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Multiplicity one theorems: the
Archimedean case

By Binyong Sun and Chen-Bo Zhu

Abstract

Let G be one of the classical Lie groups GLn+1(R), GLn+1(C),
U(p, q+1), O(p, q+1), On+1(C), SO(p, q+1), SOn+1(C), and let G′ be re-

spectively the subgroup GLn(R), GLn(C), U(p, q), O(p, q), On(C), SO(p, q),

SOn(C), embedded in G in the standard way. We show that every irre-

ducible Casselman-Wallach representation of G′ occurs with multiplicity at

most one in every irreducible Casselman-Wallach representation of G. Sim-

ilar results are proved for the Jacobi groups GLn(R)nH2n+1(R), GLn(C)n
H2n+1(C), U(p, q)nH2p+2q+1(R), Sp2n(R)nH2n+1(R), Sp2n(C)nH2n+1(C),
with their respective subgroups GLn(R), GLn(C), U(p, q), Sp2n(R), and

Sp2n(C).
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1. Introduction and main results

Let G be one of the (five plus two) classical groups

GLn+1(R), GLn+1(C), U(p, q + 1), O(p, q + 1), On+1(C),(1)

SO(p, q + 1), SOn+1(C),
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or one of the five Jacobi groups

(2) GLn(R) n H2n+1(R), GLn(C) n H2n+1(C), U(p, q) n H2p+2q+1(R),

Sp2n(R) n H2n+1(R), Sp2n(C) n H2n+1(C), p, q, n ≥ 0.

Here “H2k+1” indicates the appropriate Heisenberg group of dimension 2k+ 1.

A precise description of Jacobi groups is given in Section 8.

Let G′ be respectively the subgroup

GLn(R), GLn(C), U(p, q), O(p, q), On(C), SO(p, q), SOn(C),

or

GLn(R), GLn(C), U(p, q), Sp2n(R), Sp2n(C)

embedded in G in the standard way. The main technical result of this paper

is the following

Theorem A. There exists a real algebraic anti-automorphism σ on G

preserving G′ with the following property : every generalized function on G

which is invariant under the adjoint action of G′ is automatically σ-invariant.

A set of anti-automorphisms which satisfy Theorem A is constructed in

Section 8. For example, the matrix transpose is one such anti-automorphism

when G is a general linear group.

By a representation of a Lie group, we mean a continuous linear action

of the group on a (complete, Hausdorff, complex) locally convex topological

vector space. When the Lie group is real reductive, a representation is said to

be a Casselman-Wallach representation if it is Fréchet, smooth, of moderate

growth, admissible and Z-finite. Here Z is the center of the universal envelop-

ing algebra of its complexified Lie algebra. The reader may consult [Cas89],

[Wal92, Chapter 11] or [BK] for more details about Casselman-Wallach repre-

sentations.

By (a version of) the Gelfand-Kazhdan criterion ([SZ11, Cor. 2.5]), The-

orem A for the classical groups implies the following result (which we call the

multiplicity one theorem for Bessel models, as it implies uniqueness of the

Bessel models ([GGP, JSZ10])).

Theorem B. Let G be one of the classical groups in (1). Let V (resp.

V ′) be an irreducible Casselman-Wallach representation of G (resp. G′). Then

the space of G′-invariant continuous bilinear functionals on V × V ′ is at most

one dimensional.

Theorem B and its p-adic analog have been expected (by Bernstein, and

Rallis) since the 1980’s. When V ′ is the trivial representation, Theorem B

is proved in [AGS08], [AGS09] and [vD09b], in the case of general linear, or-

thogonal, and unitary groups, respectively. The p-adic analog of Theorem B is
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proved in [AGRS10] (except for the case of special orthogonal groups, which is

proved in [Wal]). When the initial manuscript of this paper was completed, the

authors learned that A. Aizenbud and D. Gourevitch had proved the multiplic-

ity one theorems for the pairs (GLn+1(R),GLn(R)) and (GLn+1(C),GLn(C)),

independently and in a different approach. This has since appeared as [AG09b].

Now assume that G is one of the five Jacobi groups. Write G=G′nH,

where H is an appropriate Heisenberg group. Fix a nontrivial unitary character

ψ on the center of H. Let ‹G′ be a double cover of G′ so that ‹G′ nH admits a

smooth oscillator representation ωψ corresponding to ψ; that is, ωψ is a genuine

smooth Fréchet moderate growth representation of ‹G′nH which is irreducible

with central character ψ when viewed as a representation of H. We say that

a representation of G is a Casselman-Wallach ψ-representation if it is of the

form V = V0“⊗ωψ (completed projective tensor product), where V0 is a genuine

Casselman-Wallach representation of ‹G′. This definition is independent of ‹G′
and ωψ. The representation V is irreducible if and only if V0 is. See [Su10] for

more details on Casselman-Wallach ψ-representations.

By the Gelfand-Kazhdan criterion for Jacobi groups ([Su10, Cor. D]),

Theorem A for the Jacobi groups implies the following result (which we call

the multiplicity one theorem for Fourier-Jacobi models, as it implies uniqueness

of the Fourier-Jacobi models (cf. [GGP])).

Theorem C. Let G be one of the Jacobi groups in (2). Let V be an irre-

ducible Casselman-Wallach ψ-representation of G and let V ′ be an irreducible

Casselman-Wallach representation of G′. Then the space of G′-invariant con-

tinuous bilinear functionals on V × V ′ is at most one dimensional.

The p-adic analog of Theorem C was conjectured by D. Prasad ([Pra96,

p. 20] in the case of symplectic groups) and is proved in [Su09].

2. A uniform formulation

We first introduce some general notation which will be used throughout

the paper. For any (smooth) manifold M , denote by C−∞(M) the space of

generalized functions on M , which by definition consists of continuous linear

functionals on D∞c (M), the space of (complex) smooth densities on M with

compact supports. The latter is equipped with the usual inductive smooth

topology. For any locally closed subset Z of M , denote by

(3) C−∞(M ;Z) ⊂ C−∞(U)

the subspace consisting of all f which are supported in Z, where U is an open

subset of M containing Z as a closed subset. This definition is independent

of U .
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If M is a Nash manifold, denote by C−ξ(M) ⊂ C−∞(M) the space of

tempered generalized functions on M and by C ς(M) ⊂ C−ξ(M) the space

of Schwartz functions. We refer the interested reader to [Shi87], [AG08] on

generalities of Nash manifolds and their function spaces. Since the closure of

every semialgebraic set is semialgebraic, given any locally closed semialgebraic

subset Z of a Nash manifold M , we may find an open semialgebraic subset U

of M containing Z as a closed subset. We define C−ξ(M ;Z) as the subspace of

C−ξ(U) consisting of all f which are supported in Z. Again this is independent

of U .

If H is a Lie group acting smoothly on a manifold M , then for any char-

acter χH of H, denote by

(4) C−∞χH
(M) ⊂ C−∞(M)

the subspace consisting of all f which are χH -equivariant, i.e.,

f(h · x) = χH(h)f(x), for all h ∈ H.

Similar notation (such as C−ξχH
(M ;Z)) will be used without further explanation.

We now proceed to describe a general set-up in order to work with all

classical groups in a uniform manner.

Let A be a finite dimensional semi-simple commutative algebra over R,

which is thus a finite product of copies of R and C. Let τ be a R-algebra

involution on A. We call (A, τ) (or A when τ is understood) a commutative

involutive algebra (over R). Let ε = ±1. Let E be an ε-Hermitian A-module,

namely, it is a finitely generated A-module, equipped with a nondegenerate

R-bilinear map

〈 , 〉E : E × E → A

satisfying

〈u, v〉E = ε〈v, u〉τE , 〈au, v〉E = a〈u, v〉E , a ∈ A, u, v ∈ E.

Denote by U(E) the group of all A-module automorphisms of E which preserve

the form 〈 , 〉E , and by u(E) its Lie algebra, which consists of all x ∈ EndA(E)

such that

〈xu, v〉E + 〈u, xv〉E = 0, u, v ∈ E.
Write ER := E, viewed as a real vector space. Following Moeglin-Vigneras-

Waldspurger ([MVW87]), we define a subgroup

(5) Ŭ(E) ⊂ GL(ER)× {±1}

consisting of pairs (g, δ) such that either

δ = 1 and 〈gu, gv〉E = 〈u, v〉E , u, v ∈ E,

or

δ = −1 and 〈gu, gv〉E = 〈v, u〉E , u, v ∈ E.
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Note that for every element (g, δ) ∈ Ŭ(E), if δ = 1, then g is automatically

A-linear, and if δ = −1, then g is τ -conjugate linear. Denote by

(6) χE : Ŭ(E)→ {±1}

the quadratic character of Ŭ(E) projecting to the second factor. It is a surjec-

tive homomorphism with kernel U(E).

Let Ŭ(E) act on U(E) by

(7) (g, δ) · x := gxδg−1

and act on u(E) through its differential, i.e.,

(g, δ) · x := δgxg−1.

It is known that every U(E)-orbit in U(E) or u(E) is Ŭ(E)-stable ([MVW87,

Prop. 4.I.2]). Let Ŭ(E) act on E by

(8) (g, δ) · v := δgv

and act on U(E)× E and u(E)× E diagonally.

The next five sections will be devoted to a proof of the following

Theorem 2.1. One has that

C−ξχE
(u(E)× E) = 0.

3. Fourier transform and rigidity

Let F be a finite dimensional real vector space, which is canonically a

Nash manifold. Denote by C[F ] the algebra of (complex) polynomial functions

and D[F ] the algebra of constant coefficient differential operators, on F . It is

a classical result of L. Schwartz that

C−ξ(F ; {0}) = D[F ]δF .

Here δF is a Dirac function on F , which is characterized (up to a nonzero

scalar) by the equation

λδF = 0 for all real linear functionals λ on F .

This is the simplest case of rigidity we have in mind.

From now on, we assume that F is equipped with a nondegenerate bilinear

form 〈 , 〉F which is either symmetric or skew-symmetric.

We introduce one general notation which will be extensively used. If M

is a Nash manifold, then we define the partial Fourier transform along F to be

the topological linear automorphism

FF : C ς(M × F )→ C ς(M × F )
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given by

(9) (FF f)(m, y) =

∫
F
f(m,x)e2π

√
−1 〈x,y〉F dx, m ∈M, y ∈ F.

Here dx is any fixed Lebesgue measure on F . The partial Fourier transform

uniquely extends to a topological linear isomorphism

FF : C−ξ(M × F )→ C−ξ(M × F ).

When M reduces to a single point, we recover the usual Fourier transform.

When the factor F is understood, for any two closed semialgebraic subsets

Z1 and Z2 of M × F , put

(10)

C−ξ(M × F ;Z1, Z2) := {f ∈ C−ξ(M × F ;Z1) | FF (f) ∈ C−ξ(M × F ;Z2)}.

For a subspace F ′ of F , let F ′⊥ denote its perpendicular space:

F ′⊥ := {v ∈ F | 〈v′, v〉F = 0, v′ ∈ F ′}.

Lemma 3.1. If F = F ′ ⊕ F ′′ is a direct sum decomposition, then

C−ξ(F ;F ′, F ′⊥) = C[F ′]⊗ C−ξ(F ′′; {0}).

Proof. Note that every tempered generalized function has a finite order.

Hence by the well-known result of L. Schwartz about local representation of a

generalized function with support, we have

C−ξ(F ;F ′) = C−ξ(F ′)⊗ C−ξ(F ′′; {0}).

The lemma then follows easily. �

For later use, we record the following

Proposition 3.2. If F 0 is a nondegenerate subspace of F and

(F 0)⊥ = F+ ⊕ F−

is a decomposition into totally isotropic subspaces F+ and F−, then

C−ξ(F ;F+ ⊕ F 0, F+ ⊕ F 0) = C[F+]⊗ C−ξ(F−; {0})⊗ C−ξ(F 0).

Proof. The proof is similar to that of Lemma 3.1. �

We also need the following result, which is a special case of [SZ, Th. A].

Proposition 3.3. Assume dimR F = 2k. Let F1, F2, . . . , Fs be a set of

(distinct) totally isotropic subspaces of F , each of dimension k. Then

C−ξ(F ;F1 ∪ F2 ∪ · · · ∪ Fs, F1 ∪ F2 ∪ · · · ∪ Fs) =
s⊕
i=1

C−ξ(F ;Fi, Fi).



MULTIPLICITY ONE THEOREMS 29

4. Nonnegativity of eigenvalues of an Euler vector field

We continue with the notation of Section 2. Set

U(A) := {a ∈ A× | aτa = 1}

and its Lie algebra

u(A) := {a ∈ A | aτ + a = 0}.
Scalar multiplication then yields a homomorphism U(A) → U(E) and its dif-

ferential u(A) → u(E). Denote by Z(E) and z(E) their respective images.

Then Z(E) coincides with the center of U(E) (but z(E) may not coincide with

the center of u(E)).

Denote by

trA : EndA(E)→ A

the trace map. It is specified by requiring that the diagram

EndA(E)
trA−−−−→ A

1A0
⊗
y y

EndA0(A0 ⊗A E)
tr−−−−→ A0

commutes for every quotient field A0 of A, where the bottom arrow is the usual

trace map. Set

sl(E) := {x ∈ EndA(E) | trA(x) = 0}.
Then we have

(11) EndA(E) = {scalar multiplication by a ∈ A} ⊕ sl(E)

and

u(E) = z(E)⊕ su(E),

where su(E) := u(E) ∩ sl(E).

We call the commutative involutive algebra A simple if it is nonzero and

has no τ -stable ideal except {0} and itself. Every simple commutative involu-

tive algebra is isomorphic to one of the following:

(12) (R, 1), (C, 1), (C, ), (R× R, τR), (C× C, τC),

where τR and τC are the maps which interchange the coordinates.

Assume in the rest of the section that A is simple. We say that (A, τ ; ε)

is of orthogonal type if it is either (R, 1; 1) or (C, 1; 1). If (A, τ ; ε) is not of

orthogonal type, we fix a nonzero element c0 ∈ A so that

c0 + εcτ0 = 0.

For any v ∈ E, write

φv(u) := 〈u, v〉E v, u ∈ E;
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then φv ∈ EndA(E). Denote by φ′v ∈ sl(E) the projection of φv to the second

factor according to the decomposition (11). For any x ∈ su(E), set

(13) φx,v :=

xφv + φvx, if (A, τ ; ε) is of orthogonal type,

c0 φ
′
v, otherwise.

This is checked to be in su(E).

Recall that an element of u(E) is said to be nilpotent (semisimple) if it is

nilpotent (semisimple) as a R-linear operator on E. Recall also that a nilpotent

element of u(E) (which is automatically in su(E)) is said to be distinguished if

it commutes with no nonzero semisimple element in su(E) (cf. [CM93, §8.2]).

Fix a distinguished nilpotent element e ∈ su(E). Following [AGRS10], we

define

(14) E(e) := { v ∈ E | φe,v ∈ [su(E), e] }.

Extend e (by Jacobson-Morozov Theorem) to a standard triple h, e, f in

su(E) so that

[h, e] = 2e, [h, f ] = −2f , [e, f ] = h.

Denote by Eih ⊂ E the eigenspace of h with eigenvalue i, where i ∈ Z. Write

E+
h :=

⊕
i>0

Eih, and E−h :=
⊕
i<0

Eih.

Note that 〈Eih, E
j
h〉E = 0 whenever i+ j 6= 0.

Lemma 4.1. If A is a field, then E(e) = E+
h ⊕ E0

h.

Proof. We prove the lemma in the case of real orthogonal groups. The

other cases are proved similarly. So assume that (A, τ ; ε) = (R, 1; 1). Then

su(E) = o(E) is a real orthogonal Lie algebra.

View E as a sl2(R)-module via the standard triple. Let

(15) E = E1 ⊕ E2 ⊕ · · · ⊕ Es

be a decomposition of E into irreducible sl2(R)-modules. By the classification

of distinguished nilpotent orbits ([CM93, Th. 8.2.14]), we know that (15) is

an orthogonal decomposition and E1, E2, . . . , Es have pairwise distinct odd

dimensions. Denote by ei ∈ o(Ei) ⊂ o(E) the restriction of e to Ei.

View o(E) as a real quadratic space under the trace form. For every

v ∈ E, we have that v ∈ E(e) if and only if

φe,v ∈ [o(E), e]⇔ φe,v ⊥ [o(E), e]⊥

⇔ φe,v ⊥ o(E)e (the centralizer of e in o(E))

⇔ 〈ev, xv〉E = 0 for all x ∈ o(E)e.
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Thus if v ∈ E(e), then we have 〈ev, e2k+1
i v〉E = 0 for all 1 ≤ i ≤ s and k ≥ 0,

and so v must be in E+
h + E0

h.

On the other hand, every element x ∈ o(E)e stabilizes E+
h +E0

h. Therefore

v ∈ E+
h + E0

h implies that 〈ev, xv〉E = 0. This finishes the proof. �

Denote by

(16) ΓE := {v ∈ E | 〈v, v〉E = 0}

the null cone of E. Equip ER = E with the (symmetric or skew-symmetric)

bilinear form

〈u, v〉ER := trA/R(〈u, v〉E), u, v ∈ E,
where trA/R : A→ R is the usual trace map.

Put

(17) VE,e := C−ξ(E;E(e) ∩ ΓE , E(e) ∩ ΓE)Z(E),

where, as usual, a superscript by a group indicates the group invariants. This

space arises naturally when one carries out the reduction within the null cone.

See Lemma 5.5.

For any finite dimensional real vector space F and any x ∈ EndR(F ),

denote by εF,x the vector field on F whose tangent vector at v ∈ F is xv. When

x = 1 is the identity operator, this is the usual Euler vector field εF := εF,1.

The main result of this section is the following

Proposition 4.2. The vector field εE,h acts semisimply on VE,e, and all

its eigenvalues are nonnegative integers.

If A is a field, then

VE,e ⊂ C−ξ(E;E(e), E(e))

= C−ξ(E;E+
h ⊕ E

0
h, E

+
h ⊕ E

0
h) (Lemma 4.1)

= C[E+
h ]⊗ C−ξ(E−h ; {0})⊗ C−ξ(E0

h) (Proposition 3.2),

and Proposition 4.2 follows easily.

Otherwise assume that (A, τ) = (K × K, τK), where K = R or C. Up to

an isomorphism, every ε-Hermitian A-module is of the form

(E, 〈 , 〉E) = (Kn ⊕Kn, 〈 , 〉K,n), n ≥ 0,

where Kn is considered as a space of column vectors, and the ε-Hermitian form

〈 , 〉K,n is given by Çñ
u

v

ô
,

ñ
u′

v′

ôå
7→ (v′

t
u, εu′

t
v).

Then

U(E) =

®ñ
g 0

0 g−t

ô
| g ∈ GLn(K)

´
= GLn(K)
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and

u(E) =

®ñ
x 0

0 −xt

ô
| x ∈ gln(K)

´
= gln(K).

In this case every distinguished nilpotent element of su(E) is principal,

and so we may assume that

e =

[ 0 1 0 ··· 0 0
0 0 1 ··· 0 0
··· ···

0 0 0 ··· 0 1
0 0 0 ··· 0 0

]
and

h = diag(n− 1, n− 3, . . . , 3− n, 1− n).

As in the proof of Lemma 4.1, one easily calculates E(e), and one has

(18) E(e) ∩ ΓE = ∪ni=0Fi, where Fi = (Ki ⊕ {0}n−i)⊕ ({0}i ⊕Kn−i).

Proposition 3.3 implies that

VE,e = C−ξ(E;E(e) ∩ ΓE , E(e) ∩ ΓE)Z(E) =
n⊕
i=0

C−ξ(E;Fi, Fi)
Z(E).

To finish the proof of Proposition 4.2, it therefore suffices to prove the

following

Lemma 4.3. The vector field εE,h acts semisimply on C−ξ(E;Fi, Fi)
Z(E),

and all its eigenvalues are nonnegative integers (0 ≤ i ≤ n).

Proof. We prove the lemma for K = R. The complex case is proved in the

same way.

Denote by x1, x2, . . . , xn, y1, y2, . . . , yn the standard coordinates of Rn ⊕
Rn, and write ∂j = ∂

∂xj
and dj = ∂

∂yj
for j = 1, 2, . . . , n.

By Lemma 3.1, the space C−ξ(E;Fi, Fi) has a basis consisting of general-

ized functions of the form

f = xa11 x
a2
2 · · ·x

ai
i y

bi+1

i+1 y
bi+2

i+2 · · · y
bn
n

⊗ ∂ai+1−1
i+1 ∂

ai+2−1
i+2 · · · ∂an−1n db1−11 db2−12 · · · dbi−1i δF ′i ,

where a1, . . . , ai, bi+1, . . . , bn are nonnegative integers, and the rest of a’s and

b’s are positive integers. Here δF ′i is a fixed Dirac function on the space

F ′i := ({0}i ⊕ Rn−i)⊕ (Ri ⊕ {0}n−i), (a complement of Fi).

The generalized function f as above is an eigenvector for both Z(E) and

εE,h. For f to be Z(E)-invariant, we must have∑
j≤i

(aj + bj) =
∑
j>i

(aj + bj).
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Then the εE,h-eigenvalue of f is∑
j≤i

(n− (2j − 1))aj −
∑
j>i

(n− (2j − 1))aj

+
∑
j≤i

(n− (2j − 1))bj −
∑
j>i

(n− (2j − 1))bj

≥(n− 2i)

Ç∑
j≤i

aj

å
− (n− 2i)

Ç∑
j>i

aj

å
+ (n− 2i)

Ç∑
j≤i

bj

å
− (n− 2i)

Ç∑
j>i

bj

å
= 0. �

5. Reduction within the null cone: distinguished orbits

We continue to assume that (A, τ) is simple. Since Theorem 2.1 is trivial

when E = 0, we will assume that E is nonzero. Denote by NE ⊂ su(E) the

null cone, which consists of all nilpotent elements in su(E). Let

(19) NE = N0 ⊃ N1 ⊃ · · · ⊃ Nr = {0} ⊃ Nr+1 = ∅

be a filtration of NE by its closed subsets so that each difference

Oi := Ni \ Ni+1, 0 ≤ i ≤ r

is a Ŭ(E)-orbit (which is also a U(E)-orbit). In this and the next section, we

shall prove the following

Proposition 5.1. If every element of C−ξχE
(su(E) × E) is supported in

Ni × ΓE for some fixed 0 ≤ i ≤ r, then every element of C−ξχE
(su(E) × E) is

supported in Ni+1 × ΓE .

For the ease of notation, denote s := su(E). We shall view s as a nonde-

generate real quadratic space via the form

〈x, y〉s := trA/R(trA(xy)).

It is easily verified (and important for us) that the partial Fourier trans-

forms FE and Fs both preserve the space C−ξχE
(s× E).

Lemma 5.2. Proposition 5.1 holds when s = 0.

Proof. For s=0, the assumption of Proposition 5.1 implies that C−ξχE
(s×E)

⊂ C−ξ(E; ΓE ,ΓE)Z(E). The latter space is easily checked to be zero. �

For the remaining part of this section, assume that s 6= 0.

Before proceeding further, we introduce a version of pull back of general-

ized functions.
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Definition 5.3. Let Z and Z ′ be locally closed subsets of manifolds M and

M ′, respectively. A smooth map φ : M →M ′ is said to be submersive from Z

to Z ′ if

• φ is submersive at every point of Z, and

• for every z ∈ Z, there is an open neighborhood U of z in M such that

φ−1(Z ′) ∩ U = Z ∩ U.

The following lemma is elementary.

Lemma 5.4. If φ : M → M ′ is submersive from Z to Z ′, as in Defini-

tion 5.3, then there is a unique linear map

(20) φ∗ : C−∞(M ′;Z ′)→ C−∞(M ;Z)

with the following property : for any open subset U of M and U ′ of M ′, if

• φ restricts to a submersive map φU : U → U ′,

• Z ′ ∩ U ′ is closed in U ′, and

• φ−1U (Z ′ ∩ U ′) = Z ∩ U,
then the diagram

C−∞(M ′;Z ′)
φ∗−−−−→ C−∞(M ;Z)y y

C−∞(U ′;Z ′ ∩ U ′)
φ∗U−−−−→ C−∞(U ;Z ∩ U)

commutes, where the two vertical arrows are restrictions, and the bottom arrow

is the usual pull back map of generalized functions via a submersion.

The map φ∗ in (20) is still called the pull back. It is injective if φ(Z) = Z ′.

In this case, we say that φ is submersive from Z onto Z ′. If M , M ′ are Nash

manifolds, Z, Z ′ are locally closed semialgebraic subsets and φ is a Nash map

which is submersive from Z to Z ′, then φ∗ maps C−ξ(M ′;Z ′) into C−ξ(M ;Z)

(cf. [AG09a, §B.2]).

We continue the proof of Proposition 5.1.

Fix i ∈ {0, 1, . . . , r} and assume that Oi is distinguished; namely, some

(so all) elements of it are distinguished. We use the notation of last section.

Put

(21) Zi := (Ni+1 × ΓE) ∪ (
⊔

e∈Oi

{e} × (E(e) ∩ ΓE)).

One checks that Zi is a closed semialgebraic subset of s× E.

Lemma 5.5. Assume that every element of C−ξχE
(s × E) is supported in

Ni × ΓE . Then every f ∈ C−ξχE
(s× E) is supported in Zi.
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Proof. We follow the method of [AGRS10]. For every t ∈ R, define a map

η := ηt : s× E → s× E,
(x, v) 7→ (x− tφx,v, v),

which is checked to be submersive from s × ΓE to s × ΓE . Therefore, by

Lemma 5.4, it yields a pull back map

η∗ : C−∞(s× E; s× ΓE) → C−∞(s× E; s× ΓE).

Fix f ∈ C−ξχE
(s× E). By our assumption,

f ∈ C−ξχE
(s× E;Ni × ΓE) ⊂ C−ξχE

(s× E; s× ΓE).

Since the map η is algebraic and Ŭ(E)-equivariant,

η∗(f) ∈ C−ξχE
(s× E; s× ΓE).

Let (e, v) ∈ Oi × ΓE be a point in the support of f . It is routine to check

that η restricts to a bijection from s× ΓE onto itself. Denote by

e′ := e′(e, v, t) ∈ s

the unique element so that

η(e′, v) = (e, v).

Then (e′, v) is in the support of η∗(f), and therefore our assumption implies

that

(22) e′ ∈ Ni.

An easy calculation shows that

e′ =

e + tφe,v + t2φveφv, if (A, τ ; ε) is of othogonal type,

e + tφe,v, otherwise.

Since Oi is open in Ni, (22) implies that

φe,v =
d

dt
|t=0 e′(e, v, t) ∈ Te(Oi) = [u(E), e] = [s, e],

i.e., v ∈ E(e), and the proof is now complete. �

Denote by

(23) Vs×E,Oi ⊂ C−ξ(s× E;Oi × E)U(E)

the subspace consisting of those f such that both f and FE(f) are supported

in
⊔

e∈Oi
{e} × (E(e) ∩ ΓE).

Proposition 5.6. The Euler vector field εs acts semisimply on Vs×E,Oi ,

and all its eigenvalues are real numbers < −1
2 dimR s.

Let us first prove the following
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Lemma 5.7. Proposition 5.6 implies Proposition 5.1 when Oi is distin-

guished.

Proof. Denote by qs the quadratic form on s, i.e.,

qs(x) = 〈x, x〉s = trA/R(trA(x2)).

Denote by ∆s the Laplacian operator associated to qs. The operators

εs +
1

2
dimR s, −1

2
qs,

1

2
∆s

form a standard triple, and each of them leaves the space Vs×E,Oi stable.

Proposition 5.6 says that εs + 1
2 dimR s is semisimple and has negative eigen-

values on Vs×E,Oi , and so by [Wal88, Lemma 8.A.5.1], the map

∆s : Vs×E,Oi → Vs×E,Oi

is injective.

Let f ∈ C−ξχE
(s × E). Applying Lemma 5.5 to f and FE(f), we conclude

that under the restriction map

rs×E : C−ξχE
(s× E) ⊂ C−ξ(s× E;Ni × E)→ C−ξ(s× E;Oi × E),

the image

rs×E(f) ∈ Vs×E,Oi .

Since Fs(f) ∈ C−ξχE
(s× E) is supported in

Ni × ΓE ⊂ (the null cone of the real quadratic space s)× E,

we conclude that f and thus rs×E(f) are annihilated by some positive power

of ∆s. By the injectivity of ∆s on Vs×E,Oi , we conclude that rs×E(f) = 0, and

we are done. �

The remaining part of this section is devoted to a proof of Proposition 5.6.

Pick any element e ∈ Oi and extend it to a standard triple h, e, f ∈ s.

Then we have a vector space decomposition

s = [s, e]⊕ sf .

Let U(E) act on U(E)× sf ×E via the left translation on the first factor.

Define a U(E)-equivariant map

θ : U(E)× sf × E→ s× E,(24)

(g, x, v) 7→ g · (x+ e, v).

Lemma 5.8. The vector field

ιh/2 + εsf ,1−ad(h/2) − εE,h/2
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on U(E)× sf ×E is θ-related to the Euler vector field εs on s×E, where ιh/2
is the left invariant vector field on U(E) whose tangent vector at the identity

is h/2.

Proof. Since both vector fields under consideration are U(E)-invariant, it

suffices to prove the θ-relatedness at a point of the form

x := (1, x, v) ∈ U(E)× sf × E.

Under the differential of θ at x, we have

ιh/2|x = (h/2, 0, 0) 7→ ([h/2, x+ e], (h/2)v),

εsf ,1−ad(h/2)|x = (0, x− [h/2, x], 0) 7→ (x− [h/2, x], 0),

εE,h/2|x = (0, 0, (h/2)v) 7→ (0, (h/2)v).

This implies the lemma since εs|θ(x) = (x+ e, 0). �

Let Z(E) act on sf ×E and U(E)× sf ×E via its action on the factor E.

Then the map θ is Z(E)-equivariant as well. Note that θ is submersive from

U(E) × {0} × E onto Oi × E (cf. [Wal88, p. 299]). Therefore it yields an

injective pull back map

θ∗ : C−ξ(s×E;Oi×E)U(E) ↪→ C−ξ(U(E)× sf ×E; U(E)×{0}×E)U(E)×Z(E).

Denote by

rsf×E : C−ξ(U(E)×sf×E; U(E)×{0}×E)U(E)×Z(E) → C−ξ(sf×E; {0}×E)Z(E)

the linear isomorphism specified by the rule

(25) f = 1⊗ rsf×Ef.

Recall the space VE,e ⊂ C−ξ(E) from (17).

Lemma 5.9. The composition map rsf×E◦θ∗ sends Vs×E,Oi into C−ξ(sf ;{0})
⊗ VE,e, and the following diagram commutes :

Vs×E,Oi ↪
r
sf×E

◦θ∗
−−−−−−→ C−ξ(sf ; {0})⊗ VE,e

εs

y yεsf ,1−ad(h/2)
−εE,h/2

Vs×E,Oi ↪
r
sf×E

◦θ∗
−−−−−−→C−ξ(sf ; {0})⊗ VE,e.

Proof. The first assertion follows by noting that both θ∗ and rsf ,E com-

mute with the partial Fourier transform along E. The second assertion follows

from Lemma 5.8. �

Lemma 5.10. The vector field εsf ,1−ad(h/2) acts semisimply on C−ξ(sf ;{0}),
and all its eigenvalues are real numbers < −1

2 dimR s.
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Proof. Recall that s is assumed to be nonzero. We view s as a sl2(R)-

module via the adjoint representation and the standard triple {h, e, f}. We

shall prove that the analog of Lemma 5.10 holds for any finite dimensional

nonzero sl2(R)-module F . Without loss of generality, we may assume that F

is irreducible of real dimension k + 1. Then

εF f ,1−h/2 = (1 + k/2)εF f ,

which clearly acts semisimply on C−ξ(F f ; {0}), with all its eigenvalues real

numbers ≤ −(1 + k/2) = −1
2 dimR F − 1

2 < −
1
2 dimR F . �

In view of Lemma 5.9, Proposition 5.6 will follow from Proposition 4.2 and

Lemma 5.10. We have thus proved Proposition 5.1 when Oi is distinguished.

6. Reduction within the null cone: metrically proper orbits

We are in the same setting as Section 5, so (A, τ) is simple and E is

nonzero. Now assume that Oi is not distinguished. The purpose of this section

is to prove Proposition 5.1 in this case.

If F is a nondegenerate finite dimensional real quadratic space, we say

that a submanifold S of F is metrically proper ([JSZ11]) if for every x ∈ S,

the tangent space Tx(S) is contained in a proper nondegenerate subspace of

the real quadratic space F .

Lemma 6.1. The orbit Oi is metrically proper in s.

Proof. Let x ∈ Oi. By definition, it commutes with a nonzero semisimple

element h ∈ s. Denote by ah the center of sh (the centralizer of h in s), which

is a nonzero nondegenerate subspace of s.

Using the fact that every element of ah commutes with x, we see that the

tangent space

Tx(Oi) = [u(E), x] = [s, x]

is contained in the proper nondegenerate subspace (ah)⊥ ⊂ s. �

The following lemma is a form of the uncertainty principle.

Lemma 6.2. Let M be a Nash manifold and let F be a nondegenerate

finite dimensional real quadratic space. Let Z1 ⊃ Z2 be closed semialgebraic

subsets of F so that the difference Z1 \ Z2 is a metrically proper submanifold

of F . Then

C−ξ(M × F ;M × Z1,M × ΓF ) = C−ξ(M × F ;M × Z2,M × ΓF ),

where ΓF is the null cone of F .

Proof. This is a direct consequence of [JSZ11, Lemma 2.2]. �
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In view of Lemma 6.2, Proposition 5.1 in the metrically proper case follows

by noting that the partial Fourier transform Fs preserves the space C−ξχE
(s×E)

and that Ni is contained in the null cone of the real quadratic space s.

7. Reduction to the null cone and proof of Theorem 2.1

Now let E be an ε-Hermitian A-module, with (A, τ) arbitrary. Define an

involution on EndA(E), which is still denoted by τ , by requiring that

(26) 〈xu, v〉E = 〈u, xτv〉E , x ∈ EndA(E), u, v ∈ E.

For any x in EndA(E), let Ax be the subalgebra generated by x, xτ and

scalar multiplications by A. If x is a semisimple element in U(E) or u(E), then

(Ax, τ) is a commutative involutive algebra. Write Ex := E, to be viewed as

an ε-Hermitian Ax-module with the form 〈 , 〉Ex . The latter is specified by

trAx/R(a〈u, v〉Ex) = trA/R(〈au, v〉E), u, v ∈ E, a ∈ Ax.

Write

(A, τ) = (A1, τ1)× (A2, τ2)× · · · × (Al, τl)

as a product of simple commutative involutive algebras. We then have

(27) E = E1 × E2 × · · · × El,

where Ej := Aj ⊗A E, which is naturally an ε-Hermitian Aj-module. Note

that Ej is free as an Aj-module. Put

(28) sdim(E) :=
l∑

j=1

max{rankAj (Ej)− 1, 0}+ dimR(E).

The following result may be considered as a case of Harish-Chandra de-

scent.

Proposition 7.1. Assume that for all commutative involutive algebra A′

and all ε-Hermitian A′-module E′,

(29) sdim(E′) < sdim(E) implies C−ξχE′
(u(E′)× E′) = 0.

Then every f ∈ C−ξχE
(u(E)× E) is supported in (z(E) +NE)× E.

Proof. Let x be a semisimple element in u(E) \ z(E). Then sdim(Ex) <

sdim(E).

For any y ∈ u(Ex), denote by J(y) the determinant of the R-linear map

[y, ·] : u(E)/u(Ex)→ u(E)/u(Ex).

Then J is a Ŭ(Ex)-invariant function on u(Ex). Put

u(Ex)◦ := {y ∈ u(Ex) | J(y) 6= 0},
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which contains x+NEx . The map

πx : Ŭ(E)× (u(Ex)◦ × Ex) → u(E)× E,
(g, y, v) 7→ g · (y, v)

is a submersion. Therefore we have a well-defined restriction map ([JSZ11,

Lemma 4.4])

(30) rE,Ex : C−ξχE
(u(E)× E)→ C−ξχEx

(u(Ex)◦ × Ex),

which is specified by the rule

π∗x(f) = χE ⊗ rE,Ex(f).

The assumption (29) easily implies that the latter space in (30) is zero. Thus

every f ∈ C−ξχE
(u(E) × E) vanishes on the image of πx. As x is arbitrary, the

proposition follows. �

Proposition 7.2. Assume that A is simple, and for all commutative

involutive algebra A′ and all ε-Hermitian A′-module E′,

sdim(E′) < sdim(E) implies C−ξχE′
(u(E′)× E′) = 0.

Then every f ∈ C−ξχE
(u(E)× E) is supported in u(E)× ΓE .

Proof. The proof is similar to that of [AGRS10, Prop. 5.2]. �

We are now ready to prove Theorem 2.1, which will be by induction on

sdim(E). If sdim(E) is 0, then E = 0 and the theorem is trivial. Now assume

that E is nonzero, and we have proved Theorem 2.1 when sdim(E) is smaller.

Without loss of generality, assume that E is faithful as an A-module. If

A is not simple, then for 1 ≤ j ≤ l,

sdim(Ej) < sdim(E) and thus C−ξχEj
(u(Ej)× Ej) = 0.

This clearly implies that C−ξχE
(u(E)× E) = 0.

Otherwise assume that A is simple. Note that Ŭ(E) acts trivially on

z(E). Propositions 7.1 and 7.2 imply that every element in C−ξχE
(su(E)×E) is

supported in NE × ΓE , and Proposition 5.1 further implies that C−ξχE
(su(E)×

E) = 0. Therefore C−ξχE
(u(E) × E) = 0, and the proof of Theorem 2.1 is now

complete.

8. Proof of Theorem A

The argument of this section is standard and we will thus be brief. As be-

fore, let (A, τ) be a commutative involutive algebra and let E be an ε-Hermitian

A-module.

Theorem 8.1. One has that C−∞χE
(u(E)× E) = 0.
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Proof. In view of Theorem 2.1, this follows from a general principle of

“distributions versus Schwartz distributions” ([AG09a, Th. 4.0.2]). �

Theorem 8.2. One has that C−∞χE
(U(E)× E) = 0.

Proof. Again we prove by induction on sdim(E) and assume that the

theorem holds when sdim(E) is smaller. As in the proof of Proposition 7.1, we

show that

C−∞χE
(U(E)× E) = C−∞χE

(U(E)× E; (Z(E)UE)× E),

where UE is the set of unipotent elements in U(E). Note that Ŭ(E) acts on

Z(E) trivially. The map

ρE : Z(E)× su(E)× E → U(E)× E,
(z, x, v) 7→ (z exp(x), v)

is Ŭ(E)-equivariant and yields an injective pull back map

C−∞χE
(U(E)×E; (Z(E)UE)×E) ↪

ρ∗E−−→ C−∞χE
(Z(E)× su(E)×E; Z(E)×NE ×E).

The latter space vanishes by Theorem 8.1 and the result follows. �

Assume for the moment that (A, τ) is simple and ε = 1. Let E = E′⊕Av0
be an orthogonal decomposition with v0 /∈ ΓE (the null cone of E). Then Ŭ(E′)

is identified with the stabilizer of v0 ∈ E in Ŭ(E) via the embedding

(31) (g, δ) 7→
Çñ

δg 0

0 τδ

ô
, δ

å
,

where τδ : Av0 → Av0 is the R-linear map given by

τδ(av0) =

av0, if δ = 1,

−aτv0, if δ = −1.

The following result is a consequence of Theorem 8.2 in the case of ε = 1.

We refer the reader to [AGRS10, Prop. 5.1] for the necessary argument.

Corollary 8.3. Let the notation be as in this section. Let Ŭ(E′) act on

U(E) through the action of Ŭ(E). Then C−∞χE′
(U(E)) = 0.

Corollary 8.3 implies Theorem A for the first five classical groups of this

paper.

Now assume that (A, τ) is simple and ε = −1. Write

H(E) := E ×Aτ=1 (where Aτ=1 is the set of τ -fixed elements in A)

for the Heisenberg group with group multiplication

(u, t)(u′, t′) =

Ç
u+ u′, t+ t′ +

〈u, u′〉E
2

− 〈u
′, u〉E
2

å
.
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Let Ŭ(E) act on H(E) as group automorphisms by

(g, δ) · (u, t) := (gu, δt).

We form the semidirect products (the Jacobi groups)

(32) J̆(E) := Ŭ(E) n H(E) ⊃ J(E) := U(E) n H(E).

The following result is a consequence of Theorem 8.2 in the case of ε = −1.

The necessary argument can be found in [vD09a, Th. 3.1] or [Su09, Th. D].

Corollary 8.4. Let the notation be as in this section. Let Ŭ(E) act on

J(E) by

g · x := gxχE(g)g−1.

Then C−ξχE
(J(E)) = 0.

Corollary 8.4 implies Theorem A for all Jacobi groups.

Finally we come to the special orthogonal groups. The key idea to es-

tablish this variant is due to Waldspurger [Wal] and it is to introduce another

extended group. Assume that ε = 1. If E is a quadratic space (i.e., A is R or

C, and τ is trivial), then define

SŎ(E) :=

®
(g, δ) ∈ O(E)× {±1} | det(g) = δ

î
dimA E+1

2

ó´
⊃ SO(E).

Denote by χs,E the quadratic character on SŎ(E) with kernel SO(E). Let

SŎ(E) act on SO(E) and E as in equations (7) and (8), respectively.

Theorem 8.5. One has that C−∞χs,E
(SO(E)× E) = 0.

The descent process in the proof of Theorem 8.5 requires us to define

a compatible family of extended groups. First assume that (A, τ) is simple.

Define

(Ŭs(E),Us(E)) :=

(SŎ(E), SO(E)), if τ is trivial,

(Ŭ(E),U(E)), if τ is nontrivial.

In general, write E = E1 × E2 × · · · × El as in (27). We put

Us(E) := Us(E1)×Us(E2)× · · · ×Us(El)

and

Ŭs(E) := Ŭs(E1)×{±1} Ŭs(E2)×{±1} · · · ×{±1} Ŭs(El)

:= {(g1, g2, . . . , gl, δ) | (gj , δ) ∈ Ŭs(Ej), j = 1, 2, . . . , l}.

The latter contains the former as a subgroup of index two. Let Ŭs(E) act on

Us(E) and E, again as in (7) and (8).

In the notation of this paper, Waldspurger’s observation may be stated as

follows.
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Lemma 8.6. Let x be a semisimple element of Us(E) and let Ex be as in

Section 7. Then x ∈ Us(Ex), and Ŭs(Ex) is contained in the stabilizer of x in

Ŭs(E).

Lemma 8.7. Assume that A is simple. Let v ∈ E\ΓE . Then the stabilizer

of v in Ŭs(E) is naturally isomorphic to Ŭs(E
′), where E′ is the orthogonal

complement of Av in E.

The argument of this paper, together with the above two lemmas, will

imply Theorem 8.5. We skip the details. Theorem 8.5 implies the analog of

Corollary 8.3 for special orthogonal groups. Theorem A for special orthogonal

groups then follows.
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[JSZ10] D. Jiang, B. Sun, and C.-B. Zhu, Uniqueness of Bessel models: the

Archimedean case, Geom. Funct. Anal. 20 (2010), 690–709. MR 2720228.

Zbl 1200.22008. http://dx.doi.org/10.1007/s00039-010-0077-4.

[JSZ11] , Uniqueness of Ginzburg-Rallis models: the Archimedean case,

Trans. Amer. Math. Soc. 363 (2011), 2763–2802. MR 2763736. Zbl 1217.

22011. http://dx.doi.org/10.1090/S0002-9947-2010-05285-7.
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