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The Möbius function is strongly
orthogonal to nilsequences

By Ben Green and Terence Tao

Abstract

We show that the Möbius function µ(n) is strongly asymptotically or-

thogonal to any polynomial nilsequence (F (g(n)Γ))n∈N. Here, G is a sim-

ply-connected nilpotent Lie group with a discrete and cocompact subgroup

Γ (so G/Γ is a nilmanifold), g : Z → G is a polynomial sequence, and

F : G/Γ → R is a Lipschitz function. More precisely, we show that

| 1
N

∑N
n=1 µ(n)F (g(n)Γ)| �F,G,Γ,A log−AN for all A > 0. In particu-

lar, this implies the Möbius and Nilsequence conjecture MN(s) from our

earlier paper for every positive integer s. This is one of two major in-

gredients in our programme to establish a large number of cases of the

generalised Hardy-Littlewood conjecture, which predicts how often a collec-

tion ψ1, . . . , ψt : Zd → Z of linear forms all take prime values. The proof is

a relatively quick application of the results in our recent companion paper.

We give some applications of our main theorem. We show, for exam-

ple, that the Möbius function is uncorrelated with any bracket polynomial

such as n
√

3bn
√

2c. We also obtain a result about the distribution of nilse-

quences (anxΓ)n∈N as n ranges only over the primes.

1. Introduction

Important remark. This paper is intimately tied to, and is intended to

be read in conjunction with, the longer companion paper [7], which proves

results about the distribution of finite polynomial orbits on nilmanifolds. In

particular, we shall make heavy use of the notation and lemmas from that

paper.

The aim of this paper is to establish what the authors have been re-

ferring to as the Möbius and Nilsequence conjecture MN(s), first stated as

[6, Conj. 8.5]. Roughly speaking, this states that the Möbius function µ(n),

defined as (−1)k when n is the product of k distinct primes, and 0 other-

wise, is asymptotically strongly orthogonal to any Lipschitz s-step nilsequence

(F (anx))n∈Z, in the sense that the inner product

En∈[N ]µ(n)F (anx)

of these two functions on [N ] := {1, . . . , N} decays to zero faster than any

fixed power of 1/ logN . Here, and in the sequel, we use the averaging notation
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Ex∈Xf(x) := 1
|X|
∑
x∈X f(x) for any finite set X. Recall also that a Lipschitz

s-step nilsequence is any sequence of the form F (anx), where a is an element

of an s-step connected and simply connected nilpotent Lie group G, x is an

element of the nilmanifold G/Γ for some discrete cocompact subgroup Γ 6 G
of G, and F : G/Γ→ R is a Lipschitz function.

The difficulty of this conjecture increases with s. The case s = 0 of this

conjecture is the estimate

En∈[N ]µ(n)�A log−AN.

The stronger estimate

En∈[N ]µ(n)� e−c
√

logN

is essentially equivalent to the prime number theorem (with classical error

term).

The case s = 1 may be reduced by Fourier analysis to the estimate

(1.1) |En∈[N ]µ(n)e(αn)| �A log−AN,

where e(x) := e2πix, required to hold uniformly for all α ∈ R. This was

established by Davenport [2] in the 1930’s by modifying Vinogradov’s method

of bilinear forms (or “Type I and Type II sums”).

In the case s = 2, the conjecture was established by the authors in [5].

For a more complete discussion of the conjecture and the reasons for being

interested in it (and in particular, its applications to the generalised Hardy-

Littlewood conjecture on the number of solutions to systems of linear equations

in which the unknowns are all prime), the reader may refer to the introduction

of [5], the first several sections of [6], or any of the expository articles [3], [4],

[11], [12].

In this paper we settle the Möbius and Nilsequence conjecture. In fact, we

shall prove the marginally stronger result that the Möbius function is asymp-

totically strongly orthogonal to any polynomial nilsequence (F (g(n)Γ))n∈Z.

Theorem 1.1 (Main Theorem). Let G/Γ be a nilmanifold of some di-

mension m > 1, let G• be a filtration1 of G of some degree d > 1, and let

g ∈ poly(Z, G•) be a polynomial sequence.2 Suppose that G/Γ has a Q-rational

1In other words, G• = (Gi)
d
i=0 where G = G0 ⊂ G1 ⊂ . . . Gd is a descending sequence

of Lie groups and [Gi, Gj ] ⊂ Gi+j for all i, j > 0, with the convention that Gi is trivial for

i > d; see [7, Def. 1.1].
2A sequence g : Z → G lies in poly(Z, G•) if ∂h1 . . . ∂hig takes values in Gi for all

h1, . . . , hi ∈ Z and i ≥ 0, where ∂hg(n) := g(n + h)g(n)−1; see [7, Def. 1.8] and the en-

suing discussion.
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Mal’cev basis3 X for some Q > 2, defining a metric dX on G/Γ. Suppose that

F : G/Γ→ [−1, 1] is a Lipschitz function. Then we have the bound

|En∈[N ]µ(n)F (g(n)Γ)| �m,d,A Q
Om,d,A(1)(1 + ‖F‖Lip) log−AN

for any A > 0 and N > 2. The implied constant is ineffective.

Remarks. By specialising to the linear case g(n) := anh for some a, h ∈
G (and using the existence of Q-rational Mal’cev bases; see [7, Prop. A.9]),

Theorem 1.1 immediately implies the Möbius and nilsequences conjecture [6,

Conj. 8.5]. In fact it gives a somewhat more precise result, since the dependence

on Q and ‖F‖Lip is given quite explicitly. For the application of Theorem 1.1

in [6], however, knowledge of these dependencies is not necessary.

The ineffectivity of the bound in Theorem 1.1 already occurs for suffi-

ciently large A in the 1-step case (which, as mentioned before, is essentially

(1.1)) and is ultimately due to the well-known ineffective bounds on Siegel

zeroes. On the other hand, the remainder of the argument is effective, and

so any effective bound for Siegel’s theorem would imply effective bounds for

Theorem 1.1. In particular, this would be the case if one assumed GRH. In

fact, in that case it is not difficult to see from modifying the arguments below

that we can replace the logarithmic decay log−AN by polynomial decay N−c

for some c > 0 depending only on d and m.

The authors learnt in [7] that it is in many ways more natural to consider

the class of polynomial sequences poly(Z, G•) rather than simply the class of

linear sequences n 7→ anx. This is ultimately due to the stability of the polyno-

mial class under a wide variety of operations, such as pointwise multiplication.

On the other hand, these two categories are certainly closely related (and are,

in some sense, equivalent); see [10] for further discussion.

Acknowledgements. The first author is partly supported by a Leverhulme

Prize. The second author is supported by a grant from the Macarthur Foun-

dation and by NSF grant DMS-0649473. We are extremely grateful to the

referee for a careful reading of the paper and for suggesting and explaining an

alternative (and more self-contained) proof of Theorem 7.1.

2. Reducing to the equidistributed case

To prove Theorem 1.1, we will apply [7, Th. 1.19] to decompose g as a

product εg′γ, where ε is “smooth,” γ is “rational,” and g′ is highly equidis-

tributed in some closed subgroup G′ ⊆ G. We will recall the precise statement

shortly.

3The notion of a Q-rational Mal’cev basis is defined in [7, Def. 2.4] and the construction

of the metric dX is given in the same section.



544 BEN GREEN and TERENCE TAO

In ths section we shall show how the rather harmless factors ε and γ in the

above factorisation may be eliminated. We then make an additional reduction

to the case
∫
G/Γ F = 0 (using the Haar measure on G/Γ, of course). This

leaves us with the task of proving an “equidistributed” case of Theorem 1.1;

see Proposition 2.1 below.

For the rest of the paper, all constants c, C, including those in the as-

ymptotic notation � and O(), are allowed to depend on m and d. Different

occurrences of the letters c, C may represent different constants; typically we

will have 0 < c � 1 � C < ∞. For ease of notation, we drop the subscript

whenever Lipschitz norms are mentioned, so ‖F‖Lip becomes simply ‖F‖.
Recall from [7, Def. 1.2(iv)] that a sequence (g(n)Γ)n∈[N ] in a nilmanifold

is totally δ-equidistributed if we have

(2.1) |En∈PF (g(n)Γ)| 6 δ‖F‖

for all Lipschitz functions F : G/Γ → C with
∫
G/Γ F = 0 and all arithmetic

progressions P ⊆ [N ] of length at least δN .

In the next section we shall establish the following result about the lack

of correlation of Möbius with equidistributed nilsequences.

Proposition 2.1 (Möbius is orthogonal to equidistributed sequences).

Let m > 0, d > 1 be integers and let N > 1 be an integer parameter which

is sufficiently large depending on m and d. Let δ, 0 < δ < 1/2, and Q > 2

be real parameters. Let G/Γ be an m-dimensional nilmanifold, and suppose

that G• is a filtration of degree d. Suppose that G/Γ has a Q-rational Mal’cev

basis X adapted to the filtration G•. Let g ∈ poly(Z, G•), and suppose that

(g(n)Γ)n∈[N ] is totally δ-equidistributed. Then, for any function F : G/Γ→ R
with

∫
G/Γ F = 0 and for any arithmetic progression P ⊆ [N ] of size at least

N/Q, we have the bound

|En∈[N ]µ(n)1P (n)F (g(n)Γ)| � δcQ‖F‖ logN.

The proof of Proposition 2.1 proceeds via the method of Type I/II sums,

which is also known as the method of bilinear forms. This is the same method

that one might use to tackle the “minor arcs” case of (1.1), where α is not close

to a rational with small denominator. We will describe it in detail in the next

section. Our task for the remainder of this section is to reduce Theorem 1.1 to

Proposition 2.1.

Proof that Proposition 2.1 implies Theorem 1.1. We start with a brief

overview. The main ingredient of this argument is [7, Th. 1.19], that is to say

the factorisation g = εg′γ mentioned above. In addition to that we require

estimates for sums of the type En∈[N ]µ(n)1P (n), where P ⊆ [N ] is a progres-

sion. After standard harmonic analysis, such bounds ultimately depend on
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results about the zeros of L-functions L(s, χ) and, as such, this is the same

type of analysis as would be used to establish the “major arc” cases of (1.1).

Finally, a fair amount of what might be called “quantitative nil-linear algebra”

is required to keep track of the various nilmanifolds and Lipschitz functions

involved in the argument. Here we draw repeatedly on the material assembled

in [7, Appendix A] for this purpose; we encourage the reader to gloss over these

essentially routine issues on a first reading.

We now turn to the details. We allow all implied constants to depend on

m and d.

Let the hypotheses be as in Theorem 1.1. To simplify the notation slightly

we will also assume that ‖F‖ > 1; the case ‖F‖ < 1 can easily be deduced

from that case. By dividing out by ‖F‖, we may in fact normalise and assume

that ‖F‖ = 1.

We may of course take A > 1. We may also assume that Q 6 logN , since

the claim is vacuously true otherwise; thus X is now a logN -rational Mal’cev

basis. By increasing A if necessary, it will suffice to show an estimate of the

form

(2.2) |En∈[N ]µ(n)F (g(n)Γ)| �A log−A+O(1)N.

Let B be a parameter (depending on A) to be specified later. We may assume

that N is sufficiently large depending on A,B. By [7, Th. 1.19] (with M0 :=

logN), we can find an integer M ,

logN 6M � logOB(1)N,

a rational subgroup G′ ⊆ G, a Mal’cev basis X ′ for G′/Γ′ (where Γ′ := G∩Γ) in

which each element is an M -rational combination (see [7, §2]) of the elements

of X , and a decomposition

(2.3) g = εg′γ

into polynomial sequences ε, g′, γ ∈ poly(Z, G•) with the following properties:

(i) ε : Z→ G• is (M,N)-smooth (see [7, Def. 1.18] for a definition);

(ii) g′ : Z→ G′ takes values in G′, and the finite sequence (g′(n)Γ′)n∈[N ] is

totally M−B-equidistributed in G′/Γ′, using the metric dX ′ on G′/Γ′;

(iii) γ : Z→ G is M -rational (see [7, Def. 1.17]), and (γ(n)Γ)n∈Z is periodic

with period 1 6 q 6M .

From (2.3), we have

(2.4) En∈[N ]µ(n)F (g(n)Γ) = En∈[N ]µ(n)F (ε(n)g′(n)γ(n)Γ).

The sequence (γ(n)Γ)n∈Z is periodic with some period q, 1 6 q 6 M . For

each j = 0, 1, . . . , q − 1, let γj := {γ(j)} be the fractional part of γ(j) with

respect to Γ; thus γjΓ = γ(j)Γ and all the coordinates ψX (γj) lie in [0, 1). This

construction is described in [7, Lemma A.14].
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Now by [7, Lemma A.12], the coordinates ψX (γ(j)) lie in 1
M ′Z

m for some

M ′ �MO(1). Since γj = γ(j)η for some η with integer coordinates, it follows

from [7, Lemma A.3] that the coordinates ψX (γj) are rationals with height

�MO(1).

We now take advantage of the periodicity of γ(n)Γ to split the right-hand

side of (2.4) as

(2.5)
q−1∑
j=0

En∈[N ]µ(n)1n≡j(mod q)F (ε(n)g′(n)γjΓ).

By the right-invariance of d, the (M,N)-smoothness of ε (see [7, Def. 1.18])

and the 1-Lipschitz bound on F , we see that

|F (ε(n)g′(n)γjΓ)− F (ε(n0)g′(n)γjΓ)| 6 dX (ε(n)g′(n)γj , ε(n0)g′(n)γj)

= dX (ε(n0), ε(n))

6 log−AN

whenever |n−n0| 6 N
M logAN

. Hence if we split each progression n ≡ j(mod q)

into further progressions Pj,k for k = O(M logAN), each having diameter at

most N
M logAN

, we see that (2.5) is equal to

(2.6)
∑
j,k

En∈[N ]µ(n)1Pj,k
(n)F (aj,kg

′(n)γjΓ) +O(log−AN).

Here each aj,k := ε(n0,j,k) for some n0,j,k ∈ Pj,k; by the definition of what it

means for ε : Z→ G to be (M,N)-smooth (i.e., [7, Def. 1.18]), it follows that

dX (aj,k, idG) 6M and hence, by [7, Lemma A.4], that

(2.7) |ψX (aj,k)| �MO(1).

If N is sufficiently large depending on A and B, then N > 10M logAN (say),

and this partition of [N ] may be arranged in such a way that

|Pj,k| >
N

2qM logAN
>

N

2M2 logAN
.

Since the number of j is at most M , and the number of k is at most

M logAN , we thus see that to show (2.2), it suffices by the triangle inequality

to show that

(2.8) |En∈[N ]µ(n)1Pj,k
(n)F (aj,kg

′(n)γjΓ)| �A M
−2 log−2A+O(1)N

for each j, k.

Fix j, k. Write Hj := γ−1
j G′γj and let gj : Z→ Hj be the sequence defined

by gj(n) := γ−1
j g′(n)γj . It is clear that each gj is a polynomial sequence with

coefficients in the filtration (Hj)• := γ−1
j G′•γj .
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Set Λj := Γ ∩Hj and define functions

Fj,k : Hj/Λj → [−1, 1]

by the formula
Fj,k(xΛj) := F (aj,kγjxΓ).

Then (2.8) can be rewritten as

(2.9) |En∈[N ]µ(n)1Pj,k
(n)Fj,k(gj(n)Λj)| �A M

−2 log−2A+O(1)N.

Suppose for the moment that Fj,k is a constant function. Recall that Pj,k
has common difference q 6 M . We may thus apply Proposition A.2 (with A

replaced by a sufficiently large exponent A′ depending on A and B) to obtain

the desired claim, since M � logOB(1)N . Therefore, we may subtract off the

mean of Fj,k and assume without loss of generality that
∫
Hj/Λj

Fj,k = 0. This

may cause Fj,k to take values in [−2, 2] rather than [−1, 1], but we can easily

counter this trivial issue by dividing Fj,k by two.

In a moment we shall use Proposition 2.1 to estimate the terms appearing

here. Before doing that we record quantitative rationality properties of the

nilmanifold Hj/Λj , as well as a Lipschitz bound on ‖Fj,k‖.

Claim. There is a Mal’cev basis Yj for Hj/Λj adapted to the filtration

(Hj)• such that each Yj is an MC-rational combination of the Xi. With

respect to the metric dYj on Hj/Λj induced by this basis, the polynomial

sequence gj ∈ poly(Z, (Hj)•) is M−cB+O(1)-totally equidistributed for some

c > 0 depending only on m, d, and we have ‖Fj,k‖ 6MO(1).

Proof. We shall apply suitable combinations of the lemmas in [7, App. A].

The existence of Yj follows from Proposition A.9 and Lemma A.13 of [7], to-

gether with the fact that each γj has rational coordinates with height MO(1).

Now the map x 7→ F (aj,kγjxΓ) on G/Γ has Lipschitz constant at most MO(1)

by [7, Lemma A.5] and the bounds |ψX (aj,k)|, |ψX (γj)| 6 MO(1). The final

statement of the claim, and the statement about the quantitative equidistri-

bution of gj , now follow from [7, Lemma A.17]. �

Let us now apply Proposition 2.1 to (2.9). We apply the proposition with

parameters (which we distinguish using tildes) as follows: G̃ := Hj , Γ̃ := Λj ,

G̃• := (Hj)•, g̃ := gj , X̃ := Yj , Q̃ := MO(1), F̃ := Fj,k, and δ̃ := M−cB+O(1).

We quickly see that (2.9) is bounded by O
Ä
M−cB+O(1) logO(A)N

ä
. Choosing

B sufficiently large depending on A, we obtain (2.9) as claimed. �

3. The equidistributed case: Type I and II sums

In this section we establish Proposition 2.1 using Vinogradov’s method of

Type I and II sums in the form due to Vaughan [13]. More precisely, we will

use the following proposition.
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Proposition 3.1 (Method of Type I/II sums). Let f : N → C be a

function with ‖f‖∞ 6 1 such that

|EN<n62Nµ(n)f(n)| > ε

for some ε > 0. Then one of the following statements holds :

• (Type I sum is large) There exists an integer 1 6 K 6 N2/3 such that

(3.1) |EN/k<w62N/kf(kw)| � (ε/ logN)O(1)

for � (ε/ logN)O(1)K integers k such that K < k 6 2K .

• (Type II sum is large) There exist integers K,W with 1
2N

1/3 6 K 6
4N2/3 and N/4 6 KW 6 4N such that

(3.2) |EK<k,k′62KEW6w,w′<2W f(kw)f(k′w)f(kw′)f(k′w′)| � (ε/ logN)O(1).

Proof. This is [5, Prop. 4.2], specialised to the case U = V = N1/3 and

with certain explicit exponents replaced by unspecified constants O(1). �

We now begin the proof of Proposition 2.1. As before we may normalise

so that ‖F‖ = 1. From this and the mean zero assumption, we see in particular

that

(3.3) |F (x)| 6 diam(G/Γ)� QO(1)

for all x ∈ G/Γ. (The diameter bound here is [7, Lemma A.16].)

If δ 6 1/N , then by (2.1) we have |F (g(n)Γ)| 6 δ for all n ∈ [N ], and the

claim is trivial, so we may assume that δ > 1/N . By increasing δ if necessary

(and shrinking c), we thus see that we may assume that

(3.4) δ > N−σ

for any fixed small constant σ > 0 depending only on m, d.

The basic idea, which will become clearer upon reading the details, is to

make good use of the fact that one may test the quantitative equidistribution

properties of a polynomial nilsequence on G/Γ by passing to the abelianisation

(G/Γ)ab, a phenomenon referred to in [7, Th. 2.9] as the “quantitative Leibman

Dichotomy” (cf. [10]). The abelian issues that one must then deal with are

of a very similar nature to those involved in dealing with exponential sums

such as En∈[N ]µ(n)e(p(n)), where p : R → R/Z is an ordinary polynomial.

Rather than quote results from the existing literature on this problem, it is

easier for us to invoke various lemmas from [7], which were stated and proved

in a language that is helpful for the present paper.

Let ε := δc1Q logN for a constant c1 to be specified later. We may assume

that ε < 1, otherwise the claim is trivial from (3.3) and the triangle inequality.

In particular, we have

Q, logN 6 δ−c1 ,
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and we will use these estimates frequently in the sequel to absorb any polyno-

mial factors in Q or logN into a power of δ−c1 .

Suppose for contradiction that Proposition 2.1 failed for these parameters.

We then apply Proposition 3.1 with f(n) := 1P (n)F (g(n)Γ) and ε as above,

concluding that either (3.1) or (3.2) holds. We deal with these two cases in

turn.

The Type I case. Suppose that (3.1) holds. Thus there are � δO(c1)K

values of k ∈ (K, 2K] such that

|EN/k<w62N/k1P (kw)F (g(kw)Γ)| � δO(c1).

Let l denote the common difference of P ; since |P | > N/Q, we must have

1 6 l 6 Q. Splitting into progressions with common difference l, we see that

for some b(mod l) and for � δO(c1)K values of k ∈ (K, 2K], we have

|
∑

N/k<w62N/k
w≡b(mod l)

1P (kw)F (g(kw)Γ)| � δO(c1)N

kl
.

Setting w = b+ lw′, this may be rewritten as

(3.5)

∣∣∣∣∣∣ ∑w′∈Ik F (g(k(b+ lw′)Γ)

∣∣∣∣∣∣� δO(c1)N

kl
,

where Ik ⊆ [ N2kl − 1, Nkl ] is an interval.

For each value of k for which this holds, consider the sequence gk : Z→ G

defined by gk(n) := g(kn) and also the sequence g̃k : Z → G defined by

g̃k(n) = g(k(b + ln)). It follows from [7, Cor. 6.8] that gk, g̃k ∈ poly(Z, G•).
Now (3.5) implies that (g̃k(n)Γ)n∈[Nk] fails to be δO(c1)-equidistributed in G/Γ,

where Nk ∼ N/kl.
It follows from [7, Th. 2.9] that there is a nontrivial horizontal charac-

ter ψk : G → R/Z (i.e., a continuous homomorphism from G to R/Z which

annihilates Γ) with magnitude |ψk| � δ−O(c1) such that

‖ψk ◦ g̃k‖C∞[Nk] � δ−O(c1).

Recall from [7, Def. 2.7] that the C∞[N ]-norm of a polynomial p : Z → R/Z,

expanded in binomial coefficients as

(3.6) p(n) = α0 + α1

Ç
n

1

å
+ · · ·+ αd

Ç
n

d

å
,

is defined by

‖p‖C∞[N ] := sup
16j6d

N j‖αj‖R/Z.
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By [7, Lemma 8.4] (specialised to the single-parameter case t = 1), there

is some qk � δ−O(c1) such that

‖qkψk ◦ gk‖C∞[Nk] � δ−O(c1).

Pigeonholing in the possible choices of qkψk, we may find some ψ with

0 < |ψ| � δ−O(c1) such that

(3.7) ‖ψ ◦ gk‖C∞[Nk] � δ−O(c1)

for � δO(c1)K values of k ∈ (K, 2K].

Write

(3.8) ψ ◦ g(n) = βdn
d + · · ·+ β0.

Then

(3.9) ψ ◦ gk(n) = βdk
dnd + · · ·+ β0.

We would like to use this and (3.7) to conclude that the coefficients kjβj are

close to being integer (or rational with small denominator). This will follow

from a simple lemma.

Lemma 3.2. Suppose that p : Z → R/Z is a polynomial of the form

p(n) = βdn
d + · · · + β0. Then there is some q > 1, q = O(1), such that

‖qβj‖R/Z � N−j‖p‖C∞[N ] for j = 1, . . . , d.

Proof. Consider the representation (3.6) which is used to define the C∞[N ]-

norm. Observing that βj can be written as a linear combination of αj , . . . , αd
with rational coefficients of height O(1), the result follows upon clearing de-

nominators. �

From (3.7), (3.9), and Lemma 3.2, we see that there is some q > 1,

q = O(1), such that

(3.10) ‖qkjβj‖R/Z � δ−O(c1)(N/K)−j

for j = 1, 2, . . . , d and for at least δO(c1)K values of k ∈ (K, 2K].

Fix j, 1 6 j 6 d. To pass from the jth powers kj to more general integers,

we shall need the following Waring-type result.

Lemma 3.3. Let K > 1 be an integer, and suppose that S ⊆ [K] is a set

of size αK . Suppose that t > 2j + 1. Then �j,t α
2tKj integers in the interval

[tKj ] can be written in the form kj1 + · · ·+ kjt , k1, . . . , kt ∈ S.

Proof. It is a well-known consequence of Hardy and Littlewood’s asymp-

totic formula for Waring’s problem (see, e.g., [14]) that the number of solutions

to

xj1 + · · ·+ xjt = M, x1, . . . xt ∈ [K]



THE MÖBIUS FUNCTION 551

is �j,t K
t−j uniformly in M provided that t > 2j + 1. (In fact, by subsequent

work, such a result is known for much smaller values of t when j is large.)

Let X = {kj : k ∈ S}, and let r(n) be the number of representations of n as

the sum of t elements of X. Then by the Cauchy-Schwarz inequality and the

preceding remarks, we have

α2tK2t = (
∑
n

r(n))2 6 |tX|
∑
n

r(n)2 �j |tX|K2t−j ,

which implies the result. �

By (3.10) and Lemma 3.3, it follows that

‖qlβj‖R/Z � δ−O(c1)(K/N)j

for � δO(c1)Kj values of l ∈ [10dKj ].

The following lemma, which is [7, Lemma 3.2], may be applied to this

situation.

Lemma 3.4 (Strongly recurrent linear functions are highly non-diophan-

tine). Let α ∈ R, 0 < σ < 1/2, and 0 < µ 6 σ/2. Let I ⊆ R/Z be an interval

of length µ such that αn ∈ I for at least σN values of n ∈ [N ]. Then there is

some k ∈ Z with 0 < |k| � σ−O(1) such that ‖kα‖R/Z � µσ−O(1)/N .

Let us attempt to apply this lemma with σ�δO(c1) and µ�δ−O(c1)(K/N)j.

If N is sufficiently large and the exponent σ in (3.4) is sufficiently small, using

the bound K/N 6 N−1/3 we see that the hypotheses of the lemma are satisfied

and that such an application is permissible. The conclusion is that there is

some q′, 1 6 q′ � δ−O(c1) such that

(3.11) ‖qq′βi‖R/Z � δ−O(c1)N−i.

Writing ψ̃ := qq′ψ, it follows from (3.8) and (3.11) that for any n, we have

the bound

‖ψ̃ ◦ g(n)‖R/Z � δ−O(c1)n/N.

If N ′ := δCc1N for some sufficiently large C and if n ∈ [N ′], this implies that

(3.12) ‖ψ̃ ◦ g(n)‖R/Z 6 1/10.

Now set F̃ : G/Γ→ [−1, 1] to be the function F̃ := η◦ψ̃, where η : R/Z→
[−1, 1] is a function of Lipschitz norm O(1) and mean zero which equals 1 on

[−1/10, 1/10]. Then we have
∫
G/Γ F̃ = 0 and ‖F̃‖ � δ−O(c1). From (3.12), we

have

|En∈[N ′]F̃ (g(n)Γ)| > 1 > δ‖F̃‖,
provided that c1 is chosen sufficiently small. This is contrary to the assumption

that (g(n)Γ)n∈[N ] is δ-totally equidistributed.
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The Type II case. In many ways this is very closely similar to the Type I

case, as the reader will see. Recall the situation that (3.2) puts us in (with our

choice of ε): there are K,W with 1
2N

1/3 6 K 6 4N2/3 and N/4 6 KW 6 4N

such that

|EK<k,k′62KEW<w,w′62W f(kw)f(kw′)f(k′w)f(k′w′)| � δO(c1),

where f(n) = 1P (n)F (g(n)Γ). Writing the left-hand side here as

EK<k,k′62K |EW<w62W f(kw)f(k′w)|2,

we see that there are � δO(c1)K2 pairs (k, k′) ∈ (K, 2K]2 such that

|EW<w62W f(kw)f(k′w)| � δO(c1).

Written out in full, for each such pair (k, k′), we have

|EW<w62W 1P (kw)1P (k′w)F (g(kw)Γ)F (g(k′w)Γ)| � (ε/ logN)O(1).

Writing l for the common difference of P (thus 1 6 l 6 Q), we see that there

is some b(mod l) such that for � (ε/ logN)O(1)K2 pairs (k, k′), we have∑
W<w62W
w≡b(mod l)

1P (kw)1P (k′w)F (g(kw)Γ)F (g(k′w)Γ)| � δO(c1)W

l
.

Setting w = lw′ + b, this may be written as

(3.13)

∣∣∣∣ ∑
w′∈Ik,k′

F (g(k(b+ lw′)Γ)F (g(k′(b+ lw′))Γ)

∣∣∣∣� δO(c1)W

l
,

where Ik,k′ ⊆ (Wl − 1, 2W
l ] is an interval. Since 1 6 l 6 Q, which is bounded

by a small power of N , and W � N1/3, this is contained in [W2l ,
2W
l ].

For each k, k′ for which this holds, consider the sequence gk,k′ : Z→ G×G
defined by gk,k′(n) = (g(kn), g(k′n)), and also the sequence g̃k,k′ : Z→ G×G
defined by g̃k,k′(n) = (g(k(b + ln), g(k′(b + ln))). It follows from [7, Cor. 6.8]

that gk,k′ , g̃k,k′ ∈ poly(Z, G•×G•). Now from (3.13), we see that the sequence

(g̃k,k′(n)(Γ×Γ))n∈[Nk,k′ ]
fails to be δO(c1)-equidistributed in (G/Γ)× (G/Γ) for

some Nk,k′ ∈ [W2l ,
2W
l ].

It follows from [7, Th. 2.9] that there is a nontrivial horizontal character

ψk,k′ : G×G→ R/Z with |ψk| � δ−O(c1) such that

‖ψk,k′ ◦ g̃k,k′‖C∞[Nk,k′ ]
� δ−O(c1).

By [7, Lemma 8.4] there is some qk,k′ � δ−O(c1) such that

‖qk,k′ψk,k′ ◦ gk,k′‖C∞[Nk,k′ ]
� δ−O(c1).
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Pigeonholing in the possible choices of qk,k′ψk,k′ , we may find some ψ with

0 < |ψ| � δ−O(c1) such that

(3.14) ‖ψ ◦ gk,k′‖C∞[Nk,k′ ]
� δ−O(c1)

for � δO(c1)K2 pairs k, k′ ∈ (K, 2K].

Write ψ = ψ1 ⊕ ψ2, where ψ1, ψ2 : G → R/Z are horizontal characters,

not both zero. If

ψ1 ◦ g(n) = βdn
d + · · ·+ β0

and

ψ2 ◦ g(n) = β′dn
d + · · ·+ β′0,

then

ψ ◦ gk,k′(n) = (βdk
d + β′dk

′d)nd + · · ·+ (β0 + β′0).

By Lemma 3.2 and (3.14), there is some 1 6 q � δ−O(c1) such that

‖q(kjβj + k′jβ′j)‖R/Z � δ−O(c1)N−jk,k′ � δ−O(c1)(K/N)j

for j = 1, 2, . . . , d and for � δO(c1)K2 pairs k, k′ ∈ (K, 2K].

Suppose, without loss of generality, that ψ1 6= 0. Selecting some k′ that

occurs in � δO(c1)K of the pairs k, k′ and subtracting, we see that

(3.15) ‖qkjβj‖R/Z � δ−O(c1)(K/N)j

for � δO(c1)K values of k ∈ (−K,K). Using the bounds K � N1/3 and (3.4),

it follows that we may ignore the contribution of k = 0; that is to say (3.15)

holds for � δO(c1)K values of k ∈ [1,K].

Remark. Note carefully that (3.15) carries no information when k = 0. In

our treatment of Type I sums, there was no need for a lower bound on K, but

such an assumption is essential if one has any desire to bound Type II sums.

The estimate (3.15) is identical to (3.10). We may now repeat the argu-

ments used to obtain a contradiction to (3.10) in Type I case. The proof of

Proposition 2.1 and thus Theorem 1.1 is now complete.

The main business of the paper is now complete. In the next section

we give a brief discussion of how our argument compares with the classical

Hardy-Littlewood method. After that we give a number of applications of

Theorem 1.1.

4. Remarks on a nilpotent Hardy-Littlewood method

It may be of interest to interpret our method in terms of the “major and

minor arcs” terminology of the Hardy-Littlewood method. Recall that to prove

Davenport’s estimate

|En∈[N ]µ(n)e(αn)| �A log−AN,
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one divides into two cases: the major arcs where α is close to a rational with

small denominator and the minor arcs where it is not. The major arcs are

handled using L-function technology as in Appendix A and the minor arcs are

handled using Type I/II sums as in Proposition 3.1.

Suppose that we are considering the sum

En∈[N ]µ(n)F (g(n)Γ),

where
∫
G/Γ F = 0. Decompose g as a product εg′γ where ε is smooth, γ is

rational, and g′ is highly equidistributed on some subgroup G′. Then one might

think of g as a “major arc” nilsequence if G′ = {idG} and as “minor arc” if G′

is nontrivial.

To justify this terminology, observe that one may interpret e(αn) as

F (g(n)Γ), where G/Γ = R/Z, g : Z→ R is the polynomial sequence g(n) = αn

and the Lipschitz function F , taking values in the unit ball of the complex

plane, is simply e(θ).

If α = a
q + ε, where ε is small, then the decomposition g = εg′γ will be

given by ε(n) = εn, g′(n) = idG, and γ(n) = an/q; thus this does indeed

correspond to a “major arc nilsequence”.

If α is not close to a rational with small denominator, then g(n) will

already be highly equidistributed on R/Z, and so the decomposition g = εg′γ

has ε = γ = idG and g′ = g. Thus G′ = R is nontrivial and this corresponds

to a “minor arc nilsequence”.

5. On bracket polynomials

By a bracket polynomial we mean an object formed from the scalar field

R and the indeterminate n using finitely many instances of the standard arith-

metic operations +, × together with the integer part operation b c and the frac-

tional part operation { }. The following are all bracket polynomials: n2 +n
√

2,

n
√

2bn
√

3c, and {n3
√

2 + n7bn
√

5c +
√

7}. One may associate a notion of

complexity to any bracket polynomial p(n), this being (for instance) the least

number of operations +,×, b c, { } required to write down p. In view of the

relation {x} + bxc = x, it is not strictly speaking necessary to retain both

the integer and fractional part operations, but we do so here for convenience.

Dispensing with one of them would slightly alter the definition of complexity.

The following remarkable theorem of Bergelson and Leibman [1] demon-

strates a close link between bracket polynomials and nilmanifolds (see also

earlier work of H̊aland, for example [8]). If G/Γ is a nilmanifold with Mal’cev

basis X , then recall from [7, Lemma A.14] that the coordinate map ψ : G→ Rm
provides an identification between G/Γ and [0, 1)m. Write τ1, . . . , τm for the in-

dividual coordinate maps from G/Γ to [0, 1); that is to say τi is the composition

of ψ with the map (t1, . . . , tm) 7→ ti.
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Theorem 5.1 (Bergelson-Leibman). The functions of the form n 7→{p(n)},
where p is a bracket polynomial, coincide with the functions of the form n 7→
τi(g(n)Γ), where G/Γ is a nilmanifold equipped with a Mal’cev basis X and

g : Z → G is a polynomial map with coefficients in some filtration G•. The

rationality of X , the dimension of G, the degree of g, and the rationality of

G• may all be bounded in terms of the complexity of p, and conversely the

complexity of p may be bounded in terms of these quantities.

In fact, Bergelson and Leibman prove a number of rather refined variants

of this type of result, and they also give a comprehensive and edifying discussion

of bracket polynomials in general. At first glance it appears that one might

immediately combine Theorem 5.1 with Theorem 1.1 to obtain a result about

the correlation of the Möbius function with bracket polynomials. There is

a serious catch, however: the coordinate functions τi are not continuous on

the nilmanifold G/Γ. Furthermore, as observed by Bergelson and Leibman,

there are bracket polynomials which cannot be written in the form F (g(n)Γ)

for a continuous F . Indeed the results of Leibman [10] on the distribution of

(g(n)Γ)n∈Z imply that the sequence (F (g(n)Γ))n∈Z cannot have isolated values,

yet there are bracket polynomials which do. A simple example is b1−{n
√

2}c,
which is zero except when n = 0.

One does nonetheless feel that the discontinuities of τi are “mild,” as this

function is continuous on that part of G/Γ which is identified with (0, 1)m.

However, the sequence (g(n)Γ)n∈Z may well concentrate on a highly singular

subset of G/Γ, as we discussed at length in [7]. Thus a certain amount of

further work is required to obtain the expected result, which is the following.

Theorem 5.2 (Möbius and bracket polynomials). Suppose that p(n) is a

bracket polynomial and that Ψ : [0, 1] → [−1, 1] is a Lipschitz function. Then

we have the estimate

En∈[N ]µ(n)Ψ({p(n)})�A,Ψ log−AN,

where the implied constant depends only on A, Ψ and the complexity of p (but

is ineffective).

We shall illustrate how this theorem may be deduced from Theorem 1.1

by discussing two related special cases. We will then sketch the details that

are required in order to write down a complete proof. The authors plan to

include a complete proof of Theorem 5.2 in a future publication.

Both special cases will take place on the Heisenberg nilmanifold G/Γ,

where

G =
(

1 R R
0 1 R
0 0 1

)
, Γ =

(
1 Z Z
0 1 Z
0 0 1

)
.
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Computations with Mal’cev bases in this setting were given in [5, App. B] and

then again in [7, §5], where we took

e1 = exp(X1) =
(

1 1 0
0 1 0
0 0 1

)
, e2 = exp(X2) =

(
1 0 0
0 1 1
0 0 1

)
, e3 = exp(X3) =

(
1 0 1
0 1 0
0 0 1

)
.

We briefly recall some of the computations carried out in somewhat more detail

in that paper; in any case the proofs are nothing more than computations with

3 × 3 matrices. The coordinate function ψ : G → R3 is then given by the

formula

ψ
(( 1 x z

0 1 y
0 0 1

))
= (x, y, z − xy),

and the element written here is equivalent, under right multiplication by an

element of Γ, to the element with coordinates

({x}, {y}, {z − xy − bxcy}).

Note that this lies inside the fundamental domain [0, 1)3. It follows that, for

any α, β ∈ R, we have

{nβbnαc} = τ3(g(n)Γ),

where τ3 : G/Γ→ [0, 1) is the map into the third coordinate and g : Z→ G is

the polynomial sequence given by

g(n) =

Å
1 nα n2αβ
0 1 nβ
0 0 1

ã
.

This is an explicit example of the representation of a bracket polynomial, in

this case {nβbnαc}, in the form discussed in Bergelson and Leibman’s theorem.

We discuss two different cases.

Case 1. α =
√

2, β =
√

3. Then the sequence (g(n)Γ)n∈[N ] is totally N−c-

equidistributed on G/Γ, which makes life rather easy. To prove the equidistri-

bution, one may use [7, Th. 2.9] together with the lower bound

min
|k1|,|k2|,|k3|6K

(k1,k2,k3)6=(0,0,0)

‖k1

√
2 + k2

√
3‖R/Z � K−C ,

which follows from the fact that, for any k3 with |k3| 6 K, k1

√
2 + k2

√
3 + k3

satisfies a quartic over Z with coefficients of size KO(1). Although the function

τ3 is not continuous, it is continuous outside of a subset of G/Γ of measure zero,

namely outside of [0, 1)3 \ (0, 1)3. This means that it may be approximated

by Lipschitz functions. More precisely, for any fixed Lipschitz function Ψ :

[0, 1] → [−1, 1] and any ε > 0, one may find functions F1, F2 : G/Γ → C with

‖F1‖∞, ‖F2‖∞ 6 1, ‖F1‖Lip, ‖F2‖Lip 6 ε−O(1), |Ψ◦τ3−F1| 6 F2 pointwise and∫
G/Γ F2 6 ε. From Proposition (2.1), we have

En∈[N ]µ(n)F1(g(n)Γ)� N−c,
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and the uniform distribution of (g(n)Γ)n∈[N ] implies that

En∈[N ]F2(g(n)Γ) 6 ε+O(ε−O(1)N−c).

Now we have the bounds

|En∈[N ]µ(n)Ψ(n
√

3bn
√

2c)| = |En∈[N ]µ(n)Ψ ◦ τ3(g(n)Γ)|
6 |En∈[N ]µ(n)F1(g(n)Γ)|+ En∈[N ]F2(g(n)Γ).

Letting ε = N−c
′

for some sufficiently small c′ > 0, we obtain an effective

and much stronger version of Theorem 5.2 in this case, namely the bound

En∈[N ]µ(n)Ψ({n
√

3bn
√

2c})� N−c.

Case 2. α = β =
√

2. Now the sequence (g(n)Γ)n∈[N ] is manifestly not

uniformly distributed on G/Γ. In fact g takes values in the one-dimensional

subgroup G′ ⊆ G defined by

G′ =

ßÅ
1 x x2/2
0 1 x
0 0 1

ã
: x ∈ R

™
.

The preceding argument breaks down. One could appeal to Theorem 1.1 in-

stead of Proposition 2.1, but the problem comes when one tries to control the

term

En∈[N ]F2(g(n)Γ).

Without knowing something more about the relation between the support

properties of F2 and the orbit (g(n)Γ)n∈[N ], it is not possible to control this

term.

In the case at hand, (g(n)Γ)n∈[N ] is N−c-equidistributed in the nilmanifold

G′/Γ′ where Γ′ := Γ ∩ G. Topologically and algebraically this nilmanifold is

nothing more than R/Z, but one should note carefully that the Haar measure

on this nilmanifold is not the same as the measure induced from the Haar

measure on G. This may be used to “explain” the observation that n
√

2bn
√

2c
is not uniformly distributed modulo one; see [1] for further details.

Inside G/Γ, G′/Γ′ may be identified with the union of two segmentsßÅ
1 x x2/2
0 1 x
0 0 1

ã
: 0 6 x < 1

™
∪
ßÅ

1 x (1+x2)/2
0 1 x
0 0 1

ã
: 0 6 x < 1

™
,

and this makes it clear that the induced map τ3 : G′/Γ′ → [0, 1) is continuous

away from a single point. By an analysis very similar to the preceding one, it

may once again be shown that

En∈[N ]µ(n)Ψ({n
√

2bn
√

2c})� N−c

for any fixed Lipschitz function Ψ : [0, 1]→ [−1, 1].

Amongst examples of the form nβbnαc, there is a third distinct case,

typified by α = β = 21/3. We leave the analysis of this to the reader.



558 BEN GREEN and TERENCE TAO

Sketch of the proof of the general case of Theorem 5.2. By Theorem 5.1,

the result of Bergelson and Leibman, it suffices to show, for any fixed Lipschitz

function Ψ : [0, 1]→ [−1, 1], that

En∈[N ]µ(n)(Ψ ◦ τi)(g(n)Γ)�A log−AN.

Here, the notation and parameters are as described in Theorem 5.1. Now τi
is continuous outside the set [0, 1)m \ (0, 1)m, which has zero measure in G/Γ.

The issue lies in understanding how the orbit (g(n)Γ)n∈[N ] interacts with this.

Now the main results of [7] allow us to get a handle on this situation.

Consider, in particular, the decomposition of g as εg′γ which was obtained in

[7, Th. 1.19]. Recall that ε : Z → G is slowly varying, γ : Z → G is rational,

and g′ : Z → G′ is such that (g′(n)Γ′)n∈[N ] is totally equidistributed. For

a full proof of Theorem 5.2, one would naturally need to specify appropriate

quantitative parameters here. Suppose for simplicity that ε = γ = idG. (This

was, in fact, the case in the two examples above.)

Choose a Mal’cev basis for G′/Γ′ with coordinate map ψ′ : G′ → Rm′ .
Then G′/Γ′ may be identified with the region ψ′−1([0, 1)m

′
) ⊆ G, and in this

way we think of the coordinate function τi as a function on G′/Γ′. Write τ̃i
for the corresponding function on [0, 1)m

′
. It can be shown, making exten-

sive use of the results of [7, Appendix A], that τ̃i is continuous outside of

a piecewise polynomial set of positive codimension, that is to say outside of

a finite union of sets, each of which is defined by some polynomial inequali-

ties a 6 P (t1, . . . , tm′) < b, and at least one nontrivial polynomial equation

Q(t1, . . . , tm′) = c. Related matters are discussed at greater length in [1]; in

the two examples we discussed, these piecewise polynomial sets were rather

simple. These sets are certainly well behaved enough to allow τi to be approx-

imated using Lipschitz functions F1 and F2 as in our treatment of the bracket

polynomial n
√

3bn
√

2c, and in this way one may use Theorem 1.1 to obtain

the desired bound

En∈[N ]µ(n)(Ψ ◦ τi)(g′(n)Γ)�A log−AN.

If G′ 6= {id}, then one may in fact use Proposition 2.1 to obtain the stronger

bound of N−c, as in the examples.

If ε and γ are not trivial, it is even more complicated to write down a fully

rigorous argument, but conceptually things are not much harder at all. The

introduction of the smooth function ε(n) has a rather benign effect; if n ranges

over an interval of length δ′N , for suitably small δ′ = δ′(δ), the discontinuities

of the functions x 7→ τi(ε(n)xΓ) are all contained inside a “nice” set of measure

at most δ, and one may proceed much as before. All one need do, then, is split

the range [N ] into suitably short intervals of this type.

The introduction of γ may be handled much as it was in the proof of

Theorem 1.1. One splits each of the intervals from the previous paragraph
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into progressions Pj with the same (small) common difference q such that

γ(n)Γ is constant and equal to γjΓ on P . One then works with the conjugated

sequences γ−1
j g′(n)γj as we did at the end of Section 2. �

We conclude by remarking on some variants and generalisations of The-

orem 5.2. If p1, . . . , pM are bracket polynomials and F : (R/Z)M → C is a

smooth function, then one could establish the estimate

En∈[N ]µ(n)F ({p1(n)}, . . . , {pM (n)})�A log−AN

by Fourier decomposition of F and Theorem 5.2. One could, if desired, restrict

the range of the average to some fixed subprogression P ⊆ [N ] by the standard

technique of approximating the cutoff 1P (n) by a smoother function 1̃P (n) and

then developing this as a Fourier expansion.

6. The Liouville function

Everything we have proved for the Möbius function also holds for the

Liouville function λ : N→ {−1, 1}, defined to be the unique completely multi-

plicative function such that λ(p) = −1 for all primes p. This function is related

to the Möbius function via the identity

λ(n) =
∑
r:r2|n

µ(n/r2).

Thus, with the notation and assumptions of Theorem 1.1, we have

|En∈[N ]λ(n)F (g(n)Γ)| �
∑

16r6
√
N

1

r2
|Em∈[N/r2]µ(m)F (g(r2m)Γ)|.

Now by [7, Cor. 6.8], m 7→ g(r2m) is a polynomial sequence with coefficients

in the same filtration G• as g, and so we have the bound

|Em∈[N/r2]µ(m)F (g(r2m)Γ)| �m,d,A Q
Om,d,A(1)(1 + ‖F‖Lip) log−A(N/r2)

uniformly in r, so long as N/r2 > 2. Summing over r, we obtain

|En∈[N ]λ(n)F (g(n)Γ)| �m,d,A Q
Om,d,A(1)(1 + ‖F‖Lip)

Ä ∑
r6
√
N/2

1

r2
log−A(N/r2)

+
∑

√
N/2<r6

√
N

1

r2

ä
�m,d,A Q

Om,d,A(1)(1 + ‖F‖Lip) log−AN.

This is precisely Theorem 1.1, but with λ taking the place of µ. In a similar

fashion, all of the results of the preceding section concerning bracket polyno-

mials may now also be deduced with λ in place of µ.
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7. A recurrence result along the primes

In this section we derive the following result. Here p1, p2, p3, . . . is the

sequence of primes.

Theorem 7.1 (Prime return times on a nilmanifold). Suppose that G/Γ

is a nilmanifold and that g ∈ G is such that left-multiplication by g is ergodic.

Then for every x ∈ G/Γ the sequence (gpnxΓ)n=1,2,... is equidistributed in G/Γ

in the sense that

lim
N→∞

En∈[N ]F (gpnxΓ) =

∫
G/Γ

F

for all continuous functions F : G/Γ→ [−1, 1].

Remarks. We recall (from discussions in the companion paper [7]) Leon

Green’s criterion for ergodicity of left-multiplication by g; this map is ergodic if

and only if rotation by π(g) is ergodic on the horizontal torus (G/Γ)ab, that is

to say if and only if the entries of π(g) together with 1 are linearly independent

over Q. If this is the case, then left-multiplication by any power of g is uniquely

ergodic, that is to say

(7.1) lim
N→∞

En∈[N ]F (gtnxΓ) =

∫
G/Γ

F

for all x ∈ G/Γ and for t = 1, 2, 3, . . . .

We shall give two proofs of this result. The first is quite short but does

depend on results from our earlier paper [6]. The second argument, indicated

to us by the referee, uses only the results of this paper (and [7]).

First proof of Theorem 7.1. Let w be a large number and set W :=
∏
p6w p.

Fix a nilmanifold G/Γ and a continuous (and hence Lipschitz) function F :

G/Γ→ [−1, 1]. Then uniformly in the residues b coprime to W , we have

(7.2) lim
N→∞

En∈[N ](
φ(W )

W
Λ′(Wn+ b)− 1)F (gnxΓ) = ow→∞(1),

where the convergence is uniform in x ∈ G/Γ and g ∈ G. This follows very

quickly from [6, Prop. 10.2], which was proved under the assumption of the

Möbius and Nilsequences conjectures MN(s) that we have established in this

paper. Recall that Λ′(p) = log p and that Λ′(n) = 0 if n is not a prime, that is

to say Λ′ is a modified version of the von Mangoldt function with no support

on the prime powers p2, p3, . . . . We recall that the proof of (7.2) is quite

substantial. One splits the von Mangoldt function Λ in a certain way as the sum

of two pieces Λ]+Λ[. The contribution from the second piece is bounded using

the MN(s) conjecture, and this is not particularly difficult. The contribution

from the first piece is bounded using the machinery of Gowers norms, and here

one must estimate the dual Gowers norm of the nilsequence F (gnxΓ) as well
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as the Gowers norm of objects related to Λ]. This is a substantial amount of

work.

Let us return to the proof at hand. Since (7.2) is uniform in g and x, we

may replace g by gW and x by gbx to get

lim
N→∞

En∈Pb,W
(
φ(W )

W
Λ′(n)− 1)F (gnxΓ) = ow→∞(1)

uniformly for all progressions Pb,W = {Wn+ b : n ∈ [N ]}, b = 0, 1, . . . ,W − 1.

However it follows from (7.1) that, for fixed b and W ,

lim
N→∞

En∈Pb,W
F (gnxΓ) =

∫
G/Γ

F.

Comparing these last two expressions, we obtain

φ(W )

W
lim
N→∞

En∈Pb,W
Λ′(n)F (gnxΓ) =

∫
G/Γ

F + ow→∞(1),

uniformly for b coprime to W . Now if b is not coprime to W , we obviously

have
φ(W )

W
lim
N→∞

En∈Pb,W
Λ′(n)F (gnxΓ) = ow→∞(1)

since Λ′ is supported on the primes and F is bounded by 1.

Summing over b, one may conclude that

lim
N→∞

En∈[WN ]Λ
′(n)F (gnxΓ) =

∫
G/Γ

F + ow→∞(1).

This is easily seen to imply that

lim
N→∞

En∈[N ]Λ
′(n)F (gnxΓ) =

∫
G/Γ

F + ow→∞(1).

The left-hand side no longer depends on w, so we may let w →∞. Doing so,

we obtain

lim
N→∞

En∈[N ]Λ
′(n)F (gnxΓ) =

∫
G/Γ

F.

An easy argument using the prime number theorem, noting that Λ′(pn) is

essentially logN for almost all primes pn, n 6 N , concludes the proof. �

Second proof of Theorem 7.1. We sketch a second proof of Theorem 7.1,

indicated to us by the referee. The starting point for this is the observation

that Proposition 3.1 holds equally well with the von Mangoldt function Λ in

place of µ, with an almost identical proof; see [9, Ch. 13]. Therefore, by the

techniques of this paper, Proposition 2.1 holds with Λ in place of µ (perhaps

with a worse power of logN). One may now model the arguments of Section 2,

starting with (2.4), the aim being to decompose

En∈[N ]Λ(n)F (gnΓ)
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into pieces of the shape

En∈[N ]Λ(n)1P (n)F (g(n)Γ),

with (g(n)Γ)n∈[N ] totally equidistributed and
∫
G/Γ F = 0. Then we can apply

Proposition 3.1, with Λ in place of µ.

The argument is very similar to that followed in Section 2, except that we

cannot assert the analogue of (2.9) unless
∫
Fj,k = 0, and so we are forced to

deal with the sums

(7.3) En∈[N ]Λ(n)1Pj,k
(n)

∫
Hj/Γj

Fj,k.

This can be estimated using the Siegel-Walfisz theorem on the progressions

Pj,k, noting that En∈[N ]Λ(n)1Pj,k
(n) is equal to q|Pj,k|/φ(q)N if (j, q) = 1 and

is negligible otherwise. Here, q = logO(1)N is the common difference of the

progressions Pj,k. Furthermore, by equidistribution of (gj(n)Λj)n∈Pj,k
, we have∫

Hj/Γj

Fj,k ≈ En∈Pj,k
Fj,k(gj(n)Λj) = En∈Pj,k

F (aj,kg
′(n)γjΓ).

Hence, by the analysis preceding (2.6), we obtain

(7.4) En∈[N ]Λ(n)F (gnΓ) = En∈[N ]:(n,q)=1F (gnΓ) + oF,G/Γ,N→∞(1).

To handle the term En∈[N ],(n,q)=1F (gnΓ) appearing here, we apply the

following rather curious lemma.

Lemma 7.2. Let G/Γ be a nilmanifold, and suppose that g : Z → G is

any polynomial nilsequence. Let F : G/Γ → [−1, 1] be a Lipschitz function.

Let q be squarefree with 1 6 q < N1/10. Then there is some squarefree q′ <
√
q

such that

En∈[N ],(n,q)=1F (g(n)Γ) = En∈[N ],(n,q′)=1F (g(n)Γ) +O(q−c).

Here, c = cG/Γ,F > 0 is an absolute constant.

It is fairly straightforward to deduce Theorem 7.1 from this and (7.4) .

Indeed let ε > 0 be arbitrary. Set q1 to be the maximal squarefree divisor of q,

the quantity appearing in (7.4). The conditions (n, q) = 1 and (n, q1) = 1 are of

course the same. Now apply Lemma 7.2 repeatedly, obtaining q2 = q′1, q3 = q′2,

and so on, until the first time that qk < 1/ε. The sum q−c1 + q−c2 + · · ·+ q−ck−1

arising from the error term in Lemma 7.2 is bounded by εO(1), and so we obtain

En∈[N ]Λ(n)F (gnΓ) = En∈[N ],(n,qk)=1F (gnΓ) + oF,G/Γ,N→∞(1) +O(εO(1)).

However g acts ergodically on G/Γ, and therefore so does any power of g. It

follows that

En∈[N ],(n,qk)=1F (gnΓ) =

∫
G/Γ

F + oε,F,G/Γ,g;N→∞(1).

Putting all this information together and letting ε→ 0 gives the result.
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It remains to establish Lemma 7.2. To do this, we use a consequence of

[7, Th. 1.19]: for every M0, there is some r, M0 6 r 6MC
0 , such that

(7.5)

En∈[N ],n≡a(mod r),n≡0(mod d)F (gnΓ) = En∈[N ],n≡a(mod r)F (gnΓ) +O

Å
1

M0

ã
uniformly for a(mod r) and for all d 6M0. To see this, apply [7, Th. 1.19] to

get a decomposition g = εg′γ and choose r, M0 6 r 6MC
0 , to be a period of the

rational sequence γ(n)Γ. Then split the two sums in (7.5) into small intervals

on which the smooth sequence ε(n) is roughly constant, and apply the total

equidistribution of g′ to compare the average with the condition n ≡ 0(mod d)

to that without. We leave the details to the reader.

To establish Lemma 7.2, take M0 = qc with c chosen so small that r 6
√
q.

Set q′ = (q, r) and split the sum in the lemma as

(7.6) En∈[N ],(n,q)=1F (gnΓ) = O(N−1/2) + Ea(mod r),(a,q′)=1h(a),

where

h(a) := En∈[N ],n≡a(mod r),(n,q)=1F (gnΓ).

The error term of O(N−1/2) comes from the fact that various subprogressions of

[N ] defined by congruence conditions modulo q or r may have slightly different

lengths. Since we are only interested in those a which are coprime to q′, we

have

h(a) = En∈[N ],n≡a(mod r),(n,q∗)=1F (gnΓ),

where q∗ is the part of q with no factors in common with r. This is equal to

O(N−1/2) +
q∗

φ(q∗)
En∈[N ],n≡a(mod r)1(n,q∗)=1F (gnΓ).

Using the fact that
∑
d|m µ(d) equals 1 if m = 1 and is zero otherwise, this

equals

O(N−1/2) +
q∗

φ(q∗)
En∈[N ],n≡a(mod r)

∑
d|(n,q∗)

µ(d)F (gnΓ),

which is

O(N−1/2) +
q∗

φ(q∗)

∑
d|q∗

µ(d)

d
En∈[N ],n≡a(mod r),n≡0(mod d)F (gnΓ).

Split the sum over d into the two ranges d 6M0 and d > M0. The contribution

from the second range can be bounded trivially by O(τ(q∗)2/M0), where τ is

the divisor function. Inside the sum over the first range d 6M0, we may apply

(7.5). This implies that

h(a) = O(N−1/2)+O

Ç
τ(q∗)2

M0

å
+

q∗

φ(q∗)

∑
d|q∗,d6M0

µ(d)

d
En∈[N ],n≡a(mod r)F (gnΓ).
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We may drop the condition d 6 M0, absorbing the error into the existing

O(τ(q∗)2/M0) term.

Finally, recalling (7.6), we have

En∈[N ],(n,q)=1F (gnΓ)

= O(N−1/2) +O

Ç
τ(q∗)2

M0

å
+

Ñ
q∗

φ(q∗)

∑
d|q∗

µ(d)

d

é
En∈[N ],(n,q′)=1F (gnΓ).

By Möbius inversion, we have
∑
d|m µ(d)/d = φ(m)/m, thereby concluding the

proof. �

We remark that very straightforward approximation arguments allow one

to replace the continuous function F in Theorem 7.1 by a function with mild

discontinuities. In this way one could prove, for example, that the sequence

pn
√

3bpn
√

2c is uniformly distributed modulo one. We leave the details, which

are essentially all present in the earlier discussion of n
√

3bn
√

2c, to the reader.

Appendix A. Möbius and periodic functions

In this appendix we give the proof of Proposition A.2. The argument is,

quite apart from being completely standard, already contained in [5, Ch. 3].

We nonetheless take the opportunity to recall it here, as we wish to emphasise

the fact that the main input to this part of the argument is information on the

zeros of L-functions. Our starting point is the following proposition.

Proposition A.1. For any A > 0, we have

(A.1) En∈[N ]µ(n)χ(n)�A q
1/2 log−AN

for all Dirichlet characters χ to modulus q.

Remark. This follows from the nonexistence of zeros of L(s, χ) close to the

line <s = 1. For the details, see [9, Prop. 5.29]. As noted in [9, p. 124], there

are difficulties involved in applying the standard Perron’s formula approach

to En∈[N ]µ(n)χ(n) directly, and it is rather easier to first obtain bounds on

En∈[N ]Λ(n)χ(n).

Using standard techniques of harmonic analysis, we may obtain the fol-

lowing consequence of Proposition A.1.

Proposition A.2 (Möbius is orthogonal to periodic sequences). Let f :

N → C be a sequence bounded in magnitude by 1 which is periodic of some

period q > 1. Then we have

En∈[N ]µ(n)f(n)�A q log−AN

for all A > 0, where the implied constant is ineffective.
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Proof. We first establish the estimate under the additional assumption

that f(n) vanishes whenever (n, q) 6= 1. Then f can be viewed as a function

on the multiplicative group (Z/qZ)× and thus has a Fourier expansion

f(n) =
∑
χ

f̂(χ)χ(n), where f̂(χ) := En∈(Z/qZ)×f(n)χ(n),

with χ ranging over all the characters on (Z/qZ)×. Applying Proposition A.1

and the triangle inequality, we conclude that

En∈[N ]µ(n)f(n)�A q
1/2 log−AN

Ä∑
χ

|f̂(χ)|
ä
.

But from Cauchy-Schwarz and Plancherel, we have∑
χ

|f̂(χ)| 6 φ(q)1/2
(∑

χ

|f̂(χ)|2
)1/2

= φ(q)1/2(En∈(Z/qZ)× |f(n)|2)1/2 = O(φ(q)1/2),

where φ(q) := |(Z/qZ)×| is the Euler totient function. Since φ(q) 6 q, the

claim follows.

Now we consider the general case, in which (n, q) is not necessarily equal

to 1 on the support of f . Observe that if µ(n) is nonzero, then n is square-free,

and we can split n = dm, where d = (n, q) is square-free (so µ2(d) = 1) and m

is coprime to q. Furthermore, we have µ(n) = µ(d)µ(m). We thus obtain the

decomposition

(A.2) En∈[N ]µ(n)f(n) =
1

N

∑
d|q;µ2(d)=1

µ(d)
∑

16m6N/d

µ(m)f(dm)1(m,q)=1.

The sequence m 7→ f(dm)1(m,q)=1 is periodic of period q/d and vanishes when-

ever (m, q/d) 6= 1; hence by the preceding arguments,∑
16m6N/d

µ(m)f(dm)1(m,q)=1 �A
Nq

d2
log−AN.

Thus from (A.2), we have

En∈[N ]µ(n)f(n)�A q log−AN
∑
d|q

1

d2
� q log−AN,

concluding the proof of Proposition A.2. �
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