]].

2.3. An example. A simple way to construct T -invariant subvarieties of

W is to take the orbit closures of points in W .

Consider the following example. Let W = C4 endowed with a T = (C∗)3-

action, whose weights η1, η2, η3, and η4 span t̆∗ and satisfy η1 + η3 = η2 + η4.

The four weights, ηi, i = 1, . . . , 4, for example, may form the vertices of a

parallelogram in t̆∗ lying in a hyperplane which does not pass through the

origin. Choose p = (1, 1, 1, 1) ∈W ; then the closure of the T -orbit of p is given

by a single equation:

(2.8) T ·p = {(y1, y2, y3, y4) ∈ C4; y1y3 = y2y4}.
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This variety is defined by a single equation, hence it is a complete inter-

section. According to (2.3), eP[Σ,W ]T is the degree of this equation; thus

(2.9) eP[Σ,W ]T = η1 + η3 = η2 + η4.

This result may be obtained similarly from the 1-step resolution of the vanish-

ing ideal of this variety.

We will calculate this equivariant Poincaré dual at the end of Section 3 in

a completely different way.

2.4. Universal Poincaré dual. In this paragraph, we present the equivari-

ant Poincaré dual as a universal obstruction class, which will explain its link

with Thom’s principle.

It will be more natural to consider the complex group GLn and its maximal

compact subgroup Un instead of the torus groups we have used so far. We will

denote the subgroup of diagonal elements of GLn by Tn.

Let F be a principal Un-bundle over a compact oriented manifoldM . Then,

using the Chern-Weil map, any symmetric polynomial P ∈ C[λ1, . . . , λn]Sn de-

fines a characteristic class P (F ) ∈ H∗(M,C). Now let Σ be GLn-invariant

subvariety of the GLn-module W . Recall from Proposition 2.3 that in this

case the polynomial eP[Σ,W ]Tn(F ) is symmetric in the λs. Denote by WF

the associated vector bundle F ×Un W over M and by ΣF the subset of WF

corresponding to Σ:

F ×Un W =WF
� ⊃ ΣF= F ×Un Σ

M.

s

6

?�

(2.10)

A key technical point is that the variety ΣF defines a cycle in the manifold

WF , and as such it has a Poincaré dual class αΣ ∈ H2codim(Σ)(WF ) satisfying∫
WF

αΣ · β =

∫
ΣF

β

for any compactly supported cohomology class β on WF . This class is linked

to the equivariant Poincaré dual in the following remarkable way:

(2.11) ι∗FαΣ = eP[Σ,W ]Tn(F ) in H∗(M),

where ιF is the embedding of M into WF as the zero-section. In words, the

Chern-Weil image of the equivariant Poincaré dual is the restriction of the

ordinary Poincaré dual of the induced variety.
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Now we reformulate this statement in a geometric language. In this setup,

eP[Σ,W ]Tn(F ) will appear as the Poincaré dual of s−1(ΣF ) in M for an ap-

propriate section s : M →WF . To formulate this more precisely, we make the

following

Definition 2.7. Consider diagram (2.10), and assume for simplicity that Σ

is equidimensional. We say that a smooth section s : M → WF is transversal

to ΣF at some point p ∈M if s(p) is a smooth point of ΣF and the subspaces

ds(TpM) and Ts(p)ΣF span the vector space Ts(p)WF . We say that s : M →
WF is generically transversal to ΣF if we have

{p ∈M ; s is transversal to ΣF at p} = s−1(ΣF ).

Armed with this technical notion, we reformulate (2.11) as follows.

Proposition 2.8. For a smooth section s : M → WF , which is generi-

cally transversal to ΣF , the cycle s−1(ΣF ) ⊂ M is Poincaré dual to the char-

acteristic class eP[Σ,W ]Tn(F ) of the bundle F corresponding to the symmetric

polynomial eP[Σ,W ]Tn .

2.5. Thom polynomials and equivariant Poincaré duals. Let us apply our

new-found invariant to the setup of global singularity theory described in Sec-

tion 1. Recall that for integers d and n ≤ k, we defined an algebraic sub-

set Θd ⊂ Jd(n, k), which is invariant under the natural action of the group

Diffd(k)×Diffd(n).

Now observe that the quotient map Lin : Diffd(n)→ Diff1(n) = GLn has

a canonical section, consisting of linear substitutions. In other words, we have

a canonical group embedding

GLn ↪→ Diffd(n),

and we can restrict the action of the diffeomorphism groups Diffd(k)×Diffd(n)

on Jd(n, k) to the canonical subgroup GLk ×GLn. Denoting the subgroups of

diagonal matrices of GLk and GLn by Tk and Tn, their basic weights by θ =

(θ1, . . . , θk) and λ = (λ1, . . . , λn), respectively, we can introduce the central

object of our paper.

Definition 2.9. Let A be a nilpotent algebra. The Thom polynomial of the

A-singularity from n-to-k dimensions is defined to be the following equivariant

Poincaré dual:

(2.12) Tpn→kA (λ,θ)
def
= eP[ΘA,Jd(n, k)]Tk×Tn .

According to Proposition 2.3, the Thom polynomial is a homogeneous

polynomial which is symmetric in the variables θ1, . . . , θk and λ1, . . . , λn sepa-

rately.
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Starting with the next section we will focus on the computation of the

polynomial Tpn→kA (λ,θ) for the case A = tC[t]/td+1. In the remainder of

this paragraph, however, we would like to argue that this polynomial is a

reasonable candidate for the universal class satisfying Thom’s principle quoted

in Section 0. This is standard for the experts (cf. [23], [14], [9], [22]), but good

references are hard to come by. In any case, we would like to stress that this

material is not necessary for understanding the rest of the paper. The reader

comfortable with Definition 2.9 may safely skip to Section 2.6.

Now let us consider the situation of singularity loci of holomorphic maps

described in the introduction. For complex manifolds N and K of dimensions

n and k, respectively, and a positive integer d, consider the principal Diffd(k)×
Diffd(n)-bundle Diffd(K)×Diffd(N) over the product space N ×K consisting

of local coordinate changes up to order d. Denote by Jd(N,K) the bundle over

N×K associated to the representation Jd(n, k) of the group Diffd(k)×Diffd(n).

Note that even though the space Jd(n, k) has a linear structure, the action of

the group Diffd(k)× Diffd(n) on it is not linear, and hence this bundle is not

a vector bundle. Then any holomorphic map f : N → K induces a section

sf : N → (1 × f)∗Jd(N,K) of the bundle pulled back from the graph. We

need the following key fact.

Lemma 2.10. The structure group Diffd(k)×Diffd(n) of the bundleJd(n, k)

reduces to the subgroup GLk ×GLn

This can be seen using that Diffd(k)×Diffd(n) is homotopy equivalent to

GLk×GLn or, alternatively, by directly presenting the reduction, for example,

by introducing Hermitian metrics on TN and TK (cf. [14, §2.2]).

Now, for a nilpotent algebra A satisfying Ad+1 = 0, consider the subvariety

(2.13) Jd(ΘN→K
A ) ⊂ Jd(N,K)

associated to the subvariety Θn→k
A ⊂ Jd(n, k).

Taking advantage of Lemma 2.10, we can present Thom’s principle in the

following formal manner.

Proposition 2.11. Let N,K,A, and d be as above. Let f : N → K be

a smooth map and s : N → (1× f)∗Jd(N,K) be an arbitrary smooth section,

generically transversal to (1×f)∗Jd(ΘN→K
A ). Then the bivariant characteristic

class Tpn→kA (TN, f∗TK) ∈ H∗(N), where Tpn→kA is the polynomial defined in

(2.12), is Poincaré dual to the subvariety s−1
f ((1× f)∗Jd(ΘN→K

A )) ⊂ N .

2.6. Thom polynomials of contact singularities. One of the natural ques-

tions to ask is how the Thom polynomials for fixed A and different pairs

(n, k) are related. We collect the known facts from [1], [8], [9] in Proposi-

tion 2.12 below. For simplicity, we will formulate the statements for the algebra
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Ad = tC[t]/td+1 we study, although essentially the same properties are satisfied

by the Thom polynomials of any other contact singularity (see [9] for details).

Denote by C[λ,θ]Sn×Sk the ring of bisymmetric polynomials in the λs

and θs, and recall from §2.1 that for 1 ≤ d and 1 ≤ n ≤ k, Θd = Θn→k
d is a

nonempty subvariety of Jd(n, k) of codimension d(k − n + 1). Consider the

infinite sequence of homogeneous polynomials ci ∈ C[λ,θ]Sn×Sk , deg ci = i,

defined by the generating series

(2.14) RC(q) = 1 + c1q + c2q
2 + · · · =

∏k
m=1(1 + θmq)∏n
l=1(1 + λlq)

;

we will call ci the ith relative Chern class.

Proposition 2.12 ([9]). Let 1 ≤ d and 1 ≤ n ≤ k. Then for each nonneg-

ative integer j, there is a polynomial TDj
d(b0, b1, b2, . . . ) in the indeterminates

b0, b1, b2, . . . with the following properties :

(1) TDj
d is homogeneous of degree d;

(2) if we set deg(bi) = i, then TDj
d is homogeneous of degree d(k− n+ 1);

(3) for all 1 ≤ n ≤ k, we have

(2.15) Tpn→kd (λ,θ) = TDk−n
d (1, c1(λ,θ), c2(λ,θ), . . . ),

where the polynomials ci(λ,θ), i = 1, . . . , are defined by (2.14);

(4) the polynomial TDj−1
d may be obtained from TDj

d via the following

substitution :

TDj−1
d (b0, b1, b2, . . . ) = TDj

d(0, b0, b1, b2, . . . ).

The notation TD stands for Thom-Damon polynomial. The 3rd prop-

erty (2.15) is an older result of Damon and Ronga ([8], [24]), while the 4th is

a theorem of Fehér and Rimányi [9].

There is a somewhat confusing aspect of (2.15), which we would like

to clarify now. For fixed j and sufficiently large n and k, the polynomials

ci(λ,θ) ∈ C[λ,θ]Sn×Sk , i = 1, . . . , d(j+ 1) are algebraically independent. This

means that for fixed codimension j and large enough n, the Thom polynomial

Tpn→n+j
d (λ,θ) determines TDj

d. However, for small values of n, the natural

map

C[c1, c2, . . . ]→ C[λ,θ]Sn×Sk

is not surjective in degree d(k − n + 1), and in this case there are several

expressions of the Thom polynomial in terms of relative Chern classes. Only

one of these expressions remains valid for all n.

Example 2.13. For d = 4, n = 1, k = 1,

RC(q) =
1 + θq

1 + λq
= 1 + (θ − λ)q − λ(θ − λ)q2 + . . . .
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Thus we have

c0(θ, λ) = 1, c1(θ, λ) = θ − λ, c2(θ, λ) = −λ(θ − λ),

c3(θ, λ) = λ2(θ − λ), c4(θ, λ) = −λ3(θ − λ) . . . .

We have (cf. [10, Th. 2.2], also §7.4)

TD0
4 = c4

1 + 6c2
1c2 + 2c2

2 + 9c1c3 + 6c4c0,

and for n > 1, this is the only possible expression for the Thom polynomial in

terms of the relative Chern classes. However, since for n = k = 1,

c1(θ, λ)c3(θ, λ) = c2(θ, λ)2,

we can conclude that

Tp1→1
4 (θ, λ) = c4

1 + 6c2
1c2 + αc2

2 + (11− α)c1c3 + 6c4c0

holds for any α ∈ R.

Next, following [9], observe that property (4) allows us to define a universal

object, the Thom series Ts(ai, i ∈ Z), which is an infinite formal series in

infinitely many variables with the following properties:

• Ts(ai, i ∈ Z) is homogeneous of degree d;

• setting deg(ai) = i for i ∈ Z, the series Tsd(ai, i ∈ Z) is homogeneous

of degree 0;

• the Thom-Damon polynomial maybe expressed via the following sub-

stitution:

TDj
d(b0, b1, b2, . . . ) = Tsd

Ñai = bi+k−n+1, if i ≥ −(k − n+ 1),

ai = 0, otherwise.

é
.

For example, in this notation, Porteous’s formula reads simply Ts1 = a0, while

Ronga’s formula takes the form Ts2 = a2
0 +

∑∞
i=0 2i−1aia−i. This suggestive

way of expressing Thom polynomials, found by Fehér and Rimányi, served as

a starting point for our work. We obtained a rather satisfactory answer, which

manifestly has the structure described above. The final result (6.26) even gives

some insight into the geometric meaning of the coefficients of the Thom series.

3. Localizing Poincaré duals

In this section we prove a localization formula for equivariant Poincaré

duals. Roughly, we show that if the T -invariant subvariety Σ ⊂ W is equiv-

ariantly fibered over a parameter space M , then the equivariant Poincaré dual

eP[Σ,W ]T may be read off from local data near fixed points of the T action

on M .
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3.1. Integration and equivariant multiplicities. In [26], Rossmann made

the important observation that the notion of equivariant Poincaré dual may be

extended to the case of analytic T -invariant varieties defined in a neighborhood

of the origin in T -modules, and further, to nonlinear actions, as we explain

below.

Let Z be a complex manifold with a holomorphic T -action, and let M ⊂ Z
be a T -invariant analytic subvariety with an isolated fixed point p ∈MT . Then

one can find local analytic coordinates near p, in which the action is linear and

diagonal. Using these coordinates, one can identify a neighborhood of the

origin in TpZ with a neighborhood of p in Z. We denote by T̂pM the part

of TpZ which corresponds to M under this identification. Clearly, this is an

analytic subvariety defined in a neighborhood of the origin; informally, we

will call T̂pM the T -invariant tangent cone of M at p. This tangent cone is

not quite canonical: it depends on the choice of coordinates. The equivariant

Poincaré dual of Σ = T̂pM in W = TpZ, however, does not. Rossmann named

this equivariant Poincaré dual the equivariant multiplicity of M in Z at p:

(3.1) emultp[M,Z]
def
= eP[T̂pM,TpZ]T .

An important application of the equivariant multiplicity is Rossmann’s

localization formula [26]. Assume that in addition to the setup above, the

T -action on Z has a finite set of fixed points and that M is a compact T -

invariant subvariety in Z. Let µ : Lie(T )→ Ω•(Z)T be holomorphic map from

the Lie algebra of T to the space of T -invariant differential forms on Z, which

is equivariantly closed; i.e., dKµ = 0. Then Rossmann’s localization formula

states that at a regular element of Lie(T ) one has

(3.2)

∫
M
µ =

∑
p∈MT

emultp[M,Z]

EulerT (TpZ)
· µ[0](p),

where µ[0](p) is the differential-form-degree-zero component of µ evaluated at p.

Recall that EulerT (TpZ) stands for the product of the weights of the T -action

on TpZ.

This formula generalizes the equivariant integration formula of Berline and

Vergne [4], which applies when M is smooth. In this case the tangent cone

of M at p is a linear subspace TpM ⊂ TpZ and emultp[M ] is the equivariant

Poincaré dual of this subspace. Then the fraction in (3.2) simplifies: the

ambient space Z is eliminated from the picture, and one arrives at (cf. [4])

(3.3)

∫
M
µ =

∑
p∈MT

µ[0](p)

EulerT (TpM)
.

Remark 3.1. Our presentation does not follow the history of the subject.

Rossmann’s original definition of equivariant multiplicity in (3.2) used a more
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complicated integral-limit formula, which he linked to the definition of Joseph

following the method of Bott [6]. His work inspired Vergne to come up with

the beautiful formula (2.2) (cf. Definition 2.1). In our paper, however, we have

taken Vergne’s integral formula as the definition of the equivariant Poincaré

dual and equivariant multiplicity.

3.2. The localization formula. Recall (see, e.g., [7]) that if f : X → Y

is a smooth proper map between connected oriented manifolds such that f

restricted to some open subset of X is a diffeomorphism, then for a compactly

supported form µ on Y , we have
∫
X f
∗µ =

∫
Y µ.

We need a version of this statement for singular varieties and equivariant

forms. This reads as follows.

Let T be a complex torus group and f : M → N be a smooth proper

T -equivariant map between smooth quasiprojective varieties. Assume that

X ⊂ M and Y ⊂ N are possibly singular T -invariant closed subvarieties such

that f restricted to X is a birational map from X to Y . Next, let µ be an

equivariantly closed differential form on N with values in polynomials on t.

Then the integral of µ on the smooth part of Y is absolutely convergent; we

denote this by
∫
Y µ. With this convention, we again have

(3.4)

∫
X
f∗µ =

∫
Y
µ.

Let Σ be a T -invariant closed subvariety of the T -module W . Consider

the following diagram describing the slicing of an affine subvariety Σ into a

pieces parameterized by a variety M :

S
ev - W � ⊃ Σ

MT ⊂ - M ⊂ - Z.

τ

-

(3.5)

Here

• each arrow stands for a T -equivariant morphism;

• Z is a compact smooth variety, and S is a bundle of quasiprojective

varieties on Z endowed with a proper map ev : S →W ;

• M is a compact, not necessarily smooth T -invariant subvariety of Z

with a finite set MT of fixed points.

Proposition 3.2. Let Σ be a closed T -invariant subvariety of the complex

vector space W , and assume that the restriction of ev to τ−1M is a birational
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map to Σ. Then

(3.6) eP[Σ,W ]T =
∑
p∈MT

eP[ev(Sp),W ]T · emultp[M,Z]

EulerT (TpZ)
.

Remark 3.3. The equivariant Euler class in the denominator is a product

of weights (cf. (2.4)), hence each term in the sum is a rational function whose

denominator is a product of linear factors. After the summation, however, the

denominators cancel, and one ends up with a polynomial result.

Proof. Combining Definition 2.1 with our assumption that ev establishes

a birational map between τ−1(M) and Σ, we obtain

eP[Σ,W ]T =

∫
τ−1(M)

ev∗Thom(W ).

The push-forward τ∗ev∗Thom(W ) is a polynomial on t̆ tensored with integrals

of a smooth form along the fibers of a locally trivial fibration, and as such, it

is a polynomial on t̆ with values in smooth forms on Z. Thus we can represent

the equivariant Poincaré dual as the integral of a smooth equivariant form on

M :

eP[Σ,W ]T =

∫
M
τ∗ev∗Thom(W ).

Applying Rossmann’s localization formula (3.6) to this integral, we obtain

(3.7) eP[Σ,W ]T =
∑
p∈MT

(τ∗ev∗Thom(W ))[0] (p) · emultp[M,Z]

EulerT (TpZ)
.

Clearly, (τ∗ev∗Thom(W ))[0] (p) =
∫

ev(Sp) Thom(W ), and this latter integral, by

definition, is equal to eP[ev(Sp),W ]T . This completes the proof. �

Later in the paper, this formula will be the key tool in our calculations.

Again, just as in (3.3), formula (3.6) simplifies when M is a smooth sub-

variety of Z. In this case, one obtains

(3.8) eP[Σ,W ]T =
∑
p∈MT

eP[ev(Sp),W ]T

EulerT (TpM)
.

3.3. An interlude: the case of d = 1. In this paragraph, we consider the

case d = 1 of the Ad-singularities introduced in Section 1.2, and we recover the

classical result of Porteous.

We have J1(n, k) = Hom(Cn,Ck), and Θ1 ⊂ J1(n, k) consists of those

linear maps Cn → Ck whose kernel is 1-dimensional. These maps may be

identified with k-by-n matrices, and the weight of the action on the entry eji
is equal to θj −λi. Then the closure Θ1 consist of those k-by-n matrices which
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have a nontrivial kernel:

(3.9) Θ1 = {A ∈ Hom(Ck,Cn); ∃v ∈ Cn, v 6= 0 : Av = 0}.
This description immediately suggests an equivariant birational fibration

of Θ1 over Pn−1, fitting the conditions of Proposition 3.2. In this case, M =

Z = Pn−1, and the fiber over a point [v] ∈ Pn−1 is the linear subspace {A; Av =

0} ⊂ Θ1, where [v] stands for the point in Pn−1 corresponding to the nonzero

vector v ∈ Cn.

We simply need to collect our fixed-point data and then apply (3.8). There

are n fixed points, p1, . . . , pn in Pn−1, corresponding to the coordinate axes.

The weights of TpiPn−1 are {λs − λi; s 6= i}. The fiber at pi is the set

of matrices A with all entries in the ith column vanishing. Using (2.3), we

deduce that the equivariant Poincaré dual of the fiber at pi is
∏k
j=1(θj − λi);

hence our localization formula looks as follows:

(3.10) eP[Θ1,Hom(Cn,Ck)]Tn×Tk =
n∑
i=1

∏k
j=1(θj − λi)∏
s 6=i(λs − λi)

.

This is a finite sum for fixed n, but as n increases, the number of terms also

increases. There is a way, however, to further “localize” this expression and

obtain a formula that only depends on the local behavior of a certain function

at a single point.

Indeed, consider the following rational differential form on P1:

−
∏k
j=1(θj − z)∏n
i=1(λi − z)

dz.

Observe that the residues of this form at finite poles: {z = λi; i = 1, . . . , n} ex-

actly recover the terms of the sum (3.10). Then, applying the Residue theorem,

we obtain

eP[Θ1,Hom(Cn,Ck)]Tn×Tk = Res
z=∞

∏k
j=1(θj − z)∏n
i=1(λi − z)

dz.

Finally, after the change of variables z → −1/q, we end up with

eP[Θ1,Hom(Cn,Ck)]Tn×Tk = Res
q=0

∏k
j=1(1 + qθj)∏n
i=1(1 + qλi)

dq

qk−n+2
,

which, according to (2.14), is exactly the relative Chern class ck−n+1. Thus

we recovered the well-known Giambelli-Thom -Porteous formula ([20]; [11,

Ch. I.5]).

As a final remark, note that our basic example introduced in Section 2.3

is the special case of Θ1 corresponding to the values n = k = 2. Applying our

new method, we have

(3.11) eP[Σ,C4]T =
η1η2

η3 − η2
+

η3η4

η2 − η3
.

Using η1 + η3 = η2 + η4, we recover formula (2.9).
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4. The test curve model

In Section 1, we described the variety Θd as a contact singularity class

(1.5). In this section, we recall another description of Θd — the so-called “test

curve model” — which goes back to the works of Porteous, Ronga, and Gaffney

[21], [25], [10]. Roughly, the idea of the construction is to generalize (3.9) to

d > 1 by requiring that the map-jet Ψ ∈ Jd(n, k) carry a d-jet of a curve in Cn
to zero. As we have not found a complete proof of the appropriate statement

(Proposition 4.1) in the literature, we give one below.

4.1. The model. Recall the notation Σ0(n, k) in (1.4) for the set of map-

jets whose linear part is of (the maximal possible) rank n. In particular, we

will call an element γ ∈ Σ0(1, n) a regular curve. In turn, Σ1(n, k) denotes the

set of map-jets whose linear part is a matrix with kernel of dimension 1. Note

that we omit d from the notation here.

Proposition 4.1. The variety Θd ⊂ Jd(n, k) of map-jets with nilpotent

algebra Ad = tC[t]/td+1 allows for the following description :

(4.1) Θd = {Ψ ∈ Σ1(n, k); ∃γ ∈ Σ0(1, n) : Ψ ◦ γ = 0}.
Proof. First assume that the nilpotent algebra Jd(n)/IΨ of Ψ=(P1, . . . , Pk)

is isomorphic to Ad = Jd(1), where IΨ = 〈P1, . . . , Pk〉ideal is the ideal generated

by the coordinate polynomials. Then there is a surjective algebra-morphism

β : Jd(n)→ Ad with ker(β) = IΨ, giving us the exact sequence of algebras

(4.2) 0 - IΨ
- Jd(n)

β- Jd(1) = Ad - 0.

Setting β(xi) = γi(t), i = 1, . . . , n, where x1, . . . , xn are the generators of

Jd(n), we obtain β(Pj) = Pj(γ1, . . . , γn) = 0 for j = 1, . . . , k. This implies

Ψ ◦ γ = 0 for the curve γ = (γ1, . . . , γn) ∈ Jd(1, n). Note that γ is in Σ0(1, n)

since β is surjective.

To prove the converse statement, we reverse this argument. Assume that

Ψ ◦ γ = 0 for a Ψ = (P1, . . . , Pk) ∈ Σ1(n, k), and γ = (γ1, . . . , γn) ∈ Σ0(1, n).

Then the pairing (1.3),

Jd(n, 1)× Jd(1, n)→ Jd(1, 1),

defines an algebra map

(4.3) βγ : Jd(n)→ Jd(1) = Ad for which βγ(xi) = γi(t), i = 1, . . . , n.

Since γ ∈ Σ0(1, n) and Ad is generated by one element, the map βγ is surjec-

tive. Then the obvious inclusion IΨ ⊂ ker(βγ) induces the surjective algebra

morphism AΨ → Ad, where AΨ = Jd(n)/IΨ is also an algebra of depth d.

Now the fact that Ψ ∈ Σ1(n, k) implies that AΨ is a rank-1 algebra and hence

AΨ
∼= Ad. �
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Definition 4.2. For a vector space V , introduce the partial flag variety

(4.4) Flagd(V ) = {(F1 ⊂ · · · ⊂ Fd ⊂ V ); dimFi = i, i = 1, . . . , d)}.
This space can also be described as a quotient

(4.5) Flagd(V ) = Hominj(Cd,Cn)/Bd,

where Hominj(Cd,Cn) stands for the set of injective linear maps, or rank-d n-

by-d matrices, and Bd is the group of upper-triangular d-by-d matrices acting

on the right.

Now recall the filtrations (1.1) on the duals Jd(n)∗ and Jd(1)∗, and note

that given γ ∈ Σ0(1, n), the dual map β∗γ : Jd(1)∗ ↪→ Jd(n)∗ preserves this

filtration. Since β∗γ is injective, this allows us to associate to every regular γ a

partial flag in Jd(n)∗:

(4.6) γ 7→ ψ(γ) = (β∗γ(J1(1)∗), . . . , β∗γ(Jd(1)∗) ∈ Flagd(Jd(n)∗).

Proposition 4.3. Given Ψ ∈ Θd, the partial flag ψ(γ) is the same for

every regular γ for which Ψ ◦ γ = 0.

Proof. Indeed, this follows from the fact that the ith element of the partial

flag ψ(γ) is the intersection of Ji(n)∗ ⊂ Jd(n)∗ with the annihilator of IΨ (cf.

(4.2)):

β∗γ(Ji(1)∗) = {δ ∈ Ji(n)∗; 〈δ,Q〉 = 0 for all Q ∈ IΨ}.
Note that the right-hand side here depends only on Ψ, not on γ. �

We can summarize the situation in the following commutative diagram:

{(Ψ, γ) ∈ Σ1(n, k)× Σ0(1, n); Ψ ◦ γ = 0} - Θd

Σ0(1, n)
? ψ - Flagd(Jd(n)∗).

α

?

(4.7)

Here α(Ψ) is the flag associated to Ψ ∈ Θd by Proposition 4.3.

Our next goal is to write down the map ψ and the equation Ψ ◦ γ = 0

explicitly. A curve γ ∈ Σ0(1, n) is parametrized by d vectors v1, . . . , vd in Cn:

(4.8) γ(t) = tv1 + t2v2 + · · ·+ tdvd, v1 6= 0.

Thus we have the identification

(4.9) Σ0(1, n) ∼= {γ = (v1, . . . , vd) ∈ Hom(Cd,Cn); v1 6= 0}.
According to (1.2), the space Jd(n)∗ is isomorphic to the truncated symmetric

algebra on Cn: Sym•dCn = ⊕dm=1SymmCn. To parametrize a basis of this

space, we introduce the following notation.



THOM POLYNOMIALS OF MORIN SINGULARITIES 589

Definition 4.4. We denote by Π[m] the set of partitions of m into nonneg-

ative integers. For a partition τ = (i1, . . . , is), we write

• sum(τ) = i1 + · · · ,+is for the sum;

• |τ | = s for the length; and

• γτ = perm(τ) · vi1 . . . vis ∈ SymsCn for a curve of the form (4.8), where

perm(τ) denotes the cardinality of the set of all permutations of the

sequence (i1, . . . , is).

Note that a map-jet Ψ ∈ Jd(n, k) may be interpreted as a map Ψ :

Jd(n)∗ → Ck. Now we can write down our formulas.

Lemma 4.5. Let γ be a curve of the form (4.8), and consider the following

sequence of symmetric tensors associated to γ:

(4.10) φ(γ) =

Ñ
v1, v2 + v2

1, v3 + 2v1v2 + v3
1, . . . ,

∑
sum(τ)=m

γτ , . . .

é
.

Then the equation Ψ◦γ = 0 is equivalent to the vanishing of the pairing between

Ψ and φ(γ), which, in turn, may be written down explicitly as the following

system of linear equations with values in Ck:

(4.11)
∑

τ∈Π[m]

Ψ(γτ ) = 0, m = 1, 2, . . . , d.

The partial flag ψ(γ) is simply the flag generated by the sequence φ(γ) (cf. (4.5)):

(4.12) ψ(γ) = φ(γ) ·Bd.
The proof is a straightforward substitution and will be omitted. For d = 3,

the equations (4.11) have the following form:

Ψ1(v1) = 0,(4.13)

Ψ1(v2) + Ψ2(v1, v1) = 0,

Ψ1(v3) + 2Ψ2(v1, v2) + Ψ3(v1, v1, v1) = 0.

Here, for clarity, we marked by Ψm the restriction of Ψ to SymmCn.

Lemma 4.6. For a curve γ ∈ Σ0(1, n), we have

(4.14) Sγ
def
= {Ψ ∈ Jd(n, k); Ψ ◦ γ = 0} = kerβγ ⊗ Ck,

and this set is a codimension-dk linear subspace in Jd(n, k). Moreover, Sγ \
Σ1(n, k) is a codimension-(k − n+ 2) algebraic subvariety of Sγ .

Proof. Equality (4.14) immediately follows from (4.3). Equations (4.11)

form a system of d linear equations with values in Ck. Their linear indepen-

dence follows from the surjectivity of the map βγ in (4.3), but also from the

presence of the summand vi1 in the ith equation (v1 6= 0). To prove the second
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part of the statement, we observe that fixing Ψ1, the linear part of Ψ, the

remainder of the system remains a nondegenerate (inhomogeneous) linear sys-

tem. This means that Sγ is a vector bundle over the set {A ∈ J1(n, k); v1 ∈
ker(A)}, and in this base, the complement of the subset {A : kerA = v1} is of

codimension k − n+ 2. �

Now, using (4.14), we can summarize the “test-curve model” as follows:

Θd
⊂ - Jd(n, k) �

evS
SFl

Σ0(1, n)
ψ- Flagd(Sym•dCn).

τ

?

(4.15)

Proposition 4.7. Let τ : SFl → Flagd(Sym•dCn) be the vector bun-

dle SFl = V ⊥ ⊗ Ck, where V is the tautological rank-d vector bundle over

Flagd(Sym•dCn). Since V ⊥ is a linear subspace of (Sym•dCn)∗ ∼= Jd(n), we

have a tautological evaluation evS : SFl → Jd(n, k). Then

(4.16) Θd = evS [τ−1(imψ)] and Θd = evS [τ−1(imψ)].

(The map ψ was defined in (4.6).)

The first equality of (4.16) immediately follows from Proposition 4.3 and

Lemma 4.6, while the second follows from the fact that the map evS is proper.

Diagram (4.15) is somewhat reminiscent of the localization diagram (3.5),

which we would like to use. We note that the map ψ is GLn-invariant, but not

generically injective, and the variety Σ0(1, n) is not compact. Indeed, given

Ψ ∈ Θd, γ ∈ Σ0(1, n) such that Ψ ◦ γ = 0, and ∆ ∈ Diffd(1) = Σ0(1, 1), clearly

Ψ ◦ (γ ◦∆) = 0.

Thus the map ψ is constant on the Diffd(1)-orbits. In fact, we can make a

more precise statement.

Proposition 4.8. For Ψ ∈ Θd and γ, δ ∈ Σ0(1, n),

Ψ ◦ γ1 = Ψ ◦ γ2 = 0⇔ ∃∆ ∈ Diffd(1) = Σ0(1, 1) such that γ = δ ◦∆.

Proof. We prove this statement by induction. Let γ = v1t+ · · ·+vdt
d and

δ = w1t + · · · + wdt
d. Since Ψ ∈ Σ1(n, k), we have dim ker Ψ1 = 1, and hence

v1 = λw1, for some λ 6= 0. This proves the d = 1 case.

Suppose the statement is true for d−1. Then, using the appropriate order-

(d− 1) diffeomorphism, we can assume that vm = wm, m = 1, . . . , d− 1. It is

clear then from the explicit form (4.11) (cf. (4.13)) of the equation Ψ ◦ γ = 0,

that Ψ1(vd) = Ψ1(wd); hence wd = vd − λv1 for some λ ∈ C. Then γ = ∆ ◦ δ
for ∆ = t+ λtd, and the proof is complete. �
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It is clear from diagram (4.7) that Proposition 4.8 implies

Corollary 4.9. For γ, δ ∈ Σ0(1, n), we have

ψ(γ) = ψ(δ) ∈ Flagd(Sym•dCn)⇔ ∃∆ ∈ Diffd(1)=Σ0(1, 1) such that γ=δ ◦∆;

hence ψ induces an injection on the orbits

Σ0(1, n)/Diffd(1) ↪→ Flagd(Sym•dCn).

Remark 4.10. The fibers of SFl are codimension-dk vector spaces in

Jd(n, k), while the base ψ(Hominj(Cd,Cn)) has dimension d(n − 1) by Corol-

lary 4.9. The dimension of Σ0(1, n) is dn, and the dimension of Diffd(1) is d.

Thus the codimension of Θd in Jd(n, k) is dk − dn+ d = d(k − n+ 1). This is

also well known from general arguments in global singularity theory; see [1].

The closure of the image ψ(Σ0(1, n)) thus provides us with a compactifi-

cation of the set Σ0(1, n)/Diffd(1). In the next paragraph, we will find a more

efficient compactification.

4.2. Localization over Flagd(Cn). We begin with the observation that the

formula Θd = evS [τ−1(imψ)] in (4.16) remains true if we replace the space of

regular curves Σ0(1, n) by a dense open subset. A convenient such subset will

be the set Hominj(Cd,Cn) of injective linear maps, i.e., the set of linearly inde-

pendent sequences (v1, . . . , vn) of vectors in Cn (cf. (4.9)). The key property

of this dense open subset is that it forms a single orbit under the GLn-action

on Σ0(1, n), and it has a GLn-equivariant fibration over the partial flag variety

Flagd(Cn):

p : Hominj(Cd,Cn)→ Flagd(Cn),

associating to a sequence of d linearly independent vectors the corresponding

partial flag. Observe that the map p is a principal Bd fibration, where Bd is

the group of d-by-d upper triangular matrices, acting as filtration-preserving

maps on Cd (see Definition 4.13 below). We will try to enhance our model

(4.15) by incorporating this fibration into it.

We consider the map φ given in (4.10). Clearly, for γ =
∑
m=1 vmt

m ∈
Hominj(Cd,Cn), the elements of the sequence of symmetric tensors φ(γ) belong

to
⊕

sum(τ)≤dCγτ . Now we observe that this latter vector space does not change

if we replace γ ∈ Hominj(Cd,Cn) by γ·b where b ∈ Bd, since the action of b ∈ Bd
“lowers” indices; i.e., it takes vi to a linear combination of {vj , 1 ≤ j ≤ m}.
We can formulate this observation as follows.

Lemma 4.11. For γ = (v1, . . . , vd), introduce the filtered linear subspace

of Sym•dCn:

(4.17)
⊕

sum(τ)≤d
Cγτ ⊃

⊕
sum(τ)≤d−1

Cγτ ⊃ · · · ⊃ Cv2 ⊕ Cv2
1 ⊕ Cv1. ⊃ Cv1.
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Then given γ = (v1, . . . , vd), δ = (w1, . . . , wd) ∈ Hominj(Cd,Cn) satisfying

p(γ) = p(δ) ∈ Flagd(Cn), we have the equality of two filtered vector spaces

(4.18)
⊕

sum(τ)≤d
Cγτ =

⊕
sum(τ)≤d

Cδτ .

Definition 4.12. For a flag f ∈ Flagd(Cn), denote by Sym•f (Cn) the filtered

vector space (4.17) for some γ with p(γ) = f .

Definition 4.13. Consider the natural structure of a filtered vector space

on Cd:

Cd =
d⊕
i=1

Cei ⊃ . . . ⊃ Ce1 ⊕ Ce2 ⊃ Ce1,

where (e1, . . . , ed) is the standard basis of Cd, and for a filtered vector space

V • = Vd ⊃ Vd−1 ⊃ · · · ⊃ V1, introduce the linear space of filtration-preserving

maps

(4.19) Hom4(Cd, V •) = {ε ∈ Hom(Cd, V •); ε(em) ∈ Vm}
and the corresponding flag variety

(4.20) Flag4d (V •) = {(F1 ⊂ · · · ⊂ Fd) ∈ Flagd(V
•);Fm ⊂ Vm,m = 1, . . . , d}.

Lemma 4.14. The partial flag variety Flag4d (V •) is a smooth subvariety

of Flagd(V
•), and it may be represented as a quotient as follows :

(4.21) Flag4d (V •) = {ε ∈ Hom4(Cd, V •); ker(ε) = 0}/Bd.
Formula (4.21) is obvious, while the smoothness follows from the natural

representation of Flag4d (V •) as a tower of projective spaces.

We can apply this construction to V • = Sym•f (Cn). For f ∈ Flagd(Cn),

we define

(4.22) Ef = {ε ∈ Hom4(Cd,Sym•f (Cn)); ker(ε) = 0} ⊂ Hom(Cd, Sym•dCn)

and the corresponding flag space

(4.23) Ẽf def
= Flag4d (Sym•f (Cn)) = Ef/Bd ⊂ Flagd(Sym•f (Cn)).

Globalizing this construction leads to our fibered model. The spaces Ef
and Ẽf form the fibers of two GLn-equivariant bundles over Flagd(Cn):

(4.24)

E = {(f , ε) ∈ Flagd(Cn)×Hom4(CdR,Sym•f (Cn)); ε ∈ Ef} → Flagd(Cn)

and

(4.25)

Ẽ = E/Bd = {(f , ε̃) ∈ Flagd(Cn)× Flagd(Sym•dCn); ε̃ ∈ Ẽf} → Flagd(Cn).

Note that there is a tautological map κ : Ẽ → Flagd(Sym•dCn).
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Lemma 4.15.

(1) Given γ ∈ Hominj(Cd,Cn), we have ψ(γ) ∈ Ẽp(γ).

(2) The map ψ factorizes as follows :

ψẼ ◦ κ = ψSym,

where ψẼ : Hominj(Cd,Cn)→ Ẽ is given by ψẼ(γ) = (π(γ), ψSym(γ).

The first statement follows from the exact form of the map φ from (4.10),

while the second is a corollary of the first.

Finally, we introduce some notation for the fibers over a fixed reference

flag of Flagd(Cn):

• we denote by γref the reference sequence

γref = (e1, . . . , ed) ∈ Hominj(Cd,Cn)

where ei is the ith basis vector of Cn;

• by fref = π(γref) ∈ Flagd(Cn) its flag;

• by Sym•ref(Cn) the corresponding subspace Symγref
(Cn) ⊂ Sym•dCn;

and

• by Eref and Ẽref the fibers of E and Ẽ over the reference flag fref .

Note that Sym•ref(Cn) = Sym•ref(Cd); thus this space and Ẽref does not

depend on n. The space Ẽref is endowed by a natural action of the Borel group

Bd acting on Sym•ref(Cn) ⊂ Sym•d(Cd)

Remark 4.16. There are two copies of the Borel group Bd acting on

Hom4(Cd,Sym•d(Cd)), and we will differentiate these two actions in our nota-

tion when confusion might arise. We will denote by BL the copy of Bd acting on

the left and by BR the copy acting on the right. Thus we have Ẽref = Eref/BR,

and BL acts on Ẽref .

Using the BL-action on Ẽref , we can represent Ẽ as an induced space

Ẽ = Hominj(Cd,Cn)×BL Ẽref .

The restriction ψref : BLγref → Ẽref of the map ψ is BL-equivariant, and hence

we have

(4.26) ψ(π−1(fref)) = BL · ε̃ref , where ε̃ref = ψref(γref) ∈ Ẽref .
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We arrive at the following picture:

π−1(fref)
ψref- Ẽref S

evS- Jd(n, k)

Hominj(Cd,Cn)

?

∩

ψẼ - Ẽ
?

∩

�

τ

Flagd(Cn)

�
π Ẽπ

-

Flagd(Sym•dCn)

κ

-

(4.27)

Here

• The vector bundle τ : S → Ẽ is the pull-back κ∗SFl of the bundle SFl

(cf. (4.15)).

• The map ψẼ is GLn-equivariant.

• The fibers of ψẼ are d-dimensional varieties, copies of Diffd(1).

• ψref is BL-equivariant.

• π is a principal BL-fibration, while πẼ is an Ẽref -fibration.

This allows us to formulate our model as follows.

Proposition 4.17.

(1) The map evS establishes a birational surjection

evS : τ−1
(
ψẼ(Hominj(Cd,Cn))

)
� Θd.

(2) Ẽref is a smooth projective variety endowed with a Bd-action.

(3) The subset ψref(π
−1(fref)) ⊂ Ẽref , the part of ψẼ(Hominj(Cd,Cn)) lying

over fref , is a Bd-orbit in Ẽref of dimension
(d
2

)
.

Proof. The first statement follows from Proposition 4.7 and Lemma 4.15,

while the second follows from Lemma 4.14 (cf. (4.23)). For the last statement,

observe that according to (4.26), the subvariety ψ(π−1(fref)) is a BL-orbit,

which, according to Corollary 4.9, has a d-dimensional stabilizer. �

5. Application of the localization formulas

Recall that our aim is the computation Thom polynomial Tpn→kd , which

we defined as the equivariant Poincaré dual of the subvariety Θd ⊂ Jd(n, k),

representing the Ad-singularity (cf. Definition 2.9). The symmetry group of

the problem is the product of matrix groups GLn × GLk. The respective

subgroups of diagonal matrices are Tn with weights (λ1, . . . , λn) and Tk with
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weights (θ1, . . . , θk); hence eP[Θd,Jd(n, k)]Tn×Tk is a bisymmetric polynomial

in these two sets of variables.

In this section, we apply the localization techniques of Section 3 to the

computation of eP[Θd,Jd(n, k)]Tn×Tk using the model described in Section 4.

As our model is a double fibration, the application of the localization formula

is a 2-step process.

Before we proceed, we set the following convention. When describing the

action of BL on the BR-quotient Ẽ , we will revert to the notation Bd, since

here only one copy of the Borel group acts.

5.1. Localization in Flagd(Cn). The model of Proposition 4.17 is an equi-

variant fibration over the smooth homogeneous space Flagd(Cn); hence, in this

case, we can use Proposition 3.2 with M = Z, which applies when the fibers

of S are not necessarily linear and smooth. The result of our calculation is

Proposition 5.3 below.

The data needed for formula (3.6) is

• the fixed point set of the Tn-action on Flagd(Cn),

• the weights of this action on the tangent spaces TpFlagd(Cn) at these

fixed points,

• the equivariant Poincaré duals of the fibers at these fixed points.

The following general statement will be helpful in organizing our fixed point

data. Its proof is straightforward and will be omitted.

Lemma 5.1. Assume that the torus action in Proposition 3.2 is obtained

by a restriction of a GLn-action to its subgroup of diagonal matrices Tn. Then

the Weyl group of permutation matrices Sn acts on MTn , and we have

eP[Sσ·p,W ]Tn = σ · eP[Sp,W ]Tn and EulerTn(Tσ·pM) = σ · EulerTn(TpM)

for all σ ∈ Sn and p ∈MTn .

Our situation is fortunate in the sense that the action of Sn on the fixed

point set is transitive. Indeed, the fixed point set Flagd(Cn)Tn is the set of

partial flags obtained from sequences of d elements of the basis (e1, . . . , en) of

Cn; in particular, |Flagd(Cn)Tn | = n(n− 1) . . . (n− d+ 1).

Recall the notation fref for the reference flag associated to the sequence

(e1, . . . , ed). The stabilizer subgroup of fref in Sn is the subgroup Sn−d per-

muting the numbers starting with d + 1, and the map σ 7→ σ · fref induces a

bijection between Flagd(Cn)Tn and the quotient Sn/Sn−d.
According to Lemma 5.1, it is sufficient to compute the equivariant Poin-

caré dual of the fiber and the weights of the tangent space at the reference flag

fref . The weights of Tfref
Flagd(Cn) are well known:

{λi − λm; 1 ≤ m ≤ d, m < i ≤ n};
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the weights at the other fixed points are obtained by applying the correspond-

ing permutation to this set.

The numerators of the summands of (3.6) in our case are much harder to

compute, although, thanks to Lemma 5.1, it suffices to compute the numerator

for the fixed point fref . The situation over fref is presented in the following

diagram:

Sref
evS- Jd(n, k)

O = Bdε̃ref
⊂ - Ẽref .

τ

?

(5.1)

The fiber of our model over the fixed point fref is the set τ−1(O), where

we introduced the notation O for the closure of the Bd-orbit of ε̃ref . Using this

notation, we can write the numerator of the term corresponding to fref in the

sum (3.6) as follows:

(5.2) eP
î
evS
Ä
τ−1(O)

ä
,Jd(n, k)

ó
Tn×Tk

.

Recall that this is a polynomial in two sets of variables: λ = (λ1, . . . , λn) and

θ = (θ1, . . . , θk). Since O is invariant under Bd only, this polynomial is not

necessarily symmetric in the λs. The following statement is straightforward.

Lemma 5.2. The equivariant Poincaré dual (5.2) does not depend on the

last n− d basic weights λd+1, . . . , λn.

Proof. Indeed, recall that evSτ
−1(Bdε̃ref) consists of all possible solutions

of the systems of equations of the form BLεref , and we saw in Section 4.2 that

all these systems are in Eref . The systems of equations in Eref , however, impose

conditions only on those components of Ψ which do not have indices higher

than d, and this implies the statement of the lemma. �

As a consequence of Lemma 5.2, the equivariant Poincaré dual (5.2) may

be considered as being taken with respect to the group Td × Tk, which has

weights z = (z1, . . . , zd) and θ = (θ1, . . . , θk).

Putting together Lemmas 5.1 and 5.2 and the description of the fixed

point set Flagd(Cn)Td given above, we arrive at the following form of (3.6)

applied to our situation.

Proposition 5.3. We have

(5.3) eP[Θd,Jd(n, k)]Tn×Tk =
∑

σ∈Sn/Sn−d

QFlag(λσ·1, . . . , λσ·d,θ)∏
1≤m≤d

∏n
i=m+1(λσ·i − λσ·m)

,

where

(5.4) QFlag(z,θ) = eP
î
evS
Ä
τ−1(O)

ä
,Jd(n, k)

ó
Td×Tk

.



THOM POLYNOMIALS OF MORIN SINGULARITIES 597

5.2. Residue formula for the cohomology pairings of Flagd(Cn). Usually,

formulas such as (5.3) are difficult to use. They have the form of a finite

sum of rational functions, and only after adding up the terms of this sum and

performing some cancellations do we obtain a polynomial. These computations

often obscure the underlying structures, and they are rather unwieldy as the

number of terms of the sum grows very quickly with n and d.

In this paragraph, we derive an efficient residue formula for the right-

hand side of (5.3). While the geometric meaning of this formula is not entirely

clear, our summation procedure yields an effective, “truly” localized formula.

By this we mean that for its evaluation one only needs to know the behavior of

a certain function at a single point, rather than at a large, albeit finite number

of points.

To describe this formula, we will need the notion of an iterated residue (cf.,

e.g., [27]) at infinity. Let ω1, . . . , ωN be affine linear forms on Cd. Denoting

the coordinates by z1, . . . , zd, this means that we can write ωi = a0
i + a1

i z1 +

· · ·+ adi zd. We will use the shorthand h(z) for a function h(z1, . . . , zd) and dz

for the holomorphic d-form dz1∧· · ·∧dzd. Now, let h(z) be an entire function,

and define the iterated residue at infinity as follows:

(5.5) Res
z1=∞

. . . Res
zd=∞

h(z) dz∏N
i=1 ωi

def
=

Å
1

2πi

ãd ∫
|z1|=R1

. . .

∫
|zd|=Rd

h(z) dz∏N
i=1 ωi

,

where 1 � R1 � · · · � Rd. The torus {|zm| = Rm; m = 1, . . . , d} is oriented

in such a way that Resz1=∞ . . .Reszd=∞ dz/(z1 . . . zd) = (−1)d.

We will also use the following simplified notation:

Res
z=∞

def
= Res

z1=∞
Res
z2=∞

. . . Res
zd=∞

.

In practice, the iterated residue (5.5) may be computed using the following

algorithm. For each i, use the expansion

(5.6)
1

ωi
=
∞∑
j=0

(−1)j
(a0
i + a1

i z1 + · · ·+ a
q(i)−1
i zq(i)−1)j

(a
q(i)
i zq(i))j+1

,

where q(i) is the largest value of m for which ami 6= 0, multiply the product

of these expressions with (−1)dh(z1, . . . , zd), and then take the coefficient of

z−1
1 . . . z−1

d in the resulting Laurent series.

We have the following iterated residue theorem.

Proposition 5.4. For a polynomial Q(z) on Cd, we have

(5.7)∑
σ∈Sn/Sn−d

Q(λσ·1, . . . , λσ·d)∏
1≤m≤d

∏n
i=m+1(λσ·i − λσ·m)

= Res
z=∞

∏
1≤m<l≤d(zm − zl)Q(z) dz∏d

l=1

∏n
i=1(λi − zl)

.
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Proof. We compute the iterated residue (5.7) using the Residue Theorem

on the projective line C ∪ {∞}. The first residue, which is taken with respect

to zd, is a contour integral, whose value is minus the sum of the zd-residues of

the form in (5.7). These poles are at zd = λj , j = 1, . . . , n, and after canceling

the signs that arise, we obtain the following expression for the right-hand side

of (5.7):

n∑
j=1

∏
1≤m<l≤d−1(zm − zl)

∏d−1
l=1 (zl − λj)Q(z1, . . . , zd−1, λj) dz1 . . . dzd−1∏d−1

l=1

∏n
i=1(λi − zl)

∏n
i 6=j(λi − λj)

.

After cancellation and exchanging the sum and the residue operation, at the

next step, we have

(−1)d−1
n∑
j=1

Res
zd−1=∞

∏
1≤m<l≤d−1(zm − zl)Q(z1, . . . , zd−1, λj) dz1 . . . dzd−1∏n

i 6=j
Ä
(λi − λj)

∏d−1
l=1 (λi − zl)

ä .

Now we again apply the Residue Theorem, with the only difference being that

now the pole zd−1 = λj has been eliminated. As a result, after converting the

second residue to a sum, we obtain

(−1)2d−3
n∑
j=1

n∑
s=1, s 6=j

∏
1≤m<l≤d−2(zl − zm)Q(z1, . . . , zd−2, λs, λj) dz1 . . . dzd−2

(λs − λj)
∏n
i 6=j,s

Ä
(λi − λj)(λi − λs)

∏d−1
l=1 (λi − zl)

ä .

Iterating this process, we arrive at a sum very similar to (5.3). The differences

between the two sums will be the sign (−1)d(d−1)/2 and that the d(d − 1)/2

factors of the form (λσ(i) − λσ(m)) with 1 ≤ m < i ≤ d in the denominator

will have opposite signs. These two differences cancel each other, and this

completes the proof. �

Remark 5.5. Changing the order of the variables in iterated residues, usu-

ally, changes the result. In this case, however, because all the poles are normal

crossing, formula (5.7) remains true no matter in what order we take the iter-

ated residues.

5.3. Localization in the fiber. Combining Proposition 5.3 with Proposi-

tion 5.4, we arrive at the formula

(5.8) eP[Θd,Jd(n, k)]Tn×Tk = Res
z=∞

∏
1≤m<l≤d(zm − zl)QFlag(z,θ) dz∏d

l=1

∏n
i=1(λi − zl)

.

The “only” unknown here is the polynomial QFlag(z,θ) defined in (5.4), and,

therefore, we now turn to its computation.

Let us briefly review the construction of QFlag(z,θ) (cf. diagram (5.1) and

Proposition 5.3). This polynomial is an equivariant Poincaré dual taken with

respect to the group Td × Tk, which has weights (z1, . . . , zd) and (θ1, . . . , θk).

Consider the BL ×BR-module Hom4(CdR, Sym•ref(CnL)) and endow it with co-

ordinates ulτ ∈ Hom4(CdR, Sym•ref(CnL))∗, indexed by pairs (τ, l) ∈ Π × Z>0
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satisfying sum(τ) ≤ l ≤ d. We will consider the dual space spanned by these

coordinates as carrying a right action of Td × Tk; accordingly,

(5.9) the weight of ulτ = (zi1 + zi2 + · · ·+ zim , θl), where τ = [i1, i2, . . . , im].

For each nondegenerate system ε ∈ Eref ⊂ Hom4(CdR,Sym•ref(CnL)), we

denote the image prref(ε) in the quotient prref : Eref → Ẽref = E/BR by ε̃; in

particular, we have a reference point ε̃ref ∈ Ẽref corresponding to the system

εref given by

(5.10) ulπ(εref) =

1, if sum(π) = l,

0, otherwise.

Next, consider the vector bundle

V = Eref ×BR CdR −→ Ẽref = Eref/BR

associated to the standard representation of BR. We define a Td × Tk-equi-

variant linear bundle map from a trivial bundle

s : Ẽref × Jd(n, k) −→ V ∗ ⊗ Ck

as follows. Let

ε ∈ Ẽref = Flagd(Sym•dCn) = Flagd(Jd(n)∗) = Hom(Cd,Jd(n)∗)/Bd

be a point of the base, and α ∈ Jd(n, k) = Jd(n) ⊗ Ck. Then the canoni-

cal pairing of Jd(n)∗ and Jd(n) gives us an element (ε, α) ∈ V ∗ ⊗ Ck. By

Proposition 4.7, the bundle S fits into the short exact sequence

0 - S
evS- Jd(n, k)

s- V ∗ × Ck - 0,

and the polynomial QFlag(z,θ) is the equivariant Poincaré dual in Jd(n, k) of

the union of the vector spaces ker(s) lying over O ⊂ Ẽref (cf. (5.4)).

While the variety O is highly singular, the set of Td-fixed points of O is

finite — as we will see shortly — and hence we can apply here Proposition 3.2

with M = O and Z = Ẽref . The result is

(5.11) QFlag(z,θ) =
∑

p∈OTd

EulerTd×Tk(V ∗p ⊗ Ck) emultp[O, Ẽref ]

EulerTd×Tk(TpẼref)
.

Our task thus has reduced to the identification and computation of the

objects in this formula. These are

• the set OTd of Td-fixed points in O ⊂ Ẽref ,

• the weights of the Td-action on the fibers Vp for p ∈ OTd ,
• the weights of the Td-action on the tangent spaces TpẼref for p ∈ OTd ,
• the equivariant multiplicities of O in Ẽ at each fixed point p ∈ OTd .
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The most immediate problem we face is that we do not have an effective

description of the set OTd of Td-fixed points in O. There is a formal way

around this: We replace the fixed point set OTd with the larger set ẼTdref and

define the equivariant multiplicity emultp[O, Ẽref ] to be zero in the case when

p ∈ ẼTdref \ OTd .
The fixed point set ẼTdref is fairly easy to determine: The fixed points cor-

respond to those nondegenerate systems ε ∈ Eref ⊂ Hom4(CdR,Sym•ref(CnL))

for which the tensors ε(em) ∈ Sym•ref(CnL), m = 1, . . . , d are of pure Td-weight.

These, in turn, may be enumerated as follows.

Definition 5.6. We will call a sequence of partitions π = (π1, . . . , πd) ∈
Π×d admissible if

(1) sum(πl) ≤ l for l = 1, . . . , d and

(2) πl 6= πm for 1 ≤ l 6= m ≤ d.

We will denote the set of admissible sequences of length d by Πd; we also

introduce the numerical characteristic

defect(π) =
d∑
l=1

(l − sum(πl)).

As an example, we list the admissible sequences in the case d = 3:

Π3 = {([1], [2], [3]), ([1], [2], [1, 2]), ([1], [2], [1, 1]), ([1], [2], [1, 1, 1])

([1], [1, 1], [3]), ([1], [1, 1], [1, 1, 1]), ([1], [1, 1], [2]), ([1], [1, 1], [1, 2])}.

For π = (π1, . . . , πd) ∈ Πd, introduce the system επ given by

(5.12) ulτ (επ) =

1, if τ = πl,

0, otherwise.

As usual, the point corresponding to επ in Ẽref will be denoted by ε̃π =

prref(επ).

The following statement follows from the definitions.

Lemma 5.7. • The correspondence π 7→ ε̃π establishes a bijection

between the set Πd of admissible sequences of partitions and the fixed

point set ẼTdref .

• For τ ∈ Π and an integer i, denote by mult(i, τ) the number of times i

occurs in τ and let zτ =
∑
i∈τ mult(i, τ) zi. Then, given an admissible

sequence π ∈ Πd, the weights of the Td-action on the fiber of V at the

fixed point ε̃π are

zπ1 , . . . , zπd .
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Corollary 5.8. The weights of the Td×Tk action on fiber V ∗ε̃π ⊗Ck are

{θj − zπm ; m = 1, . . . , d, j = 1, . . . , k}.
Next we turn to the 3rd item on our list: the weights of the Td-action on

tangent space of Ẽref at the fixed points ε̃π. We will use the simplified notation

TπẼref for this tangent space. To compute the answer, it will be convenient to

linearize the action near ε̃π.

Definition 5.9. For each π = (π1, . . . , πd) ∈ Πd, introduce the affine-linear

subspace Nπ ⊂ Hom4(CdR, Sym•dCn) given by

Nπ =

ε ∈ Hom4(CdR,Sym•dCn); umπl(ε) =

1, if m = l

0, if m > l
for 1 ≤ l ≤ d

 .
Also, for π ∈ Πd, introduce the map

απ : Hom4(CdR,Sym•dCn)→ Matd×d

which associates to each system ε its d×d minor corresponding to the sequence

of partitions π = (π1, . . . , πd).

A few comments are in order. First, we can rewrite the above definition

of Nπ as follows:

(5.13) Nπ =
¶
ε ∈ Hom4(CdR, Sym•dCn); απ(ε) ∈ U−

©
,

where U− is the subgroup of lower-triangular d × d matrices with 1s on the

diagonal; this way it is apparent that Nπ ⊂ Eref .

Also, observe that επ ∈ Nπ. Considering this special point to be the

origin, we may think of Nπ as a linear space. Then Nπ is endowed with a

natural set of coordinates:

(5.14) ûlτ |π = ulτ |Nπ, sum(τ) ≤ l ≤ d, τ 6= π1, . . . , πl.

Proposition 5.10. Let π ∈ Πd be an admissible sequence of partitions.

Then

(1) The restriction of the projection prref : Eref → Ẽref to Nπ is an em-

bedding and the collection {prref(Nπ); π ∈ Πd} forms an open cover of

Ẽref .

(2) For any π ∈ Πd, the image prref(Nπ) ⊂ Ẽref is Td-invariant and the

induced Td-action on Nπ is linear and diagonal with respect to the

coordinates (5.14). Considering Td as acting on the right on these

coordinates,

(5.15) the weight of ûlτ |π = zτ − zπl .

(3) If defect(π) = 0, then prref(Nπ) ⊂ Ẽref is Bd- invariant.



602 GERGELY BÉRCZI and ANDRÁS SZENES

Remark 5.11. We will denote by Tπ and Bπ the actions of Td and Bd
induced on Nπ by the embedding prref .

Proof. We first show that ∪{prref(Nπ); π ∈ Πd} = Ẽref . This means that

for an arbitrary element ε ∈ Eref , we have to find an admissible partition

π ∈ Πd and an upper-triangular matrix bR = bR(ε,π) ∈ BR such that ε · bR ∈
Nπ. This can be done by elementary column operations. Consider ε as a

dim(Sym•ref(CnL))×d matrix whose columns are linearly independent and whose

rows are indexed by partitions. The only nonzero entry in the first column

corresponds to the trivial partition [1]; hence, we can multiply the first column

by a constant to rescale this entry to 1 and then annihilate all other entries

in the same row by adding multiples of the first column to the others. Next,

since ε is nonsingular, we can pick a nonzero entry in the second column of

the resulting matrix — this entry will correspond to a partition π2 — and,

again, using column operations, we annihilate all entries in this row starting

form column 3 and so on. Continuing this process, we obtain an admissible

π = (π1, . . . , πd), and the described sequence of column operations produces

an upper-triangular bR ∈ BR such that ε · bR ∈ Nπ.

The process described above finds an appropriate π ∈ Πd for each ε and

brings απ(ε) to lower-triangular form. Moreover, if prref(ε1) = prref(ε2) for

ε1, ε2 ∈ Nπ, then ε1 · bR = ε2 for some bR ∈ BR, and therefore απ(ε1) · bR =

απ(ε2). Since απ(ε1), απ(ε2) are lower-triangular with 1s on the diagonal and

BR is upper-triangular, this can only happen when bR is the unit matrix, so

ε1 = ε2. This proves that prref is injective onNπ; hence the restriction prref |Nπ

is an embedding.

To approach statements (2) and (3), we write down the action of Bd on Ẽ in

the chart Nπ. Recall that the multiplication map U−×Bd → GLd is injective.

This allows us to define the Bd-component aB for an element a ∈ U−Bd; in

particular, for any such a, we have a · (aB)−1 ∈ U−. Then, for b ∈ Bd and

ε ∈ Nπ, we can define the partial action

(5.16) (b, ε) 7→ bπε = bL · ε · (απ(bL · ε)B)−1,

which is valid if απ(bL · ε) ∈ U−Bd.
Now consider the case when b = t ∈ Td is a diagonal matrix. In this

case, απ(bL · ε) remains lower-triangular, with the numbers (tπ1 , . . . , tπd) on

the diagonal, where tτ is the character of Td corresponding to the weight zτ .

This means that απ(bL · ε) ∈ U−Bd, and the Borel factor απ(bL · ε)B is the

diagonal matrix with these same entries:

(5.17) απ(bL · ε)B = diag[tπ1 , . . . , tπd ].

Note that this matrix is independent of ε. Now statement (2) follows easily.
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Finally, to prove (3), observe that if defect(π) = 0, then the filtration-

preserving property implies that απ(ε) is upper-triangular for any ε ∈
Hom4(CdR, Sym•dCn). Hence for ε ∈ Nπ, the matrix απ(ε) is the identity

matrix, and thus, using the condition defect(π) = 0 once again, we can con-

clude that απ(bL · ε) is upper-triangular with the numbers (tπ1 , . . . , tπd) on the

diagonal, where t is the diagonal part of b. This means that απ(bL · ε)B =

απ(bL · ε) ∈ Bd, which implies statement (3). �

Remark 5.12. Clearly, απ(bL · ε) depends linearly on ε. In the case

defect(π) = 0, we have απ(bL · ε)B = απ(bL · ε), and hence the action (5.16)

of Bπ on Nπ is quadratic, not linear as the Tπ-action. When defect(π) > 0,

the action of Bπ is not defined on the whole of Nπ.

Proposition 5.10 provides us with a linearization of the Td-action on Ẽref

near every fixed point. This allows us to compute equivariant multiplicities in

(5.11) using (3.1). Indeed, if we introduce the notation

(5.18) Oπ
def
= (prref |Nπ)−1(O)

or the part of O in the local chart Nπ, then we can write

(5.19) emultε̃π [O, Ẽref ] = eP[Oπ,Nπ]Td .

Next, we take a closer look at the set Oπ.

Lemma 5.13. For every π ∈ Πd, we have

(5.20) Oπ = BLεrefBR ∩Nπ.

Moreover, εref ∈ Nπ if and only if defect(π) = 0, and in this case Oπ = Bπεref ,

where Bπ stands for the action (5.16).

Proof. By definition, Oπ = BLεrefBR ∩Nπ, and hence (5.20) follows from

the fact that Bd acts properly on the right on U−Bd ⊂ GLd. The second

statement then immediately follows from the comparison of (5.10) and Defini-

tion 5.9. �

Let us take stock of our results so far. Substituting the weights from

Corollary 5.8 and (5.15) into (5.11), and taking into consideration (5.19), we

obtain

(5.21) QFlag(λ,θ) =
∑

π∈Πd

∏d
m=1

∏k
j=1(θj − zπm)Qπ(z1, . . . , zd)

d∏
l=1

τ 6=π1,...,πl∏
sum(τ)≤l

(zτ − zπl)
,

where

(5.22) Qπ =

eP[Oπ,Nπ]Td , if ε̃π ∈ O,
0, if ε̃π /∈ O.
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Combining this formula with (5.3) and (5.7), we arrive at our first expression

for Tpn→kd , which we defined as eP[Θd,Jd(n, k)]Tn×Tk :

Tpn→kd (z,θ) = Res
z=∞

∏
m<l(zm − zl) dz∏d
l=1

∏n
i=1(λi − zl)

(5.23)

·
∑

π∈Πd

∏d
m=1

∏k
j=1(θj − zπm)Qπ(z)∏d

l=1

∏{(zτ − zπl); sum(τ) ≤ l, τ 6= π1, . . . , πl}
.

This sum is finite; hence we are free to exchange the summation with

the residue operation. Rearranging the formula accordingly, we arrive at the

following statement.

Proposition 5.14. We have

(5.24) Tpn→kd (z,θ) =
∑

π∈Πd

Res
z=∞

Qπ(z)
∏
m<l

(zm − zl)

d∏
l=1

τ 6=π1,...,πl∏
sum(τ)≤l

d∏
m=1

k∏
j=1

(θj − zπm)

d∏
l=1

n∏
i=1

(λi − zl)
dz,

where the polynomial Qπ(z) is defined in (5.22) for each admissible sequence

π = (π1, . . . , πd) of partitions of d.

This formula has the pleasant feature that the three parameters of our

problem, n, k and d, enter in it in a separate manner. The first fraction only

depends on d, the denominator of the second only depends on n, and the

numerator of this latter fraction controls the k-dependence, with some inter-

ference from the sequence π.

While this formula is a step forward, it is rather difficult to use in practice,

since the number of terms and factors in it grows with d as the the number

of elements in Πd. Also, the known properties of Thom polynomials listed in

Proposition 2.12 are not manifest in (5.24).

In the next section, we will see that this formula goes through two dramatic

simplifications, which will make it easy to evaluate it for small values of d.

Before proceeding, we present a schematic diagram of the main objects of

our constructions (see Figure 1). We hope this will help the reader to navigate

among the various spaces we have introduced.

Explanations.

• The lower circle is the flag variety Flagd(Cn); the fat dots inside rep-

resent the Tn-fixed flags in Flagd(Cn).

• The upper circle is Ẽref , the fiber of the bundle Ẽ over the reference flag

fref . The small circles inside represent the Td-fixed points in Ẽref . One

of these fixed points, ε̃dst ∈ Ẽref , will play an important role in what

follows.
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Figure 1.

• The region bounded by the curvy-linear pentagon represents the Bd-

orbit of the reference point ε̃ref , which is marked by a triangle. The

closure of the orbit is O; this is a singular subvariety of Ẽref , which

contains some of the fixed points of Ẽref , but not all of them.

• The straight lines on top are the linear solution spaces of the corre-

sponding systems of equations in Ẽref . The union of these solution

spaces lying over those points of the fiber bundle Ẽ that correspond to

O form the closure of our singularity locus Θd.

6. Vanishing residues and the main result

The terms on the right-hand side of formula (5.24) are enumerated by

admissible sequences. There is a simplest one among these:

(6.1) πdst = ([1], [2], . . . , [d]),

which we will call distinguished. To avoid double indices, below, we will use

the simplified notation Qdst instead of Qπdst
, and similarly ε̃dst,Ndst,Odst, etc.

The following remarkable vanishing result holds.
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Proposition 6.1. Assume that d � n ≤ k. Then all terms of the sum

in (5.24) vanish except for the term corresponding to the sequence of partitions

πdst = ([1], [2], . . . , [d]). Hence, formula (5.24) reduces to

eP[Θd,Jd(n, k)]Tn×Tk(6.2)

= Res
z=∞

Qdst(z1, . . . , zn)
∏
m<l(zm − zl) dz∏d

l=1

∏{(zτ − zl); sum(τ) ≤ l, |τ | > 1}

∏d
l=1

∏k
j=1(θj − zl)∏d

l=1

∏n
i=1(λi − zl)

,

where Qdst = eP[Odst,Ndst]Td .

Before turning to the proof, we make a few remarks. First, note that this

simplification is dramatic: the number of terms in (5.24) grows exponentially

with d, and of this sum now a single term survives. This is fortunate, because

computing all the polynomials Qπ, π ∈ Πd seems to be an insurmountable

task; at the moment, we do not even have an algorithm to determine when

Qπ = 0, i.e., when ε̃π ∈ O.

Our second observation is that after replacing zl by −zl, l = 1, . . . , d in

(6.2), we can rewrite the equation as

eP[Θd,Jd(n, k)]Tn×Tk(6.3)

= Res
z=∞

(−1)d
∏
m<l(zm − zl)Qdst(z1, . . . , zn)∏d

l=1

∏ {(zτ − zl); sum(τ) ≤ l, |τ | > 1}
d∏
l=1

RC

Å
1

zl

ã
zk−nl dzl,

where RC(z) is the generating series of the relative Chern classes introduced

in (2.14). Indeed, the denominator and the numerator of the fraction in (6.3)

are homogeneous polynomials of the same degree; hence this substitution will

leave the fraction unchanged. We thus obtain an explicit formula for the Thom

polynomial of the Ad-singularity in terms of the relative Chern classes. This is

important, because the fact that (6.3) conforms to the result of Thom-Damon,

Proposition 2.12 (3), suggests that we have the “right” formula.

Most of the present section will be taken up by the proof of Proposi-

tion 6.1. In Section 6.2, we derive a criterion for the vanishing of iterated

residues of the form (5.5). Applying this criterion to the right-hand side of

(5.24) reduces Proposition 6.1 to a statement about the factors of the poly-

nomials Qπ, π ∈ Πd: Proposition 6.4. According to the elimination property

in Proposition 2.3, such divisibility properties follow from the existence of re-

lations of a certain form in the ideal of the subvariety Oπ ⊂ Nπ. We find a

family of such relations in Section 6.3 (see (6.18)) and then convert the elim-

ination conditions in Proposition 2.3 into a combinatorial condition on π (cf.

Lemma 6.12). At the end of Section 6.3, we show that if a sequence π does

not satisfy this combinatorial condition, then it is either πdst or ε̃π /∈ O, thus

completing the proof of Proposition 6.1.



THOM POLYNOMIALS OF MORIN SINGULARITIES 607

Introduce the subset ΠO ⊂ Πd defined by

(6.4) ΠO = {π ∈ Πd; ε̃π ∈ O} .
As we mentioned earlier, at the moment, we do not have an explicit description

of this set. In the course of this proof, however, we obtain a rather efficient,

albeit incomplete, criterion for a sequence π ∈ Πd not to belong to ΠO; we

explain this criterion in Section 6.4. Finally, in Section 6.5, we further simplify

(6.3) and formulate our main result, Theorem 6.16.

Before embarking on this rather tortuous route, we give a few examples

in Section 6.1 that demonstrate the localization formulas and the vanishing

property explicitly. Note that we devote the last chapter of the paper to the

detailed study of (6.3) for small values of d, and hence the proofs in Section 6.1

will be omitted.

6.1. The localization formulas for d = 2, 3. The situation for d = 2 and

3 is simplified by the fact that in these cases the closure of the Borel-orbit

O = Bdε̃ref ⊂ Ẽref is smooth. We will thus use the Berline-Vergne localiza-

tion formula (3.3) instead of Rossmann’s formula, and instead of (5.21), we

can work with an explicit expression, not containing equivariant multiplicities

which need to be computed. This allows us to write down the fixed point

formula for eP[Θd,Jd(n, k)]Tn×Tk obtained by substituting a simplified ver-

sion of (5.21) into (5.8) and then compare it to the residue formula (6.2). In

these cases we can easily describe the set ΠO as well. The formulas below are

justified in Section 7.

For d = 2, we have O = Ẽref
∼= P1. There are two fixed points in Ẽref :

ΠO = Π2 = {([1], [2]), ([1], [1, 1])}.
Then our fixed point formula reads as follows:

Tpn→k2 (z,θ) =
n∑
s=1

n∑
t6=s

1∏n
i 6=s(λi − λs)

∏n
i 6=s,t(λi − λt)

×
(∏k

j=1(θj − λs)
∏k
j=1(θj − λt)

2λs − λt
+

∏k
j=1(θj − λs)

∏k
j=1(θj − 2λs)

λt − 2λs

)
.

This is equal to the residue (5.24):

Res
z1=∞

Res
z2=∞

z1 − z2∏n
i=1(λi − z1)

∏n
i=1(λi − z2)

×
(∏k

j=1(θj − z1)
∏k
j=1(θj − z2)

2z1 − z2
+

∏k
j=1(θj − z1)

∏k
j=1(θj − 2z1)

z2 − 2z1

)
.

Proposition 6.1 states that the residue of the second term vanishes; this is easy

to check by hand.
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For d = 3, the orbit closure O is a smooth 3-dimensional hypersurface in

Ẽref . There are six fixed points in O, namely

ΠO = {([1], [2], [3]), ([1], [2], [1, 2]), ([1], [2], [1, 1]),

([1], [1, 1], [3]), ([1], [1, 1], [1, 1, 1]), ([1], [1, 1], [2])};

the remaining two fixed points in Ẽref do not belong toO (see Proposition 6.14):

([1], [2], [1, 1, 1]), ([1], [1, 1], [1, 2]) /∈ ΠO.

Hence the corresponding fixed point formula has six terms:

Tpn→k3 (z,θ) =
n∑
s=1

n∑
t6=s

n∑
u6=s,t

∏k
j=1(θj − λs)∏n

i 6=s(λi − λs)
∏n
i 6=s,t(λi − λt)

∏n
i 6=s,t,u(λi − λu)

×
[∏k

j=1(θj − λt)
2λs − λt

·
( ∏k

j=1(θj − λu)

(2λs − λu)(λs + λt − λu)

+

∏k
j=1(θj − λs − λt)

(λu − λs − λt)(2λs − λs − λt)
+

∏k
j=1(θj − 2λs)

(λu − 2λs)(λs + λt − 2λs)

)

+

∏k
j=1(θj − 2λs)

λt − 2λs
·
( ∏k

j=1(θj − λu)

(λt − λu)(3λs − λu)
+

∏k
j=1(θj − 3λs)

(λu − 3λs)(λt − 3λs)

+

∏k
j=1(θj − λt)

(λu − λt)(3λs − λt)

)]
.

The corresponding residue formula (5.24) also has six terms:

Tpn→k3 (z,θ) = Res
z1=∞

Res
z2=∞

Res
z3=∞

(z1 − z2)(z1 − z3)(z2 − z3)
∏k
j=1(θj − z1)∏n

i=1(λi − z1)
∏n
i=1(λi − z2)

∏n
i=1(λi − z3)

×
[∏k

j=1(θj − z2)

2z1 − z2
·
( ∏k

j=1(θj − z3)

(2z1 − z3)(z1 + z2 − z3)

+

∏k
j=1(θj − z1 − z2)

(z3 − z1 − z2)(2z1 − z1 − z2)
+

∏k
j=1(θj − 2z1)

(z3 − 2z1)(z1 + z2 − 2z1)

)

+

∏k
j=1(θj − 2z1)

z2 − 2z1
·
( ∏k

j=1(θj − z3)

(z2 − z3)(3z1 − z3)
+

∏k
j=1(θj − 3z1)

(z3 − 3z1)(z2 − 3z1)

+

∏k
j=1(θj − z2)

(z3 − z2)(3z1 − z2)

)]
.

Here, again, the last five terms vanish and only the one corresponding to the

distinguished fixed point ([1], [2], [3]) remains, leaving us with (6.2).

For d > 3, the variety Od ⊂ Ẽref is singular. This means that the analogs

of these formulas involve calculation of equivariant multiplicities, which is a

rather difficult problem. We present some of these computations in Section 7.
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6.2. The vanishing of residues. In this paragraph, we describe the condi-

tions under which iterated residues of the type appearing in the sum in (5.24)

vanish.

We start with the 1-dimensional case, where the residue at infinity is

defined by (5.5) with d = 1. By bounding the integral representation along a

contour |z| = R with R large, one can easily prove

Lemma 6.2. Let p(z), q(z) be polynomials of one variable. Then

Res
z=∞

p(z) dz

q(z)
= 0 if deg(p(z)) + 1 < deg(q).

Consider now the multidimensional situation. Let p(z), q(z) be polyno-

mials in the d variables z1, . . . , zd, and assume that q(z) is the product of

linear factors q =
∏N
i=1 Li, as in (6.2). We continue to use the notation

dz = dz1 . . . dzd. We would like to formulate conditions under which the iter-

ated residue

(6.5) Res
z1=∞

Res
z2=∞

. . . Res
zd=∞

p(z) dz

q(z)

vanishes. Introduce the following notation:

• For a set of indices S ⊂ {1, . . . , d}, denote by deg(p(z);S) the degree of

the one-variable polynomial pS(t) obtained from p via the substitution

zm →
t, if m ∈ S,

1, if m /∈ S.
• For a nonzero linear function L = a0 + a1z1 + · · · + adzd, denote by

coeff(L, zl) the coefficient al.

• Finally, for 1 ≤ m ≤ d, set

lead(q(z);m) = #{i; max{l; coeff(Li, zl) 6= 0} = m},
which is the number of those factors Li in which the coefficient of zm
does not vanish, but the coefficients of zm+1, . . . , zd are 0.

Thus we group the N linear factors of q(z) according to the nonvanishing

coefficient with the largest index. In particular, for 1 ≤ m ≤ d, we have

deg(q(z);m) ≥ lead(q(z);m), and
d∑

m=1

lead(q(z);m) = N.

Now applying Lemma 6.2 to the first residue in (6.5), we see that

Res
zd=∞

p(z1, . . . , zd−1, zd) dz

q(z1, . . . , zd−1, zd)
= 0

whenever deg(p(z); d) + 1 < deg(q(z), d). In this case, of course, the entire

iterated residue (6.5) vanishes.
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Now we suppose the residue with respect to zd does not vanish, and we

look for conditions of vanishing of the next residue:

(6.6) Res
zd−1=∞

Res
zd=∞

p(z1, . . . , zd−2, zd−1, zd) dz

q(z1, . . . , zd−2, zd−1, zd)
.

Now the condition deg(p(z); d − 1) + 1 < deg(q(z), d − 1) will be insufficient;

for example,

(6.7)

Res
zd−1=∞

Res
zd=∞

dzd−1dzd
zd−1(zd−1 + zd)

= Res
zd−1=∞

Res
zd=∞

dzd−1dzd
zd−1zd

Å
1− zd−1

zd
+ · · ·

ã
= 1.

After performing the expansions (5.6) to 1/q(z), we obtain a Laurent series

with terms z−i11 . . . z−idd such that id−1 + id ≥ deg(q(z); d − 1, d); hence, the

condition

(6.8) deg(p(z); d− 1, d) + 2 < deg(q(z); d− 1, d)

will suffice for the vanishing of (6.6).

There is another way to ensure the vanishing of (6.6). Suppose that for i =

1, . . . , N , every time we have coeff(Li, zd−1) 6= 0, we also have coeff(Li, zd) = 0,

which is equivalent to the condition deg(q(z), d− 1) = lead(q(z); d − 1). Now

the Laurent series expansion of 1/q(z) will have terms z−i11 . . . z−idd satisfying

id−1 ≥ deg(q(z), d− 1) = lead(q(z); d− 1). Hence, in this case the vanishing of

(6.6) is guaranteed by deg(p(z), d − 1) + 1 < deg(q(z), d − 1). This argument

easily generalizes to the following statement.

Proposition 6.3. Let p(z) and q(z) be polynomials in z1, . . . , zd, and

assume that q(z) is a product of linear factors q(z) =
∏N
i=1 Li. Set dz =

dz1 . . . dzd. Then

Res
z1=∞

Res
z2=∞

. . . Res
zd=∞

p(z) dz

q(z)
= 0

if for some l ≤ d, either of the following two options hold :

• deg(p(z); d, d− 1, . . . , l) + d− l + 1 < deg(q(z); d, d− 1, . . . , l),

or

• deg(p(z); l) + 1 < deg(q(z); l) = lead(q(z); l).

Note that in case of the second option, the equality deg(q(z); l) = lead(q(z); l)

means that

(6.9)

for each i = 1, . . . , N and m > l, coeff(Li, zl) 6= 0 implies coeff(Li, zm) = 0.

Recall that our goal is to show that all the terms of the sum in (5.24)

vanish except for the one corresponding to πdst = ([1], . . . , [d]). Let us apply

our new-found tool, Proposition 6.3, to the terms of this sum.
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Fix a sequence π = (π1, . . . , πd) ∈ Πd and consider the iterated residue

corresponding to it on the right-hand side of (5.24). The expression under the

residue is the product of two fractions:

p(z)

q(z)
=
p1(z)

q1(z)
· p2(z)

q2(z)
,

where

(6.10)
p1(z)

q1(z)
=

Qπ(z)
∏
m<l

(zm − zl)

d∏
l=1

τ 6=π1,...,πl∏
sum(τ)≤l

(zτ − zπl)
and

p2(z)

q2(z)
=

d∏
m=1

k∏
j=1

(θj − zπm)

d∏
l=1

n∏
i=1

(λi − zl)
.

Note that p(z) is a polynomial, while q(z) is a product of linear forms,

and that p1(z) and q1(z) are independent of n and k and depend on d only.

As a warm-up, we show that if the last element of the sequence is not

the trivial partition, i.e., if πd 6= [d], then already the first residue in the

corresponding term on the right-hand side of (5.24) — the one with respect

to zd — vanishes. Indeed, if πd 6= [d], then deg(q2(z); d) ≥ n, while zd does

not appear in p2(z). Then, assuming that d � n, we have deg(p(z); d) �
deg(q(z); d), and this, in turn, implies the vanishing of the residue with respect

to zd (cf. Proposition 6.3).

We can thus assume that πd = [d] and proceed to the study of the next

residue, the one taken with respect to zd−1. Again, assume that πd−1 6= [d−1].

As in the case of zd above, d � n implies deg(p(z); d−1)�deg(q(z); d−1).

However, now we cannot use the first option in Proposition 6.3, because

deg(p2(z); d − 1, d) = k ≥ n. In order to apply the second option, we have

to exclude all linear factors from q1(z) that have nonzero coefficients in front

of both zd−1 and zd. The fact that πd = [d] and the restrictions sum(πl) ≤ l

l = 1, . . . , d tell us that there are two such troublesome factors, (zd − zd−1)

and (zd − zd−1 − z1), which come from the two partitions τ = [d − 1] and

τ = [d−1, 1] in the l = d part of q1(z). The first of the two fortunately cancels

with a factor in the Vandermonde determinant in the numerator. As for the

second factor, our only hope is to find it as a factor in the polynomial Qπ.

Continuing this argument by induction, we can reduce Proposition 6.1 to

the following statement about the equivariant multiplicities Qπ, π ∈ Πd.

Proposition 6.4. Let l ≥ 1, and let π be an admissible sequence of

partitions of the form (6.12), where πl 6= [l]. Then for m > l, and every

partition τ such that l ∈ τ , sum(τ) ≤ m, and |τ | > 1, we have

(6.11) (zτ − zm)|Qπ.

This statement will be proved in Section 6.3. For now, we will assume

that it is true and give a quick proof of the main result of this section.
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Proof of Proposition 6.1. Let π 6= πdst be an admissible sequence of par-

titions. This means that there is l > 1 such that πl 6= [l], but πm = [m] for

m > l:

(6.12) π = (π1, . . . πl, [l + 1], [l + 2], . . . , [d]).

Note that l does not appear anywhere in π; thus we can conclude deg(p(z); l)

� deg(q(z); l) from d� n, as usual. This allows us to apply the second option

of Proposition 6.3 to the residue taken with respect to zl as long as we can

cancel from q2(z) all factors which do not satisfy condition (6.9).

These factors are of the form zτ − zm, where m > l and l ∈ τ . If |τ | = 1,

i.e., if τ = [l], then we can find this factor in the Vandermonde determinant in

the numerator. We can use Proposition 6.4 to cancel the rest of the factors, as

long as we make sure that such factors occur in q1(z) with multiplicity 1. This

is straightforward in our case, since the variable zm with m ≥ l may appear

only in the mth factor of q1(z). �

6.3. The homogeneous ring of Ẽref and factorization of Qπ . Now we turn

to the proof of Proposition 6.4. Let π ∈ Πd be an admissible sequence of

partitions. Recall (cf. (5.22)) that Qπ is the Td-equivariant Poincaré dual of

the part Oπ = pr−1
ref (O) ∩ Nπ of the orbit closure O in the linear chart Nπ

(cf. (5.19)); this latter linear space is endowed with coordinates ûlτ |π defined

in (5.14).

Our plan is to use the elimination property in Proposition 2.3, which,

when applied to our situation, says that the divisibility relation (6.11) follows

if we find a relation in the ideal of the subvariety Oπ ⊂ Nπ expressing the

appropriate variable ûmτ |π as a polynomial of the rest of the variables.

We will lift the calculation from Ẽref to the vector space

Hom4(CdR, Sym•ref(CnL)).

Denote by C[u•] the ring of polynomial functions on Hom4(CdR,Sym•ref(CnL)),

i.e., the space of polynomials in the variables ulτ , 1 ≤ l ≤ d, sum(τ) ≤ l. As

one can see from Definition 5.9 and (5.14), the relations on the two spaces are

connected as follows.

Lemma 6.5. Let Z ∈ C[u•] be a polynomial on Hom4(CdR,Sym•dCn), and

let M ⊂ Hom4(CdR,Sym•dCn) be a closed subvariety such that Z|M vanishes.

Then the restricted polynomial Ẑ = Z|Nπ , written in terms of the coordinates

û·|π , may be obtained from Z as follows :

• setting ulπl to 1 for l = 1, . . . , d,

• setting umπl to 0 for 1 ≤ l ≤ m ≤ d,

• replacing the remaining variables ulτ by ûlτ |π .

In addition, Ẑ vanishes on M ∩Nπ .
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Eventually, using this lemma with M = BLεrefBR and M ∩Nπ = Oπ, we

will be able to produce the necessary relations in the defining ideal ofOπ ⊂ Nπ.

As most of the action will take space in C[u•], our next task is to set up some

convenient notation for this ring.

The ring C[u•] carries a right action of the group BL and a left action of

the group BR. In particular, it has two multigradings induced from the TL and

TR actions: the L-multigrading is the vector of multiplicities (mult(i, π), i =

1, . . . , d), while the R-multigrading is the lth basis vector in Zd. A combination

of these gradings will be particularly important for us (cf. Definition 5.6):

(6.13) defect(ulπ) = l − sum(π).

This induces a Z≥0-grading on C[u•].

Recall that the projection Bd → Td is a group homomorphism whose

kernel is the subgroup of unipotent matrices. We denote the corresponding

nilpotent Lie algebras of strictly upper-triangular matrices by nR and nL for

BR and BL, respectively..

The two Lie algebras, nL and nR are generated by the simple root vectors

∆L = {ELl,l+1; l = 1, . . . , d− 1}, and ∆R = {ERl,l+1; l = 1, . . . , d− 1},
respectively, where El,l+1 is the matrix whose only nonvanishing entry is a 1

in the lth row and l + 1st column. Let us write down the action of these root

vectors on C[u•] in the coordinates ulτ , |τ | ≤ l ≤ d. We first define certain

operations on partitions.

• Given a positive integer m and a partition τ ∈ Π, denote by τ ∪m the

partition with m added to τ , e.g., [2, 3, 4] ∪ 3 = [2, 3, 3, 4].

• If m ∈ τ , then denote by τ − m the partition τ with one of the ms

deleted, e.g., [2, 4, 4, 5, 5, 5, 6]− 5 = [2, 4, 4, 5, 5, 6].

• More generally, we will write [2, 4, 5, 5] ∪ [3, 4] = [2, 3, 4, 4, 5, 5] and

[2, 4, 5, 5]− [4, 5] = [2, 5].

Returning to the Lie algebra actions, we have

(6.14)nRu
l
τ =ulτnL = 0, if sum(τ) = l,

ERm,m+1u
l
τ = δl,m+1u

l−1
τ , ulτE

L
m,m+1 = mult(m, τ)ulτ−m∪m+1, if sum(τ)<l,

where δa,b is the Kronecker delta. Observe that both nR and nL act compatibly

with the TR × TL-multigrading and they both decrease the defect (6.13).

The following subspace will play a key role in our calculations:

(6.15) IO =
¶
Z ∈ C[u•]; nRZ = 0 and [ZnNL ](εref) = 0 for N = 0, 1, 2, . . .

©
,

where nNL is the subset {X1 · · · · ·XN ; Xi ∈ nL, i = 1, . . . , N} of the universal

enveloping algebra of nL.
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Proposition 6.6. If Z ∈ IO, then Z(ε) = 0 for every ε ∈ BLεrefBR.

Proof. First, observe that the actions of nR and nL described in (6.14) are

compatible with the multigrading induced by the TR × TL-action, and hence,

if Z is in IO, then so are all of its TR × TL-homogeneous components. This

means that without loss of generality we may assume that Z is a homogeneous

element of IO.

For such Z, clearly, Z(ε) = 0 ⇔ tRZtL(ε) = 0 for any tL ∈ TL, tR ∈ TR.

Combining this with the condition nRZ = 0, we can conclude that the zero set

of Z is BR-invariant; hence it is sufficient to show Z(ε) = 0 for BLεref . Now,

since ker(BL → TL) = exp(nL), the definition of IO also implies Z(bεref) = 0

for all b ∈ BL., and this completes the proof. �

Remark 6.7. Before we proceed, we make a comment on the geometric

meaning of IO. The space {Z ∈ C[u•]; nRZ = 0} is the homogeneous coordi-

nate ring of Ẽref corresponding to the line bundles induced by the characters

of TR. Then Proposition 6.6 may be interpreted as saying that IO is contained

in the ideal of functions vanishing on O. In fact, is not difficult to show that

IO is exactly this ideal.

We will be looking for polynomials Z ∈ IO in a particular subspace of

C[u•]. To describe this space, for each π ∈ Πd, introduce the monomial

(6.16) uπ =
d∏
l=1

ulπl ; these satisfy uπ(επ′) =

1, if π = π′,

0, otherwise.

Now consider the linear span of these monomials:

(6.17) Λ =

 ∑
π∈Πd

απuπ ∈ C[u•]; απ ∈ C

 .
In order to write down our formulas for certain elements of Λ ∩ IO, we

need to introduce two operations on Πd. For a sequence of partitions π =

(π1, . . . , πd) and a permutation σ ∈ Sd, define the the permuted sequence

π · σ = (πσ(1), . . . , πσ(d));

this defines a natural right action of Sd on Π×d. Note that permuting an admis-

sible sequence π ∈ Πd does not necessarily result in an admissible sequence.

The second operation modifies just one entry of π: For π ∈ Πd and τ ∈ Π,

define

π ∪m τ = (π1, . . . , πm−1, πm ∪ τ, πm+1, . . . , πd).

Now we are ready to write down our relations.
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Proposition 6.8. Let π ∈ Πd be an admissible sequence of partitions

and let τ ∈ Π be any partition. Then the following polynomial is an element

of IO:

(6.18) Rel(π, τ) =
∑

sign(σ) uπ·σ∪mτ , 1 ≤ m ≤ d, σ ∈ Sd, π · σ ∪m τ ∈ Πd.

Remark 6.9. The sum in (6.18) may be empty. This happens when there

are no pairs (σ,m) satisfying the conditions in (6.18). Note, however, that no

two terms of this sum may cancel each other.

Proof. We begin by noting that Rel(π, τ) is of pure TR × TL weight. In-

deed, the torus TR acts on the whole space Λ with the same weight (1, 1, . . . , 1),

while the lth component of the TL-weight of a term of Rel(π, τ) is equal to

mult(l, τ) +
∑d
m=1 mult(l, πm).

Next, we show that

(6.19) ERl,l+1Rel(π, τ) = 0, l = 1, . . . , d− 1,

which implies that nRRel(π, τ) = 0. Let us fix l. The terms of Rel(π, τ) in

(6.18) are indexed by pairs (σ,m), and we can ignore those pairs for which

sum(πl+1) + δm,l+1sum(τ) ≥ l + 1, since in this case ERl,l+1u
π·σ∪mτ = 0. Then

the vanishing (6.19) clearly follows if, on the set of the remaining pairs con-

tributing to (6.18), we find an involution (σ,m) 7→ (σ′,m′) such that

ERl,l+1u
π·σ∪mτ = ERl,l+1u

π·σ′∪m′τ and sign(σ′) = −sign(σ).

Indeed, it is easy to check that this holds for the involution

(σ′,m′) = (σ · 〈l↔ l + 1〉, 〈l↔ l + 1〉(m)),

where 〈l↔ l + 1〉 ∈ Sd is the transposition of l and l + 1. This proves (6.19).

Our second task is to show that Rel(π, τ) is in the linear space

I ′O =
¶
Z ∈ C[u•];

î
ZnNL

ó
(εref) = 0 for N = 0, 1, . . .

©
.

Using the Leibniz rule, it is easy to see see that I ′O ⊂ C[u•] is an ideal.

First we show that for partitions ρ, τ ∈ Π and m ≥ sum(ρ) + sum(τ), the

polynomial

(6.20) Zmρτ = umρ∪τ −
∑

utρu
r
τ , t+ r = m, t ≥ sum(ρ), r ≥ sum(τ)

is in I ′O. Indeed, a quick computation produces the equality

ZmρτE
L
l,l+1 = mult(l, ρ)Zmρ′τ + mult(l, τ)Zmρτ ′ ,

where

ρ′ = ρ− l ∪ [l + 1], τ ′ = τ − l ∪ [l + 1].

This equality implies that it is sufficient for us to prove Zmρτ (εref) = 0 for the

case m = sum(ρ) + sum(τ). In this case we have

(6.21) Zmρτ = umρ∪τ − usum(ρ)
ρ usum(τ)

τ ,
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and this polynomial clearly vanishes on εref , because all three coordinates

appearing in this relation are equal to 1 according to (5.10).

Now we return to the proof of Rel(π, τ) ∈ I ′O. Using the fact that Zmρτ
is in the ideal I ′O, modulo the I ′O, we can replace all the factors of the form

umπσ(m)∪τ in all the terms of Rel(π, τ) by the appropriate sum of quadratic terms

in (6.20). Our claim is that the resulting polynomial is identically zero, which

implies that Rel(π, τ) ∈ I ′O.

Indeed, let us perform this substitution. The terms of the resulting sum

are parametrized by a triple (σ,m, r), which is obtained by applying (6.20) to

the term of Rel(π, τ) indexed by (σ,m) and taking the term corresponding to

r in (6.20). The correspondence is thus

(6.22) (σ,m, r) −→ u1
πσ(1)

. . . um−1
πσ(m−1)

um−rπσ(m)
urτu

m+1
πσ(m+1)

. . . udπσ(d)
.

Just as above, we can see that the involution (σ,m, r) 7→ (σ ·〈m↔ m−r〉,m, r)
provides us with a complete pairing of the terms of the sum described above;

each pair consists of identical monomials with opposite signs. This implies

that indeed, the result is zero. Hence Rel(π, τ) vanishes modulo I ′O; i.e.,

Rel(π, τ) ∈ I ′O. �

Armed with these relations, we are ready to prove Proposition 6.4. Recall

that according to the strategy described at the beginning of this paragraph,

given π ∈ Πd, m and τ as in Proposition 6.4, we need to find a relation of the

form Rel(·, ·) that, when restricted to Nπ, expresses the variable ûmτ |π in terms

of the rest of the variables.

Thus the first thing is to study the conditions under which ûmτ |π appears

as the restriction of a monomial of the form uπ′ . The following statement

immediately follows form the prescription Lemma 6.5.

Lemma 6.10. Given π = (π1, . . . , πd) ∈ Πd, a positive integer m ≤ d, and

a partition τ ∈ Π\{π1, . . . , πd} satisfying sum(τ) ≤ m, we have uπ′ |Nπ = ûmτ |π
for some π′ ∈ Πd if and only if

π′ = (π1, . . . , πm−1, τ, πm+1, . . . , πd).

Now let us take a closer look at the conditions of Proposition 6.4. We are

given 1 ≤ l < m ≤ d and τ ∈ Π satisfying

sum(τ) ≤ m, l ∈ τ and |τ | > 1

and a sequence π of the form (6.12) with πl 6= [l]. In view of Lemma 6.10,

the variable ûmτ |π will appear as the restriction to Nπ of the term uρ∪mτ\[l] of

a relation Rel(ρ, τ \ [l]) as long as

ρ = (π1, . . . , πl, [l + 1], [l + 2], . . . , [m− 1], [l], [m+ 1], . . . , [d− 1], [d])
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is admissible, which is obvious. We leave it to the reader to check that the rest

of the terms of Rel(ρ, τ \ [l]) cannot contain ûmτ |π as a factor. This completes

the proof of Proposition 6.4 and thus also the proof of Proposition 6.1. �
This proof suggests a simple criterion for a monomial π ∈ Πd to appear

in one of the relations (6.18).

Definition 6.11. We will call an admissible sequence of partitions π =

(π1, . . . , πd) complete if for every l ∈ {1, . . . , d} and every nontrivial subparti-

tion τ ⊂ πl, there is m ∈ {1, . . . , d} such that πm = τ .

Taking into account Remark 6.9, we have the following criterion.

Lemma 6.12. A monomial uπ appears in a relation Rel(ρ, τ) for some

ρ ∈ Πd and τ ∈ Π if and only if π is not complete.

6.4. The fixed points of the TL-action on O. As a small detour, based on

the results of the previous paragraph, we obtain a rather powerful criterion for

π ∈ Πd not to belong to ΠO; i.e., we will construct a large number of TL-fixed

points that do not lie in O. We note, however, that describing the set ΠO
remains an interesting open problem. Our starting point is (6.16).

Lemma 6.13. If the monomial uπ appears with nonzero coefficient in a

polynomial from Λ ∩ IO, then the fixed point ε̃π /∈ O, i.e., π /∈ ΠO.

Proof. Indeed, let Z be such a polynomial. According to Proposition 6.6,

a polynomial in IO vanishes at all points of O. On the other hand, it is clear

from (6.16) that all but exactly one of the terms of Z vanishes at επ, and hence

Z(επ) 6= 0. �

Combining this statement with Lemma 6.12, we have the following.

Proposition 6.14. If π ∈ ΠO, i.e., if ε̃π ∈ O, then the sequence π is

complete.

This Proposition provides us with a powerful necessary criterion for π to

be in ΠO. As the an example below shows, this condition is not sufficient.

Example 6.15. (1) The sequence

([1], [2], . . . , [d− 1], [l,m]), where l +m ≤ d,

is complete, and, in fact, it corresponds to a fixed point.

(2) For d = 3, 4, the reverse of Proposition 6.14 holds: if π is complete,

then the fixed point ε̃π lies in the orbit closure Od (see §7).

(3) The completeness of π is a necessary but not sufficient condition for

π to be in ΠO. An example is the following zero-defect sequence of
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partitions: let d = 60, τ = [1, 12, 12, 15, 20] and set

πl =

ρ, if ρ ⊂ τ and sum(ρ) = l,

[l], otherwise.

By definition, this is a complete sequence of partitions, but it is not in

O, which is left as an exercise.

6.5. The distinguished fixed point and the main result. Now we turn our

attention to our much simplified formula (6.2) for the Thom polynomial of the

Ad-singularity.

The proof of the vanishing of the contributions to (5.24), naturally, fails

at the fixed point ε̃dst. Indeed, for the factors (6.10) in the case of the dis-

tinguished sequence πdst, we have deg(p2(z); l) > deg(q2(z); l) for l = 1, . . . , d,

and hence we cannot apply Proposition 6.3.

The factorization arguments of Section 6.3 may be partially saved, how-

ever. Indeed, for the case of the distinguished partition πdst, each TL-weight

zτ − zl of Ndst appears with multiplicity one (cf. end of Section 6.2). Hence,

again, we can apply the elimination property on Proposition 2.3 and Lem-

mas 6.10 and 6.12 to conclude that for |τ | > 1,

(zτ − zl) |Qdst if ([1], [2], . . . , [l − 1], τ, [l + 1], . . . , [d− 1], [d]) is not complete.

Clearly, such a sequence is complete if and only if |τ | = 2, and this means that

in the fraction on the right-hand side of (6.3), we can cancel all factors between

the numerator and the denominator corresponding to partitions τ with |τ | > 2.

This reduces the denominator to the product of the factors with |τ | = 2:∏
(zm + zr − zl), 1 ≤ m ≤ r, m+ r ≤ l ≤ d,

while Qdst is replaced by a polynomial “Qd, whose degree is much smaller than

that of Qdst. Note that in this case no factors of the Vandermonde in the

numerator are canceled. The fraction in (6.3) thus simplifies to

(−1)d
∏
m<l(zm − zl) “Qd(z1, . . . , zd)∏d

l=1

∏l−1
m=1

∏min(m,l−m)
r=1 (zm + zr − zl)

.

The polynomial “Qd, just as Qdst, only depends on d; we mark its d-dependence

explicitly.

All that remains to do before we can formulate our final result is to describe

the geometric meaning of this cancellation and that of the polynomial “Qd itself.

First, note that πdst is of the defect-0 type. Hence, according to Proposi-

tion 5.10 (3) and Lemma 5.13, we have an action of the upper-triangular group

Bdst on Ndst given by (5.16); moreover, εref ∈ Ndst and Odst = Bdst · εref .
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Remarkably, this action is also linear (cf. Remark 5.12), because the BL×BR-

action on Hom4(CdR, Sym•dCn) preserves the length of the partitions, and πdst

contains all the partitions of length 1.

Next, define the linear subspace N̂d ⊂ Ndst,

(6.23) N̂d = {ε ∈ Ndst; û
m
τ |dst(ε) = 0 for |τ | > 2} ⊂ Hom(Cd, Sym2Cd),

and let p̂r : Ndst → N̂d be the natural projection. Then (cf. the elimination

property in Proposition 2.3) we can conclude that

(6.24) “Qd = eP[“Od, N̂d]Td , where “Od = p̂r(“Odst).

In addition, it is easy to see that p̂r commutes with the Bdst-action; in

particular, N̂d in Ndst is Bdst-invariant. The linear representation of Bdst on

N̂d is easily identified with an action of degree-3 tensors (see Theorem 6.16).

In any case, we have “Od = Bdε̂ref , where ε̂ref = p̂r(εref).

Stripping our formulas of extraneous notation, we can formulate our main

result in a self-contained manner as follows.

Theorem 6.16. Let Td ⊂ Bd ⊂ GLd be the subgroups of invertible diag-

onal and upper-triangular matrices, respectively. Denote the diagonal weights

of Td by z1, . . . , zd. Then the GLd-module of 3-tensors Hom(Cd, Sym2Cd) has

a diagonal decomposition

Hom(Cd, Sym2Cd) =
⊕

Cqmrl , 1 ≤ m, r, l ≤ d,

where the tensors qmrl are of weight (zm + zr − zl), and one identifies qrml with

qmrl . Consider the reference element

ε̂ref =
d∑

m=1

d−m∑
r=1

qmrm+r

in the Bd-invariant subspace

(6.25) N̂d =
⊕

1≤m+r≤l≤d
Cqmrl ⊂ Hom(Cd,Sym2Cd).

Set the notation “Od for the orbit closure Bdε̂ref ⊂ N̂d, and consider its Td-equi-

variant Poincaré dual “Qd(z1, . . . , zd) = eP[“Od, N̂d]Td ,
which is a homogeneous polynomial of degree dim(N̂d)− dim(“Od).

Then for arbitrary integers n ≤ k, the Thom polynomial for the Ad-singu-

larity with n-dimensional source space and k-dimensional target space is given
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by the following iterated residue formula :

Tpn→kd (z,θ)(6.26)

= Res
z=∞

(−1)d
∏
m<l(zm − zl) “Qd(z1, . . . , zd)∏d

l=1

∏l−1
m=1

∏min(m,l−m)
r=1 (zm + zr − zl)

d∏
l=1

RC

Å
1

zl

ã
zk−nl dzl,

where RC(·) is the generating function of the relative Chern classes given in

(2.14), and the residue operation is defined by (5.5).

Proof. Recall the line of our argument so far. Using the model formulated

in Proposition 4.17 and localizing over the flag variety, we obtained our initial

formula (5.3). Next, we used localization along the fibers over the flag variety

and some residue calculus to convert this formula into the form (5.24). Study-

ing the relations of a certain Borel orbit in a single fiber of this fibration, we

proved a cancellation phenomenon in Proposition 6.1. Finally, the argument

at the beginning of the current paragraph leads to further simplifications of

the formula, which is reflected in (6.26).

Note that Theorem 6.16 seems to claim more than to what we seem to be

entitled: Proposition 6.1 is proved under the assumption d� n, while here we

claim that our statement holds for any d and n ≤ k. To finish the proof, we

simply need to point out that according to Proposition 2.12, if an expression

of a Thom polynomial in the relative Chern classes holds for large n, then the

same expression works for any n. �

Let us make a few final comments. It is not difficult to see that formula

(6.26) manifestly satisfies all properties listed in Proposition 2.12. In particu-

lar, it only depends on the codimension k − n, and reducing the codimension

by 1 leads to shifting the indices of the relative Chern classes down by 1. An-

other benefit of the result is that it shows that the Thom series introduced in

[9], which, in principle has infinitely many parameters, is governed by a finite

object: “Qd.
Before we turn to examples in the final section of our paper, we point

out an important aspect of our model of Θd. Consider the direct summand

Sym•2Cn = Cn ⊕ Sym2Cn of Sym•dCn, and introduce the rational map

pr : Flagd(Sym•dCn)→ Flagd(Sym•2Cn)

induced by the projection Sym•dCn → Sym•2Cn. The image ψ(Hominj(Cd,Cn))

is in the domain of definition of pr (cf. diagram (4.7)), inducing the map pr◦ψ :

Hominj(Cd,Cn) → Flagd(Sym•2Cn). Similarly, pr ◦ α : Θd → Flagd(Sym•2Cn)

is a well-defined map, and one can show that Sym•dCn may be replaced by

Sym•2Cn in diagram (4.7), preserving all its relevant properties. This, and the
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fact that the final formula (6.26) depends only on the linear and quadratic coor-

dinates, suggests that it might have been more efficient to use Flagd(Sym•2Cn)

instead of Flagd(Sym•dCn) in our model from the very beginning.

However, a more delicate computation shows that the vanishing property

does not hold in this smaller flag space. It turns out that there are fixed points

in the closure of im(pr ◦ ψ) that do not come from the fixed points in the

closure of im(ψ), and for which the residue in the analog of the the fixed point

formula (5.24) does not vanish. Naturally, the sum of these contributions will

be zero, but this cannot be shown with our methods.

7. How to calculate “Qd? Explicit formulas for Thom polynomials

Theorem 6.16 reduces the computation of the Thom polynomials of the

algebra Ad to that of the polynomial “Qd, which is the equivariant Poincaré dual

of a Bd-orbit in a certain Bd-invariant subspace of 3-tensors in d dimensions.

Note that the parameters n and k do not enter this picture; in particular, “Qd
only depends on d.

Clearly, in principle, the computation of “Qd is a finite problem in com-

mutative algebra, which, for each value of d, can be handled by a computer

algebra package such as Macaulay. However, the number of variables and the

degree of “Qd grow rather quickly: they are of order d3. More importantly, com-

puter algebra programs have difficulties dealing with parametrized subvarieties

already in very small examples.

At this point, we do not have an efficient method of computation for “Qd
in general. The purpose of this section is to show how to compute “Qd for small

degrees: d = 2, 3, 4, 5, 6. At the end, we also present an application of our

result to the conjectured positivity of the coefficients of the Thom polynomials

in Section 7.5.

7.1. The degree of “Qd. The degree of the polynomial “Qd is the codimension

of the orbit Bdεref , or that of its closure “Od, in N̂d.
Recall that N̂d has a basis indexed by the set of indices {m+r≤ l≤d}.

An elementary computation shows that dim N̂d is given by a cubic quasi-

polynomial in d with leading term d3/24.

On the other hand, we have

dim(Bdε̂ref) = dim(Bd)− dim(Hd) =

Ç
d+ 1

2

å
− d =

Ç
d

2

å
.

Next, denote by N̂ 0
d the minimal (or defect-zero) part of N̂d spanned by

the vectors {qlmr; m + r = l ≤ d}, and let pr0 : N̂d → N̂ 0
d be the natural

projection; note that ε̂ref ∈ N̂ 0
d . Recall that Bd = TdUd, where Ud ⊂ Bd is

the subgroup of unipotent matrices. It is easy to check that Ud acts trivially

on N̂ 0
d , and its action commutes with the projection pr0. Now introduce the
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toric orbit Tdε̂ref ⊂ N̂ 0
d and its closure “T ⊂ N̂ 0

d . The following is a simple

consequence of the preceding arguments.

Lemma 7.1. The projection pr0 restricted to the orbit Bdε̂ref establishes

a fibration over the toric orbit Tdε̂ref . This map extends to a map between the

closures “O → “T , where “T = Tdε̂ref .

Remark 7.2. We note that there are standard algorithms to compute the

equivariant Poincaré dual of a toric orbit — we presented some of these in

the example of the toric orbit in Section 2.3 — but no such simple algorithm

is known for Borel orbits. The fibration in Lemma 7.1 suggests that, in our

situation, one might be able to reduce this latter problem to the former.

Lemma 7.1 implies, in particular, that the codimension of Bdε̂ref is the

sum of the codimensions of “T in N̂ 0
d and the codimension in the fiberwise

directions. We collect the appropriate numeric values in the following table:

d dim “O=
(
d
2

)
dim “Nd deg “Qd =codim(“O) dim(“T )=d−1 dim “N 0

d codim(“T )

1 0 0 0 0 0 0

2 1 1 0 1 1 0

3 3 3 0 2 2 0

4 6 7 1 3 4 1

5 10 13 3 4 6 2

6 15 22 7 5 9 4

The first 3 columns list the codimension of the closure of the Borel orbit “O in

N̂d, while the last three list the codimension of the closure of the toric orbit “T
in N̂ 0

d .

Now we are ready for the computations.

7.2. The cases d = 1, 2, 3. In these cases deg “Qd = 0, and thus “Qd = 1;

geometrically, this means that Od = Ẽref , and thus “Od = N̂d. The case of d = 1

was described in Section 3.3.

For d = 2, we obtain

(7.1) Tpn→k2 = Res
z1=∞

Res
z2=∞

z1 − z2

2z1 − z2
RC

Å
1

z1

ã
RC

Å
1

z2

ã
zk−n1 zk−n2 dz1dz2.

Expanding the iterated residue, one immediately recovers Ronga’s formula [24]:

(7.2) Tpn→k2 = c2
k−n+1 +

k−n+1∑
i=1

2i−1ck−n+1−ick−n+1+i.

For d = 3, the formula is

Tpn→k3 = (−1) Res
z1=∞

Res
z2=∞

Res
z3=∞

(z1 − z2)(z1 − z3)(z2 − z3)

(2z1 − z2)(z1 + z2 − z3)(2z1 − z3)
(7.3)

RC

Å
1

z1

ã
RC

Å
1

z2

ã
RC

Å
1

z3

ã
zk−n1 zk−n2 zk−n3 dz1dz2dz3.
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This is a more compact and conceptual formula for Tpn→k3 than the one given

in [2].

7.3. The basic equations in general. As our table in Section 7.1 shows, the

polynomial “Qd is not trivial when d > 3. As a step towards its computation,

we describe a set of equations satisfied by “O ⊂ N̂d and “T ⊂ N̂ 0
d . We will call

these equations basic.

The equations will be written in terms of the coordinates ûlτ |dst on Ndst in-

troduced in (5.14), where now we assume that |τ | = 2. Clearly, these variables

form a dual basis to the basis {qlmr} of N̂d. We will streamline our notation by

writing ûlmr instead of ûl[m,r]|dst; naturally, we have ûlmr = ûlrm, and r+m ≤ l.
The construction is as follows. If i+ j +m ≤ l, then the sequence

π(i, j,m; l) = ([1], [2], . . . , [l − 1], [i, j,m], [l + 1], . . . , [d− 1], [d])

is admissible but not complete; hence uπ(i,j,m;l) will appear as a term of some

of the relations Rel(ρ, τ) introduced in Proposition 6.8. In fact, it appears in

three different relations:

for τ = [i], ρl = [j,m], for τ = [j], ρl = [i,m], and for τ = [m], ρl = [i, j];

in all cases ρr = [r] for r 6= l. Next, we reduce the relation Rel(ρ, τ) according

to the prescription of Lemma 6.5. After the reduction, only the terms corre-

sponding to the identity permutation and those corresponding to the transpo-

sitions of the form (s, l) survive; for example, in the case τ = [m], we obtain

the “localized” relation

(7.4) ûlijm =
l−i∑

s=j+m

ûsjmû
l
is.

Note that the number of terms on the right-hand side is l − (i + j + m) + 1,

which is the defect of ûlijm plus 1.

We obtain two other expressions for ûlijm when we choose τ to be [j] or

[k], and the resulting equalities provide us with quadratic relations among our

variables ûlmr, m+ r ≤ l ≤ d.

Proposition 7.3. Let (i, j,m; l) be a quadruple of nonnegative integers

satisfying i + j + m ≤ l ≤ d. Then the ideal of the variety “O ⊂ N̂d contains

the relations

(7.5) R(i, j,m; l) :
l−i∑

s=j+m

ûsjmû
l
is =

l−j∑
s=i+m

ûsimû
l
js =

l−m∑
s=i+j

ûsij û
l
ms.

Remark 7.4. • In general, the quadruple (i, j,m; l) gives us 2 rela-

tions. If i = j 6= m, then the number of relations reduces to 1, and if

i = j = m, then (7.5) is vacuous.
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• The equalities R(i, j,m; l) with i+ j +m = l are relations of the toric

orbit closure “T ⊂ N̂ 0
d . We will call these equations toric.

7.4. d = 4, 5, 6. The first nontrivial case is d = 4. Here deg “Q4 = 1;

i.e., “O4 = B4ε̂ref is a hypersurface in N̂4. Checking the table at the end of

Section 7.1, we see that the codimension of the toric piece “T4 in N̂ 0
4 is the same

as the codimension of “O4 in N̂4. This means that “Q4 = eP[“T4, N̂ 0
4 ]T4 .

It is not surprising then to find that the only basic equation is a toric one,

corresponding to the quadruple (1, 1, 2, 4):

(7.6) R(1, 1, 2; 4) : û2
11û

4
22 = û3

12û
4
13.

We note that this toric hypersurface is essentially our example from Section 2.3.

The variety defined by (7.6) in N̂4 is irreducible and has the same dimension as“O4; therefore it coincides with “O4. We have already determined the equivariant

Poincaré dual in this case in a number of ways: it is the sum of the weights of

any of the monomials in the equation. This brings us to the formula

(7.7) “Q4(z1, z2, z3, z4) = (2z1 − z2) + (2z2 − z4) = 2z1 + z2 − z4.

As a result, we obtain

Tpn→k4 = Res
z1=∞

Res
z2=∞

Res
z3=∞

Res
z4=∞

4∏
l=1

RC

Å
1

zl

ã
zk−nl dzl

(z1 − z2)(z1−z3)(z1−z4)(z2−z3)(z2−z4)(z3−z4)(2z1 +z2−z4)

(2z1−z2)(z1 +z2−z3)(2z1−z3)(z1 +z3 − z4)(2z2−z4)(z1 +z2−z4)(2z1−z4)
.

d = 5. Again, we consult our table. We have dim N̂5 = 13 and codim “O5 =

3, while dim N̂ 0
5 = 6 and codim “T5 = 2.

Let us list our variables.

6 toric : û5
14, û

5
23, û

4
13, û

4
22, û

3
12, û

2
11,

4 defect-1 : û5
13, û

5
22, û

4
12, û

3
11,

2 defect-2 : û5
12, û

4
11, and

1 defect-3 : û5
11.

There are 3 toric equations, which necessarily involve the toric variables

only:

R(1, 1, 2; 4) : û3
12û

4
13 = û2

11û
4
22,(7.8)

R(1, 1, 3; 5) : û5
14û

4
13 = û5

23û
2
11,

R(1, 2, 2; 5) : û5
14û

4
22 = û5

23û
3
12

and one defect-1 equation:

(7.9) R(1, 1, 2; 5) : û5
13û

3
12 + û5

14û
4
12 = û2

11û
5
22 + û5

23û
3
11.
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We observe that the toric equations (7.8) describe the vanishing of the

three maximal minors of a 2 × 3 matrix. This is an irreducible toric variety;

thus we can again argue that it coincides with “T5. Fortunately, this variety is a

special case of the A1-singularity, this time with n = 2 and k = 3. Substituting

the appropriate weights into (3.10), we obtain

eP[“T5, N̂ 0
d ]T5

(7.10)

=
(z1 +z2−z3)(2z1−z2)(z1 +z4−z5)− (2z2−z4)(z1 +z3−z4)(z2 +z3−z5)

z1 +z4−z2−z3

= 2z2
1 +3z1z2 − 2z1z5 +2z2z3−z2z4−z2z5−z3z4 +z4z5.

Let M5 denote the variety determined by the basic equations. Notice that

for fixed û2
11, û

3
12, û

5
14, û

5
23, (7.9) is linear in the remaining variables. This means

that outside the codimension-2 subvariety “T ′5 in “T5 where these four variables

vanish, the natural projection M5 → “T5 is the projection of a vector bundle

onto its base, which implies that M5 is irreducible, and thus M5 = “O5; the

fibers of this vector bundle are hyperplanes in the 7-dimensional complement

of N̂ 0
5 in N̂5. It is also clear from (7.9) that the variety determined by the

relation R(1, 1, 2, 5) is transversal to pr−1
0 (“T5) outside the part lying over “T ′5 ,

and hence we can conclude that eP[“O5, N̂5]T5 is the product of eP[“T5, N̂ 0
5 ]T5

and the weight of the relation R(1, 1, 2; 5). The latter equals 2z1 + z2 − z5,

hence the final result is“Q5(z1, z2, z3, z4, z5)

= (2z1 + z2 − z5)(2z2
1 + 3z1z2 − 2z1z5 + 2z2z3 − z2z4 − z2z5 − z3z4 + z4z5).

d = 6. The polynomial “Q6 is of degree-7 in six variables, and one needs the

help of a computer algebra program to do the calculations. Here we summarize

our computations with Macaulay.

Let M6 denote, again, the variety defined by the basic equations. It turns

out that the codimension of M6 in N̂6 is equal to the codimension of “O6.

However, M6 contains two maximal dimensional components, namely,

M1
6 = 〈û2

11, û
3
12, û

3
11, û

5
14, û

6
14, û

6
15, û

6
24〉

and

M2
6 = 〈basic equations, R〉,

where the extra relation is

R = û4
12û

4
12û

5
23û

6
33 + û4

22û
4
13û

5
12û

6
33 + û4

13û
4
13û

5
22û

6
23 + û4

22û
4
13û

5
23û

6
13

− û4
22û

4
11û

5
23û

6
33 − û4

13û
4
12û

5
22û

6
33 − û4

22û
4
13û

5
13û

6
23 − û4

13û
4
13û

5
23û

6
22
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of weight 2z1 + 3z2 + 3z3 − 2z4 − z5 − z6. Since “O6 is irreducible, we have“O6 = M2
6 . The other component, M1

6 , is a linear subspace, and we obtain “Q6

as “Q6 = eP[M6, N̂6]T6 − eP[M1
6 , N̂6]T6 .

Having described the vanishing ideal of “O6 by explicit relations, using Macaulay,

one then obtains “Q6; this formula is too long to present here.

7.5. An application : the positivity of Thom polynomials. It is conjectured

in [23, Conj. 5.5] that all coefficients of the Thom polynomials Tpn→kd expressed

in terms of the relative Chern classes are nonnegative. Rimányi also proves

that this property is special to the Ad-singularities. In this final paragraph, we

would like to show that our formalism is well-suited to approach this problem.

We will also formulate a more general positivity conjecture, which will imply

this statement.

We start with a comment about the sign (−1)d in our main formula (6.26).

Recall from (5.5) in Section 5.2 that, according to our convention, the iterated

residue at infinity may be obtained by expanding the denominators in terms

of zi/zj with i < j and then multiplying the result by (−1)d. This sign appears

because of the change of orientation of the residue cycle when passing to the

point at infinity. This means that if we compute (6.26) via expanding the

denominators, then the sign in the formula cancels.

Now we are ready to formulate our positivity conjecture.

Conjecture. Expanding the rational function∏
m<l(zm − zl) “Qd(z1, . . . , zd)∏d

l=1

∏l−1
m=1

∏min(m,l−m)
r=1 (zm + zr − zl)

in the domain |z1| � · · · � |zd|, one obtains a Laurent series with nonnegative

coefficients.

This statement clearly implies the nonnegativity of the coefficients of the

Thom polynomial.

At the moment we do not know how to prove this conjecture in general.

However, we observe that the expansion of a fraction of the form (1 − f)/

(1− (f + g)) with f and g small has positive coefficients. Indeed, this follows

from the identity
1− f

1− f − g = 1 +
g

1− f − g .

Now, introducing the variables a = z1/z2 and b = z2/z3, we can rewrite the

above fraction in the d = 3 case as follows:

(z1 − z2)(z1 − z3)(z2 − z3)

(2z1 − z2)(z1 + z2 − z3)(2z1 − z3)
=

1− a
1− 2a

· 1− ab
1− 2ab

· 1− b
1− b− ab.
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Applying the above identity to the right-hand side of this formula immediately

implies our conjecture for d = 3. As a token reward for having followed our

paper this far, we offer to the reader the rather amusing exercise of proving

the same statement for d = 4.
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C.R. Acad. Sci. Paris 260 (1965), 5662–5665; 6503–6506. Zbl 0178.26801.

[20] I. R. Porteous, Simple singularities of maps, in Proceedings of Liverpool

Singularities Symposium, I (1969/70), Lecture Notes in Math. 192, Springer-

Verlag, New York, 1971, pp. 286–307. MR 0293646. Zbl 0221.57016. http:

//dx.doi.org/10.1007/BFb0066829.

[21] , Probing singularities, in Singularities, Part 2 (Arcata, Calif., 1981), Proc.

Sympos. Pure Math. 40, Amer. Math. Soc., Providence, R.I., 1983, pp. 395–406.

MR 0713263. Zbl 0523.58010.

[22] P. Pragacz, Thom polynomials and Schur-functions I. arXiv math.AG/0509234.
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MR 1021516. Zbl 0691.32004.

[27] A. Szenes, Iterated residues and multiple Bernoulli polynomials, Internat. Math.

Res. Notices (1998), 937–956. MR 1653791. Zbl 0968.11015. http://dx.doi.org/

10.1155/S1073792898000567.

http://www.mi.ras.ru/~kazarian/#publ
http://www.mi.ras.ru/~kazarian/#publ
http://www.ams.org/mathscinet-getitem?mr=0649264
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0362.58004
http://dx.doi.org/10.1007/BFb0080494
http://dx.doi.org/10.1007/BFb0080494
http://www.ams.org/mathscinet-getitem?mr=0293670
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0211.56105
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0211.56105
http://www.ams.org/mathscinet-getitem?mr=0353359
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0292.58004
http://www.ams.org/mathscinet-getitem?mr=2110098
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1090.13001
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1090.13001
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0178.26801
http://www.ams.org/mathscinet-getitem?mr=0293646
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0221.57016
http://dx.doi.org/10.1007/BFb0066829
http://dx.doi.org/10.1007/BFb0066829
http://www.ams.org/mathscinet-getitem?mr=0713263
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0523.58010
http://www.arxiv.org/abs/math.AG/0509234
http://www.ams.org/mathscinet-getitem?mr=1817643
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0985.32012
http://dx.doi.org/10.1007/s002220000113
http://dx.doi.org/10.1007/s002220000113
http://www.ams.org/mathscinet-getitem?mr=0263097
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0191.54202
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0191.54202
http://www.ams.org/mathscinet-getitem?mr=0713268
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0541.58010
http://www.ams.org/mathscinet-getitem?mr=1021516
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0691.32004
http://www.ams.org/mathscinet-getitem?mr=1653791
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0968.11015
http://dx.doi.org/10.1155/S1073792898000567
http://dx.doi.org/10.1155/S1073792898000567


THOM POLYNOMIALS OF MORIN SINGULARITIES 629

[28] R. Thom, Les singularités des applications différentiables, Ann. Inst. Fourier,
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