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Every ergodic transformation is
disjoint from almost every interval

exchange transformation

By Jon Chaika

Abstract

We show that every transformation is disjoint from almost every inter-

val exchange transformation (IET), answering a question of Bufetov. In

particular, we prove that almost every pair of IETs is disjoint. It follows

that the product of almost every pair is uniquely ergodic. A key step in the

proof is showing that any sequence of density 1 contains a rigidity sequence

for almost every IET, strengthening a result of Veech.

Definition 1. Given L = (l1, l2, . . . , ld) where li ≥ 0, l1 + · · ·+ ld = 1, we

obtain d subintervals of [0, 1),

I1 = [0, l1), I2 = [l1, l1 + l2), . . . , Id = [l1 + · · ·+ ld−1, 1).

Given a permutation π on {1, 2, . . . , d}, we obtain a d-Interval Exchange Trans-

formation (IET) TL,π : [0, 1)→ [0, 1) which exchanges the intervals Ii according

to π. That is, if x ∈ Ij , then

TL,π(x) = x−
∑
k<j

lk +
∑

π(k′)<π(j)

lk′ .

When there is no cause for confusion the subscript in denoting the IET

will be omitted. Interval exchange transformations with a fixed permutation

on d letters are parametrized by the standard simplex in R, ∆d = {(l1, . . . , ld) :

li ≥ 0,
∑
li = 1}, and ∆̊d denotes its interior, {(l1, . . . , ld) : li > 0,

∑
li = 1}.

In this paper, λ denotes Lebesgue measure on the unit interval. The term

“almost all” refers to Lebesgue measure on the disjoint union of the simplices

corresponding to the permutations that contain some IETs with dense orbits.

That is, π({1, . . . , k}) 6= {1, . . . , k} for k < d [10, §3]. These permutations are

called irreducible.

Throughout this paper we assume that all measure preserving transfor-

mations are invertible transformations of Lebesgue spaces.
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Definition 2. Two measure preserving systems (T,X, µ) and (S, Y, ν) are

called disjoint (or have trivial joinings) if µ×ν is the only invariant measure of

T × S : X × Y → X × Y by (T×S)(x, y) = (Tx, Sy) with projections µ and ν.

The main result of this paper is the following theorem.

Theorem 1. Let T : X → X be µ ergodic. (T,X, µ) is disjoint from

almost every IET.

Disjointness is a way of saying that two dynamical systems are very dif-

ferent. It implies that they have no common factors [8, p. 127 or Th. 8.4]. For

any IET T , and any other IET S, STS−1 is an IET measurably conjugated

to T and therefore every IET has uncountably many IETs with which it has

nontrivial joinings. As a consequence of Theorem 1 we obtain a corollary.

Corollary 1. For any uniquely ergodic IET T and almost every IET S,

the product T × S is uniquely ergodic. In particular, for almost every pair of

IETs , (T, S) the product is uniquely ergodic.

We prove Theorem 1 by the following criterion [9, Th. 2.1]; see also [13,

Lemma 1] and [8, Th. 6.28].

Theorem 2 (Hahn and Parry). If T1 and T2 are ergodic transformations

of (X1, B1,m1) and (X2, B2,m2) respectively, and if UT1 and UT2 are spectrally

singular modulo constants, then T1 and T2 are disjoint.

Recall that UT1 and UT2 are called spectrally singular modulo constants if

for any functions f ∈ L2(m1) and g ∈ L2(m2) with integral zero, the spectral

measures σf,T1 and σg,T2 are singular as measures. See Section 4 for a definition

of spectral measures. Spectral singularity is established by showing that for any

transformation T and almost every IET S, there exists a sequence n1, n2, . . .

such that

lim
i→∞

∫
T
znidσf,S → σf,S(T),

while for any k we have

lim
i→∞

∫
T
zni+kdσg,T → 0

for any f ∈ L2(m1) and g ∈ L2(λ) of integral 0. To establish this result rigidity

sequences are used. Given an IET T , a sequence n1, n2, . . . is a rigidity sequence

for T if
∫ 1

0 |Tni(x)− x|dλ→ 0. This notion can be easily generalized to systems

that are not IETs. Veech proved that almost every IET has a rigidity sequence

[17, Part I, Th. 1.3] with the following theorem [17, Part I, Th. 1.4] by choosing

Ni corresponding to εi where lim
i→∞

εi = 0.
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Theorem 3 (Veech). For almost every interval exchange transformation

T , with irreducible permutation, and given ε > 0 there are N ∈ N, and an

interval J ⊂ [0, 1) such that

(1) J ∩ Tn(J) = ∅ for 0 < n < N .

(2) T is continuous on Tn(J) for 0 ≤ n < N .

(3) λ(
N
∪
n=1

Tn(J)) > 1− ε.
(4) λ(TN (J) ∩ J) > (1− ε)λ(J).

In this paper we strengthen Veech’s result that almost every IET has a

rigidity sequence. (See also Remark 4 for a strengthening of Theorem 3.)

Theorem 4. Let A be a sequence of natural numbers with density 1.

Almost every IET has a rigidity sequence contained in A.

Similar classification questions have been considered in [2], which shows

that certain pairs of 3-IETs are not isomorphic, [7] which shows that every IET

is disjoint from any mixing transformation and [4] which shows that almost

every IET in some permutations are disjoint from all ELF transformations.

In other settings, [6] shows that almost every pair of rank 1 transformations

is disjoint and [5] shows that each ergodic measure preserving transformation

is disjoint from a residual set of ergodic measure preserving transformations.

The first section provides a brief introduction to Rauzy-Veech induction and

the terminology used in the second section. The results in this section are

well known. The second section contains the proof of Theorem 4. The third

section provides further consequences of the intermediate results contained

in the second section. The fourth section contains the proof of Theorem 1,

which uses the results in the previous two sections. The final section contains

consequences of Theorem 1 and some questions.

1. Rauzy-Veech Induction

Our treatment of Rauzy-Veech induction will be the same as in [16, §7].

We recall it here. Let T be a d-IET with permutation π. Let δ+ be the

rightmost discontinuity of T and δ− be the rightmost discontinuity of T−1.

Let δmax = max{δ+, δ−}. Consider the induced map of T on [0, δmax) denoted

T |[0,δmax). If δ+ 6= δ−, then this is a d-IET on a smaller interval, perhaps with

a different permutation.

We can renormalize it so that it is once again a d-IET on [0, 1). That is,

let R(T )(x) = T |[0,δmax)(xδmax)(δmax)−1. This is the Rauzy-Veech induction

of T . To be explicit the Rauzy-Veech induction map is only defined if δ+ 6= δ−.

If δmax = δ+, then we say the first step in Rauzy-Veech induction is a. In this
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case the permutation of R(T ) is given by

π′(j) =


π(j) j ≤ π−1(d)

π(d) j = π−1(d) + 1

π(j − 1) otherwise.

We keep track of what has happened under Rauzy-Veech induction by a matrix

M(T, 1) where

M(T, 1)[ij] =


δi,j j ≤ π−1(d)

δi,j−1 j > π−1(d) and i 6= d

δπ−1(d),j i = d.

If δmax = δ−, then we say the first step in Rauzy-Veech induction is b. In this

case the permutation of R(T ) is given by

π′(j) =


π(j) π(j) ≤ π(d)

π(j) + 1 π(d) < π(j) < d

π(d) + 1 π(j) = d.

We keep track of what has happened under Rauzy-Veech induction by a matrix

M(T, 1)[ij] =

1 i = d and j = π−1(d)

δi,j otherwise.

The matrices described above depend on whether the step is a or b and the

permutation T has. The following well-known lemmas which are immediate

calculations help motivate the definition of M(T, 1).

Lemma 1. If R(T ) = SL,π′ , then the length vector of T is a scalar multiple

of M(T, 1)L.

Let M∆ = MR+
d ∩ ∆̊d. Recall that ∆̊d is the interior of the simplex in Rd.

Lemma 2. An IET with lengths contained in M(T, 1)∆ and permutation

π has the same first step of Rauzy-Veech induction as T .

We define the nth matrix of Rauzy-Veech induction by

M(T, n) = M(T, n− 1)M(Rn−1(T ), 1).

It follows from Lemma 2 that for an IET with length vector in M(T, n)∆ and

permutation π, the first n steps of Rauzy-Veech induction agree with T . If M

is any matrix, then Ci(M) denotes the ith column and Cmax(M) denotes the

column with the largest sum of entries. Let |Ci(M)| denote the sum of the

entries in the ith column. Versions of the following lemma are well known, and

we provide a proof for completeness.
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Lemma 3. If M(Rn(T ), k) is a positive matrix and L = Ci(M(T,n+k))
|Ci(M(T,n+k))| ,

then SL,π agrees with T through the first n steps of Rauzy-Veech induction.

Proof. By Lemma 1 the length vector for Rm(SL,π) is Ci(M(Rm(T ),n+k−m))
|Ci(M(Rm(T ),n+k−m))|

for any m where Rm(SL,π) is defined. By our assumption on the positivity of

M(Rn(T ), k) the vector Ci(M(Rn(T ),k))
|Ci(M(Rn(T ),k))| is contained in ∆̊d. The lemma follows

by Lemma 2 and induction. �

The next definition does not appear in [16] but is important for the next

section.

Definition 3. A matrix M is called ν balanced if 1
ν <

|Ci(M)|
|Cj(M)| < ν for all i

and j.

Notice that if M is ν balanced, then |Ci(M)| > |Cmax(M)|
ν .

2. Proof of Theorem 4

Theorem 4 follows from the following proposition.

Proposition 1. Let A ⊂ N be a sequence of density 1. For every ε > 0

and almost every IET S, there exists nε ∈ A such that
∫ 1

0 |Snε(x)− x|dλ < ε.

This proposition implies Theorem 4 because the countable intersection of

sets of full measure has full measure.

Motivated by this proposition, if
∫ 1

0 |Tn(x)− x|dλ < ε, then we say n is

an ε rigidity time for T .

Throughout this section we will assume that the IETs are in a fixed Rauzy

class R, which contains d-IETs with some irreducible permutations. Let r

denote the number of different permutations IETs in R may have. Let mR

denote Lebesgue measure on R (the disjoint union of r simplices in Rd).
Proposition 1 will be proved by showing that there is a particular reason

for ε rigidity (called acceptable ε rigidity) that occurs often in many Pi :=

[2i, 2i+1] (Proposition 4) but rarely occurs for any fixed n (Lemma 10). For

every IET S satisfying the Keane condition, and every i, there exists some n

such that |Cmax(M(S, n))| ∈ Pi. In general there can be more than one such n.

For each of the permutations π1, . . . , πr that an IET in R may have, fix

a finite sequence of Rauzy-Veech induction steps ωi, which gives a positive

matrix. That is each letter of ωi will be one of the two types of Rauzy-Veech

steps (a or b), and the product of the sequence of the associated matrices

starting from permutation πi provides a positive Rauzy-Veech matrix. Let

M(ωi) denote this matrix. Let |ωi| denote the number of steps in ωi. Let

pi = mR(M(ωi)∆).
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Definition 4. We say a pair (M,Cmax(M)) is acceptable if M = M(T, n),

Rn−|ωi|(T ) has permutation πi and M(Rn−|ωi|(T ), |ωi|) = M(ωi) for some 1 ≤
i ≤ r. If (M,Cmax(M)) is an acceptable pair, then M is called an acceptable

matrix.

Informally, if M = M(T, n), then the pair (M,Cmax(M)) is acceptable if

the last steps in Rauzy-Veech induction for an IET with length vector in M∆

agrees with some ωi and the permutation of Rn−|ωi|(T ) is πi.

Remark 1. In the remainder of this section we will use the fact that

if Rn(TL,π) has permutation πi, then for any IET S with length vector in

(M(TL,π, n)M(ωi))∆ and permutation π, the pair

(M(S, n+ |ωi|), Cmax(M(S, n+ |ωi|)))
is acceptable.

Lemma 4. There exists ν such that any acceptable matrix is ν balanced.

Proof. Let M1 be a positive matrix. Observe that if M2 is a matrix with

nonnegative entries, then M2M1 is at worst max
i,j,k

M1[i,j]
M1[i,k] balanced. Since there

are only finitely many M(ωi) and they are all positive, the lemma follows. In

particular, we can chose ν = max
t

max
i,j,k

M(ωt)[i,j]
M(ωt)[i,k] . �

Lemma 5. For any d-column C , |{M : (M,C) is an acceptable pair }|≤r2.

That is, any d-column can appear in at most r2 different acceptable pairs

in a given Rauzy class even if the permutations are allowed to vary in the

Rauzy class.

Proof. Assume C belongs to two different acceptable pairs (M(T, n), C),

and (M(S, n′), C) where both T and S have the same permutation πi. (This

is an additional assumption.) The acceptable sequence of steps ωj for T and

ωj′ for S are different. This is because if ωj = ωj′ , then the last |ωj | steps of

Rauzy-Veech induction are the same. However, since C = Cmax(M(T, n)) =

Cmax(M(S, n′)) and S and T have the same starting permutation, Lemma 3

implies that all but the last |ωj | steps of Rauzy-Veech induction are the same

and therefore M(T, n) = M(S, n′). There can only be r such pairs (with

permutation πi) because there are r choices of ωj . There are r choices of πi so

the lemma follows. �

Proposition 2. For mR-almost every IET S, the set of natural numbers

{i : for some n, |Cmax(M(S, n))| ∈ Pi and

(M(S, n), Cmax(M(S, n))) is an acceptable pair}

has positive lower density.
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The following two lemmas are used in the proof of Proposition 2.

Lemma 6. For mR-almost every IET S, and all sufficiently large ν0, the

set of natural numbers

G(S) := {i : for some n, |Cmax(M(S, n))| ∈ Pi and M(S, n) is ν0 balanced}

has positive lower density.

Remark 2. It is not claimed that a positive lower density of the Rauzy-

Veech induction matrices are balanced.

To prove this we use an independence type result for Rauzy-Veech induc-

tion that we provide a slight reformulation of [11, Cor. 1.7].

Proposition 3 (Kerckhoff). Let R be one of the Rauzy classes of permu-

tations of d-IETs. There exist p > 0,K > 1 and ν0 > 1 depending only on R

such that for any matrix of Rauzy-Veech induction M ′ = M(S, n), we have

mR({T : π(T ) = π(S), T ∈M ′∆∃m > n such that M(T,m) is

ν0-balanced and |Cmax(M(T,m))| < Kd|Cmax(M ′)|}) > pmR(M ′∆).

This proposition is useful because the constants are independent of M ′.

Proof of Lemma 6. Consider the independent µ distributed random vari-

ables F1, F2, . . . , where µ takes value 1 with probability p and 0 with probability

1 − p and Fi : Ω → {0, 1}. Recall that one puts a probability measure µN on

Ω such that for any k ≤ n and a1, . . . , an ∈ {0, 1} where k of the ai are 1, we

have

µN({t ∈ Ω : Fi = ai for all i ≤ n}) = pk(1− p)n−k.
By Proposition 3, given G(S)∩ [0, N ], the conditional probability that N + i ∈
G(S) for some 0 < i ≤ dd log2(K)e is at least p. Thus by induction on k, for

any natural numbers n1, n2, . . . , nk,

mR({S : [nidd log2(K)e, (ni + 1)]dd log2(K)e] ∩G(S) 6= ∅ ∀i ≤ k})
≥ µN({t : Fni(t) = 1∀i ≤ k}).

Briefly, assume that we are given nk+1 > nk and consider all

G(S) ∩ [0, nk+1dd log2(K)e]

such that [ni, ni + dd log2(K)e]∩ ∈ G(S) 6= ∅ for each i ≤ k. By our inductive

hypothesis the measure of such S is at least pk. By our previous remark at least

p of these S have [nk+1, nk+1 + dd log2(K)e] ∩G(S) 6= ∅. Since, by the strong

law of large numbers, for µN-almost every t we have lim
n→∞

n∑
i=1

Fi(t)

n = p, we have

that for mR-almost every S, G(S) has lower density at least p
dd log2(K)e . �
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Lemma 7 (Kerckhoff). If M is ν0 balanced and W ⊂ ∆d is a measurable

set, then

mR(W )

mR(∆d)
<

mR(MW )

mR(M∆d)
(ν0)−d.

This is [11, Cor. 1.2]. See [14, §5] for details.

Proof of Proposition 2. By Lemma 7, if M(T, n) is ν0 balanced and Rn(T )

has permutation πi, then mR(M(T,n)M(ωi)∆d)
mR(M(T,n)∆d) ≥ ν−d0 pi. In words: given that

M(T, n) is ν0 balanced and that Rn(T ) has permutation πi, the conditional

probability that (M(T, n + |ωi|), Cmax(M(T, n + |ωi|))) is an acceptable pair

is at least ν−d0 pi. Considering each πi, the proposition follows analogously to

Lemma 6. �

Definition 5. Let S be an IET. If (M(S, n), Cmax(M(S, n))) is acceptable

and m = |Cmax(M(S, n))| is an ε rigidity time for S, then m is called an

acceptable ε rigidity time for S.

Proposition 4. For every ε > 0, mR-almost every IET S, the set of

natural numbers

Gε(S) := {i : Pi contains an acceptable ε rigidity time for S}

has positive lower density.

Proof. Consider an IET SL,π = S such that (M(S, n), Ck(M(S, n))) is

an acceptable pair (in particular, Ck(M(S, n)) = Cmax(M(S, n))). For ease

of notation let M ′ = M(S, n). Let Wk,ε = {(l1, l2, . . . , ld) : li > 0 ∀i, lk >
1− ε

3 ,
∑
li = 1}. If L ∈Wk,ε, then T M′L

|M′L| ,π
has an ε rigidity time of |Ck(M ′)|.

This is the reason for rigidity used to prove Theorems 1.3 and 1.4 in [17,

pp. 1337–1338]. IfM ′ is acceptable, then Lemma 4 states thatM ′ is ν balanced.

It then follows by Lemma 7 that the proportion of M ′∆ which has |Ck(M ′)| as

an ε rigidity time is at least ν−dmR(Wk,ε). Thus if i1 < i2 < · · · ∈ G(S), then

the probability that if ∈ Gε(S) is at least ν−dmR(Wk,ε) regardless of which

ik ∈ Gε(S) for k < f . The proposition follows analogously to Lemma 6. �

Before proving Proposition 1 we provide the following lemmas.

Lemma 8. There exists b ∈ R such that for any n ∈ N,

|{M : M is acceptable and |Cmax(M)| = n}| ≤ bnd−1.

Remark 3. The constant b depends only on our Rauzy class R. It is

not claimed that for every n ∈ N there exists an acceptable matrix M with

|Cmax(M)| = n.
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Proof. By Lemma 5 each column C can be |Cmax(M)| for at most r2 dif-

ferent acceptable matrices M . By induction on d, O(nd−1) different d-columns

with nonnegative integer entries have the sum of their entries equal to n. �

Lemma 9 (Veech). If M is a matrix given by Rauzy-Veech induction, then

mR(M∆) = cR
d
Π
i=1
|Ci(M)|−1.

This is [14, eq. 5.5]. An immediate consequence of it is that any ν balanced

Rauzy-Veech matrix M has mR(M∆) ≤ cRν
d−1|Cmax(M)|−d. The previous

two lemmas give the following result.

Lemma 10. The mR-measure of IETs that have acceptable pairs with the

same |Cmax| is at most O(|Cmax|−1).

Proof of Proposition 1. By Lemma 10 and the fact that A has density 1,

lim
i→∞

mR({T : ∃n with M(T, n) acceptable and |Cmax(M(T, n))| ∈ Pi\A}) = 0.

Therefore, Proposition 4 implies that for any ε > 0, almost every IET has an

acceptable ε rigidity time in A. In fact, almost every IET has an ε rigidity

time in Pi ∩A for a positive upper density set of i. �

Remark 4. To be explicit, Proposition 4 shows that for any sequence A

with density 1, and any ε > 0, for almost every IET the integer N in Veech’s

Theorem 3 can be chosen from A.

3. Consequences of Section 2

In this section we glean some consequences of the proofs in the previous

section. One of these (Corollary 5) follows from [1, Th. A] and is used in the

proof of Theorem 1. It is proven independently of [1, Th. A] in this section.

Corollary 2. Let A be a sequence of natural numbers with density 1. A

residual set of IETs has a rigidity sequence contained in A.

Proof. Take the interior of the set Wk,ε considered in the proof of Propo-

sition 4. In this way one obtains that the set of IETs with an ε rigidity time

in A contains an open set of full measure (therefore dense). Intersecting over

ε shows that a residual set of IETs has a rigidity sequence in any sequence of

density 1. �

The number of columns that can appear in Rauzy-Veech matrices grows

at least like uRR
d, where the constant uR depends on R and R is the norm of

the largest column of the matrix. Briefly, in order to collect a positive measure

of IETs having admissible matrices M , with |Cmax(M)| ∈ Pk, Lemma 9 implies

that there needs of be more than uR(2k)d admissible matrices with |Cmax| ∈ Pk.
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This provides a partial answer to the first question in [17, Part II, Questions

10.7] which asks what one can say about for the growth of so-called primitive

IETs (IETs with rational lengths that are as close to being minimal as possible).

If N(R, π) denotes the number of primitive IETs with permutation π on d

letters and period less than R, it asks what one can say about R−dN(R, π).

The next result provides a slight improvement of Theorem 4 and uses the

following definition.

Definition 6. Let S be an IET. We say m is an expected ε rigidity time

for S if there exists an n such that that the following two conditions are met:

(1) (M(S, n), Cmax(M(S, n))) is acceptable and m = |Cmax(M(S, n))|.
(2) Cmax(M(S, n)) = Ck(M(S, n)) and Rn(S) lies in the set Wk,ε defined

in the proof of Proposition 4.

Every expected ε rigidity time is an acceptable ε rigidity time.

Corollary 3. For every ε > 0 and Rauzy class R there is a constant

aR(ε) < 1 such that any sequence of natural numbers A with density at least

aR(ε) has a rigidity sequence for all but a mR-measure ε set of IETs.

Proof. First note that the set of IETs having a rigidity sequence contained

in A is measurable. Let eR(ε) denote mR(Wk,ε). Let M = M(TL,π, n) be an

acceptable matrix. By the bound on distortion in Lemma 7, the conditional

probability of an IET in M∆ and permutation π having an expected ε rigidity

time |Cmax(M)| is proportional to eR(ε). This uses Lemma 4 which states that

if M is an acceptable matrix, then M is ν balanced. An analogous argument

to Lemma 6 shows that there exists c1 > 0 such that the set

{i : ∃m ∈ Pi which is an expected ε rigidity time for T}

has lower density at least c1eR(ε) for almost every T . Because (M,Cmax(M))

is acceptable, Lemma 10 establishes that there exists c2 > 0 (where c2 is the

constant from the O(n−1)) such that

mR({T : n is an expected ε rigidity time for T}) < c2ν
deR(ε)n−1

for all n. Thus, for any ε > 0 and δ > 0, a set of natural numbers with density

1− δ contains an ε expected rigidity time for all but a set of IETs of measure

2δ c2c1 ν
d, and the corollary follows. �

Remark 5. Recall that ν depends on the choices of ωi that define accept-

able pairs. The constant c1 depends on ν.

Corollary 3 gives two further corollaries.

Corollary 4. Almost every IET has a rigidity sequence which is not a

rigidity sequence for mR′-almost every IET and every R′.
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Proof. It suffices to show that for any δ > 0 and Rauzy class R′, all but

a set of mR-measure δ IETs have a rigidity sequence that is not a rigidity

sequence for mR′-almost every IET. Given ε1, ε2 > 0 and a Rauzy class, R′

consider the set

AR′(ε1, ε2) = {n : n is an ε1 rigidity time for a set of IETs of

mR′-measure at least ε2}.
If ε2 > 0 and R′ are fixed, then the density of this set goes to zero with ε1.

To see this, observe that if n1 and n2 are ε rigidity times for T , then n1 − n2

is a 2ε rigidity time for T . It follows that if ε < 1
2 min

0<n≤M

∫
|Tnx − x|dλ, then

{r+ 1, r+ 2, . . . , r+M} can contain at most one ε rigidity time for T . Choose

ε1(k) so that the (upper) density of AR′(ε1(k), 1
k ) is less than 1 − aR(δ). By

Corollary 3, all but a mR-measure δ set of IETs have a rigidity sequence in

the complement of AR′(ε1(k), 1
k ) (which can be shared by a set of IETs with

mR′-measure at most 1
k ). Consider the countable intersection over k of these

sets of mR-measure at most 1−δ, which also has measure at most 1−δ because

the sets are nested. For each IET T in this set let ni be a 1
i rigidity time for

T lying in the complement of AR′(ε1(i), 1
i ). Therefore, n1, n2, . . . is a rigidity

sequence for T that is not a rigidity sequence for mR′-almost every IET. �

Corollary 5. For every α /∈ Z, almost every IET does not have e2πiα

as an eigenvalue.

We will prove this corollary independently of [1, Th. A], from which it

immediately follows.

Theorem 5 (Avila and Forni). If π is an irreducible permutation that is

not a rotation, then almost every IET with permutation π is weak mixing.

The proof is split into the case of rational α and the case of irrational α.

If T has e2πiα as an eigenvalue for some rational α /∈ Z, then it is not totally

ergodic. This is not the case for almost every IET [17, Part I, Th. 1.7].

Theorem 6 (Veech). Almost every IET is totally ergodic.

It suffices to consider irrational α and show that for any δ > 0 and R, the

set of IETs having e2πiα as an eigenvalue has mR-outer measure less than δ.

If e2πiα is an eigenvalue for T , then rotation by α is a factor of T . However,

rigidity sequences of a transformation are also rigidity sequences for the factor.

For every irrational α and e > 0 there is a sequence of density 1−e that contains

no rigidity sequence for rotation by α. To see this, observe that if n1 and n2

are ε rigidity times for T , then n1 − n2 is a 2ε rigidity time for T . It follows

that if ε < 1
2 min

0<n≤M

∫
|Tnx− x|dλ, then {k + 1, k + 2, . . . , k +M} can contain

at most one ε rigidity time for T . Choose e < 1 − aR(δ) and pick a sequence
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of density 1 − e containing no rigidity sequence for rotation by α. The IETs

having a rigidity sequence in this sequence have mR-measure at least 1 − δ,
and Corollary 5 follows.

Remark 6. Every sequence of density 1 contains a rigidity sequence for

rotation by α.

4. Proof of Theorem 1

Given a µ measure preserving dynamical system T , let UT be the unitary

operator on L2(µ) given by UT (f) = f ◦ T . Let L2
0 denote the set of L2

functions orthogonal to constant functions. If f ∈ L2, then let σf,T be the

spectral measure for f and UT , that is the unique measure on T such that∫
T
zndσf,T =< f,UnT f > for all n.

Fix T : [0, 1) → [0, 1), a µ ergodic transformation. By Theorem 2, estab-

lishing that for any S in a full measure set of IETs σf,T is singular with respect

to σg,S for any f ∈ L2
0(µ) and g ∈ L2

0(λ) establishes Theorem 1. Let Hpp be the

closure of the subspace of L2
0(µ) spanned by nonconstant eigenfunctions of UT

(where the spectral measures are atomic) and Hc be its orthogonal complement

(where the spectral measures are continuous).

Lemma 11. If f ∈ Hpp, then for almost every IET S, σf,T is singular

with respect to σg,S for any g ∈ L2
0(λ).

Proof. Let f ∈ Hpp. The atomic measure σf,T is supported on the e2πiα

that are eigenvalues of UT . If σf,T is nonsingular with respect to σg,S , then UT
and US share an eigenvalue (other than the simple eigenvalue 1 corresponding

to constant functions). The set of eigenvalues of UT is countable because Hpp

has a countable basis of eigenfunctions. The lemma follows from the fact that

the set of IETs having a particular eigenvalue has measure zero (Corollary 5)

and the countable union of measure zero sets has measure zero. �

Lemma 12. If f ∈ Hc, then for almost every IET S, σf,T is singular with

respect to σg,S for any g ∈ L2
0(λ).

To prove this lemma we use Wiener’s Lemma (see e.g. [3, Lemma 4.10.2])

and its immediate corollary.

Lemma 13 (Wiener). For a finite measure µ on T set µ̂(k) =
∫
T z

kdµ(z).

lim
n→∞

n−1
n−1∑
k=0
|µ̂(k)|2 = 0 if and only if µ is continuous.

Corollary 6. For a finite continuous measure µ on T, there exists a

density 1 sequence A such that lim
k∈A

µ̂(k) = 0.
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Proof of Lemma 12. Decompose Hc into the direct sum of mutually or-

thogonal Hfi , where each Hfi is the cyclic subspace generated by fi un-

der UT (and U−1
T = U∗T ). By Corollary 6, for each i there exists a den-

sity 1 set of natural numbers Bi such that lim
n∈Bi

∫
T z

ndσfi,T = 0. Choose

Nj increasing such that for each j we have inf
n>Nj

|Bi∩[0,n]|
n > 1 − 2−j . Let

Ai :=
∞
∪
j=1

Å
[Nj , Nj+1] ∩

j
∩

k=−j
Bi + k

ã
. By construction, (Ai − k)\Bi is a finite

set for any k ∈ Z. Therefore, lim
n∈Ai

∫
T z

n+kdσfi,T = 0 for any k ∈ Z. Thus, for

any h ∈ Hfi it follows that lim
n∈Ai

∫
T z

k+ndσh,T = 0 for any k. This follows from

the fact that σh,T � σfi,T , the span of zk is dense in L2 and |
∫
T z

rdµ| ≤ µ(T).

Since there are only a countable number of Hfi , there exists a density 1 se-

quence A such that for any i and h ∈ Hfi , we have that lim
n∈A

∫
T z

k+ndσh,T = 0

for any k. The construction of A is similar to the construction of the Ai. That

is, pick Nj such that inf
n>Nj

|Ai∩[0,n]|
n > 1− 2−j for any i < j. Let

A =
∞
∪
j=1

[Nj , Nj+1] ∩A1 ∩ · · · ∩Aj .

It follows that for any h ∈ Hc, lim
n∈A

∫
T z

k+ndσh,T = 0 for any k. This uses

the fact that if g1 and g2 lie in orthogonal cyclic subspaces, then σg1+g2,T is

σg1,T + σg2,T .

Let S be any IET with a rigidity sequence contained in A, which almost

every IET has by Theorem 4. Notice that since n1, n2, . . . is a rigidity sequence

for S, lim
i→∞

∫
T |zni − 1|2dσg,S = 0. Because L2 convergence implies convergence

almost everywhere along a subsequence, it follows that there exists i1, i2, . . .

such that σg,S({z : lim
j→∞

znij → 1}) = σg,S(T). However, lim
i→∞

∫
C z

niσf,T → 0

for any measurable C ⊂ T. This is because
∫
C z

niσf,T =
∫
T z

niχC(z)σf,T
and χC can be approximated in L2(σf,T ) by polynomials. The construction

of A in the previous paragraph shows that lim
n∈A

∫
T p(z)z

ndσf,T = 0 for any

polynomial p. It follows that σg,S is singular with respect to σf,T for any

f ∈ Hc and g ∈ L2
0(λ). �

Proof of Theorem 1. Notice that since Hpp and Hc are orthogonal and UT
invariant if g1 ∈ Hpp and g2 ∈ Hc, then σg1+g2,T is σg1,T + σg2,T . It follows

from Theorem 2 that any IET lying in the intersection of the full measure sets

of IETs in Lemmas 11 and 12 is disjoint from T . �

Remark 7. The following observation motivates the proof. If µ and ν are

probability measures on S1 such that zni → f weakly in L2(µ) and zni → g

weakly in L2(ν) and f(z) 6= g(z) for all z, then ν and µ are singular.
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Remark 8. A possibly more checkable result follows from the above proof.

Assume A is a mixing sequence for T (that is, lim
n∈A

µ(B∩Tn(B′)) = µ(B)µ(B′)

for all measurable B and B′) then any S having a rigidity sequence in A is

disjoint from T . Note that weak mixing transformations have mixing sequences

of density 1.

Remark 9. Given a family of transformations F with a measure η on F ,

any µ ergodic T : X → X will be disjoint for η-almost every S ∈ F if

(1) Any sequence of density 1 is a rigidity sequence for η-almost every

S ∈ F .

(2) η({S ∈ F : α is an eigenvalue for S}) = 0 for any α 6= 1.

Additionally, the results in the previous section show that a slightly stronger

version of condition 1 and η-almost sure total ergodicity implies condition 2.

Condition 1 on its own does not imply condition 2. To see this consider when

F is the set of 1 element, rotation by α0.

5. Concluding remarks

First, the proof of Corollary 1.

Proof of Corollary 1. This follows from Theorem 1, the fact that almost

every IET is uniquely ergodic ([12] and [16]) and the following lemma. �

Lemma 14. If T and S are uniquely ergodic with respect to µ and ν re-

spectively, then any preserved measure of T × S has projections µ and ν.

Proof. Consider η, a preserved measure of T × S:

η(A× Y ) = η
Ä
(T−n × S−n)(A× Y )

ä
= η(T−n(A)× Y ).

Therefore, µ1(A) := η(A × Y ) is preserved by T and so it is µ. For the other

projection the proof is similar. �

More is true in fact; for mR1 × · · · ×mRn , almost every n-tuple of IETs

(S1, . . . , Sn), S1×· · ·×Sn is uniquely ergodic and S1 is disjoint from S2×S3×
· · · × Sn.

Corollary 1 has an application. Consider T × S. In our context, unique

ergodicity implies minimality, which implies uniformly bounded return time to

a fixed rectangle. Therefore, if we choose a rectangle V ⊂ [0, 1) × [0, 1), then

the induced map of T × S on V is almost surely (in (T, S) or even S if T is

uniquely ergodic) an exchange of a finite number of rectangles. To see this

recall that a minimal IET T is measurably isomorphic to a continuous shift

dynamical system T̄ that acts on a compact space (see [10, §5]). Moreover,

T = γT ◦ T̄ , where γT is continuous and at worst a two-to-one map (in fact it is

one to one in all but a countable number of places, the orbits of discontinuities).
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Unique ergodicity of T implies unique ergodicity of T̄ . Likewise, if T and S are

minimal and disjoint IETs, then T̄ and S̄ are disjoint. It follows that if they

are also uniquely ergodic, then T̄ × S̄ is a uniquely ergodic continuous map of

a compact metric space and therefore minimal. It follows from compactness,

continuity and minimality that the return time to any open set under T̄ × S̄
is bounded. The continuity of γT × γS implies that the return time to a fixed

rectangle is bounded under T × S.

Theorem 1 also strengthens Corollary 5 because transformations are not

disjoint from their factors [8, Th. 8.4].

Corollary 7. No transformation is a factor of a positive measure set of

IETs.

Question 1 (Bufetov). Let µ be an ergodic measure invariant under Rauzy-

Veech induction. Under what conditions is µ × µ almost every pair of IETs

disjoint?

There are atomic ergodic measures of Rauzy-Veech induction that obvi-

ously fail this. However, the fact that almost every nonrotation IET is weak

mixing (proven in [1]) extends to many ergodic measures of Rauzy-Veech in-

duction. This provides hope for extending Theorem 1 in these settings (see

Remark 8). However, to replicate the arguments here one would need versions

of the estimates on distortion bounds and the measure of the region that shares

the same matrix of Rauzy-Veech induction.

Question 2. Does almost every IET with a particular permutation π have

no (or possibly only obvious) isomorphic IETs with permutation π? For in-

stance, in the permutation (4321) the IET given by length vector (a, b, c, 1 −
(a+ b+ c)) is isomorphic to (1− (a+ b+ c), c, b, a).

Section 2 showed a particular reason for rigidity occurred fairly often for

almost every IET, but could occur at any time for only a small portion of

IETs. Can rigidity happen at a certain time for a larger than expected portion

of IETs? The following questions occurred during conversations with Bosher-

nitzan and Veech.

Question 3. Can there be a rigidity sequence for a positive measure set of

IETs?

Question 4. Can there be a particular large n that is an ε rigidity time

for a large measure set of IETs in some Rauzy class?

Also, Section 2 showed that for many R a set of measure at least com-

parable to R−1 has an ε rigidity time R. The next question asks if there are

some times where this does not happen.
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Question 5. Is there a sequence R1, R2, . . . such that for some ε a set of

measure at most o(R−1
i ) has an ε rigidity time Ri?

Some outstanding questions of Veech [15] are also relevant.

Question 6. Is almost every IET that is not of rotation type prime?

(Prime means no nontrivial measurable factors.) Does almost every IET have

property S? (Property S says that every ergodic self joining other than the

product measure is almost everywhere one to one.) Does almost every IET

that is not of rotation type have nontrivial compact subgroups in their cen-

tralizer?
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transformations d’Ornstein, Israel J. Math. 112 (1999), 135–155. MR 1715002.

Zbl 0967.37004. http://dx.doi.org/10.1007/BF02773480.

http://www.ams.org/mathscinet-getitem?mr=2299743
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1136.37003
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1136.37003
http://dx.doi.org/10.4007/annals.2007.165.637
http://www.ams.org/mathscinet-getitem?mr=1749306
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0996.37006
http://dx.doi.org/10.1007/BF02788235
http://www.ams.org/mathscinet-getitem?mr=1963683
http://www.zentralblatt-math.org/zmath/en/search/?q=an:01849967
http://dx.doi.org/10.1017/CBO9780511755316
http://dx.doi.org/10.1017/CBO9780511755316
http://www.ams.org/mathscinet-getitem?mr=2600761
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1192.37006
http://dx.doi.org/10.3934/dcds.2010.27.53
http://www.ams.org/mathscinet-getitem?mr=0633762
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0467.28011
http://www.ams.org/mathscinet-getitem?mr=1715002
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0967.37004
http://dx.doi.org/10.1007/BF02773480


EVERY ERGODIC TRANSFORMATION IS DISJOINT 253
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