Corrigendum to "A smooth foliation of the 5 -sphere by complex surfaces"

By Laurent Meersseman and Alberto Verjovsky

Our paper [MV02] claims that it describes a foliation of \mathbb{S}^{5} by complex surfaces. However it was pointed out to us by the anonymous referee of a related article that the foliation constructed in the paper lives in fact on a 5 -manifold with nontrivial fundamental group.

We observe that, even with this modification, this foliation is still the first example of such an exotic CR-structure.

We use the notations and results of [MV02] and assume that the reader is acquainted with them. We refer to [MV11] for full details of what follows.

The foliation of [MV02] is obtained by gluing, thanks to Lemma 1, two tame foliations on manifolds with boundary. The second one, \mathcal{N}, is supposed to be diffeomorphic to $K \times \overline{\mathbb{D}}$. However, the foliated \mathcal{N} which is constructed by quotient is in fact diffeomorphic to the $\overline{\mathbb{D}}$-bundle associated to L. They are definitely not diffeomorphic, since the first manifold has a nilpotent fundamental group (see [MV02, §1.2]), whereas the second one retracts on $\mathbb{S}^{1} \times \mathbb{S}^{1} \times \mathbb{S}^{1}$.

When gluing \mathcal{M} and this "new" \mathcal{N}, one does not obtain the 5 -sphere. Let

$$
F^{p}=\left\{\left[z_{0}: z_{1}: z_{2}: z_{3}\right] \in \mathbb{P}^{3} \quad \mid \quad z_{1}^{3}+z_{2}^{3}+z_{3}^{3}=z_{0}^{3}\right\} .
$$

Then, what is really proved in [MV02] is the following theorem.
Theorem. Let Z be the 5 -dimensional bundle over the circle with fiber F^{p} and monodromy the multiplication by $\omega=\exp 2 i \pi / 3$ on the affine part.

There exists on Z an exotic smooth, codimension-one, integrable and Leviflat CR-structure. The induced foliation by complex surfaces satisfies:
(i) There are only two compact leaves both biholomorphic to an elliptic bundle over \mathbb{E}_{ω}. Since this surface has odd first Betti number it is not Kähler.
(ii) One compact leaf is the boundary of a compact set in Z whose interior is foliated by line bundles L over \mathbb{E}_{ω} with Chern class -3 . The two compact leaves are the boundary components of a collar and the leaves in the interior of this collar are biholomorphic to W, the principal \mathbb{C}^{*} bundle associated to L.
(iii) The other leaves have the homotopy type of a bouquet of eight copies of \mathbb{S}^{2} and they are all biholomorphic to the affine complex smooth manifold $F^{p} \cap \mathbb{C}^{3}$.

References

[MV02] L. Meersseman and A. Verjovsky, A smooth foliation of the 5-sphere by complex surfaces, Ann. of Math. 156 (2002), 915-930. MR 1954239. Zbl 1029.32019. http://dx.doi.org/10.2307/3597286.
[MV11] , Correction to "a smooth foliation of the 5 -sphere by complex surfaces", 2011. arXiv 1106. 0504.
(Received: May 6, 2011)
(Revised: June 13, 2011)
I.M.B., Université de Bourgogne, Dijon Cedex, France

E-mail: laurent.meersseman@u-bourgogne.fr
Instituto de Matemáticas de la unam, Unidad Cuernavaca, Cuernavaca, Morelos, México

E-mail: alberto@matcuer.unam.mx

