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On a problem in simultaneous Diophantine
approximation: Schmidt’s conjecture

By Dzmitry Badziahin, Andrew Pollington, and Sanju Velani

Dedicated to the memory of Graham Everest and Antonia J. Jones

Abstract

For any i, j > 0 with i + j = 1, let Bad(i, j) denote the set of points

(x, y) ∈ R2 for which max{‖qx‖1/i, ‖qy‖1/j} > c/q for all q ∈ N. Here

c = c(x, y) is a positive constant. Our main result implies that any finite

intersection of such sets has full dimension. This settles a conjecture of

Wolfgang M. Schmidt in the theory of simultaneous Diophantine approxi-

mation.

1. Introduction

A real number x is said to be badly approximable if there exists a positive

constant c(x) such that

‖qx‖ > c(x) q−1 ∀ q ∈ N .

Here and throughout ‖ · ‖ denotes the distance of a real number to the nearest

integer. It is well known that the set Bad of badly approximable numbers is

of Lebesgue measure zero. However, a result of Jarńık (1928) states that

(1) dimBad = 1 ,

where dimX denotes the Hausdorff dimension of the set X. Thus, in terms

of dimension the set of badly approximable numbers is maximal; it has the

same dimension as the real line. For details regarding Hausdorff dimension the

reader is referred to [3].

In higher dimensions there are various natural generalizations of Bad.

Restricting our attention to the plane R2, given a pair of real numbers i and j

such that

(2) 0 6 i, j 6 1 and i+ j = 1 ,
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a point (x, y) ∈ R2 is said to be (i, j)-badly approximable if there exists a

positive constant c(x, y) such that

max{‖qx‖1/i , ‖qy‖1/j} > c(x, y) q−1 ∀ q ∈ N .

Denote by Bad(i, j) the set of (i, j)-badly approximable points in R2. If i = 0,

then we use the convention that x1/i := 0, and so Bad(0, 1) is identified with

R×Bad. That is, Bad(0, 1) consists of points (x, y) with x ∈ R and y ∈ Bad.

The roles of x and y are reversed if j = 0. It easily follows from classical results

in the theory of metric Diophantine approximation that Bad(i, j) is of (two-

dimensional) Lebesgue measure zero. Building upon the work of Davenport

[2] from 1964, it has recently been shown in [7] that dimBad(i, j) = 2. For

further background and various strengthenings of this full dimension statement

the reader is referred to [4], [5], [7]. A consequence of the main result obtained

in this paper is the following statement.

Theorem 1. Let (i1, j1), . . . , (id, jd) be a finite number of pairs of real

numbers satisfying (2). Then

dim
( d⋂
t=1

Bad(it, jt)
)

= 2 .

Therefore, the intersection of any finitely many badly approximable sets

Bad(i, j) is trivially nonempty and thereby establishes the following conjecture

of Wolfgang M. Schmidt [8] from the eighties.

Schmidt’s conjecture For any (i1, j1) and (i2, j2) satisfying (2), we

have that

Bad(i1, j1) ∩Bad(i2, j2) 6= ∅ .

To be precise, Schmidt stated the specific problem with i1 = 1/3 and

j1 = 2/3, and even this has previously resisted attack. Indeed, the statement

dim(Bad(1, 0) ∩Bad(0, 1) ∩Bad(i, j)) = 2

first obtained in [7] sums up all previously known results.

As noted by Schmidt, a counterexample to his conjecture would imply the

famous Littlewood conjecture: for any (x, y) ∈ R2,

lim inf
q→∞

q ‖qx‖ ‖qy‖ = 0 .

Indeed, the same conclusion is valid if there exists any finite (or indeed count-

able) collection of pairs (it, jt) satisfying (2) for which the intersection of the

sets Bad(it, jt) is empty. However, Theorem 1 implies that no such finite collec-

tion exists and Littlewood’s conjecture remains very much alive and kicking.
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For background and recent developments regarding Littlewood’s conjecture,

see [6], [9].

1.1. The main theorem. The key to establishing Theorem 1 is to inves-

tigate the intersection of the sets Bad(it, jt) along fixed vertical lines in the

(x, y)-plane. With this in mind, let Lx denote the line parallel to the y-axis

passing through the point (x, 0). Next, for any real number 0 6 i 6 1, define

the set

Bad(i) := {x ∈ R : ∃ c(x) > 0 so that ‖qx‖ > c(x) q−1/i ∀ q ∈ N} .

Clearly,

(3) Bad = Bad(1) ⊆ Bad(i) ,

which together with (1) implies that

(4) dimBad(i) = 1 ∀ i ∈ [0, 1] .

In fact, a straightforward argument involving the Borel-Cantelli lemma from

probability theory enables us to conclude that, for i < 1, the complement of

Bad(i) is of Lebesgue measure zero. In other words, for i < 1, the set Bad(i)

is not only of full dimension but of full measure.

We are now in the position to state our main theorem.

Theorem 2. Let (it, jt) be a countable number of pairs of real numbers

satisfying (2) and let i := sup{it : t ∈ N}. Suppose that

(5) lim inf
t→∞

min{it, jt} > 0 .

Then, for any θ ∈ Bad(i), we have that

dim
( ∞⋂
t=1

Bad(it, jt) ∩ Lθ
)

= 1 .

The hypothesis imposed on θ is absolutely necessary. Indeed, for θ /∈
Bad(i), it is readily verified that the intersection of the sets Bad(it, jt) along

the line Lθ is empty; see Section 1.3 for the details. However, in view of (3),

the dependence of θ on i and therefore the pairs (it, jt) can be entirely removed

by insisting that θ ∈ Bad. Obviously, the resulting statement is cleaner but

nevertheless weaker than Theorem 2.

On the other hand, the statement of Theorem 2 is almost certainly valid

without imposing the ‘lim inf’ condition. Indeed, this is trivially true if the

number of (it, jt) pairs is finite. In the course of establishing the theorem, it

will become evident that in the countable ‘infinite’ case we require (5) for an

important but nevertheless technical reason. It would be desirable to remove

(5) from the statement of the theorem.
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The following corollary is technically far easier to establish than the the-

orem and is more than adequate for establishing Schmidt’s conjecture.

Corollary 1. Let (i1, j1), . . . , (id, jd) be a finite number of pairs of real

numbers satisfying (2). Then, for any θ ∈ Bad, we have that

d⋂
t=1

Bad(it, jt) ∩ Lθ 6= ∅ .

We give a self-contained proof of the corollary during the course of estab-

lishing Theorem 2.

Remark. The corollary is of independent interest even when d = 1. Since

the work of Davenport [2], it has been known that there exist badly approx-

imable numbers x and y such that (x, y) is also a badly approximable pair;

i.e., Bad(1, 0) ∩Bad(0, 1) ∩Bad(1/2, 1/2) 6= ∅. However it was not possible,

using previous methods, to specify which x one might take. Corollary 1 implies

that we can take x to be any badly approximable number. So, for example,

there exist y ∈ Bad such that (
√

2, y) ∈ Bad(1/2, 1/2). Moreover, Theorem 2

implies that

dim
Ä
{y ∈ Bad : (

√
2, y) ∈ Bad(1/2, 1/2)}

ä
= 1 .

1.2. Theorem 2 =⇒ Theorem 1. We show that Theorem 2 implies the

following countable version of Theorem 1.

Theorem 1′ . Let (it, jt) be a countable number of pairs of real numbers

satisfying (2). Suppose that (5) is also satisfied. Then

dim
( ∞⋂
t=1

Bad(it, jt)
)

= 2 .

Note that if the number of (it, jt) pairs is finite, the ‘lim inf’ condition is

trivially satisfied and Theorem 1′ reduces to Theorem 1.

We proceed to establish Theorem 1′ modulo Theorem 2. Since any set

Bad(i, j) is a subset of R2, we immediately obtain the upper bound result

that

dim
( ∞⋂
t=1

Bad(it, jt)
)
6 2 .

The following general result that relates the dimension of a set to the di-

mensions of parallel sections, enables us to establish the complementary lower

bound estimate; see [3, p. 99].

Proposition . Let F be a subset of R2 and let E be a subset of the x-axis.

If dim(F ∩ Lx) > t for all x ∈ E, then dimF > t+ dimE.
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With reference to the proposition, let F be a countable intersection of

Bad(i, j) sets and let E be the set Bad. In view of (1) and Theorem 2,

the lower bound result immediately follows. Since (1) is classical and the

upper bound statement for the dimension is trivial, the main ingredient in

establishing Theorem 1′ (and therefore Theorem 1) is Theorem 2.

Remark. It is self-evident that removing (5) from the statement of The-

orem 2 would enable us to remove (5) from the statement of Theorem 1′. In

other words, it would enable us to established in full the countable version of

Schmidt’s conjecture.

1.3. The dual form. At the heart of the proof of Theorem 2 is an intervals

construction that enables us to conclude that

Bad(i, j) ∩ Lθ 6= ∅ ∀ θ ∈ Bad(i) .

Note that this is essentially the statement of Corollary 1 with d = 1. The case

when either i = 0 or j = 0 is relatively straightforward, so let us assume that

(6) 0 < i, j < 1 and i+ j = 1 .

In order to carry out the construction alluded to above, we shall work with

the equivalent dual form representation of the set Bad(i, j). In other words,

a point (x, y) ∈ Bad(i, j) if there exists a positive constant c(x, y) such that

(7) max{|A|1/i, |B|1/j} ‖Ax−By‖ > c(x, y) ∀ (A,B) ∈ Z2\{(0, 0)} .

Consider for the moment the case B = 0. Then, (7) simplifies to the statement

that

|A|1/i ‖Ax‖ > c(x) ∀ A ∈ Z\{0} .

It now becomes obvious that for a point (x, y) in the plane to have any chance

of being in Bad(i, j), we must have that x ∈ Bad(i). Otherwise, (7) is vio-

lated and Bad(i, j) ∩ Lx = ∅. This justifies the hypothesis imposed on θ in

Theorem 2.

For i and j satisfying (6), the equivalence of the ‘simultaneous’ and ‘dual’

forms of Bad(i, j) is a consequence of the transference principle described in [1,

Chap. 5]. To be absolutely precise, without obvious modification, the principle

as stated in [1] only implies the equivalence in the case i = j = 1/2. In view of

this and for the sake of completeness, we have included the modified statement

and its proof as an appendix.

Notation. For a real number r we denote by [r] its integer part and by dre
the smallest integer not less than r. For a subset X of Rn we denote by |X|
its Lebesgue measure.



1842 D. BADZIAHIN, A. POLLINGTON, and S. VELANI

2. The overall strategy

Fix i and j satisfying (6) and θ ∈ Bad(i) satisfying 0 < θ < 1. Let Θ

denote the segment of the vertical line Lθ lying within the unit square; i.e.,

Θ := {(x, y) : x = θ, y ∈ [0, 1]} .

In this section we describe the basic intervals construction that enables us to

conclude that

Bad(i, j) ∩Θ 6= ∅ .

As mentioned in Section 1.3, the basic construction lies at the heart of

establishing Theorem 2.

2.1. The sets Badc(i, j). For any constant c > 0, let Badc(i, j) denote

the set of points (x, y) ∈ R2 such that

(8) max{|A|1/i, |B|1/j} ‖Ax−By‖ > c ∀ (A,B) ∈ Z2\{(0, 0)} .

It is easily seen that Badc(i, j) ⊂ Bad(i, j) and

Bad(i, j) =
⋃
c>0

Badc(i, j) .

Geometrically, given integers A,B,C with (A,B) 6= (0, 0), consider the line

L = L(A,B,C) defined by the equation

Ax−By + C = 0 .

The set Badc(i, j) simply consists of points in the plane that avoid the

c

max{|A|1/i, |B|1/j}
√
A2 +B2

thickening of each line L; alternatively, points in the plane that lie within any

such neighbourhood are removed. With reference to our fixed θ ∈ Bad(i), let

us assume that

(9) c(θ) > c > 0 .

Then, by definition

(10) |A|1/i ‖Aθ‖ > c ∀ A ∈ Z\{0}

and the line Lθ (and therefore the segment Θ) avoids the thickening of any

vertical line L = L(A, 0, C). Thus, without loss of generality, we can assume

that B 6= 0. With this in mind, it is easily verified that the thickening of a line

L = L(A,B,C) will remove from Θ an interval ∆(L) centered at (θ, y) with

y =
Aθ + C

B
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and length

(11) |∆(L)| = 2c

H(A,B)
where H(A,B) := |B|max{|A|1/i, |B|1/j} .

For reasons that will soon become apparent, the quantity H(A,B) will be

referred to as the height of the line L(A,B,C). In short, the height determines

the amount of material a line removes from the fixed vertical line Lθ and

therefore from Θ.

The upshot of the above analysis is that the set

Badc(i, j) ∩Θ

consists of points (θ, y) in the unit square which avoid all intervals ∆(L) arising

from lines L = L(A,B,C) with B 6= 0. Since

Badc(i, j) ∩Θ ⊂ Bad(i, j) ∩Θ ,

the name of the game is to show that we have something left after removing

these intervals.

Remark 1. The fact that we have restricted our attention to Θ rather than

working on the whole line Lθ is mainly for convenience. It also means that for

any fixed A and B, there are only a finite number of lines L = L(A,B,C) of

interest; i.e., lines for which ∆(L) ∩ Θ 6= ∅. Indeed, with c 6 1/2 the number

of such lines is bounded above by |B|+ 2.

Remark 2. Without loss of generality, when considering lines L=L(A,B,C)

we will assume that

(12) (A,B,C) = 1 and B > 0 .

Otherwise we can divide the coefficients of L by their common divisor or by

−1. Then the resulting line L′ will satisfy the required conditions and moreover

∆(L′) ⊇ ∆(L). Therefore, removing the interval ∆(L′) from Θ takes care of

removing ∆(L).

Note that in view of (12), for any line L = L(A,B,C), we always have

that H(A,B) > 1.

2.2. Description of basic construction. Let R > 2 be an integer. Choose

c1 = c1(R) sufficiently small so that

(13) c1 6 1
4R
− 3i
j

and

(14) c :=
c1

R1+α
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satisfies (9) with

(15) α := 1
4 ij .

We now describe the basic construction that enables us to conclude that

(16) Badc(i, j) ∩Θ 6= ∅ .

We start by subdividing the segment Θ from the (θ, 0) end into closed intervals

J0 of equal length c1. Denote by J0 the collection of intervals J0. Thus,

#J0 = [c−11 ] .

The idea is to establish, by induction on n, the existence of a collection Jn of

closed intervals Jn such that Jn is nested in Jn−1; that is, each interval Jn in

Jn is contained in some interval Jn−1 in Jn−1. The length of an interval Jn
will be given by

|Jn| := c1R
−n ,

and each interval Jn in Jn will satisfy the condition that

(17) Jn ∩∆(L) = ∅ ∀ L = L(A,B,C) with H(A,B) < Rn−1 .

In particular, we put

Kc = Kc(R) :=
∞⋂
n=1

⋃
J∈Jn

J .

By construction, we have that

Kc ⊂ Badc(i, j) ∩Θ .

Moreover, since the intervals Jn are nested, in order to establish (16) it suffices

to show that each Jn is nonempty; i.e.,

#Jn > 1 ∀ n = 0, 1, . . . .

The induction. For n = 0, we trivially have that (17) is satisfied for any

interval J0 ∈ J0. The point is that in view of (12), there are no lines satisfying

the height condition H(A,B) < 1. For the same reason, (17) with n = 1 is

trivially satisfied for any interval J1 obtained by subdividing each J0 in J0 into

R closed intervals of equal length c1R
−1. Denote by J1 the resulting collection

of intervals J1 and note that

#J1 = [c−11 ]R .

In general, given Jn satisfying (17) we wish to construct a nested collection

Jn+1 of intervals Jn+1 for which (17) is satisfied with n replaced by n+ 1. By

definition, any interval Jn in Jn avoids intervals ∆(L) arising from lines with

height bounded above by Rn−1. Since any ‘new’ interval Jn+1 is to be nested
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in some Jn, it is enough to show that Jn+1 avoids intervals ∆(L) arising from

lines L = L(A,B,C) with height satisfying

(18) Rn−1 6 H(A,B) < Rn .

Denote by C(n) the collection of all lines satisfying this height condition.

Throughout, we are already assuming that lines satisfy (12). Thus, formally

C(n) := {L = L(A,B,C) : L satsifies (12) and (18)} ,

and it is precisely this collection of lines that comes into play when constructing

Jn+1 from Jn. We now proceed with the construction.

Stage 1: The collection In+1. We subdivide each Jn in Jn into R closed

intervals In+1 of equal length and denote by In+1 the collection of such inter-

vals. Thus,

|In+1| = c1R
−n−1 and #In+1 = R×#Jn .

In view of the nested requirement, the collection Jn+1 which we are attempting

to construct will be a subcollection of In+1. In other words, the intervals In+1

represent possible candidates for Jn+1. The goal now is simple — it is to

remove those ‘bad’ intervals In+1 from In+1 for which

(19) In+1 ∩∆(L) 6= ∅ for some L ∈ C(n) .

Note that the number of bad intervals that can be removed by any single line

L = L(A,B,C) is bounded by

(20)
|∆(L)|
|In+1|

+ 2 = 2
cRn+1

c1H(A,B)
+ 2 =

2Rn−α

H(A,B)
+ 2 .

Thus any single line L in C(n) can remove up to [2R1−α] + 2 intervals from

In+1. Suppose that we crudely remove this maximum number for each L in

C(n). Then, for n large enough, a straightforward calculation shows that all

the intervals from In+1 are eventually removed and the construction comes to

a halt. In other words, we need to be much more sophisticated in our approach.

Stage 2: Trimming. Even before considering the effect that lines from

C(n) have on intervals in In+1, we trim the collection In+1 by removing from

each Jn the first dR1−αe subintervals In+1 from each end. Let us denote by J−n
the resulting ‘trimmed’ interval and by I −n+1 the resulting ‘trimmed’ collection.

This process removes #Jn × 2 dR1−αe intervals In+1 from In+1 regardless of

whether an interval is bad or not. However, it ensures that for any remaining

interval In+1 in I −n+1 which satisfies (19), the line L itself must intersect the

associated interval Jn within which In+1 is nested. The upshot of ‘trimming’

is that when considering (19), we only need to consider those lines L from C(n)

for which

Jn ∩ L 6= ∅ for some Jn ∈ Jn .
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The intervals ∆(L) arising from the ‘other’ lines are either removed by the

trimming process or they do not even intersect intervals in Jn and therefore

they cannot possibly remove any intervals from In+1.

The sought after collection Jn+1 is precisely that obtained by removing

those ‘bad’ intervals In+1 from I −n+1 which satisfy (19). Formally, for n > 1,

we let

(21) Jn+1 := {In+1 ∈ I −n+1 : ∆(L) ∩ In+1 = ∅ ∀ L ∈ C(n)} .

For any strictly positive ε < 1
2 α

2 and R > R0(ε) sufficiently large, we claim

that

(22) #Jn+1 > (R− 5R1−ε)×#Jn ∀ n = 0, 1, . . . .

Clearly, this implies that

#Jn+1 > (R− 5R1−ε)n+1 > 1

which in turn completes the proof of the induction step and therefore estab-

lishes (16). Thus, our goal now is to justify (22).

Stage 3: The subcollection C(n, l). In the first instance, we subdivide the

collection C(n) of lines into various subcollections that reflect a common geo-

metric configuration. For any integer l > 0, let C(n, l) ⊂ C(n) denote the

collection of lines L = L(A,B,C) satisfying the additional condition that

(23) R−λ(l+1)R
nj
j+1 6 B < R−λlR

nj
j+1 ,

where

λ := 3/j > 1 .

Thus the B variable associated with any line in C(n, l) is within a tight range

governed by (23). In view of (18), it follows that B1+1/j < Rn , and so 1 6

B < R
nj
j+1 . Therefore,

0 6 l <
nj

λ(j + 1)
< n .

A useful ‘algebraic’ consequence of imposing (23) is that

(24) H(A,B) = |B| |A|1/i ∀ L(A,B,C) ∈ C(n, l > 0) .

To see this, suppose that the B1/j term is the maximum term associated with

H(A,B). Then, by (18) we have that

B ·B1/j > Rn−1 =⇒ B > R
(n−1)j
j+1 .

Thus, by definition, L(A,B,C) ∈ C(n, 0). Moreover, in view of (24) and the

definition of C(n, l), it follows that

(25) R(λl−1)i ·R
ni
j+1 < |A| < Rλ(l+1)iR

ni
j+1 ∀ L(A,B,C) ∈ C(n, l > 0) .



SCHMIDT’S CONJECTURE 1847

The upshot is that for l > 0, both the A and B variables associated with lines

in C(n, l) are tightly controlled. The above consequences of imposing (23) are

important but are out weighed by the significance of the following ‘geometric’

consequence.

Theorem 3. All lines from C(n, l) that intersect a fixed interval Jn−l ∈
Jn−l pass through a single rational point P .

The theorem is proved in Section 4. It implies that if we have three or

more lines from C(n, l) passing through any fixed interval Jn−l, then the lines

cannot possibly enclose a triangular region. In short, triangles are not allowed.

The theorem represents a crucial ingredient towards establishing the following

counting statement. Let l > 0 and Jn−l ∈ Jn−l. Then, for any strictly positive

ε < 1
2α

2 and R > R0(ε) sufficiently large, we have that

(26) #{In+1 ∈ I −n+1 : Jn−l∩∆(L)∩In+1 6= ∅ for some L ∈ C(n, l)} 6 R1−ε .

Armed with this estimate it is reasonably straightforward to establish (22).

We use induction. For n = 0, we have that

#J1 = R×#J0 ,

and so (22) is obviously true. For n > 1, we suppose that

#Jk+1 > (R− 5R1−ε)×#Jk ∀ k = 0, 1, . . . , n− 1

and proceed to establish the statement for k = n. In view of (26), we have that

the total number of intervals In+1 removed from I −n+1 by lines from C(n, l) is

bounded above by

R1−ε ×#Jn−l .

It now follows that

#{In+1 ∈ I −n+1 : ∆(L) ∩ In+1 6= ∅ for some L ∈ C(n)}(27)

6
n∑
l=0

R1−ε #Jn−l 6 R1−ε #Jn +R1−ε
n∑
l=1

#Jn−l .

In view of the induction hypothesis, for R sufficiently large, we have that

n∑
l=1

#Jn−l 6 #Jn
∞∑
l=1

(R− 5R1−ε)−l 6 2 #Jn ,

and so

(28) l.h.s. of (27) 6 3 R1−ε #Jn.
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Therefore, for R sufficiently large,

#Jn+1 = #I −n+1 − l.h.s. of (27)

> (R− 2 dR1−αe) #Jn − 3 R1−ε #Jn

= (R− 5R1−ε) #Jn .

This completes the induction step and therefore establishes (22). Thus, our

goal now is to justify (26).

Stage 4: The subcollection C(n, l, k). Clearly, when attempting to estab-

lish (26), we are only interested in lines L = L(A,B,C) in C(n, l) which remove

intervals. In other words, ∆(L) ∩ In+1 6= ∅ for some In+1 ∈ I −n+1. Now the

total number of intervals that a line L can remove depends on the actual value

of its height. In the situation under consideration, the height satisfies (18).

Therefore, in view of (20), the total number of intervals In+1 removed by L

can vary anywhere between 1 and [2R1−α] + 2. In a nutshell, this variation is

too large to handle and we need to introduce a tighter control on the height.

For any integer k > 0, let C(n, l, k) ⊂ C(n, l) denote the collection of lines

L = L(A,B,C) satisfying the additional condition that

(29) 2kRn−1 6 H(A,B) < 2k+1Rn−1 .

In view of (18), it follows that

(30) 0 6 k <
logR

log 2
.

The following counting result implies (26) and indeed represents the technical

key to unlocking Schmidt’s conjecture.

Theorem 4. Let l, k > 0 and Jn−l ∈ Jn−l. Then, for any strictly positive

ε < α2 and R > R0(ε) sufficiently large, we have that

(31)

#{In+1 ∈ I −n+1 : Jn−l ∩∆(L) ∩ In+1 6= ∅ for some L ∈ C(n, l, k)} 6 R1−ε .

Theorem 4 is proved in Section 6. It is in this proof that we make use of

Theorem 3. Note that the latter is applicable since C(n, l, k) ⊂ C(n, l). Also

note that in view of the ‘trimming’ process, when considering (31) we can

assume that Jn−l ∩L 6= ∅. With Theorem 4 at our disposal, it follows that for

R sufficiently large,

l.h.s. of (26) 6
logR

log 2
×R1−ε 6 R1− 1

2
ε .

This establishes (26) and completes the description of the basic construction.
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Remark. We emphasize that from the onset of this section we have fixed

i and j satisfying (6). Thus this condition on i and j is implicit within the

statements of Theorems 3 and 4.

3. Proof of Corollary 1: Modulo Theorems 3 and 4

Modulo Theorems 3 and 4, the basic construction of Section 2.2 yields the

statement of Corollary 1 for any single (i, j) pair satisfying (6). We now show

that with very little extra effort, we can modify the basic construction to simul-

taneously incorporate any finite number of (i, j) pairs satisfying (2). In turn,

this will prove Corollary 1 in full and thereby establish Schmidt’s conjecture.

3.1. Modifying the basic construction for finite pairs. To start with we

suppose that the d given pairs (i1, j1), . . . , (id, jd) in Corollary 1 satisfy (6).

Note that for each t = 1, . . . , d, the height H(A,B) of a given line L =

L(A,B,C) is dependent on the pair (it, jt). In view of this and with refer-

ence to Section 2, let us write Ht(A,B) for H(A,B), ∆t(L) for ∆(L) and Ct(n)

for C(n). With this in mind, let R > 2 be an integer. Choose c1 = c1(R)

sufficiently small so that

c1 6 1
4R
−3it/jt ∀ 1 6 t 6 d ,

and for each t = 1, . . . , d,

c(t) :=
c1

R1+αt

satisfies (9) with

αt := 1
4 it jt .

Note that with this choice of c1 we are able to separately carry out the basic

construction of Section 2.2 for each (it, jt) pair and therefore conclude that

Badc(t)(it, jt) ∩Θ 6= ∅ ∀ 1 6 t 6 d .

We now describe the minor modifications to the basic construction that enable

us to simultaneously deal with the d given (it, jt) pairs and therefore conclude

that
d⋂
t=1

Badc(t)(it, jt) ∩Θ 6= ∅ .

The modifications are essentially at the ‘trimming’ stage and in the manner in

which the collections Jn for n > 2 are defined.

Let c1 be as above. Define the collections J0 and J1 as in the basic

construction. Also Stage 1 of the ‘induction’ in which the collection In+1 is

introduced remains unchanged. However, the goal now is to remove those ‘bad’

intervals In+1 from In+1 for which

(32) In+1 ∩∆t(L) 6= ∅ for some t = 1, . . . , d and L ∈ Ct(n) .
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Regarding Stage 2, we trim the collection In+1 by removing from each Jn the

first dR1−αmine subintervals In+1 from each end. Here

αmin := min{α1, . . . , αd} .

This gives rise to the trimmed collection I−n+1, and we define Jn+1 to be the

collection obtained by removing those ‘bad’ intervals In+1 from I−n+1 which

satisfy (32). In other words, for n > 1, we let

Jn+1 := {In+1 ∈ I −n+1 : ∆t(L) ∩ In+1 = ∅ ∀ 1 6 t 6 d and L ∈ Ct(n)} .

Apart from obvious notational modifications, Stages 3 and 4 remain pretty

much unchanged and enable us to establish (28) for each t = 1, . . . , d. That is,

for any strictly positive ε < 1
2α

2
t and R > R0(ε) sufficiently large,

(33) #{In+1 ∈ I −n+1 : ∆t(L)∩In+1 6= ∅ for some L ∈ Ct(n)} 6 3R1−ε #Jn .

It follows that for any strictly positive ε < 1
2 α

2
min and R > R0(ε) sufficiently

large,

#Jn+1 = #I −n+1 −
d∑
t=1

l.h.s. of (33)

> (R− 2 dR1−αmine) #Jn − 3d R1−ε #Jn
= (R− 5dR1−ε) #Jn ∀ n = 0, 1, . . . .

The upshot is that

#Jn > (R− 5dR1−ε)n > 1 ∀ n = 0, 1, . . . ,

and therefore
d⋂
t=1

Badc(t)(it, jt) ∩Θ ⊃
∞⋂
n=1

⋃
J∈Jn

J 6= ∅ .

This establishes Corollary 1 in the case the pairs (it, jt) satisfy (6). In order

to complete the proof in full, we need to deal with the pairs (1, 0) and (0, 1).

3.2. Dealing with (1, 0) and (0, 1). By definition, Bad(1, 0) = {(x, y) ∈
R2 : x ∈ Bad}. Thus, the condition that θ ∈ Bad imposed in Corollary 1

implies that

Bad(1, 0) ∩ Lθ = Lθ .

In other words, the pair (1, 0) has absolutely no effect when considering the

intersection of any number of different Bad(i, j) sets with Lθ nor does it in

anyway effect the modified construction of Section 3.1.

In order to deal with intersecting Bad(0, 1) with Lθ, we show that the

pair (0, 1) can be easily integrated within the modified construction. To start

with, note that

Bad(0, 1) ∩Θ = {(θ, y) ∈ [0, 1)2 : y ∈ Bad}.
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With c1 as in Section 3.1, let

(34) c :=
c1

2R2
.

For the sake of consistency with the previous section, for n > 0, let

C(n) :=
¶
p/q ∈ Q : Rn−1 6 H(p/q) < Rn

©
where H(p/q) := q2 .

Furthermore, let ∆(p/q) be the interval centered at (θ, p/q) with length

|∆(p/q)| := 2c

H(p/q)
.

With reference to Section 3.1, suppose that (it, jt) is (0, 1) for some t = 1, . . . , d.

Since C(n) = ∅ for n = 0, the following analogue of (33) allows us to deal with

the pair (0, 1) within the modified construction. For R > 4, we have that

(35) #{In+1 ∈ I −n+1 : ∆(p/q) ∩ In+1 6= ∅ for some p/q ∈ C(n)} 6 3 #Jn .

To establish this estimate we proceed as follows. First note that in view of

(34), we have that

|∆(p/q)|
|In+1|

6 1 .

Thus, any single interval ∆(p/q) removes at most three intervals In+1 from

In+1. Next, for any two rationals p1/q1, p2/q2 ∈ C(n), we have that∣∣∣∣p1q1 − p2
q2

∣∣∣∣ > 1

q1q2
> R−n > c1R

−n .

Thus, there is at most one interval ∆(p/q) that can possibly intersect any given

interval Jn from Jn. This together with the previous fact establishes (35).

4. Proof of Theorem 3

Let R > 2 be an integer. We start by showing that two parallel lines from

C(n, l) cannot intersect Jn−l. For any line L(A,B,C) ∈ C(n, l), we have that

RλlR
− nj
j+1

(23)
< B−1 .

Thus, if two parallel lines L1(A1, B1, C1) and L2(A2, B2, C2) from C(n, l) in-

tersect Jn−l, we must have that

R2λlR
− 2nj
j+1 ≤ 1

B1B2
≤
∣∣∣∣C1

B1
− C2

B2

∣∣∣∣ 6 |Jn−l| = c1R
−n+l .

However, this is clearly false since c1 < 1 < λ and 2j < j + 1.

Now suppose we have three lines L1, L2 and L3 from C(n, l) that intersect

Jn−l but do not intersect one another at a single point. In view of the above

discussion, the three lines Lm = L(Am, Bm, Cm) corresponding to m = 1, 2 or 3



1852 D. BADZIAHIN, A. POLLINGTON, and S. VELANI

cannot be parallel to one another, and therefore we must have three distinct

intersection points:

P12 = L1 ∩ L2 , P13 = L1 ∩ L3 and P23 = L2 ∩ L3 .

Since P12, P13 and P23 are rational points in the plane, they can be represented

in the form

Pst =

Å
pst
qst
,
rst
qst

ã
(1 6 s < t 6 3) ,

where
pst
qst

=
BsCt −BtCs
AsBt −AtBs

and
rst
qst

=
AsCt −AtCs
AsBt −AtBs

.

In particular, there exists an integer kst 6= 0 such that

kstqst = AsBt −AtBs and kstpst = BsCt −BtCs

and, without loss of generality, we can assume that qst > 0. On a slightly

different note, the three intersection points Ym := Lm ∩ Jn−l are obviously

distinct and it is easily verified that

Ym =
(
θ,
Amθ + Cm

Bm

)
(1 6 m 6 3) .

Let T(P12P13P23) denote the triangle subtended by the points P12, P23 and

P13. Then twice the area of the triangle is equal to the absolute value of the

determinant

det :=

∣∣∣∣∣∣∣∣∣
1 p12/q12 r12/q12

1 p13/q13 r13/q13

1 p23/q23 r23/q23

∣∣∣∣∣∣∣∣∣ .
It follows that

(36) areaT(P12P13P23) >
1

2q12q13q23
.

On the other hand, notice that the triangle T(P12P13P23) is covered by the

union of triangles T(Y1Y2P12) ∪ T(Y1Y3P13) ∪ T(Y2Y3P23). Thus

areaT(P12P13P23) 6 areaT(Y1Y2P12) + areaT(Y1Y3P13) + areaT(Y2Y3P23).

Without loss of generality, assume that T(Y1Y2P12) has the maximum area.

Then

areaT(P12P13P23) 6 3 · areaT(Y1Y2P12) =
3

2
|Y1 − Y2| ·

∣∣∣∣θ − p12
q12

∣∣∣∣ .
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Now observe that

c1R
−n+l = |Jn−l| > |Y1 − Y2| =

|(A1B2 −A2B1)θ − (B1C2 −B2C1)|
|B1B2|

=
|k12 q12θ − k12 p12|

B1B2

>
|q12θ − p12|
B1B2

.

Hence

areaT(P12P13P23) 6
3

2
c21R

−2(n−l) 1

q12
B1B2 .

Therefore, on combining with (36), we have that

(37) R2n 6 3c21R
2lB1B2q13q23 .

On making use of the fact that c1 satisfies (13) and so

(38) 4c1R
λi 6 1 ,

we now show that the previous inequality (37) is in fact false. As a consequence,

the triangle T(P12P13P23) has zero area and therefore cannot exist. Thus, if

there are two or more lines from C(n, l) that intersect Jn−l, then they are forced

to intersect one another at a single point.

On using the fact that qst 6 |As|Bt + |At|Bs, it follows that

r.h.s. of (37) 6 3 c21R
2lB1B2 (|A1|B3 + |A3|B1) (|A2|B3 + |A3|B2)(39)

= 3 c21R
2lB1B2

(
|A1|B3|A2|B3c|A1|B3|A3|B2

+ |A3|B1|A2|B3 + |A3|B1|A3|B2

)
.

By making use of (18) and (23), it is easily verified that

|At|Bt = |At|Bi
t B

j
t < Rni R−λjl R

n j2

j+1 = R−λjlR
n
j+1 .

In turn it follows that each of the first three terms associated with (39) is

bounded above by

3c21R
2l(1−(1+j)λ)R2n

λ>1
6 3c21R

2n .

Turning our attention to the fourth term, since L1, L3 ∈ C(n, l), we have via

(23) that B1 6 RλB3. Therefore,

3c21R
2l|A3|2B2

1B
2
2 6 3c21R

2l+2λi (|A3|Bi
3)

2B2j
1 B

2
2

6 3c21R
2l(1−λj−λ)+2λiR2n

λ>1
6 3c21R

2λiR2n .
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On combining this with the estimate for the first three terms, we have that

r.h.s. of (37) 6 R2n(9c21 + 3c21R
2λi) < R2n 12c21R

2λi
(38)
< R2n .

Clearly this is not compatible with the left-hand side of (37), and therefore we

must have that (37) is false.

Remark. It is evident from the proof that the statement of Theorem 3 is

true for any fixed interval of length |Jn−l| := c1R
−(n−l).

5. Preliminaries for Theorem 4

In this section, we make various observations and establish results that

are geared towards proving Theorem 4. Throughout, R > 2 is an integer, and

for n ∈ N and τ ∈ R>0, we let

J = J(n, τ)

denote a generic interval contained within Θ of length τR−n. Note that the

position of J within Θ is not specified. Also, for an integer k > 0, we let C(n, k)

denote the collection of lines from C(n) with height satisfying the additional

condition given by (29); that is,

C(n, k) :=
¶
L = L(A,B,C) ∈ C(n) : 2kRn−1 6 H(A,B) < 2k+1Rn−1

©
.

Trivially, for any l ≥ 0, we have that

C(n, l, k) ⊂ C(n, k) .

No confusion with the collection C(n, l) introduced earlier in Section 2.2 should

arise. The point is that beyond Theorem 3, the collection C(n, l) plays no

further role in establishing Theorem 4 and therefore will not be explicitly

mentioned.

5.1. A general property. The following is a general property concerning

points in the set Bad(i) and lines passing through a given rational point in

the plane.

Lemma 1. Let θ ∈ Bad(i) and P := (pq ,
r
q ) be a rational point such that

|qθ − p| < c(θ) q−i .

Then there exists a line L = L(A,B,C) passing through P with |A| 6 qi and

0 < B 6 qj .

Proof. Consider the set

ap− br (mod q) where 0 6 a 6 [qi] and 0 6 b 6 [qj ] .

The number of such pairs (a, b) is

(qi + 1− {qi})(qj + 1− {qj}) > q.
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Therefore, by the ‘pigeon hole’ principle, there exist pairs (a1, b1) and (a2, b2)

such that

a1p− b1r ≡ a2p− b2r (mod q).

Thus, there is clearly a choice of integers A,B,C with

Ap−Br + Cq = 0 where |A| 6 qi and 0 6 B 6 qj .

It remains to show that we may choose B > 0. This is where the Dio-

phantine condition on θ comes into play. Suppose B = 0. Then Ap+ Cq = 0

and without loss of generality, we may assume that (A,C) = 1. Put d := (p, q)

and define q∗ := q/d and p∗ := p/d. Then

Ap∗ = −Cq∗ and |A| = q∗ .

Hence q∗ 6 qi and d > qj > q∗j/i. However

d|q∗θ − p∗| = |qθ − p| < c(θ) q−i .

Thus, it follows that

|q∗θ − p∗| < c(θ)q∗
−id−1−i 6 c(θ)q−1/i∗ .

But this contradicts the hypothesis that θ ∈ Bad(i), and so we must have that

B > 0. �

5.2. Two nonparallel lines intersecting J(n, τ). Let P := (pq ,
r
q ) be a ra-

tional point in the plane and consider two nonparallel lines

L1 : A1x−B1y + C1 = 0,

L2 : A2x−B2y + C2 = 0

that intersect one another at P . It follows that
p

q
=
B1C2 −B2C1

A1B2 −A2B1
and

r

q
=
A1C2 −A2C1

A1B2 −A2B1
.

Thus, there exists an integer t 6= 0 such that

(40) A1B2 −A2B1 = tq and B1C2 −B2C1 = tp .

Without loss of generality, we will assume that q > 0. In this section, we

investigate the situation in which both lines pass through a generic interval

J = J(n, τ). Trivially, for this to happen we must have that

|J| > |Y1 − Y2| =
|(A1B2 −A2B1)θ − (B1C2 −B2C1)|

|B1B2|
,

where

Ym := Lm ∩ J =
(
θ,
Amθ + Cm

Bm

)
m = 1, 2 .

This together with (40) implies that

(41)
|qθ − p|
B1B2

6
|tqθ − tp|
B1B2

6 τ R−n .
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In the case that the lines L1 and L2 are from the collection C(n, k), this general

estimate leads to the following statement.

Lemma 2. Let L1, L2 ∈ C(n, k) be two lines that intersect at P := (pq ,
r
q )

and let J = J(n, τ) be a generic interval. Suppose

L1 ∩ J 6= ∅ and L2 ∩ J 6= ∅ .

Then

(42) |qθ − p| < 2iτ
2k+1

R
q−i .

Proof. With reference to the lines

L1 = L(A1, B1, C1) and L2 = L(A2, B2, C2) ,

there is no loss of generality in assuming that B1 6 B2. With this mind, by

(41) we have that

|qθ − p| < τR−nB1B2(43)

(29)

6 τ R−nB1

Ä
2k+1Rn−1

ä j
j+1

= τ 2k+1R−1B1

Ä
2k+1Rn−1

ä− 1
1+j .

On the other hand, by (40) we have that

q 6 |tq| = |A1B2 −A2B1| 6 |A1B2|+ |A2B1|
(29)

6
Ä
2k+1Rn−1

ä j
j+1

Ç
2k+1Rn−1

B1

åi
+
Ä
2k+1Rn−1

ä j
j+1

Ç
2k+1Rn−1

B2

åi
=
Ä
B−i1 +B−i2

ä Ä
2k+1Rn−1

äi+ j
j+1

6 2B−i1

Ä
2k+1Rn−1

ä 1+ij
1+j .

Therefore

q−i > 2−iBi2

1

Ä
2k+1Rn−1

ä− i+i2j
1+j

= 2−iB1 B
−j(i+1)
1

Ä
2k+1Rn−1

ä− i+i2j
1+j

(29)

> 2−iB1

Ä
2k+1Rn−1

ä− j2(i+1)
1+j

− i+i
2j

1+j

= 2−iB1

Ä
2k+1Rn−1

ä− 1
1+j .

This estimate together with (43) yields the desired statement. �

Remark. It is evident from the proof that the statement of Lemma 2 is

actually true for lines L1, L2 with height bounded above by 2k+1Rn−1.
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5.3. The figure F . In this section, we give a geometric characterization

of lines from C(n, l, k) that pass through a given rational point and intersect

a generic interval. Let L1 = L(A1, B1, C1) and L2 = L(A2, B2, C2) be two

lines from C(n, l, k) that pass through P := (pq ,
r
q ) and intersect J = J(n, τ).

Without loss of generality, assume that B1 6 B2. Then, in view of (41), we

have that
|qθ − p|
B1B2

6 τR−n
(29)
< τ

2k+1

R

1

H(A2, B2)
.

Thus

2k+1τ

R|qθ − p|
>
H(A2, B2)

B1B2
=

max{|A2|1/i, B1/j
2 }

B1
(44)

>max

®
|A2|1/i

B2
, B

i/j
2

´
.

Given a rational point P , the upshot is that if two lines from C(n, l, k) pass

through P and intersect J, then the point (A,B) ∈ Z2 associated with the

coordinates A and B of at least one of the lines lies inside the figure F defined

by

(45) |A| < ci2B
i, 0 < B < c

j/i
2 with c2 :=

2k+1τ

R|qθ − p|
.

c
i

2

O A

B

c2

j /

The figure F

Notice that the figure F is independent of l, and therefore the above

discussion is actually true for lines coming from the larger collection C(n, k).

As a consequence, apart from one possible exception, all lines L(A,B,C) ∈
C(n, k) passing through P and intersecting a generic interval J will have A

and B coordinates corresponding to points (A,B) lying inside the figure F .

Additionally, notice that the triple (A,B,C) associated with any line L passing

through P belongs to the lattice

L = L(P ) := {(A,B,C) ∈ Z3 : Ap−Br + Cq = 0} .
We will actually be interested in the projection of L onto the (A,B) plane

within which the figure F is embedded. By an abuse of notation we will also

refer to this projection as L.
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Remark. Note that the figure F is independent of the actual position of

the generic interval J. However, it is clearly dependent on the position of the

rational point P .

Now assume that L1, L2 ∈ C(n, l, k) with l > 0. In this case we have that

B1/j
(23)
< R

−λl
j R

n
j+1

(25)
< R

1−λl(j+1)
j |A|1/i

(45)
< R

1−λl(j+1)
j c2B .

Therefore

(46) 0 < B < c3 c
j/i
2 with c3 := R

j
i
−λl(j+1)

i .

Note that c3 < 1 and that

(47) |A|
(45)
< ci2B

i < ci3 · c2 .

The upshot is that if two lines from C(n, l > 0, k) pass through P and inter-

sect J, then the point (A,B) ∈ Z2 associated with the coordinates A and B of

at least one of the lines lies inside the figure Fl ⊂ F defined by (46) and (47).

5.4. Lines intersecting ∆(L0). Let L0 = L(A0, B0, C0) be an arbitrary

line passing through the rational point P := (pq ,
r
q ) and intersecting Θ. It is

easily verified that the point Y0 := L0 ∩Θ has y-coordinate

A0θ + C0

B0
=
A0

p
q + C0

B0
+
A0

B0

Å
θ − p

q

ã
=
r

q
+
A0

B0

Å
θ − p

q

ã
.

Now, assume there is another line L = L(A,B,C) with

H(A,B) > H(A0, B0)

passing through P and intersecting Θ. Let

Y = Y (A,B,C) := L ∩Θ

and notice that

Y ∈ ∆(L0)⇐⇒ |Y − Y0| =
∣∣∣∣AB − A0

B0

∣∣∣∣ ∣∣∣∣θ − p

q

∣∣∣∣ 6 c

H(A0, B0)
.

In other words,

(48)

Y ∈ ∆(L0)⇐⇒
A

B
∈

A0

B0
− c

H(A0, B0)
∣∣∣θ − p

q

∣∣∣ , A0

B0
+

c

H(A0, B0)
∣∣∣θ − p

q

∣∣∣
 .

Geometrically, points (A,B) ∈ Z2 satisfying the right-hand side of (48) form

a cone C(A0, B0) with apex at origin. The upshot is that all lines L =

L(A,B,C) with A and B coordinates satisfying H(A,B) > H(A0, B0) and

A/B ∈ C(A0, B0) will have Y (A,B,C) ∈ ∆(L0).
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In addition, let F be the figure associated with P , a generic interval J =

J(n, τ) and the collection C(n, k). Suppose that

(49) F ∩ L ⊂ C(A0, B0) and H(A,B) > H(A0, B0) ∀ (A,B) ∈ F ∩ L.

Then, in view of the discussion above, any line L = L(A,B,C) passing through

P such that (A,B) ∈ F ∩ L will have Y (A,B,C) ∈ ∆(L0). In particular,

it follows via Section 5.3 that if we have two lines L1, L2 ∈ C(n, k) passing

through P and intersecting J, then one of them has coordinates corresponding

to a point in F ∩ L and therefore it intersects J inside ∆(L0). Thus, apart

from one possible exceptional line L′, all lines L = L(A,B,C) ∈ C(n, k) passing

through P and intersecting J will have the property that (A,B) ∈ F ∩ L and

Y (A,B,C) ∈ ∆(L0). Note that for L′ = L(A′, B′, C ′), we have that (A′, B′) /∈
F ∩ L, and therefore we cannot guarantee that H(A′, B′) > H(A0, B0). Also,

L′ may or may not intersect J inside ∆(L0).

5.5. The key proposition. Under the hypothesis of Lemma 2, we know

that there exists some δ ∈ (0, 1) such that

|qθ − p| = δ2iτ
2k+1

R
q−i .

Hence

(50) c2
(45)
=

2k+1τ

R|qθ − p|
= δ−12−iqi .

The following statement is at the heart of the proof of Theorem 4.

Proposition 1. Let P = (pq ,
r
q ) be a rational point and J = J(n, τ) be

a generic interval. Let C be the collection of lines L = L(A,B,C) passing

through P with height H(A,B) < Rn. Let Ck ⊂ C(n, k) denote the collection of

lines passing through P and intersecting J. Suppose that #Ck > 2, τ > cR2−k

and

(51) δ 6 c4

Å
cR

2kτ

ã2/j
where c4 := 4−2/j 2−i .

Then there exists a line L0 ∈ C satisfying (49). Furthermore, apart from one

possible exceptional line, for all other L ∈ Ck, we have that (A,B) ∈ F ∩L and

L ∩ J ∈ ∆(L0).

Remark. We stress that the line L0 of the proposition is completely in-

dependent of the actual position of the generic interval J, and therefore the

furthermore part of the proposition is also valid irrespective of the position

of J.

Proof. Notice that since #Ck > 2, there exists at least one line L(A,B,C)

∈ Ck with A and B coordinates corresponding to (A,B) lying within F ; see
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Section 5.3. Thus, there is at least one point in F ∩ L corresponding to a line

with height bounded above by Rn.

A consequence of Section 5.4 is that if there exists a line L0 satisfying (49),

then the furthermore part of the statement of the proposition is automatically

satisfied. In order to establish (49), we consider the following two cases.

Case A. Suppose there exists a point (A,B) ∈ F ∩ L such that

B 6 σ · δ · qj where σ :=

Å
2k+2+ij τ

Rc

ã1/j
.

Now let (A′0, B
′
0) denote such a point in F ∩ L with B′0 minimal. It follows

that for all points (A,B) ∈ F ∩ L,∣∣∣∣AB
∣∣∣∣ (45)< ci2

B1−i 6
(c2B

′
0)
i

B′0

6
(δ−12−iqi σδqj)i

B′0
=

2−i
2
σiqi

B′0
,

and therefore ∣∣∣∣∣AB − A′0
B′0

∣∣∣∣∣ < 2
2−i

2
σiqi

B′0
.

This together with (48) implies that if

(52)
c

H(A′0, B
′
0)
∣∣∣θ − p

q

∣∣∣ > 2
2−i

2
σiqi

B′0
,

then F ∩L ⊂ C(A′0, B
′
0). In other words, the first condition of (49) is satisfied.

Therefore, modulo (52), if the point (A′0, B
′
0) has minimal height among all

(A,B) ∈ F ∩ L, then the second condition of (49) is also valid and we are

done. Suppose this is not the case and let (A0, B0) denote the minimal height

point within F ∩ L. Then H(A0, B0) 6 H(A′0, B
′
0) and so

c

H(A0, B0)
∣∣∣θ − p

q

∣∣∣ > c

H(A′0, B
′
0)
∣∣∣θ − p

q

∣∣∣
(52)

> 2
2−i

2
σiqi

B′0
>
∣∣∣∣AB − A0

B0

∣∣∣∣ ∀ (A,B) ∈ F ∩ L .

Thus, by (48) we have that F ∩ L ⊂ C(A0, B0). The upshot is that if (52)

holds, then there exists a line from the collection C satisfying (49). We now

establish (52). Note that

(52)⇐⇒ c · q1+i

B′0 max{|A′0|1/i, B′0
1/j} · 2iτδ

Ä
2k+1

R

ä > 21−i
2
σiqi

B′0
(53)

⇐⇒
Å

cR

2k+2+i−i2τδσi

ã
q > max{|A′0|1/i, B′0

1/j} .
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Note that

|A′0|1/i
(45)
< c2B

′
0 6 2−iσq and B′0

1/j 6 σ1/jδ1/jq .

• Suppose that |A′0|1/i > B′0
1/j . Then

r.h.s. of (53)⇐=
cR

2k+2+i−i2τδσi
> 2−iσ

⇐⇒ δ 6
cR

2k+2−i2τσ1+i
= c4

Å
cR

τ2k

ã 2
j

.

This is precisely (51) and therefore verifies (52) when |A′0|1/i > B′0
1/j .

• Suppose that |A′0|1/i 6 B′0
1/j . Then

r.h.s. of (53)⇐=
cR

2k+2+i−i2τδσi
> δ1/jσ1/j(54)

⇐⇒ δ1+1/j 6
Å

1

22+ij

ã1+ ij+1

j2
Å
cR

τ2k

ã1+ ij+1

j2

⇐⇒ δ 6 c4

Å
cR

τ2k

ã1/j
.

By the hypothesis imposed on τ , it follows that

(55)
cR

τ2k
6 1 .

Therefore, in view of (51), the lower bound for δ given by (54) is valid.

In turn, this verifies (52) when |A′0|1/i 6 B′0
1/j .

Case B. Suppose that for all points (A,B) within F ∩ L, we have that

B > σδqj .

Then, in view of (45), it follows that

(56)

∣∣∣∣AB
∣∣∣∣ < 2−i

2
σiqi

σδqj
=

qi−j

2i2σjδ
∀ (A,B) ∈ F ∩ L .

By making use of (9), (51) and (55), it is readily verified that

|qθ − p| < c(θ) q−i .

Thus, Lemma 1 is applicable and there exists a point (A′0, B
′
0) ∈ L satisfying

H(A′0, B
′
0) 6 q

1+j .

As a consequence,

(57)
c

H(A′0, B
′
0)
∣∣∣θ − p

q

∣∣∣ > 2
qi−j

2i2σjδ
.
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Indeed,

(57)⇐=
cq1+i

2iτδ
Ä
2k+1

R

ä
q1+j

>
qi−j

2i2−1σjδ

⇐⇒ σj > 2k+2+ij τ

Rc
.

By the definition, the last inequality concerning σ is valid, and therefore so is

(57). We now show that F ∩ L ⊂ C(A′0, B
′
0). In view of (48), this will be the

case if

(58)

∣∣∣∣∣AB − A′0
B′0

∣∣∣∣∣ 6 c

H(A′0, B
′
0)
∣∣∣θ − p

q

∣∣∣ ∀ (A,B) ∈ F ∩ L .

• Suppose that (A′0, B
′
0) ∈ F ∩ L. Then, clearly

(58)⇐= (56) and (57) .

• Suppose that (A′0, B
′
0) 6∈ F ∩ L. Then

(58)⇐=
c

H(A′0, B
′
0)
∣∣∣θ − p

q

∣∣∣ >
∣∣∣∣AB
∣∣∣∣+

∣∣∣∣∣A′0B′0
∣∣∣∣∣

⇐=
c

H(A′0, B
′
0)
∣∣∣θ − p

q

∣∣∣ >
∣∣∣∣∣A′0B′0

∣∣∣∣∣+ qi−j

2i2σjδ

(57)⇐=
c

2H(A′0, B
′
0)
∣∣∣θ − p

q

∣∣∣ >
∣∣∣∣∣A′0B′0

∣∣∣∣∣
⇐=

cq1+i

2iτδ
Ä
2k+1

R

ä
B′0 q

>
2qi

B′0

⇐⇒ δ 6
1

4 · 2i
cR

2kτ
.

In view of (51) and (55), this lower bound for δ is valid, and therefore

so is (58).

The upshot of the above is that F ∩ L ⊂ C(A′0, B
′
0). In other words, the first

condition of (49) is satisfied. Therefore if the pair (A′0, B
′
0) has the minimal

height among all (A,B) ∈ F ∩L, the second condition of (49) is also valid and

we are done. Suppose this is not the case and let (A0, B0) ∈ F ∩L denote the

minimal height point within F ∩ L. By assumption,

H(A0, B0) < H(A′0, B
′
0) ,
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and so
c

H(A0, B0)
∣∣∣θ − p

q

∣∣∣ > c

H(A′0, B
′
0)
∣∣∣θ − p

q

∣∣∣
(57)

> 2
qi−j

2i2σjδ

(56)

>
∣∣∣∣AB − A0

B0

∣∣∣∣ ∀ (A,B) ∈ F ∩ L .

Thus, by (48) we have that F ∩L ⊂ C(A0, B0). The upshot is that (58) holds;

thus there exists a line from the collection C satisfying (49). �

6. Proof of Theorem 4

Let l, k > 0 and Jn−l ∈ Jn−l. Let ε > 0 be sufficiently small and R = R(ε)

be sufficiently large. In view of the trimming process, Theorem 4 will follow

on showing that no more than R1−ε intervals In+1 from In+1 can be removed

by the intervals ∆(L) arising from lines L ∈ C(n, l, k) that intersect Jn−l. Let

L1, . . . , LM denote these lines of interest and let

Ym := Lm ∩ Jn−l (1 6 m 6M) .

Indeed, then

l.h.s. of (31) 6 #{In+1 ∈ I −n+1 : In+1 ∩∆(Lm) 6= ∅ for some 1 6 m 6M} .

A consequence of Theorem 3 is that the lines L1, . . . , LM pass through a single

rational point P = (pq ,
r
q ). This is an absolutely crucial ingredient within the

proof of Theorem 4.

In view of (20), the number of intervals In+1 ∈ In+1 that can be removed

by any single line Lm is bounded above by

2Rn−α

H(A,B)
+ 2

(29)

6 K :=
2R1−α

2k
+ 2 .

Notice that K > 2 is independent of l. Motivated by the quantity K, we

consider the following two cases.

Case A. Suppose that 2k < R1−α.

Case B. Suppose that 2k > R1−α.

Then

K 6


4R1−α

2k
in Case A

4 in Case B .

Also, let

c̃1 :=


4c1R

l+ε−α

2k
in Case A

4c1R
l+ε−1 in Case B .
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We now subdivide the given interval Jn−l into d intervals Ĩnl of equal length

c1R
l−ndR1−ε/Ke−1. It follows that

d :=
|Jn−l|
|Ĩnl|

=

¢
R1−ε

K

•
and that

|Ĩnl| := c1R
l−ndR1−ε/Ke−1 6 c̃1R−n .

By choosing R sufficiently large and ε < α so that

(59) Rα−ε > 8 ,

we can guarantee that

(60) 2 6 d 6
2R1−ε

K
.

To proceed, we divide the d intervals Ĩnl into the following two classes.

Type 1. Intervals Ĩnl that intersect no more than one line among L1, . . . , LM .

Type 2. Intervals Ĩnl that intersect two or more lines among L1, . . . , LM .

6.1. Dealing with Type 1 intervals. Trivially, the number of Type 1 inter-

vals is bounded above by d. By definition, each Type 1 interval has no more

than one line Lm intersecting it. The total number of intervals In+1 ∈ In+1

removed by a single line Lm is bounded above by K. Thus, for any strictly

positive ε < α and R sufficiently large so that (59) is valid, the total number of

intervals In+1 ∈ In+1 removed by the lines L1, . . . , LM associated with Type 1

intervals is bounded above by

(61) dK
(60)

6 2R1−ε .

6.2. Dealing with Type 2 intervals. Consider an interval Ĩnl of Type 2.

By definition, there are at least two lines Ls, Lt ∈ C(n, l, k) passing through P

which intersect Ĩnl. With reference to Section 5, let J be a generic interval of

length c̃1R
−n. Clearly |J| is the same for k and l fixed and |Ĩnl| 6 |J|. Also,

in view of (59), we have that |J| < |Jn−l|. Thus, given an interval Ĩnl there

exists a generic interval J = J(n, τ) with τ := c̃1 such that Ĩnl ⊂ J ⊂ Jn−l. By

Lemma 2, there exists some δ ∈ (0, 1) such that

|qθ − p| = δ2ic̃1q
−i
Ç

2k+1

R

å
.

As a consequence of Section 5.3, apart from one possible exception, all lines

L ∈ C(n, l, k) passing through P and intersecting J will have A and B coordi-

nates corresponding to points (A,B) lying inside the figure F defined by (45)

with c2 := δ−12−iqi. The upshot is that among the lines L1, . . . , LM passing

through any Ĩnl of Type 2, all but possibly one line L′ will have coordinates

corresponding to points in F ∩ L. Moreover, if l > 0, then F can be replaced

by the smaller figure Fl defined by (46) and (47).



SCHMIDT’S CONJECTURE 1865

6.2.1. Type 2 intervals with δ small. Suppose that

(62) δ 6 c4

Å
cR

2k c̃1

ã2/j
where c4 := 4−2/j 2−i .

With reference to the hypotheses of Proposition 1, the above guarantees (51)

and it is easily verified that c̃1 > cR2−k and that Ck > 2 since Ĩnl ⊂ J is

of Type 2. Hence, Proposition 1 implies the existence of a line L0 ∈ C(n′)
with n′ 6 n passing through P and satisfying (49). Furthermore, among

the lines Lm from L1, . . . , LM that intersect J, all apart from possibly one

exceptional line L′ will satisfy Lm ∩ J = Ym ∈ ∆(L0) and have coordinates

corresponding to points (A,B) ∈ F ∩ L. Note that L0 is independent of the

position of J, and therefore it is the same for each generic interval associated

with a Type 2 interval. The point is that P is fixed and all the lines of interest

pass though P . However, in principle, the possible exceptional line L′ may

be different for each Type 2 interval. Fortunately, it is easy to deal with such

lines. There are at most d exceptional lines L′ — one for each of the d intervals

Ĩnl. The number of intervals In+1 ∈ In+1 that can be removed by any single

line L′ is bounded above by K. Thus, no more than dK ≤ 2R1−ε intervals

In+1 are removed in total by the exceptional lines L′. Now consider those lines

Lm = L(Am, Bm, Cm) among L1, . . . , LM that intersect some Type 2 interval

and are not exceptional. It follows that

Ym ∈ ∆(L0) and H(Am, Bm) > H(A0, B0) .

◦ Suppose that L0 ∈ C(n′) for some n′ < n. Denote by ∆+(L0) the inter-

val with the same center as ∆(L0) and length |∆(L0)|+2dR1+αe|In′+2|.
It is readily verified that ∆(Lm) ⊂ ∆+(L0) for any nonexceptional

line Lm. Now observe that the interval ∆(L0) is removed (from the

segment Θ) at level n′ of the basic construction; i.e., during the pro-

cess of removing those ‘bad’ intervals In′+1 from I −n′+1 that intersect

some ∆(L) with L ∈ C(n′). The set ∆+(L0) \∆(L0) is removed (from

the segment Θ) by the ‘trimming’ process at level n′ + 1 of the basic

construction. In other words, the interval ∆+(L0) has been totally re-

moved from Θ even before we consider the effect of lines from C(n) on

the remaining part of Θ; i.e., on intervals In+1 ∈ I −n+1. In a nutshell,

there are no intervals In+1 ∈ I −n+1 that lie in ∆+(L0), and therefore

any nonexceptional line Lm will have absolutely no ‘removal’ effect.

◦ Suppose that L0 ∈ C(n). Denote by ∆+(L0) the interval with the

same center as ∆(L0) and length 2|∆(L0)|. It is readily verified that

∆(Lm) ⊂ ∆+(L0) for any nonexceptional line Lm. In view of (20),

the interval ∆+(L0) can remove no more than 4R1−α + 2 intervals

In+1 ∈ In+1.
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The upshot when δ satisfies (62) is as follows. For any strictly positive ε < α

and R sufficiently large so that (59) is valid, the total number of intervals

In+1 ∈ In+1 removed by the lines L1, . . . , LM associated with Type 2 intervals

is bounded above by

(63) 4R1−α + 2 +K · d = 4R1−α + 2 + 2R1−ε 6 6R1−ε + 2 6 8R1−ε .

Naturally, we now proceed by dealing with the situation when (62) is not

satisfied.

6.2.2. Type 2 intervals with δ large. Suppose that

(64) δ > c4

Å
cR

2k c̃1

ã2/j
.

In Case A it follows that

(65) δ > c44
−2/j R−2(l+ε)/j ,

and in Case B, using the fact that 2k < R (see (30)), it follows that

(66) δ > c4

Ç
R1−l−α−ε

4 · 2k

å2/j

> c44
−2/jR

− 2(l+α+ε)
j .

Recall that for the generic interval J associated with a Type 2 interval Ĩnl,

there exists at most one exceptional line L′ among L1, . . . , LM that intersects

J and has coordinates corresponding to a point not in F ∩L. We have already

observed that no more than dK ≤ 2R1−ε intervals In+1 ∈ In+1 are removed in

total by the d possible exceptional lines L′. Indeed, the latter are exactly the

same as in the δ small case, and therefore the corresponding removed intervals

In+1 coincide.

We now consider those lines Lm = L(Am, Bm, Cm) among L1, . . . , LM
with (Am, Bm) ∈ F ∩ L. Suppose we have two such lines Lm and Lm′ so that

the points (Am, Bm) and (Am′ , Bm′) lie on a line passing through the lattice

point (0, 0). Clearly all points (A,B) ∈ F ∩L on this line have the same ratio

A/B. Thus the lines Lm and Lm′ are parallel. However, this is impossible since

Lm and Lm′ intersect at the rational point P . The upshot of this is that the

points (Am, Bm), (Am′ , Bm′) and (0, 0) do not lie on the same line. Recall that

the lines Lm of interest are from within the collection C(n, l, k). To proceed

we need to consider the l = 0 and l > 0 situations separately.

• Suppose that l = 0. Let

M∗ := #{Lm ∈ {L1, . . . , LM} : (Am, Bm) ∈ F ∩ L}.

Observe that the figure F is convex. In view of the discussion above, it then

follows that the lattice points in F ∩ L together with the lattice point (0, 0)

form the vertices of (M∗ − 1) disjoint triangles lying within F . Since the area

of the fundamental domain of L is equal to q, the area of each of these disjoint
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triangles is at least q/2 and therefore the area of F is at least q/2 · (M∗ − 1).

Thus
q

2
(M∗ − 1) 6 area(F ) < 2c

1+j/i
2

(50)
=

q

δ1/i
,

and therefore

M∗ < 2 δ−1/i + 1 .

◦ In Case A it follows via (65) that

M∗ < 4
4
ij
+1

R
2ε
ij + 1 .

Hence

M∗K < 20 · 4
4
ij R

1−α+ 2ε
ij .

Moreover, if

ε 6
α ij

ij + 2
,

then we have that

(67) M∗K < 20 · 4
4
ij R1−ε .

◦ In Case B it follows via (66) that

M∗ < 4
4
ij
+1

R
2(α+ε)
ij + 1 ,

and thus the number of removed intervals is bounded by

M∗K < 20 · 4
4
ij R

2(α+ε)
ij .

It is readily verified that if

ε 6
ij − 2α

ij + 2
,

then the upper bound for M∗K given by (67) is valid in Case B.

• Suppose that l > 0. Instead of working with the figure F as in the l = 0

situation, we work with the ‘smaller’ convex figure Fl ⊂ F . Let

M∗ := #{Lm ∈ {L1, . . . , LM} : (Am, Bm) ∈ Fl ∩ L}.

The same argument as in the l = 0 situation yields that

q

2
(M∗ − 1) 6 area(Fl) < 2c1+i3 c

1+j/i
2 = R

−
Ä
λl(j+1)

j
−1
ä
· j(i+1)

i
q

δ1/i
.

◦ In Case A we have

M∗ < 4
4
ij
+1

R
2(l+ε)
ij R

j(i+1)
i
−λl(i+1)(j+1)

i + 1 .

Since l > 0 and by definition λ = 3/j, it follows that

(68)
λl(i+ 1)(j + 1)

i
− j(i+ 1)

i
− 2l

ij
> 0 .
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Thus

M∗ < 4
4
ij
+1
R

2ε
ij + 1

as in the l = 0 situation. In turn, the upper bound for M∗K given by

(67) is valid for l > 0.

◦ In Case B we have

M∗ < 4
4
ij
+1
R

2(l+α+ε)
ij ·R

j(i+1)
i
−λl(i+1)(j+1)

i + 1
(68)
< 4

4
ij
+1
R

2(α+ε)
ij + 1

as in the l = 0 situation. In turn, the upper bound for M∗K given by

(67) is valid in Case B for l > 0.

The upshot when δ satisfies (64) is as follows. For any strictly positive

ε 6
α ij

ij + 2

(15)
= min

ß
α ij

ij + 2
,
ij − 2α

ij + 2

™
and R sufficiently large so that (59) is valid, the total number of intervals

In+1 ∈ In+1 removed by the lines L1, . . . , LM associated with Type 2 intervals

is bounded above by

(69) KM∗ + K · d < 20 · 4
4
ij R1−ε + 2R1−ε < 21 · 4

4
ij R1−ε .

6.3. The finale. On combining the upper bound estimates given by (61),

(63) and (69), for any strictly positive ε 6 αij/(ij + 2) and R > R0(ε) suffi-

ciently large, we have that

l.h.s. of (31)6#{In+1 ∈ I −n+1 : In+1 ∩∆(Lm) 6= ∅ for some 1 6 m 6M}

< 2R1−ε + 8R1−ε + 21 · 4
4
ij R1−ε .

This together with the fact that

α2 <
α ij

ij + 2

completes the proof of Theorem 4.

7. Proof of Theorem 2

With reference to the statement of Theorem 2, since the set under con-

sideration is a subset of a line, we immediately obtain the upper bound result

that

(70) dim
( ∞⋂
t=1

Bad(it, jt) ∩ Lθ
)
6 1 .

Thus, the proof of Theorem 2 follows on establishing the following complemen-

tary lower bound estimate.
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Theorem 5. Let (it, jt) be a countable number of pairs of real numbers

satisfying (6) and let i := sup{it : t ∈ N}. Suppose that (5) is also satisfied.

Then, for any θ ∈ Bad(i), we have that

dim
( ∞⋂
t=1

Bad(it, jt) ∩ Lθ
)
> 1 .

Remark. Strictly speaking, in order to deduce Theorem 2 we should re-

place (6) by (2) in the above statement of Theorem 5. However, given the

arguments set out in Section 3.2, the proof of Theorem 5 as stated can easily

be adapted to deal with the ‘missing’ pairs (1, 0) and (0, 1).

A general and classical method for obtaining a lower bound for the Haus-

dorff dimension of an arbitrary set is the following mass distribution principle;

see [3, p. 55].

Lemma 3 (Mass Distribution Principle). Let µ be a probability measure

supported on a subset X of R. Suppose there are positive constants a, s and l0
such that

(71) µ(I) 6 a |I|s

for any interval I with length |I| 6 l0. Then, dimX > s.

The overall strategy for establishing Theorem 5 is simple enough. For

each t ∈ N, let

(72) αt := 1
4 it jt and ε0 := inft∈N

1
2α

2
t .

In view of condition (5) imposed in the statement of the theorem, we have that

ε0 is strictly positive. Then for any strictly positive ε < ε0, we construct a

‘Cantor-type’ subset K(ε) of
⋂∞
t=1Bad(it, jt) ∩ Lθ and a probability measure

µ supported on K(ε) satisfying the condition that

(73) µ(I) 6 a |I|1−ε/2 ,

where the constant a is absolute and I ⊂ Θ is an arbitrary small interval.

Hence by construction and the mass distribution principle we have that

dim
( ∞⋂
t=1

Bad(it, jt) ∩ Lθ
)
> dim

Ä
K(ε)

ä
> 1− ε/2 .

Now suppose that dim
Ä⋂∞

t=1Bad(it, jt) ∩ Lθ
ä
< 1. Then

dim
Ä ∞⋂
t=1

Bad(it, jt) ∩ Lθ
ä

= 1− η

for some η > 0. However, by choosing ε < 2η we obtain a contradiction and

thereby establish Theorem 5.
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In view of the above outline, the whole strategy of our proof is centred

around the construction of a ‘right type’ of Cantor set K(ε) which supports a

measure µ with the desired property. It should come as no surprise, that the

first step involves modifying the basic construction to simultaneously incorpo-

rate any countable number of (i, j) pairs satisfying (5) and (6).

7.1. Modifying the basic construction for countable pairs. With reference

to Section 2, for each t ∈ N, let us write Ht(A,B) for H(A,B), ∆t(L) for ∆(L)

and Ct(n) for C(n). Furthermore, write Jn(t) for Jn and I−n (t) for I−n . With

this in mind, let R > 2 be an integer. Choose c1(t) = c1(R, t) sufficiently small

so that

(74) c1(t) 6 1
4R
−3it/jt ,

and

c(t) :=
c1(t)

R1+αt

satisfies (9) with αt given by (72). With this choice of c1(t), the basic con-

struction of Section 2.2 enables us to conclude that Bad(it, jt) ∩ Lθ 6= ∅, and

in the process we establish the all important ‘counting’ estimate given by (26).

Namely, let l > 0 and Jn−l ∈ Jn−l(t). Then, for any strictly positive ε < 1
2α

2
t

and R > R0(ε, t) sufficiently large, we have that

(75)

#{In+1 ∈ I −n+1(t) : Jn−l ∩∆t(L) ∩ In+1 6= ∅ for some L ∈ Ct(n, l)} 6 R1−ε .

With ε0 given by (72), this estimate is clearly valid for any strictly positive

ε < ε0. The first step towards simultaneously dealing with the countable

number of (it, jt) pairs is to modify the basic construction in such a manner

so that corresponding version of (75) remains intact. The key is to start

the construction with the (i1, j1) pair and then introduce at different levels

within it the other pairs. Beyond this, the modifications are essentially at the

‘trimming’ stage and in the manner in which the collections Jn are defined.

Fix some strictly positive ε < ε0 and let R be an arbitrary integer satis-

fying

(76) R > R0(ε, 1) .

Then, with

c1 := c1(1)

we are able to carry out the basic construction for the (i1, j1) pair. For each

t > 2, the associated basic construction for the (it, jt) pair is carried out with

respect to a sufficiently large integer Rt > R0(ε, t), where Rt is some power

of R. This enables us to embed the construction for each t > 2 within the

construction for t = 1. More precisely, for t > 1, we let

Rt := Rmt ,
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where the integer mt satisfies

m1 = 1 ,

and for t ≥ 2,

Rmt > max{R0(ε, t), R
1+mt−1} .

Notice that

(77) mt > t for t > 2.

Now for each t > 2, we fix an integer kt sufficiently large such that

c1(t) := c1R
−kt

satisfies (74); for consistency we let k1 = 0. Then for each t > 1, with this

choice of c1(t) we are able to carry out the basic construction for the pair

(it, jt). Moreover, for each integer s > 0, let

ns(t) := kt + smt .

Then intervals at level s of the construction for (it, jt) can be described in

terms of intervals at level ns(t) of the construction for (i1, j1). In particular,

an interval of length c1(t)R
−s
t at level s for (it, jt) corresponds to an interval

of length c1R
−ns(t) at level ns(t) for (i1, j1).

We are now in the position to modify the basic construction for the pair

(i1, j1) so as to simultaneously incorporate each (it, jt) pair. Let c1 be as

above. Define the collections J0 := J0(1) and J1 := J1(1). Also Stage 1 of

‘the induction’ in which the collection In+1 is introduced remains unchanged.

However, the goal now is to remove those ‘bad’ intervals In+1 ∈ In+1 for which

(78) In+1 ∩∆t(L) 6= ∅ for some t ∈ N and L ∈ Ct
Äî
n+1−kt
mt

ó
− 1
ä
.

Regarding Stage 2, we trim the collection In+1 in the following manner.

To begin with we remove from each Jn ∈ Jn the first dR1−α1e subintervals

In+1 from each end. In other words, we implement the basic trimming process

associated with the pair (i1, j1). Then for any integer t > 2, if n+ 1 = ns+1(t)

for some s, we incorporate the basic trimming process associated with the pair

(it, jt). This involves removing any interval In+1 that coincides with one of the

dR1−αt
t e subintervals of length |In+1| at either end of some Jns(t) ∈ Jns(t). It

follows that for each such t, the number of intervals In+1 from In+1 that are

removed by this ‘modified’ trimming process is bounded above by

#Jns(t) × 2 dR1−αt
t e := #Jn+1−mt × 2 dRmt(1−αt)e ;

i.e., the number removed by the basic trimming process associated with the pair

(it, jt). Note that this bound is valid for t = 1. The intervals In+1 from In+1

that survive the above trimming process give rise to the trimmed collection
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I−n+1. We define Jn+1 to be the collection obtained by removing those ‘bad’

intervals In+1 from I−n+1 which satisfy (78). In other words, for n > 1 we let

(79)

Jn+1 :=
¶
In+1 ∈ I−n+1 : ∆t(L) ∩ In+1=∅ ∀ t∈N and L∈Ct

Äî
n+1−kt
mt

ó
− 1
ä©
.

Here, it is understood that the collection of lines Ct(n) is the empty set when-

ever n is negative. Note that by construction, the collection Jn is a subcollec-

tion of Js(t) whenever n = ns(t) for some t ∈ N.

Apart from obvious notational modifications, Stages 3 and 4 remain pretty

much unchanged and give rise to (75) for each t ∈ N with R replaced by Rt.

As consequence, for any l > 0 and Jn+1−(l+1)mt ∈ Jn+1−(l+1)mt , we have that

#
{
In+1 ∈ I−n+1 : Jn+1−(l+1)mt ∩∆t(L) ∩ In+1 6= ∅(80)

for some L ∈ Ct
Äî
n+1−kt
mt

ó
− 1, l

ä}
6 Rmt(1−ε) .

To see this, let s + 1 := [(n+ 1− kt)/mt]. Now if s + 1 = (n + 1 − kt)/mt,

then the statement is a direct consequence of (75) with n = s and R replaced

by Rt. Here we use the fact that I−n+1 ⊆ I
−
n+1(t). Now suppose that s + 1 <

(n + 1 − kt)/mt. Then In+1 is contained in some interval Jkt+(s+1)mt . By

construction the latter does not intersect any interval ∆t(L) with L ∈ Ct(s, l).
Thus the set on the left-hand side of (80) is empty and the inequality is trivially

satisfied.

For fixed ε < ε0 and any R satisfying (76), the upshot of the modified basic

construction is the existence of nested collections Jn of intervals Jn given by

(79) such that

(81) K∗(ε,R) :=
∞⋂
n=0

⋃
J∈Jn

J ⊂
∞⋂
t=1

Bad(it, jt) ∩ Lθ .

Moreover, for R sufficiently large, the counting estimate (80) can be used to

deduce that

(82) #Jn > (R−R1−ε/2)n ;

see the remark following the proof of Lemma 4 below. Clearly, (82) is more

than sufficient to conclude that K∗(ε,R) is nonempty which together with (81)

implies that
∞⋂
t=1

Bad(it, jt) ∩ Lθ 6= ∅ .

Recall that, as long as (5) is valid, this enables us to establish the countable

version of Schmidt’s conjecture. However, counting alone is not enough to

obtain the desired dimension result. For this we need to adapt the collections

Jn arising from the modified construction. The necessary ‘adaptation’ will be

the subject of the next section.
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We end this section by investigation the distribution of intervals within

a given collection Jn. Let J0 be an arbitrary interval from J0 and define

T0 := {J0}. For n > 1, we construct the nested collections Tn, Tn−1, . . . , T1, T0
as follows. Take an arbitrary interval in Tn−1 and subdivide it into R closed

intervals of equal length. Choose any [2R1−ε/2] of the R subintervals and

disregard the others. Repeat this procedure for each interval in Tn−1 and let

Tn denote the collection of all chosen subintervals. Clearly,

#Tn = #Tn−1 × [2R1−ε/2] .

Loosely speaking, the following result shows that the intervals Jn from Jn are

ubiquitous within each of the intervals J0 ⊂ Θ and thus within the whole of Θ.

It is worth emphasizing that both the collections Jn and Tn are implicitly

dependent on R.

Lemma 4. For R sufficiently large,

(83) Tn ∩ Jn 6= ∅ ∀ n = 0, 1, . . . .

Proof. For an integer m > 0, let f(m) denote the cardinality of the set

Tm ∩ Jm. Trivially, f(0) = 1 and the lemma would follow on showing that

(84) f(m) > R1−ε/2 f(m− 1) ∀ m ∈ N .

This we now do via induction. To begin with, note that #J1 = #J0×R, and

so

f(1) = [2R1−ε/2] > R1−ε/2 .

In other words, (84) is satisfied for m = 1. Now assume that (84) is valid for all

1 6 m 6 n. In order to establish the statement for m = n+1, observe that each

of the f(n) intervals in Tn ∩Jn gives rise to [2R1−ε/2] intervals in Tn+1 ∩In+1.

Now consider some t ∈ N and an integer l > 0 such that n+ 1− (l+ 1)mt > kt.
Then in view of (80), for any interval

Jn+1−(l+1)mt ∈ Jn+1−(l+1)mt ∩ Tn+1−(l+1)mt ,

the number of intervals from I−n+1 removed by lines L ∈ Ct
Ä
[n+1−kt

mt
]− 1, l

ä
is

bounded above by Rmt(1−ε). By the induction hypothesis,

#(Jn+1−(l+1)mt ∩ Tn+1−(l+1)mt) = f(n+ 1− (l + 1)mt) .

Thus the total number of intervals from Tn+1 ∩ I−n+1 removed by lines from

Ct
Ä
[n+1−kt

mt
]− 1, l

ä
is bounded above by

Rmt(1−ε) f
Ä
n+ 1− (l + 1)mt

ä
.

Furthermore, the number of intervals from Tn+1∩In+1 removed by the modified

trimming process associated with the pair (it, jt) is bounded above by

2 dRmt(1−αt)e f(n+ 1−mt) 6 2Rmt(1−ε) f(n+ 1−mt).
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Here we have made use of the fact that Rmt > R0(ε, t), and so dRmt(1−αt)e ≤
Rmt(1−ε).

On combining the above estimates for intervals removed by ‘lines’ and

those removed by ‘trimming’, it follows that

f(n+ 1) > [2R1−ε/2] f(n)

−
∞∑
t=1

Rmt(1−ε)
∞∑
l=1

f(n+ 1− lmt)− 2
∞∑
t=1

Rmt(1−ε)f(n+ 1−mt) .

Here, it is understood that f(k) = 0 whenever k is negative. Then, in view of

our induction hypothesis, we have that

f(n+ 1) > [2R1−ε/2] f(n)

−
∞∑
t=1

Rmt(1−ε) f(n) (R−1+ε/2)mt−1
(

2 +
∞∑
l=0

(R−1+ε/2)lmt

)

> f(n)

(
[2R1−ε/2]−R1−ε C(R) −

∞∑
t=2

R1−mt
2
ε− ε

2 C(R)

)
,

where

C(R) := 2 +
∞∑
k=0

(R−1+ε/2)k.

In addition to R satisfying (76) we assume that R is sufficiently large so that

(85) C(R) < 4 , [2R1−ε/2] > 5
3R

1−ε/2 and
∞∑
k=1

R−
k
2
ε < 1

6 .

Then, by making use of (77), it follows that

f(n+ 1) > R1−ε/2f(n)

(
5
3 − 4

∞∑
t=1

R−
t
2
ε

)
> R1−ε/2f(n) .

This completes the proof of the lemma. �

Remark. For any R satisfying (76) and (85), a straightforward conse-

quence of (84) is that

#Jn > f(n)×#J0 > R1−ε/2 f(n− 1)×#J0 > (R1−ε/2)n > 1 .

This is sufficient to show that K∗(ε,R) is nonempty and in turn enables us to

establish the countable version of Schmidt’s conjecture. However, the proof of

the lemma can be naturally modified and adapted to deduce the stronger count-

ing estimate given by (82); essentially replace f(m) by #Jm and [2R1−ε/2] by

R.
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7.2. The set K(ε) and the measure µ. Fix some strictly positive ε < ε0
and an integer R satisfying (76) and (85). The modified construction of the

previous section enables us to conclude that the set K∗(ε) := K∗(ε,R) defined

by (81) is nonempty and in turn implies the weaker nonempty analogue of

Theorem 5. To obtain the desired dimension statement we construct a regular

‘Cantor-type’ subset K(ε) of K∗(ε) and a measure µ satisfying (73). The key

is to refine the collections Jn arising from the modified construction in such a

manner that the refined nested collectionsMn ⊆ Jn are nonempty and satisfy

the following property. For any integer n > 0 and Jn ∈Mn,

#{Jn+1 ∈Mn+1 : Jn+1 ⊂ Jn} > R− 2R1−ε/2 .

Suppose for the remaining part of this section the desired collectionsMn exist

and let

K(ε) :=
∞⋂
n=0

⋃
J∈Mn

J .

We now construct a probability measure µ supported on K(ε) in the standard

manner. For any Jn ∈ Mn, we attach a weight µ(Jn) defined recursively as

follows.

For n = 0,

µ(J0) :=
1

#M0

and for n > 1,

(86) µ(Jn) :=
µ(Jn−1)

#{J ∈Mn : J ⊂ Jn−1}
,

where Jn−1 ∈ Mn−1 is the unique interval such that Jn ⊂ Jn−1. This pro-

cedure thus defines inductively a mass on any interval appearing in the con-

struction of K(ε). In fact a lot more is true; µ can be further extended to

all Borel subsets F of R to determine µ(F ) so that µ constructed as above

actually defines a measure supported on K(ε). We now state this formally.

Fact. The probability measure µ constructed above is supported on

K(ε) and, for any Borel set F ,

µ(F ) := µ(F ∩K(ε)) = inf
∑
J∈J

µ(J) .

The infimum is over all coverings J of F ∩K(ε) by intervals J ∈ {Mn :

n = 0, 1, . . .}.
For further details, see [3, Prop. 1.7]. It remains to show that µ satisfies (73).

Firstly, notice that for any interval Jn ∈Mn, we have that

µ(Jn)6
Ä
R
Ä
1− 2R−ε/2

ää−1
µ(Jn−1)

6
Ä
R
Ä
1− 2R−ε/2

ää−n
.
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Next, let dn denote the length of a generic interval Jn ∈ Mn and consider an

arbitrary interval I ⊂ Θ with length |I| < d0. Then there exists a nonnegative

integer n such that

(87) dn+1 6 |I| < dn .

It follows that

µ(I) 6
∑

Jn+1∈Mn+1

Jn+1∩I 6=∅

µ(Jn+1)

6

¢
|I|
dn+1

• Ä
R (1−R−ε/2)

ä−n−1
6 2

|I|
c1R−n−1

R−n−1
Ä
1− 2R−ε/2

ä−n−1
(87)
< 2 c

ε/2−1
1 Rε/2

Ä
Rε/2

Ä
1− 2R−ε/2

ää−n−1 |I|1−ε/2
(85)

6 2 c
ε/2−1
1 Rε/2|I|1−ε/2 .

Thus (73) follows with a = 2c
ε/2−1
1 Rε/2, and this completes the proof of The-

orem 5 modulo the existence of the collection Mn.

7.3. Constructing the collection Mn. For any integer n ≥ 0, the goal of

this section is to construct the desired nested collectionMn ⊆ Jn alluded to in

the previous section. This will involve constructing auxiliary collectionsMn,m

and Rn,m for integers n,m satisfying 0 6 n 6 m. For a fixed m, let

J0, J1, . . . ,Jm

be the collections arising from the modified construction of Section 7.1. We

will require Mn,m to satisfy the following conditions.

C1. For any 0 6 n 6 m, we have that Mn,m ⊆ Jn.

C2. For any 0 6 n < m, the collections Mn,m are nested; that is,⋃
J∈Mn+1,m

J ⊂
⋃

J∈Mn,m

J.

C3. For any 0 6 n < m and Jn ∈ Mn,m, we have that there are at least

R− [2R1−ε/2] intervals Jn+1 ∈Mn+1,m contained within Jn; that is,

#{Jn+1 ∈Mn+1,m : Jn+1 ⊂ Jn} > R− [2R1−ε/2] .

In addition, define R0,0 := ∅ and, for m > 1,

(88) Rm,m := {Im ∈ Im\Jm : Im ⊂ Jm−1 for some Jm−1 ∈Mm−1,m−1} .
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Furthermore, for 0 6 n < m, define

Rn,m := Rn,m−1
(89)

∪ {Jn ∈Mn,m−1 : #{Jn+1 ∈ Rn+1,m : Jn+1 ⊂ Jn} > [2R1−ε/2]} .

Loosely speaking and with reference to condition (C3), the collectionsRn,m are

the ‘dumping ground’ for those intervals Jn ∈ Mn,m−1 which do not contain

enough subintervals Jn+1. Note that for m fixed, the collections Rn,m are

defined in descending order with respect to n. In other words, we start with

Rm,m and finish with R0,m.

The construction is as follows.

Stage 1. Let M0,0 := J0 and R0,0 := ∅.
Stage 2. Let 0 6 t 6 n. Suppose we have constructed the desired collec-

tions

M0,t ⊆ J0, M1,t ⊆ J1, . . . ,Mt,t ⊆ Jt
and

R0,t, . . . ,Rt,t .
We now construct the corresponding collections for t = n+ 1.

Stage 3. Define

M′n+1,n+1 := {Jn+1 ∈ Jn+1 : Jn+1 ⊂ Jn for some Jn ∈Mn,n}

and let Rn+1,n+1 be given by (88) with m = n + 1. Thus the collection

M′n+1,n+1 consists of ‘good’ intervals from Jn+1 that are contained within some

interval from Mn,n. Our immediate task is to construct the corresponding

collections M′u,n+1 for each 0 6 u 6 n. These will be constructed together

with the ‘complementary’ collections Ru,n+1 in descending order with respect

to u.

Stage 4. With reference to Stage 3, suppose we have constructed the collec-

tionsM′u+1,n+1 and Ru+1,n+1 for some 0 6 u 6 n. We now constructM′u,n+1

and Ru,n+1. Consider the collections Mu,n and Ru,n. Observe that some of

the intervals Ju from Mu,n may contain less than R − [2R1−ε/2] subintervals

fromM′u+1,n+1 (or in other words, at least [2R1−ε/2] intervals from Ru+1,n+1).

Such intervals Ju fail the counting condition (C3) for Mu,n+1 and informally

speaking are moved out of Mu,n and into Ru,n. The resulting subcollections

are M′u,n+1 and Ru,n+1 respectively. Formally,

M′u,n+1 := {Ju ∈Mu,n : #{Ju+1 ∈ Ru+1,n+1 : Ju+1 ⊂ Ju} < [2R1−ε/2]}

and Ru,n+1 is given by (89) with n = u and m = n+ 1.

Stage 5. By construction the collections M′u,n+1 satisfy conditions (C1)

and (C3). However, for some Ju+1 ∈ M′u+1,n+1, it may be the case that Ju+1
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is not contained in any interval Ju ∈M′u,n+1, and thus the collectionsM′u,n+1

are not necessarily nested. The point is that during Stage 4 above the interval

Ju ∈ Ju containing Ju+1 may be ‘moved’ into Ru,n+1. In order to guarantee

the nested condition (C2), such intervals Ju+1 are removed from M′u+1,n+1.

The resulting subcollection is the required auxiliary collectionMu+1,n+1. Note

that Mu+1,n+1 is constructed via M′u+1,n+1 in ascending order with respect

to u. Formally,

M0,n+1 :=M′0,n+1,

and for 1 6 u 6 n+ 1,

Mu,n+1 := {Ju ∈M′u,n+1 : Ju ⊂ Ju−1 for some Ju−1 ∈Mu−1,n+1} .

With reference to Stage 2, this completes the induction step and thereby the

construction of the auxiliary collections.

For any integer n ≥ 0, it remains to construct the sought after collection

Mn via the auxiliary collections Mn,m. Observe that since

Mn,n ⊃Mn,n+1 ⊃Mn,n+2 ⊃ · · ·

and the cardinality of each collection Mnm with n 6 m is finite, there exists

some integer N(n) such that

Mn,m =Mn,m′ ∀ m,m′ > N(n) .

Now simply define

Mn :=Mn,N(n) .

Unfortunately, there remains one slight issue. The collection Mn defined in

this manner could be empty.

The goal now is to show that Mn,m 6= ∅ for any n 6 m. This clearly

implies that Mn 6= ∅ and thereby completes the construction.

Proposition 2. For all integers satisfying 0 6 n 6 m, the collection

Mn,m is nonempty.

Proof. Suppose on the contrary thatMn,m = ∅ for some integers satisfying

0 6 n 6 m. In view of the construction ofMn,m, every interval from Mn−1,m
contains at least R − 2R1−ε/2 subintervals from Mn,m. Therefore M0,m is

empty and it follows that R0,m = J0.
Now consider the set Rn,m. Note that

Rn,m ⊇ Rn,m−1 ⊇ · · · ⊇ Rn,n
and that in view of (88), elements of Rn,n are intervals from In\Jn. Consider

any interval Jn ∈ Rn,m\Rn,n. Then there exists an integer m0 with n < m0 6
m such that Jn ∈ Rn,m0 but Jn 6∈ Rn,m0−1. In view of (89), any interval from

Rn,m0 contains at least [2R1−ε/2] subintervals fromRn+1,m0 and therefore from
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Rn+1,m. The upshot is that for any interval In ∈ Rn,m, we either have that

In ∈ In\Jn or that In contains at least [2R1−ε/2] intervals In+1 ∈ Rn+1,m.

Next we exploit Lemma 4. Choose an arbitrary interval J0 fromR0,m = J0
and define T0 := {J0}. For 0 6 n < m, we define inductively the nested

collections

Tn+1 := {In+1 ∈ T (In) : In ∈ Tn}

with T (In) given by one of the following three scenarios.

• In ∈ Rn,m and In contains at least [2R1−ε/2] subintervals In+1 from

Rn+1,m. Let T (In) be any collection consisting of [2R1−ε/2] such subin-

tervals. Note that when n = m− 1, we have T (In) ⊂ Rm,m ⊂ Im\Jm.

Therefore T (Im−1) ∩ Jm = ∅.
• In ∈ Rn,m and In contains strictly less than [2R1−ε/2] subintervals In+1

from Rn+1,m. Then the interval In ∈ In\Jn, and we subdivide In into

R closed intervals In+1 of equal length. Let T (In) be any collection

consisting of [2R1−ε/2] such subintervals. Note that T (In)∩Jn+1 = ∅.
• In 6∈ Rn,m. Then the interval In does not intersect any interval from

Jn and we subdivide In into R closed intervals In+1 of equal length.

Let T (In) be any collection consisting of [2R1−ε/2] such subintervals.

Note that T (In) ∩ Jn+1 = ∅.
The upshot is that

#Tn = #Tn−1 × [2R1−ε/2] ∀ 0 < n 6 m

and that

Tm ∩ Jm = ∅ .

However, in view of Lemma 4, the latter is impossible and therefore the starting

premise that Mn,m = ∅ is false. This completes the proof of the proposition.

�

Appendix: The dual and simultaneous forms of Bad(i, j)

Given a pair of real numbers i and j satisfying (6), the following statement

allows us to deduce that the dual and simultaneous forms of Bad(i, j) are

equivalent.

Theorem 6. Let

Lt(q) :=
∑
s

θts qs (1 6 s 6 m, 1 6 t 6 n)

be n linear forms in m variables and let

Ms(u) :=
∑
t

θts ut
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be the transposed set of m linear forms in n variables. Suppose that there are

integers q 6= 0 such that

||Lt(q)|| 6 Ct , |qs| 6 Xs ,

for some constants Ct and Xs satisfying

max
s
{Ds := (l − 1)X−1s d1/(l−1)} < 1 ,

where

d :=
∏
t

Ct
∏
s

Xs and l := m+ n .

Then there are integers u 6= 0 such that

(90) ||Ms(u)|| 6 Ds , |ut| 6 Ut ,

where

Ut := (l − 1)C−1t d1/(l−1) .

This theorem is essentially a generalization of Theorem II in [1, Chap. V].

In short, compared to the latter, the above theorem allows the upper bounds

for ||Lt(q)|| and |qs| to vary with t and s respectively. The proof of Theorem 6

makes use of the following result which appears as Theorem I in [1, Chap. V].

Proposition 3. Let fk(z) (1 6 k 6 l) be l linearly independent homoge-

neous linear forms in the l variables z = (z1, . . . , zl) and let gk(w) be l linearly

independent homogeneous linear forms in the l variables w = (w1, . . . , wl) of

determinant d. Suppose that all the products ziwj (1 6 i, j 6 l) have integer

coefficients in

Φ(z,w) :=
∑
k

fk(z) gk(w) .

If the inequalities

|fk(z)| 6 λ (1 6 k 6 l)

are soluble with integral z 6= 0, then the inequalities

|gk(w)| 6 (l − 1) |λ d|1/(l−1)

are soluble with integral w 6= 0.

Armed with this proposition, the proof of Theorem 6 is relatively straight-

forward. Indeed, apart from obvious modifications the proof is essentially as

in [1].

Proof of Theorem 6. We start by introducing the new variables

p = (p1, . . . , pn) and v = (v1, . . . , vm) .

Now let

fk(q,p) :=

®
C−1k (Lk(q) + pk) if 1 6 k 6 n
X−1k−n qk−n if n < k 6 l
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and

gk(u,v) :=

®
Ckuk if 1 6 k 6 n
Xk−n(−Mk−n(u) + vk−n) if n < k 6 l .

Then the fk are linearly independent forms in the l := m+n variables z = (q,p)

and the gk are linearly independent forms in the l variables w = (u,v) with

determinant

d :=
n∏
t=1

Ct

m∏
s=1

Xs .

Furthermore, ∑
k6l

fkgk =
∑
t6n

utpt +
∑
s6m

vsqs

since the terms in utqs all cancel out. By hypothesis there are integers q 6= 0

and p such that

|fk(q,p)| 6 1,

so we may apply Proposition 3 with λ = 1. It follows that there are integers

(u,v) 6= (0,0) such that

Ct|ut|

Xs| −Ms(u) + vs|

}
6 (l − 1) d1/(l−1) ,

and so the inequalities given by (90) hold. It remains to show that u 6= 0. By

hypothesis Ds < 1 for all s and so if u = 0, we must have that vs = 0 for all

s. However (u,v) = (0,0) is excluded. �

Given Theorem 6, it is relatively straightforward to show that the dual

and simultaneous forms of Bad(i, j) are equivalent.

Suppose that the point (x, y) ∈ R2 does not belong to the simultaneous

Bad(i, j) set. It follows from the definition of the latter that for any constant

c > 0, there exists an integer q0 ≥ 1 such that

||q0x|| 6 c q−i0 ,

||q0y|| 6 c q−j0 .

Without loss of generality, assume that c < 1/2. With reference to Theorem 6,

let m = 1, n = 2, L1(q) = qx, L2(q) = qy, C1 = cq−i0 , C2 = cq−j0 and X1 = q0.

Hence there exists an integer pair (u1, u2) 6= (0, 0) such that

||xu1 + yu2|| 6 2cq−10 ,

|u1| 6 2qi0,

|u2| 6 2qj0 .

This in turn implies that

(91) max{|u1|1/i, |u2|1/j} ||xu1 + yu2|| 6 21/i+1/j+1 c .
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In other words, for any arbitrary small constant c > 0, there exists (u1, u2) ∈
Z2\{(0, 0)} for which (91) is satisfied. It follows that the point (x, y) does not

belong to the dual Bad(i, j) set. The upshot is that the dual Bad(i, j) set is

a subset of the simultaneous Bad(i, j) set.

Suppose the point (x, y) ∈ R2 does not belong to the dual Bad(i, j) set.

It follows from the definition of the latter that for any constant c > 0, there

exists (a, b) ∈ Z2\{(0, 0)} such that

max{|a|1/i, |b|1/j} ||ax+ by|| 6 c.

Without loss of generality, assume that c<1/4 and let q0 :=max{|a|1/i, |b|1/j}.
With reference to Theorem 6, let m = 2, n = 1, L1(q) = q1x+ q2y, C1 = cq−10 ,

X1 = qi0 and X2 = qj0. Hence there exists an integer u 6= 0 such that

||ux|| 6 2 c1/2 q−i0

||uy|| 6 2 c1/2 q−j0

|u| 6 2 c−1/2 q0 .

This in turn implies that there exists and integer q = |u| > 1 such that

(92) max{||qx||1/i, ||qy||1/j} 6 max

ß
2

1+i
i c

j
2i , 2

1+j
j c

i
2j

™
q−1 .

In other words, for any arbitrary small constant c > 0, there exists q ∈ N for

which (92) is satisfied. It follows that the point (x, y) does not belong to the

simultaneous Bad(i, j) set. The upshot is that the simultaneous Bad(i, j) set

is a subset of the dual Bad(i, j) set.
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