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Multiplicity one theorems: the
Archimedean case

By BiINYONG SUN and CHEN-BO ZHU

Abstract

Let G be one of the classical Lie groups GLnp+1(R), GLn+1(C),
U(p,q+1), O(p,q+1), Ont1(C), SO(p, g+ 1), SOn+1(C), and let G’ be re-
spectively the subgroup GL,(R), GL,(C), U(p, q), O(p, q), O»(C), SO(p, q),
SO, (C), embedded in G in the standard way. We show that every irre-
ducible Casselman-Wallach representation of G’ occurs with multiplicity at
most one in every irreducible Casselman-Wallach representation of G. Sim-
ilar results are proved for the Jacobi groups GL, (R) x Hap+1(R), GL,(C) x
Hon11(C), U(p, q) x Hap 2441 (R), Spy,, (R) x Han 41 (R), Spy,, (C) x Han 41 (C),
with their respective subgroups GL,(R), GL,(C), U(p,q), Sp,,(R), and
SP2,, (C).
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or one of the five Jacobi groups
(2)  GLyp(R) x Hapt1(R), GLn(C) x Han41(C), U(p, q) x Hapiog+1(R),
Sp2n(R) X H2n+1(R)a Sp2n((c) X H2n+1((c)a p,q;n = 0.

?

Here “Hop11” indicates the appropriate Heisenberg group of dimension 2k + 1.
A precise description of Jacobi groups is given in Section 8.

Let G’ be respectively the subgroup
GLn(R), GLA(C), U(p,q), O(p,q), On(C), SO(p, q), SO (C),

GLn(R)v GLn(C)v U(p, Q)7 San(R>v San((C)

embedded in G in the standard way. The main technical result of this paper
is the following

THEOREM A. There exists a real algebraic anti-automorphism o on G
preserving G’ with the following property: every generalized function on G
which is invariant under the adjoint action of G' is automatically o-invariant.

A set of anti-automorphisms which satisfy Theorem A is constructed in
Section 8. For example, the matrix transpose is one such anti-automorphism
when G is a general linear group.

By a representation of a Lie group, we mean a continuous linear action
of the group on a (complete, Hausdorff, complex) locally convex topological
vector space. When the Lie group is real reductive, a representation is said to
be a Casselman-Wallach representation if it is Fréchet, smooth, of moderate
growth, admissible and Z-finite. Here Z is the center of the universal envelop-
ing algebra of its complexified Lie algebra. The reader may consult [Cas89],
[Wal92, Chapter 11] or [BK] for more details about Casselman-Wallach repre-
sentations.

By (a version of) the Gelfand-Kazhdan criterion ([SZ11, Cor. 2.5]), The-
orem A for the classical groups implies the following result (which we call the

multiplicity one theorem for Bessel models, as it implies uniqueness of the
Bessel models ([GGP, JSZ10])).

THEOREM B. Let G be one of the classical groups in (1). Let V (resp.
V') be an irreducible Casselman-Wallach representation of G (resp. G'). Then
the space of G'-invariant continuous bilinear functionals on V. x V' is at most
one dimensional.

Theorem B and its p-adic analog have been expected (by Bernstein, and
Rallis) since the 1980’s. When V' is the trivial representation, Theorem B

is proved in [AGS08], [AGS09] and [vD09b], in the case of general linear, or-
thogonal, and unitary groups, respectively. The p-adic analog of Theorem B is
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proved in [AGRS10] (except for the case of special orthogonal groups, which is
proved in [Wal]). When the initial manuscript of this paper was completed, the
authors learned that A. Aizenbud and D. Gourevitch had proved the multiplic-
ity one theorems for the pairs (GL,+1(R), GL,(R)) and (GL,+1(C), GL,(C)),
independently and in a different approach. This has since appeared as [AG09b].

Now assume that G is one of the five Jacobi groups. Write G =G’ x H,
where H is an appropriate Heisenberg group. Fix a nontrivial unitary character
1 on the center of H. Let G’ be a double cover of G’ so that G/ x H admits a
smooth oscillator representation w,, corresponding to 1; that is, wy, is a genuine
smooth Fréchet moderate growth representation of G’ x H which is irreducible
with central character ¢ when viewed as a representation of H. We say that
a representation of G is a Casselman-Wallach 1)-representation if it is of the
form V = Vb@w¢ (completed projective tensor product), where Vj is a genuine
Casselman-Wallach representation of G’. This definition is independent of G’
and wy. The representation V' is irreducible if and only if Vj is. See [Sul0] for
more details on Casselman-Wallach -representations.

By the Gelfand-Kazhdan criterion for Jacobi groups ([Sul0, Cor. D),
Theorem A for the Jacobi groups implies the following result (which we call

the multiplicity one theorem for Fourier-Jacobi models, as it implies uniqueness
of the Fourier-Jacobi models (cf. [GGP])).

THEOREM C. Let G be one of the Jacobi groups in (2). Let V' be an irre-
ducible Casselman-Wallach 1)-representation of G and let V' be an irreducible
Casselman- Wallach representation of G'. Then the space of G'-invariant con-
tinuous bilinear functionals on V x V' is at most one dimensional.

The p-adic analog of Theorem C was conjectured by D. Prasad ([Pra96,
p. 20] in the case of symplectic groups) and is proved in [Su09].

2. A uniform formulation

We first introduce some general notation which will be used throughout
the paper. For any (smooth) manifold M, denote by C~°°(M) the space of
generalized functions on M, which by definition consists of continuous linear
functionals on DS°(M), the space of (complex) smooth densities on M with
compact supports. The latter is equipped with the usual inductive smooth
topology. For any locally closed subset Z of M, denote by

3) = (M; 2)  ¢(U)

the subspace consisting of all f which are supported in Z, where U is an open
subset of M containing Z as a closed subset. This definition is independent
of U.
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If M is a Nash manifold, denote by C~¢(M) c C~>°(M) the space of
tempered generalized functions on M and by C<(M) C C~¢(M) the space
of Schwartz functions. We refer the interested reader to [Shi87], [AGO8] on
generalities of Nash manifolds and their function spaces. Since the closure of
every semialgebraic set is semialgebraic, given any locally closed semialgebraic
subset Z of a Nash manifold M, we may find an open semialgebraic subset U
of M containing Z as a closed subset. We define C~¢(M; Z) as the subspace of
C~$(U) consisting of all f which are supported in Z. Again this is independent
of U.

If H is a Lie group acting smoothly on a manifold M, then for any char-
acter ypg of H, denote by

(4) Cyy (M) C C7(M)
the subspace consisting of all f which are yg-equivariant, i.e.,
f(h-x)=xm(h)f(x), forall he H.

Similar notation (such as C, fl (M; Z)) will be used without further explanation.

We now proceed to describe a general set-up in order to work with all
classical groups in a uniform manner.

Let A be a finite dimensional semi-simple commutative algebra over R,
which is thus a finite product of copies of R and C. Let 7 be a R-algebra
involution on A. We call (A,7) (or A when 7 is understood) a commutative
involutive algebra (over R). Let ¢ = £1. Let E be an e-Hermitian A-module,
namely, it is a finitely generated A-module, equipped with a nondegenerate
R-bilinear map

<, >E ExXFE— A
satisfying
(u,v)p =e(v,u)g, (au,v)g=alu,v)p, a€ A, u,ve€E.
Denote by U(FE) the group of all A-module automorphisms of E which preserve
the form (, )g, and by u(E) its Lie algebra, which consists of all z € End4(E)
such that
(xu,v)p + (u,zv)p =0, wu,v € E.

Write Fr := F, viewed as a real vector space. Following Moeglin-Vigneras-
Waldspurger ([MVW8T7]), we define a subgroup
(5) U(E) C GL(Eg) x {#1}
consisting of pairs (g, ) such that either
0=1 and (gu,gv)g = (u,v)g, u,v € E,

or
0=-1 and (gu,gv)gp = (v,u)p, u,v € E.
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Note that for every element (g,d) € fI(E), if § = 1, then g is automatically
A-linear, and if 6 = —1, then ¢ is 7-conjugate linear. Denote by

(6) X U(E) — {1}

the quadratic character of ﬁ(E) projecting to the second factor. It is a surjec-
tive homomorphism with kernel U(FE).
Let U(E) act on U(E) by

(7) (9.0) - @ := ga’g ™"
and act on u(FE) through its differential, i.e.,

(9,6) - := 6gzg™".

It is known that every U(E)-orbit in U(E) or u(E) is U(E)-stable ([MVW87,
Prop. 4.1.2]). Let U(E) act on E by
(8) (9,0) - v :=dgv
and act on U(E) x E and u(E) x E diagonally.
The next five sections will be devoted to a proof of the following

THEOREM 2.1. One has that

C(u(E) x E) = 0.

3. Fourier transform and rigidity

Let F' be a finite dimensional real vector space, which is canonically a
Nash manifold. Denote by C[F] the algebra of (complex) polynomial functions
and D[F] the algebra of constant coefficient differential operators, on F. It is
a classical result of L. Schwartz that

C™5(F;{0}) = D[F]dp.

Here §p is a Dirac function on F', which is characterized (up to a nonzero
scalar) by the equation

Mg =0 for all real linear functionals A on F.

This is the simplest case of rigidity we have in mind.

From now on, we assume that F'is equipped with a nondegenerate bilinear
form (, ) which is either symmetric or skew-symmetric.

We introduce one general notation which will be extensively used. If M
is a Nash manifold, then we define the partial Fourier transform along F' to be
the topological linear automorphism

Fp:C(MxF)— C(MxF)
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given by
O FeHmy) = [ fna)en T dr me M, yer
F

Here dx is any fixed Lebesgue measure on F. The partial Fourier transform
uniquely extends to a topological linear isomorphism

Fr:C8MxF)— C &M x F).

When M reduces to a single point, we recover the usual Fourier transform.
When the factor F' is understood, for any two closed semialgebraic subsets
Z1 and Zy of M x F, put
(10)
CS(M x F; 71, %) :={f € C*(M x F; 1) | Fr(f) € C*(M x F; Zy)}.

For a subspace I’ of F, let F’+ denote its perpendicular space:
Flt={veF|@,vr=01¢cF}.
LEMMA 3.1. If F = F' & F" is a direct sum decomposition, then
C8(F;F',F') =C[F']|® C"S(F";{0}).

Proof. Note that every tempered generalized function has a finite order.
Hence by the well-known result of L. Schwartz about local representation of a
generalized function with support, we have

CH(F;F') = C4(F) @ O (F";{0}).
The lemma then follows easily. O
For later use, we record the following
PROPOSITION 3.2. If FO is a nondegenerate subspace of F and
(FOYt =FtoF-
is a decomposition into totally isotropic subspaces F* and F~, then
CYF;FTeF° FraoFY) =C[Ff e C5(F~;{0}) ® C¢(FY).
Proof. The proof is similar to that of Lemma 3.1. O
We also need the following result, which is a special case of [SZ, Th. A].
PRrROPOSITION 3.3. Assume dimg F' = 2k. Let Fy, Fs, ..., Fs be a set of

(distinct) totally isotropic subspaces of F, each of dimension k. Then

S
CY{FRURU- UF,FFURU ---UF,) = CFF,F).
=1
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4. Nonnegativity of eigenvalues of an Euler vector field

We continue with the notation of Section 2. Set
U(A) :={a€ A" |d"a=1}
and its Lie algebra
u(A):={acA|a" +a=0}.
Scalar multiplication then yields a homomorphism U(A) — U(F) and its dif-
ferential u(A) — u(E). Denote by Z(E) and 3(E) their respective images.
Then Z(E) coincides with the center of U(E) (but 3(E) may not coincide with
the center of u(E)).
Denote by
trg : EndA(E) — A
the trace map. It is specified by requiring that the diagram

Ends(E) —245 A

1A0®l l

Enda, (Ao ®4 E) —2— A
commutes for every quotient field Ay of A, where the bottom arrow is the usual
trace map. Set
sl(E) := {z € Enda(F) | tra(z) = 0}.
Then we have
(11) End4(F) = {scalar multiplication by a € A} & sl(FE)
and
u(E) = 3(E) & su(E),

where su(F) := u(FE) Nsl(E).

We call the commutative involutive algebra A simple if it is nonzero and

has no 7-stable ideal except {0} and itself. Every simple commutative involu-
tive algebra is isomorphic to one of the following:

(12) (R, 1), (C,1), (C,7), (RxR,m), (CxC,7c),

where T and 7¢ are the maps which interchange the coordinates.

Assume in the rest of the section that A is simple. We say that (A, 7;¢)
is of orthogonal type if it is either (R,1;1) or (C,1;1). If (A, 7;¢) is not of
orthogonal type, we fix a nonzero element cy € A so that

co +ecy =0.
For any v € E, write

dp(u) := (u,v)pv, u€ E;
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then ¢, € Ends(F). Denote by ¢/, € sl(E) the projection of ¢, to the second
factor according to the decomposition (11). For any x € su(FE), set

Thy + Py, if (A, 7;¢) is of orthogonal type,
(13)  buw = { A7)

co ¢l otherwise.

This is checked to be in su(FE).

Recall that an element of u(E) is said to be nilpotent (semisimple) if it is
nilpotent (semisimple) as a R-linear operator on E. Recall also that a nilpotent
element of u(E) (which is automatically in su(£)) is said to be distinguished if
it commutes with no nonzero semisimple element in su(E) (cf. [CM93, §8.2]).

Fix a distinguished nilpotent element e € su(E). Following [AGRS10], we
define

(14) E(e):={v e E|¢en € [su(E),e]}.
Extend e (by Jacobson-Morozov Theorem) to a standard triple h, e, f in

su(E) so that
[h,e] =2e, [h,f]=-2f [e,f]=h.
Denote by Ei C E the eigenspace of h with eigenvalue i, where i € Z. Write
Ef = @Elﬂ, and E) = @Ei‘l
i>0 i<0
Note that (Fj, Eﬁ)E = 0 whenever i + j # 0.
LEMMA 4.1. If A is a field, then E(e) = E}f & Ep.
Proof. We prove the lemma in the case of real orthogonal groups. The
other cases are proved similarly. So assume that (A4,7;¢) = (R,1;1). Then

su(E) = o(F) is a real orthogonal Lie algebra.
View E as a sly(R)-module via the standard triple. Let

(15) E:El@Ezea...EBEs

be a decomposition of E into irreducible sly(R)-modules. By the classification
of distinguished nilpotent orbits ([CM93, Th. 8.2.14]), we know that (15) is
an orthogonal decomposition and FEi, Eo, ..., Fs have pairwise distinct odd
dimensions. Denote by e; € o(E;) C o(E) the restriction of e to Ej;.

View o(F) as a real quadratic space under the trace form. For every
v € E, we have that v € E(e) if and only if

bow € [0(E),e] & ¢er L [0(E),e]*
& e L 0(E)® (the centralizer of e in o(E))
< (ev,zv)p =0 for all x € o(E)°.
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Thus if v € E(e), then we have (ev,e?kﬂv)}; =0foralll <i<sandk>0,
and so v must be in E; + E}.

On the other hand, every element = € o(E)® stabilizes E; + E}. Therefore
v € By + E) implies that (ev, zv)g = 0. This finishes the proof. O

Denote by
(16) I'g:={veFE|{(v,v)p =0}
the null cone of E. Equip Er = E with the (symmetric or skew-symmetric)
bilinear form

(u,v) gy = tramr({u,v)E), u,v€E,

where try /g : A — R is the usual trace map.

Put
(17) Vie:= C%(E;E(e) NTg, E(e) NTg)4E),

where, as usual, a superscript by a group indicates the group invariants. This
space arises naturally when one carries out the reduction within the null cone.
See Lemma 5.5.

For any finite dimensional real vector space F' and any x € Endgr(F),
denote by e, the vector field on F' whose tangent vector at v € F'is zv. When
x = 1 is the identity operator, this is the usual Euler vector field ep := ep 1.

The main result of this section is the following

PROPOSITION 4.2. The vector field ey acts semisimply on Vg e, and all
its etgenvalues are nonnegative integers.

If A is a field, then
Vie C C4(E; E(e), E(e))
= C%E;Ef @ E),Ef ® Ej) (Lemma 4.1)
=C[Ef]® C*(E,;{0}) ® C*(Ep) (Proposition 3.2),

and Proposition 4.2 follows easily.
Otherwise assume that (A4,7) = (K x K, 7x), where K = R or C. Up to
an isomorphism, every e-Hermitian A-module is of the form

(E7<a >E):(Kn@Kn7<a )K,n)7 n >0,

where K” is considered as a space of column vectors, and the e-Hermitian form

(, )k.n is given by
!
({ z } , { z, }) — (v’tu,gu/tv).

0
gt

Then
} lge GLn(K)} = GL,(K)

a
—
5!
~—

I
—
1

o
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and

w(E) = { . _(;t } o e g[n(K)} — gl(K).

In this case every distinguished nilpotent element of su(FE) is principal,
and so we may assume that

01000
00100
e = | .
000 01
000 00

and
h =diagin—1,n—3,...,3—n,1—n).
As in the proof of Lemma 4.1, one easily calculates E(e), and one has

(18) E(e)NTg = Ul yF;, where F; = (K ® {o}n—i) ® ({0}2 @ Kn—i)'

Proposition 3.3 implies that

Vie= C8(E;E(e) Ty, E(e) NTg)? @C‘ (E; Fy, Fy)“E),
=0

To finish the proof of Proposition 4.2, it therefore suffices to prove the
following

LEMMA 4.3. The vector field egn acts semisimply on ﬁg(E; Fi,Fi)Z(E),
and all its eigenvalues are nonnegative integers (0 <i <n).

Proof. We prove the lemma for K = R. The complex case is proved in the
same way.

Denote by xl,xg, ey Ty YL, yQ, .., Yn the standard coordinates of R"” @
R"™, and write 0; = 8 andd = 6 - for j=1,2,...,n

By Lemma 3.1, the space C¢ (E ; F;, F;) has a basis consisting of general-
ized functions of the form

ai a2 bit1 bito b
f=al'as? oy Ny Y

tlz+1 1hajpo—1 an—1 jb1—1 jbo—1 b;—1
oy oty ot T s,

where a1,...,a;,by1,...,b, are nonnegative integers, and the rest of a’s and
b’s are positive integers. Here 0 is a fixed Dirac function on the space
k2

= {0y oR" ) @ (R'® {0}""), (acomplement of F}).

The generalized function f as above is an eigenvector for both Z(E) and
€pn- For f to be Z(E)-invariant, we must have

> (aj+bj) =D (aj +by).

1<t j>t
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Then the g n-eigenvalue of f is

> (= (25 —1))a; =Y (n—(2j —1))ay

-~ + Z(n — (2§ — 1]);] = Z(n — (27 = 1))b;
j<i s
+(n—2¢)<;bj> —(n—2i)<]§bj> =0. -

5. Reduction within the null cone: distinguished orbits

We continue to assume that (A, 7) is simple. Since Theorem 2.1 is trivial
when E = 0, we will assume that F is nonzero. Denote by Ng C su(FE) the
null cone, which consists of all nilpotent elements in su(E). Let

(19> NE:NODNID"'DNr:{O}DNT—I—l:@
be a filtration of Ng by its closed subsets so that each difference
Oi = Ni\Niz1, 0<i<r

is a U(E)-orbit (which is also a U(E)-orbit). In this and the next section, we
shall prove the following

PROPOSITION 5.1. If every element of C;g (su(E) x E) is supported in
N; x T'g for some fizred 0 < i < r, then every element of C’;g (su(E) x E) is
supported in Nj11 X Tg.

For the ease of notation, denote s := su(E). We shall view s as a nonde-
generate real quadratic space via the form

(T,9)s = tra/r(tra(zy)).
It is easily verified (and important for us) that the partial Fourier trans-
forms Fr and F; both preserve the space C;g (s x E).
LEMMA 5.2. Proposition 5.1 holds when s = 0.

Proof. For s =0, the assumption of Proposition 5.1 implies that C;g (sxE)
C C_f(E; I'g, FE)Z(E). The latter space is easily checked to be zero. [l

For the remaining part of this section, assume that s # 0.
Before proceeding further, we introduce a version of pull back of general-
ized functions.
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Definition 5.3. Let Z and Z’ be locally closed subsets of manifolds M and
M, respectively. A smooth map ¢ : M — M’ is said to be submersive from Z
to Z" if

e ¢ is submersive at every point of Z, and

e for every z € Z, there is an open neighborhood U of z in M such that

o NZYNU=2ZnU.
The following lemma is elementary.

LEMMA 5.4. If ¢ : M — M’ is submersive from Z to Z', as in Defini-
tion 5.3, then there is a unique linear map

(20) ¢ O (M 2" — C°(M; Z)

with the following property: for any open subset U of M and U’ of M', if
e ¢ restricts to a submersive map ¢y U — U,
o Z'NU' is closed in U', and
e 0, (Z'NU")=2ZnNT,

then the diagram

(M2 T (M 2)

| |

¢*
C>UZ2'NU"Y) —Y C®(U; ZNU)
commutes, where the two vertical arrows are restrictions, and the bottom arrow
is the usual pull back map of generalized functions via a submersion.

The map ¢* in (20) is still called the pull back. It is injective if ¢(Z) = Z".
In this case, we say that ¢ is submersive from Z onto Z’. If M, M’ are Nash
manifolds, Z, Z' are locally closed semialgebraic subsets and ¢ is a Nash map
which is submersive from Z to Z’, then ¢* maps C~¢(M’; Z') into C~¢(M; Z)
(cf. [AG09a, §B.2]).

We continue the proof of Proposition 5.1.

Fix i € {0,1,...,r} and assume that O; is distinguished; namely, some
(so all) elements of it are distinguished. We use the notation of last section.
Put

(21) Z; = (M+1 X FE> U( |_| {e} X (E(e) ﬁPE))
ecO;
One checks that Z; is a closed semialgebraic subset of s x E.

LEMMA 5.5. Assume that every element of C;g (s x E) is supported in
N; xT'g. Then every f € C;g (s X E) is supported in Z;.
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Proof. We follow the method of [AGRS10]. For every ¢ € R, define a map
ni=mn:sxE — sxFE,
(x,v) = (x—tPgu,v),
which is checked to be submersive from s x ' to § x I'g. Therefore, by
Lemma 5.4, it yields a pull back map

n*:C (s x E;sxI'g) — C(sx E;s xI'g).
Fix f € C;g (s x E). By our assumption,
fe C;g(s X E;N; xTg) C C’;f:(s x E;s x T'g).
Since the map 7 is algebraic and U(E)-equivariant,
n*(f) € C;g(ﬁ X F;s x T'g).

Let (e,v) € O; x I'g be a point in the support of f. It is routine to check
that 7 restricts to a bijection from s x I'g onto itself. Denote by

e =¢é(ev,t)es
the unique element so that
n(e',v) = (e,v).

Then (€’,v) is in the support of n*(f), and therefore our assumption implies
that

(22) e eN.
An easy calculation shows that

o — e + toey + t2Ppedy, if (A, 7;¢) is of othogonal type,
e+ toeu, otherwise.

Since O; is open in N, (22) implies that
Gew = lizoe(e,0,1) € To(0) = [u(B), €] = [s,¢],
i.e., v € FE(e), and the proof is now complete. O
Denote by
(23) Vexp.0, C C (s x E;0; x E)VE)

the subspace consisting of those f such that both f and Fg(f) are supported
in [ Jeco, {e} x (E(e) N Tp).

PROPOSITION 5.6. The Euler vector field €5 acts semisimply on VsxE,0;,
and all its etgenvalues are real numbers < —% dimp s.

Let us first prove the following
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LEMMA 5.7. Proposition 5.6 implies Proposition 5.1 when O; is distin-
guished.

Proof. Denote by ¢s the quadratic form on s, i.e.,

gs(z) = (z,2)s = tryr(tra(z?)).
Denote by A the Laplacian operator associated to qs. The operators

1 1

_§q57 §A5

form a standard triple, and each of them leaves the space Vixg o, stable.
Proposition 5.6 says that €5 + %dimRs is semisimple and has negative eigen-
values on Vi« g.0,, and so by [Wal88, Lemma 8.A.5.1], the map

1
65 + 5 dimR 57

Ag VﬁXE,Oi — stE,(’)i

is injective.
Let f € C;g (s x E). Applying Lemma 5.5 to f and Fg(f), we conclude
that under the restriction map

ToxE : C’;g(s XE)C C%sxE;N; xE)— C s x E;0; x E),
the image

7"5><E(f) € VsXE,Oi-
Since Fs(f) € C;g (s X F) is supported in

N; x g C (the null cone of the real quadratic space s) x E,

we conclude that f and thus rsxg(f) are annihilated by some positive power
of Ag. By the injectivity of As on Vs« 0,, we conclude that rexg(f) = 0, and
we are done. ([

The remaining part of this section is devoted to a proof of Proposition 5.6.
Pick any element e € O; and extend it to a standard triple h,e, f € s.
Then we have a vector space decomposition

s=[s,e] Ds'.

Let U(E) act on U(E) x st x E via the left translation on the first factor.
Define a U(E)-equivariant map

(24) 0:UE)xs xE—sxE,
(g,x,v)'—>g : (:c—i—e,v).
LEMMA 5.8. The vector field

th/2 T €5t 1-ad(h/2) — €E,h/2
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on U(E) x st x E is 0-related to the Euler vector field 5 on s x E, where Lh/2
is the left invariant vector field on U(E) whose tangent vector at the identity
is h/2.

Proof. Since both vector fields under consideration are U(FE)-invariant, it
suffices to prove the #-relatedness at a point of the form

x:= (1,z,v) € U(E) x sf x E.

Under the differential of 6 at x, we have

tn/2lx = (h/2,0,0) = ([h/2,2 + €], (h/2)v),
Eet 1-ad(h/2)lx = (0,7 = [h/2,2],0) = (z —[h/2,2],0),
epn/2lx = (0,0, (h/2)v) = (0, (h/2)v).
This implies the lemma since &;gx) = (z + €,0). O

Let Z(E) act on st x E and U(E) x st x E via its action on the factor E.
Then the map 0 is Z(E)-equivariant as well. Note that 6 is submersive from
U(E) x {0} x E onto O; x E (cf. [Wal88, p. 299]). Therefore it yields an
injective pull back map

0*: C¢(s x B; 0; x B)YE) s C8(U(E) x st x B; U(E) x {0} x E)VE)*2E),
Denote by
ety : CS(U(E) xst x B; U(E)x {0} x B)VEIXZE) _y 0=¢(sf x B; {0} x B)4(F)
the linear isomorphism specified by the rule
(25) f=1® 1l

Recall the space Vg C C¢(E) from (17).

LEMMA 5.9. The composition map 7, ;00 sends Vsx .0, into C~4(st:{0})
® VEe, and the following diagram commutes:

Voo, — 2 0-6(st {0)) @ Vi

6{ Jasf,l—ad(h/Z)_EExh/Q
rsfxEoe* f
stE,Oi — 0_5(5 ;{O}) X VE,e-

Proof. The first assertion follows by noting that both 6* and r4 p com-
mute with the partial Fourier transform along E. The second assertion follows
from Lemma 5.8. O

LEMMA 5.10. The vector field e 1 _aq(n/2) acts semisimply on Cc=4(st:{0}),
and all its eigenvalues are real numbers < —% dimp s.



38 BINYONG SUN and CHEN-BO ZHU

Proof. Recall that s is assumed to be nonzero. We view s as a sly(R)-
module via the adjoint representation and the standard triple {h,e,f}. We
shall prove that the analog of Lemma 5.10 holds for any finite dimensional
nonzero sly(R)-module F'. Without loss of generality, we may assume that F'
is irreducible of real dimension k + 1. Then

ept1—n/2 = (1 +k/2)eps,

which clearly acts semisimply on C~¢(Ff;{0}), with all its eigenvalues real
numbers < —(1+k/2) = —3dimg F — § < —1 dimg F. O

In view of Lemma 5.9, Proposition 5.6 will follow from Proposition 4.2 and
Lemma 5.10. We have thus proved Proposition 5.1 when O; is distinguished.

6. Reduction within the null cone: metrically proper orbits

We are in the same setting as Section 5, so (A,7) is simple and E is
nonzero. Now assume that O; is not distinguished. The purpose of this section
is to prove Proposition 5.1 in this case.

If F' is a nondegenerate finite dimensional real quadratic space, we say
that a submanifold S of F' is metrically proper ([JSZ11]) if for every = € S,
the tangent space T, (5) is contained in a proper nondegenerate subspace of
the real quadratic space F'.

LEMMA 6.1. The orbit O; is metrically proper in s.

Proof. Let x € O;. By definition, it commutes with a nonzero semisimple
element h € s. Denote by aj, the center of s” (the centralizer of h in s), which
is a nonzero nondegenerate subspace of s.

Using the fact that every element of a5 commutes with x, we see that the
tangent space

Tm(ol) - [u(E),x] - [5,.%]
is contained in the proper nondegenerate subspace (ah)J‘ C s. O

The following lemma is a form of the uncertainty principle.

LEMMA 6.2. Let M be a Nash manifold and let F be a nondegenerate
finite dimensional real quadratic space. Let Z1 O Za be closed semialgebraic
subsets of F so that the difference Z1 \ Zy is a metrically proper submanifold
of F'. Then

C (M x F; M x Z1,M xTp)=CMx F;M x Zy, M x '),
where I'r is the null cone of F'.

Proof. This is a direct consequence of [JSZ11, Lemma 2.2]. O
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In view of Lemma 6.2, Proposition 5.1 in the metrically proper case follows
by noting that the partial Fourier transform F; preserves the space C;g (s x E)
and that A is contained in the null cone of the real quadratic space s.

7. Reduction to the null cone and proof of Theorem 2.1

Now let E be an e-Hermitian A-module, with (A, 7) arbitrary. Define an
involution on End 4 (F), which is still denoted by 7, by requiring that

(26) (zu,v)g = (u,2"v)g, = € Enda(E), u,v € E.

For any = in End(FE), let A, be the subalgebra generated by x, ™ and
scalar multiplications by A. If x is a semisimple element in U(E) or u(E), then
(Az, 7) is a commutative involutive algebra. Write E, := E, to be viewed as
an e-Hermitian Az-module with the form (, )g,. The latter is specified by

tra, /r(alu,v)g,) =trapr({aw,v)p), w,v€EE, a€ A,
Write
(A,T) = (A1,T1) X (AQ,TQ) X X (Al,Tl)
as a product of simple commutative involutive algebras. We then have
(27) E:EleQX"'XEl7
where E; := Aj; ®4 F, which is naturally an e-Hermitian Aj-module. Note
that E; is free as an Aj-module. Put

l
(28) sdim(F) := Zmax{rankAj(Ej) —1, 0} 4+ dimg(E).
j=1

The following result may be considered as a case of Harish-Chandra de-
scent.

PROPOSITION 7.1. Assume that for all commutative involutive algebra A’
and all e-Hermitian A’-module E’,

(29) sdim(E') < sdim(E) implies C 5, (u(E') x E') = 0.
Then every f € C;g (w(E) x E) is supported in (3(FE) + Ng) x E.

Proof. Let = be a semisimple element in u(E) \ 3(E). Then sdim(E,) <
sdim(E).
For any y € u(E,), denote by J(y) the determinant of the R-linear map

[y, ] - u(E)/w(Er) = u(E)/u(Ey).
Then J is a U(E,)-invariant function on u(E,). Put
u(Ey)® == {y € u(Ex) | J(y) # 0},
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which contains x + Ng,. The map
72t U(E) x (W(Ep)° x Ey) — u(E) x E,
(gay7v) = g(yav)
is a submersion. Therefore we have a well-defined restriction map ([JSZ11,

Lemma 4.4])
(30) re,g, : CS(u(E) x B) = C5 (W(E,)° x Ey),

XEg

which is specified by the rule

. (f) = xg ®7E,E,(f).

The assumption (29) easily implies that the latter space in (30) is zero. Thus
every f € C';g (uw(E) x E) vanishes on the image of m,. As x is arbitrary, the
proposition follows. O

PROPOSITION 7.2. Assume that A is simple, and for all commutative
involutive algebra A’ and all e-Hermitian A’-module E’,

sdim(E’) < sdim(E) implies C';g, (uw(E") x E') = 0.
Then every f € C;g (W(E) x E) is supported in u(E) x T'g.
Proof. The proof is similar to that of [AGRS10, Prop. 5.2]. O

We are now ready to prove Theorem 2.1, which will be by induction on
sdim(FE). If sdim(E) is 0, then E = 0 and the theorem is trivial. Now assume
that E' is nonzero, and we have proved Theorem 2.1 when sdim(E) is smaller.

Without loss of generality, assume that F is faithful as an A-module. If
A is not simple, then for 1 < j </,

sdim(E;) < sdim(E) and thus C% (u(E;) x E;) =0.
J

This clearly implies that O;g (w(E) x E) =0.

Otherwise assume that A is simple. Note that U(E) acts trivially on
3(E). Propositions 7.1 and 7.2 imply that every element in C;g (su(E) x E) is
supported in Ng x I'g, and Proposition 5.1 further implies that C;g (su(FE) x
E) = 0. Therefore C;g (w(E) x E) = 0, and the proof of Theorem 2.1 is now
complete.

8. Proof of Theorem A

The argument of this section is standard and we will thus be brief. As be-
fore, let (A, 7) be a commutative involutive algebra and let E be an e-Hermitian
A-module.

THEOREM 8.1. One has that C\ °(uw(E) x E) = 0.
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Proof. In view of Theorem 2.1, this follows from a general principle of
“distributions versus Schwartz distributions” ([AG09a, Th. 4.0.2]). O

THEOREM 8.2. One has that C\ °(U(E) x E) = 0.

Proof. Again we prove by induction on sdim(FE) and assume that the
theorem holds when sdim(E) is smaller. As in the proof of Proposition 7.1, we
show that

Oy (U(E) x E) = O 2(U(E) x E; (Z(E)UE) x E),

where Ug is the set of unipotent elements in U(E). Note that U(E) acts on
Z(F) trivially. The map

pp Z(E)xsu(E)x E — U(E)x E,
(z,z,v) — (zexp(z),v)

is IUJ(E)-equivariant and yields an injective pull back map
C X (U(E) x B (Z(E)UEp) x E) L, Co o (Z(E) x su(E) x E; Z(E) x Ng x E).
The latter space vanishes by Theorem 8.1 and the result follows. ([

Assume for the moment that (A, 7) is simple and ¢ = 1. Let E = E' @ Avg
be an orthogonal decomposition with vy ¢ I'g (the null cone of ). Then U(E’)
is identified with the stabilizer of v9 € E in U(E) via the embedding

(31) @ (|7 2 0).

where 75 : Avg — Avg is the R-linear map given by

(ave) avy, ifo=1,
Ts(avg) =
oo —a"vg, if § = —1.

The following result is a consequence of Theorem 8.2 in the case of ¢ = 1.
We refer the reader to [AGRS10, Prop. 5.1] for the necessary argument.

COROLLARY 8.3. Let the notation be as in this section. Let U(E') act on
U(E) through the action of U(E). Then C\ > (U(E)) = 0.

Corollary 8.3 implies Theorem A for the first five classical groups of this
paper.

Now assume that (A, 7) is simple and ¢ = —1. Write

H(E):= E x A7=! (where A™=! is the set of 7-fixed elements in A)

for the Heisenberg group with group multiplication

/ /
(u, t)(,t') = <“+u’,t+t’+ <u’; e ’2u>E> :
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Let U(E) act on H(E) as group automorphisms by
(ga (5) ’ (uat) = (.gu> 5t)
We form the semidirect products (the Jacobi groups)
(32) J(E) :=U(E) x H(E) D J(E) := U(E) x H(E).

The following result is a consequence of Theorem 8.2 in the case of ¢ = —1.
The necessary argument can be found in [vD09a, Th. 3.1} or [Su09, Th. D].

COROLLARY 8.4. Let the notation be as in this section. Let U(E) act on
J(E) by
g T oi= gl-XE(g)gfl
Then C(J(E)) = 0.

Corollary 8.4 implies Theorem A for all Jacobi groups.

Finally we come to the special orthogonal groups. The key idea to es-
tablish this variant is due to Waldspurger [Wal] and it is to introduce another
extended group. Assume that ¢ = 1. If F is a quadratic space (i.e., A is R or
C, and 7 is trivial), then define

dim 4 E+1

SO(E) := {(g,a) € O(E) x {#1} | det(g) = 5[ 2 }} > SO(E).

Denote by xsr the quadratic character on SO(E) with kernel SO(E). Let
SO(E) act on SO(E) and E as in equations (7) and (8), respectively.

THEOREM 8.5. One has that C\ 7 (SO(E) x E) = 0.

The descent process in the proof of Theorem 8.5 requires us to define
a compatible family of extended groups. First assume that (A, 7) is simple.
Define

. (SO(E),SO(E)),  if 7 is trivial,
(Us(E), Us(E)) =4 . o -
(U(E),U(E)), if 7 is nontrivial.
In general, write E = Fy X Ey x -+ x Ej as in (27). We put
Us(E) == Ug(E1) x Ug(E2) x - -+ x Ug(Ey)
and
Us(E) :=Us(E1) % o1y Us(B2) X (g1} -+ X (21} Us(EY)
= {(91)927 cee 7gl75) ‘ (9]76) S US(Ej)v j = 1527 o 7l}

The latter contains the former as a subgroup of index two. Let Ijs(E) act on
Us(E) and E, again as in (7) and (8).

In the notation of this paper, Waldspurger’s observation may be stated as
follows.
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LEMMA 8.6. Let x be a semisimple element of Us(E) and let E, be as in
Section 7. Then x € Ug(Ey), and Us(Ey) is contained in the stabilizer of x in
Uy(E).

LEMMA 8.7. Assume that A is simple. Letv € E\T'g. Then the stabilizer
of v in Ug(E) is naturally isomorphic to Us(E"), where E' is the orthogonal
complement of Av in E.

The argument of this paper, together with the above two lemmas, will
imply Theorem 8.5. We skip the details. Theorem 8.5 implies the analog of
Corollary 8.3 for special orthogonal groups. Theorem A for special orthogonal
groups then follows.
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