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Submultiplicativity and
the Hanna Neumann Conjecture

By Igor Mineyev

Abstract

In this article, we define submultiplicativity of `2-numbers in the category

of Γ-complexes over a given Γ-complex X̂, which generalizes the statement

of the Strengthened Hanna Neumann Conjecture (SHNC). In the case when

Γ is a left-orderable group and X̂ is a free Γ-complex, we prove submulti-

plicativity for the subcategory consisting of Γ-ordered leafages over X̂ with

an additional analytic assumption called the deep-fall property. We show

that the deep-fall property is satisfied for graphs. This implies SHNC.
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1. Introduction

The Hanna Neumann Conjecture (HNC) [15], [16] can be stated as follows.

Conjecture (HNC). Suppose Γ is a free group and A and B are its

finitely generated subgroups. Then

r̄(A ∩B) ≤ r̄(A) r̄(B).

Here r̄(Γ) := max
¶

0, rk Γ−1
©

is the reduced rank of a free group Γ, intro-

duced by Walter Neumann [17, p. 162] and named so by Dicks [2, p. 373]. Wal-

ter Neumann [17, p.164] further proposed the following Strengthened Hanna

Neumann Conjecture (SHNC). Let A\Γ/B be the set of all double cosets AgB

for g ∈ Γ and s : A\Γ/B → Γ be a section of the quotient map Γ → A\Γ/B.

Denote Az := z−1Az.

Conjecture (SHNC). Suppose Γ is a free group and A and B are its

finitely generated subgroups. Then∑
z∈s(A\Γ/B)

r̄(Az ∩B) ≤ r̄(A) r̄(B).

Let Γ be a free group, X be a graph with fundamental group Γ, and A

and B be finitely generated subgroups of Γ. Stallings [21] showed that A and

B can be realized by immersions Y → X and Z → X of finite graphs, and

that A ∩B is realized by a connected component of their fiber product

(1) S

µ

��

ν // Z

β
��

Y
α // X.

Gersten [7] further refined that approach to give a graph-theoretic (and sim-

pler) proof of Hanna Neuman’s original upper bound:

r̄(A ∩B) ≤ 2 r̄(A) r̄(B).

Systems of complexes defined in [14, §3.1] are certain diagrams obtained as

multiple pull-backs (see 4.2 below). Systems consisting of graphs incorporate

Stallings’ fiber product diagrams (1). They provide Γ-equivariant versions

of (1), allow restating SHNC in terms of `2-Betti numbers and generalize the

statement of SHNC (see [14]). It was first observed by Warren Dicks that HNC

can be restated in terms of the first `2-Betti numbers of A, B and A ∩B.

In this paper we discuss submultiplicativity which is the term for “a general

SHNC-like property for Γ-complexes”. The precise definition is given in 2.4

below. We work with complexes of arbitrary dimension whenever possible,

since this is more general and requires no additional effort. First we provide

some general constructions and conditions that imply submultiplicativity, no-

tably left-invariant orders in 3.1, leafages in 4.1, and the deep-fall property
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in 5.2. Theorem 14 is the main result of this paper which lists the necessary

conditions in the generality of complexes. Then we show that those conditions

are satisfied in the case of graphs (§6); this implies SHNC. A reader interested

strictly in the proof of SHNC should always think of graphs and dimension

i = 1 whenever the word “complex” comes up.

For previous results related to HNC the reader is referred to Burns [1],

Imrich [8], Servatius [19], Stallings [21], Gersten [7], Nickolas [18], Walter Neu-

mann [17], Feuerman [5], Tardos [22], Dicks [2], Dicks-Formanek [3], Khan [11],

Meakin-Weil [13], Sergei Ivanov [9], [10], and Dicks-Ivanov [4]. A proof of

SHNC has also been announced in a recent preprint by Joel Friedman [6].

This research is partially supported by the NSF grant DMS-07-06876.

The author would like to thank Warren Dicks for comments on improving the

paper. The author would like to give special thanks to Stephen Gersten for a

series of great courses in geometric group theory at the University of Utah a

while ago which inspired the author to think about this problem, and of many

others.

2. Complexes and submultiplicativity

2.1. Complexes and graphs. In this paper, by a complex we will mean a

cell complex. Maps between cell complexes will be assumed to be combina-

torial, meaning that they send open cells homeomorphically onto open cells.

We require that cells in cell complexes are oriented, and that actions on cell

complexes preserve the orientations of cells. Each complex Y will be formally

viewed as a disjoint union of its cells ΣY
∗ :=

⊔
i≥0 ΣY

i , where ΣY
i is the set of

i-cells in Y .

A graph is a 1-dimensional cell complex. The orientation on the edges of a

graph allows assigning to each edge σ its initial and terminal vertices, denoted

σ− and σ+, respectively.

Let Γ be a group. A Γ-complex Ŷ is of type F if the quotient Γ\Ŷ is finite.

If Ŷ is a Γ-complex of type F , then the boundary maps ∂ : CΣŶ
i → CΣŶ

i−1

extend to a bounded map of Γ-modules ∂ : `2(ΣŶ
i )→ `2(ΣŶ

i−1), i.e., a morphism

of Hilbert Γ-modules. Combining all the above maps ∂ into one map defines

the total boundary operator ∂ : `2(Ŷ )→ `2(Ŷ ). More generally, this operator

is defined if Ŷ is a uniformly locally finite complex.

2.2. Complexes over (X̂,Γ). Let X̂ be a Γ-complex. A complex over

(X̂,Γ) is a pair (Ŷ , α̂), where Ŷ is a Γ-complex and α̂ : Ŷ → X̂ is a Γ-

equivariant map. For simplicity we will just say in this case that “Ŷ is a

complex over (X̂,Γ)” or “α̂ is a complex over (X̂,Γ).”

The complexes over (X̂,Γ) form a category Compl(X̂,Γ), where mor-

phisms (Ŷ , α̂) → (Ŷ ′, α̂′) are Γ-equivariant maps ϕ : Ŷ → Ŷ ′ such that

α′ ◦ ϕ = α.
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The product of two complexes Ŷ and Ẑ in over (X̂,Γ) is the fiber product

over X̂, denoted Ŷ 2̂ Ẑ:

Ŷ 2̂ Ẑ

µ̂
��

ν̂ // Ẑ

β̂
��

Ŷ
α̂ // X̂.

2.3. `2-numbers. For a detailed exposition of Hilbert modules and Murray-

von Neumann dimension, see [12]. In this paper we will only use the standard

facts that are collected in [14, §§4.1 and 4.2].

For a Γ-complex Ŷ of type F , define

a
(2)
i (Ŷ ,Γ) := dimΓ Ker

(
∂ : `2(ΣŶ

i )→ `2(ΣŶ
i−1)

)
,

b
(2)
i (Ŷ ,Γ) := dimΓH

(2)
i (Ŷ ),

where dimΓ is the Murray-von Neumann dimension of Hilbert Γ-modules.

b
(2)
i (Ŷ ; Γ) is called the ith `2-Betti number. It is possible to define these num-

bers without the type F assumption; we omit the details.

2.4. Submultiplicativity. Let Γ be a group, X̂ be a Γ-complex, Ŷ and Ẑ

be complexes over (X̂,Γ), and i be an integer. We pose the following general

questions:

(a) Under what conditions

a
(2)
i (Ŷ 2̂ Ẑ,Γ) ≤ a(2)

i (Ŷ ,Γ) · a(2)
i (Ẑ,Γ) ?

(b) Under what conditions

b
(2)
i (Ŷ 2̂ Ẑ,Γ) ≤ b(2)

i (Ŷ ,Γ) · b(2)
i (Ẑ,Γ) ?

These properties might be called a-submultiplicativity and b-submultiplica-

tivity, respectively. In the case when Ŷ is a graph and i = 1, the two numbers

agree:

a
(2)
1 (Ŷ ,Γ) = b

(2)
1 (Ŷ ,Γ),

so the two questions are equivalent. SHNC is equivalent to submultiplicativity

in dimension 1 for certain appropriately chosen graphs X̂, Ŷ , Ẑ (see [14]), so

the above submultiplicativity questions generalize SHNC.

3. Complexes and orders

3.1. Law and order. In what follows, we will clearly distinguish between

ordered Γ-complexes and Γ-ordered complexes.

Given a complex X̂, by an order on X̂ we will mean a choice of a total

order ≤ on each ΣX̂
i .

Let Γ be any group. X̂ will be called an ordered Γ-complex if
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• X̂ is a Γ-complex, and

• for each i, ΣX̂
i is given a Γ-invariant total order ≤.

Now additionally assume that Γ is left-ordered, meaning that there is a

total order ≤ on Γ such that a ≤ b implies ga ≤ gb for all a, b, g ∈ Γ.

Suppose X̂ is a free Γ-complex and Σ̄X̂
i ⊆ ΣX̂

i is a fundamental domain

for the free Γ-action on ΣX̂
i . Then ΣX̂

i = ΓΣ̄X̂
i , and the map Γ × Σ̄X̂

i → ΣX̂
i

given by (g, σ̄) 7→ gσ̄ is a bijection.

Fix any order on the fundamental domain Σ̄X̂
i . Put an order on ΣX̂

i

by identifying it with Γ × Σ̄X̂
i as above and taking the lexicographic order.

Specifically, the order is defined according to the law

(2) gσ̄ < hτ̄ ⇔ g < h or (g = h and σ̄ < τ̄)

for gσ̄, hτ̄ ∈ ΓΣ̄X̂
i = ΣX̂

i . Since the order on Γ is left-invariant, we immediately

obtain

Lemma 1. The above order on ΣX̂
i is (left) Γ-invariant.

We will say that X̂ is a Γ-ordered complex if

• Γ is a left-ordered group, and

• X̂ is a free Γ-complex with an order induced on each ΣX̂
i as above.

Each Γ-ordered complex is an ordered Γ-complex, but the converse is false

in general.

3.2. Cones and maps. For a partially ordered set (T,≤) and t ∈ T , denote

• [T < t] := {s ∈ T | s < t},
• [T ≤ t] := {s ∈ T | s ≤ t}.

These are the negative cones of the order on T .

A function ϕ : S → T between partially ordered sets is called order-

preserving if for all s, s′ ∈ S, s ≤ s′ implies ϕ(s) ≤ ϕ(s′). The function

ϕ : S → T is called strictly order-preserving if for all s, s′ ∈ S, s < s′ implies

ϕ(s) < ϕ(s′).

If (T,≤) is a partially ordered set with a left action by a group Γ preserving

the order ≤, then Γ also preserves the strict order < and sends cones to cones.

Specifically, for g ∈ Γ,

g[T ≤ t] = [T ≤ gt] and g[T < t] = [T < gt].

3.3. Pull-back orders. Let T be a set, (S,≤) be a totally ordered set, and

α : T → S be a function. Put any total order on each fiber α−1(s), s ∈ S. The

union of these orders is a partial order on T which we denote ≤fib.



398 IGOR MINEYEV

For t, t′ ∈ T , set

t <fib t
′ ⇔ t ≤fib t

′ and t 6= t′,(3)

t < t′ ⇔ α(t) < α(t′) or t <fib t′,

t ≤ t′ ⇔ t < t′ or t = t′.

A total order ≤ on T defined in this way will be called a pull-back order on T .

Any Γ-ordering on a complex X̂ as in 3.1 can be viewed as a special case

of pull-back order — one corresponding to a Γ-equivariant map ΣX̂
i → Γ.

Let X̂ be a Γ-ordered complex and α̂ : Ŷ → X̂ be a complex over (X̂,Γ).

Then Ŷ can be given a Γ-invariant order as follows. For the fundamental

domain Σ̄X̂
i of ΣX̂

i , denote Σ̄Ŷ
i := α̂−1(Σ̄X̂

i ); then Σ̄Ŷ
i is a fundamental domain

of ΣŶ
i . Take any pull-back order on Σ̄Ŷ

i via α̂ : Σ̄Ŷ
i → Σ̄X̂

i ; then use it to define

an order on ΣŶ
i as in (2). This turns Ŷ into a Γ-ordered complex. When the

order on Y is obtained in this way, we will say that α̂ : Ŷ → X̂ is a Γ-ordered

complex over X̂. Note that this order on Ŷ is also an example of a pull-back

order via α̂ : Ŷ → X̂ as defined in (3). Note also that α̂ is order-preserving,

but not necessarily strictly order-preserving.

3.4. Order-essential and order-inessential cells.

Definition 2. Let Ŷ be an ordered Γ-complex. A cell σ ∈ ΣŶ
i will be called

order-essential if any of the following equivalent conditions holds:

(a) ∂σ ∈ ∂(`2[ΣŶ
i < σ]) in `2(ΣŶ

i−1),

(b) ∂(`2[ΣŶ
i ≤ σ]) ⊆ ∂(`2[ΣŶ

i < σ]) in `2(ΣŶ
i−1),

(c) ∂(`2[ΣŶ
i ≤ σ]) = ∂(`2[ΣŶ

i < σ]) in `2(ΣŶ
i−1),

and order-inessential otherwise. Denote EŶi and IŶi as the sets of order-essential

and order-inessential cells in Ŷ , respectively.

Here `2[ΣŶ
i < σ] denotes the Hilbert space with basis [ΣŶ

i < σ], viewed as

a subspace of `2(ΣŶ
i ). The bar represents the closure in `2(ΣŶ

i−1). If condition

(a) holds, we will say that σ falls into its open negative cone. By definition,

ΣŶ
i = EŶi t IŶi .

Lemma 3. The sets EŶi and IŶi are Γ-invariant.

Proof. For any g ∈ Γ,

gσ ∈ EŶi ⇔ ∂(gσ) ∈ ∂(`2[ΣŶ
i < gσ]) ⇔ g(∂σ) ∈ g

(
∂(`2[ΣŶ

i < σ])
)

⇔ ∂σ ∈ ∂(`2[ΣŶ
i < σ]) ⇔ σ ∈ EŶi

and similarly for IŶi . �



SUBMULTIPLICATIVITY AND THE HANNA NEUMANN CONJECTURE 399

Definition 4. Suppose that Ŷ is a Γ-ordered complex and that Y := Γ\Ŷ .

Let pY : Ŷ → Y be the quotient map. A cell σ ∈ ΣY
i will be called order-

essential if any preimage of σ under pY : Ŷ → Y is order-essential. Similarly,

it is order-inessential if any preimage of σ is order-inessential. Denote EYi and

IYi the sets of order-essential and order-inessential edges in ΣY
i , respectively.

EYi and IYi depend on the choice of Ŷ and the order on Ŷ , but we suppress

them in the notation. Since the Γ-action is free, the Γ-orbits of cells in Ŷ are

exactly the preimages of cells in Y , so Lemma 3 guarantees that ΣY
i = EYi tIYi .

4. Leafages and systems

4.1. Leafages. As defined in [14], a leafage is a map α̂ : Ŷ → Ẑ between

complexes whose restriction to each connected component is injective. A Γ-

leafage is a leafage α̂ : Ŷ → X̂ in which Ŷ and X̂ are given left Γ-actions that

commute with α̂. A Γ-ordered leafage is a Γ-leafage α̂ : Ŷ → Ẑ in which X̂ and

X̂ are Γ-ordered complexes, and the order on Ŷ is a pull-back order from X̂

as in 3.3.

Given a free Γ-complex X̂, the Γ-leafages over X̂ form a category Leaf(X̂,Γ).

Objects are Γ-leafages over X̂, and morphisms are Γ-equivariant maps Ŷ → Ŷ ′

compatible with the maps to X̂. Leaf(X̂,Γ) is a full subcategory of Compl(X̂,Γ).

Similarly, given a Γ-ordered complex X̂, the Γ-ordered leafages over X̂

form a category Leaf(X̂,Γ)≤. The objects are Γ-ordered leafages over X̂, and

morphisms are the same as in Leaf(X̂,Γ). We do not require morphisms in

Leaf(X̂,Γ)≤ to be order-preserving.

A product of two objects in this category is defined, but not uniquely. By

a product we will mean the usual fiber product together with some choice of

a pull-back order. As the term suggests, a fiber in the fiber product is the

product of fibers. So if necessary, one can make the order on the product

canonical by putting the lexicographic order on each of its fibers.

The following lemma is immediate.

Lemma 5. Suppose α̂ : Ŷ → X̂ and β̂ : Ẑ → X̂ are complexes over X̂ and

(4) Ŝ

µ̂
��

ν̂ // Ẑ

β̂
��

Ŷ
α̂ // X̂

is their product diagram.

(a) If α̂ is a leafage, then ν̂ is a leafage.

(b) If α̂ and β̂ are leafages, then α̂ ◦ µ̂ is a leafage.



400 IGOR MINEYEV

Lemma 6. Suppose α̂ : Ŷ → X̂ is a Γ-ordered leafage. Then for each i and

each component K of Ŷ , the restriction of α to ΣK
i is strictly order-preserving.

Proof. Take any σ, τ ∈ ΣK
i and assume σ < τ . Since α̂ is a leafage, then

α̂(σ) 6= α̂(τ). Suppose α̂(τ) < α̂(σ); then by the definition of the pull-back

order on Ŷ , τ < σ, which is a contradiction. Hence α̂(σ) < α̂(τ). �

The following lemma is an easy exercise.

Lemma 7. Let Ŷ be a Γ-complex of type F and K be a connected compo-

nent of Ŷ . Then the orthogonal projection pK : `2(Ŷ )→ `2(K) commutes with

the boundary operator ∂ : `2(Ŷ )→ `2(Ŷ ).

Lemma 8. Let Ŷ be a Γ-complex of type F , σ ∈ ΣŶ
i , and K be the con-

nected component of Ŷ containing σ. Then ∂σ ∈ ∂(`2[ΣŶ
i < σ]) if and only if

∂σ ∈ ∂(`2[ΣK
i < σ]).

Proof. The “if” direction is clear. For “only if”, use Lemma 7:

∂σ ∈ ∂(pK(σ)) = pK(∂σ) ∈ pK
(
∂(`2[ΣŶ

i < σ])
)

⊆ pK(∂(`2[ΣŶ
i < σ])) = ∂(pK(`2[ΣŶ

i < σ]))

= ∂(`2([ΣŶ
i < σ] ∩ ΣK

i )) = ∂(`2[ΣK
i < σ]). �

Lemma 9 (Leafage maps preserve order-essential cells). Suppose X̂ is a

Γ-ordered complex, α̂ : Ŷ → X̂ and α̂′ : Ŷ ′ → X̂ are Γ-ordered leafages of type

F over X̂ , and λ : Ŷ → Ŷ ′ is a morphism of Γ-leafages over X̂ . Then the

following hold :

(a) For all i, λ̂(EŶi ) ⊆ EŶ ′i .

(b) If Y := Γ\Ŷ , Y ′ := Γ\Ŷ ′, and λ : Y → Y ′ is induced by λ̂, then

λ(EYi )⊆EY ′i .

Proof. (a) Take any σ ∈ EŶi and letK be the component of Ŷ containing σ.

By Lemma 8, ∂σ ∈ ∂(`2[ΣK
i < σ]). Let K ′ be the connected component of

Y ′ containing λ̂(K). By Lemma 6, the restricted maps α̂ : ΣK
i → ΣX̂

i and

α̂′ : ΣK′
i → ΣX̂

i are strictly order-preserving; hence the restricted map λ̂ :

ΣK
i → ΣK′

i ⊆ ΣŶ ′
i is strictly order-preserving. Therefore

∂(λ̂(σ)) = λ̂(∂σ) ∈ λ̂
(
∂(`2[ΣK

i < σ])
)

⊆ ∂(`2(λ̂([ΣK
i < σ])))

⊆ ∂(`2[ΣŶ ′
i < λ̂(σ)]),

so λ̂(σ) ∈ EŶ ′i .

(b) clearly follows from (a) by the definition of EYi and EY ′i . �
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4.2. Systems. Systems of complexes were introduced in [14, §3.1] to gen-

eralize the statement of SHNC. Systems provide concrete examples of leafages

and their products.

Let Γ be a group. A Γ-system is a diagram as in (5) obtained as follows:

(5) S
ν

//

µ

��

Z

β

��

Ŝ

pS
__

µ̂

��

ν̂ // Ẑ

pZ
``

β̂

��

S :

Y
α // X

Ŷ
pY

__

α̂ // X̂.

pX``

Start with any cell complex X̂ with a free Γ-action and let X be the

quotient Γ\X̂. Denote by pX : X̂ → X the quotient map. Let α : Y → X and

β : Z → X be immersions, defined as maps of complexes that can be extended

to (not necessarily finite) covers of X. Let

(6) S

µ

��

ν // Z

β
��

Y
α // X

be the fiber-product diagram for Y and Z. Now diagram (5) is defined to

be the pull-back of the whole diagram (6) under pX : X̂ → X. It is called

the system generated by α, β, and pX . For this general definition, none of

the complexes in the system is assumed to be finite or connected or simply

connected.

Stallings [21] defined immersions of graphs as locally injective maps. It

also can be deduced from the arguments in [21] that immersions of finite graphs

are exactly the maps of finite graphs that can be extended to finite covers, so

the above definition of immersions generalizes this notion to (finite or infinite)

complexes.

If in a system S the map pX : X̂ → X is the universal cover of X, then

Ŷ → X̂ and Ẑ → X̂ are leafages, and their product Ŝ → X̂ is as well (see [14,

Th. 7(c)] and Lemma 5 above).

A system will be called Γ-ordered if X̂ is Γ-ordered, and Ŷ , Ẑ and Ŝ are

given (Γ-invariant) pull-back orders by α̂, β̂ and α̂ ◦ µ̂, respectively, as in 3.3.

5. Deep fall and finite fall

5.1. Cones and Hilbert spaces.
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Proposition 10. For each Γ-ordered complex Ŷ ,

dimΓ ∂(`2(IŶi )) = dimΓ `
2(IŶi ).

Equivalently, the restriction of the boundary operator to `2(IŶi ), ∂ : `2(IŶi ) →
`2(ΣŶ

i−1), is an injective morphism of Hilbert Γ-modules.

Proof. For each σ ∈ IŶi , ∂σ 6∈ ∂(`2[ΣŶ
i < σ]). In particular,

∂σ 6∈ ∂(`2[IŶi < σ]).

This implies that

Vσ := (∂(`2[IŶi < σ]))⊥ ∩ ∂(`2[IŶi ≤ σ])

is a one-dimensional subspace of ∂(`2(IŶi )). Pick a unit vector eσ in Vσ. For

any g ∈ Γ, Vgσ = gVσ. Therefore we can pick eσ in an equivariant fashion so

that for all g ∈ Γ and σ ∈ IŶi , egσ = geσ.

If σ, τ ∈ IŶi and σ < τ , then

eτ ∈ (∂(`2[IŶi < τ ]))⊥ and eσ ∈ ∂(`2[IŶi ≤ σ]) ⊆ ∂(`2[IŶi < τ ]);

hence eσ ⊥ eτ . Since the order on ΣŶ
i is total, this implies that for all σ, τ ∈ IŶi ,

σ 6= τ ⇒ eσ ⊥ eτ .

Then {eσ | σ ∈ IŶi } is an orthonormal subset of ∂(`2(IŶi )), and the map

IŶi → ∂(`2(IŶi )), σ 7→ eσ,

is Γ-equivariant and extends to an isometric embedding of Hilbert Γ-modules

ϕ : `2(IŶi ) ↪→ ∂(`2(IŶi )).

This implies dimΓ `
2(IŶi )≤dimΓ ∂(`2(IŶi )). The converse inequality dimΓ `

2(IŶi )

≥ dimΓ ∂(`2(IŶi )) holds by the additivity of dimension for the weakly exact se-

quence

0→ Ker
⊆→ `2(IŶi )

∂→ ∂(`2(IŶi ))→ 0,

where Ker is the kernel of the map ∂ : `2(IŶi )→ ∂(`2(IŶi )) ⊆ `2(ΣŶ
i ). Therefore

dimΓ `
2(IŶi ) = dimΓ ∂(`2(IŶi )) and Ker = 0. Conversely, if Ker = 0, then the

dimensions are equal. �
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5.2. The deep-fall property. Let Ŷ be a Γ-ordered complex of type F and

i ≥ 0. Ŷ will be called deep-fall, or i-deep-fall, if for any σ ∈ EŶi ,

∂σ ∈ ∂(`2[IŶi < σ]).

Theorem 11. If Ŷ is a deep-fall Γ-ordered complex, then

∂(`2(ΣŶ
i )) = ∂(`2(IŶi )) in `2(ΣŶ

i−1).

Proof. It suffices to to prove the inclusion “⊆”. Take any σ ∈ EŶi .

The deep-fall property implies that ∂σ ∈ ∂(`2[IŶi < σ]) ⊆ ∂(`2(IŶi )). Thus

∂(`2(EŶi )) ⊆ ∂(`2(IŶi )) and

∂(`2(ΣŶ
i )) ⊆ ∂(`2(EŶi ) + `2(IŶi )) ⊆ ∂(`2(EŶi )) + ∂(`2(IŶi )) ⊆ ∂(`2(IŶi )). �

Theorem 12. If Ŷ is a Γ-ordered complex and Y := Γ\Ŷ , then a
(2)
i (Ŷ ; Γ)

≤ #EYi . If, in addition, Ŷ is deep-fall, then a
(2)
i (Ŷ ; Γ) = #EYi .

Proof. By Proposition 10,

dimΓ ∂(`2(IŶi )) = dimΓ `2(IŶi ) = #IYi .

By the additivity of dimension and Proposition 10,

a
(2)
i (Ŷ ; Γ) = dimΓ Ker (∂ : `2(ΣŶ

i )→ `2(ΣŶ
i−1))

= dimΓ `
2(ΣŶ

i )− dimΓ ∂(`2(ΣŶ
i )) ≤ dimΓ `

2(ΣŶ
i )− dimΓ ∂(`2(IŶi ))

= dimΓ `
2(ΣŶ

i )− dimΓ `
2(IŶi ) = #ΣY

i −#IYi = #EYi .

If Ŷ is deep-fall, then the equality holds by Theorem 11. �

Define the reduced rank of a finite graph Y by

r̄(Y ) :=
∑

K∈Comp(Y )

max{0,−χ(K)},

where Comp(Y ) is the set of components of Y . The following was proved

in [14, Th. 14].

Theorem 13. Let Ŷ be a forest with a free cocompact Γ-action and Y :=

Γ\Ŷ . Then

r̄(Y ) = b
(2)
1 (Ŷ ; Γ).
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5.3. Submultiplicativity for deep-fall leafages.

Theorem 14. Suppose

• X̂ is a Γ-ordered complex ;

• α̂ : Ŷ → X̂ and β̂ : Ẑ → X̂ are Γ-ordered leafages over X̂ ;

• Ŷ and Ẑ are of type F and deep-fall ;

• Ŝ is any product of Ŷ and Ẑ in the category Leaf(X̂,Γ)≤;

• Y := Γ\Ŷ , Z := Γ\Ẑ , S := Γ\Ŝ.

Then

#ESi ≤ #EYi ·#EZi and a
(2)
i (Ŝ; Γ) ≤ a(2)

i (Ŷ ; Γ) · a(2)
i (Ẑ; Γ).

If, in addition, Ŷ and Ẑ are forests, then Ŝ is a forest and r̄(S) ≤ r̄(Y ) · r̄(Z).

Proof. Ŝ is part of diagram (4). By the definition of fiber product, the map

ϕ : ΣS
i → ΣY

i × ΣZ
i , σ 7→ (µ(σ), ν(σ)),

is injective. The maps µ̂ : Ŝ → Ŷ and ν̂ : Ŝ → Ẑ are morphisms of Γ-leafages

over X̂. Passing to quotients gives cell maps µ : S → Y and ν : S → Z. By

Lemma 9(b),
µ(ESi ) ⊆ EYi and ν(ESi ) ⊆ EZi ;

hence the restriction of ϕ to ESi takes values in EYi ×EZi . This implies #ESi ≤
#EYi ·#EZi . The second inequality follows from Theorem 12:

a
(2)
i (Ŝ; Γ) ≤ #ESi ≤ #EYi ·#EZi = a

(2)
i (Ŷ ; Γ) · a(2)

i (Ẑ; Γ).

The third inequality follows from Theorem 13. �

Remark. With some work it is possible to define r̄(Y ) and a
(2)
i (·; Γ) (and

of course #EYi ) without assuming that Ŷ is of type F . To do that, one would

need to allow infinite values for these numbers. Then it is possible to extend

the above theorem to the one without the type F assumption on Ŷ and Ẑ,

by taking limits of type F complexes. The inequalities hold for infinite values

with the convention 0 · ∞ = 0.

For the record, we state the following corollary of Theorem 14.

Theorem 15. Suppose

• X̂ is a Γ-ordered complex of type F ;

• X̂ is simply connected (not necessarily connected);

• X := Γ\X̂ ;

• α : Y → X and β : Z → X are immersions ; and

• in the Γ-ordered system generated by α, β and pX , the Γ-ordered com-

plexes Ŷ and Ẑ are deep-fall.

Then

#ESi ≤ #EYi ·#EZi and a
(2)
i (Ŝ; Γ) ≤ a(2)

i (Ŷ ; Γ) · a(2)
i (Ẑ; Γ).

If, in addition, Ŷ and Ẑ are forests, then Ŝ is a forest and r̄(S) ≤ r̄(Y ) · r̄(Z).
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5.4. The finite-fall property. Fix i ≥ 0. A Γ-ordered complex Ŷ of type F
will be called finite-fall, or more explicitly, i-finite-fall, if for any σ ∈ EŶi and

any finite subset E ⊆ EŶi ,

∂σ ∈ ∂(`2([ΣŶ
i < σ] \ E)).

Lemma 16. Any Γ-ordered complex Ŷ of type F is finite-fall.

Proof. Take any σ ∈ EŶi and any finite E ⊆ EŶi . Without loss of generality

we will additionally assume that E ⊆ [EŶi < σ]. We prove the statement by

induction on the cardinality of E.

If #E = 0, since σ is order-essential, then

∂σ ∈ ∂(`2([ΣŶ
i < σ])) = ∂(`2([ΣŶ

i < σ] \ E)).

Now assume that #E ≥ 1. Since E is finite, there is an element ω of E

that is maximal with respect to the total order on E induced from ΣŶ
i . Denote

D := [ΣŶ
i < σ] \ E, E′ := E \ {ω};

then [ΣŶ
i < σ] \E′ = D∪{ω}. We have ω ∈ EŶi and ω < σ. Since #E′ < #E,

the induction hypotheses for ω and E′ yield

∂ω ∈ ∂(`2([ΣŶ
i < ω] \ E′)) ⊆ ∂(`2([ΣŶ

i < σ] \ E)) = ∂(`2(D)).

The induction hypotheses for σ and E′ yield

∂σ ∈ ∂(`2([ΣŶ
i < σ] \ E′)) = ∂(`2(D ∪ {ω})) ⊆ ∂(`2(D) + `2({ω}))

⊆ ∂(`2(D)) + ∂(`2({ω})) ⊆ ∂(`2(D)) = ∂(`2([ΣŶ
i < σ] \ E))

as desired. �

6. Graphs

The main goal of this section is to prove the deep-fall property for graphs.

6.1. Infinite graphs. A graph Y will be called infinite if it is infinite as a

set; i.e., the union of its vertices and edges, ΣY
0 t ΣY

1 , is infinite.

Lemma 17. Suppose Y is a locally finite graph. Then Y is infinite if and

only if its set of vertices ΣY
0 is infinite.

Proof. The “if” direction is clear. For the converse, suppose that ΣY
0 tΣY

1

is infinite, but ΣY
0 is finite; then ΣY

1 is infinite. This is impossible since Y is

locally finite. �

Lemma 18. Let Y be a connected graph. Then Y is infinite if and only if

its set of edges ΣY
1 is infinite.
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Proof. The “if” direction is clear. For the converse suppose that ΣY
1 is

finite. Each vertex in Y must be incident with some edge in ΣY
1 , otherwise

it would be isolated in Y , which contradicts connectedness. Hence Y has at

most 2 ·#ΣY
1 vertices, so Y is not infinite. �

6.2. Relative components and relative graphs. A connected component of

a graph is the set of vertices and edges that can be conected to a given point

by a path. We refine this to the notion of a relative component as follows.

Let Q be a graph and E be a subset of the edge set ΣQ
1 . An E-path in Q,

or an (E,Q)-path, is a formal finite sequence of vertices and edges of the type

v0, σ1, v1, σ2, . . . or of the type σ1, v1, σ2, v2 . . . such that

vi ∈ ΣQ
0 , σi ∈ E, and

(σ−i = vi and σ+
i = vi−1) or (σ−i = vi−1 and σ+

i = vi).

(Declare the equalities void when the indices do not make sense.) If a, b ∈ Q
(either vertices or edges), we say that an edge path connects a to b if it starts

with a and ends with b. In particular, for each vertex v ∈ ΣQ
i , the one-term

sequence v is an E-path in Q connecting v to v.

For E ⊆ ΣQ
1 , denote gr(E) the subgraph of Q generated by E; it is the

disjoint union of E together with the vertices of Q that are adjacent to the

edges of E.

Definition 19. Suppose Q is a graph, E ⊆ ΣQ
1 , and v is a vertex in Q.

Define the component of Q at v relative to E, or simply the E-component at v,

denoted Q(E, v), by either of the following equivalent definitions:

(a) If v ∈ gr(E), let Q(E, v) be the connected component of gr(E) con-

taining v. If v 6∈ gr(E), set Q(E, v) := {v}.
(b) Let Q(E, v) be the set of vertices and edges in Q that can be connected

to v by an E-path.

If Q is a graph and E ⊆ ΣQ
i , the relative graph is the subgraph

Q(E) :=
⋃

v∈ΣQ
0

Q(E, v) ⊆ Q.

We list properties of relative components.

Lemma 20. (1) v ∈ Q(E, v). In particular, Q(E, v) is never empty.

(2) Q(E, v) is a subgraph of Q.

(3) Q(E, v) is connected.

(4) If v and w are vertices in Q and w ∈ Q(E, v), then Q(E, v) = Q(E,w).

(5) Q(E, v) is increasing in variable E: if E⊆E′, then Q(E, v)⊆Q(E′, v).

(6) For any pair of vertices v, w ∈ ΣQ
0 ,

Q(E,w) ∩Q(E, v) 6= ∅ ⇔ Q(E, v) = Q(E,w).
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Proof. (1)–(5) follow from the definition.

(6) Since relative components are never empty, the direction “⇐” is im-

mediate. For the direction “⇒”, since Q(E, v) and Q(E,w) share a vertex

or an edge, then v and w can be connected by an E-path; then Q(E, v) =

Q(E,w). �

6.3. Graphs and Hilbert spaces.

Lemma 21. Suppose Q is a uniformly locally finite graph, u, v ∈ ΣQ
0 , and

E ⊆ ΣQ
1 . Then the following statements are equivalent :

(1) v − u ∈ ∂(`2(E)) in `2(ΣQ
0 ).

(2) Both Q(E, u) and Q(E, v) are infinite or Q(E, u) ∩Q(E, v) 6= ∅.
(3) Both Q(E, u) and Q(E, v) are infinite or Q(E, u) = Q(E, v).

Proof. (2) ⇔ (3) follows from Lemma 20(6).

(3) ⇒(1). Assume that Q(E, u) and Q(E, v) are infinite. For each n, pick

a subset Wn ⊆ Σ
Q(E,v)
0 of cardinality n. For each w ∈ Wn, choose an E-path

pw connecting w to v. View pw as the oriented sum of its edges: the edges

oriented in the direction of the path come with coefficient 1, and the others

with −1. Then ∂pw = v − w, and∣∣∣∣v−∂( 1

n

∑
w∈Wn

pw
)∣∣∣∣

2
=

∣∣∣∣v− ∑
w∈Wn

v − w
n

∣∣∣∣
2

=

∣∣∣∣ ∑
w∈Wn

w

n

∣∣∣∣
2

=
1√
n
→ 0 as n→∞;

hence v ∈ ∂(`2(E)). Similarly, u ∈ ∂(`2(E)); hence v − u ∈ ∂(`2(E)).

Now assume that Q(E, u) = Q(E, v). There exists an E-path p connecting

u to v. View p as the oriented sum of its edges; then v − u = ∂p ∈ ∂(`2(E)).

(1) ⇒ (2). Suppose v − u ∈ ∂(`2(E)), Q(E, v), is finite and Q(E, u) ∩
Q(E, v) = ∅. Denote K := Q(E, v); then K is a connected component of the

relative graph Q(E) ⊆ Q and u 6∈ K. Let prK : `2(Q(E)) → `2(K) be the

orthogonal projection. Lemma 7 says that prK commutes with ∂ : `2(Q(E))→
`2(Q(E)), so

v = prK(v − u) ∈ prK

(
∂(`2(E))

)
⊆ prK(∂(`2(E)))

= ∂(prK(`2(E))) = ∂(`2(ΣK
1 )).

Since ΣK
1 is a finite set, we have

v ∈ ∂(`2(ΣK
1 )) = ∂(CΣK

1 ) = ∂(CΣK
1 ).

Let ε : CΣK
0 → C be the augmentation map given by∑

v∈ΣK
0

αvv 7→
∑
v∈ΣK

0

αv.
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Then ε(v) = 1 and ε(∂(CΣK
1 )) = 0, which is a contradiction. The case when

Q(E, u) is finite is done similarly. �

If K is a subgraph of a graph Q, let the corona of K in Q be the set

Corona(K,Q) := {σ | σ is an edge in Q \K such that σ− ∈ K or σ+ ∈ K}.
For a family E of subsets of a set Σ, denote

∩E :=
⋂
E∈E

E.

The ambient set Σ is part of the structure of E , and in the case E = ∅ the

above definition formally says that ∩∅ = Σ.

Lemma 22. Let Q be a locally finite graph, v be a vertex in Q, and E
be a family of subsets in ΣQ

1 . If Q(∩E , v) is finite, then there exists a finite

subfamily E ′ ⊆ E such that

Q(∩E , v) = Q(∩E ′, v).

Note. We do allow E ′ to be empty. In this case the lemma asserts that

Q(∩E , v) = Q(ΣQ
1 , v).

Proof. Take any σ ∈ Corona(Q(∩E , v), Q). Then σ 6∈ Q(∩E , v), and σ

is adjacent to some vertex in Q(∩E , v). If we suppose that σ ∈ ∩E ; then by

the definition of relative components, v can be connected to σ by an ∩E-path;

hence σ ∈ Q(∩E , v), which is a contradiction. This proves that for each σ ∈
Corona(Q(∩E , v), Q), we have σ 6∈ ∩E . Thus for each σ ∈ Corona(Q(∩E , v), Q)

we can pick some Eσ ∈ E such that σ 6∈ Eσ.

Let
E ′ := {Eσ | σ ∈ Corona(Q(∩E , v), Q)}.

We have

(7) (∩E ′) ∩ Corona(Q(∩E , v), Q) = ∅.
Since Q is locally finite and Q(∩E , v) is finite, then Corona(Q(∩E , Q), v)

is finite, and so E ′ is a finite subfamily of E (possibly empty). Since E ′ ⊆ E ,

we have v ∈ Q(∩E , v) ⊆ Q(∩E ′, v).

Suppose that the last inclusion is proper. Then there exists a vertex or

an edge a ∈ Q(∩E ′, v) \ Q(∩E , v). Then there is an ∩E ′-path p connecting v

to a. By definition, all the edges of p are in ∩E ′. Since a 6∈ Q(∩E , v), then the

last edge of p is not in Q(∩E , v). Among the edges of p, let σ be the first edge

that is not in Q(∩E , v). All the edges of p that lie before σ are in Q(∩E , v),

hence in ∩E . Therefore all the edges and vertices of p that lie before σ form

an ∩E-path that connects v to the vertex just before σ. Then this vertex

lies in Q(∩E , v); hence σ ∈ Corona(Q(∩E , v), Q). This contradicts (7). The

contradiction shows that Q(∩E , v) = Q(∩E ′, v). �
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Lemma 23. Let Q be a uniformly locally finite graph, σ be an edge in

Q, and E be a family of subsets in ΣQ
1 . Suppose that for any finite subfamily

E ′ ⊆ E ,

∂σ ∈ ∂(`2(∩E ′)) in `2(ΣQ
0 ).

Then

∂σ ∈ ∂(`2(∩E)) in `2(ΣQ
0 ).

Proof. By Lemma 21, the condition ∂σ ∈ ∂(`2(∩E ′)) is equivalent to the

statement

both Q(∩E ′, σ−) and Q(∩E ′, σ+) are infinite or(8)

Q(∩E ′, σ−) = Q(∩E ′, σ+).

We assume that this holds for each finite subfamily E ′ ⊆ E . We want to show

that ∂σ ∈ ∂(`2(∩E)); this is equivalent to the statement

Q(∩E , σ−) and Q(∩E , σ+) are infinite or(9)

Q(∩E , σ−) = Q(∩E , σ+).

Case 1. Assume that for each finite subfamily E ′ ⊆ E , both Q(∩E ′, σ−)

and Q(∩E ′, σ+) are infinite.

Lemma 22 implies that Q(∩E , σ−) and Q(∩E , σ+) are infinite. This im-

plies (9).

Case 2. Assume that there exists a finite subfamily E ′ ⊆ E such that

Q(∩E ′, σ−) or Q(∩E ′, σ+) is finite.

For example, Q(∩E ′, σ−) is finite. Since Q(∩E , σ−) ⊆ Q(∩E ′, σ−), then

Q(∩E , σ−) is finite as well. By Lemma 22, there exist a finite subfamily E− ⊆ E
such that

Q(∩E−, σ−) = Q(∩E , σ−).

In particular, Q(∩E−, σ−) is finite. Condition (8) applies to the family E− and

says that

Q(∩E−, σ−) = Q(∩E−, σ+).

Since σ+ ∈ Q(∩E−, σ+), the above two equalities imply that σ+ ∈ Q(∩E , σ−).

By Lemma 20(5),

Q(∩E , σ−) = Q(∩E , σ+).

This implies (9). The same argument goes through under the assumption that

Q(∩E ′, σ+) is finite, by interchanging + and −. �

Note that if Q happens to be a forest and σ 6∈ ∩E , the above proof

simplifies; it suffices only to deal with Case 1.

Theorem 24 (Deep-fall property for graphs). Let Ŷ be a Γ-ordered graph

of type F . Then for any σ ∈ EŶ1 , ∂σ ∈ ∂(`2[IŶ1 < σ]).
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Proof. Take any σ ∈ EŶ1 . Consider the family

E :=
¶

[ΣŶ
1 < σ] \ {η}

∣∣∣ η ∈ EŶ1
©

of subsets in [ΣŶ
1 < σ]. Then ∩E = [ΣŶ

1 < σ] \ EŶ1 = [IŶ1 < σ].

For each finite subfamily E ′ ⊆ E , there exists a finite E ⊆ EŶ1 such that

∩E ′ = [ΣŶ
1 < σ] \ E.

By the finite-fall property (Lemma 16),

∂σ ∈ ∂(`2([ΣŶ
1 < σ] \ E)) = ∂(`2(∩E ′)).

Since E ′ is arbitrary, Lemma 23 implies

∂σ ∈ ∂(`2(∩E)) = ∂(`2[IŶ1 < σ]). �

7. The proof of SHNC

Theorem 25 (The Strengthened Hanna Neumann Conjecture.). Suppose

Γ is a free group and A and B are its finitely generated subgroups. Then∑
z∈s(A\Γ/B)

r̄(Az ∩B) ≤ r̄(A) r̄(B).

Proof. Let Γ := F2 and X be a finite graph with Γ ∼= π1(X). Take

immersions of finite graphs α : Y → X and β : Z → X representing the

subgroups A,B ≤ Γ, respectively, as defined by Stallings [21]. Let pX : X̂ → X

be the universal cover.

Free groups are left-orderable and even two-sided orderable ([20, p.157],

[23, p.165]); hence the system generated by α, β and pX is a Γ-ordered system.

By Theorem 24, Ŷ and Ẑ are deep-fall. Next, one can proceed in two ways.

One way. By Theorem 15, a
(2)
i (Ŝ; Γ) ≤ a(2)

i (Ŷ ; Γ) · a(2)
i (Ẑ; Γ). For graphs

this is equivalent to

b
(2)
i (Ŝ; Γ) ≤ b(2)

i (Ŷ ; Γ) · b(2)
i (Ẑ; Γ).

By [14, Th. 25(b′)] this is equivalent to SHNC.

Another way. Since X̂ is simply connected, then α̂ and β̂ are leafages by

[14, Th. 7(c)]. Since X̂ is a tree, then Ŷ and Ẑ are forests. By Theorem 15,

r̄(S) ≤ r̄(Y ) · r̄(Z). It follows from definitions that r̄(Y ) = r̄(π1(Y )) = r̄(A)

and r̄(Z) = r̄(π1(Z)) = r̄(B). With some more work, one can check that the

sum in the statement of SHNC equals r̄(S). �

Note that Theorems 14 and 24 imply the following more general result

which does not assume that X̂ is simply connected.

Theorem 26. Suppose

• X̂ is a Γ-ordered complex ;

• Ŷ and Ẑ are Γ-leafages over X̂ of type F (with pull-back orders from X̂);
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• Ŷ and Ẑ are graphs ;

• Ŝ is the product of Ŷ and Ẑ (with a Γ-invariant pull-back order from X̂);

• Y := Γ\Ŷ , Z := Γ\Ẑ , S := Γ\Ŝ.

Then

#ESi ≤ #EYi ·#EZi and a
(2)
i (Ŝ; Γ) ≤ a(2)

i (Ŷ ; Γ) · a(2)
i (Ẑ; Γ).

If, in addition, Ŷ and Ẑ are forests, then Ŝ is a forest and r̄(S) ≤ r̄(Y ) · r̄(Z).

8. Additional remarks

8.1. Square maps. A system is defined in [14] either as diagram (5) or as

the diagram

(10) S
ν

//

µ

��

Z

β

��

Ŝ �

ῑ

��

pS

__

µ̂

��

ν̂ // Ẑ

pZ

``

β̄

��
β̂

��

S : Ŝ̂

ν̄

77

µ̄

��

pY 2pZ

UU

Y
α // X

Ŷ

pY

__
ᾱ

77

α̂ // X̂,

pX
``

where Ŝ̂ is the fiber-product of Ŷ and Ẑ over X. The two definitions are

equivalent since diagrams (5) and (10) determine each other. We used only (5)

in this paper, but note that the proofs can be rewritten in terms of Ŝ̂ instead

of Ŝ (that is using the square approach instead of the diagonal approach).

In particular, under the assumptions of Theorem 14 it is possible to explicitly

describe an injective Γ×Γ-equivariant square map Z
(2)
i (Ŝ̂)→ Z

(2)
i (Ŷ )⊗Z(2)

i (Ẑ),

where Z
(2)
i (Ŷ ) denotes the kernel of the boundary map in dimension i. The

existence of such a map implies SHNC (see [14]).

8.2. Essential sets of edges. We can relate the set EŶ1 to the following

combinatorial notion introduced in [14, subsection 5.3]. A set of edges E ⊆ ΣY
1

in a finite graph Y is called essential if r̄(Y \ E) = r̄(Y ) − #E. A maximal

essential set is an essential set that is maximal with respect to inclusion. This

is equivalent to Y \ E being a maximal subgarden of Y as defined in [14,

subsection 5.3]. This can also be shown to be equivalent to the condition

r̄(Y \ E) = 0 = r̄(Y )−#E.
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Theorems 12, 13 and 24 imply

Theorem 27. Let Ŷ be a Γ-ordered forest of type F and Y := Γ\Ŷ . Then

r̄(Y ) = b
(2)
1 (Ŷ ; Γ) = a

(2)
1 (Ŷ ; Γ) = #EY1 .

Lemma 28. Let Ŷ be a Γ-ordered forest of type F and Y := Γ\Ŷ . Then

EY1 is a maximal essential set of edges in Y .

Proof. By Proposition 10 and Theorem 27,

r̄(Y \ EY1 ) = a
(2)
1 (Ŷ \ EŶ1 ; Γ)

= dimΓ Ker (∂ : `2(IŶ1 )→ `2(ΣŶ
0 )) = 0 = r̄(Y )−#EY1 . �

8.3. The Amalgamated Graph Conjecture. As an illustration of another

face of SHNC, we state a purely combinatorial Amalgamated Graph Conjecture

(AGC) due to Dicks [2] about bipartite graphs.

A graph P is bipartite if its vertex set is the disjoint union of two sets,

V −(P ) and V +(P ) (of color − and of color +), and each edge goes from a

vertex in V −(P ) to a vertex in V +(P ). Maps of bipartite graphs are required

to preserve the colors of vertices. Always additionally require that in a bipartite

graph any pair of vertices is connected by at most 1 edge. Therefore the total

number of edges in a bipartite graph P is bounded above by #V −(P )·#V +(P ).

We say that a bipartite graph is at most half-complete if the number of its edges

is bounded above by
#V −(P ) ·#V +(P )

2
.

Conjecture (AGC, Dicks [2]). Suppose

(a) ∆ is a finite bipartite graph,

(b) a finite bipartite graph Φi is given for each i ∈ Z3,

(c) an embedding ∆ ↪→ Φi is given for each i ∈ Z3,

(d) the amalgamation Φi−1 t∆ Φi+1 is a bipartite graph (with at most one

edge connecting any pair of vertices), and

(e) the bipartite graph ti(Φi−1 t∆ Φi+1) is a disjoint union of two isomor-

phic bipartite graphs.

Then ∆ is at most half-complete.

Here Φi−1 t∆ Φi+1 denotes the quotient of Φi−1 t Φi+1 identifying the

images of ∆ in Φi−1 and in Φi+1.

Theorem 29 (Dicks [2]). The Amalgamated Graph Conjecture is equiva-

lent to the Strenghened Hanna Neumann Conjecture.

Therefore, Theorem 25 implies AGC. SHCN can also be shown to be

equivalent to the following combinatorial.
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Statement. Suppose

(a) Pi are finite bipartite graphs for i ∈ Z3;

(b) M , N are finite bipartite graphs;

(c) ϕ : ti Pi → M and ψ : ti Pi → N are maps of bipartite graphs whose

restrictions to each Pi are injective;

(d) for each vertex or edge x in M , #ϕ−1(x) = 2 or 3, and similarly;

(e) for each vertex or edge x in N , #ψ−1(x) = 2 or 3.

Then the bipartite graph (
∩i ϕ(Pi)

)
t
(
∩i ψ(Pi)

)
is at most half-complete.
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