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Holomorphic factorization of
mappings into SLn(C)

By Björn Ivarsson and Frank Kutzschebauch

Abstract

We solve Gromov’s Vaserstein problem. Namely, we show that a null-

homotopic holomorphic mapping from a finite dimensional reduced Stein

space into SLn(C) can be factored into a finite product of unipotent ma-

trices with holomorphic entries.
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1. Introduction

It is standard material in a Linear Algebra course that the group SLm(C)

is generated by elementary matrices E + αeij , i 6= j, i.e., matrices with 1’s

on the diagonal and all entries outside the diagonal are zero, except one entry.

Equivalently, every matrix A ∈ SLm(C) can be written as a finite product of

upper and lower diagonal unipotent matrices (in interchanging order). The

same question for matrices in SLm(R) where R is a commutative ring instead

of the field C is much more delicate. For example, if R is the ring of com-

plex valued functions (continuous, smooth, algebraic or holomorphic) from a
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space X, the problem amounts to finding for a given map f : X → SLm(C) a

factorization as a product of upper and lower diagonal unipotent matrices

f(x) =

Ç
1 0

G1(x) 1

åÇ
1 G2(x)

0 1

å
. . .

Ç
1 GN (x)

0 1

å
,

where the Gi are maps Gi : X → Cm(m−1)/2.

Since any product of (upper and lower diagonal) unipotent matrices is

homotopic to a constant map (multiplying each entry outside the diagonals

by t ∈ [0, 1] we get a homotopy to the identity matrix), one has to assume

that the given map f : X → SLm(C) is homotopic to a constant map or as we

will say null-homotopic. In particular this assumption holds if the space X is

contractible.

This very general problem has been studied in the case of polynomials of

n variables. For n = 1, i.e., f : C → SLm(C) a polynomial map (the ring R

equals C[z]) it is an easy consequence of the fact that C[z] is an Euclidean ring

that such f factors through a product of upper and lower diagonal unipotent

matrices. For m = n = 2, the following counterexample was found by Cohn

[Coh66]: the matrixÇ
1− z1z2 z2

1

−z2
2 1 + z1z2

å
∈ SL2(C[z1, z2])

does not decompose as a finite product of unipotent matrices.

For m ≥ 3 (and any n), it is a deep result of Suslin [Sus77] that any matrix

in SLm(C[Cn]) decomposes as a finite product of unipotent (and equivalently

elementary) matrices. More results in the algebraic setting can be found in

[Sus77] and [GMV94]. For a connection to the Jacobian problem on C2, see

[Wri78].

In the case of continuous complex valued functions on a topological space

X the problem was studied and partially solved by Thurston and Vaserstein

[TV86] and then finally solved by Vaserstein [Vas88]; see Theorem 2.2.

It is natural to consider the problem for rings of holomorphic functions

on Stein spaces, in particular on Cn. Explicitly this problem was posed by

Gromov in his groundbreaking paper [Gro89] where he extends the classical

Oka-Grauert theorem from bundles with homogeneous fibers to fibrations with

elliptic fibers, e.g., fibrations admitting a dominating spray (for definition, see

3.1). In spite of the above mentioned result of Vaserstein he calls it the

Vaserstein problem (see [Gro89, §3.5.G]). Does every holomorphic map

Cn → SLm(C) decompose into a finite product of holomorphic maps sending

Cn into unipotent subgroups in SLm(C)?

Gromov’s interest in this question comes from the question about s-homo-

topies (s for spray). In this particular example the spray on SLm(C) is that
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coming from the multiplication with unipotent matrices. Of course one cannot

use the upper and lower diagonal unipotent matrices only to get a spray (there

is no submersivity at the zero section!), there need to be at least one more

unipotent subgroup to be used in the multiplication. Therefore the factoriza-

tion in a product of upper and lower diagonal matrices seems to be a stronger

condition than to find a map into the iterated spray, but since all maximal

unipotent subgroups in SLm(C) are conjugated and the upper and lower di-

agonal matrices generate SLm(C), these two problems are in fact equivalent.

We refer the reader for more information on the subject to Gromov’s above

mentioned paper.

The main result of this paper is a complete positive solution of Gromov’s

Vaserstein problem, namely we prove

Main Theorem (see Theorem 2.3). Let X be a finite dimensional re-

duced Stein space and f : X → SLm(C) be a holomorphic mapping that is

null-homotopic. Then there exist a natural number K and holomorphic map-

pings G1, . . . , GK : X → Cm(m−1)/2 such that f can be written as a product of

upper and lower diagonal unipotent matrices

f(x) =

Ç
1 0

G1(x) 1

åÇ
1 G2(x)

0 1

å
. . .

Ç
1 GK(x)

0 1

å
for every x ∈ X .

The method of proof is an application of the Oka-Grauert-Gromov-prin-

ciple to certain stratified fibrations. The existence of a topological section for

these fibrations we deduce from Vaserstein’s result.

We need the principle in its strongest form suggested by Gromov, com-

pletely proven by Forstnerič and Prezelj [FP01]; see Theorem 3.6 and also

Forstnerič [For10, Th. 8.3]. After the Gromov-Eliashberg embedding theorem

for Stein manifolds (see [EG92], [Sch97]) this is to our knowledge the sec-

ond time this holomorphic h-principle has an application which goes beyond

the classical results of Grauert, Forster and Rammspott [Gra58], [Gra57b],

[Gra57a], [For71], [FR68b], [FR68a], [FR66b], [FR66a].

The paper is organized as follows. In Section 2 we introduce the fibration

and give an overview of the proof. In the next section we explain how the

Oka-Grauert-Gromov-principle is used in the proof. In Sections 4 and 5 we

prove all technical details referred to in earlier sections. In the last section we

comment on the number of matrices needed in the multiplication.

The results of the present paper have been announced in Comptes Rendus

[IK08], communicated by Misha Gromov. The authors like to thank him for

his interest in the subject. Also the authors thank Franc Forstnerič, Josip

Globevnik, Marco Slapar, Erik Løw and Erlend Fornæss Wold for valuable
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discussions on the subject over the years. Especially we thank Franc Forstnerič

for including an extra section into his paper [For10] to provide us with the exact

version of h-principle we need. A special thank goes to Wilberd van der Kallen

for bringing the work of Vaserstein to our attention.

2. Statement of the result and overview of the proof

All complex spaces considered in this paper will be assumed reduced, and

we will not repeat this every time. We call a complex spaceX finite dimensional

if its smooth part X \Xsing has finite dimension. Note that this does not imply

that they have finite embedding dimension.

We introduce the following notation. Let n and K be natural numbers.

If K is odd, write ZK ∈ Cn(n−1)/2 as

ZK = (z21,K , . . . , zji,K , . . . , zn(n−1),K)

for 1 ≤ i < j ≤ n. For K even, write

ZK = (z12,K , . . . , zji,K , . . . , z(n−1)n,K)

for 1 ≤ j < i ≤ n. Now define Mk : Cn(n−1)/2 → SLn(C) as

M2l(Z2l) =

â
1 z12,2l . . . z1n,2l

0
. . .

. . .
...

...
. . .

. . . z(n−1)n,2l

0 . . . 0 1

ì
and

M2l−1(Z2l−1) =

â
1 0 . . . 0

z21,2l−1
. . .

. . .
...

...
. . .

. . . 0

zn1,2l−1 . . . zn(n−1),2l−1 1

ì
.

Remark 2.1. In the proofs of our results we will study products

M1(Z1)−1 · · ·MK(ZK)−1.

This is done for purely technical reasons. Using automorphisms of Cn(n−1)/2

sending a unipotent matrix to its inverse, this is equivalent to a product

M1(X1) · · ·MK(XK) in new coordinates (X1, . . . , XK).

As pointed out in the introduction Vaserstein constructed the factorization

in the case of continuous mappings. Namely, he proved
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Theorem 2.2 (see [Vas88, Th. 4]). For any natural number n and an

integer d ≥ 0 there is a natural number K such that for any finite dimen-

sional normal topological space X of dimension d and null-homotopic continu-

ous mapping f : X → SLn(C), the mapping can be written as a finite product of

no more than K unipotent matrices. That is, one can find continuous mappings

Fl : X → Cn(n−1)/2, 1 ≤ l ≤ K such that f(x) = M1(F1(x)) · · ·MK(FK(x)) for

every x ∈ X .

Here the dimension of the topological space is meant to be the covering

dimension (which for normal second countable topological spaces is anyhow

the same as the large and small inductive dimension; see [HW41]).

We recall the statement of the main result of this paper.

Theorem 2.3. Let X be a finite dimensional reduced Stein space and

f : X → SLn(C) be a holomorphic mapping that is null-homotopic. Then

there exist a natural number K and holomorphic mappings G1, . . . , GK : X →
Cn(n−1)/2 such that

f(x) = M1(G1(x)) · · ·MK(GK(x))

for every x ∈ X .

We have the following corollary which in particular solves Gromov’s Vaser-

stein problem.

Corollary 2.4. Let X be a finite dimensional reduced Stein space that is

topologically contractible and f : X → SLn(C) be a holomorphic mapping. Then

there exist a natural number K and holomorphic mappings G1, . . . , GK : X →
Cn(n−1)/2 such that

f(x) = M1(G1(x)) · · ·MK(GK(x))

for every x ∈ X .

By the definition of the Whitehead K1-group of a ring (see [Ros94, p. 61]),

this implies.

Corollary 2.5. Let X be a finite dimensional reduced Stein space that

is topologically contractible and denote by O(X) the ring of holomorphic func-

tions on X . Then SK1(O(X)) is trivial and the determinant induces an iso-

morphism det : K1(O(X))→ O(X)?.

The strategy for proving Theorem 2.3 is as follows. Define ΨK : (Cn(n−1)/2)K

→ SLn(C) as

ΨK(Z1, . . . , ZK) = M1(Z1)−1 · · ·MK(ZK)−1.
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We want to show the existence of a holomorphic map

G = (G1, . . . , GK) : X → (Cn(n−1)/2)K

such that

(Cn(n−1)/2)K

ΨK

��
X

f
//

G
99ttttttttttt

SLn(C)

is commutative. The result by Vaserstein shows the existence of a continuous

map such that the diagram above is commutative.

We will prove Theorem 2.3 using the Oka-Grauert-Gromov principle for

sections of holomorphic submersions over X. One candidate submersion would

be the pull-back of ΨK : (Cn(n−1)/2)K → SLn(C). It turns out that ΨK is not

a submersion at all points in (Cn(n−1)/2)K . It is a surjective holomorphic

submersion if one removes a certain subset from (Cn(n−1)/2)K . Unfortunately

the fibers of this submersion are quite difficult to analyze and we therefore

elect to study

(Cn(n−1)/2)K

πn◦ΨK

��
X

πn◦f
//

F
99ttttttttttt

Cn \ {0},

where we define the projection πn : SLn(C)→ Cn \ {0} to be the projection of

a matrix to its last row:

πn

ÜÜ
z11 . . . z1n
...

. . .
...

zn1 . . . znn

êê
= (zn1, . . . , znn).

However, even the map ΦK = πn ◦ ΨK : (Cn(n−1)/2)K → Cn \ {0} is not

submersive everywhere. We have the following three results about that map

which will be proved in later sections.

Lemma 2.6. The mapping ΦK = πn ◦ΨK : (Cn(n−1)/2)K → Cn \ {0} is a

holomorphic submersion exactly at points Z = (Z1, . . . , ZK) ∈ (Cn(n−1)/2)K \
SK where for K ≥ 2,

SK =

Ñ ⋂
1≤2j+1<K

¶
(Z1, . . . , ZK) ∈ (Cn(n−1)/2)K : zn1,2j+1 = · · · = zn(n−1),2j+1 = 0

©é
∩

Ñ ⋂
1≤2j<K

¶
(Z1, . . . , ZK) ∈ (Cn(n−1)/2)K : z1n,2j = · · · = z(n−1)n,2j = 0

©é
;
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that is, the entries in the last row of each lower triangular matrix and the

entries in the last column of each upper triangular matrix are 0, except for the

K-th matrix where no conditions are imposed.

Lemma 2.7. The mapping ΦK = πn ◦ΨK : (Cn(n−1)/2)K \SK → Cn \ {0}
is surjective when K ≥ 3.

Proposition 2.8. Let X be a finite dimensional reduced Stein space and

f : X → SLn(C) be a null-homotopic holomorphic map. Assume that there

exists a natural number K and a continuous map F : X → (Cn(n−1)/2)K \ SK
such that

(Cn(n−1)/2)K \ SK

πn◦ΨK

��
X

πn◦f
//

F
88ppppppppppppp Cn \ {0}

is commutative. Then there exists a holomorphic map G : X → (Cn(n−1)/2)K \
SK , homotopic to F via continuous maps Ft : X → (Cn(n−1)/2)K \ SK , such

that the diagram above is commutative for all Ft.

Proof of Theorem 2.3. We use induction on n. Note that the result is ob-

vious for n = 1. Suppose that Proposition 2.8 is valid for n and Theorem 2.3

for n − 1. Put ΦK = πn ◦ ΨK . We can find a continuous map F : X →
(Cn(n−1)/2)K \ SK for some natural number K such that f(x) = ΨK(F (x)).

Indeed, since a finite dimensional Stein space is finite dimensional as a topo-

logical space, the Vaserstein result (Theorem 2.2) gives us a map (F1, . . . , FK′)

into
Ä
Cn(n−1)/2

äK′
. Abusing notation slightly one sees (use Lemma 2.6) that

F = (F1, . . . , FK′ , (0, . . . , 1), (0, . . . , 0), (0, . . . ,−1)) gives a map from X intoÄ
Cn(n−1)/2

äK′+3 \ SK′+3, and putting K = K ′ + 3 we have f(x) = ΨK(F (x)).

It follows that ΨK(F (x))f(x)−1 = En. Using Proposition 2.8 we know that F

is homotopic to a holomorphic map G such that

ΦK(F (x)) = πn(f(x)) = ΦK(G(x));

that is, the last rows of the matrices ΨK(F (x)) and ΨK(G(x)) are equal.

Therefore

ΨK(G(x))f(x)−1 =

à
f̃1

1 (x) . . . f̃n−1
1 (x) hn1 (x)

...
. . .

...
...

f̃1
n−1(x) . . . f̃n−1

n−1 (x) hnn−1(x)

0 . . . 0 1

í
,
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where all entries are holomorphic. We see that

fn−1(x) =

Ü
f̃1

1 (x) . . . f̃n−1
1 (x)

...
. . .

...

f̃1
n−1(x) . . . f̃n−1

n−1 (x)

ê
defines a holomorphic map fn−1 : X → SLn−1(C). The homotopy

ΨK(Ft(x))f(x)−1

consists of matrices having the last row equal to (0, . . . , 0, 1), and therefore

the (n − 1) × (n − 1) left upper corner of the matrices ΨK(Ft(x))f(x)−1 are

in SLn−1(C) for all t. Since for t = 0 it is the identity matrix, the map

fn−1 : X → SLn−1(C) is null-homotopic.

We use the induction hypotheses to write fn−1 as a product of unipotent

matrices with holomorphic entries. That is, there exists K̃, a holomorphic map‹G : X → (C(n−1)(n−2)/2)K̃ \ S
K̃

such that

f̃(x) = M1(‹G1(x)) · · ·M
K̃

(‹G
K̃

(x)).

Hence we haveà
En−1

−hn1 (x)
...

−hnn−1(x)

0 . . . 0 1

í
ΨK(G(x))f(x)−1 =

à
f̃(x)

0
...

0

0 . . . 0 1

í

=

à
M1(‹G1(x))

0
...

0

0 . . . 0 1

í
. . .

à
M
K̃

(‹G
K̃

(x))

0
...

0

0 . . . 0 1

í
,

and the result follows by induction. �

In order to complete the proof of the theorem we need to establish Propo-

sition 2.8, Lemma 2.6, and 2.7.

3. Stratified sprays

We will introduce the concept of a spray associated with a holomorphic

submersion following [Gro89] and [FP02]. First we introduce some notation

and terminology. Let h : Z → X be a holomorphic submersion of a complex

manifold Z onto a complex manifold X. For any x ∈ X the fiber over x of this

submersion will be denoted by Zx. At each point z ∈ Z the tangent space TzZ

contains the vertical tangent space V TzZ = kerDh. For holomorphic vector

bundles p : E → Z we denote the zero element in the fiber Ez by 0z.
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Definition 3.1. Let h : Z → X be a holomorphic submersion of a complex

manifold Z onto a complex manifold X. A spray on Z associated with h is a

triple (E, p, s), where p : E → Z is a holomorphic vector bundle and s : E → Z

is a holomorphic map such that for each z ∈ Z, we have

(i) s(Ez) ⊂ Zh(z),

(ii) s(0z) = z, and

(iii) the derivative Ds(0z) : T0zE → TzZ maps the subspace Ez ⊂ T0zE

surjectively onto the vertical tangent space V TzZ.

Remark 3.2. We will also say that the submersion admits a spray. A

spray associated with a holomorphic submersion is sometimes called a (fiber)

dominating spray.

One way of constructing dominating sprays, as pointed out by Gromov, is

to find finitely many C-complete vector fields that are tangent to the fibers and

span the tangent space of the fibers at all points in Z. One can then use the

flows ϕtj of these vector fields Vj to define s : Z×CN → Z via s(z, t1, . . . , tN ) =

ϕt11 ◦ · · · ◦ ϕ
tN
N (z) which gives a spray.

Definition 3.3. Let X and Z be complex spaces. A holomorphic map

h : Z → X is said to be a submersion if for each point z0 ∈ Z, it is locally

equivalent via a fiber preserving biholomorphic map to a projection p : U × V
→ U , where U ⊂ X is an open set containing h(z0) and V is an open set in

some Cd.

We will need to use stratified sprays which are defined as follows.

Definition 3.4. We say that a submersion h : Z → X admits stratified

sprays if there is a descending chain of closed complex subspaces X = Xm ⊃
· · · ⊃ X0 such that each stratum Yk = Xk \Xk−1 is regular and the restricted

submersion h : Z|Yk → Yk admits a spray over a small neighborhood of any

point x ∈ Yk.

Remark 3.5. We say that the stratification X = Xm ⊃ · · · ⊃ X0 is asso-

ciated with the stratified spray and vice versa.

In [FP01] (see also [For10, Th. 8.3]), the following theorem is proved.

Theorem 3.6. Let X be a Stein space with a descending chain of closed

complex subspaces X = Xm ⊃ · · · ⊃ X0 such that each stratum Yk = Xk \Xk−1

is regular. Assume that h : Z → X is a holomorphic submersion which admits

stratified sprays associated with the stratification then any continuous section

f0 : X → Z such that f0|X0 is holomorphic can be deformed to a holomorphic

section f1 : X → Z by a homotopy that is fixed on X0.
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Lemma 3.7. The holomorphic submersions ΦK : (Cn(n−1)/2)K\SK → Cn\
{0}, for K ≥ 3, admit stratified sprays.

This lemma will be established in Section 5. Assuming it true for the

moment we prove Proposition 2.8.

Proof of Proposition 2.8. Assume that K is a natural number so that

there exists a continuous map F : X → (Cn(n−1)/2)K \ SK such that

(Cn(n−1)/2)K \ SK

ΦK

��
X

πn◦f
//

F
88ppppppppppppp Cn \ {0}

is commutative. Put Y = (Cn(n−1)/2)K \ SK and p = πn ◦ f . Define the

pull-back of (Y,ΦK ,Cn \ {0}) via p : X → Cn \ {0} as (p?Y, p?ΦK , X) where

p?Y = {(x, Z) ∈ X × Y ; p(x) = ΦK(Z)}

and p?ΦK(x, Z) = x. Using that ΦK is a holomorphic submersion we see

that p?ΦK is a holomorphic submersion. The continuous mapping F defines a

continuous section

p?F (x) = (x, F (x))

of (p?Y, p?ΦK , X). We need to show that (p?Y, p?ΦK , X) admits stratified

sprays. Let Cn \ {0} = Vm ⊃ · · · ⊃ V0 be the stratification of Cn \ {0}
corresponding to the stratified spray of (Y,ΦK ,Cn \{0}). Define Xj = p−1(Vj)

for 0 ≤ j ≤ m. These complex subspaces need to be stratified in order for us

to apply Theorem 3.6. Define X0,i = Xsing
0,i−1 for i ≥ 1 and X0,0 = X0. This

defines a stratification of X0 since X0,J = ∅ when J > L for some L, since the

singularity set of reduced complex spaces has strictly lower dimension than the

space itself. We continue by putting Xj,0 = Xj and Xj,i = Xsing
j,i−1 ∪Xj−1 for

i ≥ 1. Since X is finite dimensional, this gives a stratification of X. Now the

result follows by Theorem 3.6. �

4. Proof of Lemma 2.7 and 2.6

Recall that

SK =

Ñ ⋂
1≤2j+1<K

¶
(Z1, . . . , ZK)∈ (Cn(n−1)/2)K : zn1,2j+1 = · · · = zn(n−1),2j+1 = 0

©é
∩

Ñ ⋂
1≤2j<K

¶
(Z1, . . . , ZK)∈ (Cn(n−1)/2)K : z1n,2j = · · · = z(n−1)n,2j = 0

©é
.

We begin by proving Lemma 2.7.
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Proof of Lemma 2.7. First note that the set SK is invariant under the au-

tomorphism in (Cn(n−1)/2)K replacing M1(Z1)−1 · · ·MK(ZK)−1 with M1(X1)

· · ·MK(XK). Also note that if

(Cn(n−1)/2)K \ SK 3 (X1, . . . , XK) 7→ πn (M1(X1) · · ·MK(XK)) ∈ Cn \ {0}

is surjective, then

(Cn(n−1)/2)K+J \ SK+J 3 (X1, . . . , XK+J)

7→ πn (M1(X1) . . .MK+J(XK+J)) ∈ Cn \ {0}

is surjective when J ≥ 0, since

SK+J ⊂ {(X1, . . . , XK+J); (X1, . . . , XK) ∈ SK}.

Therefore is enough to show the lemma for

πn (M1(X1)M2(X2)M3(X3)) .

First

πn (M1(X1)M2(X2))

= πn

ââ
1 0 . . . 0

x21,1
. . .

. . .
...

...
. . .

. . . 0

xn1,1 . . . xn(n−1),1 1

ìâ
1 x12,2 . . . x1n,2

0
. . .

. . .
...

...
. . .

. . . x(n−1)n,2

0 . . . 0 1

ìì
=

Ç
xn1,1 , xn2,1 + xn1,1x12,2 , . . . , xn(n−1),1

+
n−2∑
j=1

xnj,1xj(n−1),2 , 1 +
n−1∑
j=1

xnj,1xjn,2

å
.

It is clear that we can map onto the set

{(a1, . . . , an) ∈ Cn \ {0}; a1 6= 0} .

To map onto Cn\{0} we need to use a third matrix. Consider matrices M1(X1)

and M2(X2) such that

πn(M1(X1)M2(X2)) = (1, a2, . . . , an).
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For such matrices we have

πn (M1(X1)M2(X2)M3(X3))

= πn

âà
? . . . . . . ?
...

. . .
. . .

...

? . . . . . . ?

1 a2 . . . an

íâ
1 0 . . . 0

x21,3
. . .

. . .
...

...
. . .

. . . 0

xn1,3 . . . xn(n−1),3 1

ìì
=

Ñ
1 +

n∑
j=2

ajxj1,3 , a2 +
n∑
j=3

ajxj2,3 , . . . , an

é
.

We can choose X3, a2, . . . , an freely to produce any vector in Cn \ {0}. Note

that we cannot produce 0 since this would force a2 = · · · = an = 0. �

We turn to the proof of Lemma 2.6.

Proof of Lemma 2.6. We begin with the base case K = 2. Let

(P1,1(Z1), . . . , Pn,1(Z1)) = πn

ââ
1 0 . . . 0

z21,1
. . .

. . .
...

...
. . .

. . . 0

zn1,1 . . . zn(n−1),1 1

ì−1ì
and

(P1,2(Z1, Z2), . . . , Pn,2(Z1, Z2))

=πn

ââ
1 0 . . . 0

z21,1
. . .

. . .
...

...
. . .

. . . 0

zn1,1 . . . zn(n−1),1 1

ì−1â
1 z12,2 . . . z1n,2

0
. . .

. . .
...

...
. . .

. . . z(n−1)n,2

0 . . . 0 1

ì−1ì
.

We get relations by studyingà
? . . . ?
...

. . .
...

? . . . ?

P1,1(Z1) . . . Pn,1(Z1)

í

=

à
? . . . ?
...

. . .
...

? . . . ?

P1,2(Z1, Z2) . . . Pn,2(Z1, Z2)

íâ
1 z12,2 . . . z1n,2

0
. . .

. . .
...

...
. . .

. . . z(n−1)n,2

0 . . . 0 1

ì
.
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They are

(1)

P1,2(Z1, Z2) = P1,1(Z1)

P2,2(Z1, Z2) = P2,1(Z1)− z12,2P1,2(Z1, Z2)

...

Pk,2(Z1, Z2) = Pk,1(Z1)−
k−1∑
j=1

zjk,2Pj,2(Z1, Z2)

...

Pn,2(Z1, Z2) = Pn,1(Z1)−
n−1∑
j=1

zjn,2Pj,2(Z1, Z2).

We need to establish at which points dP1,2 ∧ dP2,2 ∧ · · · ∧ dPn,2 = 0. Note that

Pn,1 ≡ 1. Also note that dP1,1∧ · · ·∧dPn−1,1 never vanishes since dz21,1∧ · · ·∧
dzn1,1∧· · ·∧dzn(n−1),1 never vanishes, and P1,1, . . . , Pn−1,1 are components of an

automorphism of Cn(n−1)/2 induced by M1(Z1) 7→M1(Z1)−1. Set Ω2 = dP1,2∧
· · · ∧ dPn,2. We will show that this form is zero if and only if P1,2(Z1, Z2) =

· · · = Pn−1,2(Z1, Z2) = 0. Indeed, when we plug in

dPk,2(Z1, Z2) = dPk,1(Z1)−
k−1∑
j=1

Pj,2(Z1, Z2) dzjk,2 −
k−1∑
j=1

zjk,2 dPj,2(Z1, Z2)

to calculate Ω2 we see that the terms in the last sum do not contribute to the

result. Next one sees that Ω2 contains summands of the form

(Pk,2)n−k dP1,1 ∧ · · · ∧ dPk,1 ∧ dzk(k+1),2 ∧ · · · ∧ dzkn,2,

and these are the only summands containing the wedge dzk(k+1),2∧· · ·∧dzkn,2.

This implies that at points where Ω2 vanishes we have

P1,2(Z1, Z2) = · · · = Pn−1,2(Z1, Z2) = 0

and all other summands involve products of these functions as coefficients.

Thus Ω2 vanishes if and only if P1,2(Z1, Z2) = · · · = Pn−1,2(Z1, Z2) = 0.

From (1) we see that this is equivalent to P1,1(Z1) = · · · = Pn−1,1(Z1) = 0.

Note that P1,1, . . . , Pn−1,1 are components of the automorphism of Cn(n−1)/2

induced by M1(Z1) 7→M1(Z1)−1. Since this automorphism fixes S2 = {zn1,1 =

· · · = zn(n−1),1 = 0}, we conclude that Φ2 is submersive exactly at points out-

side S2. In order to make our induction step we need some further properties.

Note that at points where P1,2 = · · · = Pn−1,2 = 0, that is in S2, we have

dP1,2 ∧ · · · ∧ dPn−1,2 = dP1,1 ∧ · · · ∧ dPn−1,1 6= 0.

We also have dPn,1 ≡ 0 since Pn,1(Z1) ≡ 1.
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We now consider K odd. Our induction assumptions are besides the

description of the nonsubmersivity set SK−1 the following:

If K is odd and dP1,K−1 ∧ · · · ∧ dPn,K−1 = 0, then

(IK−1): dPn,K−2 = 0,

(IIK−1): dP1,K−1 ∧ · · · ∧ dPn−1,K−1 6= 0, and

(IIIK−1): Pj,K−1 = 0 for 1 ≤ j ≤ n− 1.

We now describe the induction step from K − 1 to K when K is odd.

Doing similar calculations as for K = 2 we get the relations

(2)
Pn,K(Z1, . . . , ZK) = Pn,K−1(Z1, . . . , ZK−1)

Pn−1,K(Z1, . . . , ZK) = Pn−1,K−1(Z1, . . . , ZK−1)− zn(n−1),KPn,K(Z1, . . . , ZK)

...

Pk,K(Z1, . . . , ZK) = Pk,K−1(Z1, . . . , ZK−1)−
n∑

j=k+1

zjk,KPj,K(Z1, . . . , ZK)

...

P1,K(Z1, . . . , ZK) = P1,K−1(Z1, . . . , ZK−1)−
n∑
j=2

zj1,KPj,K(Z1, . . . , ZK).

We see that

ΩK = dPn,K ∧ dPn−1,K ∧ · · · ∧ dP1,K

= dPn,K−1 ∧ · · · ∧ dP1,K−1 + terms involving dzjl,K .

At points where ΩK vanishes, the form ΩK−1 = dPn,K−1 ∧ · · · ∧ dP1,K−1 must

vanish since it involves no terms in dzjl,K . By the induction hypotheses this

forces

Z ∈ {(Z1, . . . , ZK); (Z1, . . . , ZK−1) ∈ SK−1}.
A calculation shows that at these points

Pn,K−1(Z1, . . . , ZK−1) = Pn,K(Z1, . . . , ZK) = 1.

Plugging in

dPk,K(Z1, . . . , ZK) = dPk,K−1(Z1, . . . , ZK−1)−
n∑

j=k+1

Pj,K(Z1, . . . , ZK) dzjk,K

−
n∑

j=k+1

zjk,K dPj,K(Z1, . . . , ZK)

to calculate ΩK we see that the terms in the last sum do not contribute to the

result. We also find a term of the following form:

(Pn,K)n−1 dPn,K ∧ dzn(n−1),K ∧ · · · ∧ dznk,K ∧ · · · ∧ dzn1,K .
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Since Pn,K = 1 at these points, we see that we must have dPn,K = dPn,K−1 = 0

in order for ΩK to vanish, and this obviously implies that ΩK vanishes. We

have

Pn,K−1 = Pn,K−2 −
n−1∑
j=1

zjn,K−1Pj,K−1

and

dPn,K−1 = dPn,K−2 −
n−1∑
j=1

Pj,K−1 dzjn,K−1 −
n−1∑
j=1

zjn,K−1 dPj,K−1.

By the induction assumption at points where ΩK−1 vanishes, we have dPn,K−2

= 0 and Pj,K−1 = 0 for 1 ≤ j ≤ n− 1. Therefore

dPn,K−1 = −
n−1∑
j=1

zjn,K−1 dPj,K−1

at these points. Moreover, by the induction hypotheses, dP1,K−1 ∧ · · · ∧
dPn−1,K−1 6= 0, meaning that dP1,K−1, . . . , dPn−1,K−1 are linearly indepen-

dent at these points, which implies zjn,K−1 = 0 for 1 ≤ j ≤ n − 1. Therefore

the mapping is nonsubmersive exactly in SK .

To pass from K to K + 1, that is from odd to even, we like to establish

(IVK) and (VK) below. We have already established (IVK) above. To prove

(VK) look at

dP1,K ∧ · · · ∧ dPn−1,K

= dP1,K−1 ∧ · · · ∧ dPn−1,K−1 + terms involving dzjl,K 6= 0.

The nonvanishing of the left-hand side at points in SK follows from (IIK−1).

This concludes the induction step from K − 1 to K for odd K. However, let

us for future use explicitly state that

(3) dPn,K vanishes at all points in SK .

Consider the case K even. Our induction assumption are besides the

description of the nonsubmersivity set SK−1 the following:

If K is even and dP1,K−1 ∧ · · · ∧ dPn,K−1 = 0, then

(IVK−1): dP1,K−1 ∧ · · · ∧ dPn−1,K−1 6= 0 and

(VK−1): Pn,K−1 = 1.
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We have

(4)

P1,K = P1,K−1

P2,K = P2,K−1 − z12,KP1,K

...

Pn,K = Pn,K−1 −
n−1∑
j=1

zjn,KPj,K .

We see that

ΩK = dP1,K ∧ · · · ∧ dPn,K =

= dP1,K−1 ∧ · · · ∧ dPn,K−1 + terms involving dzjl,K .

At points where ΩK vanishes, the form ΩK−1 = dP1,K−1 ∧ · · · ∧ dPn,K−1 must

vanish since it involves no terms in dzjl,K . By the induction hypotheses this

forces

Z ∈ S̃K−1 = {(Z1, . . . , ZK); (Z1, . . . , ZK−1) ∈ SK−1}.
We will show that ΩK vanishes at points in S̃K−1 if and only if P1,K(Z1, . . . , ZK)

= · · · = Pn−1,K(Z1, . . . , ZK) = 0. Indeed, when we plug in

dPk,K = dPk,K−1 −
k−1∑
j=1

Pj,K dzjk,K −
k−1∑
j=1

zjk,K dPj,K

to calculate ΩK we see that the terms in the last sum do not contribute to the

result. Next one sees that ΩK contains summands of the form

(Pk,K)n−k dP1,K−1 ∧ · · · ∧ dPk,K−1 ∧ dzk(k+1),K ∧ · · · ∧ dzkn,K ,

and these are the only summands containing the wedge dzk(k+1),K∧· · ·∧dzkn,K .

Using (IVK−1) we see that for all 1 ≤ k ≤ n − 1, the wedge dP1,K−1 ∧ · · · ∧
dPk,K−1 never vanishes on S̃K−1. Therefore on S̃K−1 the vanishing of ΩK

implies P1,K = · · · = Pn−1,K = 0. All other summands involve products of

these functions as coefficients. Thus ΩK vanishes if and only if Z ∈ S̃K−1

and P1,K = · · · = Pn−1,K = 0. Inspecting (4) we see that at these points

Pj,K = Pj,K−1 = 0 for 1 ≤ j ≤ n− 1 and Pn,K = Pn,K−1. By (VK−1) we have

Pn,K = Pn,K−1 = 1.

Going back one step to K − 1 we have

Pn,K−1 = Pn,K−2

Pn−1,K−1 = Pn−1,K−2 − zn(n−1),K−1Pn,K−1

...

P1,K−1 = P1,K−2 −
n∑
j=2

zj1,K−1Pj,K−1,
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and since Pj,K−2 = 0 for 1 ≤ j ≤ n− 1 at points in S̃K−2 ⊃ S̃K−1, we see that

we must have

Pj,K = Pj,K−1 = −znj,K−1 = 0

for 1 ≤ j ≤ n − 1 at the points we are considering. This implies that the

mapping is submersive exactly at points outside SK .

Finally we need justify the induction assumptions (IK), (IIK), and (IIIK).

We have already established (IIIK). We also see that

dP1,K ∧ · · · ∧ dPn−1,K = dP1,K−1 ∧ · · · ∧ dPn−1,K−1 + terms involving dzjl,K ,

and the first term is nonvanishing on S̃K−1 by (IVK−1) (and thus on SK). This

establishes (IIK). By (3) we know that dPn,K−1 vanishes identically on S̃K−1

and therefore on SK , and this is (IK). This concludes our induction step and

the lemma follows. �

Remark 4.1. Let us make some observations about the sets SK and how

they are situated in relation to the fibers of the mapping. First when K is even

one sees that the image of SK using the map ΦK :
Ä
Cn(n−1)/2

äK → Cn \ {0} is

(0, . . . , 0, 1) so the points in SK are all contained in Φ−1({(0, . . . , 0, 1}). When

K is odd the image of SK is {(z1, . . . , zn) ∈ Cn \ {0}; zn = 1}.

5. Proof of Lemma 3.7

Definition 5.1. We say that a polynomial p(x1, . . . , xn) ∈ C[Cn] is no more

than linear in xk if there exist two polynomials p̃, q̃ ∈ C[Cn] both independent

of xk such that

p = xkp̃+ q̃.

We need the following two lemmata.

Lemma 5.2. Let p(x1, . . . , xn) ∈ C[Cn] be a polynomial which is no more

than linear in each variable. Then the vector fields

Vij,p =
∂p

∂xi

∂

∂xj
− ∂p

∂xj

∂

∂xi

for 1 ≤ i < j ≤ n are globally integrable on Cn.

Proof. Note that ∂p/∂xi is no more than linear in xj and independent of

xi since p is no more than linear in each variable separately. Hence the vector

field ∂p/∂xi(∂/∂xj) is globally integrable and independent of xi. Similarly

the vector field ∂p/∂xj(∂/∂xi) is globally integrable and independent of xj .

Therefore the vector fields Vij,p are globally integrable. �

Lemma 5.3. Let p(x1, . . . , xn) ∈ C[Cn] and

Fp(c) = {X = (x1, . . . , xn) ∈ Cn; p(X) = c}
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be the fiber of p over the value c. Then the vector fields

Vij,p =
∂p

∂xi

∂

∂xj
− ∂p

∂xj

∂

∂xi
, 1 ≤ i < j ≤ n

span the tangent space of Fp(c) at all smooth points X ∈ Fp(c) (i.e., those

points where dp does not vanish.)

Proof. We have

Vij,p(p− c) =
∂p

∂xi

∂p

∂xj
− ∂p

∂xj

∂p

∂xi
≡ 0

so the vector fields are tangential to Fp(c). We need to show that

dim span (Vij,p; 1 ≤ i < j ≤ n) = n− 1.

But this is obvious since at points where dp 6= 0, at least one of the components,

say ∂p/∂xn, is nonzero and then

dim span (Vin,p; 1 ≤ i ≤ n− 1) = n− 1. �

Proof of Lemma 3.7. In order to construct a spray we will produce glob-

ally integrable vector fields that span the tangent spaces of the fibers of ΦK .

These fibers are given by n polynomial equations in Kn(n − 1)/2 variables.

It is difficult to produce globally integrable vector fields that leave these poly-

nomials invariant. The main goal of our proof will be to reduce, on each

stratum individually, these polynomial equations to essentially a single poly-

nomial equation. This polynomial equation will be no more than linear in each

variable, and therefore Lemmas 5.2 and 5.3 will provide us with the desired

integrable fields.

Recall that we have the relations

(5)

P1,K = P1,K−1

P2,K = P2,K−1 − z12,KP1,K

...

Pk,K = Pk,K−1 −
k−1∑
j=1

zjk,KPj,K

...

Pn,K = Pn,K−1 −
n−1∑
j=1

zjn,KPj,K
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when K is even and

(6)

Pn,K = Pn,K−1

Pn−1,K = Pn−1,K−1 − zn(n−1),KPn,K

...

Pk,K = Pk,K−1 −
n∑

j=k+1

zjk,KPj,K

...

P1,K = P1,K−1 −
n∑
j=2

zj1,KPj,K

when K is odd.

Lets make the following

Observation (?). From (5) and (6) one easily deduces by induction that

the map ΦK = (P1,K , . . . , Pn,K) has polynomial entries that are no more than

linear in each variable. Using (5) one sees that P1,K is independent of ZK ,

P2,K depends only on Z1, . . . , ZK−1, z12,K , and in general Pk,K depends only

on Z1, . . . , ZK−1 and zij,K for 1 ≤ i < j ≤ k when K is even. When K is odd

one concludes, using (6), that Pk,K depends only on Z1, . . . , ZK−1 and zij,K
for k ≤ j < i ≤ n.

We will begin by considering the case K even. Here we will stratify Cn\{0}
as

• Vn = Cn \ {0},
• Vn−k = {(z1, . . . , zn) ∈ Cn\{0}; z1 = · · · = zk = 0} when 1 ≤ k ≤ n−1,

and

• V0 = ∅.
First consider a fiber over a point a = (a1, . . . , an) ∈ Vn \ Vn−1. Here we have

P1,K = a1 6= 0

P2,K = P2,K−1 − z12,KP1,K = a2

...

Pn,K = Pn,K−1 −
n−1∑
j=1

zjn,KPj,K = an.

Put ZK = (Z ′K , Z
′′
K), where Z ′′K = (z12,K , . . . , z1n,K) and Z ′K consists of the

other variables in ZK . We see that the fiber Φ−1
K (a) is biholomorphic to (it is

a graph over)

Bn(a) = {Z = (Z1, . . . , Z
′
K) ∈ (Cn(n−1)/2)K−1 × C(n−1)(n−2)/2;P1,K(Z) = a1}
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(remember that P1,K is independent of ZK) since

z12,K =
P2,K−1 − a2

a1

...

z1n,K =
Pn,K−1 − an −

∑n−1
j=2 zjn,Kaj

a1
.

This also shows that the fibration ΦK : Φ−1
K (Vn \ Vn−1)→ Vn \ Vn−1 is biholo-

morphic to the fibration

{(Z1, . . . , Z
′
K , a) ∈ CM × (Vn \ Vn−1);P1,K(Z) = a1}

(Z1,...,Z′
K ,a) 7→a

��
Vn \ Vn−1,

where CM = (Cn(n−1)/2)K−1 × C(n−1)(n−2)/2. The vector fields Vij,P1,K
, where

i, j run through all pairs of variables in CM , are globally integrable and span

the tangent space of each individual fiber by Lemmas 5.2 and 5.3 (since the

fibers of ΦK over Vn \ Vn−1 are smooth and biholomorphic to {P1,K(Z) = a1};
see Remark 4.1). This gives us the vector fields needed to conclude that the

restricted submersion over Vn \ Vn−1 admits a spray.

Next let us study the fiber over a point a = (0, a2, . . . , an) ∈ Vn−1 \ Vn−2.

Here the relations for the fiber are

P1,K = P1,K−1 = 0

P2,K = P2,K−1 − z12,KP1,K = a2 6= 0

...

Pn,K = Pn,K−1 −
n−1∑
j=1

zjn,KPj,K = an.

Since P1,K = 0, the system is equivalent to

P1,K = P1,K−1 = 0

P2,K = P2,K−1 = a2 6= 0

...

Pn,K = Pn,K−1 −
n−1∑
j=2

zjn,KPj,K = an,
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and z12,K , . . . , z1n,K are free variables. As in the case above we can (using

a2 6= 0) solve the last n−2 equations for the variables z23,K , . . . , z2n,K , namely

z23,K =
P3,K−1 − a3

a2

...

z2n,K =
Pn,K−1 − an −

∑n−1
j=3 zjn,Kaj

a2
.

Put ZK = (Z ′K , Z
′′
K) where Z ′′K = (z12,K , . . . , z1n,K , z23,K , . . . , z2n,K) and Z ′K

consists of the other variables in ZK . We see that the fiber Φ−1
K (a) is biholo-

morphic to

Bn−1(a) = {Z = (Z1, . . . , Z
′
K) ∈ (Cn(n−1)/2)K−1 × C(n−2)(n−3)/2;

P1,K(Z) = 0, P2,K(Z) = a2} × Cn−1
(z12,K ,...,z1n,K).

This system of two equations can be reduced to one equation by going back

one step and using the last equation of (6) which says

P1,K−1 =

Ñ
P1,K−2 −

n∑
j=3

zj1,K−1Pj,K−1

é
− z21,K−1P2,K−1 = 0.

It allows us to solve for z21,K−1:

z21,K−1 =

Ä
P1,K−2 −

∑n
j=3 zj1,K−1Pj,K−1

ä
a2

.

From Observation (?) we see thatÑ
P1,K−2 −

n∑
j=3

zj1,K−1Pj,K−1

é
does not depend on z21,K−1. Putting

CM = (Cn(n−1)/2)K−2 × Cn(n−1)/2−1 × C(n−2)(n−3)/2

and

X = (Z1, . . . , ZK−2, . . . , ẑ21,K−1, . . . , Z
′
K) ∈ CM ,

we have shown that the fibration ΦK : Φ−1
K (Vn−1 \ Vn−2) → Vn−1 \ Vn−2 is

biholomorphic to the fibration

{(X, a) ∈ CM × (Vn−1 \ Vn−2);P2,K−1(X) = a2} × Cn−1
(z12,K ,...,z1n,K)

(X,z12,K ,...,z1n,K ,a)7→a
��

Vn−1 \ Vn−2,

and the spray is constructed as above.
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For general k we proceed analogously. Using a1 = · · · = ak−1 = 0 we get

free variables zij,K for 1 ≤ i ≤ k − 1 and i < j ≤ n, and the first k equations

become
P1,K−1 = · · · = Pk−1,K−1 = 0

and
Pk,K−1 = ak.

We now solve the last n−k equations for the variables zk(k+1),K , . . . , zkn,K us-

ing that ak 6= 0. Then we go one step back and use the last k− 1 equations of

(6) to rewrite our first k− 1 equations. This allow us to solve for the variables

zk1,K−1, zk2,K−1, . . . , zk(k−1),K−1.

Also the variables zij,K−1, for 1 ≤ j ≤ k−2 and j < i ≤ k−1, become free vari-

ables. This shows that the fibration ΦK : Φ−1
K (Vn−k+1 \Vn−k)→ Vn−k+1 \Vn−k

is biholomorphic to the fibration

{(X, a) ∈ CM × (Vn−k+1 \ Vn−k);Pk,K−1(X) = ak} × CNw
(X,w,a)7→a
��

Vn−k+1 \ Vn−k
for appropriate N . The globally integrable vector fields Vij,Pk,K

where i, j run

through all pairs of variables in CM together the fields ∂/∂wl where l runs

over all variables in CNw give the spray on the (smooth part, i.e., when SK is

removed, of the) fibers over Vn−k+1 \ Vn−k. Remembering Remark (4.1) we

have smooth fibers over all strata except for the very last stratum where we

have a nonsmooth fiber over (0, . . . , 0, 1).

When K is odd the method is basically the same. Only here the stratifica-

tion is Vn = Cn \ {0}, Vn−k = {(z1, . . . , zn) ∈ Cn \ {0}; zn−k+1 = · · · = zn = 0}
when 1 ≤ k ≤ n−1, and V0 = ∅. On Vn−k+1\Vn−k one show that the fibers are

biholomorphic to {Pn−k+1,K−1 = an−k+1} times free variables. Note that the

singular fibers are contained in the first stratum Vn\Vn−1; see Remark 4.1. �

Remark 5.4. We do not know whether there is a possibly finer stratifi-

cation so that the restricted submersions are locally trivial fiber bundles. In

some cases we see from the explicit form of the polynomials that we have local

triviality. We have not been able to decide this in all cases.

6. On the number of factors

A natural question to ask is how the number of factors needed in the fac-

torization depends on the space X and the map f . In the algebraic setting

there is no such uniform bound as proved by van der Kallen in [vdK82]. How-

ever in the holomorphic setting (exactly as in the topological setting) it is easy

to see that there is an upper bound depending only on the dimension of the

space X (= m) and the size of the matrix (= n).
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It follows from Vaserstein’s result (Theorem 2.2) that there exists a uni-

form bound K depending on the dimension of the space X (= m) and the size

of the matrix = n such that the fibration

p?Y

p?ΦK

��
X

from the proof of Proposition 2.8 has a topological section and hence a holo-

morphic section. Going through the induction over the size of the matrix as

in the proof of Theorem 2.3 we conclude that there is a uniform bound even

in the holomorphic case.

Another way to prove the existence of such a uniform bound is the fol-

lowing. Suppose it would not exist, i.e., for all natural numbers i there are

Stein spaces Xi of dimension m and holomorphic maps fi : Xi → SLn(C) such

that fi does not factor over a product of less than i unipotent matrices. Set

X = ∪∞i=1Xi the disjoint union of the spaces Xi and F : X → SLn(C) the map

that is equal to fi on Xi. By our main result F factors over a finite number

of unipotent matrices. Consequently all fi factor over the same number of

unipotent matrices which contradicts the assumption on fi.

Thus we proved

Theorem 6.1. There is a natural number K such that for any reduced

Stein space X of dimension m and any null-homotopic holomorphic map-

ping f : X → SLn(C) there exist holomorphic mappings G1, . . . , GK : X →
Cn(n−1)/2 such that

f(x) = M1(G1(x)) · · ·MK(GK(x))

for every x ∈ X .

Let us denote by KC(m,n) the number of matrices needed to factorize

any null-homotopic map from a Stein space of dimension m into SLn(C) by

continuous triangular matrices and the number needed in the holomorphic

case by KO(m,n). We do not know these numbers. We know that the Cohn

example can be factored as four matrices with continuous entries but if one

wants to factor it using matrices with holomorphic entries, one needs five

matrices. It is natural to ask the following question.

Problem 6.2. How are the numbers KC(m,n) and KO(m,n) exactly re-

lated? Obviously KC(m,n) ≤ KO(m,n).

Examining our proof in the case n = 2 one easily deduces the estimate

KO(m, 2) ≤ KC(m, 2) + 4. At least for the case n = 2 we believe the answer

to the above question can be found. Some more precise results on the number

of factors are obtained by the authors in [IK].
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