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The Kashiwara-Vergne conjecture and
Drinfeld’s associators

By Anton Alekseev and Charles Torossian

Abstract

The Kashiwara-Vergne (KV) conjecture is a property of the Campbell-

Hausdorff series put forward in 1978. It has been settled in the positive

by E. Meinrenken and the first author in 2006. In this paper, we study

the uniqueness issue for the KV problem. To this end, we introduce a

family of infinite-dimensional groups KRV0
n, and a group KRV2 which con-

tains KRV0
2 as a normal subgroup. We show that KRV2 also contains

the Grothendieck-Teichmüller group GRT1 as a subgroup, and that it acts

freely and transitively on the set of solutions of the KV problem SolKV.

Furthermore, we prove that SolKV is isomorphic to a direct product of

affine line A1 and the set of solutions of the pentagon equation with values

in the group KRV0
3. The latter contains the set of Drinfeld’s associators as

a subset. As a by-product of our construction, we obtain a new proof of the

Kashiwara-Vergne conjecture based on the Drinfeld’s theorem on existence

of associators.

1. Introduction

The Kashiwara-Vergne (KV) conjecture is a property of the Campbell-

Hausdorff series which was put forward in [15]. The KV conjecture has many

implications in Lie theory and harmonic analysis. Let g be a finite-dimensional

Lie algebra over a field K of characteristic zero. The KV conjecture implies

the Duflo theorem [9] on the isomorphism between the center of the universal

enveloping algebra Ug and the ring of invariant polynomials (Sg)g. Another

corollary of the KV conjecture is a ring isomorphism in cohomology H(g, Ug) ∼=
H(g, Sg) (proved by Shoikhet [23] and by Pevzner-Torossian [18]; see [3, §4.2]

for the relation to the KV problem) for the enveloping and symmetric algebras

viewed as g-modules with respect to the adjoint action. For K = R, another

application of the KV conjecture is the extension of the Duflo theorem to germs

of invariant distributions on the Lie algebra g and on the corresponding Lie

group G (see Propositions 4.1 and 4.2 in [15], proved in [5] and [6]).

The KV conjecture was established for solvable Lie algebras by Kashiwara

and Vergne in [15], for g = sl(2,R) by Rouvière in [21], and for quadratic
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Lie algebras (that is, Lie algebras equipped with an invariant nondegenerate

symmetric bilinear form, e.g., the Killing form for g semisimple) by Vergne

[26]. The general case has been settled by Meinrenken and the first author in

[3] based on the previous work of the second author [24] and on the Kontsevich

deformation quantization theory [17].

In this paper, we establish a relation between the KV conjecture and

the theory of Drinfeld’s associators developed in [8]. To this end, we intro-

duce a family of infinite-dimensional groups KRV0
n, n = 2, 3, . . . , and a group

KRV2. The group KRV2 contains the Drinfeld’s Grothendieck-Teichmüller

group GRT1 as a subgroup and the group KRV0
2 as a normal subgroup. We

show that KRV2 acts freely and transitively on the set of solutions of the KV

conjecture SolKV. Furthermore, the set SolKV is isomorphic to a direct prod-

uct of a line K and the set of solutions of the pentagon equation with values

in the group KRV0
3. We make use of an involution τ acting on solutions of

the KV conjecture to select symmetric solutions of the KV problem, SolKVτ .

The set SolKVτ is isomorphic to a direct product of a line and the set of as-

sociators (joint solutions of the pentagon, hexagon, and inversion equations of

[8]) with values in the group KRV0
3. The latter contains the set of Drinfeld’s

associators as a subset.

In summary, we solve the uniqueness issue for the KV problem in terms of

associators with values in the group KRV0
3. As a by-product, we obtain a new

proof of the KV conjecture. Indeed, by Drinfeld’s theorem, the set of Drinfeld’s

associators is nonempty. Hence, the set of associators with values in the group

KRV0
3 and the set of symmetric solutions of the KV conjecture SolKVτ are

also nonempty. This new proof is based on the theory of associators rather

than on the deformation quantization machine.

An outstanding question which we were not able to resolve is whether or

not the symmetry group of the KV problem, KRV2, is isomorphic to a direct

product of a line and the Grothendieck-Teichmüller group GRT1. A numerical

experiment of L. Albert and the second author shows that the correspond-

ing graded Lie algebras coincide up to degree 16! If correct, the isomorphism

KRV2
∼= K × GRT1 would imply that all solutions of the KV conjecture are

symmetric and that all associators with values in the group KRV0
3 are Drin-

feld’s associators.

Below we explain the raison d’être of the link between the Kashiwara-

Vergne and associator theories. One possible formulation of the KV problem

is as follows: find an automorphism F of the (degree completion of the) free

Lie algebra with generators x and y such that

(1) F : x+ y 7→ ch(x, y),

where ch(x, y) = x + y + 1
2 [x, y] + . . . is the Campbell-Hausdorff series. The

automorphism F should satisfy several other properties which we omit here.
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Consider a free Lie algebra with three generators x, y, z and define the auto-

morphism F 1,2 which is equal to F when acting on generators x and y and

which preserves the generator z. Similarly, define F 2,3 acting on generators

y and z and preserving x. Furthermore, define F 12,3 acting on x + y and z,

and F 1,23 acting on x and y + z. (For a precise definition, see §3.) The main

property of the Campbell-Hausdorff series is the associativity

ch(x, ch(y, z)) = ch(ch(x, y), z).

We use this property to establish the following formula:

F 1,2F 12,3(x+ y + z) = F 1,2(ch(x+ y, z))

= ch(ch(x, y), z)

= ch(x, ch(y, z))

= F 2,3(ch(x, y + z))

= F 2,3F 1,23(x+ y + z).

Hence, the combination

(2) Φ = (F 12,3)−1(F 1,2)−1F 2,3F 1,23

has the property Φ(x+y+z) = x+y+z which is one of the defining properties

of the group KRV0
3. Furthermore, as an easy consequence of (1) and (2), the

automorphism Φ satisfies the pentagon equation

(3) Φ1,2,3Φ1,23,4Φ2,3,4 = Φ12,3,4Φ1,2,34.

Equation (3) is an algebraic presentation of two sequences of parenthesis re-

distributions in a product of four objects (a standard example is a tensor

product in tensor categories): the left-hand side corresponds to a passage

((12)3)4 → (1(23))4 → 1((23)4) → (1(2(34)), while the right-hand side to

((12)3)4→ ((12)(34))→ 1(2(34)). The pentagon equation is the most impor-

tant element of the Drinfeld’s theory of associators. Our main technical result

shows that solutions of equation (3) with values in the group KRV0
3 admit an

almost unique decomposition of the form (2), and the corresponding automor-

phism F is automatically a solution of the KV problem (and, in particular,

has the property (1)).

An important object of the Kashiwara-Vergne theory is the Duflo function

J1/2 which corrects the symmetrization map sym : Sg→ Ug so that it restricts

to a ring isomorphism on adg-invariants. It is more convenient to discuss the

logarithm of the Duflo function

(4) f(x) =
1

2
ln

Ç
ex/2 − e−x/2

x

å
=

1

2

∞∑
k=2

Bk
k · k!

xk,
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where Bk are Bernoulli numbers. The function f(x) is even. Consider a for-

mal power series f̃(x) = f(x) + h(x) with h(x) odd. It is known that replac-

ing J1/2 with J̃1/2(x) = exp(f̃(x)) in the definition of the Duflo homomor-

phism preserves its property of being a ring isomorphism between Z(Ug) and

(Sg)g. (In the category of Lie algebras, all these isomorphisms coincide.) We

show that Drinfeld’s generators σ2k+1, k = 1, 2, . . . (see equation (15)) of the

Grothendieck-Teichmüller Lie algebra grt1 define flows on the set of solutions

of the KV conjecture SolKV and on the odd parts of Duflo functions such that

(σ2k+1 · h)(x) = −x2k+1 (see Proposition 4.10). Hence, all odd formal power

series (the linear term of the Duflo function is not well defined) h(x) can be

reached by the action of the group GRT1 on the symmetric Duflo function (4).

This action coincides with the one described in [16] (see Theorem 7).

The plan of the paper is as follows. In Section 2 we introduce a Hochschild-

type cohomology theory for free Lie algebras, compute the cohomology in low

degrees (Theorem 2.8), and discuss the associativity property of the Campbell-

Hausdorff series. In Section 3 we study derivations of free Lie algebras. Again,

we define a Hochschild-type cohomology theory, and compute cohomology in

low degrees (Theorem 3.17). In Section 4 we introduce a family of Kashiwara-

Vergne Lie algebras krv0n and the Lie algebra krv2 and show that the Grothen-

dieck-Teichmüller Lie algebra grt1 injects into krv2 (Theorem 4.6). In Section 5

we give a new formulation of the Kashiwara-Vergne conjecture, and we show

that it is equivalent to the original statement of [15] (Theorem 5.8). In Sec-

tion 6 we discuss properties of Duflo functions and show that they can acquire

arbitrary odd parts. In Section 7 we establish a link between solutions of the

KV problem and solutions of the pentagon equation with values in the group

KRV0
3 (Theorem 7.5). In Section 8 we discuss an involution τ on the set of

solutions of the KV problem and derive the hexagon equations using this invo-

lution. Finally, in Section 9 we study elements of the group KRV0
3 solving the

pentagon equation (3). We compare them to Drinfeld’s associators and give a

new proof of the KV conjecture (Theorem 9.6).
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2. Free Lie algebras

2.1. Lie algebras lien and the Campbell-Hausdorff series. Let K be a field

of characteristic zero, and let lien = lie(x1, . . . , xn) be the degree completion

of the free Lie algebra over K with generators x1, . . . , xn. It is the product

lien =
∞∏
k=1

liek(x1, . . . , xn),

where the degree k factor liek(x1, . . . , xn) is spanned by Lie words consisting

of k letters. In the case of n = 1, 2, 3 we shall often denote the generators by

x, y, z.

The completed universal enveloping algebra of lien is the degree comple-

tion of the free associative algebra with generators x1, . . . , xn, U(lien) = Assn.

Every element a ∈ Assn has a unique decomposition

(5) a = a0 +
n∑
k=1

(∂ka)xk,

where a0 ∈ K and (∂ka) ∈ Assn.

The Campbell-Hausdorff series is the element of Ass2 defined by the for-

mula ch(x, y) = ln(exey), where ex =
∑∞
k=0 x

k/k! and ln(1−a) = −∑∞k=1 a
k/k.

By Dynkin’s theorem [10], ch(x, y) ∈ lie2 and

ch(x, y) = x+ y +
1

2
[x, y] + . . . ,

where . . . stands for a series in multiple Lie brackets in x and y. The Campbell-

Hausdorff series satisfies the associativity property in lie3,

(6) ch(x, ch(y, z)) = ch(ch(x, y), z).

One can rescale the Lie bracket of lie2 by posing [·, ·]s = s[·, ·] for s ∈ K to

obtain a rescaled Campbell-Hausdorff series,

chs(x, y) = x+ y +
s

2
[x, y] + . . . ,

where elements of liek(x, y) get an extra factor of sk−1. Note that chs(x, y) =

s−1 ch(sx, sy) for s ∈ K∗ and ch0(x, y) = x + y. The rescaled Campbell-

Hausdorff series chs(x, y) satisfies the associativity equation,

chs(x, chs(y, z)) = s−1 ch(sx, ch(sy, sz))

= s−1 ch(ch(sx, sy), sz)

= chs(chs(x, y), z).

Remark 2.1. Let g be a finite-dimensional Lie algebra over K. Then, every

element a ∈ lien defines a formal power series ag on gn with values in g. For

instance, the Campbell-Hausdorff series ch ∈ lie2 defines a formal power series

chg on g2 with rational coefficients. For every finite-dimensional Lie algebra g,

this power series has a nonvanishing convergence radius (see, e.g., Lemma 9.1

in [2]).
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2.2. The vector space trn. For every n, we define a graded vector space

trn as a quotient

trn = Ass+n /〈(ab− ba); a, b ∈ Assn〉.
Here Ass+n =

∏∞
k=1 Assk(x1, . . . , xn), and 〈(ab−ba); a, b ∈ Assn〉 is the K-linear

subspace of Ass+n spanned by commutators. One can think of trn as a K-vector

space spanned by cyclic words in letters x1, . . . , xn. The product of Assn does

not descend to trn, which only has a structure of a graded vector space. We

shall denote by tr : Assn → trn the natural projection. By definition, we have

tr(ab) = tr(ba) for all a, b ∈ Assn imitating the basic property of trace.

Example 2.2. The space tr1 is isomorphic to the space of formal power

series in one variable without constant term, tr1 ∼= xK[[x]]. This isomorphism

is given by the following formula:

f(x) =
∞∑
k=1

fkx
k 7→

∞∑
k=1

fk tr(xk).

In general, graded components trkn of the space trn are spanned by words

of length k modulo cyclic permutations.

Example 2.3. For n = 2, tr12 is spanned by tr(x) and tr(y), tr22 is spanned

by tr(x2), tr(y2), and tr(xy) = tr(yx), tr32 is spanned by tr(x3), tr(x2y), tr(xy2),

and tr(y3), tr42 is spanned by tr(x4), tr(x3y), tr(x2y2), tr(xyxy), tr(xy3), and

tr(y4), etc.

Remark 2.4. Let g be a finite-dimensional Lie algebra over K, ρ : g →
End(V ) be a finite-dimensional representation of g, and a =

∑∞
k=1 ak ∈ trn

an element of trn. We define ρ(a) as a formal power series on gn such that

ρ(tr(xi1 . . . xik)) = TrV (ρ(xi1) . . . ρ(xik)) for monomials, and this definition ex-

tends by linearity to all elements of trn.

2.3. Cohomology problems in lien and trn. For all n = 1, 2, . . . , we define

an operator δ : lien → lien+1 by the formula

(δf)(x1, . . . , xn+1) = f(x2, x3, . . . , xn+1)(7)

+
n∑
i=1

(−1)if(x1, . . . , xi + xi+1, . . . , xn+1)

+ (−1)n+1f(x1, . . . , xn).

It is easy to see that δ2 = 0.

Remark 2.5. The differential δ originates from the fact that lien (for dif-

ferent n) form a cosimplicial vector space, with coface maps being the terms

in (7) and codegeneracy maps si for i = 1, . . . , n given by

(sif)(x1, . . . , xn−1) = f(x1, . . . , xi−1, 0, xi+1, . . . , xn−1).
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Here f ∈ lien and si(f) ∈ lien−1. In this paper, we do not make use of the

codegeneracy maps.

Example 2.6. For n = 1 and f = ax ∈ lie1 ∼= K, we have

(δf)(x, y) = f(y)− f(x+ y) + f(x) = 0.

For n = 2, we get

(δf)(x, y, z) = f(y, z)− f(x+ y, z) + f(x, y + z)− f(x, y).

One can also use equation (7) to define a differential on the family for

vector spaces trn. By abuse of notations, we denote it by the same letter,

δ : trn → trn+1.

Example 2.7. For n = 1, we have

(δf)(x, y) = tr(xk + yk − (x+ y)k)

for f(x) = tr(xk). Note that the right-hand side vanishes for k = 1 and that

it is nonvanishing for all other k = 2, 3 . . . .

The following theorem gives the cohomology of δ in degrees n = 1, 2.

Theorem 2.8. In degrees one and two, the cohomology of complexes

(lien, δ) and (trn, δ) are given by

H1(lie, δ) = ker (δ : lie1 → lie2) = lie1,

H1(tr, δ) = ker (δ : tr1 → tr2) ∼= K tr(x),

H2(lie, δ) ∼= [K[x, y] ],

H2(tr, δ) = 0.

The proof of Theorem 2.8 is deferred to Appendix A.

2.4. Applications. In this section we collect two simple applications of the

cohomology computations of Theorem 2.8.

Proposition 2.9. Let s ∈ K, and let χ ∈ lie2 be a Lie series of the form

χ(x, y) = x + y + s
2 [x, y] + . . . , where . . . stand for a series in multibrackets.

Assume that χ is associative; that is,

χ(x, χ(y, z)) = χ(χ(x, y), z) ∈ lie3 .

Then, χ coincides with the rescaled Campbell-Hausdorff series, χ(x, y) =

chs(x, y).

Proof. The Lie series χ and chs coincide up to degree 2. Assume that they

coincide up to degree n−1, and let χ =
∑∞
n=1 χn with χn(x, y) a Lie polynomial

of degree n. The associativity equation implies the following equation for χn:

χn(x, y + z) + χn(y, z)− χn(x, y)− χn(x+ y, z) = F(χ1(x, y), . . . , χn−1(x, y)),
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where F is a certain (nonlinear) function of the lower degree terms. By the

induction hypothesis, the lower degree terms of χ and chs coincide. Further-

more, the equation for χn has a unique solution since the only solution of the

corresponding homogeneous equation δχn = 0 for n ≥ 3 is χn = 0. Hence,

χn = (chs)n and χ = chs. �

Similar to the differential δ, we introduce another differential δ̃ acting on

lien and trn:

(δ̃f)(x1, . . . , xn+1) = f(x2, x3, . . . , xn+1)(8)

+
n∑
i=1

(−1)if(x1, . . . , ch(xi, xi+1), . . . , xn+1)

+ (−1)n+1f(x1, . . . , xn).

Again, δ̃2 = 0, but in contrast to δ, δ̃ does not preserve the degree. In the

following proposition we compute the cohomology of δ̃ for n = 1, 2.

Proposition 2.10.

H1(lie, δ̃) = 0,

H1(tr, δ̃) = ker (δ̃ : tr1 → tr2) ∼= K tr(x),

H2(lie, δ̃) = 0,

H2(tr, δ̃) = 0.

The proof of this proposition can be found in Appendix A.

Remark 2.11. For every s ∈ K, one can introduce a differential δ̃s by

replacing ch(x, y) with chs(x, y) in formula (8). We have δ̃1 = δ̃ and δ̃0 = δ.

Proposition 2.10 applies to all s 6= 0. Note that H1(tr, δ̃s) = K tr(x) and

H2(tr, δ̃s) = 0 for all s ∈ K (including s = 0).

3. Derivations of free Lie algebras

3.1. Tangential and special derivations. We shall denote by dern the Lie

algebra of derivations of lien. An element u ∈ dern is completely determined

by its values on the generators, u(x1), . . . , u(xn) ∈ lien. The Lie algebra dern
carries a grading induced by the one of lien.

Remark 3.1. Let g be a finite-dimensional Lie algebra. Then, to every u ∈
dern one can associate a formal vector field ug on gn such that ug(x1, . . . , xn) =

(u(x1)g, . . . , u(xn)g). Here u(x1), . . . , u(xn) are elements of lien, x1, . . . , xn ∈ g,

and we define formal power series u(x1)g, . . . , u(xn)g on gn with values in g as

in Remark 2.1. The map u 7→ ug is a Lie homomorphism.
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Definition 3.2. A derivation u ∈ dern is called tangential if there exist

ai ∈ lien, i = 1, . . . , n such that u(xi) = [xi, ai].

Another way to define tangential derivations is as follows: for each i =

1, . . . , n there exists an inner derivation ui such that (u − ui)(xi) = 0. We

denote the subspace of tangential derivations by tdern ⊂ dern.

Remark 3.3. Let pk : lien → K be a projection which assigns to an element

a =
∑n
k=1 λkxk+. . . , where “. . . ” stand for elements of degree greater than one,

the coefficient λk ∈ K. Elements of tdern are in one-to-one correspondence with

n-tuples of elements of lien, (a1, . . . , an), which satisfy the condition pk(ak) = 0

for all k. Indeed, the kernel of the operator adxk : a 7→ [xk, a] is exactly Kxk.
Hence, an n-tuple (a1, . . . , an) defines a vanishing derivation u(xk)=[xk, ak]=0

if and only if ak ∈ Kxk for all k. By abuse of notation, we shall often write

u = (a1, . . . , an).

Proposition 3.4. Tangential derivations form a Lie subalgebra of dern.

Proof. Let u = (a1, . . . , an) and v = (b1, . . . , bn). We have

[u, v](xk) = u([xk, bk])− v([xk, ak])

= [[xk, ak], bk] + [xk, u(bk)]− [[xk, bk], ak]− [xk, v(ak)]

= [xk, u(bk)− v(ak) + [ak, bk]]

which shows [u, v] ∈ tdern. �

One can transport the Lie bracket of tdern to the set of n-tuples (a1, . . . , an)

which satisfy the condition pk(ak) = 0. Indeed, put the kth component of the

new n-tuple equal to u(bk)− v(ak) + [ak, bk]. This expression does not contain

linear terms, and in particular it is in the kernel of pk.

Definition 3.5. A derivation u ∈ tdern is called special if u(x) = 0 for

x =
∑n
i=1 xi.

We shall denote the space of special derivations of lien by sdern. It is

obvious that sdern ⊂ tdern is a Lie subalgebra. Indeed, for u, v ∈ sdern, we

have [u, v](x) = u(v(x))− v(u(x)) = 0 and, hence, [u, v] ∈ sdern.

Remark 3.6. Ihara [14] calls elements of sdern normalized special deriva-

tions.

Example 3.7. Consider r = (y, 0) ∈ tder2. By definition, r(x) = [x, y],

r(y) = 0. Note that r(x + y) = [x, y] 6= 0 and r /∈ sder2. Consider another

element t = (y, x) ∈ tder2. We have t(x) = [x, y], t(y) = [y, x] and t(x + y) =

[x, y] + [y, x] = 0. Hence, t ∈ sder2.
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3.2. Cosimplicial maps and cohomology. We shall need a number of Lie

algebra homomorphisms mapping tdern−1 to tdern. First, observe that the

permutation group Sn acts on lien by Lie algebra automorphisms. For σ ∈ Sn,

we have a 7→ aσ = a(xσ(1), . . . , xσ(n)). The induced action on tdern is given by

the formula

u = (a1, . . . , an) 7→

uσ = uσ(1),...,σ(n) = (aσ−1(1)(xσ(1), . . . , xσ(n)), . . . , aσ−1(n)(xσ(1), . . . , xσ(n))).

Example 3.8. For u = (a(x, y), b(x, y)) ∈ tder2, we have

u2,1 = (b(y, x), a(y, x)),

where σ = (21) is the nontrivial element of S2. In the same fashion, for

u = (a(x, y, z), b(x, y, z), c(x, y, z)) ∈ tder3, we have

u3,1,2 = (b(z, x, y), c(z, x, y), a(z, x, y)).

Similar to lien, we define coface maps by the following property. For

u = (a1, . . . , an−1) ∈ tdern−1 define u1,2,...,n−1 = (a1, . . . , an−1, 0) ∈ tdern. It

is clear that the map u 7→ u1,2,...,n−1 is a Lie algebra homomorphism. We

obtain other Lie homomorphisms maps by composing with the action of Sn on

tdern. Note that they map special derivations to special derivations. Indeed,

for u ∈ sdern−1 and x =
∑n
i=1 xi, we compute

u1,2,...,n−1(x) =
n−1∑
i=1

[xi, ai] = 0

which implies u1,2,...,n−1 ∈ sdern.

Example 3.9. For u = (a(x, y), b(x, y)) ∈ tder2, we have

u1,2 = (a(x, y), b(x, y), 0) ∈ tder3 and u2,3 = (0, a(y, z), b(y, z)).

For instance, for r = (y, 0) we obtain r1,2 = (y, 0, 0), r2,3 = (0, z, 0), r1,3 =

(z, 0, 0).

Proposition 3.10. The element r = (y, 0) ∈ tder2 satisfies the classical

Yang-Baxter equation in tder3,

[r1,2, r1,3] + [r1,2, r2,3] + [r1,3, r2,3] = 0.

Proof. We compute

[r1,2, r1,3] = [(y, 0, 0), (z, 0, 0)] = ([y, z], 0, 0),

[r1,2, r2,3] = [(y, 0, 0), (0, z, 0)] = −([y, z], 0, 0),

[r1,3, r2,3] = [(z, 0, 0), (0, z, 0)] = 0.

Adding these expressions gives zero, as required. �
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Next, consider t = (y, x) ∈ sder2. By composing various coface maps we

obtain n(n − 1)/2 elements of ti,j = tj,i ∈ tdern (1 ≤ i, j ≤ n and i 6= j) with

nonvanishing components xi at the jth place and xj at the ith place.

Proposition 3.11. Elements ti,j ∈ sdern span a Lie subalgebra isomor-

phic to the quotient of the free Lie algebra with n(n − 1)/2 generators by the

following relations :

(9) [ti,j , tk,l] = 0

for k, l 6= i, j and

(10) [ti,j + ti,k, tj,k] = 0

for all triples of distinct indices i, j, k.

Remark 3.12. We denote by tn the (degree completed) Lie algebra with

generators ti,j = tj,i with 1 ≤ i, j ≤ n and i 6= j defined by relations (9)

and (10). Note that c =
∑

1≤i<j≤n t
i,j is a central element of tn. Indeed,

[ti,j , c] =
∑
k 6=i,k 6=j [t

i,j , ti,k + tj,k] = 0. It is known (see [8, §5]) that

tn ∼= tn−1 ⊕ lie(t1,n, . . . , tn−1,n),

where the free Lie algebra lie(t1,n, . . . , tn−1,n) is an ideal in tn and tn−1 ⊂ tn is a

complementary Lie subalgebra spanned by ti,j with i, j < n . In particular, t2 =

Kt1,2 is an abelian Lie algebra with one generator, and t3 ∼= t2 ⊕ lie(t1,3, t2,3).

In fact, adt1,2 is an inner derivation of lie(t1,3, t2,3). For any a ∈ lie(t1,3, t2,3),

we have

[t1,2, a] = [t1,2 − c, a] = −[t1,3 + t2,3, a],

and t3 ∼= Kc⊕ lie(t1,3, t2,3).

Proof. First, we verify the relations (9) and (10). The first one is obvious

since the derivations ti,j and tk,l act on different generators of lien. For the

second one, we choose n = 3 and compute [t1,2 + t1,3, t2,3]:

[t1,2, t2,3] = [(y, x, 0), (0, z, y)] = (−[y, z], [x, z], [y, x]),

[t1,3, t2,3] = [(z, 0, x), (0, z, y)] = (−[z, y], [z, x], [x, y]).

Adding these expressions gives zero, as required. We obtain the relation (10)

for other values of i, j, k by applying the Sn action to replace 1, 2, 3 by i, j, k.

Hence, the expressions ti,j define a Lie algebra homomorphism from tn to sdern.

We prove that it is injective by induction. Clearly, the map t2 = Kt1,2 → sder2
is injective. Assume that the Lie homomorphism tn−1 → tdern−1 is injective.

Let a ∈ tn, a = a′ + a′′, where a′ ∈ tn−1 and a′′ ∈ lie(t1,n, . . . , tn−1,n). We

denote by A′ and A′′ their images in sdern. Observe that A′(xn) = 0 since

A′ is a derivation acting only on generators x1, . . . , xn−1. It is easy to check

that A′′(xn) = [xn, a
′′(x1, . . . , xn−1)], where a′′(x1, . . . , xn−1) is obtained by
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replacing the generators ti,n by xi in a′′(t1,n, . . . , tn−1,n). Assuming A = A′ +

A′′ = 0, we have A(xn) = 0 which implies A′′(xn) = 0 and a′′ = 0. Then,

a = a′ ∈ tn−1 and A = 0 implies a = 0 by the induction hypothesis. �

Proposition 3.13. The element c =
∑

1≤i<j≤n t
i,j belongs to the center

of sdern.

Proof. First, note that c(xi) =
∑
j 6=i[xi, xj ] = [xi, x] for x =

∑n
j=1 xj .

Hence, c is an inner derivation, and for any a ∈ lien we have c(a) = [a, x]. Let

u = (a1, . . . , ak) ∈ sdern and compute for 1 ≤ k ≤ n the kth component of the

bracket [c, u]:

c(ak)− u(
∑
i 6=k

xi) +
∑
i 6=k

[xi, ak] = [ak, x] + u(xk) +
∑
i 6=k

[xi, ak]

= [ak, x] + [xk, ak] +
∑
i 6=k

[xi, ak]

= [ak, x] + [x, ak] = 0.

Here we have used that u(x) = 0 for u ∈ sdern. �

Another family of coface maps is constructed in the following way. For

u=(a1, . . . , an−1) ∈ tdern−1, we define

u12,3,...,n = (a1(x1 + x2, x3, . . . , xn),

a1(x1 + x2, x3, . . . , xn),

a2(x1 + x2, x3, . . . , xn),

. . . ,

an−1(x1 + x2, x3, . . . , xn)).

One uses the action of the permutation groups on tdern−1 and on tdern to

obtain other coface maps.

Example 3.14. For n = 2 and u = (a(x, y), b(x, y)), we have

u12,3 = (a(x+ y, z), a(x+ y, z), b(x+ y, z))

and

u1,23 = (a(x, y + z), b(x, y + z), b(x, y + z)).

These maps are Lie algebra homomorphisms. Let u = (a, b) ∈ tder2 and

compute u12,3(x + y) = [x + y, a(x + y, z)] and u12,3(z) = [z, b(x + y, z)].

Hence, for any f ∈ lie2 we obtain u12,3(f(x + y, z)) = (u(f))(x + y, z). For

u = (a1, b1), v = (a2, b2) ∈ tder2, we compute [u12,3, v12,3] = (c1, c2, c3), where

c1 = c2 = u12,3(a2(x+ y, z))− v12,3(a1(x+ y, z)) + [a1(x+ y, z), a2(x+ y, z)]

= (u(a2)− v(a1) + [a1, a2])(x+ y, z),



THE KASHIWARA-VERGNE CONJECTURE AND DRINFELD’S ASSOCIATORS 427

c3 = u12,3(b2(x+ y, z))− v12,3(b1(x+ y, z)) + [b1(x+ y, z), b2(x+ y, z)]

= (u(b2)− v(b1) + [b1, b2])(x+ y, z).

Hence, [u12,3, v12,3] = [u, v]12,3. As before, coface maps map special derivations

to special derivations. For u ∈ sdern−1 and x =
∑n
i=1 xi, we compute

u12,3,...,n(x) = [x1+x2, a1(x1+x2, . . . , xn)]+· · ·+[xn, an−1(x1+x2, . . . , xn)] = 0

which implies u12,3,...,n ∈ sdern.

Example 3.15. For r = (y, 0) ∈ tder2, we have r12,3 = (z, z, 0) = r1,3 + r2,3

and r1,23 = (y + z, 0, 0) = r1,2 + r1,3. Similarly, for t = (y, x) ∈ tder2, we have

t12,3 = (z, z, x+ y) = t1,3 + t2,3 and t1,23 = (y + z, x, x) = t1,2 + t1,3.

Let u = (a1, b1) ∈ sder2 and v = (a2, b2) ∈ tder2. Then, [u1,2, v12,3] = 0.

Indeed, note that u1,2 acts by zero on lie(x + y, z) and v12,3 acts as an inner

derivation with generator a2(x+ y, z) on lie(x, y). We compute

[u1,2, v12,3](x) = u1,2([x, a2(x+ y, z)])− v12,3([x, a1(x, y)])

= [[x, a1(x, y)], a2(x+ y, z)]− [[x, a1(x, y)], a2(x+ y, z)] = 0

and similarly [u1,2, v12,3](y) = 0. Finally,

[u1,2, v12,3](z) = u1,2([z, b2(x+ y, z)]) = 0.

In general, for u ∈ sdern, v ∈ tderm+1, we have [u1,2,...,n, v12...n,n+1,...,n+m] = 0

in tderm+n. Here v12...n,n+1,...,n+m is obtained from v by applying the coface

map (n− 1) times.

We define a differential d : tdern → tdern+1 by the formula

du = u2,3,...,n+1 − u12,...,n,n+1 + · · ·+ (−1)nu1,2,...,n(n+1) + (−1)n+1u1,2,...,n.

It is easy to check that d squares to zero, d2 = 0.

Example 3.16. For u ∈ tder2 we get du = u2,3 − u12,3 + u1,23 − u1,2. For

u ∈ tder3 we obtain du = u2,3,4 − u12,3,4 + u1,23,4 − u1,2,34 + u1,2,3.

We shall compute the cohomology groups

Hn(tder, d) = ker(d : tdern → tdern+1)/im(d : tdern−1 → tdern)

for n = 2, 3.

Theorem 3.17.

H2(tder,d) = ker(d : tder2 → tder3) = Kr ⊕Kt,

H3(tder,d) ∼= K[(0, [z, x], 0)],

where r = (y, 0), t = (y, x).

For the proof of Theorem 3.17 we refer the reader to Appendix A.
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3.3. Cocycles in trn. The action of dern extends from lien to Assn and

descends to the graded vector space trn. For u ∈ dern and a ∈ trn we denote

this action by u · a ∈ trn.

Example 3.18. Let r = (y, 0) ∈ tder2 and a = tr(xy) ∈ tr2. We compute

r · a = tr(r(x)y + xr(y)) = tr([x, y]y) = tr((xy − yx)y) = 0.

We shall be interested in 1-cocycles on the subalgebra tdern with values

in trn. That is, we are looking for linear maps α : tdern → trn such that

u · α(v)− v · α(u)− α([u, v]) = 0

for all u, v ∈ tdern.

Proposition 3.19. For all n ≥ 2 and k = 1, . . . , n, the map αk : tdern →
trn defined by formula αk : u = (a1, . . . , an) 7→ tr(ak) is a 1-cocycle of the Lie

algebra tdern with values in trn.

Proof. Note that αk vanishes on all elements of degree greater or equal

to two. Hence, αk([u, v]) = 0 for all u, v ∈ tdern. Let u = (a1, . . . , an) and

v = (b1, . . . , bn). Then, u · αk(v) = u · tr(bk) = tr(u(bk)) = 0 since u(bk) is of

degree at least two, and similarly v · αk(u) = tr(v(ak)) = 0. �

Proposition 3.20. The map div : tdern → trn defined by the formula

div : u = (a1, . . . , an) 7→∑n
k=1 tr(xk(∂kak)) is a 1-cocycle.

Proof. On the one hand, we get

u · div(v)− v · div(u) =
n∑
k=1

tr
(
u
Ä
xk(∂kbk)

ä
− v
Ä
xk(∂kak)

ä)
=

n∑
k=1

tr
(
[xk, ak](∂kbk) + xku(∂kbk)− [xk, bk](∂kak)− xkv(∂kak)

)
.

On the other hand, we obtain,

div([u, v]) =
n∑
k=1

tr
(
xk∂k

Ä
u(bk)− v(ak) + [ak, bk]

ä)
=

n∑
k=1

tr
(
xk∂k

Ä
u
Ä n∑
i=1

(∂ibk)xi
ä
− v
Ä n∑
j=1

(∂jak)xj
ä

+ [ak, bk]
ä)

=
n∑
k=1

tr
(
xk∂k

Ä n∑
i=1

Ä
u(∂ibk)xi + (∂ibk)[xi, ai]

ä
−

n∑
j=1

Ä
v(∂jak)xj + (∂jak)[xj , bj ]

ä
+ [ak, bk]

ä)
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=
n∑
k=1

tr
(
xk
Ä
u(∂kbk)− (∂kbk)ak +

n∑
i=1

(∂ibk)xi(∂kai)

− v(∂kak)+(∂kak)bk−
n∑
j=1

(∂jak)xj(∂kbj)+ak(∂kbk)− bk(∂kak)
ä)

=
n∑
k=1

tr
(
xk
Ä
u(∂kbk)− (∂kbk)ak − v(∂kak)

+ (∂kak)bk + ak(∂kbk)− bk(∂kak)
ä)

= u · div(v)− v · div(u),

proving the cocycle condition. Here we have used the definition of ∂k operators

(see equation (5)) and the fact that ak =
∑n
j=1(∂jak)xj and bk =

∑n
i=1(∂ibk)xi.

�

The divergence cocycle transforms in a nice way under simplicial and co-

product maps. For u = (a1, . . . , an) ∈ tdern, we have

div(u1,2,...,n) =
n∑
i=1

tr(xi(∂iai)) = div(u)(x1, . . . , xn).

For div(u12,...,n+1), we compute

div(u12,...,n+1) = tr
(
x1
Ä
∂1a1(x1 + x2, . . . )

ä
+ x2

Ä
∂2a1(x1 + x2, . . . )

ä)
+
n+1∑
k=3

tr
(
xk
Ä
∂kak−1(x1 + x2, . . . )

ä)
= tr

(
(x1 + x2)(∂1a1)(x1 + x2, . . . )

+
n∑
k=2

xk+1(∂kak)(x1 + x2, . . . )
)

=
Ä
div(u)

ä
(x1 + x2, x3, . . . , xn+1).

Proposition 3.21. div(du) = δ
Ä
div(u)

ä
.

Proof. We compute

div
Ä
du
ä

= div
Ä
u2,...,n+1

ä
− div

Ä
u12,...,n+1

ä
+ · · ·+ (−1)n+1div

Ä
u1,2,...,n

ä
= div

Ä
u
ä
(x2, . . . , xn+1)− div

Ä
u
ä
(x1 + x2, . . . , xn+1) + · · ·

+ (−1)n+1div
Ä
u
ä
(x1, . . . , xn)

= δ
Ä
div(u)

ä
. �

Remark 3.22. Let g be a finite-dimensional Lie algebra, u∈ tdern a tangen-

tial derivation, ug the corresponding formal vector field on gn, div(u)∈ trn the
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divergence cocycle, αk(u) ∈ trn cocycles of Proposition 3.19, and ad(div(u)),

ad(αk(u)) formal power series on gn defined by the adjoint representation of g

(see Remark 2.4). Denote by div the divergence of the vector fields on gn with

respect to the Lebesgue measure. Then, it is easy to show that

div(ug) = ad
Ä
div(u)

ä
−

n∑
k=1

ad
Ä
αk(u)

ä
.

In view of this relation, it would be more logical to call “divergence” the co-

cycle div−∑n
k=1 αk, but it would have made notation in the rest of the paper

much heavier.

4. Kashiwara-Vergne Lie algebras

4.1. Definitions. In this section we introduce a family of subalgebras of

sdern called Kashiwara-Vergne Lie algebras.

Definition 4.1. The Kashiwara-Vergne Lie algebra krv0n ⊂ sdern is a Lie

subalgebra of special derivations spanned by elements with vanishing diver-

gence. For n = 1, we define krv01 = {0} ⊂ sder1 = K.

Remark 4.2. The divergence cocycle defines an extension “trn of the trivial

tdern module by the module trn. As a graded vector space, “trn = Kc ⊕ trn,

where c is a generator of degree zero. The action of tdern on c is given by

u · c = div(u). By restriction, sdern acts on “trn, and krv0n ⊂ sdern is the

stabilizer of c for this action.

Example 4.3. The element t = (y, x) ∈ sder2 is contained in krv02. Indeed,

we have a(x, y) = y, b(x, y) = x, and ∂xa = ∂yb = 0, which implies div(t) = 0.

Coface maps restrict to krv0n subalgebras. Indeed, for u ∈ sdern, the

condition div(u) = 0 implies div(u1,2,...,n) = 0 and div(u12,3,...,n+1) = 0.

Example 4.4. Since t ∈ krv02, we have t1,2, t1,3, t2,3 ∈ krv03 and

[t1,3, t2,3] = ([y, z], [z, x], [x, y]) ∈ krv03 .

Observe that for n = 2, the subspace ker(δ) = im(δ) ⊂ tr2 is annihilated

by the action of sder2. Indeed, for u = (a, b) ∈ sder2 and tr(f) ∈ tr1, one has

u(δ tr(f)) = u(tr(f(x)) + tr(f(y))− tr(f(x+ y))) = tr([f(x), a] + [f(y), b]) = 0.

Let krv2 ⊂ sder2 be the normalizer of the subspace Kc⊕ ker(δ). That is,

krv2 := {u ∈ sder2, div(u) ∈ ker(δ)}.

Obviously, this is a Lie subalgera of sder2 containing krv02. Moreover, for

u, v ∈ krv2, one has div([u, v]) = u·div(v)−v·div(u). Hence, [krv2, krv2] ⊂ krv02.
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For every u ∈ krv2 there exists an element tr(f) ∈ tr1 such that div(u) =

tr(f(x) − f(x + y) + f(y)). By Theorem 2.8, such an element is unique if we

choose it in the form f(x) =
∑∞
k=2 fkx

k. By abuse of notation, we denote by

f : krv2 → K[x] the map f : u 7→ f and by fk : krv2 → K for k ≥ 2 the maps

fk : u 7→ fk.

Proposition 4.5. Let u ∈ krv2. Then, div(u) = δ(f) with

f =
∞∑
k=3

fk tr(xk)

odd, and Taylor coefficients fk, k = 3, 5, . . . are characters of krv2.

Proof. Let u ∈ krv2 with divergence div(u) = tr(f(x)− f(x+ y) + f(y)),

where f(x) =
∑∞
k=2 fkx

k. Consider the bigrading of tr2 by the number of

x’s and y’s in the cyclic word. Then, the degree (1, n − 1) component of

tr2 is one-dimensional, and it is spanned by tr(xyn−1). The corresponding

contribution in div(u) is equal to −nfn. Since u = (a, b) ∈ krv2, we have

u(x + y) = [x, a] + [y, b] = 0. Consider terms linear in x in both a and b.

First, observe that for m ≥ 1, the degree (1,m) component of b vanishes since

adm+1
y (x) /∈ im(adx). In particular, this applies to all m odd.

Next, note that for m odd, the degree (1,m) of a vanishes since in this

case [x, admy (x)] /∈ im(ady). Indeed, let m = 2s + 1. The subspace of lie2 of

bidegree (2, 2s) has a basis zk,2s−k = [adky(x), ad2s−k
y (x)] for k = 0, . . . , s − 1.

By applying ady to an element
∑s−1
k=0 λkzk,2s−k we obtain an element z =∑s

k=0 µkzk,2s+1−k, where µ0 = λ0, µk = λk−1 + λk for k = 1, . . . , s − 1 and

µs = λs−1. Observe that
∑s
k=0(−1)kµk = 0, which is a necessary and sufficient

condition for z ∈ im(ady). We conclude that z0,2s+1 = [x, admy (x)] /∈ im(ady),

as required.

We conclude that div(u) = tr(x∂xa + y∂yb) does not contain terms in

degree (1,m) for m odd, and fk = 0 for all k = m + 1 even. Finally, Tay-

lor coefficients of f are characters of krv2 since they vanish on krv02 and on

[krv2, krv2] ⊂ krv02. �

4.2. The Grothendieck-Teichmüller Lie algebra. Recall that the Grothen-

dieck-Teichmüller Lie algebra grt1 was defined by Drinfeld [8] in the following

way. It is spanned by derivations (0, ψ) ∈ tder2 which satisfy the following

three relations:

ψ(x, y) = −ψ(y, x),(11)

ψ(x, y) + ψ(y, z) + ψ(z, x) = 0(12)

for x+ y + z = 0 (that is, one can put z = −x− y), and

(13) ψ(t1,2, t2,34) + ψ(t12,3, t3,4) = ψ(t2,3, t3,4) + ψ(t1,23, t23,4) + ψ(t1,2, t2,3),
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where the last equation takes values in the Lie algebra t4 and t1,23 = t1,2 + t1,3,

etc. Note that defining equations of grt1 have no solutions in degrees one and

two. The Lie bracket induced on solutions of (11), (12), and (13) is called

Ihara bracket:

[ψ1, ψ2]Ih = (0, ψ1)(ψ2)− (0, ψ2)(ψ1) + [ψ1, ψ2].

Theorem 4.6. The map ν : ψ 7→ (ψ(−x − y, x), ψ(−x − y, y)) is an

injective Lie algebra homomorphism mapping grt1 to krv2.

We split the proof of Theorem 4.6 into several steps.

Proposition 4.7. Let ψ ∈ grt1. Then, Ψ = ν(ψ) ∈ tder2 verifies the

following equation in tder3:

(14) dΨ = ψ(t1,2, t2,3).

We defer the proof of this proposition to Appendix B.

Proposition 4.8. im(ν) ⊂ krv2.

Proof. Using equation (14) we compute

δ(Ψ(x+ y)) = (dΨ)(x+ y + z) = ψ(t1,2, t2,3)(x+ y + z) = 0

because t1,2, t2,3 ∈ sder3. Since Ψ ∈ tder2 is of degree at least three, Ψ(x + y)

is of degree at least four, and by Theorem 2.8 this implies Ψ(x + y) = 0 and

Ψ ∈ sder2. Note that this reproduces the result of Proposition 5.7 in [8].

Similarly, we compute

δ(div(Ψ)) = div(dΨ) = div(ψ(t1,2, t2,3)) = 0

since t1,2, t2,3 ∈ krv03. By Theorem 2.8, this implies div(Ψ) ∈ im(δ) and

Ψ ∈ krv2. �

Proposition 4.9. ν : grt1 → krv2 is a Lie algebra homomorphism.

Proof. Let ψ1, ψ2 ∈ grt1 and compute (a, b) = [ν(ψ1), ν(ψ2)]:

a(x, y) = ν(ψ1)(ψ2(−x− y, x))− ν(ψ2)(ψ1(−x− y, x)

+ [ψ1(−x− y, x), ψ2(−x− y, x)]

= ((0, ψ1)(ψ2)− (0, ψ2)(ψ1) + [ψ1, ψ2]) (−x− y, x),

where we used that ν(ψ1), ν(ψ2) ∈ sder2. Similarly, we have

b(x, y) = ν(ψ1)(ψ2(−x− y, y))− ν(ψ2)(ψ1(−x− y, y)

+ [ψ1(−x− y, y), ψ2(−x− y, y)]

= ((0, ψ1)(ψ2)− (0, ψ2)(ψ1) + [ψ1, ψ2]) (−x− y, y).

In conclusion, [ν(ψ1), ν(ψ2)] = ν([ψ1, ψ2]Ih), as required. �
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This observation completes the proof of Theorem 4.6.

It is known [14], [8] that there exist elements σ2n+1 ∈ grt1 of degree 2n+1

for all n = 1, 2, . . . . Modulo the double commutator ideal [[lie2, lie2], [lie2, lie2]],

σ2n+1 has the following form:

(15) σ2n+1 =
2n∑
k=1

(2n+ 1)!

k!(2n+ 1− k)!
adk−1x ad2n−k

y [x, y].

Proposition 4.10. For n ≥ 1, f ◦ ν(σ2n+1) = −x2n+1.

Proof. Equation (15) implies that the degree (1, 2n) part of a(x, y) =

σ(−x−y, x) is equal to (2n+1) ad2n
y x, and the degree (1, 2n) part of b(x, y) =

σ(−x − y, y) vanishes. Hence, the degree (1, 2n) component of div(ν(σ2n+1))

is equal to (2n+ 1) tr(xy2n), and

div(ν(σ2n+1)) = − tr(x2n+1 − (x+ y)2n+1 + y2n+1) = −δ tr(x2n+1),

which implies f(ν(σ2n+1)) = −x2n+1. �

Theorem 4.6 shows that krv2 is infinite-dimensional, and Proposition 4.10

implies that characters fk, k = 3, 5, . . . are surjective. The Lie algebra krv2
contains a central one-dimensional Lie subalgebra Kt for t = (y, x) and a Lie

subalgebra isomorphic to the Lie algebra grt1. This observation suggests the

following conjecture on the structure of krv2.

Conjecture. The Lie algebra krv2 is isomorphic to a direct sum of the

Grothendieck-Teichmüller Lie algebra grt1 and a one-dimensional Lie algebra

with generator in degree one, krv2 ∼= Kt⊕ grt1.

Remark 4.11. The Deligne-Drinfeld conjecture (see [8, §6]) states that grt1
is a free Lie algebra with generators σ2n+1 for n = 1, 2, . . . . In [20], Racinet

introduced a graded Lie algebra dmr0 related to combinatorics of multiple zeta

values. A numerical experiment of [11] shows that up to degree 19 the Lie

algebra dmr0 coincides with grt1 and is freely generated by σ2k+1’s. Recently,

Furusho showed (see [13]) that there is an injective Lie homomorphism grt1 →
dmr0. A numerical computation by Albert and the second author [1] shows

that up to degree 16 the dimensions of graded components of krv2 coincide

with those of Kt ⊕ lie(σ3, σ5, . . . ) (up to degree 7, the computation has been

done by Podkopaeva [19]). Since Kt ⊕ ν(grt1) ⊂ krv2, we conclude that the

conjecture stated above is verified up to degree 16.

5. The Kashiwara-Vergne problem

5.1. Automorphisms of free Lie algebras. Recall that one can associate

a group G to a positively graded Lie algebra g =
∏∞
k=1 gk with all graded

components of finite-dimension. G coincides with g as a set, and the group
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multiplication is defined by the Campbell-Hausdorff formula. If g is finite-

dimensional, G is the connected and simply connected Lie group with Lie

algebra g. Even for g infinite-dimensional we shall denote the map identifying

g and G by exp : g→ G and its inverse by ln : G→ g. Then, the definition of

the group multiplication in G reads: exp(u) exp(v) = exp(ch(u, v)).

Lie algebras tdern, sdern, krv
0
n, and krv2 introduced in the previous section

are positively graded, and all their graded components are finite-dimensional.

Hence, they integrate to groups. We shall denote these groups by TAutn,

SAutn, KRV0
n, and KRV2, respectively. The natural actions of tdern, sdern,

krv0n, and krv2 on lien and on trn lift to actions of the corresponding groups

given by the formula

exp(u)(a) :=
∞∑
n=0

1

n!
un(a)

for a ∈ lien or a ∈ trn, where un(a) is the n-uple iterate of the derivation u

on a. Note that the group TAutn consists of automorphisms g of lien with

the property that the action of g preserves conjugacy classes of generators

xi for i = 1, . . . , n. That is, for each i = 1, . . . , n, there exists an element

gi ∈ exp(lien) such that g(xi) = g−1i xigi. Furthermore, the group SAutn is the

subgroup of TAutn preserving x =
∑n
i=1 xi.

The representation of tdern on “trn defined by the divergence cocycle (see

Remark 4.2) lifts to a representation of TAutn. It defines an additive group

cocycle j : TAutn → trn given by the formula j(g) = g · c − c. It verifies the

cocycle condition

(16) j(gh) = j(g) + g · j(h)

and has the property

(17)
d

ds
j(exp(su))|s=0 = div(u).

In the case of vector fields on a manifold, a multiplicative cocycle integrating

the divergence is called Jacobian. The letter j stands for Jacobian cocycle

(more precisely, for the logarithm of the Jacobian cocycle since j is additive).

Equation (16) for h = g−1 implies j(g−1) = −g−1 · j(g). Together, equa-

tions (16) and (17) give the following differential equation for j:

d

ds
j(exp(su)) = div(u) + u · j(exp(su)).

Given the initial condition j(e) = 0, we obtain

j(exp(u)) =
eu − 1

u
· div(u).

The action of TAutn on “trn restricts to an action of SAutn. The group

KRV0
n is the stabilizer of c for this action. Similarly, the group KRV2 is the
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normalizer of the subspace Kc⊕ ker(δ) ⊂ “tr2. In particular, for g ∈ KRV2, we

have j(g) = g · c− c ∈ ker(δ) = im(δ) ⊂ tr2. Note that for any g ∈ SAut2 and

f ∈ tr1, we have g ·δ(f) = δ(f) since the action of g preserves conjugacy classes

of x and y and stabilizes x + y. Hence, we obtain a more explicit description

of

KRV2 = {g ∈ SAut2; j(g) ∈ ker(δ)}.

5.2. Scaling transformations. For 0 6= s ∈ K, consider an automorphism

As of the free Lie algebra lien such that As : xi 7→ sxi for all i = 1, . . . , n. We

have As1As2 = As1s2 , (As)
−1 = As−1 , and A1 = e. For example, we compute

As(ch(x, y)) = ch(sx, sy) = s chs(x, y).

Note that for g ∈ TAutn, an automorphism gs = AsgA
−1
s is also an element of

TAutn. Indeed, g(xi) = gi(xi) = eaxie
−a, where gi is an inner automorphism

of lien given by conjugation by ea for a ∈ lien. Then,

gs(xi) = AsgA
−1
s (xi) = s−1Asg(xi) = eAs(a)xie

−As(a),

proving gs ∈ TAutn. Moreover, since as = As(a) is analytic in s with a0 = 0,

we conclude that gs is also analytic in s with g0 = e. We shall denote the

derivative of gs with respect to the scaling parameter s by ġs. Here ġs is

understood as a linear operator on lien given by the derivative in s of the

family of linear operators defined by automorphisms gs. That is, for z ∈ lien,

we have ġs(z) = dgs(z)/ds. In general, ġs is neither an automorphism nor a

derivation of lien. Note, however, that us := ġsg
−1
s is an element of tdern.

Proposition 5.1. Let g ∈ TAutn. Then, us = ġsg
−1
s has the property

us = s−1AsuA
−1
s , where u = u1.

Proof. Let l be a derivation of lien defined by the property l(xi) = xi for

all i. We have ȦsA
−1
s = s−1l and

us = ġsg
−1
s = s−1(l − gslg−1s ) = s−1As(l − glg−1)A−1s .

Hence, u = u1 = l − glg−1 and us = s−1AsuA
−1
s as required. �

Note that us = s−1(a1(sx1, sx2, . . . ), . . . ) is analytic in s with u0 given by

the degree one component of u. For g ∈ TAutn, we denote by κs : TAutn →
tdern the map κs : g 7→ us = s−1As(l − glg−1)A−1s , and we put κ = κ1.

Similarly, let u ∈ tdern, set us = s−1AsuA
−1
s , and denote by Es : tdern →

TAutn the map Es : u 7→ gs defined as the unique solution of the ordinary

differential equation ġsg
−1
s = us with initial condition g0 = e. We denote

E = E1. It is important to note that Es is not the exponential map for tdern.

Indeed, for u ∈ tdern, one can define an element exp(su) as the unique solution

of the differential equation ġsg
−1
s = u (the right-hand side is independent of s!)

with initial condition g0 = e.
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Proposition 5.2. The maps E and κ are inverse to each other.

Proof. Let g ∈ TAutn and consider u = κ(g). Then, us = s−1AsuA
−1
s =

κs(g) and gs = AsgA
−1
s is a solution of the ordinary differential equation (ODE)

ġs = usgs with initial condition g0 = e. But so does Es(u). Hence, by the

uniqueness property for solutions of ODEs, we have g = E(u) = E(κ(g)). In

the other direction, let u ∈ tdern and consider g = E(u). Then, gs = AsgA
−1
s =

Es(u) and κs(g) = ġsg
−1
s = us. Hence, κ(E(u)) = u as required. �

Automorphisms As extend from lien to Assn and to trn. Note that for

u ∈ tdern and us = s−1AsuA
−1
s , we have div(us) = s−1As · div(u). Similarly,

for g ∈ TAutn and gs = AsgA
−1
s , we obtain j(gs) = As · j(g). Indeed, for

g = exp(u) with u ∈ tdern, we have gs = As exp(u)A−1s = exp(AsuA
−1
s ).

Then,

j(gs) = j
Ä
exp(AsuA

−1
s )
ä

= As
eu − 1

u
A−1s · div

Ä
AsuA

−1
s

ä
= As

eu − 1

u
· div(u) = As · j(g).

Proposition 5.3. Let g ∈ TAutn and u = κ(g). Then,

(18)
dj(gs)

ds
= us · j(gs) + div(us).

Proof. We compute

j(gq) = j(gqg
−1
s gs) = j(gqg

−1
s ) + (gqg

−1
s ) · j(gs).

Put q − s = ε. Since ġsg
−1
s = us, we have gqg

−1
s = exp

Ä
εus + O(ε2)

ä
. Then,

taking a derivative of j(gq) with respect to q and putting q = s yields

dj(gs)

ds
=

d

dε

(
j
Ä

exp(εus +O(ε2)
ä

+ exp(εus +O(ε2)
ä
· j(gs)

)∣∣∣∣
ε=0

= div(us) + us · j(gs),

as required. �

Proposition 5.3 implies the following statement that we shall be using

later.

Proposition 5.4. Let u ∈ tdern and g = E(u). Then, glg−1 · j(g) =

div(u).

Proof. For g = E(u), equation (18) at s = 1 implies the following relation

between j(g) and div(u): l · j(g) = u · j(g) + div(u). Since u = l − glg−1, we

obtain glg−1 · j(g) = div(u), as required. �

Remark 5.5. The maps E and κ establish bijections sdern → SAutn, krv
0
n

→ KRV0
n and krv2 → KRV2. In order to prove the last statement observe
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that for u ∈ krv2 we have div(us) ∈ im(δ). Hence, equation (18) implies

j(gs) ∈ im(δ) and E(u) ∈ KRV2.

Note that the map E is not the exponential map, and the map κ is not

the logarithm relating a group of Lie type to the corresponding Lie algebra.

5.3. The generalized Kashiwara-Vergne problem. The generalized Kashi-

wara-Vergne (KV) problem is the following question.

Generalized KV problem. Find an element F ∈ TAut2 with the properties

(19) F (x+ y) = ch(x, y)

and

(20) j(F ) ∈ im(δ̃).

We shall denote the set of solutions of the generalized KV problem by

SolKV. For any s ∈ K, one can introduce rescaled versions of equations (19)

and (20) as F (x + y) = chs(x, y) and j(F ) ∈ im(δ̃s). We shall denote the

corresponding set of solutions by SolKVs. For s = 0, SolKV0 = KRV2. For all

s 6= 0, SolKVs
∼= SolKV with isomorphism given by the scaling transformation

F 7→ Fs = AsFA
−1
s .

Proposition 5.6. Let F ∈ SolKV and a ∈ tr1. Then, δ̃a = F · (δa).

Proof. We have a = tr(f(x)) for some formal power series f . We compute

F · (δa) = F · tr(f(x)− f(x+ y) + f(y))

= tr(f(x)− f(ch(x, y)) + f(y)) = δ̃a.

Here we used that F · tr(f(x)) = tr(f(x)) and F · tr(f(y)) = tr(f(y)) since F

acts as an inner automorphism on x and as a (different) inner automorphism

on y. We also used that F · tr(f(x+ y)) = tr(f(ch(x, y))) because F (x+ y) =

ch(x, y). �

The Kashiwara-Vergne conjecture has been proved in [3] (see Theorem

3.3). We shall see in this section (see Theorem 5.8) that the original statement

of the Kashiwara-Vergne conjecture is equivalent to the fact that the set SolKV

is nonempty. We shall give an alternative proof of nonemptiness of SolKV in

the end of the paper. In order to preserve the logic of the presentation, we

shall not be using the existence of solutions of the generalized KV problem

until we prove it with our methods.

Theorem 5.7. Assume that SolKV is nonempty. Then, the group KRV2

acts on SolKV by multiplications on the right. This action is free and transi-

tive.
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Proof. Let F ∈ SolKV and g ∈ KRV2. Then, (Fg)(x+y) = F (g(x+y)) =

F (x+ y) = ch(x, y) and j(Fg) = j(F ) + F · j(g). Note that j(F ) ∈ im(δ̃) and

j(g) ∈ im(δ). Hence, F · j(g) ∈ im(δ̃) and by Proposition 5.6 we have j(Fg) ∈
im(δ̃). In conclusion, KRV2 acts on the set SolKV by right multiplications.

This action is free since the multiplication on the right is.

Let F1, F2 ∈ SolKV and put g = F−11 F2. We have

g(x+ y) = F−11 (F2(x+ y)) = F−11 (ch(x, y)) = x+ y

and

j(g) = j(F−11 ) + F−11 · j(F2) = F−11 · (j(F2)− j(F1)).

Since j(F1), j(F2) ∈ im(δ̃), by Proposition 5.6 we have F−11 · (j(F2)− j(F1)) ∈
im(δ) and g ∈ KRV2. Hence, the action of KRV2 on SolKV is transitive. �

The Kashiwara-Vergne problem was stated in [15] in somewhat different

terms. We shall now establish a relation between our approach and the original

formulation of the KV problem (KV conjecture).

Theorem 5.8. An element F ∈ TAut2 is a solution of the generalized

KV problem if and only if u = κ(F ) = (A(x, y), B(x, y)) satisfies the following

two properties :

(21) x+ y − ch(y, x) = (1− exp(− adx))A(x, y) + (exp(ady)− 1)B(x, y)

and

(22) div(u) ∈ im(δ̃).

Proof. First, we show that equation F (x + y) = ch(x, y) is equivalent to

equation (d/ds− us) chs(x, y) = 0. Indeed, we have

Fs(x+ y) = AsFA
−1
s (x+ y) = s−1AsF (x+ y) = s−1As ch(x, y) = chs(x, y)

and

us(chs(x, y)) = ḞsF
−1
s (chs(x, y)) = Ḟs(x+ y) =

d

ds
(Fs(x+ y)) =

d chs(x, y)

ds
.

In the other direction,

d

ds
F−1s

Ä
chs(x, y)

ä
= −F−1s ḞsF

−1
s

Ä
chs(x, y)

ä
+ F−1s

( d
ds

chs(x, y)
)

= F−1s

( d
ds
− us

)
chs(x, y) = 0

implies that F−1s (chs(x, y)) is independent of s, and comparison with the value

at s = 0 gives F−1s (chs(x, y)) = x+ y or Fs(x+ y) = chs(x, y).

The equivalence of (d/ds − us) chs(x, y) = 0 and equation (21) is shown

in Lemma 3.2 of [15]. For completeness of the presentation we reproduce the
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argument. First, using the formula for the derivative of the exponential map

we observe that

d

dt
ch(x+ tz, y)

∣∣∣∣
t=0

=
adch(x,y)

exp(adch(x,y))− 1

exp(adx)− 1

adx
z,

d

dt
ch(x, y + tz)

∣∣∣∣
t=0

=
adch(x,y)

1− exp(− adch(x,y))

1− exp(− ady)

ady
z.

Since chs(x, y) = s−1 ch(sx, sy) and us(x) = [x,As] = s−1[x,A(sx, sy)], us(y)

= [y,Bs] = s−1[y,B(sx, sy)], we obtain

(d/ds− us) chs(x, y) = −s−1 chs(x, y)

+ s−1
adch(sx,sy)

exp(adch(sx,sy))− 1

exp(s adx)− 1

s adx
(x− [x,A(sx, sy)])

+ s−1
adch(sx,sy)

1− exp(− adch(sx,sy))

1− exp(−s ady)

s ady
(y − [y,B(sx, sy)]).

Hence, (d/ds− us) chs(x, y) = 0 is equivalent to

chs(x, y) =
adch(sx,sy)

exp(adch(sx,sy))− 1

(
x− s−1

Ä
exp(s adx)− 1

ä
A(sx, sy)

)
+

adchs(x,y)

1− exp(− adchs(x,y))

(
y − s−1

Ä
1− exp(−s ady)

ä
B(sx, sy)

)
.

Multiplying both the left-hand side and the right-hand side by

exp(−s adx)(exp(adch(sx,sy))− 1)/ adch(sx,sy),

we obtain

chs(y, x)=x−s−1
Ä
1−exp(−s adx)

ä
A(sx, sy)+y−s−1

Ä
exp(s ady)−1)B(sx, sy).

Replacing x 7→ s−1x, y 7→ s−1y yields

x+ y − ch(y, x) =
Ä
1− exp(− adx)

ä
A(x, y) +

Ä
exp(ady)− 1

ä
B(x, y),

as required.

Finally, we compare equations (20) and (22). Let F ∈ SolKV, j(F ) =

δ̃(tr(f(x))). Using Proposition 5.4, we compute

div(u) = FlF−1 · j(F ) = FlF−1 · tr(f(x)− f(ch(x, y)) + f(y))

= Fl · tr(f(x)− f(x+ y) + f(y))

= F · tr(φ(x)− φ(x+ y) + φ(y))

= tr(φ(x)− φ(ch(x, y)) + φ(y)) ∈ im(δ̃),

where φ = xf ′(x) results from the action of the derivation l : xn 7→ nxn. In the

other direction, assume div(u) ∈ im(δ̃). Then, for us = s−1AsuA
−1
s , we have

div(us) ∈ im(δ̃s). Equation (18) for Fs gives (d/ds − us)j(Fs) = div(us) and
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implies d/ds(F−1s · j(Fs)) = F−1s · div(us) ∈ im(δ). Hence, F−1s · j(Fs) ∈ im(δ)

and j(Fs) ∈ im(δ̃s). �

Remark 5.9. Let g be a finite-dimensional Lie algebra over K. The adjoint

representation is defined on elements of g ⊂ Ug by the standard formula,

ada(z) = [a, z], and it extends by universality to Ug. For instance, adab(z) =

ada
Ä

adb(z)
ä

= abz − azb− bza+ zba for a, b ∈ g.

For A,B ∈ lie2 of Theorem 5.8, define a pair of formal power series on

g × g with values in g which satisfy equation (21). By applying the adjoint

representation to the equation div(u) = δ̃(φ), we obtain an equality in formal

power series on g× g with values in K,

(23) Trg
(

adx ◦ ad∂xA + ady ◦ ad∂yB
)

= Trg
(
φ(adx) + φ(ady)− φ(adch(x,y))

)
.

Here ∂xA, ∂yB ∈ Ass2, and for every Lie algebra g, they define formal power

series on g× g with values in Ug.

One can rewrite expressions for the operators ad∂xA, ad∂yB in the following

fashion. Let x, y, z be generators of lie3 and t ∈ K. For A ∈ lie2, consider the

expression U(x, y, z) = dA(x + tz, y)/dt|t=0 ∈ lie3. Since U is linear in z, one

can represent it in the form U = ada(x,y)(z) for a unique a ∈ Ass2. Note

that the only term in U(x, y, z) which ends on z is az, and a = ∂zU . Using

equation (5) we compute

a = ∂zU(x, y, z) =

Å
d

dt
∂zA(x+ tz, y)

ã ∣∣∣∣
t=0

= ∂xA.

This shows that for x, y, z ∈ g we have ad∂xA(x,y) z = dA(x + tz, y)/dt|t=0 =:

dxA(z) and similarly ad∂yB(x,y) z = dB(x, y + tz)/dt|t=0 =: dyB(z).

By choosing φ(x) = 1
2

Ä
x

ex−1 − 1
ä

(see §6 for details), we obtain a new

form of equation (23):

Trg
(

adx ◦dxA+ ady ◦dyB
)

=
1

2
Trg

Ç
adx

exp(adx)− 1
+

ady
exp(ady)− 1

−
adch(x,y)

exp(adch(x,y))− 1
− 1

å
,

which coincides with the second equation in the original formulation of the

Kashiwara-Vergne conjecture (see, e.g., equation (24) in [3]).

6. Duflo functions

Let F ∈ SolKV. Then, j(F ) = tr(f(x)− f(ch(x, y)) + f(y)) for some f ∈
x2K[[x]]. We shall refer to f(x) as to the Duflo function of F . In this section,

we describe the set of formal power series which may arise as Duflo functions

associated to solutions of the generalized KV problem. It is convenient to

introduce another formal power series φ(x) = xf ′(x).
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Proposition 6.1. Let u∈ tder2 and assume that it satisfies equations (21)

and (22) with div(u) = δ̃(tr(φ(x))). Then, the even part of the formal power

series φ is given by the following formula :

φeven(x) =
1

2
(φ(x) + φ(−x)) =

1

2

∞∑
n=2

Bn
n!

xn =
1

2

Å
x

ex − 1
− 1 +

x

2

ã
,

where Bn are Bernoulli numbers.

Proof. We follow [4] (see Remark 4.3). Write A(x, y) = α(adx)y + . . . ,

B(x, y) = bx + β(adx)y + . . . , where b ∈ K, α, β ∈ K[[x]], and . . . stand for

the terms containing at least two y’s. Replace y 7→ sy in equation (21), and

compute the first and second derivatives in s at s = 0. The first derivative

yields

y − adx
eadx − 1

y = (1− e− adx)α(adx)y − b[x, y],

and we obtain

α(t) = b
t

1− e−t
− t

(et − 1)(1− e−t)
+

1

1− e−t
.

Note that elements of lie2 quadratic in the generator y (that is, homogeneous

of degy = 2) are in bijection with skew-symmetric (that is, a(u, v) = −a(v, u))

formal power series in two variables,

a(u, v) =
∞∑

i,j=0

ai,ju
ivj 7→

∞∑
i,j=0

ai,j [adix y, adjx y].

The second derivative of (21) gives the following equality in formal power

series:

1

2

(u+ v)(eu − ev)− (u− v)(eu+v − 1)

(eu+v − 1)(eu − 1)(ev − 1)

= (1− e−(u+v))a2(u, v) +
b

2
(u− v) + (β(v)− β(u)),

where the left-hand side corresponds to the second derivative of the Campbell-

Hausdorff series − ch(sy, x), and a2(u, v) represents the second derivative of

A(x, sy) at s = 0. By putting v = −u in the last equation, we obtain

βodd(t) =
b

2
t− 1

2

t

(et − 1)(1− e−t)
+

1

4

et + 1

et − 1
.

Here βodd(t) = (β(t)− β(−t))/2.

Finally, consider equation (23) and compute the contribution linear in y

(that is, of the form tr(f(x)y)) on the left-hand side and on the right-hand

side. Since we only control the odd part of the function β(t), we obtain an

equation in odd formal power series,

βodd(t)− αodd(t) = −(φ′(t))odd = −(φeven)′(t),
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which implies

φeven(t) =
1

2

Å
t

et − 1
− 1 +

t

2

ã
,

as required. �

Proposition 6.2. Let F ∈ SolKV and f ∈ x2K[[x]] such that j(F ) =

δ̃(tr(f(x))). Then, the even part of f(x) coincides with the function feven(x) =
1
2 ln(ex/2 − e−x/2)/x), and for every odd formal power series

fodd(x) =
∞∑
k=1

f2k+1x
2k+1,

there is an element F ∈ SolKV such that j(F ) = δ̃(tr(feven(x) + fodd(x))).

Proof. Let f and φ be the power series in j(F ) = δ̃(tr(f(x))) and div(u) =

δ̃(tr(φ(x))) for u = κ(F ). Then, we have (see the proof of Theorem 5.8)

φ(s) = sf ′(s). By Proposition 6.1, we obtain

feven =

∫
φeven(s)

s
ds =

1

2

∞∑
k=2

Bk
k · k!

sk =
1

2
ln

Ç
es/2 − e−s/2

s

å
.

Let F ∈ SolKV with j(F ) = δ̃(tr(f(x))) and g ∈ KRV2 with j(g) =

δ(tr(h(x))). Then, Fg ∈ SolKV and

j(Fg) = j(F ) + F · j(g) = δ̃(tr(f(x) + h(x))).

Put g = exp(u) for u ∈ krv2, and compute j(g) = (eu − 1)/u · div(u) =

div(u). By choosing g with u = −∑∞k=1 h2k+1ν(σ2k+1) (with h2k+1 ∈ K), we

obtain j(g) = div(u) = δ(tr(h(x))) for h(x) =
∑∞
k=1 h2k+1x

2k+1. Hence, by

an appropriate choice of g ∈ KRV2, one can make the odd part of the linear

combination f(x) + h(x) equal to any given odd power series without linear

term. �

Remark 6.3. The group KRV2 acts on SolKV, and this action descends to

the space of formal power series x2K[[x]] along the map f : SolKV→ x2K[[x]]

sending F to f = j(F ). In Proposition 6.2 we have used this action to change

the odd part of f . Previously, this action (for the Grothendieck-Teichmüller

group GRT1 ⊂ KRV2) on Duflo functions has been described in [16] (see

Theorem 7).

Proposition 6.4. Let F = exp(u) ∈ SolKV with u = (a, b) ∈ tder2 such

that

a(x, y) = a0y + α(ady)x+ . . . ,

b(x, y) = b0x+ β(ady)x+ . . . ,
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where a0, b0 ∈ K, α, β ∈ sK[[s]], and . . . stand for terms which contain at

least two x. If a0 = 0, then the Duflo function f(s) associated to F satisfies

equation f ′(s) = β(s)− α(s).

Proof. Consider the part of j(F ) = tr(f(x)− f(ch(x, y)) + f(y)) linear in

the generator x. On the one hand, we have

j(F )x−lin = tr(f(x)− f(ch(x, y)) + f(y))x−lin = − tr(f ′(y)x).

On the other hand, for a0 = 0, we obtain

j(F )x−lin =

Å
eu − 1

u
· div(u)

ã
x−lin

= div(u)x−lin.

Here we used that u is of degree greater than or equal to one in variable x,

and all contributions nonlinear in u are of degree at least two in x.

Finally, we compute

div(u)x−lin = tr(x(∂xa)+y(∂yb))x−lin = tr(xα(y)−β(y)x) = tr((α(y)−β(y))x).

Comparison with the first equation yields f ′(y) = β(y)−α(y), as required. �

In the original formulation of the Kashiwara-Vergne problem the Duflo

function f was assumed to be even.

The KV problem. Find an element F ∈ TAut2 such that F (x + y) =

ch(x, y) and j(F ) = δ̃(f), where

(24) f(x) =
1

2

∞∑
k=2

Bkx
k

k · k!
=

1

2
ln
Ä
(ex/2 − e−x/2)/x

ä
.

We shall denote the set of solutions of the KV problem by SolKV0. Note

that the KV problem is equivalent to finding an element u = (A,B) ∈ tder2

which satisfies equation (21) and the identity div(u) = δ̃
(
1
2 tr

∑∞
k=2

Bkx
k

k!

)
.

Remark 6.5. The group KRV0
2 acts on SolKV0 by right multiplications.

This action is free and transitive. The proof of this statement is completely

analogous to the proof of Theorem 5.7.

Remark 6.6. Recall that the Kashiwara-Vergne conjecture implies the fol-

lowing Duflo theorem [9] (see [25] for the detailed account). Let g be a finite-

dimensional Lie algebra over K. Then, there is an isomorphism Duf : (Sg)g →
Z
Ä
U(g)

ä
, where (Sg)g is the ring of invariant polynomials (under the adjoint

action), and Z
Ä
U(g)

ä
is the center of the universal enveloping algebra. In

more detail, the Duflo isomorphism Duf = Sym ◦ ∂J1/2 is the composition of

the symmetrization map Sym : S(g)→ U(g) and the (infinite order) constant

coefficient differential operator ∂J1/2 . This differential operator is associated
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by the Fourier transform to the function J1/2 defined on the neighborhood of

zero in g,

J1/2(x) = det

Ç
eadx /2 − e− adx /2

adx

å1/2

.

Note that, up to replacing x 7→ adx, the function J1/2(x) is the exponential of

the function f(x) in equation (24). This explains the name of “Duflo function”

in the title of this section.

7. Pentagon equation

In this section we establish a relation between the Kashiwara-Vergne prob-

lem and the pentagon equation introduced in [8]. Let Φ ∈ TAut3. We say that

Φ satisfies the pentagon equation if

(25) Φ12,3,4Φ1,2,34 = Φ1,2,3Φ1,23,4Φ2,3,4

in TAut4.

Proposition 7.1. Let F ∈ SolKV. Then,

(26) Φ = (F 12,3)−1(F 1,2)−1F 2,3F 1,23

is an element of KRV0
3, and it satisfies the pentagon equation.

Proof. First, we compute

Φ(x+ y + z) = (F 12,3)−1(F 1,2)−1F 2,3F 1,23(x+ y + z)

= (F 12,3)−1(F 1,2)−1F 2,3(ch(x, y + z))

= (F 12,3)−1(F 1,2)−1(ch(x, ch(y, z)))

= (F 12,3)−1(ch(x+ y, z))

= x+ y + z.

Hence, Φ ∈ SAut3. Next, we rewrite the defining equation for Φ as F 1,2F 12,3Φ

= F 2,3F 1,23 and apply the cocycle j to both sides to get

j(F 1,2) + F 1,2 · j(F 12,3) + (F 1,2F 12,3) · j(Φ) = j(F 2,3) + F 2,3 · j(F 1,23).

Since j(F ) = tr(f(x)− f(ch(x, y)) + f(y)), we have

j(F 1,2) + F 1,2 · j(F 12,3) = tr(f(x) + f(y)− f(ch(x, y)))

+ F 1,2 · tr(f(x+ y)− f(ch(x+ y), z) + f(z))

= tr(f(x) + f(y) + f(z)− f(ch(ch(x, y), z))).
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Similarly, we obtain

j(F 2,3) + F 2,3 · j(F 1,23) = tr(f(y)− f(ch(y, z)) + f(z))

+ F 2,3 · tr(f(x)− f(ch(x, y + z)) + f(y + z))

= tr(f(x) + f(y) + f(z)− f(ch(x, ch(y, z)))).

We conclude that (F 1,2F 12,3) · j(Φ) = 0, j(Φ) = 0 and Φ ∈ KRV0
3.

The pentagon equation is satisfied by substituting the expression for Φ

into the equation, and by using the fact that for Φ ∈ KRV0
3 ⊂ SAut3, we have

F 123,4Φ1,2,3 = Φ1,2,3F 123,4 and F 1,234Φ2,3,4 = Φ2,3,4F 1,234. �

Let F1 ∈ SolKV and Φ1 be the corresponding solution of the pentagon

equation. Consider another element F2 ∈ SolKV. By Theorem 5.7, F2 = F1g

for some g ∈ KRV2. The corresponding solution of the pentagon equation

reads

Φ2 = (F 12,3
2 )−1(F 1,2

2 )−1F 2,3
2 F 1,23

2(27)

= (g12,3)−1(F 12,3
1 )−1(g1,2)−1(F 1,2

1 )−1F 2,3
1 g2,3F 1,23

1 g1,23

= (g12,3)−1(g1,2)−1Φ1g
2,3g1,23.

Equation (27) defines an action of KRV2 on solutions of the pentagon equation

with values in KRV0
3. Actions of this type are called Drinfeld twists (see [8],

equation (1.11)).

Proposition 7.2. Let F1, F2 ∈ SolKV and assume that they give rise to

the same solution Φ of the pentagon equation. Then, F2 = F1 exp(λt) for some

λ ∈ K.

Proof. First, note that for g = exp(λt), we have

(g12,3)−1(g1,2)−1Φg2,3g1,23 = e−λcΦeλc = Φ

for all Φ ∈ KRV0
3, where c = t1,2 + t1,3 + t2,3 is a central element in sder3 and

in krv03.

The degree one component of krv2 is spanned by t, and t is central in

krv2. Hence, one can represent g = F−11 F2 in the form g = exp(λt) exp(u),

where u =
∑∞
k=2 uk ∈ krv2. Let Φ be a solution of the pentagon equation

which corresponds to both F1 and F2. Let k0 be the lowest degree such that

uk0 6= 0. Then, equation Φ = (g12,32 )−1(g1,22 )−1Φg2,3g1,23 implies duk0 = 0, and

by Theorem 3.17 we have uk0 = 0 which implies u = 0 and g = exp(λt), as

required. �

Proposition 7.3. Let Φ = exp(φ) ∈ TAut3 be a solution of the pentagon

equation, where φ =
∑∞
k=1 φk with φk ∈ tder3 homogeneous of degree k. Then,

φ1 = 0 and φ2 = (α[y, z], β[z, x], γ[x, y]) for some α, β, γ ∈ K.
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Proof. The degree one component of the pentagon equation reads dφ1 = 0.

Since the degree one component of H3(tder,d) vanishes, we have φ1 = df for

a degree one element f ∈ tder2. However, the degree one component of tder2 is

spanned by r = (0, x) and t = (y, x), and both r and t are in the kernel of d.

Hence, φ1 = 0. This implies that the degree two component of the pentagon

equation is of the form dφ2 = 0. Then (see the proof of Theorem 3.17) φ2 is

expressed as (α[y, z], β[z, x], γ[x, y]) for some α, β, γ ∈ K. �

Note that H3(tder,d) is one-dimensional and the cohomology lies in degree

two. One can choose the isomorphism H3(tder,d) ∼= K in such a way that it is

represented by the map π : φ2 = (α[y, z], β[z, x], γ[x, y]) 7→ α+ β + γ.

Proposition 7.4. Let F = exp(u) exp(sr/2) exp(αt) ∈ TAut2, where

s, α ∈ K, and u is an element of tder2 of degree greater than or equal to two.

Assume that the expression Φ = (F 12,3)−1(F 1,2)−1F 2,3F 1,23 is an element of

KRV0
3, and denote π(φ2) = λ. Then, λ = s2/8 and F ∈ SolKVs.

Proof. First note that Φ is independent of α (see the first paragraph in

the proof of Proposition 7.2). Hence, without loss of generality one can put

α = 0.

Let φ = ln(Φ) =
∑∞
k=1 φk, where φk is of degree k. We have φ1 =

s(dr)/2 = 0. For the degree two part, we use the Campbell-Hausdorff formula

to compute F 1,2F 12,3 and F 2,3F 1,23 up to degree two, and notice that r1,2 +

r12,3 = r12,3 + r1,2 (since dr = 0). This yields

φ2 = du2 +
s2

8
([r2,3, r1,23] + [r12,3, r1,2]) = du2 +

s2

8
[r2,3, r1,2]

= du2 +
s2

8
([y, z], 0, 0).

Here we used the classical Yang-Baxter equation of Proposition 3.10. In con-

clusion, λ = π(φ2) = s2/8.

Denote χ(x, y) = F (x + y) = x + y + s
2 [x, y] + . . . , where . . . stand for

elements of degree greater than or equal to three. Since Φ(x+y+z) = x+y+z,

we have

χ(x, χ(y, z)) = F 2,3F 1,23(x+ y + z) = F 1,2F 12,3(x+ y + z) = χ(χ(x, y), z).

By Proposition 2.9, this implies χ(x, y) = chs(x, y). Denote b(x, y) = j(F ) ∈
tr2. By applying j to the equality F 2,3F 1,23 = F 1,2F 12,3Φ (and using j(Φ) = 0),

we obtain

b(y, z) + F 2,3 · b(x, y + z) = b(x, y) + F 1,2 · b(x+ y, z).

Equivalently, δ̃s(b) = 0 which implies, by Proposition 2.10, b ∈ im(δ̃s) and

F ∈ Sols(KRV). �
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Theorem 7.5. Let Φ = exp (
∑∞
k=2 φk) ∈ KRV0

3 be a solution of the pen-

tagon equation with π(φ2) = λ, and assume that 8λ admits a square root s ∈ K.

Then, there is a unique element F ∈ SolKVs such that F = exp(u) exp(sr/2) ∈
TAut2, where u is an element of tder2 of degree greater than or equal to two,

and Φ = (F 12,3)−1(F 1,2)−1F 2,3F 1,23.

Proof. Our task is to find f =
∑∞
k=1 fk ∈ tder2 with the degree one com-

ponent f1 = sr/2 such that F = exp(f) solves the equation

Φ = (F 12,3)−1(F 1,2)−1F 2,3F 1,23.

In degree two, this implies

df2 +
s2

8
([y, z], 0, 0) = φ2.

Recall that dφ2 = 0 and π(φ2) = λ = s2/8. Hence, this equation admits a

solution, and it is unique since the operator d : tder2 → tder3 has no kernel in

degrees greater than one.

Assume that we found Fn ∈ TAut2 such that

Φn = exp

( ∞∑
k=2

ψk

)
= (F 12,3

n )−1(F 1,2
n )−1F 2,3

n F 1,23
n

and ψk = φk for k ≤ n. (We say that Φn is equal to Φ modulo terms of degree

greater than n.) Then, F 2,3
n F 1,23

n (x+y+z) = F 1,2
n F 12,3

n (x+y+z) modulo terms

of degree greater than n + 1. By the proof of Proposition 2.9, Fn(x + y) =

chs(x, y) modulo terms of degree greater than n + 1. Since F 123,4
n Φ1,2,3

n =

Φ1,2,3
n F 123,4

n and F 1,234
n Φ2,3,4

n = Φ2,3,4
n F 1,234

n modulo terms of degree greater than

n+ 1, Φn satisfies the pentagon equation modulo terms of degree greater than

n+1. Denote ϕ = φn+1−ψn+1. The pentagon equation for Φ and the pentagon

equation modulo terms of degree greater then n+1 for Φn imply dϕ = 0. Hence,

by Theorem 3.17, ϕ = du for a unique element u ∈ tder2 of degree n + 1.

Put Fn+1 = Fn exp(u). It satisfies equation Φ = (F 12,3
n+1)−1(F 1,2

n+1)
−1F 2,3

n+1F
1,23
n+1

modulo terms of degree greater than n + 1. By induction, we construct a

unique F which solves equation Φ = (F 12,3)−1(F 1,2)−1F 2,3F 1,23 and has f1 =

sr/2, as required. By Proposition 7.4, the element F solves the KV problem,

F ∈ SolKVs. �

Remark 7.6. One can also express Theorem 7.5 in the following way. De-

note by Pentλ the set of solutions Φ = exp (
∑∞
k=2 φk) ∈ KRV0

3 of the pentagon

equation with π(φ2) = λ. Assume that 8λ admits a square root s ∈ K. Then,

the map (26) F 7→ Φ defines an isomorphism Pentλ ∼= SolKVs/K, where the

action of the additive group K is by F 7→ F exp(λt).

In particular, Theorem 7.5 implies that the Kashiwara-Vergne problem

has solutions if and only if the pentagon equation admits solutions Φ ∈ KRV0
3

with π(φ2) = 1/8.
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The next proposition provides a tool for extracting the Duflo function

of an element F ∈ SolKV from the corresponding solution of the pentagon

equation.

Proposition 7.7. Let Φ = exp(φ) ∈ KRV0
3 be a solution of the pentagon

equation with π(φ2) = 1/8, and let F ∈ SolKV be a solution of equation (26).

Denote φ = (A,B,C), and B(x, 0, z)x−lin = h(adz)x for h ∈ xK[[x]]. Then,

the Duflo function f(x) of F satisfies equation f ′(x) = h(x).

Proof. Let F = exp(u) with u = (a, b). Put a(x, y) = a0y+α(ady)x+ . . .

and b(x, y) = b0x + β(ady)x + . . . . Choose F in such a way that a0 = 0 (this

is always possible by replacing F 7→ F exp(λt) if needed). By Proposition 6.4,

the Duflo function f associated to F is a solution of equation f ′ = β − α.

Put y = 0 in all components of u1,2, u12,3, u2,3, u1,23. Assumption a0 = 0

implies that all these expressions are of degree greater than or equal to one in

the variable x. Hence, for the computation of the degree one in x part of φ =

ln
(
(F 12,3)−1(F 1,2)−1F 2,3F 1,23

)
, one can replace it by u1,23 +u2,3−u1,2−u12,3.

This yields B(x, 0, z)x−lin = β(adz)x−α(adz)x and h(x) = β(x)−α(x). Hence,

f ′(x) = h(x), as required. �

8. Z2-symmetry of the KV problem and hexagon equations

In this section we introduce an involution τ on the set of solutions of

the generalized KV problem and show that the corresponding solutions of the

pentagon equation verify a pair of hexagon equations.

8.1. The automorphism R and the Yang-Baxter equation. Let R ∈ TAut2
be an automorphism of lie2 defined on generators by R(x) = e− adyx,R(y) = y.

Note that R = exp(r) for r = (y, 0) ∈ tder2, and

R (ch(y, x)) = ch(y, exp(− ady)x) = ch(x, y).

Denote by θ the inner derivation of lie2 with the generator ch(x, y). That is, for

a ∈ lie2 we have θ(a) = [a, ch(x, y)]. Note that the derivation t = (y, x) ∈ tder2
is an inner derivation of lie2 with generator x + y. Indeed, t(x) = [x, y] =

[x, x+y] and t(y) = [y, x] = [y, x+y]. Let F ∈ TAut2 be a solution of the first

KV equation, F (x+ y) = ch(x, y). Then, FtF−1 = θ. Indeed, for a ∈ lie2,

FtF−1(a) = F ([F−1(a), x+ y]) = [a, F (x+ y)] = [a, ch(x, y)] = θ(a).

Proposition 8.1. RR2,1 = exp(θ).

Proof. Note that R2,1(x) = x and R2,1(y) = e− adxy. We compute

RR2,1(x) = R(x) = exp(− ady)x = exp
Ä
− adch(x,y)

ä
x

and

RR2,1(y) = R(exp(− adx)y) = exp
Ä
− adexp(− ady)x

ä
y = exp

Ä
− adch(x,y)

ä
y,

as required. �
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Proposition 8.2. The element R satisfies the Yang-Baxter equation

R1,2R1,3R2,3 = R2,3R1,3R1,2.

Proof. In components, we have

R1,2 = (exp(− ady), 1, 1),

R1,3 = (exp(− adz), 1, 1),

R2,3 = (1, exp(− adz), 1).

One easily computes both the left-hand side and the right-hand side of the

Yang-Baxter equation on generators y and z, z 7→ z, and y 7→ exp(− adz)y.

We compute the action of the left-hand side on x:

R1,2R1,3R2,3(x) =R1,2R1,3(x) = R1,2(exp(− adz)x) = exp(− adz) exp(− ady)x

and the action of the right-hand side:

R2,3R1,3R1,2(x) = R2,3R1,3(exp(− ady)x)

= R2,3(exp(− ady) exp(− adz)x)

= exp(− adz) exp(− ady)x,

which completes the proof. �

Proposition 8.3. R12,3 = R1,3R2,3. Let F ∈ TAut2 be a solution of

equation F (x+ y) = ch(x, y). Then, F 2,3R1,23(F 2,3)−1 = R1,2R1,3.

Proof. For the first equation, note that both sides are represented by the

automorphism (exp(− adz), exp(− adz), 1) ∈ TAut3.

For the second equation, both the left-hand side and the right-hand side

preserve generators y and z, y 7→ y, and z 7→ z. It remains to compute the

action on x:

F 2,3R1,23(F 2,3)−1(x) = F 2,3R1,23(x)

= F 2,3(exp(− ady+z)x) = exp
Ä
− adch(y,z)

ä
x

and the same for the right-hand side:

R1,2R1,3(x) = R1,2(exp(− adz)x)

= exp(− adz) exp(− ady)x = exp
Ä
− adch(y,z)

ä
x,

as required. �

8.2. Involution on SolKV. In this section we introduce and study a certain

involution on the set of solutions of the KV problem.

Proposition 8.4. Let F ∈ SolKV. Then, τ(F ) = RF 2,1e−t/2 is a solu-

tion of the KV problem, τ(F ) ∈ SolKV. The map τ is an involution, τ2 = 1.
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Proof. We compute

τ(F )(x+ y) = RF 2,1e−t/2(x+ y) = RF 2,1(x+ y) = R(ch(y, x)) = ch(x, y).

Furthermore,

j(τ(F )) = j(RF 2,1e−t/2) = R · j(F 2,1).

Here we used that div(r) = div(t) = 0 and j(R) = j(exp(−t/2)) = 0. Let

f ∈ x2K[[x]] such that j(F ) = tr(f(x)−f(ch(x, y))+f(y)). Note that j(F 2,1) =

j(F )2,1) (since div(u2,1) = div(u)2,1 for u ∈ tder2). This implies j(F 2,1) =

tr(f(x)− f(ch(y, x)) + f(y)) and R · j(F 2,1) = tr(f(x)− f(ch(x, y)) + f(y)) =

j(F ). Hence, τ(F ) is a solution of the KV problem.

Finally,

τ2(F ) = Rτ(F )2,1e−t/2 = RR2,1Fe−t = eθFe−t = F,

where we used t2,1 = t, RR2,1 = exp(θ), and FtF−1 = θ. We conclude that

τ2 = 1, and τ defines an involution on SolKV. �

Proposition 8.5. Let F ∈ SolKV and let ΦF be the corresponding solu-

tion of the pentagon equation. Then,

Φτ(F ) = (Φ3,2,1
F )−1.

Proof. We compute

Φτ(F ) = et
12,3/2(F 3,21)−1(R12,3)−1et

1,2/2(F 2,1)−1(R1,2)−1

·R2,3F 3,2e−t
2,3/2R1,23F 32,1e−t

1,23/2

= ec/2(F 3,21)−1(R12,3)−1(F 2,1)−1(R1,2)−1R2,3F 3,2R1,23F 32,1e−c/2

= ec/2(F 3,21)−1(F 2,1)−1(R2,3)−1(R1,3)−1(R1,2)−1

·R2,3R1,3R1,2F 3,2F 32,1e−c/2

= ec/2(F 3,21)−1(F 2,1)−1F 3,2F 32,1e−c/2

= ec/2(Φ3,2,1)−1e−c/2 = (Φ3,2,1)−1.

Here, in passing from the first to the second line, we used that g1,2h12,3 =

h12,3g1,2 for g ∈ SAut2, h ∈ TAut2, and the definition of the element c =

t1,2 + t1,3 + t2,3 ∈ t3; Proposition 8.3 in the passage from the second to the

third line; and finally the Yang-Baxter equation (Proposition 8.2) and the fact

that c is central in krv03 in the passage from the third to the fourth line. �

Proposition 8.6. Let F ∈ SolKV and κ(F ) = (A(x, y), B(x, y)) ∈ tder2.

Then,

(28)

κ(τ(F )) =

Å
eadxB(y, x) +

1

2
(ch(x, y)− x), e− adyA(y, x)− 1

2
(ch(x, y)− y)

ã
.
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Proof. We compute

κ(τ(F )) =
dτ(F )s
ds

|s=1 τ(F )−1

= r +R
dF 2,1

s

ds
|s=1(F

2,1)−1R−1 − 1

2
RF 2,1t(F 2,1)−1R−1,

where we used that dRsR
−1
s =r=(y, 0) ∈ tder2. In the last term, F 2,1t(F 2,1)−1

is the inner derivation with generator ch(y, x) and RF 2,1t(F 2,1)−1R−1 is an

inner derivation with generator ch(x, y). With our normalization condition, it

is represented by (ch(x, y)− x, ch(x, y)− y) ∈ tder2.

Finally, for the middle term Rκ(F )2,1R−1, we compute

R (A,B)2,1R−1(x) = R (B(y, x), A(y, x))eady(x)

= R(eady [x,B(y, x)] + eady [A(y, x), x]− [A(y, x), eady(x)])

= [x,B(y, x) + (e− ady − 1)A(y, x)]

= [x, eadxB(y, x) + ch(x, y)− x− y].

Here, in the passage to the last line, we have used equation (21) (with x and

y exchanged). For the action on y, we compute

R (A,B)2,1R−1(y) = R (B(y, x), A(y, x))(y) = R([y,A(y, x)])

= [y, e− adyA(y, x)].

By adding up all three terms, we obtain

κ(τ(F )) =
Ä
eadxB(y, x) + ch(x, y)− x− y, e− adyA(y, x)

ä
+ (y, 0)− 1

2
(ch(x, y)− x, ch(x, y)− y)

=
Ä
eadxB(y, x) +

1

2
(ch(x, y)− x), e− adyA(y, x)− 1

2
(ch(x, y)− y)

ä
,

as required. �

Remark 8.7. Symmetry (28) has been introduced in [15] (see the discus-

sion after Proposition 5.3).

8.3. Symmetric solutions of the KV problem.

Definition 8.8. An element F ∈ SolKV is called a symmetric solution of

the generalized Kashiwara-Vergne conjecture if τ(F ) = F .

We shall denote the set of symmetric solutions by SolKVτ . Since the map

κ : TAut2 → tder2 is a bijection, τ(F ) = F if and only if κ(τ(F )) = κ(F ).

That is, κ(F ) = (A(x, y), B(x, y)) satisfies the (equivalent) linear equations

A(x, y) = eadxB(y, x)+
1

2
(ch(x, y)−x), B(x, y) = e− adyA(y, x)−1

2
(ch(x, y)−y).
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Since equations (21) and (22) are linear in A and B, one can average an

arbitrary solution to obtain a symmetric solution F̃ with κ(F̃ ) = (κ(F ) +

κ(τ(F )))/2.

The involution u 7→ u2,1 acts on the Lie algebra krv2, and it lifts to

the group KRV2. We shall denote the corresponding invariant subalgebra by

krvsym2 ⊂ krv2 and the invariant subgroup by KRVsym
2 ⊂ KRV2.

Proposition 8.9. The group KRVsym
2 acts on the set SolKVτ by multi-

plications on the right. This action is free and transitive.

Proof. Let g ∈ KRVsym
2 and F ∈ SolKVτ . By Theorem 5.7, Fg ∈ SolKV.

By applying τ , we obtain

τ(Fg) = RF 2,1g2,1e−t/2 = RF 2,1e−t/2g = τ(F )g = Fg.

Hence, Fg ∈ SolKVτ .

Consider two elements F1, F2 ∈ SolKVτ . We denote g = F−11 F2 and

compute

g2,1 = (F−11 F2)
2,1 = (R−1F1e

t/2)−1(R−1F2e
t/2)

= e−t/2(F−11 F2)e
t/2 = e−t/2get/2 = g,

as required. �

Remark 8.10. Note that the element t = (y, x) as well as the image of

the injection ν : grt1 → krv2 is contained in krvsym2 . In fact, it is not known

whether any nonsymmetric elements of krv2 exist. If the conjecture stated in

the end of Section 4 is correct, it implies krv2 = krvsym2 .

Proposition 8.11. Let F ∈ SolKVτ , and let Φ ∈ KRV0
3 be the corre-

sponding solution of the pentagon equation. Then,

(29) Φ1,2,3Φ3,2,1 = e,

(30) e(t
1,3+t2,3)/2 = Φ2,1,3et

1,3/2(Φ2,3,1)−1et
2,3/2Φ3,2,1,

and

(31) e(t
1,2+t1,3)/2 = (Φ1,3,2)−1et

1,3/2Φ3,1,2et
1,2/2(Φ3,2,1)−1.

Proof. Equation (29) follows by Proposition 8.5. In order to prove equa-

tion (30) recall that R12,3 = R1,3R2,3 = (exp(− adz), exp(− adz), 1) ∈ TAut3.

Furthermore, this automorphism commutes with g1,2 for any g ∈ TAut2.

In particular, we have F 2,1R12,3(F 2,1)−1 = R1,3R2,3. By substituting R =

Fet/2(F 2,1)−1, we obtain

F 2,1R12,3(F 2,1)−1 = F 2,1F 21,3e(t
1,3+t2,3)/2(F 3,12)−1(F 2,1)−1
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and

R1,3R2,3 = F 1,3et
1,3/2(F 3,1)−1F 2,3et

2,3/2(F 3,2)−1

= F 1,3F 2,13et
1,3/2(F 2,31)−1(F 3,1)−1F 2,3F 23,1et

2,3/2(F 32,1)−1(F 3,2)−1.

A comparison of these two equations yields equation (30). Equation (31) fol-

lows by applying the (13)-permutation to equation (30) and by using the in-

version formula (29). �

Remark 8.12. Equations (30) and (31) are called as hexagon equations.

They were first introduced in [8] (see equations (2.14a) and (2.14b)).

9. Associators

In this section we consider joint solutions of pentagon and hexagon equa-

tions called KV-associators (with values in the group KRV0
3). We show that

Drinfeld’s associators defined in [8] make part of this set, and we use this fact

to give a new proof of the KV conjecture.

9.1. Associators with values in KV3 and Drinfeld’s associators.

Definition 9.1. An element Φ ∈ KRV0
3 is called a KV-associator if it

satisfies the pentagon equation (25), hexagon equations (30) and (31), and the

inversion property (29).

Proposition 9.2. Let Φ = exp(φ) = exp (
∑∞
k=2 φk) ∈ KRV0

3 be a KV-

associator. Then, π(φ2) = 1/8.

Proof. The degree two component of the hexagon equation (30) reads

1

8
[t1,3, t2,3] + φ2,1,32 − φ2,3,12 + φ3,2,12 = 0.

Note that [t1,3, t2,3] = ([y, z], [z, x], [x, y]) which implies π([t1,3, t2,3]) = 3. Also

observe that π(φ2,3,12 ) = π(φ2) and π(φ2,1,32 ) = π(φ3,2,12 ) = −π(φ2). We con-

clude that 3π(φ2) = 3/8 and π(φ2) = 1/8, as required. �

Proposition 9.3. Let Φ = exp(φ) = exp (
∑∞
k=2 φk) ∈ KRV0

3 be a so-

lution of equations (25) and (29) with π(φ2) = 1/8. Then, each F ∈ SolKV

which verifies equation (26) is a symmetric solution of the KV problem, F ∈
SolKVτ .

Proof. Theorem 7.5 implies that equation (26) admits solutions F =

exp (
∑∞
k=1 fk) ∈ SolKV. By Proposition 8.5, Φτ(F ) = (Φ3,2,1

F )−1 = ΦF . Hence,

by Proposition 7.2, τ(F ) = F exp(λt) for some λ ∈ K. The degree one compo-

nent of this equation reads r + f2,11 − t/2 = f1 + λt. Since f1 = r/2 + αt for

some α ∈ K, we have r + f2,11 − f1 = t/2 and λ = 0. In conclusion, τ(F ) = F ,

as required. �
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Recall that by Proposition 3.11, Lie algebras tn inject into krv0n. In

particular, t3 injects into krv03, and the corresponding group T3 is a subgroup

of KRV0
3.

Definition 9.4. A KV-associator Φ ∈ KRV0
3 is called a Drinfeld’s associ-

ator if Φ ∈ T3.

Drinfeld’s associators can be defined without referring to the Lie algebras

tdern and krv0n since coface maps restrict to Lie subalgebras tn in a natural

way. In [7], Drinfeld proved the following fundamental theorem.

Theorem 9.5. The set of Drinfeld’s associators is nonempty.

This implies the following result.

Theorem 9.6. The set of symmetric solutions of the KV problem SolKVτ

is nonempty.

Proof. Each Drinfeld’s associator Φ = exp(φ) = exp (
∑∞
k=2 φk) is a KV-

associator with π(φ2) = 1/8. Then, by Theorem 7.5, there is an element

F = exp (
∑∞
k=1 fk) ∈ TAut2 with f1 = r/2 which solves equation (26). By

Proposition 7.4, this automorphism is a solution of the KV problem, and by

Proposition 9.3 this solution is symmetric. �

Remark 9.7. In the case of Drinfeld associators, there is a constructive

proof of Theorem 7.5 (see [2]). It gives an explicit formula for F solving the

twist equation (26) in terms of the Drinfeld associator Φ.

Remark 9.8. The KV problem has been settled in [3]. The solution is

based on the Kontsevich deformation quantization scheme [17] and on the

earlier work of the second author [24]. Theorem 9.6 gives a new proof of the KV

conjecture by reducing it to the existence theorem for Drinfeld’s associators.

Proposition 9.9. Let Φ = exp(φ) ∈ T3 be a Drinfeld’s associator, and

let F ∈ SolKV be a solution of the KV problem which satisfies equation (26).

Write φ = h(adt2,3)t1,2 + . . . , where h ∈ xK[[x]] and . . . stand for terms whose

degree with respect to t1,2 is greater than one. Then, the Duflo function f(x)

associated to F satisfies equation f ′(x) = h(x).

Proof. By putting y = 0, we obtain t1,2 = (y, x, 0) 7→ (0, x, 0) and t2,3 =

(0, z, y) 7→ (0, z, 0). Hence,

φ(t1,2, t2,3)y=0 = (0, φ(x, z), 0).

In particular, for φ = (A,B,C), we have B(x, 0, z)x−lin = h(adz)x. Then, by

Proposition 7.7, we obtain f ′(x) = h(x), as required. �
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Example 9.10. Consider the Knizhnik-Zamolodchikov associator (with val-

ues in T3) constructed by Drinfeld. Equation (2.15) of [8] yields the function

h(x):

h(x) = −
∞∑
n=2

ζ(n)

(2πi)n
xn−1.

Note that associators defined in this paper are obtained by taking an inverse

of associators in the Drinfeld’s paper. The Duflo function corresponding to the

Knizhnik-Zamolodchikov associator is given by

f(x) = −
∞∑
n=2

ζ(n)

n(2πi)n
xn =

γ

2πi
x− ln

Å
Γ

Å
1− x

2πi

ãã
.

Here γ is the Euler’s constant, and the term γx/2πi cancels the linear part in

the logarithm of the Γ-function. The formula for f(x) matches (up to a sign

change) the expression ln(Fnice(x)) in [16].

9.2. Actions of the group GRT1. Let Lien be a group associated to the Lie

algebra lien (such that a · b = ch(a, b)). Then, one can view the Grothendieck-

Teichmüller group GRT1 as a subset of Lie2 defined by a number of relations

(see [8, §5]) and equipped with the new multiplication

(h1 ∗GRT1 h2)(x, y) = h1(x, h2(x, y)yh−12 (x, y))h2(x, y).

Remark 9.11. Note that we have chosen to act on the second argument y

of the function h rather than on x (the first argument) as in [8].

Let ψ ∈ grt1 and consider a one parameter subgroup of GRT1 defined by

ψ, hs = expGRT1
(sψ). Write ht = ht−s ∗GRT1 hs and differentiate in t at t = s

to obtain
dhs(x, y)

ds
= ψ(x, hs(x, y)yhs(x, y)−1)hs(x, y).

This differential equation together with the initial condition h0(x, y) = 1 de-

fines the exponential function expGRT1
in a unique way.

Proposition 9.12. Let ψ ∈ grt1, h = expGRT1
(ψ) ∈ GRT1, and g =

exp(ν(ψ)) ∈ KRV2. Then,

ĝ = (g12,3)−1(g1,2)−1g2,3g1,23 = h(t1,2, t2,3) ∈ KRV0
3 .

Proof. First, observe that for g ∈ SAut2, g
1,2 commutes with g12,3 and

g2,3 commutes with g1,23. Hence, the maps g 7→ gl = g1,2g12,3 and g 7→ gr =

g2,3g1,23 are group homomorphisms mapping SAut2 to SAut3.

Next, replace ψ by sψ and consider the derivative in s of ĝs = (gls)
−1grs :

dĝs
ds

= (gls)
−1
Ç
dgrs
ds

(grs)
−1 − dgls

ds
(gls)

−1
å
grs

= (gls)
−1(dν(ψ))grs
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= (gls)
−1ψ(t1,2, t2,3)grs

= ψ(t1,2, (gls)
−1t2,3gls)(g

l
s)
−1grs

= ψ(t1,2, (gls)
−1grst

2,3(grs)
−1gls)ĝs

= ψ(t1,2, ĝst
2,3(ĝs)

−1)ĝs.

To establish the second equality, we make use of (dgls/ds)(g
l
s)
−1 = ν(ψ)1,2 +

ν(ψ)12,3 and (dgrs/ds)(g
r
s)
−1 = ν(ψ)2,3 + ν(ψ)1,23. The third equality follows

from Proposition 4.7. For the fourth and fifth equalities, we are using that t

is central in sder2.

Observe that ĝ0 = e ∈ KRV0
3. Then, h(t1,2, t2,3) and ĝ satisfy the same

first order linear ordinary differential equation with the same initial condition.

Hence, they coincide, as required. �

The Lie algebra homomorphism ν : grt1 → krv2 gives rise to a subgroup

of KRV2 isomorphic to GRT1. The group KRV2 acts on the set of solutions

of the KV problem and on the set of associators with values in KRV0
3 (see

equation (27)). In [8] (see §5) Drinfeld defines a free and transitive action of

the group GRT1 on the set of associators with values in T3. This action is

given by the following formula:

(32) g : Φ(t1,2, t2,3) 7→ Φ(t1,2, gt2,3g−1)g,

where g = expGRT1
(ψ) ∈ GRT1 and Φ ∈ T3 are viewed as elements of the

group Lie2(t
1,2, t2,3). The following proposition relates these two actions.

Proposition 9.13. When restricted to the set of Drinfeld’s associators,

the action of the group GRT1 on KV-associators coincides with the canonical

action (32).

Proof. Let g ∈ KRV2 and rewrite the action (27) on Φ(t1,2, t2,3) ∈ T3 as

follows:

Φ · g = (g12,3)−1(g1,2)−1Φ(t1,2, t2,3)g2,3g1,23 = Φ(t1,2, ĝt2,3ĝ−1)ĝ

for ĝ = (g12,3)−1(g1,2)−1g2,3g1,23. Let ψ ∈ grt1 and g = exp(ν(ψ)). Then,

by Proposition 9.12 we have ĝ = (expGRT1
(ψ))(t1,2, t2,3), and the action (27)

coincides with the canonical action (32). �

Remark 9.14. If the conjecture of Section 4 is correct, we have KRV2
∼=

Kt × ν(GRT1), where the additive group Kt injects into KRV2 via the expo-

nential map, λt 7→ exp(λt). In particular, this implies KRV2 = KRVsym
2 since

both Kt and ν(GRT1) are contained in KRVsym
2 . Note that the action of Kt on

KV-associators is trivial and the action of GRT1 on the set of Drinfeld’s associ-

ators is transitive. The action of KRVsym
2 on KV-associators is also transitive,

and we conclude that all KV-associators are Drinfeld’s associators.
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Remark 9.15. For Drinfeld’s associators, Furusho [12] showed that the

hexagon equations (30), (31), and the inversion property (29) follow from the

pentagon equation, and the normalization condition π(φ2) = 1/8. In the case

of KV-associators, Proposition 8.11 shows that the hexagon equations (30)

and (31) follow from the pentagon equation, the inversion property, and the

normalization condition π(φ2) = 1/8. If we assumed KRV2 = KRVsym
2 , the

inversion property would be automatic and we would get the analogue of Fu-

rusho’s result for KV-associators. If the conjecture of Section 4 holds true, we

recover the Furusho’s result.

Appendix A. Cohomology computations

In this appendix, we collect the cohomology computations needed in the

paper. We give a detailed account for cohomology in low degrees. A more

enlightened approach can be found in [22] and [27].

Proof of Theorem 2.8. The first statement is obvious since lie1 = Kx and

δ(x) = x− (x+ y) + y = 0. The second statement follows from the calculation

of Example 2.7.

For computing the second cohomology, let f be a solution of degree n ≥ 2

of the equation

(33) f(y, z)− f(x+ y, z) + f(x, y + z)− f(x, y) = 0.

By putting x 7→ sx, y 7→ x, z 7→ z, we obtain

f(x, z)− f((1 + s)x, z) + f(sx, x+ z)− f(sx, x) = 0.

In a similar fashion, putting x 7→ x, y 7→ z, z 7→ sz yields

f(z, sz)− f(x+ z, sz) + f(x, (1 + s)z)− f(x, z) = 0.

Combining these two equations gives an identity

f((1 + s)x, z) + f(x, (1 + s)z)

= 2f(x, z) + f(sx, x+ z) + f(x+ z, sz)− f(sx, x)− f(z, sz)

and differentiating both sides in s at s = 0 yields

nf(x, z) =
d

ds
(f((1 + s)x, z) + f(x, (1 + s)z))|s=0(34)

=
d

ds
(f(sx, x+ z) + f(x+ z, sz)− f(sx, x)− f(z, sz))|s=0.

First, we solve equation (34) for f ∈ lie2. In this case, f(sx, x) = f(z, sz) = 0

and we obtain

f(x, z) = adn−1x+z(αx+ βz)

for some α, β ∈ K. For n = 2, this yields f(x, z) = (β − α)[x, z]. It is easy to

check that this is a solution of equation (33).
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For n ≥ 3, consider equation (33) and first put y = −z to get f(x,−z) =

−f(x − z, z) which implies f(x, z) = −f(x + z,−z). Then, put y = −x to

obtain f(−x, z) = −f(x, z−x) which implies f(x, z) = −f(−x, x+ z). Hence,

f(x, z) = −(α− β) adn−1x z = (α− β) adn−1z x.

This implies α−β = 0 and f(x, z) = 0 since adn−1z x 6= − adn−1x z (in lie2) unless

n = 2. Finally, for n = 1, we put f(x, y) = αx + βy to obtain δf = αx − βz.
In conclusion, δf = 0 implies that f is of degree two and f(x, y) = α[x, y] for

α ∈ K.

For f ∈ tr2, equation (34) gives

f(x, z) = tr
Ä
(αx+ βz)(x+ z)n−1 − αxn − βzn

ä
for some α, β ∈ K. For n = 1, it implies f(x, z) = 0. For n = 2, we get

f(x, z) = (α+ β) tr(xz) = − α+ β

2
δ(tr(x2)) .

For n ≥ 3, we have

δf = (α− β) tr y((x+ y)n−1 + (y + z)n−1 − (x+ y + z)n−1 − yn−1).

Introduce a basis of monomial cyclic words in tr3 (e.g., tr(yn), tr(yn−1x) =

tr(xyn−1), tr(yn−2xz), etc.). With respect to this basis, the coefficient of the

cyclic monomial tr(yn−2xz) in the decomposition of δf is equal to (β−α)(n−2).

It vanishes if and only if β = α. In this case, f(x, z) = −αδ(tr(xn)). Hence,

δf = 0 implies the existence of g ∈ tr1 such that δg = f , and the second

cohomology H2(tr, δ) vanishes.

Remark. In the proof of Theorem 2.8 we have shown that ker (δ : lie2 →
lie3) = K[x, y]. That is, the only solution of equation (33) is f(x, y) = α[x, y].

Equation (33) has been previously considered in the proof of Proposition 5.7

in [8]. There it is stated that equation (33) has no nontrivial symmetric (that

is, f(x, y) = f(y, x)) solutions in lie2.

Proof of Proposition 2.10. For H1(lie, δ̃), we consider δ̃(x) = x + y −
ch(x, y) 6= 0 which implies H1(lie, δ̃) = ker(δ̃ : lie1 → lie2) = 0. To compute

H1(tr, δ̃), observe that δ̃(tr(x)) = tr(x + y − ch(x, y)) = 0 (here we used that

tr(a) = 0 for all a ∈ lien of degree greater or equal to two) and δ̃ tr(xk) =

δ tr(xk) + · · · 6= 0 for k ≥ 2 (here “. . . ” stand for the terms of degree greater

than k).

In order to compute the second cohomology, assume δ̃f = 0, where f =∑∞
n=k fn with fn homogeneous of degree n and fk 6= 0. Then, δ̃f = δfk +

terms of degree > k, and we have δfk = 0.

First, consider f ∈ lie2. In this case, δfk = 0 implies fk = 0 for all k

except k = 2. For k = 2, we have f2(x, y) = α
2 [x, y] for some α ∈ K. Define
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g = f + α(δ̃x) = f + α(x + y − ch(x, y)). We have δ̃g = δ̃f + αδ̃2x = 0 and

g2(x, y) = 0. Hence, g = 0 and f = −α(x+ y − ch(x, y)) = δ̃(−αx).

For f ∈ tr2, the equation δfk = 0 implies fk = δhk for some hk ∈ tr1.

Consider g = f − δ̃hk. It satisfies δ̃g = 0 and g =
∑∞
n=k+1 gk. In this way, we

inductively construct h ∈ tr1 such that g = δ̃h.

Proof of Theorem 3.17. Since tder1 = 0, we have H2(tder, d) = ker(d :

tder2 → tder3). Let u = (a, b) ∈ tder2 and consider du = u2,3−u12,3+u1,23−u1,2.
The equation du = 0 reads

− a(x+ y, z) + a(x, y + z) − a(x, y) = 0,

a(y, z) − a(x+ y, z) + b(x, y + z) − b(x, y) = 0,

b(y, z) − b(x+ y, z) + b(x, y + z) = 0.

Put x = 0 in the first equation to get a(y, z) = a(0, y + z) − a(0, y) = αz. In

the same way, put z = 0 in the third equation to obtain b(x, y) = b(x+ y, 0)−
b(y, 0) = βx. All three equations are satisfied by u = (αy, βx) = (α− β)r+ βt

for all α, β ∈ K. Hence, ker(d : tder2 → tder3) = Kr ⊕Kt.
In order to compute H3(tder, d), we put u = (a, b, c) ∈ tder3 and write

du = u2,3,4 − u12,3,4 + u1,23,4 − u1,2,34 + u1,2,3. The equation du = 0 yields

− a(x+ y, z, w) + a(x, y + z, w) − a(x, y, z + w) + a(x, y, z) = 0,

a(y, z, w) − a(x+ y, z, w) + b(x, y + z, w) − b(x, y, z + w) + b(x, y, z) = 0,

b(y, z, w) − b(x+ y, z, w) + b(x, y + z, w) − c(x, y, z + w) + c(x, y, z) = 0,

c(y, z, w) − c(x+ y, z, w) + c(x, y + z, w) − c(x, y, z + w) = 0.

Make a substitution x 7→ x, y 7→ −x, z 7→ x+ y, w 7→ z in the first equation to

get

a(x, y, z) = a(x,−x, x+ y + z)− a(x,−x, x+ y) + a(0, x+ y, z).

Let f(x, y) = −a(x,−x, x + y) and k(x, y) = a(0, x, y) − f(x, y) to get the

following expression for a:

a(x, y, z) = f(x, y)− f(x, y + z) + f(x+ y, z) + k(x+ y, z).

In the same fashion, putting x 7→ y, y 7→ z + w, z 7→ −w,w 7→ w in the forth

equation gives

c(y, z, w) = c(y + z + w,−w,w)− c(z + w,−w,w) + c(y, z + w, 0).

By letting g(z, w) = c(z + w,−w,w) and l(z, w) = c(z, w, 0) + g(z, w), we

obtain

c(y, z, w) = −g(y, z + w) + g(y + z, w)− g(z, w) + l(y, z + w).

Consider ũ = (ã, b̃, c̃) = u + d(f, g). It satisfies dũ = 0 and it has ã(x, y, z) =

k(x + y, z) and c̃(x, y, z) = l(x, y + z). The first equation (for ã) implies

k(x + y, z) = k(x + y, z + w) which forces k = 0 (since ã does not contain

terms linear in x). In the same way, the fourth equation for c̃ yields l(x + y,

z+w) = l(y, z+w) which implies l = 0. Hence, ũ = (0, b̃, 0). Denote h(x, y) =
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b̃(x, 0, y). First put y = 0 in the second equation for b̃ to get b̃(x, z, w) =

h(x, z + w) − h(x, z), then put z = 0 in the third equation for b̃ to obtain

b̃(x, y, w) = h(x+ y, w)− h(y, w). These two equations imply

h(x, y)− h(x, y + w) + h(x+ y, w)− h(y, w) = 0,

and, by Theorem 2.8, h(x, y) = γ[x, y] for some γ ∈ K. This implies b̃(x, y, z) =

γ[x, y + z]− γ[x, y] = γ[x, z]. It is easy to check that ũ = (0, γ[x, z], 0) verifies

dũ = 0. Finally, in degree two, im(d : tder2 → tder3) is spanned by

d(α[x, y], β[x, y]) = (−α[y, z], (α− β)[z, x], β[x, y]),

and (0, γ[x, z], 0) /∈ im(d : tder2 → tder3) for γ 6= 0.

Appendix B. Proof of Proposition 4.7

In this appendix we give a proof of Proposition 4.7. It is inspired by the

proof of Proposition 5.7 in [8].

Denote dΨ = (a, b, c). We have

a = −ψ(−x− y, x) + ψ(−x− y − z, x)− ψ(−x− y − z, x+ y),

b = −ψ(−x− y, y) + ψ(−x− y − z, y + z)

− ψ(−x− y − z, x+ y) + ψ(−y − z, y),

c = ψ(−x− y − z, y + z)− ψ(−x− y − z, z) + ψ(−y − z, z).

Let g be the semi-direct sum of tder3 and lie3. The following formulas define

an injective Lie algebra homomorphism of t4 to g:

t1,2 7→ (y, x, 0) ∈ tder3, t1,3 7→ (z, 0, x) ∈ tder3, t2,3 7→ (0, z, y) ∈ tder3,

t1,4 7→ x ∈ lie3, t2,4 7→ y ∈ lie3, t3,4 7→ z ∈ lie3 .

Indeed, t1,2, t1,3, and t2,3 span a Lie subalgebra of tder3 isomorphic to t3, and

x, y, and z span an ideal of t4 isomorphic to a free Lie algebra with three

generators. It remains to check the Lie brackets between generators of these

two Lie subalgebras. For instance, we compute

[t1,2, t3,4] = t1,2(z) = 0, [t1,2, t2,4] = t1,2(y) = [y, x] = [t2,4, t1,4],

as required.

Note that (dΨ)(x) is the image of the following element of t4:

[t1,4,−ψ(−t1,4 − t2,4, t1,4)+ψ(−t1,4 − t2,4 − t3,4, t1,4)

− ψ(−t1,4 − t2,4 − t3,4, t1,4+ t2,4)]

= [t1,4,−ψ(t1,2, t1,4)+ψ(t1,2+ t1,3+ t2,3, t1,4)− ψ(t1,2+ t1,3+ t2,3, t1,4+ t2,4)]

= [t1,4,−ψ(t1,2, t1,4)+ψ(t1,2+ t1,3, t1,4)− ψ(t1,3+ t2,3, t1,4+ t2,4)]

= [t1,4,−ψ(t2,3, t1,2+ t2,4)+ψ(t2,3, t1,2)]

= [t1,4, ψ(t2,3, t1,2)] = [ψ(t1,2, t2,3), t1,4].
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Here, in passing from the first to the second equation, we used the properties

of central elements in t3 and t4. For instance, t1,2 + t1,4 + t2,4 is central in the

Lie subalgebra (isomorphic to t3) spanned by t1,2, t1,4, and t2,4. In the passage

from the second to the third equation we used the defining relations of the Lie

algebra t4. For instance, in the second term we used that t2,3 has a vanishing

bracket with t1,4 and t1,2 + t1,3. In the passage from the third to the fourth

equation we used a (3214) permutation of the equation (13). Finally, in the last

passage we again used the defining relations of t4 and, in particular, the fact

that t1,4 has a vanishing bracket with t2,3 and with t1,2 + t2,4. In conclusion,

we have

dΨ(x) = ψ(t1,2, t2,3)(x).

Similarly, (dΨ)(y) is the image of the following element:

[t2,4,−ψ(−t1,4 − t2,4, t2,4) + ψ(−t1,4 − t2,4 − t3,4, t2,4 + t3,4)

− ψ(−t1,4 − t2,4 − t3,4, t1,4 + t2,4) + ψ(−t2,4 − t3,4, t2,4)]

= [t2,4,−ψ(t1,2, t2,4) + ψ(t1,2 + t1,3 + t2,3, t2,4 + t3,4)

− ψ(t1,2 + t1,3 + t2,3, t1,4 + t2,4) + ψ(t2,3, t2,4)]

= [t2,4,−ψ(t1,3, t1,2 + t1,4) + ψ(t1,3, t1,2) + ψ(t1,3, t2,3 + t3,4)− ψ(t1,3, t2,3)]

= [t2,4,−ψ(t1,3, t1,2 + t1,4) + ψ(t1,3, t2,3 + t3,4)− ψ(t1,2, t2,3)]

= [ψ(t1,2, t2,3), t2,4].

Here we used the (1324) and (3124) permutations of equation (13) as well as

equation (12), which implies ψ(t1,2, t2,3) = ψ(t1,2, t1,3) + ψ(t1,3, t2,3). Again,

the conclusion is

dΨ(y) = ψ(t1,2, t2,3)(y).

Finally, we represent (dΨ)(z) as the image of the element:

[t3,4, ψ(−t1,4 − t2,4 − t3,4, t2,4 + t3,4)− ψ(−t1,4 − t2,4 − t3,4, t3,4)

+ ψ(−t2,4 − t3,4, t3,4)]

= [t3,4, ψ(t1,2 + t1,3 + t2,3, t2,4 + t3,4)− ψ(t1,2 + t1,3 + t2,3, t3,4) + ψ(t2,3, t3,4)]

= [t3,4, ψ(t1,2 + t1,3, t2,4 + t3,4)− ψ(t1,3 + t2,3, t3,4) + ψ(t2,3, t3,4)]

= [t3,4,−ψ(t1,2, t2,3) + ψ(t1,2, t2,3 + t2,4)] = [ψ(t1,2, t2,3), t3,4],

where we used the equation (13) (no permutation needed). We conclude that

dΨ(z) = ψ(t1,2, t2,3)(z)

and dΨ = ψ(t1,2, t2,3), as required.
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