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The Waring problem
for finite simple groups

By Michael Larsen, Aner Shalev, and Pham Huu Tiep

Abstract

The classical Waring problem deals with expressing every natural num-

ber as a sum of g(k) k-th powers. Recently there has been considerable

interest in similar questions for non-abelian groups, and simple groups in

particular. Here the k-th power word can be replaced by an arbitrary group

word w 6= 1, and the goal is to express group elements as short products of

values of w.

We give a best possible and somewhat surprising solution for this War-

ing type problem for (non-abelian) finite simple groups of sufficiently high

order, showing that a product of length two suffices to express all elements.

Along the way we also obtain new results, possibly of independent in-

terest, on character values in classical groups over finite fields, on regular

semisimple elements lying in the image of word maps, and on products of

conjugacy classes.

Our methods involve algebraic geometry and representation theory, es-

pecially Lusztig’s theory of representations of groups of Lie type.
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1. Introduction

1.1. Background and main results. A well-known classical result of La-

grange shows that every positive integer is a sum of four squares. The Waring

problem in number theory generalizes this, asking whether every positive in-

teger is a sum of g(k) k-th powers, where g is a suitable function. Positive

solutions for small values of k were obtained, and in 1909 Hilbert solved the

general problem affirmatively. Hardy and Littlewood provided another solution

using the circle method, which also sheds light on the number of representa-

tions of numbers as sums of g(k) k-th powers. See [Nat96] for a more detailed

background.

In the past 15 years noncommutative analogues of the Waring problem

have been considered, and various interesting results have been obtained, with

particular emphasis on finite (non-abelian) simple groups. Martinez and Zel-

manov [MZ96], and independently Saxl and Wilson [SW97], showed in 1996–

1997 that any element of a finite simple group Γ is a product of f(k) k-th

powers, provided there are nontrivial k-th powers in Γ. In 1994 Wilson [Wil96]

showed that any element of a finite simple group is a product of c commutators,

where c is some (unspecified) constant.

Are there extensions of these results to general words w? Recall that

a word w = w(x1, . . . , xd) is an element of the free group Fd on x1, . . . , xd.

Given a word w and a group Γ we consider the word map wΓ : Γd → Γ

obtained by substituting group elements g1, . . . , gd in x1, . . . , xd, respectively.

Let w(Γ) ⊆ Γ denote the image of this map. For subsets S, T ⊆ Γ we set

ST = {st : s ∈ S, t ∈ T}; in particular Sk = {s1 · · · sk : s ∈ S}.
Extending the aforementioned results on powers and commutators, Lie-

beck and Shalev [LS01] showed in 2001 that for any word w there exists a

positive integer cw depending on w such that if Γ is a finite simple group and

w(Γ) 6= {1}, then w(Γ)cw = Γ. No explicit bounds on cw were given.

Later, it turned out that if Γ is large enough (given w 6= 1), then cw
does not depend on w and is in fact surprisingly small. Indeed Shalev [Sha09]

showed that for any nontrivial word w, there exists a number Nw such that if

Γ is a finite simple group of order at least Nw, then

w(Γ)3 = Γ.

A different proof of this theorem using a method of Gowers has subsequently

been given by Nikolov and Pyber [NP11].

While this result seems a rather satisfactory solution to this Waring type

problem, it was not clear whether it is best possible; indeed, in some cases

sharper results were obtained. If w = [x1, x2], then a recent paper by Liebeck,

O’Brien, Shalev, and Tiep [LOST10] shows that w(Γ) = Γ; namely, every

element of a finite non-abelian simple group is a commutator. This proves
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a longstanding conjecture of Ore. There were many partial results on this

conjecture; most notably, Ellers and Gordeev [EG98] had used entirely different

methods to prove the result for all the Chevalley groups over fields of size at

least 8 (and in many cases even smaller).

However, various words w are not surjective on all (or even any) finite

simple groups (for example consider the word w = x2
1). Hence, if we could show

that w(Γ)2 = Γ for all words w 6= 1 and finite simple groups of sufficiently large

order (given w), this would constitute a best possible solution to the Waring

type problem we consider.

Positive evidence for this conjecture was provided very recently. It is

shown in [Sha09] (see also [Sha08]) that if Γ is a finite simple group of Lie

type, then |w(Γ)2|/|Γ| → 1 as |Γ| → ∞. Larsen and Shalev then showed in

[LS09] that if w 6= 1 and the simple group Γ is alternating, or of Lie type of

bounded rank (excluding Suzuki groups and Ree groups), then there exists a

number Nw depending on w (and in the latter case also on the bound on the

rank of Γ) such that |Γ| ≥ Nw implies

w(Γ)2 = Γ.

See also [LS08] for a different proof for alternating groups and for related results

on covering numbers and random walks. However, the main case of classical

groups of unbounded rank remained very much open.

In this paper we solve this problem. Our main result is as follows.

Theorem 1.1.1. Let w1, w2 ∈ Fd be nontrivial words in the free group on

d generators. Then there exists a constant N = Nw1,w2 depending on w1, w2

such that for all finite non-abelian simple groups Γ of order greater than N ,

we have
w1(Γ)w2(Γ) = Γ.

This result confirms Conjecture 1.9 posed in [LS09].

Corollary 1.1.2. Let w ∈ Fd be a nontrivial word in the free group on

d generators. Then there exists a constant N = Nw depending on w such that

for all finite non-abelian simple groups Γ of order greater than N , we have

w(Γ)2 = Γ.

This solves Problem 10.1 in [Sha09].

The particular case w = xk1 is also novel and leads to the following best

possible Waring type result for powers (sharpening [MZ96] and [SW97]):

Corollary 1.1.3. For every positive integer k there exists a constant

N = Nk depending on k such that for all finite simple groups Γ of order

greater than N , we have

{xkyk | x, y ∈ Γ} = Γ.
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This result is new even for k = 2; in fact, it is likely that the word x2
1x

2
2

is surjective on all finite simple groups of order > 2 (see [GS09] for related

results).

Finally, our methods may be relevant to a well-known conjecture of J. G.

Thompson, stating that any finite simple group Γ has a conjugacy class C such

that C2 = Γ. We obtain the following variant of Thompson’s conjecture:

Theorem 1.1.4. There is an explicit constant N such that any finite non-

abelian simple group Γ of order larger than N possesses two conjugacy classes

C1, C2 with C1C2 ⊇ Γ \ {1}.

Here N can be chosen to be 2630.

Results of [EG98], [MSW94], and [LM99] imply Theorem 1.1.4 for all but

one infinite family of finite simple groups. Here we handle this remaining case.

It is intriguing that Waring type problems in highly noncommutative ob-

jects such as finite simple groups have much sharper solutions than in the

classical case of the natural numbers.

1.2. Strategy of proof. The proof of our main result is rather long and

complex, involving representation theory, geometry, and other tools. Let us

now describe the strategy of the proof in some detail (with some unavoidable

simplification). We focus on the main case, where Γ is a classical group of large

rank.

The rough idea is to construct special conjugacy classes C1, C2 ⊂ G satis-

fying

(1.2.1) C1 ⊂ w1(Γ), C2 ⊂ w2(Γ)

and

(1.2.2) C1C2 ⊇ Γ \ {1}.

Using the machinery of Deligne-Lusztig [DL76] and Lusztig [Lus84], we can

usually find many pairs (C1, C2) satisfying (1.2.2). Here the methods and

results of [MSW94] are useful. The difficult point is to find a pair also satisfying

(1.2.1). This requires geometric arguments and will be described later. Since

1 ∈ wi(Γ) anyway, it follows that w1(Γ)w2(Γ) = Γ. In some cases the structure

of the argument is more complex: We show that C1C2 contains all elements of

large support and that w1(Γ)w2(Γ) contains the remaining elements of bounded

support.

The classes C1, C2 are of suitable regular semisimple elements s1, s2 ∈ Γ

lying in maximal tori T1, T2 ⊂ Γ. The tori Ti are chosen to be weakly orthogonal

(see §2 for the precise definition), and this ensures that if χ is an irreducible

character of Γ such that χ(s1)χ(s2) 6= 0, then χ is unipotent. Moreover, there

will be a small (in particular, bounded) number of such unipotent characters.
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Now, the number of ways a group element g ∈ Γ can be expressed as

g = x1x2, where xi ∈ Ci is given by

|C1||C2|
|Γ|

∑
χ∈Irr(Γ)

χ(s1)χ(s2)χ(g)

χ(1)
,

and so we need to show that the sum above is nonzero for any nonidentity ele-

ment g ∈ Γ. The choice of s1, s2 ensures that the number of nonzero summands

is small. However, in order to control these summands we need information

on the character ratios |χ(g)|/χ(1). Gluck’s bounds [Glu93], [Glu95] are useful

but they do not suffice, and we have to establish sharper character bounds for

elements of large support (see §4 for precise definition). Indeed, we prove in

Section 4:

Theorem 1.2.1. If Γ is a finite quasi-simple classical group over Fq and

g ∈ Γ is an element of support at least N , then

|χ(g)|/χ(1) < q−
√
N/481

for all 1Γ 6= χ ∈ Irr(Γ).

See Theorem 4.3.6 for more precise bounds. This character theoretic result

seems to be of independent interest and may have further applications.

In order to show that Ci ⊂ wi(Γ), we use geometric tools to establish a

Chebotarev Density Theorem for word maps (see results 5.3.2 and 5.3.3 below).

We roughly show that for any word w 6= 1, if we fix the group type G and let

the field size q tend to infinity, then w(G(Fq)) hits all maximal tori T (Fq) of

G(Fq) the expected number of times. In particular, if q is sufficiently large,

there exist regular semisimple elements si ∈ wi(G(Fq)) lying in any prescribed

maximal torus T (Fq).
This itself is not enough, since our group Γ is classical of unbounded

rank. We overcome this obstacle by embedding groups ∆ of very small rank

(such as SL2) over large extension fields in Γ so that si ∈ wi(∆) remains

regular semisimple in Γ and lies in the required maximal torus Ti of Γ. Clearly

si ∈ wi(Γ) so that wi(Γ) contains the conjugacy class Ci = sΓ
i . This concludes

the outline of the proof for classical groups of large rank.

The proof of the main result for the Suzuki and Ree groups combines

methods from [LS09] with a strong version of Deligne conjecture established

by Varshavsky [Var07].

Our notations GL, GU, GO, Ω, etc. for different classes of classical groups

are as in [KL90]. We consider 1 (resp. −1) to be synonymous with + and −
when used as superscripts.

We would like to acknowledge helpful discussions with Frank Lübeck and

Yakov Varshavsky. We thank the referee for useful comments.
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2. Weakly orthogonal pairs

In this section we introduce the notion of weakly orthogonal pairs of max-

imal tori in a simple connected semisimple group over a finite field.

2.1. Connected reductive groups and maximal tori. Let G be a connected

reductive algebraic group over an algebraically closed field k. Let T be a

maximal torus of G defined over k. The pair (G,T ) defines a root datum

ΨG(T ) := (X,Φ, X∨,Φ∨) in the sense of [Car93]. Here X and X∨ denote re-

spectively the character group and cocharacter group of T , Φ ⊂ X is the system

of roots of G with respect to T , and Φ∨ ⊂ X∨ denotes the coroot system. Let

WG(T ) denote the Weyl group of Φ. If T1 and T2 are maximal tori, then they

are conjugate over G(k), so ΨG(T1) and ΨG(T2) are isomorphic. The isomor-

phism is unique up to precomposition by the conjugation action of WG(T1) or

(equivalently) postcomposition by the conjugation action of WG(T2). In partic-

ular, WG(T1) and WG(T2) are isomorphic and the isomorphism is well defined

up to inner automorphism. To avoid keeping track of extra data, we will ignore

the dependence of the root datum Ψ := ΨG := ΨG(T ) and especially the root

system Φ and the Weyl group W := WG := WG(T ) on the choice of torus,

which means that we will work throughout up to W -conjugation. We will also

suppress G in the notation when there is no possible ambiguity.

We say G∗/k is dual to G if

ΨG∗ = (X∨,Φ∨, X,Φ).

For every connected reductive group, a dual group (also connected and reduc-

tive) exists and is unique up to isomorphism.

If G is a connected reductive group over a finite field F, we can choose a

maximal torus T of G defined over F. Extending scalars to k = F, we get a

root datum with Frobenius action. In general, the Frobenius action depends

on the choice of F-torus T . We say two maximal tori are of the same type

if they are conjugate over G(F), so the Frobenius action on the root datum

depends only on the type of the maximal torus chosen. By a standard Galois

cohomology computation, the isomorphism class of G determines a W -coset of

Aut(W ), and the torus types are in one-to-one correspondence with W -orbits

in this coset. In particular, if G is split over F, the torus types are in one-to-one

correspondence with conjugacy classes in W . We do not carefully distinguish

between torus types and individual maximal tori in this paper. This should

not cause confusion.

The dual group G∗ can be defined over F. Given a maximal torus T of

G, there exists a maximal torus T ∗ of G∗, unique up to conjugation by G∗(F),

such that the duality between ΨG(T ) and ΨG∗(T
∗) respects Galois actions. In

particular, T ∗ is dual to T in the sense that the Frobenius actions on their
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character groups are mutually transpose. This duality sets up a one-to-one

correspondence between torus types in G and those in G∗.

2.2. Some consequences of Deligne-Lusztig. We recall some basic results

and definitions of Deligne-Lusztig [DL76] and apply them to give the necessary

criteria that χ(s1)χ(s2) 6= 0, where χ is an irreducible character, and s1 and

s2 are semisimple elements of a reductive group over a finite field F := Fq.
Fix a rational prime ` not dividing q. To each character θ∈Hom(T (F),Q×` ),

one can attach an element RθT in the ring of virtual representations of G(F) over

the field Q`. By duality, there also exists a corresponding element θ∗ ∈ T ∗(F).

Thus, a pair (T, θ) up to G(F)-conjugacy defines in a unique way a semisim-

ple element θ∗ ∈ G∗(F) up to G∗(F)-conjugacy. Let G∗(F)\ denote the set of

conjugacy classes of semisimple elements in G∗(F). Every irreducible represen-

tation χ of G(F) is associated to a unique element Cχ ∈ G∗(F)\ such that χ

has nonzero multiplicity in RθT only if θ∗ ∈ Cχ [Car95, 9.2]; moreover, every χ

has nonzero multiplicity in some RθT [DL76, 7.7]. We say that χ is unipotent

if Cχ = {e}.

Definition 2.2.1. We say that two F-rational maximal tori T1 and T2 in a

connected reductive group G/F are weakly orthogonal if

T ∗1 (F) ∩ T ∗2 (F) = {e}

for every choice of T ∗1 and T ∗2 . This depends only on types of T1 and T2.

This concept was already used in [MSW94] (albeit without a formal defi-

nition).

For the remainder of Section 2, we will assume that G is semisimple and

simply connected, so G∗ is semisimple and adjoint. By Steinberg’s theorem,

the centralizer of every regular semisimple element in G is a maximal torus of

G. If s1 and s2 are regular semisimple elements of G(F) and Ti denotes the

centralizer CG(si), we say s1 and s2 are weakly orthogonal if and only if T1 and

T2 are weakly orthogonal. If s1 and s2 fail to be weakly orthogonal, then there

exists a nontrivial (and therefore noncentral) semisimple element g∗ ∈ G∗(F)

such that T ∗1 and T ∗2 can both be taken to lie in the connected reductive group

CG∗(g
∗)◦.

Proposition 2.2.2. If s1 and s2 are weakly orthogonal regular semisim-

ple elements of G(F) and χ is an irreducible character of G(F) such that

χ(s1)χ(s2) 6= 0, then χ is unipotent.

Proof. By [MM99, 5.1], if s ∈ G(F) is semisimple, and χ(s) 6= 0, then

there exist T and θ such that Tr(s,RθT ) 6= 0, and θ∗ belongs to the conjugacy

class Cχ. By [DL76, 7.2], this implies that s lies in the G(F)-conjugacy class

of some element of T (F). If χ(s1)χ(s2) 6= 0, then there exist G∗(F)-conjugate



1892 MICHAEL LARSEN, ANER SHALEV, and PHAM HUU TIEP

elements θ∗1 and θ∗2 belonging to tori T ∗1 and T ∗2 which are dual to tori T1 and T2

containing s1 and s2, respectively. As T ∗1 and T ∗2 intersect in {e}, this means

θ∗1 = θ∗2 = e, and χ is indeed unipotent. �

2.3. Type Ar. We consider first split groups of type Ar. Let n = r + 1.

The Weyl group of G := SLn is isomorphic to Sn. If a1 + · · · + ak = n for

positive integers ai, we denote by Ta1,...,ak the torus type in G associated with

the permutation

(1 2 · · · a1)(a1 + 1 · · · a1 + a2) · · · (n+ 1− ak · · · n)

with cycles of length a1, . . . , ak.

Proposition 2.3.1. For 0 ≤ a ≤ n, the maximal tori Tn and T1,a,r−a
are weakly orthogonal. If 2 ≤ a ≤ r − 1, the maximal tori T1,r and Ta,n−a are

weakly orthogonal.

Proof. Suppose T ∗n and T ∗1,a,r−a can be chosen to intersect nontrivially. Let

s∗ denote an element in their intersection, and Z◦(s∗) the identity component

of the centralizer of s∗. As Z◦(s∗) contains T ∗n , it must be of the form

P (ResFqm/FqGLn/m)

for some divisor m > 1 of n, where Res denotes restriction of scalars. However,

this group is anisotropic and therefore cannot contain a torus of type T1,a,r−a.

Now suppose T ∗1,r and T ∗a,n−a intersect in s∗ ∈ PGLn(Fq). As Z◦(s∗) contains

T ∗1,r, it must be of the form

(2.3.1) P (GL1 × ResFqm/FqGLr/m) ∼= ResFqm/FqGLr/m,

where m ≥ 1 divides r. If m > 1, then either a or n−a fails to be divisible by m,

so T ∗a,n−a cannot be contained in Z◦(s∗). Thus m = 1. However, T ∗a,n−a ⊂ GLr
if and only if a ∈ {1, r}, contrary to hypothesis. �

Maximal torus types in the unitary group G := SUn and its dual PGUn

are indexed by Sn-orbits in the the nontrivial Sn coset of Aut(Φ) = Sn×{±1}.
Such an orbit is given by a conjugacy class in Sn. We let Ta1,...,ak and T ∗a1,...,ak
denote representative maximal torus types in G and G∗ associated to the Weyl

orbit of (2.3.1).

Proposition 2.3.2. For 0 ≤ a ≤ r+ 1, the maximal tori Tn and T1,a,r−a
are weakly orthogonal. If 2 ≤ a ≤ r − 1, the maximal tori T1,r and Ta,n−a are

weakly orthogonal.

Proof. The proof is essentially the same except that the descriptions of

the centralizers containing specified maximal tori must be slightly modified;
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for example, the centralizers containing Tn are of the formP (ResFqm/FqGUn/m) if m|n is odd,

P (ResFqm/FqGLn/m) if m|n is even. �

2.4. Type Br. The Weyl group Wr of Br is isomorphic to the group of

permutations of Σr := {1, 2, . . . , r, 1′, 2′, . . . , r′} commuting with the involution
′ (where i′′ = i). The map Σr → {1, . . . , r} sending i and i′ to i induces

a surjective homomorphism φ : Wr → Sr. If w ∈ Wr and S ⊂ {1, . . . , r} is

a single orbit of φ(w), then we say S is a positive (resp. negative) cycle of

w if S \ w(S) has even (resp. odd) cardinality. A conjugacy class of Wr is

determined by a partition of r (specifying a conjugacy class in Sr), together

with the data specifying how many parts of each size are positive and how

many are negative. Equivalently, the data may be regarded as an ordered pair

of partitions which total r.

Consider G = Spin2r+1, the simply connected group over Fq with root

system Br, with dual G∗ = PCSpr. Given positive integers a1, . . . , ak summing

to r, we write T+
a1,...,ak

for a maximal torus of G associated with the partition

r = a1 + · · ·+ ak, where all parts are positive and T−a1,...,ak for a maximal torus

of G associated with the same partition, where all parts are negative. We will

need to work with two pairs of maximal tori. For the first pair, T+
r and T−r ,

we can appeal to [MSW94, Th. 2.4].

Proposition 2.4.1. For 1 ≤ a ≤ r/2 − 1 and (ε, ε) 6= ((−1)a, (−1)r−a),

the maximal tori T εa,r−a and T−εa+1,r−a−1 are weakly orthogonal.

Proof. Use the same arguments as in the proof of Proposition 2.6.1, re-

placing CO±2n(Fq)◦ by CSp2n(Fq). �

2.5. Type Cr. Here the fact that we will need is that the tori T+
r and

T−r are weakly orthogonal. We again omit the proof since we will be citing a

stronger result [MSW94, Th. 2.3] below.

2.6. Type Dr. If G is the split group Spin+
2r, the G(Fq)-conjugacy classes

of maximal tori of G over Fq are indexed by conjugacy classes in the Weyl

group W′r /Wr. A conjugacy class in Wr is represented by an element of W′r if

and only if the number of negative parts is even.

If G is the nonsplit group Spin−2r, the G(Fq)-conjugacy classes of maximal

tori of G over Fq are indexed by Wr-orbits in Wr \W′r. A conjugacy class in Wr

has a representative in Wr \W′r if and only if the number of negative parts is

odd. For both the split and nonsplit spin groups, we write T ε1,...,εka1,...,ak
for a class

where the part of size ai has sign εi = ±. Furthermore, this class is unique for

the types that we will consider.
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To prove the next statement, it is convenient to work with (finite) multi-

sets, i.e., collections of elements with possible repetitions. The total number

of elements in a multiset X, including repeated memberships, is called its car-

dinality |X|. Let Y be another multiset. The join X t Y , respectively the

intersection X ∩ Y , is the multiset Z, where the multiplicity of any u ∈ Z is

the sum, respectively the minimum, of its multiplicities in X and in Y . Simi-

larly, we say that X ⊆ Y if, for any u ∈ X, the multiplicity of u in X does not

exceed its multiplicity in Y .

Proposition 2.6.1. (i) Let 1 ≤ a < b − 1, α, β ∈ {±1} and (α, β) 6=
((−1)a, (−1)b). Then the maximal tori Tα,βa,b and T−α,−βa+1,b−1 are weakly orthogo-

nal.

(ii) Assume that ε ∈ {±1} and, in addition, r is odd if ε = 1. Then the

maximal tori T εr and T−,−εr−1,1 are weakly orthogonal.

Proof. (i) In this case, the dual group G∗ is PCO(V )◦, where V = F2(a+b)
q

is endowed with a suitable quadratic form Q; see [TZ96, Lemma 7.4] for an

explicit description of the groups G∗ and H := CO(V )◦. Consider the complete

inverse images in H of the tori dual to Tα,βa,b and T−α,−βa+1,b−1, and assume g is an

element belonging to both of them. We need to show that g ∈ Z(H). We will

consider the spectrum S of the semisimple element g on V as a multiset. Let

γ ∈ F×q be the conformal coeficient of g, i.e., Q(g(v)) = γQ(v) for all v ∈ V .

Then S can be represented as the joins of multisets X t Y and Z t T , where

X := {x, xq, . . . , xqa−1
, γx−1, γx−q, . . . , γx−q

a−1},

Y := {y, yq, . . . , yqb−1
, γy−1, γy−q, . . . , γy−q

b−1},

Z := {z, zq, . . . , zqa , γz−1, γz−q, . . . , γz−q
a},

T := {t, tq, . . . , tqb−2
, γt−1, γt−q, . . . , γt−q

b−2},

for some x, y, z, t ∈ F×q ; furthermore, xq
a−α = 1 if α = + and xq

a−α = γ if

α = −, and similarly for y, z, t.

Let A be any multiset of elements of Fq, where the multiplicity of each

element in A is 2(a+b), and with the property that if u ∈ A, then uq, γu−1 ∈ A.

We claim that if A ∩ S 6= ∅, then A ⊇ S. Indeed, since the multiplicity of any

u ∈ S is at most 2(a+ b), if A∩X 6= ∅, then A ⊇ X, and if A∩X,A∩ Y 6= ∅,
then A ⊇ S; and similarly for Y , Z, T . Now if A ∩ S 6= ∅ but A 6⊇ S, then

since S = X t Y , we must have |A ∩ S| ∈ {2a, 2b}. But S = Z t T as well, so

we see that |A ∩ S| ∈ {2a+ 2, 2b− 2}, which is a contradiction as a+ 1 < b.

Consider, for instance, the case b = 2k + 1 and β 6= (−1)b, i.e., β = 1.

Applying the claim to the multiset A consisting of elements u ∈ Fq such that

uq
b−β = 1, each with multiplicity 2(a + b), and noting that A ⊇ Y , we see
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that uq
b−β = 1 for all u ∈ S. In particular, tq

2k+1−1 = t(q
2k+1)(q−1) = 1,

whence t ∈ F×q and γ = tq
2k+1 = t2, i.e., γt−1 = t. Now applying the claim to

the multiset A consisting of elements v ∈ F×q such that v = γv−1, each with

multiplicity 2(a+ b), and noting that A ⊇ T , we see that v ∈ F×q and v = γv−1

for all v ∈ S. Thus g = x · 1V , as stated. The same argument applies to the

other cases.

(ii) A similar argument (but much simpler than that in (i)). �

3. Unipotent characters of classical groups

3.1. Unipotent characters of Ar and 2Ar. Let n = r+ 1. Let G be a form

of SLn over Fq, i.e., either SLn or SUn. The unipotent representations of G(Fq)
are indexed by partitions α ` n [Lus84, App.]. We have seen that the types of

maximal torus of G naturally correspond to conjugacy classes O(σ) in Sn. If

χuni,α is the unipotent character of G(Fq) associated to a partition α of n and

t is a regular semisimple element of G(Fq) associated to the conjugacy class

O(σ) ⊂ Sn, then χuni,α(t) 6= 0 implies that χα(σ) 6= 0, where χα denotes the

character of Sn associated to α [Car95, 7.1].

To find sufficient conditions for χα(σ) = 0, we use the Murnaghan-Naka-

yama rule [Jam78, 21.1]. A box in a Young diagram belongs to the rim if the

diagram does not contain a box at the crossing of the next row and the next

column. By a rim t-hook β in a diagram α, we mean a connected subset of the

rim containing t nodes, such that α\β is a proper diagram. If, moving from

right to left, the rim hook β starts in row i and finishes in column j, then the

leg-length l(β) is defined to be the number of nodes below the ij-node in the

α-diagram.

Proposition 3.1.1 (The Murnaghan-Nakayama rule; cf. [Jam78, 21.1]).

Let τπ ∈ Sn, where τ is a t-cycle and π is a permutation of the remaining n− t
points. Then

χα(τπ) =
∑
β

(−1)l(β)χα\β(π),

where the sum is over all rim t-hooks β in an α-diagram.

The following corollary is immediate:

Corollary 3.1.2. For all α ` n,

χα((1 2 · · · n)) ∈ {−1, 0, 1},

with nonzero value only if α is of the form (1n−k, k) for some integer k ∈ [1, n].

Likewise,

χα((1 2 · · · n− 1)) ∈ {−1, 0, 1},
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with nonzero value only if α is of the form (n), (1n), or (1n−2−k, 2, k) for some

k ∈ [2, n− 2].

For future use, we record the following extension of Corollary 3.1.2:

Corollary 3.1.3. Let 1 ≤ k ≤ n− 1. For all α ` n,

|χα((12 . . . k)(k + 1, k + 2, . . . , n))| ≤ 4,

with nonzero value only if α is of the form

(Ia) (n) or (1n);

(Ib) (1y, k + 1, k + x + 1) (type Ib1) or (1x, 2k, y + 2) (type Ib2), where

0 ≤ x, y ≤ x+ y = n− 2k − 2;

(Ic) (1y, x + 1, k) or (1k−1−x, 2x, y + 2) where 0 ≤ x ≤ k − 1, 0 ≤ y, and

x+ y = n− k − 1;

(IIa) (1j , n− j), where min(j + 1, n− j) ≤ min(k, n− k);

(IIb) (1j−1−y, 2y, k− j+1, k− j+x+1), where 1 ≤ j ≤ k−1, 0 ≤ y ≤ j−1,

0 ≤ x, and x+ y = n− 2k + j − 1;

(IIc) (1y, 2j , k− j+ 1, k− j+x+ 1), where 1 ≤ j ≤ k−1, 0 ≤ x, y ≤ x+y =

n− 2k − 2;

(IId) (1j−1−y, 2y, x + 2, k − j), where 1 ≤ j ≤ k − 1, 0 ≤ x ≤ k − j − 2,

0 ≤ y ≤ j − 1, and x+ y = n− k − 1;

(IIe) (1y, 2j , x + 2, k − j), where 1 ≤ j ≤ k − 1, 0 ≤ x ≤ k − j − 2, 0 ≤ y,

and x+ y = n− k − 2− j.

Proof. The bound on character values comes from [LS09, 7.2]. Assume

that χα(τπ) 6= 0, where τ := (12 · · · k) and π := (k + 1, k + 2, . . . , n). By

Proposition 3.1.1 and Corollary 3.1.2, this implies that we can remove a rim

(n − k)-hook β from the Young diagram of α to get a k-hook. The possible

shapes for α are listed explicitly above, where type I has α \ β = (k) or (1k)

and type II has α \ β = (1j , k − j) with 1 ≤ j ≤ k − 1. �

Corollary 3.1.3 immediately implies the following:

Corollary 3.1.4. For all α ` n,

χα((12)(3 4 · · · n)) ∈ {−1, 0, 1},

with nonzero value if only if α is of the form (n), (1n), (1n−2, 2), (1, n − 1),

(1n−4, 22), (2, n − 2), (1n−6−k, 3, k + 3), or (1n−6−k, 22, k + 2), for some k ∈
[0, n− 6].

We can now prove the following proposition:

Proposition 3.1.5. Let a be a fixed positive integer. Then there exists

an integer N ≥ a + 2 and a constant C such that if n > N , t1 and t2 are

regular semisimple elements of G(Fq) belonging to tori of type Tn and T1,a,r−a,
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respectively, then there are at most three nontrivial irreducible characters χ

such that χ(t1)χ(t2) 6= 0 and only one for which

(3.1.1) χ(1)2 <
C|G(Fq)|

qn
.

Moreover, for all of these characters, |χ(t1)χ(t2)| = 1. Likewise, if a > 1

and n > N , if t1 and t2 are regular semisimple elements of G(Fq) belonging to

tori of type T1,r and Ta,n−a, respectively, then there are at most three nontrivial

irreducible characters χ such that χ(t1)χ(t2) 6= 0 and only one for which (3.1.1)

holds. Moreover, for all of these characters, |χ(t1)χ(t2)| = 1.

Proof. By Propositions 2.2.2, 2.3.1, and 2.3.2, χ must be unipotent. It is

therefore of the form χuni,α for some partition α of n. For the first claim, t1
belongs to a maximal torus of type Tn, so α must be of the form (1n−k, k) for

some k. By Proposition 3.1.1,

χα((2 · · · a+ 1)(a+ 2 · · · n)) ∈ {−1, 0, 1},

with nonzero value only if k ∈ {1, a + 1, n − a, n}. The dimensions of the

corresponding representations are well known (see, e.g., [Ste51]). In the split

case,

χ(1) = q
(n2−n)−(k2−k)

2

n−k∏
i=1

1− qi−n

1− q−i
.

Since
∏∞
i=1(1− q−i) is bounded away from 0 and ∞ for all prime powers q, we

have

logq χ(1) =
(n2 − n)− (k2 − k)

2
+O(1) =

logq |G(Fq)|
2

− n

2
+O(1)

if k is bounded and n grows without bound. When k = n, χ is trivial, and this

leaves only k = n − a for χ to satisfy (3.1.1). A similar estimate holds in the

unitary case (see [Lus77, 9.5]). Note that
∏∞
i=1(1 − (−q)−i) is also bounded

away from 0 and∞. The values of χα at (1 2 · · · n) and (2 · · · a+1)(a+2 · · · n)

are both ±1, so the same can be said about the values of χuni,α at t1 and t2.

For the second claim, by Corollary 3.1.2, the partition α must be (n), (1n),

or of the form (1n−2−k, 2, k). We have already seen that (n) gives the trivial

representation, while (1n) gives rise to the Steinberg representation, which

violates the degree bound (3.1.1). For α = (1n−2−k, 2, k), by Proposition 3.1.1,

χuni,α(t2) 6= 0 implies k ∈ {a, n − a}. Again, the dimension formula for k =

a gives a character χ which violates (3.1.1). The character associated with

k = n − a is the only possible nontrivial character, not vanishing on t1 or

t2, and satisfying (3.1.1). Computing the values of χuni,α at t1 and t2 by

Proposition 3.1.1 as before, we see that they must belong to {±1}. �
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3.2. Symbols for orthogonal groups. We recall Lusztig’s theory of symbols,

originally developed in [Lus77, 3.1]. By a symbol, we mean an ordered pair

(λ, µ) of strictly increasing finite sequences of nonnegative integers λ1 < λ2 <

· · · < λl and µ1 < µ2 < · · · < µm. The rank of the symbol (λ, µ) is the

nonnegative integer

r :=
s∑
i=1

λi +
t∑

j=1

µj −
⌊(s+ t− 1)2

4

⌋
.

The defect of the symbol is s − t. We consider the following shift-equivalence

relation on the set of symbols of fixed rank and defect. The equivalence relation

is the transitive closure of the relationÇ
λ1 < · · · < λs
µ1 < · · · < µt

å
∼
Ç

0 < λ1 + 1 < · · · < λs + 1

0 < µ1 + 1 < · · · < µt + 1

å
.

Within each shift-equivalence class, there is a minimal pair (λ, µ) for which

λ1 + µ1 > 0. If (λ, µ) and (λ′, µ′) are minimal pairs, the corresponding classes

lie in the same family if and only if the multisets {λ1, λ2, . . . , µ1, µ2, . . . } and

{λ′1, λ′2, . . . , µ′1, µ′2, . . . } coincide.

The irreducible representations of Wr are indexed by equivalence classes

of symbols of rank r and defect 1 [Lus84, 4.5]. There is another, equivalent,

way to index irreducible representations of Wr, more obviously related to the

parametrization of conjugacy classes of Wr described in Section 2.4. Namely,

the representations are in bijective correspondence to ordered pairs of parti-

tions (α, β) such that |α|+ |β| = r. To convert between these notations, given

a symbol (λ, µ), we set αi = λi + 1− i, βj = µj + 1− j, and omit all zero-parts

in the resulting partitions α, β. An explicit construction of the representation

labeled by (α, β) can be described as follows; cf. [Lus81, §2.1]. Let τ be the

unique character of Wr taking value 1 on W′r and −1 on Wr \W′r. Now if α ` k
and β ` l, then we can embed Wk ×Wl in Wr. Furthermore, there is a unique

irreducible representation of Sk labeled by α as in [Jam78], and using the pro-

jection φ|Wk
: Wk → Sk, we can inflate it to an irreducible representation [α]

of Wk. Similarly, β gives rise to an irreducible representation [β] of Wl. Then

the irreducible representation of Wr labeled by (α, β) is

(3.2.1) indWr
Wk×Wl

([α]⊗ ([β]⊗ τ |Wl
)) .

The unipotent representations of Spin2r+1(Fq) are indexed by equiva-

lence classes of symbols of rank r and odd defect, where in addition to shift-

equivalence, we consider (λ, µ) and (µ, λ) to be equivalent [Lus77, 8.2].

The correspondence between irreducible representations of Wr and unipo-

tent characters is not bijective. Nevertheless, for each irreducible representa-

tion χ of the Weyl group Wr, there is a natural almost character Rχ, which is
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a virtual character of Spin2r+1(Fq), given by the formula

Rχ =
1

|Wr|
∑
σ∈Wr

χ(σ)R1
Tσ ,

where R1
Tσ

is the Deligne-Lusztig representation associated to the maximal

torus Tσ corresponding to σ and the trivial character. By [DL76, Cor. 7.2],

the character of R1
Tσ

at a regular semisimple element s is equal to 0 if s is

not conjugate to an element of Tσ and to |NGF (TFσ ) : TFσ | if s is conjugate to

an element of Tσ. In the latter case, since s is regular, (a conjugate of) Tσ
is the unique maximal torus in CG(s), and so Tσ is the only maximal torus

containing TFσ . It follows by [BCC+70, E-II.1.8,1.9,1.10(a)] that

|NGF (TFσ ) : TFσ | = |CWr(σ)|.

Thus, the character of Rχ at a regular semisimple element of Spin2r+1(Fq)
corresponding to an element σ ∈Wr is χ(σ).

The partition of shift-equivalence classes of symbols into families induces

a partition of unipotent representations into families and a corresponding par-

tition of irreducible representations of Wr into families. There is, moreover,

a “Fourier transform” matrix relating the almost characters in a given family

and the unipotent representations in the corresponding family [Lus81, 5.8],

[Car95, 7.1]. As the entries of the matrix have absolute value ≤ 1, if χuni is a

unipotent character of Spin2r+1(Fq), then

|χuni(t)| ≤
∑
χ

|χ(σ)|,

where χ ranges over all irreducible characters of Wr in the family F(χuni)

corresponding to that of χuni. In particular, if χ(σ) = 0 for all χ in the family,

then χuni(t) = 0.

There is a parallel theory for W′r, the Weyl group of Dr. Here, irreducible

representations of W′r are given by shift-equivalence classes of symbols of rank

r and defect zero, with two extra provisos: If the symbol is nondegenerate, i.e.,

λ 6= µ, then (µ, λ) and (λ, µ) determine the same representation; if the symbol

is degenerate, i.e., λ = µ, there are two irreducible representations attached

to (λ, λ), denoted (λ, λ)′ and (λ, λ)′′, where λ and µ are related to α and β

respectively as above. Again, we can also describe the indexing in terms of pairs

of partitions {α, β}, with total sum r. If α 6= β, then the Wr-representations

associated to (α, β) and (β, α) both restrict to the irreducible representation

of W′r associated to {α, β}; if α = β, then the Wr-representation associated to

(α, α) decomposes into the two W′r-representations denoted (λ, λ)′ and (λ, λ)′′

above.

As in the case of Spin2r+1(Fq), the unipotent representations of Spinε2r(Fq)
can also be labeled by equivalence classes of symbols of rank r, and defect
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≡ 0(mod 4) if ε = + (the split case), ≡ 2(mod 4) if ε = − (the nonsplit case).

Again, when λ 6= µ, there is a single unipotent representation associated to

(λ, µ) and (µ, λ), and when the symbol Λ is degenerate (which can only happen

in the split case), there are two unipotent representations corresponding to it;

cf. [Lus82, Lemma 3.8].

3.3. Unipotent characters of Dr and 2Dr. We will deal with unipotent

characters of even-dimensional orthogonal groups first.

Proposition 3.3.1. Fix a ≥ 1, and let r be any integer greater than

2a + 2. Let t1 and t2 be regular semisimple elements of G := Spin±2r(Fq)
belonging to tori T1 and T2 of type Tα,βa,r−a and T−α,−βa+1,r−a−1 respectively, where

α, β ∈ {±1} and (α, β) 6= ((−1)a, (−1)r−a). Then the number of distinct

irreducible characters of G which vanish neither on t1 nor on t2 is bounded,

independent of r, q, and the choices of ti. Likewise, the absolute values of these

characters on t1 and t2 are bounded independent of r, q, and the ti.

Proof. 1) Consider any χ ∈ Irr(G) with χ(t1)χ(t2) 6= 0. By Proposi-

tion 2.6.1, the tori T1 and T2 are weakly orthogonal. Hence χ is unipotent by

Proposition 2.2.2. Now, by [DL76, 7.9],

χ(ti) = [χ,R1
Ti ],

where, as above, R1
Ti

is the generalized Deligne-Lusztig character corresponding

to the principal character of the maximal torus Ti. The above inner product

has been determined by Lusztig in [Lus82, Cor. 3.16] for q sufficiently large,

and Asai [Asa83] shows that the same formula holds for any q. Also note that

in a sense, unipotent characters do not depend on the isogeny type of the finite

group G; cf. [DL76, 7.10].

Let Ti correspond to the F -conjugacy class of wi in the Weyl group W′r.

Under the natural projection φ : W′r → Sr, w1 projects onto π1 of cycle type

(a, r − a) and w2 projects onto π2 of cycle type (a+ 1, r − a− 1). Also, let Λ

be a symbol corresponding to χ.

2) Observe that Λ must be nondegenerate. Assume the contrary; in par-

ticular, Λ has defect 0 and corresponds to two irreducible representations [Λ]′

and [Λ]′′ of the Weyl group W′r, G is split, and 2|r. Also, χ is one of the two

unipotent representations ρ(Λ)b, ρ(Λ)b′ labeled by Λ. By [Lus82, Cor. 3.16(i)],

we may assume that

[χ,R1
Ti ] = [Λ]′(wi).

Clearly, one of a, a + 1 must be odd, and so some wj is centralized by an

element t ∈ Wr \ W′r (if a is odd for instance, then this element t sends k

to k′ if and only if k belongs to the a-cycle of π1). Recall that since Λ is

degenerate, indWr
W′r

([Λ]′) = indWr
W′r

([Λ]′′) is just the irreducible representation [Λ]
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of Wr labeled by Λ, and furthermore,

[Λ]′′(x) = [Λ]′(txt−1)

for any x ∈W′r. As [t, wj ] = 1, it follows that

[Λ]′(wj) = [Λ]′′(wj) = [Λ](wj)/2.

Next, the degenerate symbol Λ corresponds to the pair (α, α) where α ` r/2,

and by (3.2.1),

[Λ] = indWr
Wr/2×Wr/2

Ä
[α]⊗ ([α]⊗ τ |Wr/2

)
ä
.

By our assumption a + 1 < r − a − 1, neither w1 nor w2 can belong to (a

conjugate in Wr of) Wr/2 ×Wr/2. Hence, [Λ](wj) = 0 and so

χ(tj) = [χ,R1
Tj ] = [Λ]′(wj) = 0.

3) Now we may assume that Λ is nondegenerate. The equivalence class

of Λ contains a unique representative Λ = (X,Y ) such that 0 /∈ X ∩ Y , and

we will always choose Λ to satisfy this condition. Following the notation of

[Lus82], let Z1 be the set of “singles” in Λ; that is, the set of elements in

(X ∪Y ) \ (X ∩Y ) and Z2 := X ∩Y . Then X = Z2 ∪ (Z1 \N) and Y = Z2 ∪N
for some N ⊆ Z1. Since the defect of Λ is even, |Z1| = 2d for some integer d.

By [Lus82, Cor. 3.16(ii)], the condition χ(t1)χ(t2) 6= 0 implies that there

are some M1,M2 ⊆ Z1 such that |M1| = |M2| = d and

(3.3.1) [Λ1](w1) 6= 0, [Λ2](w2) 6= 0

in the split case, and

(3.3.2) [Λ1](w1ϕ) 6= 0, [Λ2](w2ϕ) 6= 0

in the nonsplit case. Here, Λi := (Z2 ∪ (Z1 \Mi), Z2 ∪Mi) for i = 1, 2, and

ϕ ∈ Wr sends i to i for 1 ≤ i ≤ r − 1 and r to r′. We need to show that the

number of such Λ is bounded by a function of a only, and that |χ(t1)|, |χ(t2)|
are also bounded by a function of a only for all such χ = ρ(Λ).

4) Let the pair (αi, βi) of partitions αi ` ki, βi ` li, correspond to the

symbol Λi, for i = 1, 2. Then condition (3.3.1) in the split case, respectively

(3.3.2) in the nonsplit case, and formula (3.2.1) imply that the permutation

πi ∈ Sr preserves a partition of the set {1, 2, . . . , r} into the union of a ki-set

and an li-set. It follows that

{k1, l1} = {r, 0} or {a, r − a}

and

{k2, l2} = {r, 0} or {a+ 1, r − a− 1}.
5) Here we consider the case where {k1, l1} = {k2, l2} = {r, 0}. Then

without loss, we may assume that β1, β2 are empty partitions and α1, α2 ` r.
The nonvanishing condition (3.3.1), respectively (3.3.2), now implies that α1
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is one of the partitions listed in Corollary 3.1.3 for k = a and α2 is one of the

partitions listed in Corollary 3.1.3 for k = a + 1. In particular, 2 ≤ |Z1| ≤ 4,

i.e., 1 ≤ d ≤ 2. Since Z1 has 2, respectively 6, subsets of cardinality |Z1|/2 for

d = 1, respectively for d = 2, Corollary 3.1.3 and [Lus82, Cor. (3.16)(ii)] imply

that

|χ(ti)| ≤ 6.

Next we count the total number of possibilities for (Z1, Z2); each of these

possibilities gives rise to at most 22d ≤ 16 possibilities for Λ. Clearly, (Z1, Z2)

is uniquely determined by α1 and also by α2. Observe that each of the types

Iac and IIabde in Corollary 3.1.3 contains at most (a+ 1)2 partitions αi. So it

remains to consider the cases where the type of α1 and the type of α2 belong

to {Ib, IIc}. In each of the following cases, we will match up the shapes of Z1

and Z2 as they come from α1 and from α2 to derive a contradiction. Also,

to make the arguments symmetric for t1 and t2, we may replace (a, a + 1) by

(a, a− 1) and assume π2 has cycle type (a′, r − a′) with a′ = a± 1.

Assume, for instance, that α1 = (1y, a+ 1, a+ x+ 1) is of type Ib1. Then

Z1 = {0, y + 1, a + 1 + y, r − a} and Z2 = {1, 2, . . . , y}. Now if α2 = (1y
′
,

a′ + 1, a′ + x′ + 1) is of type Ib1, then the shape of Z2 forces y = y′, but then

Z2 cannot have the indicated shape. If α2 = (1x
′
, 2a

′
, y′ + 2) (of type Ib2), or

(1y
′
, 2j , a′−j+1, a′−j+x′+1) (of type IIc), then Z2 = {1, 2, . . . , x′+a′}\{x′+1}

or Z2 = {1, 2, . . . , y′ + j + 1} \ {y′ + 1}. Both possibilities contradict the given

shape of Z2, unless a′ = a− 1 = 1 and y = x′ = r − 2a, which is impossible.

Next, assume that α1 = (1y, 2j , a−j+1, a−j+x+1) is of type IIc. Then

Z1 = {0, y+ 1, a+ 1 + y, r− a} and Z2 = {1, 2, . . . , y+ j+ 1} \ {y+ 1}. Now if

α2 = (1y
′
, 2j
′
, a′ − j′ + 1, a′ − j′ + x′ + 1) is also of type IIc, then the shape of

Z2 forces j′ = j and y′ = y. But then Z1 = {0, y+ 1, a′+ 1 + y, r−a′}, whence

y = r−a−a′− 1 and x = −2 or x′ = −2; a contradiction. On the other hand,

if α2 = (1x
′
, 2a

′
, y′ + 2) (of type Ib2), then Z2 = {1, 2, . . . , x′ + a′} \ {x′ + 1},

forcing x′ = y and x′ + a′ = y + j + 1. This can happen only when a′ = a− 1

and j = a − 2. Then the shape of Z1 implies that y = r − 2a and x = −2;

again a contradiction.

Finally, assume that α1 = (1x, 2a, y+2) and α2 = (1x
′
, 2a

′
, y′+2) are both

of type Ib2. Then

Z2 = {1, 2, . . . , x+ a} \ {x+ 1} = {1, 2, . . . , x′ + a′} \ {x′ + 1},

forcing x+ 1 = x′ + 1 and x+ a = x′ + a′; again a contradiction.

6) Now we may assume that k1 = a and k2 = r − a. Clearly, π1 preserves

a unique partition of {1, 2, . . . , r} into the union of an a-set and an (r−a)-set.

Hence formula (3.2.1) yields that

|[Λ1](w1)| = |[Λ1](w1ϕ)| = |[α1]((a))| · |[β1]((r − a))|.
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By Corollary 3.1.2 and the nonvanishing condition (3.3.1), respectively (3.3.2),

both α1 and β1 must be hook partitions:

α1 = (1e, a− e), β1 = (1f , r − a− f),

where 0 ≤ e ≤ a − 1, and 0 ≤ f ≤ r − a − 1. In particular, 2 ≤ |Z1| ≤ 4 and

so 1 ≤ d ≤ 2. As in 5), this upper bound on d, together with Corollaries 3.1.2,

3.1.3, and [Lus82, Cor. (3.16)(ii)], implies that

|χ(t1)| ≤ 3/2, |χ(t2)| ≤ 6.

Next we count the total number of possibilities for (Z1, Z2); each of these

possibilities gives rise to at most 22d ≤ 16 possibilities for Λ. Clearly, (Z1, Z2)

is uniquely determined by (α1, β1) and also by (α2, β2). Also, there are at most

a(a+ 1) possibilities for (α1, β1) with 0 ≤ f ≤ a− 1 or r − 2a = f − e. So we

may assume that 0 ≤ e ≤ a − 1 < f ≤ r − a − 1 and r − 2a 6= f − e. In this

case,

Z1 = {0, f − e, a+ f − e, r − a}, Z2 = {1, 2, . . . , f} \ {f − e}.

Assume that {k2, l2} = {a + 1, r − a − 1}. Then, arguing as above, we may

also assume that α2 = (1e
′
, a + 1 − e′) and β2 = (1f

′
, r − a − 1 − f ′), with

0 ≤ e′ ≤ a < f ′ ≤ r − a− 2 and r − 2a− 2 6= f ′ − e′. It follows that

Z1 = {0, f ′ − e′, a+ 1 + f ′ − e′, r − a− 1}, Z2 = {1, 2, . . . , f ′} \ {f ′ − e′},

whence f ′ = f , e′ = e, f = r− 2a− 1 + e. Since 0 ≤ e ≤ a− 1, we get at most

a possibilities for (α1, β1).

Now we may assume that α2 ` r and β2 = ∅. As in 5), we see that

α2 is one of the partitions listed in Corollary 3.1.3 for k = a′ = a ± 1; and

moreover, we may assume that α2 is of type Ib or IIc. Assume for instance that

α2 = (1y, a′+1, a′+x+1) is of type Ib1. Then Z1 = {0, y+1, a′+1+y, r−a′}
and Z2 = {1, 2, . . . , y}, forcing f = y + 1, e = 0, and y = r − a − a′ − 1.

Thus we get at most one choice for (α1, β1) in this case. Next assume that

α2 = (1y, 2j , a′ − j + 1, a′ − j + x+ 1) is of type IIc. Then Z1 = {0, y + 1, a′ +

1 + y, r − a′} and Z2 = {1, 2, . . . , y + j + 1} \ {y + 1}, forcing f = y + j + 1,

e = j, and y = r − a− a′ − 1. Since 1 ≤ j ≤ a, this leads to at most a choices

for (α1, β1). Finally, assume that α2 = (1x, 2a
′
, y + 2) is of type Ib2. Then

Z1 = {0, x+ 1, x+ a′ + 1, r − a′} and Z2 = {1, 2, . . . , x+ a′} \ {x+ 1}, forcing

f = x+ a′, e = a′ − 1 = a− 2, x = r − 2a, and y = −2, a contradiction. �

3.4. Unipotent characters of Br. Now let G = Spin2r+1. By [MSW94,

Th. 2.4], if t1, t2 ∈ G(Fq) are regular semisimple elements belonging to tori

of type T+
r and T−r respectively, then every noncentral element of G(Fq) is a

product of a conjugate of t1 and a conjugate of t2. For most values of r, this

will be enough for the intended application, but depending on the word w and

the value of r, we may not be able to guarantee that w(G(Fq)) contains regular
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semisimple elements of these two types. To deal with these cases, we have the

following result:

Proposition 3.4.1. Fix a ≥ 1, and let r be any integer greater than

2a + 2, and ε ∈ {±1} with (ε, ε) 6= ((−1)a, (−1)r−a). If t1 and t2 are regu-

lar semisimple elements of Spin2r+1(Fq) belonging to tori of type T εa,r−a and

T−εa+1,r−a−1 respectively, then the number of distinct irreducible characters of

Spin2r+1(Fq) which vanish neither on t1 nor on t2 is bounded, independent of

r, q, and the choices of ti. Likewise, the absolute values of these characters on

t1 and t2 are bounded independent of r, q, and the ti.

Proof. 1) By Proposition 2.4.1, the two tori are weakly orthogonal. We

will proceed in parallel with the proof of Proposition 3.3.1 and use the same

notation set up in part 1) of that proof. In particular, Λ is a symbol corre-

sponding to a unipotent character χ with χ(t1)χ(t2) 6= 0 so that χ = ρ(Λ);

the difference is that now Λ has odd defect. Again, the equivalence class of Λ

contains a unique representative Λ = (X,Y ) such that 0 /∈ X ∩ Y , and we will

always choose Λ to satisfy this condition. Next, let Z1 be the set of “singles”

and Z2 = X ∩Y , so that X = Z2∪ (Z1 \N) and Y = Z2∪N for some N ⊆ Z1.

Since Λ has odd defect, |Z1| = 2d + 1 for some integer d ≥ 0. Then the fam-

ily F(χ) consists of all irreducible characters [Λ′] of Wr labeled by symbols

Λ′ = (X ′, Y ′) of defect 1 which contain the same entries (with the same multi-

plicities) as Λ does; cf. [Lus81, Cor. (5.9)]. Hence the condition χ(t1)χ(t2) 6= 0

implies that there are some M1,M2 ⊆ Z1 such that |M1| = |M2| = d and

(3.4.1) [Λ1](w1) 6= 0, [Λ2](w2) 6= 0,

where Λi := (Z2 ∪ (Z1 \Mi), Z2 ∪Mi) for i = 1, 2. We need to show that the

number of such Λ is bounded by a function of a only and that |χ(t1)|, |χ(t2)|
are also bounded by a function of a only for all such χ = ρ(Λ).

Let the pair (αi, βi) of partitions αi ` ki, βi ` li, correspond to the

symbol Λi for i = 1, 2. Then condition (3.4.1) and formula (3.2.1) imply that

the permutation πi ∈ Sr preserves a partition of the set {1, 2, . . . , r} into the

union of a ki-set and an li-set. It follows that

{k1, l1} = {r, 0} or {a, r − a}

and

{k2, l2} = {r, 0} or {a+ 1, r − a− 1}.
Also, to make the arguments symmetric for t1 and t2, we may replace (a, a+1)

by (a, a− 1) and assume π2 has cycle type (a′, r − a′) with a′ = a± 1.

2) Here we consider the case where {k1, l1} = {k2, l2} = {r, 0}. Inter-

changing αi with βi and considering symbols of defect −1 in addition to the

ones of defect 1, we may assume that β1, β2 are empty partitions and α1, α2 ` r.
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The nonvanishing condition (3.4.1) now implies that α1 is one of the partitions

listed in Corollary 3.1.3 for k = a, and that α2 is one of the partitions listed

in Corollary 3.1.3 for k = a + 1. In particular, 1 ≤ |Z1| ≤ 5, i.e., 0 ≤ d ≤ 2.

Since Z1 has 3, respectively 10, subsets of cardinality d for d = 1, respectively

for d = 2, Corollary 3.1.3 and [Lus81, Cor. (5.9)] imply that

|χ(ti)| ≤ 10.

Next we count the total number of possibilities for (Z1, Z2); each of these

possibilities gives rise to at most 22d+1 ≤ 32 possibilities for Λ. Clearly, (Z1, Z2)

is uniquely determined by α1 and also by α2. Observe that each of the types

Iac and IIabde in Corollary 3.1.3 contains at most (a+ 1)2 partitions αi. So it

remains to consider the cases where the type of α1 and the type of α2 belong

to {Ib, IIc}. In each of the following cases, we will match up the shapes of Z1

and Z2 as they come from α1 and from α2 to derive a contradiction.

Assume for instance that α1 = (1y, a+ 1, a+ x+ 1) is of type Ib1. Then

either

Z1 = {0, a+1+y, r−a} or {0, y+1, y+2, a+1+y, r−a}, and Z2 = {1, 2, . . . , y},

or

a = 1, Z1 = {0, y + 1, r − a}, and Z2 = {1, 2, . . . , y, y + 2}.

Now if α2 = (1y
′
, a′ + 1, a′ + x′ + 1) is of type Ib1, then matching up the

shapes of Z1 and Z2 we see that y = y′ = n − a − a′ − 1, and so either

x or x′ is negative; a contradiction. The same contradiction occurs if α2 =

(1y
′
, 2j , a′− j+ 1, a′− j+x′+ 1) is of type IIc. Similarly, the shapes of Z1 and

Z2 for α1 and α2 cannot match if α2 is of type Ib2.

Next assume that α1 = (1y, 2j , a− j+ 1, a− j+x+ 1) is of type IIc. Then

one of the following holds:

Z1 ={0, y+ 1, y+ j+ 1, a+ y+ 1, r − a}, Z2 ={1, 2, . . . , y+ j} \ {y+ 1},
Z1 ={0, y+ 1, y+ j+ 2, a+ y+ 1, r − a}, Z2 ={1, 2, . . . , y+ j+ 1} \ {y+ 1},
j=a− 1, Z1 ={0, y+ 1, r − a}, Z2 ={1, 2, . . . , y+ j+ 2} \ {y+ 1}.

Suppose, in addition, that α2 = (1y
′
, 2j
′
, a′ − j′ + 1, a′ − j′ + x′ + 1) is also

of type IIc. By symmetry, we may assume that j ≥ j′. In the case |Z1| = 3

we get y = y′, j = j′, and a = a′; a contradiction. If |Z1| = 5, then y =

y′ = r − a − a′ − 1 and so either x or x′ is negative; a contradiction. On

the other hand, let α2 = (1x
′
, 2a

′
, y′ + 2) be of type Ib2. Then one can check

that the case |Z1| = 3 is impossible, and in the case |Z1| = 5 we must have

y = x′ = r − a− a′ − 1, which is also a contradiction.
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Finally, consider the case that α1 = (1x, 2a, y+2) and α2 = (1x
′
, 2a

′
, y′+2)

are both of type Ib2. Then one of the following holds:

Z1 = {0, x+ 1, a+ x, a+ x+ 1, r − a}, Z2 = {1, 2, . . . , x+ a− 1} \ {x+ 1},
Z1 = {0, x+ 1, r − a}, Z2 = {1, 2, . . . , x+ a+ 1} \ {x+ 1},
a = 1, Z1 = {0, a+ y + 1, r − a}, Z2 = {1, 2, . . . , y}.

Matching up the shapes of Z1 and Z2, we see that either a = a′ or a = 0 or

a′ = 0; a contradiction.

3) Now we may assume that {k1, k2} = {a, r − a}. Again by considering

symbols of defect −1, we may assume furthermore that α1 ` a and β1 ` r− a.

Clearly, π1 preserves a unique partition of {1, 2, . . . , r} into the union of an

a-set and an (r − a)-set. Hence formula (3.2.1) yields that

|[Λ1](w1)| = |[α1]((a))| · |[β1]((r − a))|.

By Corollary 3.1.2 and the nonvanishing condition (3.4.1), both α1 and β1

must be hook partitions:

α1 = (1e, a− e), β1 = (1f , r − a− f),

where 0 ≤ e ≤ a − 1, and 0 ≤ f ≤ r − a − 1. In particular, 1 ≤ |Z1| ≤ 5 and

so 0 ≤ d ≤ 2. As in 2), this upper bound on d, together with Corollaries 3.1.2,

3.1.3, and [Lus81, Cor. (5.9)], implies that

|χ(t1)| ≤ 5/2, |χ(t2)| ≤ 10.

Next we count the total number of possibilities for (Z1, Z2); each of these

possibilities gives rise to at most 22d+1 ≤ 32 possibilities for Λ. Clearly, (Z1, Z2)

is uniquely determined by (α1, β1) and also by (α2, β2). Also, there are at

most a(a + 4) possibilities for (α1, β1) with 0 ≤ f ≤ a or f = r − a − 1 or

r − 2a ± 1 = f − e. So we may assume that 0 ≤ e < a < f < r − a − 1 and

r − 2a± 1 6= f − e. In this case, one of the following holds:

(IVa): Z1 = {0, f−e−1, f, a+f−e−1, r−a}, Z2 = {1, 2, . . . , f−1}\{f−e−1};
(IVb): Z1 = {0, f−e+1, f+1, a+f−e+1, r−a}, Z2 = {1, 2, . . . , f}\{f−e+1};
(IVc): e = 1, Z1 = {0, f, f + 1, a+ f, r − a}, Z2 = {1, 2, . . . , f − 1};
(IVd): e = a− 1, Z1 = {0, f − a+ 2, r − a}, Z2 = {1, 2, . . . , f} \ {f − a+ 2}.

Assume in addition that {k2, l2} = {a′, r − a′} with a′ = a ± 1. Then,

arguing as above, we may also assume that α2 = (1e
′
, a′−e′) and β2 = (1f

′
, r−

a′ − f ′), with 0 ≤ e′ < a′ < f ′ < r − a′ − 1 and r − 2a′ ± 1 6= f ′ − e′. Suppose

the case (IVa) happens for (Z1, Z2). Then |Z1| = 5, and by matching up the

shapes of Z1 and Z2 as they come from (α1, β1) and from (α2, β2), we see that

f = r − a− a′ + e+ 1. Since 0 ≤ e ≤ a− 1, we get at most a possibilities for

(α1, β1). Similarly, in the case (IVb) or (IVc), we get f = r − a − a′ + e − 1,



WARING PROBLEM 1907

which lead to at most a possibilities for (α1, β1). In the case of (IVd), we must

have f = f ′, a = a′; a contradiction.

Now we may assume that α2 ` r and β2 = ∅. As in 2), we see that α2 is

one of the partitions listed in Corollary 3.1.3 for k = a′ = a±1; and moreover,

we may assume that α2 is of type Ib or IIc. Suppose the case (IVa) happens

for (Z1, Z2). Then |Z1| = 5, and by matching up the shapes of Z1 and Z2 as

they come from (α1, β1) and from (α2, β2), we see that f = r − a− a′ + e+ 1.

Since 0 ≤ e ≤ a − 1, we get at most a possibilities for (α1, β1). Similarly,

in the case (IVb) or (IVc), we get f = r − a − a′ + e − 1, which lead to at

most a possibilities for (α1, β1). One can show that the case of (IVd) cannot

occur. �

4. Character estimates for elements of large support

4.1. Classical groups and support. A theorem of Gluck [Glu95] asserts that

if G is a finite connected reductive group over Fq whose commutator subgroup

is quasi-simple and simply connected, g ∈ G is a noncentral element, and χ is

a nontrivial irreducible character of G, then

(4.1.1)
|χ(g)|
χ(1)

≤ γq :=

®
19/20, 2 ≤ q < 43,

1/(
√
q − 1), q ≥ 43.

While this bound can probably be improved, it cannot be improved beyond

1/
√

3 even in the large |G(Fq)| limit. This can be seen by considering the

value of an irreducible Weil character of degree (3n± 1)/2 at a transvection in

Sp2n(F3); cf. [TZ96].

For the intended application, we need a stronger upper bound, which can

only be achieved by excluding certain special elements which are in a suitable

sense nearly scalar. This leads us to the notion of support. We define the

support of a matrix as follows:

Definition 4.1.1. The support supp (g) of an element g ∈ GLn(F) ⊂
GLn(F) is the codimension of the largest eigenspace of g:

supp (g) = inf
λ∈F

codim ker(g − λ).

The support of any element in a classical group G(F) is the support of its image

under the natural representation ρ : G(F)→ GLn(F).

See also [LS99, p. 509] for an equivalent definition and some properties.

If g ∈ GLn(F) with supp (g) < n/2, there is a unique eigenvalue λ such that

codim ker(g − λ) = supp (g). We call λ the primary eigenvalue of g.

Proposition 4.1.2. If G is GLn or a simply connected classical group

with n-dimensional natural representation, and g ∈ G(Fq) has support less than
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n/2 with primary eigenvalue λ, then

λ ∈



F×q if G = SLn or G = GLn,

{x ∈ Fq2 | xq+1 = 1} if G = SUn,

{−1, 1} if n is even and G = Spn,

{−1, 1} if n is odd and G = Spinn,

{−1, 1} if n is even and G = Spin±n .

Proof. As n − supp (g) is less than or equal to the dimension of the λ

generalized eigenspace Vλ of ρ(g), it suffices to prove that the above conditions

hold whenever dimVλ > n/2.

For ρ(g) ∈ GLn(Fq), we have dimVλ = dimVλq , so λ ∈ F×q . For ρ(g) ∈
SUn(Fq), we have dimVλ = dimVλ−q , so λq+1 = 1. For ρ(g) ∈ Spn(Fq), ρ(g) ∈
Spinn(Fq), ρ(g) ∈ Spin+

n (Fq), or ρ(g) ∈ Spin−n (Fq), we have dimVλ = dimVλ−1 ,

so λ2 = 1. �

4.2. Branching rules and invariants. Throughout this section, all repre-

sentations are finite-dimensional complex representations; furthermore, d(H)

will denote the minimal degree of a nontrivial representation of the finite group

H, and V H the fixed point subspace of H on a representation space V .

First we record the following obvious observation:

Lemma 4.2.1. If K < H is not contained in any proper normal subgroup

of H , then

d(H) ≥ d(K).

Lemma 4.2.2. If K < H is not contained in any proper normal subgroup

and V is the representation space of an H-representation, then

dimV K

dimV
≤ dimV H

dimV
+

»
|K\H/K| − 1

d(H)
.

Proof. It suffices to show that if dimWH = 0 for an H-module W , then

dimWK

dimW
≤

»
|K\H/K| − 1

d(H)
.

It therefore suffices to prove

dimWK ≤
»
|K\H/K| − 1

for nontrivial irreducible representations W of H with WK 6= 0. By Frobe-

nius’ reciprocity, W embeds in indHK(1K) with multiplicity dimWK . Hence

(dimWK)2 < |K\H/K|, since the latter is the dimension of the fixed point

subspace of K on the representation space of indHK(1K). �
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Let G(Fq) be a simply connected classical group and W the representa-

tion space of the natural representation ρ. (Thus W is a vector space over Fq
except when G is unitary, when it is a vector space over Fq2 .) Let W1 and W2

be complementary subspaces of W . In the unitary, orthogonal, and symplec-

tic cases, we further assume that W1 and W2 are mutually orthogonal with

respect to the Hermitian, symmetric, or symplectic form, respectively, which

G preserves. The subgroup

GW1,W2(Fq) := {g ∈ G(Fq) | ρ(g)(W1) = W1, (ρ(g)− 1)(W2) = 0}

is again a simply connected classical group of the same type (but of smaller

rank), of which W1 is the natural representation space. By a restriction map,

we mean an inclusion of simply connected classical groups which arises in this

way.

Proposition 4.2.3. For all ε > 0, there exists B = B(ε) such that if G1

and G2 are simply connected classical groups over Fq and G1(Fq) → G2(Fq)
is a restriction map, V is the representation space of a nontrivial irreducible

complex representation of G2(Fq), and |G1(Fq)| > B, then

dimV G1(Fq) ≤ εdimV.

In fact, if the dimension of the natural module of G1 is N ≥ 8, then

dimV G1(Fq) < q
8
3
−N

2 dimV.

Proof. 1) Define s := 2 if G is of type Cr, or Dr and 2Dr with even q, and

s := 1 otherwise. We will find positive numbers an,q for each positive integer

n and each prime power q such that

dimV GW1,W2
(Fq) ≤ adimW,q dimV

whenever dimW2 = s. Given that the dimension of the natural module of G1

is N , this will imply that

dimV G1(Fq)

dimV
< bN,q,s :=

∞∑
j=1

aN+js,q.

Then the first statement follows from the facts that
∑∞
n=1 an,q converges for

each q and the sum bq of this series tends to zero as q → ∞. The second

statement follows from upper bounds for bN,q,s when N ≥ 8.

We begin with the orthogonal case in odd characteristic, since it is the

simplest. Here s = 1, W2 = Fqw for some nonzero vector w, and w cannot be

isotropic since w⊥ = W1. In this case,

(4.2.1) GW1,W2(Fq) = StabG(Fq)w.

The double cosets of G(Fq) with respect to GW1,W2(Fq) are in one-to-one cor-

respondence with GW1,W2(Fq)-orbits contained in the G(Fq)-orbit OG(Fq)(w)
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of w. Since G(Fq) acts transitively on all pairs of linearly independent vectors

(w′, w′′) in W with specified values of 〈w′, w′〉, 〈w′, w′′〉, and 〈w′′, w′′〉, two ele-

ments w′1, w
′
2 ∈ OG(Fq)(w) \ {±w} lie in the same GW1,W2(Fq)-orbit if and only

if 〈w,w′1〉 = 〈w,w′2〉. We conclude that there are at most q + 2 double cosets,

so by Lemma 4.2.2,

dimV GW1,W2
(Fq) ≤

√
q + 1

d(G(Fq))
dimV.

By the Landazuri-Seitz bounds [LS74],
√
q + 1

d(G(Fq))
= O(qmin(−1/2,7/2−dimW )),

where the implied constant is absolute. Moreover, when n = dimW ≥ 7 we

can take an,q = q15/4−n.

2) Next we consider the case SUn, so s = 1. We may assume n ≥ 3 since

G1 is a classical group. Now W2 = Fq2w, w⊥ = W1, and (4.2.1) holds. Since

SUn(Fq) acts transitively on all pairs of linearly independent vectors (w′, w′′)

in W with specified values of the hermitian inner product 〈w′, w′〉, 〈w′, w′′〉,
and 〈w′′, w′′〉, two elements

w′1, w
′
2 ∈ OG(Fq)(w) \ {cw | cq+1 = 1}

lie in the same GW1,W2(Fq)-orbit if and only if 〈w,w′1〉 = 〈w,w′2〉. We conclude

that there are at most q2 + q + 1 double cosets, so

dimV GW1,W2
(Fq) ≤

√
q2 + q

d(G(Fq))
dimV.

By [LS74], √
q2 + q

d(G(Fq))
= O(q2−n).

Moreover, when n ≥ 5 we can take an,q = q3−n.

3) Next we consider the case SLn, where again n ≥ 3 and s = 1. Let w be a

nonzero element of the 1-dimensional space W2. Now SLn(Fq) acts transitively

on all pairs of linearly independent vectors. In particular, the orbit of w under

SLn(Fq) is W \ {0}. The Stab(w)-orbits on W \ {0} are the q − 1 1-element

sets consisting of a nonzero element of W2 and the set W \W2. Thus,

dimV Stab(w)

dimV
≤

√
q − 1

d(SLn(Fq))
.

We can write

Stab(w) ∼= Hom(W1,W2) o SL(W1).

As SL(W1) acts transitively on the nonzero vectors of Hom(W1,W2),

|SL(W1)\Stab(w)/SL(W1)| = 2.
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On the other hand, as the conjugates of SL(W1) in Stab(w) generate Stab(w),

the restriction of a nontrivial representation of Stab(w) to SL(W1) must be

nontrivial and must therefore have dimension at least d(SL(W1)). Thus,

dimV SL(W1)

dimV
≤ dimV Stab(w)

dimV
+

1

d(Stab(w))
≤

√
q − 1

d(SLn(Fq))
+

1

d(SL(W1))
.

By [LS74], this is O(q2−n). In fact, when n ≥ 5 we can take an,q = q3−n.

4) Here we consider Sp2r(Fq) where r ≥ 2, and so s = 2. Let w be a

nonzero vector in W2. The Sp2r(Fq)-orbit of w is W \ {0}. As Sp2r(Fq) acts

transitively on all pairs of linearly independent vectors with given pairing,

Stab(w) acts on W \ {0} with 2q − 1 orbits: q − 1 singletons consisting of

nonzero scalar multiples of w and q orbits consisting of vectors w′ ∈ W \ Fqw
with specified values of 〈w,w′〉. Thus,

dimV Stab(w)

dimV
≤
√

2q − 2

d(Sp2r(Fq))
.

Now, Stab(w) ∼= H2r−1 o Sp2r−2(Fq), where H2r−1 is a central extension of

Hom(w⊥/Fqw,Fq), by Fq (it is the Heisenberg group if q is odd, and abelian

if 2|q). As there is no nontrivial proper subgroup of F2r−2
q invariant under

the action of Sp2r−2(Fq), there is no nontrivial subgroup of H2r−1 invariant

under this action except for the ones contained in Fq. It follows that Stab(w)

is generated by conjugates of Sp2r−2(Fq), so d(Stab(w)) ≥ d(Sp2r−2(Fq)). The

number of orbits of Stab(w) acting on H2r−1 is certainly no more than 2q since

there are only two orbits of Stab(w) acting on F2r−2
q . Therefore,

dimV Sp2r−2(Fq)

dimV
≤ dimV Stab(w)

dimV
+

√
2q − 1

d(Stab(w))
≤

√
2q − 2

d(Sp2r(Fq))
+

√
2q − 1

d(Sp2r−2(Fq))
.

By [LS74], this is O(q3/2−r). In fact, when n = 2r ≥ 10, we can take an,q =

q8/3−n/2.

5) Finally we consider the orthogonal groups G = Ωε
2r(Fq) in characteris-

tic 2 and n = 2r ≥ 8. Then s = 2, and the 2-space W2 contains an anisotropic

vector w, say Q(w) = 1 if Q denotes the corresponding quadratic form. Ob-

serve that stabilizer S := Stab(w) is isomorphic to Sp2r−2(Fq), and it acts on

the G(Fq)-orbit of w with q + 1 orbits. Hence dimV S/ dimV ≤ √q/d(G(Fq))
by Lemma 4.2.2. Next, for each ε = ±, S contains a subgroup Kε ' Ωε

2r−2(q),

and one of these two subgroups is L := GW1,W2(Fq). The permutation charac-

ter indSK+
(1K+) + indSK−(1K−) is decomposed into irreducible constituents in

the proof of [GT04, Lemma 5.9], from which one can show that

|L\S/L| = [indSL(1L), indSL(1L)] ≤ 2q + 1.
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Applying Lemma 4.2.2 and [LS74] again, we obtain that

dimV L

dimV
≤

√
q

d(G(Fq))
+

√
2q

d(S)

is O(q7/2−2r). Moreover, when n ≥ 10 we can take an,q = q7.2−n.

6) Now assume that N ≥ 8. If s = 1, then an,q ≤ q15/4−n for n ≥ 7, and

so

bN,q,s ≤
∞∑

n=N+1

q15/4−n =
q15/4−N

q − 1
≤ q15/4−N .

Next assume that s = 2. If G is of type CN/2, then an,q ≤ q8/3−n/2 for n ≥ 10,

and so

bN,q,s ≤
∞∑

r=N/2+1

q8/3−r =
q8/3−N/2

q − 1
≤ q8/3−N/2.

If G is of type DN/2, then an,q ≤ q7.2−n for n ≥ 10, whence

bN,q,s ≤
∞∑

r=N/2+1

q7.2−2r =
q7.2−N

q2 − 1
≤ q5.7−N ,

and so we are done. �

4.3. Upper bounds for |χ(g)|/χ(1). In this section we prove the basic up-

per bound for |χ(g)|/χ(1) for elements g of sufficiently large support in classical

groups over finite fields.

The following lemma is useful, in combination with [LS74], for proving

that |χ(g)|/χ(1) is small when g is not too far from being regular:

Lemma 4.3.1. For every finite group H , every nontrivial irreducible char-

acter χ of H , and every h ∈ H ,

|χ(h)| ≤
»
|CH(h)|.

Proof. This follows from the orthogonality relation
∑
ρ∈Irr(H) |ρ(h)|2 =

|CH(h)|. �

Every irreducible representation on a product of finite groups factors into

an external tensor product of irreducible representations on the individual fac-

tors. This is useful for proving upper bounds on |χ(g)|/χ(1) for product groups

and, more generally, for elements which belong to subgroups which decompose

as products. The following lemma allows us to extend this observation to the

slightly more general setting in which we wish to use it:

Lemma 4.3.2. Let G = 〈K, g〉 be a finite group with a normal subgroup

K = K1 ∗ K2 ∗ · · · ∗ Km, a central product of subgroups K1, . . . ,Km with

g ∈ ∩mi=1NG(Ki). For each i, assume that there is a finite extension Hi =
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〈Ki, gi〉 . Ki, where g and gi induce the same action on Ki. Furthermore, for

a subset J ⊆ {1, 2, . . . ,m} and any i ∈ J assume that there is αi > 0 such that

|ρ(gi)| ≤ αiρ(1)

for any ρ ∈ Irr(Hi) which is irreducible but nontrivial over Ki. Then for every

character χ of G, such that χ|Ki has no trivial factors for each i ∈ J , we have

|χ(g)| ≤
(∏
i∈J

αi

)
χ(1).

Proof. It suffices to prove the lemma for χ irreducible on G. Let Φ be a

G-representation affording the character χ. If Φ|K is not irreducible, then g

permutes the K-irreducible constituents of Φ|K transitively and so χ(g) = 0.

Hence we may assume that Φ|K is irreducible. Then χ|K := ρ1 � · · · � ρm,

where ρi ∈ Irr(Ki) \ {1Ki}. Observe that ρi = (ρi(1)/χ(1))χ|Ki is g-invariant.

But g and gi induce the same action on Ki, hence ρi is gi-invariant. Write

Φ|K := Φ1 � · · ·�Φm, where the Ki-representation Φi affords the character ρi.

As mentioned above, Φi is gi-invariant, hence it extends to anHi-representation

Ψi, and |TrΨi(gi)| ≤ αiρi(1) by our assumption (where we define αi = 1 for

i /∈ J). Now we set

Ψ(g) = Ψ1(g1)⊗ · · · ⊗Ψm(gm).

Then for any xi ∈ Ki,

Ψ(g) (⊗mi=1Φi(xi)) Ψ(g)−1 = ⊗mi=1Ψi(gi)Φi(xi)Ψi(gi)
−1 = ⊗mi=1Φi(gixig

−1
i )

= ⊗mi=1Φi(gxig
−1) = Φ(gx1 . . . xmg

−1) = Φ(g) (⊗mi=1Φi(xi)) Φ(g)−1.

Since Φ|K is irreducible, by Schur’s lemma Φ(g) = λΨ(g) for some λ ∈ C×.

Next, the finiteness of G and Hi implies that there is some integer N > 0 such

that all the matrices Φ(g)N and Ψi(gi)
N are identity matrices. It follows that

λ is an N th-root of unity, and so

|χ(g)| = |TrΦ(g)| = |TrΨ(g)| =
m∏
i=1

|TrΨi(gi)| ≤
m∏
i=1

(αiρi(1)) =

Ç∏
i∈J

αi

å
χ(1).

�

In the next statement, by the classical group I(W ) over Fq we mean

one of the following groups: GL(W ) = GLn(q) with W = Fnq and n ≥ 2,

GU(W ) = GUn(q) with W = Fnq2 and n ≥ 3, Sp(W ) = Sp2n(q) with W = F2n
q

and n ≥ 2, and GO(W ) = GO±n (q) with W = Fnq and n ≥ 7. Also we let L(W )

denote the corresponding finite group of simply connected type; for instance

L(W ) = Spin(W ) if I(W ) = GO(W ). We will assume that it has (untwisted)

semisimple rank > 1, i.e., we ignore GL2.
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Proposition 4.3.3. For all ε > 0, there exists B = B(ε) such that for

every classical group G = I(W ) over a finite field Fq , of untwisted semisimple

rank > 1, not a symplectic group in odd characteristic nor Sp4(q) with 2|q, and

every g ∈ G, if |G| > B, then one of the following holds for L = L(W ):

(i) |CG(g)| < εd(L)2.

(ii) W admits a nontrivial g-stable direct sum decomposition W = ⊕mi=1Wi,

where the subspaces Wi are mutually orthogonal with respect to the

nondegenerate G-invariant bilinear or Hermitian form on W , if any.

Moreover, for each i, g|Wi ∈ Ω(Wi) if G = GOn(q) with 2|q and g ∈
Ω(W ), and g|Wi ∈ SO(Wi) if G = GOn(q) with q odd and g ∈ SO(W ).

Moreover, either (ii) holds, or

|χ(g)/χ(1)| < q4−n/2

for every χ ∈ Irr(G) which is nontrivial over L.

Proof. 1) We will assume that W does not admit any nontrivial g-stable

decomposition W = ⊕mi=1Wi satisfying all the conditions set in (ii) (and say

for short that W |〈g〉 is indecomposable in this case). Let g = su be the Jordan

decomposition of g.

First consider the case G = GLn. If s = λ ·1W is scalar, then the indecom-

posability of W |〈g〉 implies that the Jordan canonical form of g acting on W is

just λJn, where Jn denotes the Jordan block of size n and with eigenvalue 1, i.e.,

u is regular unipotent. In this case |CG(g)| = qn−1(q−1). Next assume that s is

not scalar. The indecomposability of W |〈g〉 now implies that CG(s) = GLa(q
b)

with ab = n, and moreover, u is a regular unipotent element in GLa(q
b) (every

Jordan block Jk of u ∈ GLa(q
b) gives rise to a g-invariant kb-dimensional sub-

space in W ). It follows that |CG(g)| = |CGLa(qb)(u)| = qb(a−1)(qb − 1). Thus

|CG(g)| < qn in either case. Since d(L) > qn−1 by [LS74] and n ≥ 3, we see

that (i) holds when |G| > B for a suitable B depending on ε. Note that when

applying [LS74] we can ignore all the small exceptions for G by taking B large

enough. Moreover, if n ≥ 5, then Lemma 4.3.1 implies that

|χ(g)/χ(1)| < qn/2−(n−1) = q1−n/2.

Next assume G = GUn. Then the indecomposability of W |〈g〉 implies by

[LOST10, Lemma 6.7] that |CG(g)| ≤ qn−1(q + 1), and (i) holds as d(L) ≥
(qn − q)/(q + 1) by [LS74]. Assuming n ≥ 5, we obtain

|χ(g)/χ(1)| ≤ q(n−1)/2√q + 1

(qn − q)/(q + 1)
< q2−n/2.

2) Here we assume that 2|q, and either G = Sp2r(q) with n = 2r ≥ 6, or

GO±2r(q) with n = 2r ≥ 4. First we consider the case s 6= 1. Then W admits

a g-stable decomposition W = ⊕mi=0Wi into mutually orthogonal subspaces,
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where sW0 = 1W0 (and W0 can possibly be zero), m > 0, and CGO(Wi)(s) =

GLεai(q
bi) with dimWi = 2aibi for 1 ≤ i ≤ m, and GLε stands for GL if ε = +

and for GU if ε = −. If, in addition, G = GO, then observe that g|Wi ∈
GL±ai(q

bi) < Ω(Wi) for i > 0. So if m ≥ 2, or if m = 1 but W0 6= 0, then the

decomposition W = (⊕m−1
i=0 Wi)⊕Wm satisfies the conditions set in (ii). Hence

m = 1 and W0 = 0; in particular, a1b1 = r. Next, every Jordan block Jk of

the unipotent element u ∈ GLεa1(qb1) gives rise to a g-invariant nondegenerate

subspace U of dimension 2kb1 in W (and again g|U ∈ Ω(F2k
qb1

) ≤ Ω(U) if

G = GO). So we conclude that u ∈ GLεa1(qb1) is a regular unipotent element,

whence

|CG(g)| = |CGLεa1 (qb1 )(u)| ≤ qb1(a1−1)(qb1 + 1) < 2qr.

Since d(L) > q2r−1/4 for symplectic groups and d(L) > q2r−3/2 for orthogonal

groups by [LS74], (i) holds for g.

So we may now assume that s = 1, i.e., g = u is unipotent. According

to [LS], W |〈g〉 is the orthogonal sum of nondegenerate subspaces Wj , where g

acts on each Wj as either J2k (which belongs to GO(Wj) \ Ω(Wj) in the case

G = GO), or 2Jk (which belongs to Ω(Wj) if G = GO).

Assume, in addition, that W cannot be written as a nontrivial orthogonal

sum of g-invariant nondegenerate subspaces. Then g must act on W as J2r or

2Jr. The calculations in [LOST10, §§4, 5] then show that |CG(g)| ≤ 2q2r(q2−1)

for Sp and |CG(g)| ≤ 2q2r−2(q2 − 1) for GO. Since r ≥ 3 for Sp and r ≥ 4 for

GO, we see that (i) holds for g.

Now we assume that G = GO(W ) and g ∈ Ω(W ). Then the absence of

decompositions desired in (ii) implies that g acts on W as J2a + J2r−2a, with

1 ≤ a ≤ r − 1. Again as in [LOST10, §5.2], we can check that |CG(g)| ≤ 2q2r

and so (i) holds for g.

Assuming r ≥ 5 and (ii) does not hold, we see that

|χ(g)/χ(1)| ≤
qr
»

2(q2 − 1)

(qr − 1)(qr − q)/2(q + 1)
< q4−r

in the case of Sp, and

|χ(g)/χ(1)| ≤ qr
√

2

(qr−1 + 1)(qr−2 − 1)
< q4−r

in the case of GO.

3) Finally we consider the case where G = GO±n (q), n ≥ 7, and q is odd.

Assume, in addition, that s2 6= 1. In this case, as in 2), notice that W admits a

g-stable decomposition W = ⊕mi=0Wi of mutually orthogonal subspaces, where

(sW0)2 = 1W0 (and W0 can possibly be zero), m > 0, and CGO(Wi)(s) =

GL±ai(q
bi) < SO(Wi) with dimWi = 2aibi for 1 ≤ i ≤ m. In particular, each

g|Wi ∈ SO(Wi) for i > 0. So if m ≥ 2, or if m = 1 but W0 6= 0, then the
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decomposition W = (⊕m−1
i=0 Wi)⊕Wm satisfies the conditions set in (ii). Hence

m = 1 and W0 = 0; in particular, a1b1 = n/2. Next, every Jordan block Jk of

the unipotent element u ∈ GLεa1(qb1) gives rise to a g-invariant nondegenerate

subspace U of dimension 2kb1 with g|U ∈ SO(F2k
qb1

) ≤ SO(U). So we conclude

that u ∈ GLεa1(qb1) is a regular unipotent element, whence

|CG(g)| ≤ qb1(a1−1)(qb1 + 1) < 2qn/2.

Since d(L) > qn−3/2 by [LS74], (i) holds for g.

So we may assume that s2 = 1. Then W = W+ ⊕W− is the orthogonal

sum of the 1- and (−1)-eigenspaces of s. Next, W±|〈g〉 is the orthogonal sum of

nondegenerate subspaces Wj , where g acts on Wj as either J2k+1 ∈ SO(Wj), or

2J2k ∈ SO(Wj). Assume in addition that W cannot be written as a nontrivial

orthogonal sum of g-invariant nondegenerate subspaces. Then exactly one of

W+, W− is nonzero, ±g = u is unipotent and acts on W as Jn or 2Jn/2. The

calculations in [LOST10, §5] then show that |CG(g)| < 2qn, i.e., (i) holds for g

as n ≥ 7.

Next we consider the case g ∈ SO(W ). Then the absence of decomposi-

tions desired in (ii) implies that W = W− and u acts on W as J2a+1 +Jn−2a−1,

with 0 ≤ a ≤ n/2 − 1. As in [LOST10, §5.2], we can now check that

|CG(g)| < 2qn and so (i) again holds.

Assume now that n ≥ 7 and (ii) does not hold. Then |CG(g)| < 2qn and

d(L) > (8/9)qn−3, whence |χ(g)/χ(1)| < q(7−n)/2 by Lemma 4.3.1. �

Since the symplectic groups in odd characteristic are exceptions to Propo-

sition 4.3.3, we deal with them separately:

Lemma 4.3.4. For all ε > 0 there exists B = B(ε) such that for G =

Sp2r(q) with odd q, or with r = 2 and 2|q, if |G| > B, g ∈ G (noncentral if

G = Sp2(q)), then one of the following holds :

(i) The natural G-module W admits a direct sum decomposition W =

W1 ⊕W2 into nonzero g-stable mutually orthogonal subspaces.

(ii) |χ(g)/χ(1)| < ε if 1G 6= χ ∈ Irr(G).

Moreover, if q is odd, then either (i) holds, or

|χ(g)/χ(1)| < q1−r/2.

Proof. We follow part 2) of the proof of Proposition 4.3.3 and assume that

(i) does not hold for g. Write g = su and consider the case where s 6= ±1.

Then the indecomposability of W |〈g〉 implies that CG(s) is of type GL±a (qb)

with ab = r, and moreover, u is a regular unipotent element in GLεa(q
b). It

follows that |CG(g)| < 2qn < ε2d(G)2 if |G| > B for some B = B(ε), since

d(G) = (qr − 1)/2 [LS74]. Hence we conclude that ±g is unipotent.
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If r = 2 and 2|q, then |χ(g)| ≤ q2 + q + 1 and χ(1) ≥ q(q − 1)2/2 for any

nonprincipal χ ∈ Irr(G) (cf. [Eno72]), whence (ii) holds.

Consider the case q is odd. Then the indecomposability of W |〈g〉 implies

that the Jordan canonical form of ±g acting on W is J2r, or 2Jr (and n is odd).

The calculations in [LOST10, §4.2] then show that |CG(g)| < 2qr in the former

case and |CG(g)| ≤ q2r−1(q2 − 1) in the latter case. Thus |CG(g)| < ε2d(G)2,

unless ±g acts as 2Jr on W .

Now we show that (ii) holds for this exception g. Note that r > 1 in this

case, as otherwise g ∈ Z(G). By [TZ96], any nonprincipal χ ∈ Irr(G) is either

one of the four Weil characters ξ1,2 and η1,2 (of degree (qr + 1)/2, respectively

(qr − 1)/2), or it has degree χ(1) ≥ qr−1(qr−1− 1)(q− 1)/2. In the latter case,

Lemma 4.3.1 implies

|χ(g)| ≤
»
q2r−1(q2 − 1) < εχ(1)

if |G| > B. Consider the former case: χ ∈ {ξ1,2, η1,2}, and let z be the central

involution of G. Without loss we may assume that g acts as 2Jr on W ; in

particular, |CW (g)| = q2 and |CW (zg)| = 1. By [GT04, Lemma 2.4],

|ξi(g) + ηi(g)| ≤ q, |ξi(g)− ηi(g)| = |ξi(zg) + ηi(zg)| ≤ 1.

It follows that |χ(g)| ≤
»

(q2 + 1)/2 < εχ(1) when |G| > B.

Finally, we assume that r ≥ 3, q is odd, and (i) does not hold. Then

we have shown above that |CG(g)| ≤ q2r−1(q2 − 1). In particular, if χ(1) ≥
qr−1(qr−1−1)(q−1)/2, then Lemma 4.3.1 yields |χ(g)/χ(1)| < q5/2−r ≤ q1−r/2.

Otherwise χmust be one of the four Weil characters ofG. The above arguments

then show that |χ(g)| ≤ max{
√

2qr,
»

(q2 + 1)/2}. Since χ(1) ≥ (qr−1)/2, we

obtain that |χ(g)/χ(1)| < q1−r/2. �

Proposition 4.3.3 and Lemma 4.3.4 immediately imply:

Corollary 4.3.5. Let G = I(W ) be a finite classical group over a finite

field Fq with n = dim(W ) ≥ 12. Then for every g ∈ G, one of the following

holds :

(i) W admits a g-stable direct sum decomposition W = ⊕mi=1Wi satisfying

the conditions in Proposition 4.3.3(ii).

(ii) |χ(g)/χ(1)| < q1−n/4 for every χ ∈ Irr(G) which is nontrivial over

L(W ).

We now state the main result of Section 4. Recall that the constant γq
has been defined in (4.1.1).

Theorem 4.3.6. For all ε > 0, there exists N = N(ε) such that if G is

a simple simply connected classical group, h ∈ G(Fq) is an element of support
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≥ N , and χ is a nontrivial irreducible character of G(Fq), then

(4.3.1)

∣∣∣∣∣χ(h)

χ(1)

∣∣∣∣∣ ≤ ε.
More precisely,

(4.3.2)

∣∣∣∣∣χ(h)

χ(1)

∣∣∣∣∣ <


(γq)
√
N/7 if N ≥ 567,

(γq)
√
N/6 if N ≥ 144,

q−
√
N/1.15 if N ≥ 2225 and q ≥ 109,

q−
√
N/481 for all N, q.

Proof. 1) By [Glu93], (4.3.1) holds if q is sufficiently large. We therefore

assume throughout the proof of (4.3.1) that q < Cε. Also, by taking N large

enough, we may ignore all classical groups of small rank.

Let V be a representation affording the character χ, and let W be the

natural representation of G(Fq) as usual. Suppose that

(4.3.3)
there is an h-invariant decomposition W = W1 ⊕ · · · ⊕Wm

that satisfies the conditions described in Proposition 4.3.3(ii).

Let G′ denote the component-wise stabilizer in G of this decomposition, and

set

Gi := GWi,W1⊕···⊕Ŵi⊕···⊕Wm
, Ki := Gi(Fq), K := K1 ∗ · · · ∗Km,

so Gi is the subgroup of G′ that acts trivially on every Wj with j 6= i. Notice

that Gi is a simply connected group of the same type as of G and with natural

module Wi.

Assume for the moment that G is not a spin group in odd characteristic.

Then the action of G(Fq) on W is faithful and K is the direct product of

K1, . . . ,Km. In addition, set Gi := G′/G′
W1⊕···⊕Ŵi⊕···⊕Wm,Wi

. Then we can

identify Ki with im(Gi(Fq)→ Gi(Fq)). Let hi denote the image of h in Gi(Fq),
and let Hi be the subgroup of Gi(Fq) generated by Ki and hi. Now, if G(Fq) =

SL(W ), respectively, SU(W ), or Sp(W ), then Gi(Fq) = GL(Wi), GU(Wi), or

Sp(Wi), respectively. If G(Fq) = Ω(W ) with 2|q, then hi ∈ Ω(Wi) according

to (4.3.3), whence Hi = Ω(Wi). Thus in any of these cases, the actions of

h and hi on Ki are the same; moreover, Hi is contained in a finite connected

reductive group over Fq whose commutator subgroup is the quasi-simple simply

connected group Ki (if dim(Wi) is not too small, say at least 5), and Hi is

admissible in the sense of [Glu95].

Now assume that G(Fq) = Spin(W ) and q is odd. Then the action of

G(Fq) on W may not be faithful, but K is still a central product of K1, . . . ,Km

and Ki = Spin(Wi). Recall (see [TZ05, §6] for instance) that the nondegen-

erate quadratic space W gives rise to the special Clifford group Γ+(W ) with
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[Γ+(W ),Γ+(W )] = Spin(W ) (if dimW ≥ 5), Z(Γ+(W )) = F×q e, and the fol-

lowing two sequences are exact:

1 −→ F×q e −→ Γ+(W ) −→ SO(W ) −→ 1,

1 −→ 〈−e〉 −→ Spin(W ) −→ Ω(W ) −→ 1.

Furthermore, by (4.3.3) we have h|Wi ∈ SO(Wi). Now we define Gi(Fq) to

be Γ+(Wi). Also, we choose some inverse image hi ∈ Gi(Fq) of h|Wi and let

Hi be the subgroup of Gi(Fq) generated by Ki and hi. Then again Gi(Fq) is

a finite connected reductive group whose commutator subgroup is the quasi-

simple simply connected group Ki, if dimWi ≥ 5, and Hi is admissible. Also,

Lemmas 6.1 and 6.2(i) of [TZ05] (notice that the condition 2|k formulated in

[TZ05, Lemma 6.2] is not needed for part (i) of it) imply that the actions of h

and hi on Ki are the same.

We have shown that the group 〈K,h〉 satisfies all of the hypotheses in

Lemma 4.3.2, and moreover, if dimWi ≥ 5, then Gluck’s bound (4.1.1) of

[Glu95] is applicable to the group Hi.

2) Next let α > 0 be any constant such that α
√
N ≥ 2. We will describe

two particularly favorable situations for the decomposition (4.3.3), which would

guarantee that

(4.3.4) |χ(h)/χ(1)| < (γq)
α
√
N

whenever supp (h) ≥ N .

2a) Set

(4.3.5) N1 := d2α
√
N + 8e;

in particular, N1 < 2α
√
N + 9. Assume first that for some j, M := dimWj ≥

N1 and that Wj does not admit any hj-invariant decomposition satisfying the

conditions set in Proposition 4.3.3(ii). Since M ≥ 12, we can apply Proposi-

tion 4.2.3 and Corollary 4.3.5 to Kj and the element hj . Furthermore, since

γq > q−1/2, we see that

q8/3−M/2 ≤ q1−M/4 ≤ q1−N1/4 < (1/q)1+α
√
N/2 ≤ (1/2) · (γq)α

√
N .

It follows that

(4.3.6)

{
dimV Kj/ dimV < (1/2) · (γq)α

√
N ,

|ϕ(hj)/ϕ(1)|< (1/2) · (γq)α
√
N

for any Hj-character ϕ whose restriction to Kj is irreducible and nontrivial.

Now, if ρ is any irreducible constituent of the restriction of χ to 〈K,h〉 which

does not have any trivial Kj-factor, then (4.3.6) and Lemma 4.3.2 yield that

|ρ(h)/ρ(1)| < (1/2) · (γq)α
√
N . Hence the bound (4.3.4) holds for h. We call

this Case A.
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2b) Alternatively, suppose that the number m of summands in the decom-

position (4.3.3) equals a fixed

(4.3.7) m0 := d1 + α
√
Ne.

We assume further that each dimWi is large enough: dimWi ≥ N2 for some

N2 ≥ 8 chosen so that Proposition 4.2.3 implies

dimUKi <
(γq)

α
√
N (1− γq) dimU

m0

for all nontrivial irreducible complex representation spaces U of G(Fq); in

particular for V . This can be achieved by choosing

(4.3.8) N2 =

®
d1.9α

√
N + 16/3e, if α

√
N ≥ 9,

d6.52α
√
N + 16/3e, if 9 > α

√
N ≥ 2.

Indeed, by Proposition 4.2.3 we have

dimUKi

dimU
< q8/3−N2/2.

Assume that q ≥ 43. Then 1/7 ≥ γq > 1/
√
q; hence when α

√
N ≥ 2, we have

2 + α
√
N

1− γq
≤ (7/6)(2 + α

√
N) < 7α

√
N/2 ≤ (γq)

−α
√
N/2.

Now (4.3.8) implies that

q8/3−N2/2 < q−0.95α
√
N ≤ (γq)

1.9α
√
N < (γq)

α
√
N · (1− γq)

2 + α
√
N
.

Next suppose that 2 ≤ q < 43, so γq = 19/20 and γ13.51
q > 1/q. In the case

α
√
N ≥ 9, we have

2 + α
√
N

1− γq
= 20(2 + α

√
N) < (γq)

−11.7α
√
N ,

which implies by (4.3.8) that

q8/3−N2/2 < q−1.9α
√
N < (γq)

12.8α
√
N < (γq)

α
√
N · (1− γq)

2 + α
√
N
.

On the other hand, in the case α
√
N ≥ 2, we have

2 + α
√
N

1− γq
= 20(2 + α

√
N) < (γq)

−43α
√
N ,

which implies by (4.3.8) that

q8/3−N2/2 < q−3.26α
√
N < (γq)

44α
√
N < (γq)

α
√
N · (1− γq)

2 + α
√
N
.
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Since m0 < 2 + α
√
N by (4.3.7), in all cases we have

dimUKi

dimU
< (γq)

α
√
N · (1− γq)

2 + α
√
N
<

(γq)
α
√
N (1− γq)
m0

,

as desired.

We have shown that the choice (4.3.8) implies that the total dimension

of all irreducible K-submodules of V which have a trivial Ki-tensor factor for

at least one i is less than (γq)
α
√
N (1− γq) dimV . Suppose finally that for i =

1, 2, . . . ,m0, hi does not lie in Z(Hi). Then, as mentioned above, Gluck’s bound

(4.1.1) is applicable to the Hi-characters which are irreducible and nontrivial

over Ki, and the element hi ∈ Hi. Now if ρ is any irreducible constituent of

the restriction of χ to 〈K,h〉 which does not have trivial Ki-factors for any i,

then Lemma 4.3.2 and (4.1.1) imply that

|ρ(h)/ρ(1)| ≤ (γq)
m0 ≤ (γq)

1+α
√
N .

Altogether, these estimates again yield (4.3.4) for h. We call this Case B.

Now let h be any element of sufficiently large support. Our strategy is to

show that then we are either in Case A or Case B. This implies the theorem.

3) If W admits a decomposition (4.3.3), then we consider such a decom-

position where each Wi cannot be decomposed further into h-invariant orthog-

onal sums satisfying the conditions set in Proposition 4.3.3(ii). If W admits no

such decomposition, then just define W1 = W . Now if dimWi ≥ N1 for some i,

where N1 is chosen as in (4.3.5), then we are in Case A. Thus we may assume

that in the decomposition (4.3.3), all Wi are of bounded dimension < N1. We

call any Wi good if hi /∈ Z(Hi) and bad otherwise.

Next we define the set C := A∪B as follows. Let µk be the set of kth-roots

of unity in Fq. Then A = µq−1 and B = ∅ for G = SL, A = µq+1 and B = ∅
for G = SU, A = µ2 and B = ∅ for G = Sp. If G = Spin, then A = µ2, and

B is the set of pairs {α, α−1}, where α ∈ (µq+1 ∪ µq−1) \ µ2. The proof of

Proposition 4.3.3 shows that if Wi is bad, then one of the following holds:

(i) dimWi ≤ 2, and h|Wi = λ · 1Wi with λ ∈ A;

(ii) G=Spin, dimWi=2, Hi acts on Wi as a subgroup of SO(Wi) contain-

ing Ω(Wi), and h|Wi is conjugate to diag(α, α−1) for some {α, α−1}∈B.

Now relabel the indecomposable summands Wi in such a way that the first

t of them are good and all the k1+· · ·+kc remaining ones are bad; furthermore,

|C| = c, k1 ≤ k2 ≤ · · · ≤ kc, C = {γ1, . . . , γc}, and for 1 ≤ j ≤ c, we have

exactly kj bad summands Wi, where the set of eigenvalues of h|Wi (without

counting multiplicities) is γj (we say that these summands are of γj-type).

Next we regroup the bad summands Wi as follows. Pair up each Wi of

γ1-type with some Wi′ of γ2-type. Then pair up each of the remaining Wi of

γ2-type with some Wi′ of γ3-type. Continuing this process, we will pair up



1922 MICHAEL LARSEN, ANER SHALEV, and PHAM HUU TIEP

each of the remaining Wi of γc−1-type with some Wi′ of γc-type. If in addition

γc ∈ B, then we also pair up any two of the remaining Wi of γc-type until it

is impossible to do it. When this pairing process terminates, we replace every

pair (Wi,Wi′) by Wi ⊕Wi′ and call the sum a new Wi. Notice that this new

Wi is good and has dimension ≤ 4 < N1.

Now we show that if

(4.3.9) supp (h) ≥ (m0 − 1)(N1 +N2 − 2) +N2 + 2,

where m0 is chosen subject to (4.3.7), then Case B holds. Indeed, our pairing

process leaves out at most 1 summand Wi of γc-type if γc ∈ B and at most kc
summands Wi of γc-type if γc ∈ A. If Σg is the total sum of the dimensions

of good summands, then in the former case, we have Σg ≥ dimW − 2 ≥
supp (h) − 2. In the latter case we have Σg ≥ codim ker(h − γc) ≥ supp (h).

Thus in either case we have

(4.3.10) Σg ≥ supp (h)− 2 ≥ (m0 − 1)(N1 +N2 − 2) +N2.

Now we will define a new decomposition W = ⊕m0
j=1W̃j as follows. First we

choose W̃1 to be the direct sum of, say m1, good summands Wi, chosen so

that dim W̃1 ≥ N2 and m1 is as small as possible. Then we define W̃2 to

be the direct sum of, say m2, of the remaining good summands Wi, chosen

so that dim W̃2 ≥ N2 and m2 is as small as possible. Then define W̃j for

3 ≤ j ≤ m0 − 1 in the same manner. Note that dim W̃j ≤ N1 + N2 − 2 for

1 ≤ j ≤ m0 − 1. (Indeed, if dim W̃j ≥ N1 + N2 − 1, then, since all Wi inside

W̃j have dimensions ≤ N1 − 1, we could remove one of them from W̃j and

the remaining sum still has dimension ≥ N2.) Finally, W̃m0 is the direct sum

of all the remaining good summands plus all the remaining bad summands, if

any. The inequality (4.3.10) ensures that we can define all the subspaces W̃j

for 1 ≤ j ≤ m0, and moreover dim W̃m0 ≥ N2 as well.

Thus W = ⊕m0
j=1W̃j is an h-stable orthogonal sum of m0 subspaces of

shape (4.3.3), each of dimension ≥ N2, and furthermore h̃j /∈ Z(‹Hj) for the

corresponding ‹Hj and h̃j . Thus Case B holds as stated.

4) It remains to show that if supp (h) ≥ N and N is as in Theorem 4.3.6,

then (4.3.9) holds and so (4.3.4) also holds (for the suitably chosen α).

First assume that N ≥ 567. Then we choose α =
»

1/7; in particular

α
√
N ≥ 9. In this case, N2 +2 < N1 < 2

»
N/7+9, m0 < 2+

»
N/7, and since

N ≥ 567, we get N ≥ N1(2m0 − 1), whence (4.3.9) holds. Thus (4.3.2) holds

in this case, and so (4.3.1) also follows.

Next we consider the case N ≥ 144. Then we choose α = 1/6; in particular

α
√
N ≥ 2. In this case, N1 < N2 < (6.52)α

√
N + 19/3, m0 < 2 + α

√
N , and

since N ≥ 128, we get N > N2(2m0 − 1) + 2, whence (4.3.9) holds.
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Now we consider the case that N ≥ 2225 and q ≥ 109. Then we choose

α = 1/2.2; in particular α
√
N > 9. In this case we have N1 <

√
N/1.1 + 9,

N2 < 1.9
√
N/2.2 + 19/3, m0 < 2 +

√
N/2.2, and since N ≥ 2225, (4.3.9)

holds. Furthermore, (1/γq)
2.3 = (

√
q − 1)2.3 > q1.1 since q ≥ 109, whence

γ
1/2.2
q < q−1.15. Thus (4.3.2) holds in this case.

Finally, notice that γq < q−6/481. Hence, if N ≥ 144, then as shown

above, |χ(g)/χ(1)| < γ
−
√
N/6

q < q−
√
N/481. On the other hand, if N ≤ 143,

then the main result of [Glu95] implies that |χ(g)/χ(1)| < γ for some constant

γ < q−1/31.35 < q−
√
N/375. We have completed the proof of (4.3.2). �

Remark 4.3.7. The proof of Theorem 4.3.6 shows that its conclusion also

holds if we define

supp (g) = inf
λ∈A

codim ker(g − λ),

where A = µq−1, respectively, µq+1, µ2, µ2, if g ∈ G = SLn(q), SUn(q), Spn(q),

Spinn(q), respectively.

5. A Chebotarev density theorem for word maps

Let w ∈ Fd denote a nontrivial element in the free group on d elements.

For any algebraic group G, we again denote by w the word map Gd → G. It

is well known [Bor83] that if G is semisimple, w is dominant. Writing Grss for

the open subvariety of regular semisimple elements, it follows easily that if w

is fixed, then

(5.0.11) lim
|w−1(Grss(Fq))|
|Gd(Fq)|

= 1,

where the limit is taken over over any sequence of groups G/Fq such that

dimG is bounded and |G(Fq)| goes to∞. For each regular semisimple element

g ∈ G(Fq), there is a well-defined G(Fq)-conjugacy class of maximal tori, and

therefore a well-defined W -orbit in Aut(Φ), where W and Φ denote respectively

the Weyl group and the root system of G, and W acts by conjugation. We

would like to understand the asymptotic distribution (in the large-q limit)

of these conjugacy classes for regular semisimple elements w(g1, . . . , gd), as

(g1, . . . , gd) ranges over w−1(Grss(Fq)).

5.1. Regular homomorphisms and Weyl groups. Let G and H be simply

connected semisimple algebraic groups over an algebraically closed field k. Let

Hrss denote the open subvariety of regular semisimple elements.

Definition 5.1.1. We say that a homomorphism φ : G → H with finite

kernel is regular if and only if φ−1(Hrss(k)) is nonempty.
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Suppose that φ is regular. Thus φ−1(Hrss(k)) ∩Grss(k) is nonempty. Let

t ∈ G(k) be a closed point of this intersection, and let TG and TH denote the

centralizer of t in G and the centralizer of φ(t) in H, respectively. Let NG and

NH denote the normalizer of TG inG and the normalizer of TH inH. Obviously,

φ(TG) ⊂ TH . It is also true that φ(NG) ⊂ NH , since we can identify NG (resp.

NH) with the transporter from t to TG (resp. φ(t) to TH). Thus, φ induces

a homomorphism φW : WG → WH of Weyl groups. This homomorphism is

injective since kerφ is finite. Of course WG and WH are well defined only up

to inner automorphism, and φW is likewise defined only up to conjugation (see

§1.1).

Proposition 5.1.2. Suppose that for each semisimple root system Φ we

are given a subgroup XΦ of its Weyl group WΦ (defined up to conjugation)

such that :

• XΦ1

∐
Φ2

= XΦ1 ×XΦ2 .

• If φ is a regular homomorphism from a simply connected group of root

system Φ1 to a simply connected group of root system Φ2, and up to

conjugation, φW (XΦ1) ⊂ XΦ2 .

• XΦ = WΦ for Φ of type A1, A2, and B2 = C2.

Then XΦ = WΦ for all root systems Φ.

Proof. There are obvious regular homomorphisms G → H in each of the

tabulated cases in Table 1 below. The comments should be self-explanatory

except that the prime powers indicated divide the order of the Weyl group WG.

We prove the theorem by induction, first on rank, and for given rank, on

Weyl group order. Assuming the theorem for all simple root systems of lower

rank or of equal rank but smaller Weyl group, it suffices to show that no proper

subgroup of WH contains conjugates of the WG for all groups G admitting a

regular homomorphism to H given in the table.

For Ar, r ≥ 3, it is well known that the symmetric group Sr is a maximal

subgroup of Sr+1. Therefore, any subgroup of Sr+1 containing Sr (via the pair

(G,H) = (Ar−1, Ar)) but also containing a permutation without fixed points

(via (A1 ×Ar−2, Ar)) is all of Sr+1.

For Br, Cr, and Dr, we have surjective homomorphisms from WH to

Sr, and the map from XAr−1 = Sr to WH guarantees that XΦ maps onto

Sr. For Br and Cr, it suffices to find a reflection in XΦ lying in the kernel

of this homomorphism, since the XΦ-conjugates of such a reflection generate

kerWH → Sr. This is guaranteed by (A3
1, B3), (A1 × Dr−1, Br) (for r ≥ 4),

and by (Ar1, Cr). For Dr, it suffices to find an element of XΦ in the kernel

of WH → Sr which has a codimension 2 fixed space. Such an element is

guaranteed by (A4
1, D4) and (A2

1 ×Dr−2, Dr) (for r ≥ 5).
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G H Comments

Ar−1 Ar r ≥ 2

A1 ×Ar−2 Ar r ≥ 3

A1 ×A1 ×A1 B3

Ar−1 Br r ≥ 3

A1 ×Dr−1 Br r ≥ 4

Ar1 Cr
Ar−1 Cr r ≥ 3

A4
1 D4

A1 ×A1 ×Dr−2 Dr r ≥ 5

Ar−1 Dr

A2 ×A2 ×A2 E6 27

A5 ×A1 E6

A2 ×A5 E7 27

A7 E7

A4 ×A4 E8 25

A1 × E7 E8

A2 ×A2 F4 9

D4 F4

A1 ×A1 G2 4

A2 G2

Table 1.

It is known that the Weyl groups of A2, D4, A1 × A5, A2 × A5, and

A1×E7 are maximal subgroups of the Weyl groups of G2, F4, E6, E7, and E8,

respectively; in the first two cases this is because the index of the subgroup

is prime, and the last three cases appear in the tables of maximal subgroups

in [CCN+85]. None of these subgroups has order divisible by the prime power

given in the comment field for a different subgroup G of the same H. For

example, XG2 = WG2 because XG2 contains WA2 which is of order 6 but also

contains the subgroup WA1×A1 whose order is divisible by (in this case equal

to) 4. �

5.2. Estimates of Lang-Weil type. In this section, we prove two proposi-

tions of Lang-Weil type which are needed in the following section. We cannot

appeal to Lang-Weil directly because we are interested in uniformity. Instead,

we use standard results in étale cohomology. We do not claim novelty for either

of the results in this section, but lacking suitable references, we give proofs.

Proposition 5.2.1.Let Y be a scheme of finite type over Z and π : X → Y
a morphism of finite type. For all ε > 0, there exists δ > 0 satisfying the

following condition : For every finite field Fq , every dominant morphism of
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varieties π0 : X0 → Y0 such that the pull-back of π0 to Fq and the pull-back of

π from to Fq coincide, and for every subset S ⊂ Y0(Fq), either

|S| > δ|Y0(Fq)|,

or

|π−1(S)| < ε|X0(Fq)|.

Proof. We begin by fixing a prime p and assuming Fq is an extension of

Fp. Let φ : X → Y denote the Fp-fiber of π. We fix ` 6= p. By the finiteness

theorem for étale cohomology over a field [Del77, 1.1], Riφ!F` is constructible.

By the proper base change theorem, dimH i
c(Xy,F`) is bounded as y ranges

over geometric points of Y . It follows that the rank of H i
c(Xy,Z`) is bounded

and therefore that dimH i
c(Xy,Q`) is bounded. The geometric fibers of π0 are

the same as those of φ, so the `-adic cohomology groups of the fibers of π0

are likewise bounded, independent of π0. By [Del80, 3.3.1], the weights of

H i
c((X0)y,Q`) are ≤ i. By the Lefschetz trace formula, it follows that the

number of Fq-points of any fiber (X0)y, y ∈ Y0(Fq), satisfies

(5.2.1) |(X0)y(Fq)| ≤ c1q
dim (X0)y ,

where c1 depends only on φ.

As φ is dominant, the dimension of its generic fiber is dimX − dimY

[Gro65, 5.6.6]. Let Z ⊂ Y denote the Zariski-closure of the set of points y of

Y such that

dimXy 6= dimX − dimY,

and let W denote π−1(Z). As fiber dimension is a constructible function

[Gro66, 9.5.5], Z ( Y , and so W ( X. We endow W with the structure of

(proper) reduced closed subscheme of X. Defining Z0 and W0 in the analo-

gous way, W and W0 are isomorphic over Fq, so their compactly supported

cohomology dimensions are the same. By the Lefschetz trace formula,

(5.2.2) |W0(Fq)| ≤ c2q
dimW0 = c2q

dimW .

Combining (5.2.1) and (5.2.2), we deduce that

|π−1
0 (S)| ≤ c1|S|qdimX−dimY + c2q

dimW ≤ c1|S|qdimX−dimY + c2q
dimX−1.

Applying the Lefschetz trace formula again, we get Lang-Weil estimates

|X0(Fq)| ≥ qdimX − c3q
dimX−1/2,

|Y0(Fq)| ≤ qdimY + c4q
dimY−1/2,
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where c3 and c4 depend only on X and Y , respectively. If |S| ≤ δ|Y0(Fq)|, then

|π−1
0 (S)| ≤ qdimX(c1q

− dimY |S|+ c2q
−1)

≤ qdimX(c1δq
− dimY |Y0(Fq)|+ c2q

−1)

≤ qdimX(c1δ(1 + c4q
−1/2 + c2q

−1)

≤ δc1(1 + c4q
−1/2) + c2q

−1

1− c3q−1/2
|X0(Fq)|.

Given ε > 0, we can choose N and δ such that

(5.2.3)
δc1(1 + c4q

−1/2) + c2q
−1

1− c3q−1/2
< ε

for all q ≥ N and

(5.2.4) δ <
1

qdimY + c4qdimY−1/2

for all q < N . This finishes the proof when Y lies over Spec Fp or, more

generally, over any proper closed subset of Spec Z.

Suppose therefore that Y is dominant over Z. By the previous discussion,

we may assume p is larger than any desired constant. By [Gro66, 9.7.7], the

set of points t of Spec Z for which Xt and Yt are varieties is constructible,

so without loss of generality, we may assume that XFp → YFp is always a

morphism of varieties. Also the generic fibers Xη and Yη are varieties, so we

may assume that X and Y have each a unique generic point. If X → Y fails

to be dominant, then by Chevalley’s theorem [Gro64, 1.8.4], the set of primes

p for which XFp → YFp is dominant is finite, so we may take it to be empty, in

which case there is nothing to prove. Otherwise, the constructible set

{y ∈ Y | dimXy = dimX − dimY}

contains the generic point of the generic fiber of Y since rings of finite type

over Z are catenary [Gro65, 5.6.4].

Let Z denote the Zariski-closure of the set of points y of Y such that

dimXy 6= dimX − dimY. Thus Z defines a proper reduced closed subscheme

of Y, and its inverse W in X defines a proper closed subscheme of X . By

Chevalley’s theorem, the set of primes p for which WFp is all of XFp is finite.

We may therefore assume that WFp is always a proper closed subscheme of

XFp . Fix a prime `, and assume p > `. The finiteness theorem cited above

for higher direct images of constructible sheaves with F` coefficients applies for

all schemes of finite type over F`, so arguing as above, we can find an upper

bound, uniform in p, for the dimensions of H i
c(WFp ,Q`), H

i
c(XFp ,Q`), and

H i
c(YFp ,Q`), and uniform in p and y for dimH i

c(Xy,Q`). We can now define

N and δ as in (5.2.3) and (5.2.4) and conclude as before. �
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Let Fq be a finite field and n a positive integer. Let Y0 be a variety over

Fq, Y the variety obtained from Y0 by extending scalars to Fqn , and Y the

variety obtained by extending scalars to Fq. Suppose X is a variety over Fqn
and π : X → Y is a finite étale morphism such that π0 : X → Y0 is étale with

group Γ0. The homomorphism from Gal(X/Y0) to Gal(Y/Y0) = Gal(Fqn/Fq)
is surjective and has kernel Gal(X/Y ), which we denote Γ. Thus, we have a

short exact sequence

0→ Γ→ Γ0 → Z/nZ→ 0,

and we denote the inverse image of 1 ∈ Z/nZ by Γ1. Every element y ∈ Y0(Fq)
determines a well-defined Frobenius conjugacy class in Γ0 which lies in Γ1.

Equivalently, we can regard this class as a single Γ-orbit in Γ1 ⊂ Γ0. We

denote this class Frob(y).

We can now state the uniform Chebotarev estimate in the function field

case:

Proposition 5.2.2. Let Y be a scheme of finite type over Z and X → Y a

finite étale cover with Galois group Γ such that the nonempty geometric fibers of

X over Z are varieties. There exists a constant C such that for every extension

Fqn/Fq and every variety Y0/Fq such that Y := Y0 ×Fq Fqn is isomorphic to

YFqn , and X := XFqn is Galois over Y0 with group Γ0, we have∣∣∣∣q− dimY
∣∣∣{y ∈ Y0(Fq) | Frob(y) = O}

∣∣∣− |O||Γ0|

∣∣∣∣ ≤ Cq−1/2

for every Γ-orbit O in Γ1.

Proof. Writing the characteristic function of the orbit O as a linear com-

bination of characters of Γ, it suffices to show that for every irreducible Q`-

representation (ρ, V ) of Γ and for every isomorphism ι : Q` → C,∣∣∣∣ι( ∑
y∈Y0(Fq)

Tr(ρ(Frob(y)))
)∣∣∣∣ =

qdimY

|Γ|
ι
(∑
g∈Γ1

Tr(ρ(g))
)

+O(qdimY−1/2),

where the implied constant does not depend on q. Let Fρ denote the lisse

Q`-sheaf on Y0 obtained by composing π1(Y0, y) → G0 with ρ, and Fρ the

pullback of this sheaf to Y . In particular, Fρ is a direct summand of (π0)∗Q`.

By the Lefschetz trace formula,∑
y∈Y0(Fq)

Tr(ρ(Frob(y))) =
2 dimY∑
i=0

(−1)iTr(Frobq | H i
c(Y ,Fρ)).

The theorem now follows from the weight formalism. As in Proposition 5.2.1,

the dimensions of the Q`-spaces H i
c(Y ,Fρ) are uniformly bounded by proper

base change and the finiteness theorem for étale cohomology over an excellent

1-dimensional base. The weights of H i
c(Y ,Fρ)) are ≤ i. For i = 2 dimY ,

we may assume without loss of generality that Y is nonsingular, in which
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case, by Poincaré duality, H i
c(Y ,Fρ) is nonzero if and only if ρ is trivial on Γ.

Each such ρ is associated with a 1-dimensional representation χ : Z/nZ→ Q×` ,

and the eigenvalue of Frobq acting on the 1-dimensional space H i
c(Y ,Fρ) is

χ(1)qdimY . �

5.3. Torus types of word map images. Let W 1 denote the coset of W

in Aut(Φ) associated to G. The classification of maximal tori up to G(Fq)-
conjugacy gives a partition of the regular semisimple elements of G(F) in which

the parts are indexed by the W -orbits of W 1 under the conjugation action.

This classification does not depend on q but only on W and W 1. Our goal

in this section is to estimate the proportion of elements (g1, . . . , gd) ∈ G(Fq)d
such that w(g1, . . . , gd) belongs to a given type and to show that the limit of

this proportion as q goes to infinity does not depend on d or w.

Let Φ denote a fixed root system. Let G/Spec Z denote the Chevalley

scheme associated to the simply connected semisimple root datum attached to

Φ. Thus G is an affine group scheme with coordinate ring A. Let G\ denote

the spectrum of AG , the subring of A invariant under the action of G on itself

by conjugation. Let T ⊂ G be a split maximal torus of G. Thus T = Spec A/I

for some ideal I. The composition T ↪→ G → G\ factors through T /W , where

W denotes the Weyl group of G with respect to T . The pull-back of the

morphism T /W → G\ at any geometric point of Spec Z is well known to be an

isomorphism [Ste65, 6.4]. As A and A/I are torsion-free abelian groups, the

same is true of (A/I)W and AG , and it follows that AG → (A/I)W is injective.

The cokernel of this map is killed by tensor product with Q and with Fp for

every prime p; it is therefore trivial as well. It follows that T /W → G\ is an

isomorphism, and we have a natural quotient map G → T /W whose geometric

fibers are semisimple conjugacy classes.

Let Grss denote the open subscheme of G consisting of regular semisimple

elements, and let T rss be the regular semisimple open subscheme of T . Note

that W preserves T rss. The map ξ : Grss → T /W sends T rss and therefore all

of Grss to T rss/W . Given a word map w, let (Gd)rss denote the inverse image in

Gd of Grss. As w defines a dominant map Gd → G for every semisimple group

over every field, the p-fiber of (Gd)rss is dense in the p-fiber of Gd for every

prime p.

Consider the following diagram:

(Gd)rss

w

$$
π

��

X
φXoo

πX

��

Grss

ξ

yy
T rss/W T rss,

φoo
1 Q

i
cc
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where

X = (Gd)rss ×T rss/W T rss.

As φ is finite étale and Galois with group W , so is φX . Thus, for each prime p,

φX induces a map XFp → (Gd)rss
Fp

which is finite étale and Galois with group W .

Theorem 5.3.1. For all Φ and for all p, XFp is irreducible.

Proof. It suffices to prove that XFq is irreducible for all finite extensions Fq
of Fp. Assuming the contrary, there exists Fq such that X := XFq is reducible.

Let H ( W be the stabilizer of a component of X. Let G, Grss, etc. denote

GFq , Grss
Fq , etc. If K ⊃ Fq and x ∈ (Gd)rss(K), there exists a Galois extension

L/K such that every L-point of φ−1
X (x) is defined over L.

We use induction on the number of roots in Φ. We assume the theorem

holds for all systems of less than |Φ| roots. Suppose Φ is not of type A1, A2, or

B2. As H is a proper subgroup of W = WG, by Proposition 5.1.2 there exists

a split simply connected group G′ over Fq whose root system Φ′ has fewer

roots than Φ and a regular homomorphism ψ : G′ → G such that the image

ψ(WG′) is not contained (up to conjugacy) in H. By the induction hypothesis,

the function field L′ of X ′ is a WG′-extension of the function field K ′ of (G′)d.

As ψ is regular, the generic points of X ′ and (G′)d map to X and (Gd)rss,

respectively, which gives a contradiction. Thus it suffices to consider the base

cases A1, A2, and B2.

Let G = SL2, and suppose that the stabilizer H is a proper subgroup of

the Weyl group S2, i.e., H is trivial. Then for every field L containing Fq and

every x ∈ SL2(L)d such that w(x) is regular semisimple, the eigenvalues of x

lie in L.

Let K be a local field containing Fq and D be the nontrivial quaternion

algebra over K. Let SL1(D) be the group of elements of norm 1 in D. Let G1

denote the form of SL2 over K such that SL1(D) = G1(K). As D is split by

every quadratic extension L/K, G1,L = SL2,L for every such L/K. Let Grss
1 ,

(Gd1)rss, T rss
1 , X1, φX1 , etc. be defined in the obvious way. Extending scalars

for φX1 : X1 → (Gd1)rss from K to L, we get the same morphism as we do by

extending scalars for φX : X → (Gd)rss from Fq to L. As G1(K) is Zariski

dense in G1, there exists x ∈ G1(K)d such that w(x) is regular semisimple.

In particular, regarding w(x) as an element of SL2(L), its eigenvalues lie in L.

This is true for every quadratic extension L of K.

Now we use the fact that K contains two quadratic subextensions of K

whose intersection is K, namely the unramified quadratic extension and any

ramified quadratic extension. We conclude that w(x) has eigenvalues a 6= b in

K. Regarding w(x) as a norm-1 element γ, we have (γ − a)(γ − b) = 0, which

is impossible because γ 6∈ {a, b} and D is a division algebra.
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The argument for SL3 is similar. The obvious inclusion morphism SL2 →
SL3 is regular. So the stabilizer H of a component of X contains an element

of order 2. Either it is all of W = S3, or X consists of three components, each

a nontrivial finite étale quadratic extension of (Gd)rss. The latter possibility

is ruled out by considering a nontrivial division algebra D of degree 3 over a

local field K ⊃ Fq. Indeed, w(x) ∈ SL1(D) regular semisimple implies that

for any field L that splits D, in particular, for any cubic extension of K,

the characteristic polynomial of w(x) has coefficients in L and splits over a

quadratic extension of L. Taking two cubic extensions, one totally ramified

and the other unramified, we conclude that the characteristic polynomial has

coefficients in K and splits over a quadratic extension of K. This implies that

it has a root in K, which is impossible since D is a division algebra.

For Sp4, we use the regular homomorphism ResFq2/FqSL2 → Sp4, thanks

to which, for q sufficiently large, there exist regular semisimple elements in

w(Sp4(Fq)) which are contained in a nonsplit torus of SL2(Fq2). Any such

element lies in a maximal torus of Sp4 associated to a Weyl group element of

order 4. On the other hand, thanks to the regular homomorphism SL2
2 → Sp4,

we know that the stabilizer H of a component of X also contains the Weyl

group of SL2
2, which has order 4 but no element of order 4. Thus H = W . �

Theorem 5.3.2. Let w be a nontrivial fixed word and N a fixed positive

integer. For any semisimple algebraic group G of dimension less than N over

a finite field Fq and every maximal torus T of G defined over F,

qdimG−dimT |{(g1, . . . , gd) ∈ G(Fq) | w(g1, . . . , gd) ∈ T (Fq)}|
|G(Fq)d|

= 1 + o(1).

We remark that in general it seems to be difficult to prove that closed

subvarieties of G have nontrivial inverse image in G(Fq)d. In particular, we

do not know how to show that every regular semisimple conjugacy class is hit,

even in the large q limit. Indeed, if w is a k-th power for k ≥ 2, this is not

in general the case. The reason that maximal tori are tractable is that their

orbits under the action of G by conjugacy are Zariski-dense.

Proof. Fix n such that G×Fq Fqn is split. Let Gs denote the split form of

G over Fq and let

φ : Gs ×Fq Fqn → G×Fq Fqn

be an isomorphism. There exists a split maximal torus Ts of Gs and a maximal

torus T of G such that

φ(Ts ×Fq Fqn) = T ×Fq Fqn .

We write Frob and Frobs, respectively, for the q-Frobenius maps on T ×Fq Fqn
and Ts ×Fq Fqn .
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We claim that the map π obtained by composing

Ts ×Fq Fqn
φ→ T ×Fq Fqn → G×Fq Fqn → G\ ×Fq Fqn → G\

is Galois. Indeed, π can be written as the composition

Ts ×Fq Fqn → (Ts/W )×Fq Fqn → G\,

and the first morphism is obviously Galois. It suffices, therefore, to find an

automorphism α of Ts×Fq Fqn such that α is a covering map of π and α induces

the q-Frobenius map on Fqn . Setting α = φ−1 ◦ Frob ◦ φ, the diagram

Ts ×Fq Fqn
α //

φ

��

Ts ×Fq Fqn

φ

��
T ×Fq Fqn

Frob //

��

T ×Fq Fqn

��
T

id //

��

T

��
G\

id // G\

shows that α is a covering map.

Let Y0 := (Gd)rss. Let Y be the variety obtained from Y0 by extension of

scalars to Fqn and let

X := Y ×(G\)rss (Ts ×Fq Fqn)rss.

Clearly X is finite étale over Y , and we have shown that it is Galois with a

group Γ which is an extension of Z/nZ by the Weyl group W .

Given g := (g1, . . . , gd) ∈ Y0(Fq), let

h := w(g1, . . . , gd) ∈ Grss(Fq).

To fix an element of X(Fq) lying over g is the same as to pick an element

t ∈ Ts(Fq) ⊂ Gs(Fq) such that φ(t) is conjugate to h in G(Fq). As h is

regular semisimple, such an h is uniquely defined up to the action of W on

Ts. The Frobenius conjugacy class Frob(g) is the W -orbit in Γ1 containing

the automorphism of Ts ×Fq Fqn which sends t to tq and induces the usual

q-Frobenius on Fqn . It is clear that this W -orbit depends only on the conjugacy

class of h. If h1 and h2 are both regular semisimple elements in the same

maximal torus of G, the same element of Gs(Fq) will conjugate φ−1(h1) and

φ−1(h2) into Ts(Fq), so Frob(g) depends only on the torus type of h. The

map from torus types to W -orbits in Γ1 is the usual one, which is bijective.

(See, e.g., [Car93, Prop. 3.3.3], where the W -orbits in Γ1 are described as

F -conjugacy classes in W , which are easily seen to be equivalent.)



WARING PROBLEM 1933

By Theorem 5.3.1, for any word map w, X → Y0 satisfies the hypotheses of

Proposition 5.2.2. Therefore, in the large q limit, the proportion of (g1, . . . , gd)

which map to any particular torus type depends only on the torus type. In

particular, it does not depend on w. Applying Proposition 5.2.2 both to w

and to the one variable word x1, we conclude that in the limit as q →∞, the

proportion of d-tuples g ∈ G(Fq)d such that w(g) belongs to a particular torus

type is the same as the proportion of elements of G(Fq) belonging to that torus

type. Since the cardinality of the preimage w−1(T rss(Fq)) depends only on the

conjugacy class of the maximal torus, i.e., on the torus type of T , it follows

that

lim
q→∞

|w−1(T rss(Fq))| · |G(Fq)|
|G(Fq)d| · |T rss(Fq)|

= 1.

The theorem now follows from the Lang-Weil estimate. �

Corollary 5.3.3. For every fixed nontrivial word w and fixed integer N ,

there exists δ > 0, so that for every semisimple algebraic group G of dimension

less than N over a finite field Fq and every maximal torus T of G defined

over F,

|T (Fq) ∩ w(G(Fq))| ≥ δ|T (Fq)|.

Proof. This is immediate by applying the preceding theorem and Propo-

sition 5.2.1 to the finite set S consisting of all regular semisimple elements of

G(Fq) of torus type T . �

In particular, we obtain the following useful result:

Corollary 5.3.4. For every fixed nontrivial word w and fixed integer N ,

there exists q0, so that for every prime power q > q0 and a semisimple algebraic

group G of dimension less than N over the finite field Fq , there exists a regular

semisimple element g ∈ w(G(Fq)) which lies in a maximal split torus of G(Fq).

Proof. This follows from the previous corollary applied to a split maximal

torus T , noting that for large q, the number of regular elements in T (Fq)
exceeds (1− δ)|T (Fq)|. �

The result above can be used to obtain a short proof of one of the main

results in [LS09]:

Theorem 5.3.5. For every nontrivial words w1, w2 and a positive integer

r there exists an integer N such that if Γ is a finite simple group of Lie type

(excluding Suzuki and Ree groups) of rank at most r and order at least N , then

w1(Γ)w2(Γ) = Γ.

Proof. Using Corollary 5.3.4, we see that if Γ is large enough, then there

exist regular semisimple elements si ∈ wi(Γ) (i = 1, 2) lying in split maximal
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tori of Γ. Let Ci be the conjugacy class of si in Γ. A theorem of Ellers and

Gordeev (see for instance Theorem 1 in [EG98] and the references therein)

implies that C1C2 ⊇ Γ \ {1}. The result follows. �

6. The main theorem

In this section, we prove Theorem 1.1.1. In [LS09], we treated the cases

that Γ is an alternating group as well as the cases where Γ is of Lie type with

bounded rank (which are also treated by the theorem above). In particular, we

treated the exceptional groups of types 3D4, E6, 2E6, E7, E8, F4, and G2. The

sporadic groups can be ignored by assuming that N is larger than the order

of the Monster. What remains are the classical groups of Lie type (where we

may exclude low rank cases whenever it is convenient to do so) and the Suzuki

and Ree groups. The proofs for sufficiently high rank groups of type A, B, C,

and D are given as Propositions 6.2.4, 6.3.5, 6.1.1, and 6.3.7, respectively. The

Suzuki and Ree groups are treated in Proposition 6.4.1.

6.1. Symplectic groups. If V is a finite dimensional vector space over Fqr
and 〈·, ·〉 is a symplectic pairing on V , then

(v1, v2) := TrFqr/Fq〈v1, v2〉

defines a symplectic pairing on V regarded as Fq-vector space. Thus we have a

natural inclusion SL2(Fqr) → Sp2r(Fq). If x ∈ SL2(Fqr) is regular semisimple

with eigenvalues α, α−1 ∈ Fqr = Fq, and ρ : Sp2r → GL2r denotes the natural

representation, then ρ(α) has eigenvalues

{α±1, α±q, . . . , α±q
r−1}.

This element is regular semisimple as long as αq
i±1 6= 1 for i = 1, . . . , r − 1.

Otherwise, if i is the smallest positive integer for which αq
i ∈ {α, α−1}, then i

divides r. The set of possible α has less than∑
1≤i≤r/2

{(qi + 1) + (qi − 1)} < 4qr/2

elements.

Proposition 6.1.1. If w = w1w2, where w1 and w2 are nontrivial dis-

joint words, then w(Γ) = Γ for all sufficiently large finite simple groups Γ of

symplectic type.

Proof. Let Γ be the quotient of Sp2r(Fq) by its subgroup of scalar matrices.

By [LS09], we may assume that r is larger than any desired constant.

We now fix maximal tori T1 and T2 of SL2 over Fqr such that T1 is split

and T2 is nonsplit. By Corollary 5.3.3, if r is sufficiently large, there exist

x1 ∈ T1(Fqr)∩w1(SL2(Fqr)) and x2 ∈ T2(Fqr)∩w2(SL2(Fqr)) such that regarded
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as elements of Sp2r(Fq), x1 and x2 are regular semisimple. They belong to

maximal tori of type T+
r and T−r , respectively, and xi ∈ wi(Sp2r(Fq)). By

[MSW94, Th. 2.3], every noncentral element of Sp2r(Fq) is the product of a

conjugate of x1 and a conjugate of x2. Thus, every nonidentity element of

the quotient Sr(q) of Sp2r(Fq) by its center lies in w1(Sr(q))w2(Sr(q)). The

identity always lies in w(H) for any word w and any group H. This finishes

the symplectic case. �

6.2. Special linear and unitary groups.

Proposition 6.2.1. For all ε > 0, there exists N such that if n ≥ N ,

G is of the form SLn or SUn, q is any prime power, and χ is any irreducible

character of G(Fq) of degree greater than εq−n/2|G(Fq)|1/2, then

|χ(g)| ≤ εχ(1)

for all noncentral g ∈ G(Fq).

Proof. If G = SLn, the centralizer of g in G(Fq) is contained in the central-

izer of g in GLn(Fq), which consists of the invertible elements in the centralizer

algebra Z(g) of g in Mn(Fq). By a well-known application of rational canonical

form, dimFq Z(g) ≤ n2 − 2n+ 2, and so

|CSLn(Fq)(g)| ≤ qn2−2n+2 = O(q3−2n|SLn(Fq)|).

If G = SUn, then the index of any proper subgroup in SUn(Fq) is > q2n−4, see

[KL90, Table 5.2.A]. Thus in either case, |CG(Fq)(g)| = O(q4−2n|G(Fq)|), and

the statement follows from Lemma 4.3.1. �

Proposition 6.2.2. Let w1 and w2 be nontrivial words. There exists N

such that for all n > N and for all finite fields Fq , there exists an integer

a ≥ 2, depending only on w1 and w2, such that w1(SLn(Fq)) and w2(SLn(Fq))
contain regular semisimple elements x1 and x2, respectively, belonging to tori

of type Tn and T1,a,n−1−a, respectively, or to tori of type T1,n−1 and Ta,n−a,

respectively.

Proof. By Corollary 5.3.3, for any fixed w1, w2, and k, for all l sufficiently

large, for all prime powers q, and for all i ∈ {1, 2}, the image wi(SLk(Fql))
contains a regular semisimple element whose eigenvalues generate Fqkl over

Fq. Indeed, the number of elements in a torus of type Tk whose eigenvalues

generate a smaller field is less than the number of elements in Fqkl which

generate a proper subfield, and this is less than 2qkl/2. Regarding SLk(Fql)
as a subgroup of SLkl(Fq), it follows that the wi-image of the latter group

contains a regular element in a torus of type Tkl, as long as l ≥ L, where L

is a constant depending only on w1 and w2. We apply this for k ∈ {2, 3} and

choose l3 := 2bL/2c+ 1 and a := 3l3.
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Suppose n ≥ 5L+ 4 is even. Then l2 = (n− 3l3 − 1)/2 ≥ L, so

SL2(Fql2 )× SL3(Fql3 ) < SLn−1(Fq) < SLn(Fq)

contains a regular semisimple element of w2(SLn(Fq)) which lies in a maximal

torus of type T1,a,n−1−a. Similarly,

SL2(Fqn/2) < SLn(Fq)

contains a regular semisimple element in w1(SLn(Fq)) which lies in a maximal

torus of type Tn.

Now let n ≥ 5L+ 3 be odd. Then l2 = (n− 3l3)/2 ≥ L, and so

SL2(F
q
n−1
2

) < SLn−1(Fq) < SLn(Fq)

and

SL2(Fql2 )× SL3(Fql3 ) < SLn(Fq)
contain regular semisimple elements in w1(SLn(Fq)) and w2(SLn(Fq)) lying in

maximal tori of types T1,n−1 and Ta,n−a, respectively. �

Proposition 6.2.3. Let w1 and w2 be nontrivial words. There exists N

such that for all n > N and for all finite fields Fq , there exists an integer

a ≥ 2, depending only on w1 and w2, such that w1(SUn(Fq)) and w2(SUn(Fq))
contain regular semisimple elements x1 and x2, respectively, belonging to tori

of type Tn and T1,a,n−1−a, respectively, or to tori of type T1,n−1 and Ta,n−a,

respectively.

Proof. The argument is the same as before, replacing SL by SU every-

where. Note that l3 is odd, so the inclusion SU3(Fql3 ) → SU3l3(Fq) exists.

Furthermore,

SU2(Fqm) ∼= Sp2(Fqm) < Sp2m(Fq) < SU2m(Fq)

for any m. �

Proposition 6.2.4. If w = w1w2, where w1 and w2 are nontrivial dis-

joint words, then w(Γ) = Γ for all sufficiently large finite simple groups Γ of

type A.

Proof. Let Γ denote the quotient of G(Fq) := SLr+1(Fq) or SUr+1(Fq) by

its center. For r smaller than any given bound, the proposition is implied by

[LS09]. We therefore assume that r is sufficiently large.

Applying Proposition 6.2.2 or Proposition 6.2.3 as Γ is of linear or unitary

type, there exists a bounded value of a such that if r is sufficiently large,

w1(G(Fq)) and w2(G(Fq)) contain regular semisimple elements x and y of types

Tr+1 and T1,a,r−a, respectively, or alternatively, of types T1,r and Ta,r+1−a,

respectively. We claim that the product of the conjugacy classes of x and y
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contains every noncentral element of G(Fq). The claim obviously implies the

proposition.

Let χ1, χ2, . . . , χk denote the irreducible characters of G(Fq) such that

χ(x)χ(y) 6= 0, arranged by increasing degree. By Proposition 3.1.5, k ≤ 4. It

suffices to prove that if r is sufficiently large and z ∈ G(Fq) is noncentral, then

<
Ç k∑
j=1

χj(x)χj(y)χj(z)

χj(1)

å
=

k∑
j=1

<(χj(x)χj(y)χj(z))

χj(1)
≥ 1

40
.

The contribution of χ1 to the sum is 1. For the remaining characters,

|χj(x)χj(y)| = 1. By (4.1.1), the contribution of χ2 to the sum is at least

−19/20. By Proposition 6.2.1, the contribution of each of the remaining char-

acters to the sum can be assumed to be at least −1/80. The proposition

follows. �

6.3. Orthogonal groups. If V is a finite dimensional vector space over Fql
and 〈·, ·〉 is a nondegenerate symmetric pairing on V , then

(v1, v2) := TrF
ql
/Fq〈v1, v2〉

defines a nondegenerate symmetric pairing on V regarded as Fq-vector space.

In particular, we have inclusions

i+ : Spin+
2k(Fql)→ Spin+

2kl(Fq) and i− : Spin−2k(Fql)→ Spin−2kl(Fq)

for odd q. The same is true for even q by a similar base change for the

corresponding quadratic forms. Let ρ denote the natural representation of any

orthogonal group. If g ∈ Spin±2k(Fql) is semisimple and ρ(g) has eigenvalues

{λ1, λ
−1
1 , . . . , λk, λ

−1
k },

then ρ(i±(g)) has eigenvalues

{λ1, λ
q
1, . . . , λ

ql−1

1 , λ−1
1 , . . . , λ−q

l−1

k }.

If g is any element of the maximal torus T+
k of Spin+

2k(Fql), then we can

order the λi such that λi+1 = λq
il

1 and λq
kl

1 = λ1. Then i+(g) fails to be a

regular semisimple element in the torus of type T+
kl of Spin+

2kl(Fq) for at most

2
∑

0≤j≤kl/2 q
j < 4qkl/2 such elements g. If g is any element of the maximal

torus T−k of Spin−2k(Fql), then we may assume λi+1 = λq
il

1 and λq
kl

1 = λ−1
1 , so

again i−(g) fails to be a regular semisimple element of the torus of type T−kl of

Spin−2kl(Fq) for at most 4qkl/2 such elements g.

Proposition 6.3.1. Let w1 and w2 be nontrivial words and k ≥ 3 an

integer. Then there exists N such that for all l > N and all q,

w1(Ω2kl+1(Fq))w2(Ω2kl+1(Fq)) = Ω2kl+1(Fq).
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Proof. By Corollary 5.3.3 and the above discussion, if k, w1 and w2 are

fixed, then for l sufficiently large, w1(Spin+
2k(Fql)) contains a regular semisim-

ple element of type T+
kl in i+(Spin+

2k(Fql)), and w2(Spin−2k(Fql)) contains a

regular semisimple element of type T−kl in i−(Spin−2k(Fql)). Now the proposi-

tion follows by applying [MSW94, Th. 2.4] to (the images under the inclusions

Spin±2kl(Fq) ↪→ Spin2kl+1(Fq) of) the tori T+
kl and T−kl . �

Proposition 6.3.2. If w = w1w2, where w1 and w2 are nontrivial dis-

joint words, there exists an even integer N such that if n is divisible by N ,

for every odd prime power q, w(Spin+
2n(Fq)) contains an element lying above

−I ∈ Ω+
2n(Fq).

Proof. Let G/Spec Z denote the Chevalley scheme associated to Spin+
8 .

For each prime p > 2, the fiber GFp is isomorphic to Spin+
8,Fp , so the center of

GFp(Fp) is isomorphic to (Z/2Z)2. In particular, there exists zp ∈ Spin+
8 (Fp)

which lies over −I ∈ SO+
8 (Fp). For each s ∈ N, the map i+ : Spin+

8 (Fps) →
Spin+

8s(Fp) maps zp ∈ Spin+
8 (Fp) ⊂ Spin+

8 (Fps) to an element lying over −I ∈
SO+

8s(Fp). If there existsm such that for every odd prime p, zp ∈w(Spin+
8 (Fpm)),

then

zp ∈ w(Spin+
8 (Fpklm)) ⊂ w(Spin+

8lm(Fpk))

for all k and l. Setting q = pk and N = 4m, we obtain the proposition.

To prove that such an m exists, note that as w1 and w2 induce dominant

morphisms (Spin+
8,Fp)

di → Spin+
8,Fp and as Spin+

8,Fp is irreducible, it follows that

w induces a surjective homomorphism (Spin+
8,Fp)

d → Spin+
8,Fp . In particular,

w−1(zp) defines a nonempty reduced closed subscheme of (Spin+
8,Fp)

d. We claim

that this subscheme has a point over FpM for some M which does not depend

on p.

By [Gro66, 9.7.9], the number of geometrically irreducible components of

any fiber of the morphism w : Gd → G is bounded by some integral constant C.

The Galois group Gal(Fp/Fp) acts on the set of irreducible geometric compo-

nents of the fiber w−1(x) for any point x ∈ Spin+
8 (Fp). If M is divisible by C!,

then Gal(Fp/FpM ) acts trivially on this set of components, so every geometric

component of w−1(zp) is defined over FpM . By the standard facts about `-adic

cohomology discussed in Section 5.2, there exists a bound b such that

|{x ∈ Spin+
8 (FpM ) | w(x) = zp}| ≥ (pM )dimw−1(zp)(1− bp−M/2).

Choosing M so that 3M/2 > b, we obtain the desired result. �

We will need the following simple number-theoretic fact:
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Lemma 6.3.3. Let the integers a, b > 1 be coprime and L > 1. Then any

integer n > La+ ab can be written in the form xa+ yb with x > L and y > 0

being integers.

Proof. Clearly, one can write n−La in the form ua+ vb for some integers

u > 0 and v. Among those representations, choose n − La = ua + vb with u

smallest possible. Now if v ≤ 0, then ua = (n− La)− vb ≥ n− La > ab, and

so we can write n−La = (u− b)a+ (v+ a)b with u− b > 0, contradicting the

choice of u. Thus v > 0, and we can write n = (u+ L)a+ vb. �

We will also need the following extension of Proposition 4.1.2:

Lemma 6.3.4. Let dimV = n > 2B and let g ∈ GO(V ) have support ≤ B.

Then g fixes an orthogonal decomposition V = U ⊕W with dimU ≥ n − 2B

and U ⊆ ker(g − λ), where λ is the primary eigenvalue of g.

Proof. By Proposition 4.1.2, λ = ±1. Multiplying g by −1V if necessary,

we may assume λ = 1. Consider the Jordan decomposition g = su, and write

V = V0 ⊕ V ⊥0 , where V0 := ker(s − 1) ⊇ ker(g − 1). It is well known that

one can further decompose V0 = ⊕i>0Vi into an orthogonal sum of u-invariant

subspaces Vi, where u acts on Vi as aiJi with ai ≥ 0. Now∑
i>0

ai = dim ker(g − 1) ≥ n−B,
∑
i

iai = dimV0 ≤ n.

It follows that a1 ≥ 2
∑
i>0 ai −

∑
i>0 iai ≥ n − 2B, and one can just choose

U = V1, W = V ⊥1 . �

Proposition 6.3.5. If w = w1w2, where w1 and w2 are nontrivial dis-

joint words, then w(Γ) = Γ for all sufficiently large finite simple groups Γ of

odd-dimensional orthogonal type.

Proof. 1) Again, we may assume r := rank(G) is arbitrarily large. Fix

some pairwise coprime odd integers k1, k2, k3, k4 ≥ 3, and some ε = ±. By

Corollary 5.3.3 and the discussion before Proposition 6.3.1, there is some L1

(depending on the words w1, w2, and max1≤i≤4 ki) such that for l1, l3 ≥ L1,

w1(Spin+
2k1

(Fql1 )) contains a regular semisimple element s1 of type T+
k1l1

in

Spin+
2k1l1

(Fq), and w2(Spin−2k3(Fql3 )) contains a regular semisimple element s3

of type T−k3l3 in Spin−2k3l3(Fq). Moreover, when l1, l3 are bounded, there is some

L2 (depending on w1, w2, max1≤i≤4 ki, and max{l1, l3}) such that for l2, l4 ≥
L2, w1(Spinε2k2(Fql2 )) contains a regular semisimple element s2 of type T εk2l2
in Spinε2k2l2(Fq), and w2(Spin−ε2k4

(Fql4 )) contains a regular semisimple element

s4 of type T−εk4l4 in Spin−ε2k4l4
(Fq), and, in addition, no eigenvalue of s2 and

s4 can belong to Fq2k1l1 ∪ Fq2k3l3 . This extra condition guarantees that s1s2,

respectively s3s4, becomes a regular semisimple element of type T+,ε
kll1,k2l2

in
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Spinεk1l1+k2l2(Fq) under the embedding

Spin+
k1l1

(Fq) ∗ Spinεk2l2(Fq) ↪→ Spinεk1l1+k2l2(Fq),

respectively of type T−,−εk3l3,k4l4
in Spinεk3l3+k4l4(Fq) under the embedding

Spin−k3l3(Fq) ∗ Spin−εk4l4(Fq) ↪→ Spinεk3l3+k4l4(Fq).

Clearly, we can find integers l1 and l3 such that k1l1 = k3l3−1. Replacing

(l1, l3) by (l1 + k3, l3 + k1), we may assume that l1 is odd. Replacing (l1, l3)

by (l1 + 2bk3, l3 + 2bk1) for b sufficiently large, we can achieve that l1, l3 ≥ L1.

Next, we fix a pair of integers (l′2, l
′
4) such that k2l

′
2 − k4l

′
4 = 1. Then, for

any given residue t(mod k2k4), we can find j with 0 ≤ j ≤ k2k4 − 1 such that

k1(l1 + 2jk3) ≡ (t−k2l
′
2)(mod k2k4). Replacing (l1, l3) by (l1 + 2jk3, l3 + 2jk1)

for such j, we get that

t = k1l1 + k2l
′
2 + ck2k4 = k1l1 + k2(l′2 + ck4)

for some integer c. Fix such a pair (l1, l3) and set a := k1l1; notice that a is

odd and bounded in terms of k1, k2, k3, k4 and w1, w2.

Now, assume r is sufficiently large. Then, we can write r = t + dk2k4

with 0 ≤ t < k2k4 and d sufficiently large. Setting l2 := l′2 + (c + d)k4 and

l4 := l′4 + (c+ d)k2, we get

r = k1l1 + k2l2 = k3l3 + k4l4

and l2, l4 ≥ L2. We have therefore shown that if r is sufficiently large, then

w1(Spinε2r(Fq)) and w2(Spinε2r(Fq)) contain regular semisimple elements s1s2

and s3s4 of type T+,ε
a,r−a and T−,−εa+1,r−a−1, respectively, with a odd and bounded.

2) We may also assume that q is odd, since otherwise we can use Proposi-

tion 6.1.1. Embedding Spin+
2r(Fq) in Spin2r+1(Fq), we see that when r is suffi-

ciently large, w1(Spin2r+1(Fq)) and w2(Spin2r+1(Fq)) contain regular semisim-

ple elements s1s2 and s3s4 of type T+
a,r−a and T−a+1,r−a−1, with a odd and

bounded. By Proposition 3.4.1, there is some δ > 0 (depending on a), such

that the product of conjugacy classes of s1s2 and s3s4 contains all elements

g ∈ Spin2r+1(Fq) with

(6.3.1) |χ(g)/χ(1)| < δ

for all nontrivial irreducible characters χ of Spin2r+1(Fq). By Theorem 4.3.6,

there exists a bound B > 0, depending only on δ, such that (6.3.1) holds for

any g ∈ Spin2r+1(Fq) with supp (g) > B. Therefore, it suffices to prove that

every element g of Γ = Ω2r+1(Fq) of support ≤ B lies in w(Γ).

3) We may assume that r > 2B. Hence, by Proposition 4.1.2, the primary

eigenvalue λ of g is ±1. By Lemma 6.3.4, g fixes an orthogonal decomposition

V = U ⊕W , where V = F2r+1
q is the natural module for Γ, g|U = λ · 1U , and

dimU ≥ 2r + 1− 2B.
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3a) First we consider the case λ = 1. By Proposition 6.3.1, there exists

N ≥ B (depending on w1, w2) such that w(Ω6l+1(Fq)) = Ω6l+1(Fq) for all

l ≥ N . Now assume that r ≥ 4N . Then dimU ≥ 6N + 1. Writing dimW =

3x+ y for some integers x, y with 0 ≤ x and 0 ≤ y ≤ 2, we have x < B ≤ N .

Now we can decompose U = U ′ ⊕ ‹U into an orthogonal sum with dimU ′ =

3(2N −x) + 1− y. Thus g preserves the orthogonal decomposition V = ‹V ⊕ ‹U
with ‹V = W ⊕ U ′ of dimension 6N + 1 and g|

Ũ
= 1

Ũ
. It follows that

g ∈ Ω(‹V ) = Ω6N+1(Fq) = w(Ω6N+1(Fq)) ⊆ w(Γ).

3b) Finally, assume that λ = −1; in particular dimU = 2j is even. Then

write U as an orthogonal sum ⊕ji=1Ui, where dimUi = 2, and the quadratic

space Ui has type + for 1 ≤ i ≤ j − 1. By Proposition 6.3.2, there exists an

even M (depending on w1, w2) such that −I ∈ w(Ω+
2mM (Fq)) for any m ≥ 1.

Fix an integer k ≥ 3 coprime to 2M . By Proposition 6.3.1, there exists N ≥ B
(depending on w1, w2) such that w(Ω2kl+1(Fq)) = Ω2kl+1(Fq) for all l ≥ N .

Now assume that r > k(N + M). By Lemma 6.3.3, there are some integers

x > N and y > 0 such that r = xk+yM . Clearly, yM < r−3B < (dimU)/2−
1 = j − 1. Setting ‹V := ⊕yMi=1Ui and ‹U := ⊕ji=yM+1Ui ⊕W , we see that g

preserves the orthogonal decomposition V = ‹V ⊕ ‹U , where dim ‹V = 2yM , ‹V
is of type +, g|

Ṽ
= −1

Ṽ
, and dim ‹U = 2kx + 1 with x > N . It follows that

g|
Ṽ
∈ w(Ω(‹V )) and g|

Ũ
∈ w(Ω(‹U)), and so g ∈ w(Γ). �

For the even-dimensional orthogonal case, we need the following analogue

of Proposition 6.3.1:

Proposition 6.3.6. Let w1 and w2 be nontrivial words and let k, l ≥ 3

be two coprime odd integers. Fix an integer v > 0 such that l|(kv − 1). Then

there exists L such that for all a ≥ L, ε = ±, and all q,

w1(Spinε2n(Fq))w2(Spinε2n(Fq)) ⊇ Spinε2n(Fq) \ Z(Spinε2n(Fq)),

provided that n = k(2al + v) and furthermore v is odd if ε = +.

Proof. Note that l|(n− 1) for any n = k(2al+ v). By Corollary 5.3.3 and

the discussion before Proposition 6.3.1, there exists L depending on k, l, and

w1, w2 such that for all a > L and n = k(2al+v), w1(Spin−2l(Fq(n−1)/l)) contains

a regular semisimple element s1 of type T−n−1 in

i−(Spin−2l(Fq(n−1)/l)) < Spin−2n−2(Fq),

and w2(Spinε2k(Fqn/k)) contains a regular semisimple element s2 of type T εn in

iε(Spinε2k(Fqn/k)) < Spinε2n(Fq).

Note that under the embedding Spin−2n−2(Fq) ↪→ Spinε2n(Fq), s1 becomes a reg-

ular semisimple element of type T−,−εn−1,1 of Spinε2n(Fq). Next, the tori T εn and
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T−,−εn−1,1 are weakly orthogonal by Proposition 2.6.1. Hence, by Proposition 2.2.2,

all irreducible characters χ of Spinε2n(Fq) that vanish neither on a regular

semisimple element t1 of type T εn nor on a regular semisimple element t2 of type

T−,−εn−1,1 must be unipotent. But then the results of [DL76] imply that χ(t1) does

not depend on the particular choice of the element t1 of given type, and sim-

ilarly for χ(t2). Now the proofs of Theorems 2.5 and 2.6 of [MSW94] (for one

particular choice of t1 and t2, which does not matter) show that such χ must be

either the trivial or the Steinberg character of K := Spinε2n(q). Estimating the

character ratios, we see that sK1 s
K
2 contains all noncentral elements of K. �

Proposition 6.3.7. If w = w1w2, where w1 and w2 are nontrivial dis-

joint words, then w(Γ) = Γ for all sufficiently large finite simple groups Γ of

even-dimensional orthogonal type.

Proof. Let Spinε2r(Fq) denote the universal cover of Γ for some ε = ±.

We have shown in part 1) of the proof of Proposition 6.3.5 that if r is suffi-

ciently large, then w1(Spinε2r(Fq)) and w2(Spinε2r(Fq)) contain regular semisim-

ple elements t1 and t2 of type T+,ε
a,r−a and T−,−εa+1,r−a−1, respectively, with a odd

and bounded. Arguing as in part 2) of the proof of Proposition 6.3.5 and

using Proposition 3.3.1 instead of Proposition 3.4.1, we can reduce to the

case of elements g of bounded support ≤ B. Thus it suffices to prove that

if g is of bounded support ≤ B and r is sufficiently large, there exists z in

Z := Z(Spinε2r(Fq)) such that gz ∈ w(Spinε2r(Fq)). Denote the coset gZ by g.

Assuming r > B, we see that g has a (unique) primary eigenvalue λ = ±1.

Again by Lemma 6.3.4, g fixes an orthogonal decomposition V = U⊕W , where

V = F2r
q is the natural module for Spinε2n(Fq), g|U = λ · 1U , and dimU ≥

2r − 2B. If λ = 1, then the same arguments as in part 3a) of the proof of

Proposition 6.3.5 yield g ∈ w(Γ).

It remains to consider the case λ = −1; in particular q is odd. Assume

that ε = + and 2|r. Then there is some z ∈ Z acting on V as −1V . Replacing

g by gz, we are done by the case λ = 1. Thus we may assume that r is odd

if ε = +. Write U as an orthogonal sum ⊕ji=1Ui, where dimUi = 2 and the

quadratic space Ui has type + for 1 ≤ i ≤ j − 1. By Proposition 6.3.2, there

exists an even M (depending on w1, w2) such that −I ∈ w(Ω+
2mM (Fq)) for any

m ≥ 1. Fix coprime odd integers k, l ≥ 3 which are coprime to 2M . Also, fix

an integer v > 0 such that l|(kv− 1) and 2|(r− v). Then by Proposition 6.3.6,

there exists L ≥ B (depending on w1, w2) such that

w(Spinε2n(Fq)) ⊇ Spinε2n(Fq) \ Z(Spinε2n(Fq))

for all n = k(2al + v) and a ≥ L.

Now assume that r > kl(2L + M) + kv. By Lemma 6.3.3, there are

some integers x > L and y > 0 such that (r − kv)/2 = xkl + yM/2, and so
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r = k(2xl+ v) + yM . Clearly, yM < r− 3B < (dimU)/2− 1 = j − 1. Setting‹V := ⊕yMi=1Ui and ‹U := ⊕ji=yM+1Ui⊕W , we see that g preserves the orthogonal

decomposition V = ‹V ⊕ ‹U , where dim ‹V = 2yM , ‹V is of type +, g|
Ṽ

= −1
Ṽ

,

and dim ‹U = k(2xl + v) with x > L. By Proposition 6.3.2, there is some

h ∈ w(Spin(‹V )) that lies above −1
Ṽ

. Then gh−1 fixes the decomposition V =‹V ⊕‹U and acts trivially on ‹V . Clearly, gh−1 and g have the same action on ‹U ,

which has at least two eigenvalues −1 as yM < j. If gh−1|
Ũ

= −1
Ũ

, then g acts

on V as −1V and so g = 1, and we are done. So we may assume that gh−1|
Ũ

is not scalar. Since x > L, by Proposition 6.3.6 there is some f ∈ w(Spin(‹U))

that lies above gh−1|
Ũ

. Now g and fh have the same action on V and so

fh = gz for some z ∈ Z. Finally, since Spin(‹U) and Spin(‹V ) commute, we

conclude that fh ∈ w(Spin(‹U))w(Spin(‹V )) ⊆ w(Spin(V )), whence g ∈ w(Γ),

as stated. �

6.4. Suzuki and Ree groups. Let p be either 2 or 3, G a simple algebraic

group over Fp, of type B2 or F4 if p = 2 and of type G2 if p = 3. There exists

a (noncentral) isogeny Φ: G→ G such that Φ2 coincides with the p-Frobenius

F , and (with a finite number of small exceptions) G(Fp)Φ2f+1
is a finite simple

group, namely a Suzuki or Ree group. The goal of this section is to prove the

following proposition:

Proposition 6.4.1. If w = w1w2, where w1 and w2 are nontrivial dis-

joint words, then w(Γ) = Γ for all sufficiently large finite simple groups Γ of

Suzuki or Ree type.

Proof. We may fix p andG and prove that w is surjective on Γ=G(Fp)Φ2f+1

for all sufficiently large f . The proof is essentially that of [LS09, Th. 1.7], but

something more is needed because Φ2f+1 is not quite a Frobenius map, but

rather the square root of a Frobenius map.

By [LS09, Th. 3.3], if w : Gd → G is the word map, then for all Fq ⊂ Fp
and all nonidentity elements g ∈ G(Fq), w−1(g) is a geometrically connected

variety Xg over Fq = Fp2f+1 . A standard finiteness argument gives a uniform

bound, depending only on G and w, for the sum S of dimensions of all the

cohomology groups of Xg. A standard weight argument shows that if q1/4 > S,

then

(6.4.1)
∑
i

(−1)itr(ΦF f |H i(Xq,Q`)) 6= 0.

If we can interpret (6.4.1) as a sum of local terms indexed by fixed points

of Φ2f+1 acting on Xg, it would follow that X
Φ2f+1

g 6= ∅, which is what is

needed for the proposition. To do this, we use a strong version of the Deligne

conjecture due to Yakov Varshavsky [Var07]. Assuming f ≥ 1, Φ2f+1 factors
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through Frobenius on Gd, and is therefore contracting for every fixed point

in G(Fq)d and, a fortiori, for every fixed point in X
Φ2f+1

g . Applying [Var07,

Th. 2.1.3] to the graph of Φ2f+1, we conclude that the Lefschetz number is

indeed a sum over fixed points, and therefore that g ∈ w(Γ). �

7. Towards Thompson’s conjecture

7.1. Preliminaries. Let Γ be any finite non-abelian simple group. Thomp-

son’s conjecture states that Γ has a conjugacy class C such that C2 = Γ.

Results of Xu and Ellers-Gordeev (cf. [EG98] and the references therein), es-

tablish this for alternating groups and finite simple groups of Lie type defined

over finite fields of large enough size. More recent related results can be found

in [Sha09] and [Sha08]. In this section we prove Theorem 1.1.4, which may be

regarded as an asymptotic approximation of Thompson’s conjecture.

If Γ is a classical group, this was largely obtained in [MSW94, §2]. Indeed,

it is shown there that Γ contains two (semisimple) conjugacy classes C1, C2

such that C1C2 ⊇ Γ \ {1}, except possibly for Γ = PΩ+
4n(Fq). The same

result for exceptional groups was established in [LM99]. Here we use a similar

strategy to handle the remaining family PΩ+
4n(Fq) for groups of sufficiently

high order.

Applying the above results and choosing N = 2630 > |Ω+
36(F2)|, it suffices

to prove Theorem 1.1.4 for all Γ = PΩ+
2n(Fq) such that 2|n, 2 ≤ q ≤ 4 and

|Γ| > N . For such a group, the proof of [MSW94, Th. 2.6] implies the existence

of regular semisimple elements x, y such that only two nontrivial characters

χ ∈ Irr(Γ) can be nonzero at both x and y: the Steinberg character St and

another one, ρ. Unfortunately, |ρ(x)ρ(y)| = 2, making it difficult to show

that xΓyΓ ⊇ Γ \ {1}. To overcome this difficulty, we will work with regular

semisimple elements t1, t2 belonging to maximal tori T1 = T+,+
n−1,1 and T2 =

T−,−n−2,2 of G = Spin+
2n(Fq), respectively.

Proposition 7.1.1. Keep the above notation and assume that n is even

and n ≥ 6. Then for i = 1, 2, Ti contains a regular semisimple element ti. Fur-

thermore, there are exactly three nontrivial irreducible characters of G which

vanish neither on t1 nor on t2: the Steinberg character St of degree qn(n−1),

a character γ of degree q3(qn−3+1)(qn−2−1)(qn−1+1)(qn−1)
2(q−1)2(q2+1)

, and a character δ of

degree q(n−1)(n−4)γ(1). The values of each of these three characters at t1 and

t2 are ±1.

Proof. 1) Note that T1 contains a central product of the cyclic tori T+
n−1

of Spin+
2n−2(Fq) and T+

1 of Spin+
2 (Fq), and that Spin2 is an 1-dimensional

torus. Assuming n ≥ 4 and choosing t1 appropriately from this product so

that its component in T+
n−1 generates the torus, we see that t1 is regular. A
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similar argument applies to T2 when n ≥ 6. Now we fix such a pair of regular

semisimple elements {t1, t2}.
2) Let χ ∈ Irr(G) be such that χ(t1)χ(t2) 6= 0. Since n is even, the tori

T1 and T2 are weakly orthogonal by Proposition 2.6.1, whence χ is unipotent.

Now we will follow the proof of Proposition 3.3.1 (and its notation) closely

to identify the symbol Λ labeling χ. In particular, if wi ∈ W′n corresponds

to Ti, then w1 ∈ W′n−1 × W′1, and w2 = w21w22 with w21 ∈ Wn−2 \ W′n−2

and w22 ∈ W2 \ W′2. Furthermore, w1 projects onto π1 = (12 · · ·n − 1)(n)

and w2 projects onto π2 = (12 · · ·n − 2)(n − 1, n). As shown in the proof of

Proposition 3.3.1, Λ = (X,Y ) is nondegenerate, its set Z1 of singles has even

size 2d ≤ 4, and there are subsets M1,M2 ⊂ Z1 of size d such that (3.3.1)

holds. In the notation of part 4) of that proof we now have that {k1, l1} =

{n, 0} or {n − 1, 1}, and {k2, l2} = {n, 0} or {n − 2, 2}. Consider for instance

the case where {k1, l1} = {k2, l2} = {n, 0}, i.e., α1, α2 ` n and β1, β2 = ∅. The

nonvanishing condition (3.3.1) implies that α1 is one of the partitions listed

in the second claim of Corollary 3.1.2 and α2 is as listed in Corollary 3.1.4.

Matching up the shapes of Z1 and Z2 as they come from (α1, β1) and from

(α2, β2), we can show that either Z1 = {0, n} and Z2 = ∅ or {1, 2, . . . , n− 1},
or Z1 = {0, 1, 2, n − 1} and Z2 = ∅, or Z1 = {0, n − 3, n − 2, n − 1} and

Z2 = {1, 2, . . . , n − 4}. The same arguments show that this conclusion about

Z1, Z2 also holds in the other three cases.

Assume Z1 = {0, n}. If Z2 = ∅, then χ = 1G. If Z2 = {1, 2, . . . , n − 1},
then χ = St. In both of these cases, |χ(ti)| = 1.

3) Consider the case where Z1 = {0, 1, 2, n − 1} and Z2 = ∅. Then

X = Z1 \ M ′ and Y = M ′ for some M ′ ⊆ Z1 of even size. We will use

[Lus82, Cor. (3.16)(ii)] to find χ(ti). To this end, we first compute the values

of the character [Θ] of W′n at w1 and w2, for the symbol Θ = (Z1 \M,M) and

M ⊂ Z1 of size 2:

([Θ](w1), [Θ](w2)) =


(−1, 1) if M = {0, 1} or {2, n− 1},
(−1, 0) if M = {0, 2} or {1, n− 1},

(0, 1) if M = {1, 2} or {0, n− 1}.

Now [Lus82, Cor. (3.16)(ii)] readily implies that χ(t2) = 0 if M ′ = {0, 1} or

{2, n− 1}, and χ(t1) = 0 if M ′ = ∅, {0, n− 1}, {1, 2}, or Z1. In the remaining

subcase M ′ = {0, 2} or {1, n− 1}, we get (χ(t1), χ(t2)) = (−1, 1) and

Λ =

Ç
1 n− 1

0 2

å
,

leading to the character γ, whose degree is computed using [Car93, §13.8].

Finally, consider the case where Z1 = {0, n − 3, n − 2, n − 1} and Z2 =

{1, 2, . . . , n−4}. Then X = Z2∪ (Z1 \M ′) and Y = Z2∪M ′ for some M ′ ⊆ Z1

of even size. We again compute the values of the character [Θ] of W′n at w1
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and w2, for the symbol Θ = (Z2 ∪ (Z1 \M), Z2 ∪M) and M ⊂ Z1 of size 2:

([Θ](w1), [Θ](w2)) =


(−1, 1) if M = {0, n− 3} or {n− 2, n− 1},
(−1, 0) if M = {0, n− 2} or {n− 3, n− 1},

(0, 1) if M = {0, n− 1} or {n− 3, n− 2}.

Using [Lus82, Cor. (3.16)(ii)], we can show that χ(t2) = 0 if M ′ = {0, n − 3}
or {n − 2, n − 1}, and χ(t1) = 0 if M ′ = ∅, {0, n − 1}, {n − 3, n − 2}, or

Z1. In the remaining subcase M ′ = {0, n − 2} or {n − 3, n − 1}, we get

(χ(t1), χ(t2)) = (−1, 1) and

Λ =

Ç
1 2 · · · n− 4 n− 3 n− 1

0 1 · · · n− 5 n− 4 n− 2

å
,

leading to the character δ. To compute δ(1), we look at the Steinberg character

St′ of Spin+
2n−6(Fq) labeled by Λ′ := (X \ {n − 1}, Y \ {n − 2}), of degree

q(n−3)(n−4). Using [Car93, §13.8], one can show that

δ(1)

St′(1)
=
q2n−5(qn−3 + 1)(qn−2 − 1)(qn−1 + 1)(qn − 1)

2(q − 1)2(q2 + 1)
,

and so δ(1) = q(n−1)(n−4)γ(1). �

7.2. Completion of the proof of Theorem 1.1.4. Now we assume |Γ| ≥ 2630,

which in particular implies that qn/2−4 ≥ 64 since q ≤ 4. We will show that

any noncentral element g ∈ G belongs to (t1)G · (t2)G. By Proposition 7.1.1,

it suffices to show that ∣∣∣∣∣γ(g)

γ(1)

∣∣∣∣∣+
∣∣∣∣∣δ(g)

δ(1)

∣∣∣∣∣+
∣∣∣∣∣St(g)

St(1)

∣∣∣∣∣ < 1.

According to [KL90, Table 5.2.A], the index of any proper subgroup of G is

larger than q2n−2, whence

|δ(g)|2 + |St(g)|2 < |CG(g)| < |G|/q2n−2 < q2n2−3n+2.

Also, notice that St(1) > δ(1) > qn
2−n−3/2. By the Cauchy-Schwarz inequal-

ity, ∣∣∣∣∣δ(g)

δ(1)

∣∣∣∣∣+
∣∣∣∣∣St(g)

St(1)

∣∣∣∣∣ <
»

2(|δ(g)|2 + |St(g)|2)

δ(1)
<

√
8

qn/2−4
<

1

20

as qn/2−4 > 64. Since |γ(g)/γ(1)| < 19/20 by (4.1.1), we are done. �
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des schémas et des morphismes de schémas. III, Inst. Hautes Études Sci.

Publ. Math. (1966), 255. MR 0217086. Zbl 0144.19904.

[GT04] R. M. Guralnick and P. H. Tiep, Cross characteristic representations

of even characteristic symplectic groups, Trans. Amer. Math. Soc. 356

(2004), 4969–5023. MR 2084408. Zbl 1062.20013. http://dx.doi.org/10.

1090/S0002-9947-04-03477-4.

[Jam78] G. D. James, The Representation Theory of the Symmetric Groups, Lec-

ture Notes in Math. 682, Springer-Verlag, New York, 1978. MR 0513828.

Zbl 0393.20009.

[KL90] P. Kleidman and M. Liebeck, The Subgroup Structure of the Finite

Classical Groups, London Math. Soc. Lecture Note Ser. 129, Cambridge

Univ. Press, Cambridge, 1990. MR 1057341. Zbl 0697.20004. http://dx.

doi.org/10.1017/CBO9780511629235.

[LS74] V. Landazuri and G. M. Seitz, On the minimal degrees of pro-

jective representations of the finite Chevalley groups, J. Algebra 32

(1974), 418–443. MR 0360852. Zbl 0325.20008. http://dx.doi.org/10.

1016/0021-8693(74)90150-1.

[LS08] M. Larsen and A. Shalev, Characters of symmetric groups: sharp

bounds and applications, Invent. Math. 174 (2008), 645–687. MR 2453603.

Zbl 1166.20009. http://dx.doi.org/10.1007/s00222-008-0145-7.

[LS09] , Word maps and Waring type problems, J. Amer. Math. Soc.

22 (2009), 437–466. MR 2476780. Zbl 1206.20014. http://dx.doi.org/10.

1090/S0894-0347-08-00615-2.

[LOST10] M. W. Liebeck, E. A. O’Brien, A. Shalev, and P. H. Tiep, The Ore

conjecture, J. Eur. Math. Soc. (JEMS) 12 (2010), 939–1008. MR 2654085.

Zbl 1205.20011. http://dx.doi.org/10.4171/JEMS/220.

[LS] M. W. Liebeck and G. M. Seitz, Unipotent and nilpotent classes in

simple algebraic groups and Lie algebras, preprint.

[LS99] M. W. Liebeck and A. Shalev, Simple groups, permutation groups,

and probability, J. Amer. Math. Soc. 12 (1999), 497–520. MR 1639620.

Zbl 0916.20003. http://dx.doi.org/10.1090/S0894-0347-99-00288-X.

[LS01] , Diameters of finite simple groups: sharp bounds and applications,

Ann. of Math. 154 (2001), 383–406. MR 1865975. Zbl 1003.20014. http:

//dx.doi.org/10.2307/3062101.
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