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On a problem posed by Steve Smale

By Peter Bürgisser and Felipe Cucker

Abstract

The 17th of the problems proposed by Steve Smale for the 21st century

asks for the existence of a deterministic algorithm computing an approx-

imate solution of a system of n complex polynomials in n unknowns in

time polynomial, on the average, in the size N of the input system. A par-

tial solution to this problem was given by Carlos Beltrán and Luis Miguel

Pardo who exhibited a randomized algorithm doing so. In this paper we

further extend this result in several directions. Firstly, we exhibit a linear

homotopy algorithm that efficiently implements a nonconstructive idea of

Mike Shub. This algorithm is then used in a randomized algorithm, call it

LV, à la Beltrán-Pardo. Secondly, we perform a smoothed analysis (in the

sense of Spielman and Teng) of algorithm LV and prove that its smoothed

complexity is polynomial in the input size and σ−1, where σ controls the

size of of the random perturbation of the input systems. Thirdly, we per-

form a condition-based analysis of LV. That is, we give a bound, for each

system f , of the expected running time of LV with input f . In addition

to its dependence on N this bound also depends on the condition of f .

Fourthly, and to conclude, we return to Smale’s 17th problem as originally

formulated for deterministic algorithms. We exhibit such an algorithm and

show that its average complexity is NO(log logN). This is nearly a solution

to Smale’s 17th problem.
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1. Introduction

In 2000, Steve Smale published a list of mathematical problems for the
21st century [29]. The 17th problem in the list reads as follows:

Can a zero of n complex polynomial equations in n unknowns be found

approximately, on the average, in polynomial time with a uniform

algorithm?

Smale pointed out that “it is reasonable” to homogenize the polynomial

equations by adding a new variable and to work in projective space after which

he made precise the different notions intervening in the question above. We
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provide these definitions in full detail in Section 2. Before doing so, in the

remainder of this section, we briefly describe the recent history of Smale’s 17th

problem and the particular contribution of the present paper. The following

summary of notations should suffice for this purpose.

We denote by Hd the linear space of complex homogeneous polynomial

systems in n + 1 variables, with a fixed degree pattern d = (d1, . . . , dn). We

let D = maxi di, N = dimCHd, and D =
∏
i di. We endow this space with the

unitarily invariant Bombieri-Weyl Hermitian product and consider the unit

sphere S(Hd) with respect to the norm induced by this product. We then

make this sphere a probability space by considering the uniform measure on

it. The expression “on the average” refers to expectation on this probability

space. Also, the expression “approximate zero” refers to a point for which

Newton’s method, starting at it, converges immediately, quadratically fast.

This is the setting underlying the series of papers [22], [23], [24], [26], [25]

— commonly referred to as “the Bézout series” — written by Shub and Smale

during the first half of the 1990s, a collection of ideas, methods, and results that

pervade all the research done in Smale’s 17th problem since this was proposed.

The overall idea in the Bézout series is to use a linear homotopy. That is, one

starts with a system g and a zero ζ of g and considers the segment Ef,g with

extremities f and g. Here f is the system whose zero we want to compute.

Almost surely, when one moves from g to f , the zero ζ of g follows a curve

in projective space to end in a zero of f . The homotopy method consists of

dividing the segment Ef,g in a number, say k, of subsegments Ei small enough

to ensure that an approximate zero xi of the system at the origin of Ei can be

made into an approximate zero xi+1 of the system at its end (via one step of

Newton’s method). The difficulty of this overall idea lies in the following issues:

(1) How does one choose the initial pair (g, ζ)?

(2) How does one choose the subsegments Ei? In particular, how large

should k be?

The state of the art at the end of the Bézout series, i.e., in [25], showed an

incomplete picture. For (2), the rule consisted of taking a regular subdivision of

Ef,g for a given k, executing the path-following procedure, and repeating with

k replaced by 2k if the final point could not be shown to be an approximate zero

of f . (Shub and Smale provided criteria for checking this.) Concerning (1),

Shub and Smale proved that good initial pairs (g, ζ) (in the sense that the

average number of iterations for the rule above was polynomial in the size

of f) existed for each degree pattern d, but they could not exhibit a procedure

to generate one such pair.

The next breakthrough took a decade to come. Beltrán and Pardo pro-

posed in [4], [5] that the initial pair (g, ζ) should be randomly chosen. The con-

sideration of randomized algorithms departs from the formulation of Smale’s
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17th problem1 but it is widely accepted that, in practical terms, such al-

gorithms are as good as their deterministic siblings. And in the case at

hand this departure turned out to pay off. The average (over f) of the ex-

pected (over (g, ζ)) number of iterations of the algorithm proposed in [5] is

O(n5N2D3 logD). One of the most notable features of the ideas introduced

by Beltrán and Pardo is the use of a measure on the space of pairs (g, ζ) which

is friendly enough to perform a probabilistic analysis while, at the same time,

does allow for efficient sampling.

Shortly after the publication of [4], [5] Shub wrote a short paper of great

importance [21]. Complexity bounds in both the Bézout series and the Beltrán-

Pardo results rely on condition numbers. Shub and Smale had introduced a

measure of condition µnorm(f, ζ) for f ∈ Hd and ζ ∈ Cn+1 which, in case ζ is

a zero of f , quantifies how much ζ varies when f is slightly perturbed. Using

this measure they defined the condition number of a system f by taking

(1.1) µmax(f) := max
ζ|f(ζ)=0

µnorm(f, ζ).

The bounds mentioned above make use of an estimate for the worst-conditioned

system along the segment Ef,g, that is, of the quantity

(1.2) max
q∈Ef,g

µmax(q).

The main result in [21] shows that there exists a partition of Ef,g which suc-

cessfully computes an approximate zero of f whose number k of pieces satisfies

(1.3) k ≤ CD3/2
∫
q∈Ef,g

µ2
2(q) dq,

where C is a constant and µ2(q) is the mean square condition number of q

given by

(1.4) µ2
2(q) :=

1

D
∑

ζ|q(ζ)=0

µ2
norm(q, ζ).

This partition is explicitly described in [21], but no constructive procedure to

compute the partition is given there.

1In his description of Problem 17 Smale writes “Time is measured by the number of

arithmetic operations and comparisons, ≤, using real machines (as in Problem 3)” and in the

latter he points that, “In [Blum-Shub-Smale,1989] a satisfactory definition [of these machines]

is proposed.” The paper [9] quoted by Smale deals exclusively with deterministic machines.

Furthermore, Smale adds that “a probability measure must be put on the space of all such f ,

for each d = (d1, . . . , dn), and the time of an algorithm is averaged over the space of f .”

Hence, the expression ‘average time’ refers to expectation over the input data only.
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In an oversight of this nonconstructibility, Beltrán and Pardo [6] provided

a new version of their randomized algorithm2 with an improved complexity of

O(D3/2nN).

A first goal of this paper is to validate Beltrán and Pardo’s analysis in [6]

by exhibiting an efficiently constructible partition of Ef,g which satisfies a

bound like (1.3). Our way of doing so owes much to the ideas in [21]. The

path-following procedure ALH relying on this partition is described in detail

in Section 3.1 together with a result, Theorem 3.1, bounding its complexity as

in (1.3).
The second goal of this paper is to perform a smoothed analysis of a ran-

domized algorithm (essentially Beltrán-Pardo randomization plus ALH) com-
puting a zero of f , which we call LV. What smoothed analysis is, is succinctly
explained in the citation of the Gödel prize 2008 awarded to its creators, Daniel
Spielman and Teng Shang-Hua.3

Smoothed Analysis is a novel approach to the analysis of algorithms.

It bridges the gap between worst-case and average case behavior by

considering the performance of algorithms under a small perturba-

tion of the input. As a result, it provides a new rigorous framework

for explaining the practical success of algorithms and heuristics that

could not be well understood through traditional algorithm analysis

methods.

In a nutshell, smoothed analysis is a probabilistic analysis which replaces

the ‘evenly spread’ measures underlying the usual average-case analysis (uni-

form measures, standard normals, . . . ) by a measure centered at the input

data. That is, it replaces the ‘average data input’ (an unlikely input in ac-

tual computations) by a small random perturbation of a worst-case data and

substitutes the typical quantity studied in the average-case context,

E
f∼R

ϕ(f),

by

sup
f

E
f∼C(f,r)

ϕ(f).

2The algorithm in [6] explicitly calls as a subroutine “the homotopy algorithm of [21]”

without noticing that the partition in [21] is nonalgorithmic. Actually, the word ‘algorithm’ is

never used in [21]. The main goal of [21], as stated in the abstract, is to motivate “the study

of short paths or geodesics in the condition metric” —the proof of (1.3) does not require the

homotopy to be linear and one may wonder whether other paths in Hd may substantially

decrease the integral in the right-hand side. This goal has been addressed, but not attained,

in [7]. As of today it remains a fascinating open problem.
3See http://www.fmi.uni-stuttgart.de/ti/personen/Diekert/citation08.pdf for the

whole citation.
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Here ϕ(f) is the function of f one is interested in (e.g., the complexity of an

algorithm over input f), R is the ‘evenly spread’ measure mentioned above and

C(f, r) is an isotropic measure centered at f with a dispersion (e.g., variance)

given by a (small) parameter r > 0.

An immediate advantage of smoothed analysis is its robustness with re-

spect to the measure C (see §3.4 below). This is in contrast with the most

common critique to average-case analysis: “A bound on the performance of

an algorithm under one distribution says little about its performance under

another distribution, and may say little about the inputs that occur in prac-

tice” [31].

The precise details of the smoothed analysis we perform for zero finding

are in Section 3.4.

To describe the third goal of this paper we recall Smale’s ideas of com-

plexity analysis as exposed in [28]. In this program-setting paper Smale writes

that he sees “much of the complexity theory [. . . ] of numerical analysis conve-

niently represented by a two-part scheme.” The first part amounts to obtain,

for the running time time(f) of an algorithm on input f , an estimate of the

form

(1.5) time(f) ≤ K(size(f) + µ(f))c,

where K and c are positive constants and µ(f) is a condition number for f .

The second takes the form

(1.6) Prob{µ(f) ≥ T} ≤ T−c,

“where a probability measure has been put on the space of inputs.” The first

part of this scheme provides understanding on the behavior of the algorithm

for specific inputs f (in terms of their condition as measured by µ(f)). The

second, combined with the first, allows one to obtain probability bounds for

time(f) in terms of size(f) only. But these bounds say little about time(f) for

actual input data f .

Part one of Smale’s program is missing in the work related with his 17th

problem. All estimates on the running time of path-following procedures for

a given f occurring in both the Bézout series and the work by Beltrán and

Pardo are expressed in terms of the quantity in (1.2) or the integral in (1.3),

not purely in terms of the condition of f . We fill this gap by showing for the

expected running time of LV a bound like (1.5) with µ(f) = µmax(f). The

precise statement, Theorem 3.7, is in Section 3.6 below.

Last but not least, to close this introduction, we return to its opening

theme: Smale’s 17th problem. Even though randomized algorithms are effi-

cient in theory and reliable in practice, they do not offer an answer to the

question of the existence of a deterministic algorithm computing approximate
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zeros of complex polynomial systems in average polynomial time. The situa-

tion is akin to the development of primality testing. It was precisely with this

problem that randomized algorithms became a means to deal with apparently

intractable problems [30], [17]. Yet, the eventual display of a deterministic

polynomial-time algorithm [1] was justly welcomed as a major achievement.

The fourth main result in this paper exhibits a deterministic algorithm com-

puting approximate zeros in average time NO(log logN). To do so we design

and analyze a deterministic homotopy algorithm, call it MD, whose average

complexity is polynomial in n and N and exponential in D. This already

yields a polynomial-time algorithm when one restricts the degree D to be at

most n1−ε for any fixed ε > 0 (and, in particular, when D is fixed as in a sys-

tem of quadratic or cubic equations). Algorithm MD is fast when D is small.

We complement it with an algorithm that uses a procedure proposed by Jim

Renegar [18] and which computes approximate zeros similarly fast when D is

large.

In order to prove the results described above we have relied on a number

of ideas and techniques. Some of them —e.g., the use of the coarea formula or

of the Bombieri-Weyl Hermitian inner product— are taken from the Bézout

series and are pervasive in the literature on the subject. Some others —notably

the use of the Gaussian distribution and its truncations in Euclidean space

instead of the uniform distribution on a sphere or a projective space— are less

common. The blending of these ideas has allowed us a development which

unifies the treatment of the several situations we consider for zero finding in

this paper.

Acknowledgments. Thanks go to Carlos Beltrán and Jean-Pierre Dedieu

for helpful comments. We are very grateful to Mike Shub for constructive crit-

icism and insightful comments that helped to improve the paper considerably.

This work was finalized during the special semester on Foundations of Com-

putational Mathematics in the fall of 2009. We thank the Fields Institute in

Toronto for hospitality and financial support.

2. Preliminaries

2.1. Setting and notation. For d ∈ N we denote by Hd the subspace of

C[X0, . . . , Xn] of homogeneous polynomials of degree d. For f ∈ Hd, we write

f(x) =
∑
α

Ç
d

α

å1/2

aαX
α,

where α = (α0, . . . , αn) is assumed to range over all multi-indices such that

|α| =
∑n
k=0 αk = d,

(d
α

)
denotes the multinomial coefficient, and Xα :=

Xα0
0 Xα1

1 · · ·Xαn
n . That is, we take for basis of the linear spaceHd the Bombieri-

Weyl basis consisting of the monomials
(d
α

)1/2
Xα. A reason to do so is that the
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Hermitian inner product associated to this basis is unitarily invariant. That

is, if g ∈ Hd is given by g(x) =
∑
α

(d
α

)1/2
bαX

α, then the canonical Hermitian

inner product

〈f, g〉 =
∑
|α|=d

aα bα

satisfies, for all element ν in the unitary group U(n+ 1), that

〈f, g〉 = 〈f ◦ ν, g ◦ ν〉.

Fix d1, . . . , dn ∈ N \ {0} and let Hd = Hd1 × · · · × Hdn be the vector space of

polynomial systems f = (f1, . . . , fn) with fi ∈ C[X0, . . . , Xn] homogeneous of

degree di. The space Hd is naturally endowed with a Hermitian inner product

〈f, g〉 =
∑n
i=1〈fi, gi〉. We denote by ‖f‖ the corresponding norm of f ∈ Hd.

Recall that N = dimCHd and D = maxi di. Also, in the rest of this

paper, we assume D ≥ 2 (the case D = 1 being solvable with elementary

linear algebra).

Let Pn := P(Cn+1) denote the complex projective space associated to

Cn+1 and S(Hd) the unit sphere of Hd. These are smooth manifolds that

naturally carry the structure of a Riemannian manifold (for Pn the metric is

called Fubini-Study metric). We will denote by dP and dS their Riemannian

distances which, in both cases, amount to the angle between the arguments.

Specifically, for x, y ∈ Pn, one has

(2.1) cos dP(x, y) =
|〈x, y〉|
‖x‖ ‖y‖

.

Ocasionally, for f, g ∈ Hd \ {0}, we will abuse language and write dS(f, g) to

denote this angle, that is, the distance dS
Ä
f
‖f‖ ,

g
‖g‖

ä
.

We define the solution variety to be

VP := {(f, ζ) ∈ Hd × Pn | f 6= 0 and f(ζ) = 0}.

This is a smooth submanifold of Hd×Pn and hence also carries a Riemannian

structure. We denote by VP(f) the zero set of f ∈ Hd in Pn. By Bézout’s

theorem, it contains D points for almost all f . Let Df(ζ)|Tζ denote the

restriction of the derivative of f : Cn+1 → Cn at ζ to the tangent space

Tζ := {v ∈ Cn+1 | 〈v, ζ〉 = 0} of Pn at ζ. The subvariety of ill-posed pairs

is defined as

Σ′P := {(f, ζ) ∈ VP | rankDf(ζ)|Tζ < n}.

Note that (f, ζ) 6∈ Σ′P means that ζ is a simple zero of f . In this case, by the

implicit function theorem, the projection VP → Hd, (g, x) 7→ g can be locally

inverted around (f, ζ). The image Σ of Σ′P under the projection VP → Hd is

called the discriminant variety.
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2.2. Newton’s method. In [20], Mike Shub introduced the following pro-

jective version of Newton’s method. We associate to f ∈ Hd (with Df(x)

of rank n for some x) a map Nf : Cn+1 \ {0} → Cn+1 \ {0} defined (almost

everywhere) by
Nf (x) = x−Df(x)−1

|Txf(x).

Note that Nf (x) is homogeneous of degree 0 in f and of degree 1 in x so that

Nf induces a rational map from Pn to Pn (which we will still denote by Nf ),

and this map is invariant under multiplication of f by constants.

We note that Nf (x) can be computed from f and x very efficiently: since

the Jacobian Df(x) can be evaluated with O(N) arithmetic operations [3], one

can do with a total of O(N + n3) arithmetic operations.

It is well known that when x is sufficiently close to a simple zero ζ of f ,

the sequence of Newton iterates beginning at x will converge quadratically fast

to ζ. This property led Steve Smale to define the following intrinsic notion of

approximate zero.

Definition 2.1. By an approximate zero of f ∈ Hd associated with a zero

ζ ∈ Pn of f , we understand a point x ∈ Pn such that the sequence of Newton

iterates (adapted to projective space)

xi+1 := Nf (xi)

with initial point x0 := x converges immediately quadratically to ζ, i.e.,

dP(xi, ζ) ≤
(1

2

)2i−1
dP(x0, ζ)

for all i ∈ N.

2.3. Condition numbers. How close need x be from ζ to be an approximate

zero? This depends on how well conditioned the zero ζ is.

For f ∈ Hd and x ∈ Cn+1 \ {0}, we define the (normalized) condition

number µnorm(f, x) by

µnorm(f, x) := ‖f‖
∥∥∥ÄDf(x)|Tx

ä−1
diag(

√
d1‖x‖d1−1, . . . ,

√
dn‖x‖dn−1)

∥∥∥ ,
where Tx denotes the Hermitian complement of Cx, the right-hand side norm

is the spectral norm, and diag(ai) denotes the diagonal matrix with entries ai.

Note that µnorm(f, x) is homogeneous of degree 0 in both arguments; hence it

is well defined for (f, x) ∈ Hd×Pn. If x is a simple zero of f , then kerDf(x) =

Cx and hence
Ä
Df(x)|Tx

ä−1
can be identified with the Moore-Penrose inverse

Df(x)† of Df(x). We have µnorm(f, x) ≥ 1; cf. [8, §12.4, Cor. 3].

The following result (essentially, a γ-Theorem in Smale’s theory of esti-

mates for Newton’s method [27]) quantifies our claim above.

Theorem 2.2. Assume f(ζ) = 0 and dP(x, ζ) ≤ u0

D3/2µnorm(f,ζ)
, where

u0 := 3−
√

7 ≈ 0.3542. Then x is an approximate zero of f associated with ζ .
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Proof. This is an immediate consequence of the projective γ-Theorem

in [8, p. 263, Th. 1] combined with the higher derivative estimate [8, p. 267,

Th. 2]. �

2.4. Gaussian distributions. The distribution of input data will be mod-

elled with Gaussians. Let x ∈ Rn and σ > 0. We recall that the Gaussian

distribution N(x, σ2I) on Rn with mean x and covariance matrix σ2I is given

by the density

ρ(x) =
( 1

σ
√

2π

)n
exp
Ä
− ‖x− x‖

2

2σ2

ä
.

3. Statement of main results

3.1. The homotopy continuation routine ALH. Suppose that we are given

an input system f ∈ Hd and an initial pair (g, ζ) in the solution variety VP
such that f and g are R-linearly independent. Let α = dS(f, g). Consider the

line segment Ef,g in Hd with endpoints f and g. We parametrize this segment

by writing
Ef,g = {qτ ∈ Hd | τ ∈ [0, 1]},

with qτ being the only point in Ef,g such that dS(g, qτ ) = τα (see Figure 1).

Explicitly, we have qτ = tf +(1− t)g, where t = t(τ) is given by equation (5.4)

below. If Ef,g does not intersect the discriminant variety Σ, there is a unique

continuous map [0, 1] → VP, τ 7→ (qτ , ζτ ) such that (q0, ζ0) = (g, ζ), called the

lifting of Ef,g with origin (g, ζ). In order to find an approximation of the zero

ζ1 of f = q1, we may start with the zero ζ = ζ0 of g = q0 and numerically follow

the path (qτ , ζτ ) by subdividing [0, 1] with points 0 = τ0 < τ1 < · · · < τk = 1

and by successively computing approximations xi of ζτi by Newton’s method.

More precisely, we consider the following algorithm ALH (Adaptive Linear

Homotopy) with the stepsize parameter λ = 6.67 · 10−3.

Algorithm ALH

input f, g ∈ Hd and ζ ∈ Pn such that g(ζ) = 0

α := dS(f, g), r := ‖f‖, s := ‖g‖
τ := 0, q := g, x := ζ

repeat

∆τ := λ
αD3/2µ2

norm(q,x)

τ := min{1, τ + ∆τ}
t := s

r sinα cot(τα)−r cosα+s

q := tf + (1− t)g
x := Nq(x)

until τ = 1

RETURN x
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Our main result for this algorithm, which we will prove in Section 4, is

the following.

Theorem 3.1. The algorithm ALH stops after at most k steps with

k ≤ 245D3/2 dS(f, g)

∫ 1

0
µ2

norm(qτ , ζτ ) dτ.

The returned point x is an approximate zero of f with associated zero ζ1.

Remark 3.2. 1. The bound in Theorem 3.1 is optimal up to a constant

factor. This easily follows by an inspection of its proof given in Section 4.

2. Algorithm ALH requires the computation of µnorm which, in turn, re-

quires the computation of the operator norm of a matrix. This cannot be

done exactly with rational operations and square roots only. We can do, how-

ever, with a sufficiently good approximation of µ2
norm(q, x), and there exist

several numerical methods efficiently computing such an approximation. We

will therefore neglect this issue pointing, however, for the skeptical reader

that another course of action is possible. Indeed, one may replace the op-

erator by the Frobenius norm in the definition of µnorm and use the bounds

‖M‖ ≤ ‖M‖F ≤
»
rank(M)‖M‖ to show that this change preserves the cor-

rectness of ALH and adds a multiplicative factor n in the right-hand side of

Theorem 3.1. A similar comment applies to the computation of α and cot(τα)

in algorithm ALH which cannot be done exactly with rational operations.

3.2. Randomization and complexity : the algorithm LV. ALH will serve as

the basic routine for a number of algorithms computing zeros of polynomial

systems in different contexts. In these contexts both the input system f and

the origin (g, ζ) of the homotopy may be randomly chosen: in the case of

(g, ζ) as a computational technique and in the case of f in order to perform a

probabilistic analysis of the algorithm’s running time.

In both cases, a probability measure is needed: one for f and one for the

pair (g, ζ). The measure for f will depend on the kind of probabilistic ana-

lysis (standard average-case or smoothed analysis) we perform. In contrast,

we will consider only one measure on VP — which we denote by ρst — for

the initial pair (g, ζ). It consists of drawing g from Hd from the standard

Gaussian distribution (defined via the isomorphism Hd ' R2N given by the

Bombieri-Weyl basis) and then choosing one of the (almost surely) D zeros

of g from the uniform distribution on {1, . . . ,D}. The formula for the density

of ρst will be derived later; see Lemma 8.8(5). The above procedure is clearly

nonconstructive as computing a zero of a system is the problem we wanted to

solve in the first place. One of the major contributions in [4] was to show that

this drawback can be repaired. The following result (a detailed version of the
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effective sampling in [6]) will be proved in Section 9 as a special case of more

general results we will need in our development.

Proposition 3.3. We can compute a random pair (g, ζ) ∈ VP according

to the density ρst with O(N) choices of random real numbers from the stan-

dard Gaussian distribution and O(DnN+n3) arithmetic operations (including

square roots of positive numbers).

Algorithms using randomly drawn data are called probabilistic (or ran-

domized). Those that always return a correct output are said to be of type

Las Vegas. The following algorithm (which uses Proposition 3.3) belongs to

this class:

Algorithm LV

input f ∈ Hd

draw (g, ζ) ∈ VP from ρst

run ALH on input (f, g, ζ)

For an input f ∈ Hd algorithm LV either outputs an approximate zero x

of f or loops forever. By the running time t(f, g, ζ) we will understand the

number of elementary operations (i.e., arithmetic operations, evaluations of the

elementary functions sin, cos, cot, square root, and comparisons) performed by

LV on input f with initial pair (g, ζ). For fixed f , this is a random variable and

its expectation t(f) := E(g,ζ)∼ρst(t(f, g, ζ)) is said to be the expected running

time of LV on input f .

For all f, g, ζ, the running time t(f, g, ζ) is given by the number of iter-

ations K(f, g, ζ) of ALH with input this triple times the cost of an iteration,

the latter being dominated by that of computing one Newton iterate (which is

O(N + n3) independently of the triple (f, g, ζ); see §2.2). It therefore follows

that analyzing the expected running times of LV amounts to do so for the ex-

pected value — over (g, ζ) ∈ VP drawn from ρst — of K(f, g, ζ). We denote

this expectation by

K(f) := E
(g,ζ)∼ρst

(K(f, g, ζ)).

3.3. Average analysis of LV. To talk about average complexity of LV re-

quires specifying a measure for the set of inputs. The most natural choice is the

standard Gaussian distribution on Hd. Since K(f) is invariant under scaling,

we may equivalently assume that f is chosen in the unit sphere S(Hd) from

the uniform distribution. With this choice, we say a Las Vegas algorithm is

average polynomial time when the average — over f ∈ S(Hd) — of its expected

running time is polynomially bounded in the size N of f . The following result

shows that LV is average polynomial time. It is essentially the main result

in [6] (modulo the existence of ALH and with specific constants).
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Theorem 3.4. The average of the expected number of iterations of Algo-

rithm LV is bounded as (n ≥ 4)

E
f∈S(Hd)

K(f) ≤ 4185D3/2N(n+ 1).

3.4. Smoothed analysis of LV. A smoothed analysis of an algorithm con-

sists of bounding, for all possible input data f , the average of its running time

(its expected running time if it is a Las Vegas algorithm) over small perturba-

tions of f . To perform such an analysis, a family of measures (parametrized

by a parameter r controlling the size of the perturbation) is considered with

the following characteristics:

(1) The density of an element f depends only on the distance ‖f − f‖.
(2) The value of r is closely related to the variance of ‖f − f‖.

Then, the average above is estimated as a function of the data size N and

the parameter r, and a satisfying result, which is described by the expression

smoothed polynomial time, demands that this function is polynomially bounded

in r−1 and N . Possible choices for the measures’ family are the Gaussians

N(f, σ2I) (used, for instance, in [14], [19], [32], [33]) and the uniform measure

on disks B(f, r) (used in [2], [11], [12]). Other families may also be used and

an emerging impression is that smoothed analysis is robust in the sense that

its dependence on the chosen family of measures is low. This tenet was argued

for in [15] where a uniform measure is replaced by an adversarial measure (one

having a pole at f) without a significant loss in the estimated averages.

In this paper, for reasons of technical simplicity and consistency with the

rest of the exposition, we will work with truncated Gaussians defined as follows.

For f ∈ Hd and σ > 0, we shall denote by N(f, σ2I) the Gaussian distribution

on Hd ' R2N (defined with respect to the Bombieri-Weyl basis) with mean

f and covariance matrix σ2I. Further, for A > 0, let PA,σ := Prob{‖f‖ ≤
A | f ∼ N(0, σ2I)}. We define the truncated Gaussian NA(f, σ2I) with center

f ∈ Hd as the probability measure on Hd with density

(3.1) ρ(f) =


ρ
f,σ

(f)

PA,σ
if ‖f − f‖ ≤ A

0 otherwise,

where ρf,σ denotes the density of N(f, σ2I). Note that NA(f, σ2I) is isotropic

around its mean f .

For our smoothed analysis we will take A =
√

2N . In this case, we have

PA,σ ≥ 1
2 for all σ ≤ 1 (Lemma 6.1). Note also that Var(‖f − f‖) ≤ σ2, so

that any upper bound polynomial in σ−2 is also an upper bound polynomial

in Var(‖f − f‖)−1.

We can now state our smoothed analysis result for LV.
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Theorem 3.5. For any 0 < σ ≤ 1, Algorithm LV satisfies

sup
f∈S(Hd)

E
f∼NA(f,σ2I)

K(f) ≤ 4185D3/2
Ä
N + 2−1/2

√
N
ä
(n+ 1)

1

σ
.

3.5. The main technical result. The technical heart of the proof of the

mentioned results on the average and smoothed analysis of LV is the following

smoothed analysis of the mean square condition number.

Theorem 3.6. Let q ∈ Hd and σ > 0. For q ∈ Hd drawn from N(q, σ2I),

we have

E
Hd

(µ2
2(q)

‖q‖2
)
≤ e(n+ 1)

2σ2
.

We note that no bound on the norm of q is required here. Indeed, using

µ2(λq) = µ2(q), it is easy to see that the assertion for q, σ implies the assertion

for λq, λσ, for any λ > 0.

3.6. Condition-based analysis of LV. We are here interested in estimat-

ing K(f) for a fixed input system f ∈ S(Hd). Such an estimate will have to

depend on, besides N , n, and D, the condition of f . We measure the latter

using Shub and Smale’s [22] µmax(f) defined in (1.1). Our condition-based

analysis of LV is summarized in the following statement.

Theorem 3.7. The expected number of iterations of Algorithm LV with

input f ∈ S(Hd) \ Σ is bounded as

K(f) ≤ 200411D3N(n+ 1)µ2
max(f).

3.7. A near solution of Smale’s 17th problem. We finally want to consider

deterministic algorithms finding zeros of polynomial systems. Our goal is to

exhibit one such algorithm working in nearly-polynomial average time, more

precisely in average time NO(log logN). A first ingredient to do so is a deter-

ministic homotopy algorithm which is fast when D is small. This consists of

algorithm ALH plus the initial pair (U, z1), where U = (U1, . . . , Un) ∈ S(Hd)

with U i = 1√
2n

(Xdi
0 −X

di
i ) and z1 = (1 : 1 : . . . : 1).

We consider the following algorithm MD (Moderate Degree):

Algorithm MD

input f ∈ Hd

run ALH on input (f, U, z1)

We write KU (f) := K(f, U, z1) for the number of iterations of algorithm

MD with input f . We are interested in computing the average over f of KU (f)

for f randomly chosen in S(Hd) from the uniform distribution.

The complexity of MD is bounded as follows.
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Theorem 3.8. The average number of iterations of Algorithm MD is

bounded as

E
f∈S(Hd)

KU (f) ≤ 400821D3N(n+ 1)D+1.

Algorithm MD is efficient when D is small, say, when D ≤ n. For D > n

we use another approach, namely, a real number algorithm designed by Jim

Renegar [18] which in this case has a performance similar to that of MD when

D ≤ n. Putting both pieces together we will reach our last main result.

Theorem 3.9. There is a deterministic real number algorithm that on

input f ∈ Hd computes an approximate zero of f in average time NO(log logN),

where N = dimHd measures the size of the input f . Moreover, if we restrict

data to polynomials satisfying

D ≤ n
1

1+ε or D ≥ n1+ε

for some fixed ε > 0, then the average time of the algorithm is polynomial in

the input size N .

4. Complexity analysis of ALH

The goal of this section is to prove Theorem 3.1. An essential component

in this proof is an estimate of how much µnorm(f, ζ) changes when f or ζ

(or both) are slightly perturbed. The following result gives upper and lower

bounds on this variation. It is a precise version, with explicit constants, of

Theorem 1 of [21].

Proposition 4.1. Assume D ≥ 2. Let 0 < ε ≤ 0.13 be arbitrary and

C ≤ ε
5.2 . For all f, g ∈ S(Hd) and all x, ζ ∈ Pn, if d(f, g) ≤ C

D1/2µnorm(f,ζ)
and

d(ζ, x) ≤ C
D3/2µnorm(f,ζ)

, then

1

1 + ε
µnorm(g, x) ≤ µnorm(f, ζ) ≤ (1 + ε)µnorm(g, x).

In what follows, we will fix the constants as ε = 0.13 and C = ε
5.2 = 0.025.

Remark 4.2. The constants C and ε implicitly occur in the statement of

Theorem 3.1 since the 245 therein is a function of these numbers. But their

role is not limited to this since they also occur in the algorithm ALH in the

parameter λ = C(1−ε)
2(1+ε)4 controlling the update τ + ∆τ of τ . We note that for

the former we could do without precise values by using the big Oh notation.

In contrast, we cannot talk of a constructive procedure unless all of its steps

are precisely given.

Proof of Theorem 3.1. Let 0 = τ0 < τ1 < · · · < τk = 1 and ζ0 =

x0, x1, . . . , xk be the sequences of τ -values and points in Pn generated by the
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algorithm ALH. To simplify notation we write qi instead of qτi and ζi instead

of ζτi .

We claim that, for i = 0, . . . , k − 1, the following inequalities are true:

(a) dP(xi, ζi) ≤
C

D3/2µnorm(qi, ζi)
;

(b)
µnorm(qi, xi)

(1 + ε)
≤ µnorm(qi, ζi) ≤ (1 + ε)µnorm(qi, xi);

(c) dS(qi, qi+1) ≤ C

D3/2µnorm(qi, ζi)
;

(d) dP(ζi, ζi+1) ≤ C

D3/2µnorm(qi, ζi)

(1− ε)
(1 + ε)

;

(e) dP(xi, ζi+1) ≤ 2C

(1 + ε)D3/2µnorm(qi, ζi)
.

We proceed by induction showing that

(a, i)⇒ (b, i)⇒
Ä
(c, i) and (d, i)

ä
⇒ (e, i)⇒ (a, i+ 1).

Inequality (a) for i = 0 is trivial.

Assume now that (a) holds for some i ≤ k − 1. Then, Proposition 4.1

(with f = g = qi) implies

µnorm(qi, xi)

(1 + ε)
≤ µnorm(qi, ζi) ≤ (1 + ε)µnorm(qi, xi)

and thus (b). We now show (c) and (d). To do so, put pτ := qτ
‖qτ‖ and let

τ∗ > τi be such that
∫ τ∗
τi

(‖ṗτ‖ + ‖ζ̇τ‖)dτ = C
D3/2µnorm(qi,ζi)

(1−ε)
(1+ε) or τ∗ = 1,

whichever the smallest. Then, for all t ∈ [τi, τ∗],

dP(ζi, ζt) =

∫ t

τi

‖ζ̇τ‖ dτ ≤
∫ τ∗

τi

(‖ṗτ‖+ ‖ζ̇τ‖)dτ

≤ C

D3/2µnorm(qi, ζi)

(1− ε)
(1 + ε)

and, similarly,

dS(qi, qt) ≤
C

D3/2µnorm(qi, ζi)

(1− ε)
(1 + ε)

≤ C

D3/2µnorm(qi, ζi)
.

It is therefore enough to show that τi+1 ≤ τ∗. This is trivial if τ∗ = 1. We there-

fore assume τ∗ < 1. The two bounds above allow us to apply Proposition 4.1

and to deduce, for all τ ∈ [τi, τ∗],

µnorm(qτ , ζτ ) ≤ (1 + ε)µnorm(qi, ζi).
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From ‖ζ̇τ‖ ≤ µnorm(qτ , ζτ ) ‖ṗτ‖ (cf. [8, §12.3-12.4]) and µnorm(qτ , ζτ ) ≥ 1 it

follows that

C

D3/2µnorm(qi, ζi)

(1− ε)
(1 + ε)

=

∫ τ∗

τi

(‖ṗτ‖+ ‖ζ̇τ‖)dτ ≤
∫ τ∗

τi

2µnorm(qτ , ζτ )‖ṗτ‖dτ

≤ 2(1 + ε)µnorm(qi, ζi)

∫ τ∗

τi

‖ṗτ‖dτ ≤ 2dS(qi, qτ∗)(1 + ε)µnorm(qi, ζi).

Consequently, using (b), we obtain

dS(qi, qτ∗) ≥
C(1− ε)

2(1 + ε)2D3/2µ2
norm(qi, ζi)

≥ C(1− ε)
2(1 + ε)4D3/2µ2

norm(qi, xi)
.

The parameter λ in ALH is chosen as C(1−ε)
2(1+ε)4 (or slightly less). By the definition

of τi+1 − τi in ALH we have α(τi+1 − τi) = λ
D3/2µ2

norm(qi,xi)
. So we obtain

dS(qi, qτ∗) ≥ α(τi+1 − τi) = dS(qi, qi+1).

This implies τi+1 ≤ τ∗ as claimed and hence, inequalities (c) and (d). With

them, we may apply Proposition 4.1 to deduce, for all τ ∈ [τi, τi+1],

(4.1)
µnorm(qi, ζi)

1 + ε
≤ µnorm(qτ , ζτ ) ≤ (1 + ε)µnorm(qi, ζi).

Next we use the triangle inequality, (a), and (d), to obtain

dP(xi, ζi+1)≤ dP(xi, ζi) + dP(ζi, ζi+1)

≤ C

D3/2µnorm(qi, ζi)
+

C

D3/2µnorm(qi, ζi)

(1− ε)
(1 + ε)

=
2C

(1 + ε)D3/2µnorm(qi, ζi)
,

which proves (e). Theorem 2.2 yields that xi is an approximate zero of qi+1

associated with its zero ζi+1. Indeed, by our choice of C and ε, we have 2C ≤
u0(1 + ε) and hence dP(xi, ζi+1) ≤ u0

D3/2µnorm(qi,ζi)
. Therefore, xi+1 = Nqi+1(xi)

satisfies

dP(xi+1, ζi+1) ≤ 1

2
dP(xi, ζi+1).

Using (e) and the right-hand inequality in (4.1) with t = ti+1, we obtain

dP(xi+1, ζi+1) ≤ C

(1 + ε)D3/2µnorm(qi, ζi)
≤ C

D3/2µnorm(qi+1, ζi+1)
,

which proves (a) for i+ 1. The claim is thus proved.

The estimate dP(xk, ζk) ≤ C
D3/2µnorm(qk,ζk)

just shown for i = k− 1 implies

by Theorem 2.2 that the returned point xk is an approximate zero of qk = f

with associated zero ζ1.
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Consider now any i ∈ {0, . . . , k − 1}. Using (4.1) and (b) we obtain∫ τi+1

τi

µ2
norm(qτ , ζτ )dτ ≥

∫ τi+1

τi

µ2
norm(qi, ζi)

(1 + ε)2
dτ =

µ2
norm(qi, ζi)

(1 + ε)2
(τi+1 − τi)

≥ µ2
norm(qi, xi)

(1 + ε)4
(τi+1 − τi)

=
µ2

norm(qi, xi)

(1 + ε)4

λ

αD3/2µ2
norm(qi, xi)

=
λ

(1 + ε)4αD3/2
≥ 1

245

1

αD3/2
.

This implies ∫ 1

0
µ2

norm(qτ , ζτ )dτ ≥ k

245

1

αD3/2
,

which proves the stated bound on k. �

5. A useful change of variables

We first draw a conclusion of Theorem 3.1, that we will need several times.

Recall the definition (1.4) of the mean square condition number µ2(q).

Proposition 5.1. The expected number of iterations of ALH on input f ∈
Hd \ Σ is bounded as

K(f) ≤ 245D3/2 E
g∈S(Hd)

Ç
dS(f, g)

∫ 1

0
µ2

2(qτ )dτ

å
.

Proof. Fix g ∈ Hd such that the segment Ef,g does not intersect the

discriminant variety Σ (which is the case for almost all g, as f 6∈ Σ). To each

of the zeros ζ(i) of g there corresponds a lifting [0, 1]→ V, τ 7→ (qτ , ζ
(i)
τ ) of Ef,g

such that ζ
(i)
0 = ζ(i). Theorem 3.1 states that

K(f, g, ζ(i)) ≤ 245D3/2 dS(f, g)

∫ 1

0
µ2

norm(qτ , ζ
(i)
τ ) dτ.

Since ζ
(1)
τ , . . . , ζ

(D)
τ are the zeros of qτ , we have by the definition (1.4) of the

mean square condition number

(5.1)
1

D

D∑
i=1

K(f, g, ζ(i)) ≤ 245D3/2 dS(f, g)

∫ 1

0
µ2

2(qτ ) dτ.

The assertion follows now from (compare the forthcoming Lemma 8.8)

K(f) = E
(g,ζ)∼ρst

(K(f, g, ζ)) = E
g∈S(Hd)

(
1

D

D∑
i=1

K(f, g, ζ(i))

)
. �
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The remaining of this article is devoted to prove Theorems 3.4– 3.9. All

of them involve expectations — over random f and/or g — of the integral∫ 1
0 µ

2
2(qτ )dτ. In all cases, we will eventually deal with such an expectation with

f and g Gaussian. Since a linear combination (with fixed coefficients) of two

such Gaussian systems is Gaussian as well, it is convenient to parametrize

the interval Ef,g by a parameter t ∈ [0, 1] representing a ratio of Euclidean

distances (instead of a ratio of angles as τ does). Thus we write, abusing

notation, qt = tf + (1− t)g. For fixed t, as noted before, qt follows a Gaussian

law. For this new parametrization we have the following result.

Proposition 5.2. Let f, g ∈ Hd be R-linearly independent and τ0 ∈ [0, 1].

Then

dS(f, g)

∫ 1

τ0

µ2
2(qτ )dτ ≤

∫ 1

t0

‖f‖ ‖g‖ µ
2
2(qt)

‖qt‖2
dt,

where

t0 =
‖g‖

‖g‖+ ‖f‖(sinα cot(τ0α)− cosα)

is the fraction of the Euclidean distance ‖f − g‖ corresponding to the fraction

τ0 of the angle α = dS(f, g).

Proof. For t ∈ [0, 1], abusing notation, we let qt = tf + (1 − t)g and

τ(t) ∈ [0, 1] be such that τ(t)α is the angle between g and qt. This defines a

bijective map [t0, 1]→ [τ0, 1], t 7→ τ(t). We denote its inverse by τ 7→ t(τ). We

claim that

(5.2)
dτ

dt
=

sinα

α

‖f‖ · ‖g‖
‖qt‖2

.

Note that the stated inequality easily follows from this claim by the transfor-

mation formula for integrals together with the bound sinα ≤ 1.

To prove Claim (5.2), denote r = ‖f‖ and s = ‖g‖. We will explicitly

compute t(τ) by some elementary geometry. For this, we introduce cartesian

coordinates in the plane spanned by f and g and assume that g has the coor-

dinates (s, 0) and f has the coordinates (r cosα, r sinα); see Figure 1.

Then, the lines determining qτ have the equations

x = y
cos(τα)

sin(τα)
and x = y

r cosα− s
r sinα

+ s

from where it follows that the coordinate y of qτ is

(5.3) y =
rs sinα sin(τα)

r sinα cos(τα)− r cosα sin(τα) + s sin(τα)
.

Since t(τ) = y
r sinα it follows that

(5.4) t(τ) =
s

r sinα cot(τα)− r cosα+ s
.
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Figure 1. Computing t(τ).

This implies the stated formula for t0 = t(τ0). Differentiating with respect

to τ , using (5.3) and sin(τα) = y
‖qτ‖ , we obtain from (5.4)

dt

dτ
=

αrs sinα

(r sinα cos(τα)− r cosα sin(τα) + s sin(τα))2

=
αy2

rs sin2(τα) sinα
=
α‖qt(τ)‖2

rs sinα
.

This finishes the proof of Claim (5.2). �

In all the cases we will deal with, the factor ‖f‖ ‖g‖ will be easily bounded

and factored out the expectation. We will ultimately face the problem of

estimating expectations of
µ2

2(qt)
‖qt‖2 for different choices of qt and σt. This is

achieved by Theorem 3.6 stated in Section 3.5.

6. Analysis of LV

We derive here from Theorem 3.6 our main results on the average and

smoothed analysis of LV stated in Section 3. The proof of Theorem 3.6 is

postponed to Sections 7–8.

6.1. Average-case analysis of LV (proof ). To warm up, we first prove The-

orem 3.4, which illustrates the blending of the previous results in a simpler

setting.

In the following we set A :=
√

2N and write PA,σ = Prob{‖f‖ ≤ A | f ∼
N(0, σ2I)} for σ > 0.

Lemma 6.1. We have PA,σ ≥ 1
2 for all 0 < σ ≤ 1.

Proof. Clearly it suffices to assume σ = 1. The random variable ‖f‖2 is

chi-square distributed with 2N degrees of freedom. Its mean equals 2N . In

[13, Cor. 6] it is shown that the median of a chi-square distribution is always

less than its mean. �
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Proof of Theorem 3.4. We use Proposition 5.1 to obtain

E
f∈S(Hd)

K(f)≤ 245D3/2 E
f∈S(Hd)

E
g∈S(Hd)

Ç
dS(f, g)

∫ 1

0
µ2

2(qτ )dτ

å
= 245D3/2 E

f∼NA(0,I)
E

g∼NA(0,I)

Ç
dS(f, g)

∫ 1

0
µ2

2(qτ )dτ

å
.

The equality follows from the fact that, since both dS(f, g) and µ2
2(qτ ) are ho-

mogeneous of degree 0 in both f and g, we may replace the uniform distribution

on S(Hd) by any rotationally invariant distribution on Hd, in particular by

the centered truncated Gaussian NA(0, I) defined in (3.1). Now we use Propo-

sition 5.2 (with τ0 = 0) to get

(6.1) E
f∈S(Hd)

K(f) ≤ 245D3/2A2 E
f∼NA(0,I)

E
g∼NA(0,I)

Ç ∫ 1

0

µ2
2(qt)

‖qt‖2
dt

å
.

Denoting by ρ0,1 the density of N(0, I), the right-hand side of (6.1) equals

245D3/2 A2

P 2
A,1

∫
‖f‖≤A

∫
‖g‖≤A

Ç ∫ 1

0

µ2
2(qt)

‖qt‖2
dt

å
ρ0,1(g) ρ0,1(f) dg df

≤ 245D3/2 A2

P 2
A,1

E
f∼N(0,I)

E
g∼N(0,I)

Ç ∫ 1

0

µ2
2(qt)

‖qt‖2
dt

å
= 245D3/2 A2

P 2
A,1

∫ 1

0
E

qt∼N(0,(t2+(1−t)2)I)

Ç
µ2

2(qt)

‖qt‖2

å
dt,

where the last equality follows from the fact that, for fixed t, the random

polynomial system qt = tf + (1 − t)g has a Gaussian distribution with law

N(0, σ2
t I), where σ2

t := t2 + (1 − t)2. Note that we deal with nonnegative

integrands, so the interchange of integrals is justified by Tonelli’s theorem. By

Lemma 6.1 we have A2

P 2
A,1
≤ 8N .

We now apply Theorem 3.6 to deduce that∫ 1

0
E

qt∼N(0,σ2
t I)

Ç
µ2

2(qt)

‖qt‖2

å
dt ≤ e(n+ 1)

2

∫ 1

0

dt

t2 + (1− t)2
=
eπ(n+ 1)

4
.

Consequently,

E
f∈S(Hd)

K(f) ≤ 245D3/2 · 8N · eπ(n+ 1)

4
≤ 4185D3/2N(n+ 1). �

Remark 6.2. The proof (modulo the existence of ALH) for the average

complexity of LV given by Beltrán and Pardo in [6] differs from the one above.

It relies on the fact (elegantly shown by using integral geometry arguments)

that, for all τ ∈ [0, 1], when f and g are uniformly drawn from the sphere, so

is qτ/‖qτ‖. The extension of this argument to more general situations appears

to be considerably more involved. In contrast, as we shall shortly see, the
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argument based on Gaussians in the proof above carries over, mutatis mutandis,

to the smoothed analysis context.

6.2. Smoothed analysis of LV (proof ). The smoothed analysis of LV is

shown similarly to its average-case analysis.

Proof of Theorem 3.5. Fix f ∈ S(Hd). Reasoning as in the proof of The-

orem 3.4 and using ‖f‖ ≤ ‖f‖+ ‖f − f‖ ≤ 1 +A, we show that

E
f∼NA(f,σ2I)

K(f) ≤ 245D3/2 (A+ 1)A

PA,σPA,1
E

f∼N(f,σ2I)
E

g∼N(0,I)

Ç ∫ 1

0

µ2
2(qt)

‖qt‖
dt

å
= 245D3/2 (A+ 1)A

PA,σPA,1

∫ 1

0
E

qt∼N(qt,σ
2
t I)

Ç
µ2

2(qt)

‖qt‖

å
dt

with qt = tf and σ2
t = (1− t)2 + σ2t2. We now apply Theorem 3.6 to deduce∫ 1

0
E

qt∼N(qt,σ
2
t I)

Ç
µ2

2(qt)

‖qt‖2

å
dt ≤ e(n+ 1)

2

∫ 1

0

dt

(1− t)2 + σ2t2
=
eπ(n+ 1)

4σ
.

Consequently, using Lemma 6.1, we get

E
f∼NA(f,σ2I)

K(f) ≤ 245D3/2 · 4 · (2N +
√

2N)
eπ(n+ 1)

4σ

which proves the assertion. �

The next two sections are devoted to the proof of Theorem 3.6. First, in

Section 7, we give a particular smoothed analysis of a matrix condition number

(Proposition 7.1). Then, in Section 8, we reduce Theorem 3.6 to this smoothed

analysis of matrix condition numbers.

7. Smoothed analysis of a matrix condition number

In the following we fix A ∈ Cn×n, σ > 0 and denote by ρ the Gaussian

density of N(A, σ2I) on Cn×n. Moreover, we consider the related density

(7.1) ρ̃(A) = c−1 | detA|2 ρ(A) where c := E
A∼ρ

(|detA|2).

The following result is akin to a smoothed analysis of the matrix condition

number κ(A) = ‖A‖ · ‖A−1‖, with respect to the probability densities ρ̃ that

are not Gaussian, but closely related to Gaussians.

Proposition 7.1. We have EA∼ρ̃
Ä
‖A−1‖2

ä
≤ e(n+1)

2σ2 .

The proof is based on ideas in Sankar et al. [19, §3]; see also [10]. We will

actually prove tail bounds from which the stated bound on the expectation

easily follows.

We denote by Sn−1 := {ζ ∈ Cn | ‖ζ‖ = 1} the unit sphere in Cn.
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Lemma 7.2. For any v ∈ Sn−1 and any t > 0, we have

Prob
A∼ρ̃

{
‖A−1v‖ ≥ t

}
≤ 1

4σ4t4
.

Proof. We first claim that, because of unitary invariance, we may assume

that v = en := (0, . . . , 0, 1). To see this, take S ∈ U(n) such that v = Sen.

Consider the isometric map A 7→ B = S−1A which transforms the density

ρ̃(A) to a density of the same form, namely

ρ̃′(B) = ρ̃(A) = c−1| detA|2ρ(A) = c−1| detB|2ρ′(B),

where ρ′(B) denotes the density of N(S−1A, σ2I) and c = Eρ(|detA|2) =

Eρ′(|detB|2). Thus the assertion for en and random B (chosen from any

isotropic Gaussian distribution) implies the assertion for v and A, noting that

A−1v = B−1en. This proves the claim.

Let ai denote the ith row of A. Almost surely, the rows a1, . . . , an−1

are linearly independent. We are going to characterize ‖A−1en‖ in a geometric

way. Let Sn := span{a1, . . . , an−1} and denote by a⊥n the orthogonal projection

of an onto S⊥n . Consider w := A−1en, which is the nth column of A−1. Since

AA−1 = I we have 〈w, ai〉 = 0 for i = 1, . . . , n−1 and hence w ∈ S⊥n . Moreover,

〈w, an〉 = 1, so ‖w‖ ‖a⊥n ‖ = 1 and we arrive at

(7.2) ‖A−1en‖ =
1

‖a⊥n ‖
.

Let An ∈ C(n−1)×n denote the matrix obtained from A by omitting an.

We shall write vol(An) = det(AA∗)1/2 for the (n−1)-dimensional volume of the

parallelepiped spanned by the rows of An. Similarly, | detA| can be interpreted

as the n-dimensional volume of the parallelepiped spanned by the rows of A.

Now we write ρ(A) = ρ1(An)ρ2(an), where ρ1 and ρ2 are the density

functions of N(An, σ
2I) and N(an, σ

2I), respectively (the meaning of An and

an being clear). Moreover, note that

vol(A)2 = vol(An)2 ‖a⊥n ‖2.

Fubini’s theorem combined with (7.2) yields for t > 0∫
‖A−1en‖≥t

vol(A)2ρ(A) dA =

∫
An∈C(n−1)×n

vol(An)2 ρ1(An)(7.3)

·
Ç∫
‖a⊥n ‖≤1/t

‖a⊥n ‖2ρ2(an) dan

å
dAn.

We next show that for fixed, linearly independent a1, . . . , an−1 and λ > 0

(7.4)

∫
‖a⊥n ‖≤λ

‖a⊥n ‖2ρ2(an) dan ≤
λ4

2σ2
.



1808 PETER BÜRGISSER and FELIPE CUCKER

For this, note that a⊥n ∼ N(a⊥n , σ
2I) in S⊥n ' C, where a⊥n is the orthogonal

projection of an onto S⊥n . Thus, proving (7.4) amounts to showing∫
|z|≤λ

|z|2ρz(z)dz ≤
λ4

2σ2

for the Gaussian density ρz(z) = 1
2πσ2 e

− 1
2σ2 |z−z|2 of z ∈ C, where z ∈ C.

Clearly, it is enough to show that∫
|z|≤λ

ρz(z)dz ≤
λ2

2σ2
.

Without loss of generality we may assume that z = 0, since the integral in the

left-hand side is maximized at this value of z. The substitution z = σw yields

dz = σ2dw (dz denotes the Lebesgue measure on R2) and we get∫
|z|≤λ

ρ0(z)dz=

∫
|w|≤λ

σ

1

2π
e−

1
2
|w|2 dw =

∫ λ
σ

0

1

2π
e−

1
2
r2

2πr dr

=−e−
1
2
r2

∣∣∣∣∣
λ
σ

0

= 1− e−
λ2

2σ2 ≤ λ2

2σ2
,

which proves inequality (7.4).

A similar argument shows that

(7.5) 2σ2 ≤
∫
|z|2ρz(z)dz =

∫
‖a⊥n ‖2ρ2(an) dan.

Plugging in this inequality into (7.3) (with t = 0) we conclude that

(7.6) 2σ2 E
ρ1

Ä
vol(An)2

ä
≤ E

ρ

Ä
vol(A)2

ä
.

On the other hand, plugging in (7.4) with λ = 1
t into (7.3), we obtain∫

‖A−1en‖≥t
vol(A)2ρ(A) dA ≤ 1

2σ2t4
E
ρ1

Ä
vol(An)2

ä
.

Combined with (7.6) this yields∫
‖A−1en‖≥t

vol(A)2ρ(A) dA ≤ 1

4σ4t4
E
ρ

Ä
vol(A)2

ä
.

By the definition of the density ρ̃, this means that

Prob
A∼ρ̃

¶
‖A−1en‖ ≥ t} ≤

1

4σ4t4
,

which was to be shown. �

Lemma 7.3. For fixed u ∈ Sn−1, 0 ≤ s ≤ 1, and random v uniformly

chosen in Sn−1, we have

Prob
v

{
|uTv| ≥ s

}
= (1− s2)n−1.
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Proof. Recall the Riemannian distance dP in Pn−1 := P(Cn) from (2.1).

Accordingly, for 0 ≤ θ ≤ π/2, we have

Prob
v

{
|uTv| ≥ cos θ

}
=

vol
¶

[v] ∈ Pn−1 | dP([u], [v]) ≤ θ
©

volPn−1
= (sin θ)2(n−1),

where the last equality is due to [11, Lemma 2.1]. �

Lemma 7.4. For any t > 0, we have

Prob
A∼ρ̃

{
‖A−1‖ ≥ t

}
≤ e2(n+ 1)2

16σ4

1

t4
.

Proof. We use an idea in Sankar et al. [19, §3]. For any invertibleA ∈ Cn×n
there exists u ∈ Sn−1 such that ‖A−1u‖ = ‖A−1‖. For almost all A, the vector

u is uniquely determined up to a scaling factor θ of modulus 1. We shall denote

by uA a representative of such u.

The following is an easy consequence of the singular value decomposition

of ‖A−1‖: for any v ∈ Sn−1, we have

(7.7) ‖A−1v‖ ≥ ‖A−1‖ · |uT
A v|.

We choose now a random pair (A, v) with A following the law ρ̃ and, indepen-

dently, v ∈ Sn−1 from the uniform distribution. Lemma 7.2 implies that

Prob
A,v

®
‖A−1v‖ ≥ t

 
2

n+ 1

´
≤ (n+ 1)2

16σ4t4
.

On the other hand, by (7.7) we have

Prob
A,v

{
‖A−1v‖ ≥ t

»
2/(n+ 1)

}
≥Prob

A,v

{
‖A−1‖ ≥ t and |uT

A v| ≥
»

2/(n+ 1)
}

≥Prob
A

{
‖A−1‖ ≥ t

}
Prob
A,v

{
|uT
A v| ≥

»
2/(n+ 1)

∣∣∣∣ ‖A−1‖ ≥ t
}
.

Lemma 7.3 tells us that for any fixed u ∈ Sn−1, we have

Prob
v

{
|uT v| ≥

»
2/(n+ 1)

}
= (1− 2/(n+ 1))n−1 ≥ e−2,

the last inequality as (n+1
n−1)n−1 = (1 + 2

n−1)n−1 ≤ e2. We thus obtain

Prob
A

{
‖A−1‖ ≥ t

}
≤ e2 Prob

A,v

®
‖A−1v‖ ≥ t

 
2

n+ 1

´
≤ e2(n+ 1)2

16σ4t4
,

as claimed. �
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Proof of Proposition 7.1. By Lemma 7.4 we obtain, for any T0 > 0,

E
Ä
‖A−1‖2

ä
=

∫ ∞
0

Prob
¶
‖A−1‖2 ≥ T

©
dT

≤ T0 +
∫∞
T0

Prob
¶
‖A−1‖2 ≥ T

©
dT ≤ T0 + e2(n+1)2

16σ4
1
T0
,

using
∫∞
T0
T−2 dT = T−1

0 . Now choose T0 = e(n+1)
4σ2 . �

8. Smoothed analysis of the mean square condition number

The goal of this section is to accomplish the proof of Theorem 3.6.

8.1. Orthogonal decompositions of Hd. For reasons to become clear soon

we have to distinguish points in Pn from their representatives ζ in the sphere

Sn = {ζ ∈ Cn+1 | ‖ζ‖ = 1}.
For ζ ∈ Sn we consider the subspace Rζ of Hd consisting of all systems h

that vanish at ζ of higher order:

Rζ := {h ∈ Hd | h(ζ) = 0, Dh(ζ) = 0}.

We further decompose the orthogonal complement R⊥ζ of Rζ in Hd (defined

with respect to the Bombieri-Weyl Hermitian inner product). Let Lζ denote

the subspace of R⊥ζ consisting of the systems vanishing at ζ and let Cζ denote

its orthogonal complement in R⊥ζ . Then we have an orthogonal decomposition

(8.1) Hd = Cζ ⊕ Lζ ⊕Rζ
parametrized by ζ ∈ Sn.

Lemma 8.1. The space Cζ consists of the systems (ci〈X, ζ〉di) with ci ∈ C.

The space Lζ consists of the systems

g = (
√
di 〈X, ζ〉di−1`i),

where `i is a linear form vanishing at ζ . Moreover, if `i =
∑n
j=0mijXj with

M = (mij), then ‖g‖ = ‖M‖F .

Proof. By unitary invariance it suffices to verify the assertions in the case

ζ = (1, 0, . . . , 0). In this case this follows easily from the definition of the

Bombieri-Weyl inner product. �

The Bombieri-Weyl inner product on Hd and the standard metric on the

sphere Sn define a Riemannian metric on Hd× Sn on which the unitary group

U(n+ 1) operates isometrically. The “lifting”

V := {(q, ζ) ∈ Hd × Sn | q(ζ) = 0}

of the solution variety VP is easily seen to be a U(n+ 1)-invariant Riemannian

submanifold of Hd × Sn.
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The projection π2 : V → Sn, (q, ζ) 7→ ζ defines a vector bundle with fibers

Vζ := π−1
2 (ζ). In fact, (8.1) can be interpreted as an orthogonal decomposition

of the trivial Hermitian vector bundle Hd × Sn → Sn into subbundles C, L,

and R over Sn. Moreover, the vector bundle V is the orthogonal sum of L and

R: we have Vζ = Lζ ⊕Rζ for all ζ.

In the special case where all the degrees di are one, Hd can be identi-

fied with the space M := Cn×(n+1) of matrices and the solution manifold V

specializes to the manifold

W :=
¶Ä
M, ζ) ∈M × Sn |Mζ = 0

©
.

The map π2 specializes to the vector bundle p2 : W → Sn, (M, ζ) 7→ ζ with the

fibers

Wζ := {M ∈M |Mζ = 0}.

Lemma 8.1 tells us that for each ζ we have isometrical linear maps

(8.2) Wζ → Lζ , M 7→ gM,ζ :=
Ä√

di 〈X, ζ〉di−1∑
jmijXj

ä
.

In other words, the Hermitian vector bundles W and L over Sn are isometric.

The fact that the map (8.2) depends on the choice of the representative of ζ

forces us to work over Sn instead over Pn. (All other notions introduced so far

only depend on the base point in Pn.)

We compose the orthogonal bundle projection Vζ = Lζ ⊕ Rζ → Lζ with

the bundle isometry Lζ 'Wζ obtaining the map of vector bundles

(8.3) Ψ: V →W, (gM,ζ + h, ζ) 7→ (M, ζ)

with fibers Ψ−1(M, ζ) isometric to Rζ .

Lemma 8.2. We have Ψ(q, ζ) = (∆−1Dq(ζ), ζ), where ∆ := diag(
√
di).

Proof. Let (q, ζ) ∈ V and (M, ζ) := Ψ(q, ζ). Then we have the decomposi-

tion q = 0+gM,ζ+h ∈ Cζ⊕Lζ⊕Rζ . It is easily checked that DgM,ζ(ζ) = ∆M .

Since Dq(ζ) = DgM,ζ(ζ) we obtain M = ∆−1Dq(ζ). �

The lemma shows that the condition number µnorm(q, ζ) (cf. §2.3) can be

described in terms of Ψ as follows:

(8.4)
µnorm(q, ζ)

‖q‖
= ‖M †‖, where (M, ζ) = Ψ(q, ζ).

8.2. Outline of proof of Theorem 3.6. Let ρHd
denote the density of the

Gaussian N(q, σ2I) on Hd, where q ∈ Hd and σ > 0. For fixed ζ ∈ Sn we

decompose the mean q as

q = kζ + gζ + hζ ∈ Cζ ⊕ Lζ ⊕Rζ
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according to (8.1). If we denote by ρCζ , ρLζ , and ρRζ the densities of the

Gaussian distributions in the spaces Cζ , Lζ , and Rζ with covariance matrices

σ2I and means kζ ,M ζ , and hζ , respectively, then the density ρHd
factors as

(8.5) ρHd
(k + g + h) = ρCζ (k) · ρLζ (g) · ρRζ (h).

The Gaussian density ρLζ on Lζ induces a Gaussian density ρWζ
on the fiberWζ

with the covariance matrix σ2I via the isometrical linear map (8.2), so ρWζ
(M)

= ρLζ (gM,ζ).

We derive now from the given Gaussian distribution ρHd
on Hd a prob-

ability distribution on V as follows (naturally extending ρst introduced in

§3.2). Think of choosing (q, ζ) at random from V by first choosing q ∈ Hd

from N(q, σ2I), then choosing one of its D zeros [ζ] ∈ Pn at random from the

uniform distribution on {1, . . . ,D}, and finally choosing a representative ζ in

the unit circle [ζ] ∩ Sn uniformly at random. (An explicit expression of the

corresponding probability density ρV on V is given in (8.23).)

The plan to show Theorem 3.6 is as follows. The forthcoming Lemma 8.8

tells us that

(8.6) E
Hd

(µ2
2(q)

‖q‖2
)

= E
V

(µ2
norm(q, ζ)

‖q‖2
)
,

where EHd
and EV refer to the expectations with respect to the distribution

N(q, σ2I) on Hd and the probability density ρV on V , respectively. Moreover,

by equation (8.4),

E
V

(µ2
norm(q, ζ)

‖q‖2
)

= E
M

Ä
‖M †‖2

ä
,

where EM denotes the expectation with respect to the pushforward density ρM

of ρV with respect to the map p1 ◦ Ψ: V → M (for more on pushforwards,

see § 8.3).

Of course, we need to better understand the density ρM . Let M ∈M be

of rank n and ζ ∈ Sn with Mζ = 0. The following formula

(8.7) ρM (M) = ρCζ (0) · 1

2π

∫
λ∈S1

ρWλζ
(M) dS1

can be heuristically explained as follows. We decompose a random q ∈ Hd

according to the decomposition Hd = Cζ ⊕ Lζ ⊕Rζ as q = k + g + h. Choose

λ ∈ C with |λ| = 1 uniformly at random in the unit circle. Then we have

Ψ(q, λζ) = (M,λζ)if and only if k = 0 and g is mapped to M under the

isometry in (8.2). The probability density for the event k = 0 equals ρCζ (0).

The second event, conditioned on λ, has the probability density ρWλζ
(M).

By general principles (cf. §8.3) we have

(8.8) E
M

Ä
‖M †‖2

ä
= E

ζ∼ρSn

(
E

M∼ρ̃Wζ

Ä
‖M †‖2

ä)
,
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where ρSn is the pushforward density of ρV with respect to p2 ◦Ψ: V → Sn and

ρ̃Wζ
denotes a “conditional density” on the fiber Wζ . This conditional density

turns out to be of the form

(8.9) ρ̃Wζ
(M) = c−1

ζ · det(MM∗) ρWζ
(M)

(cζ denoting a normalization factor). In the case ζ = (1, 0, . . . , 0) we can

identify Wζ with Cn×n and ρ̃Wζ
takes the form (7.1) studied in Section 7.

Proposition 7.1 and unitary invariance imply that for all ζ ∈ Sn,

(8.10) E
M∼ρ̃Wζ

Ä
‖M †‖2

ä
≤ e(n+ 1)

2σ2
.

This implies by (8.8) that

E
M

Ä
‖M †‖2

ä
≤ e(n+ 1)

2σ2

and completes the outline of the proof of Theorem 3.6.

The formal proof of the stated facts (8.7)–(8.9) is quite involved and will

be given in the remainder of this section.

8.3. Coarea formula. We begin by recalling the coarea formula that tells

us how probability distributions on Riemannian manifolds transform.

Suppose that X,Y are Riemannian manifolds of dimensions m, n, respec-

tively such that m ≥ n. Let ϕ : X → Y be differentiable. By definition, the

derivative Dϕ(x) : TxX → Tϕ(x)Y at a regular point x ∈ X is surjective. Hence

the restriction of Dϕ(x) to the orthogonal complement of its kernel yields a

linear isomorphism. The absolute value of its determinant is called the normal

Jacobian of ϕ at x and denoted NJϕ(x). We set NJϕ(x) := 0 if x is not a reg-

ular point. We note that the fiber Fy := ϕ−1(y) is a Riemannian submanifold

of X of dimension m− n if y is a regular value of ϕ. Sard’s lemma states that

almost all y ∈ Y are regular values.

The following result is the coarea formula, sometimes also called Fubini’s

theorem for Riemannian manifolds. A proof can be found e.g., in [16, Appen-

dix].

Proposition 8.3. Suppose that X and Y are Riemannian manifolds of

dimensions m and n, respectively, and let ϕ : X → Y be a surjective differ-

entiable map. Put Fy = ϕ−1(y). Then, for any function χ : X → R that is

integrable with respect to the volume measure of X , we have that∫
X
χdX =

∫
y∈Y

Ç∫
Fy

χ

NJϕ
dFy

å
dY.

Now suppose that we are in the situation described in the statement of

Proposition 8.3, and we have a probability measure on X with density ρX . For
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a regular value y ∈ Y we set

(8.11) ρY (y) =

∫
Fy

ρX
NJϕ

dFy.

The coarea formula implies that for all measurable sets B ⊆ Y , we have∫
ϕ−1(B)

ρX dX =

∫
B
ρY dY.

Hence ρY is a probability density on Y . We call it the pushforward of ρX with

respect to ϕ.

For a regular value y ∈ Y and x ∈ Fy we define

(8.12) ρFy(x) =
ρX(x)

ρY (y)NJϕ(x)
.

Clearly, this defines a probability density on Fy. The coarea formula implies

that for all measurable functions χ : X → R,∫
X
χρX dX =

∫
y∈Y

Ç∫
Fy

χρFy dFy

å
ρY (y) dY,

provided the left-hand integral exists. Therefore, we can interpret ρFy as the

density of the conditional distribution of x on the fiber Fy and briefly express

the formula above in probabilistic terms as

(8.13) E
x∼ρX

(χ(x)) = E
y∼ρY

Ä
E

x∼ρFy
(χ(x))

ä
.

To put these formulas at use in our context, we must compute the normal

Jacobians of some maps.

8.4. Normal Jacobians. We start with a general comment. Note that the

R-linear map C→ C, z 7→ λz with λ ∈ C has determinant |λ|2. More generally,

let ϕ be an endomorphism of a finite dimensional complex vector space. Then

| detϕ|2 equals the determinant of ϕ, seen as a R-linear map.

We describe now the normal Jacobian of the projection p1 : W → M
following [23].

Lemma 8.4. We have NJp1(M, ζ) =
∏n
i=1(1 + σ−2

i )−1, where σ1, . . . , σn
are the singular values of M .

Proof. First note that TζSn = {ζ̇ ∈ Cn+1 | Re〈ζ, ζ̇〉 = 0}. The tangent

space T(M,ζ)W consists of the (Ṁ, ζ̇) ∈M × TζSn such that Ṁζ +Mζ̇ = 0.

By unitary invariance we may assume that ζ = (1, 0, . . . , 0). Then the first

column of M vanishes, and we denote by A = [mij ] ∈ Cn×n the remaining part

of M . Without loss of generality we may assume that A is invertible. Further,

let u̇ ∈ Cn denote the first column of Ṁ and Ȧ ∈ Cn×n its remaining part. We
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may thus identify T(M,ζ)W with the product E×Cn×n via (Ṁ, ζ̇) 7→ ((u̇, ζ̇), Ȧ),

where E denotes the subspace

E :=

®
(u̇, ζ̇) ∈ Cn × Cn+1 | u̇i +

n∑
j=1

mij ζ̇j = 0, 1 ≤ i ≤ n, ζ̇0 ∈ iR
´
.

We also note that E ' graph(−A) × iR. The derivative of p1 is described by

the following commutative diagram:

T(M,ζ)W
'−→ (graph(−A)× iR)× Cn×n

Dp1(M,ζ)

y ypr×id

M
'−→ Cn × Cn×n,

where pr(u̇, ζ̇) = u̇. Using the singular value decomposition we may assume

that A = diag(σ1, . . . , σn). Then the pseudoinverse of the projection pr is given

by the R-linear map

ϕ : Cn → graph(−A), u̇ 7→ (u̇,−σ−1
1 u̇1, . . . ,−σ−1

n u̇n).

It is easy to see that detϕ =
∏n
i=1(1 + σ−2

i ). To complete the proof we note

that 1/NJp1(M, ζ) = detϕ. �

We have already seen that the condition number µnorm(q, ζ) can be de-

scribed in terms of the map Ψ introduced in (8.3). As a stepping stone towards

the analysis of the normal Jacobian of Ψ we introduce now the related bundle

map

Φ: V →W, (q, ζ) 7→ (Dq(ζ), ζ),

whose normal Jacobian turns out to be constant. (This crucial observation is

due to Beltrán and Pardo in [6].)

Proposition 8.5. We have NJΦ(q, ζ) = Dn for all (q, ζ) ∈ V .

Proof. By unitary invariance we may assume without loss of generality

that ζ = (1, 0, . . . , 0). If we write N = (nij) = Dq(ζ) ∈ M , then we must

have ni0 = 0 since Nζ = 0. Moreover, according to the orthogonal decompo-

sition (8.1) and Lemma 8.1, we have, for 1 ≤ i ≤ n,

qi = Xdi−1
0

n∑
j=1

nijXj + hi

for some h = (h1, . . . , hn) ∈ Rζ . We further express q̇i ∈ TqHd = Hd as

q̇i = u̇iX
di
0 +

√
diX

di−1
0

n∑
j=1

ȧijXj + ḣi
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in terms of the coordinates u̇ = (u̇i) ∈ Cn, Ȧ = (ȧij) ∈ Cn×n, and ḣ = (ḣi) ∈
Rζ . The reason to put the factor

√
di here is that

(8.14) ‖q̇‖2 =
∑
i

|u̇i|2 +
∑
ij

|ȧij |2 +
∑
i

‖ḣi‖2

by the definition of the Bombieri-Weyl inner product.

The tangent space T(q,ζ)V consists of the (q̇, ζ̇) ∈ Hd × TζSn such that

q̇(ζ) + Nζ̇ = 0; see [8, §10.3, Prop. 1]. This condition can be expressed in

coordinates as

(8.15) u̇i +
n∑
j=1

nij ζ̇j = 0, i = 1, . . . , n.

By (8.14) the inner product on T(q,ζ)V is given by the standard inner product

in the chosen coordinates u̇i, ȧij , ζ̇j if ḣi = 0. Thinking of the description

of T(N,ζ)W given in the proof of Lemma 8.4, we may therefore isometrically

identify T(q,ζ)V with the product T(N,ζ)W ×Rζ via (q̇, ζ̇) 7→ ((u̇, Ȧ, ζ̇), ḣ). The

derivative of π1 is then described by the commutative diagram

(8.16)

T(q,ζ)V
'−→ T(N,ζ)W ×Rζ

Dπ1(q,ζ)

y yDp1(N,ζ)×id

Hd
'−→ M ×Rζ .

We shall next calculate the derivative of Φ. For this, we will use the

shorthand ∂kq for the partial derivative ∂Xkq, etc. A short calculation yields,

for j > 0,

(8.17) ∂0q̇i(ζ) = diu̇i, ∂j q̇i(ζ) =
√
di ȧij , ∂2

0jqi(ζ) = (di − 1)nij .

Similarly, we obtain ∂0qi(ζ) = 0 and ∂jqi(ζ) = nij for j > 0.

The derivative of DΦ(q, ζ) : T(q,ζ)V → T(N,ζ)W is determined by

DΦ(q, ζ)(q̇, ζ̇) = (Ṅ , ζ̇), where Ṅ = Dq̇(ζ) +D2q(ζ)(ζ̇, ·).
Introducing the coordinates Ṅ = (ṅij) this can be written as

(8.18) ṅij = ∂j q̇i(ζ) +
n∑
k=1

∂2
jkq̇i(ζ) ζ̇k.

For j > 0, this gives, using (8.17),

(8.19) ṅij =
√
di ȧij +

n∑
k=1

∂2
jkq̇i(ζ) ζ̇k.

For j = 0, we obtain from (8.18), using (8.17) and (8.15),

(8.20) ṅi0 = ∂0q̇i(ζ) +
n∑
k=1

∂2
0kq̇i(ζ) ζ̇k = diu̇i + (di − 1)

n∑
k=1

nik ζ̇k = u̇i.

Note the crucial cancellation taking place here!
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From (8.19) and (8.20) we see that the kernel K of DΦ(q, ζ) is determined

by the conditions ζ̇ = 0, u̇ = 0, Ȧ = 0. Hence, recalling T(q,ζ)V ' T(N,ζ)W×Rζ ,
we have K ' 0 × Rζ and K⊥ ' T(N,ζ)W × 0. Moreover, as in the proof of

Lemma 8.4 (but replacing M by N) we write

E :=

®
(u̇, ζ̇) ∈ Cn × Cn+1 | u̇i +

n∑
j=1

nij ζ̇j = 0, 1 ≤ i ≤ n, ζ̇0 ∈ iR
´

and identify T(N,ζ)W with E×Cn×n. Using this identification of spaces, (8.19)

and (8.20) imply that DΦ(q, ζ)K⊥ has the following structure:

DΦ(q, ζ)K⊥ : E × Cn×n→E × Cn×n,
((u̇, ζ̇), Ȧ) 7→ ((u̇, ζ̇), λ(Ȧ) + ρ(ζ̇)),

where the linear map λ : Cn×n → Cn×n, Ȧ 7→ (
√
di ȧij), multiplies the ith row

of Ȧ with
√
di and ρ : Cn+1 → Cn×n is given by ρ(ζ̇)ij =

∑n
k=1 ∂

2
jkq̇i(ζ) ζ̇k.

By definition we have NJΦ(q, ζ) = |detDΦ(q, ζ)|K⊥ |. The triangular form

of DΦ(q, ζ)K⊥ shown above implies that | detDΦ(q, ζ)|K⊥ | = detλ. Finally,

using the diagonal form of λ, we obtain detλ =
∏n
i=1

√
di

2
= Dn, which

completes the proof. �

Remark 8.6. An inspection of the proof of Proposition 8.5 reveals that the

second order derivatives occuring in DΦ do not have any impact on the normal

Jacobian NJΦ. Its value Dn occurs as a result of the chosen Bombieri-Weyl

inner product on Hd. With respect to the naive inner product on Hd (where

the monomials form an orthonormal basis), the normal Jacobian of Φ at (q, ζ)

would be equal to one at ζ = (1, 0, . . . , 0). However unitary invariance would

not hold and the normal Jacobian would take different values elsewhere.

Before proceding we note the following consequence of equation (8.16):

(8.21) NJπ1(q, ζ) = NJp1(N, ζ), where N = Dq(ζ).

The normal Jacobian of the map Ψ: V → W is not constant and takes

a more complicated form in terms of the normal Jacobians of the projection

p1 : W → M . For obtaining an expression for NJΨ we need the following

lemma.

Lemma 8.7. The scaling map γ : W → W, (N, ζ) 7→ (M, ζ) with M =

∆−1N of rank n satisfies

detDγ(N, ζ) =
1

Dn+1
· NJp1(N, ζ)

NJp1(M, ζ)
.

Proof. If WP denotes the solution variety in M ×Pn analogous to W , then

we have T(M,ζ)W = T(M,ζ)WP ⊕Riζ. Let p′1 : WP →M denote the projection.
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The derivative DγP(N, ζ) of the corresponding scaling map γP : WP → WP is

determined by the commutative diagram

T(N,ζ)WP
DγP(N,ζ)−→ T(M,ζ)WP

Dp′1(N,ζ)

y yDp′1(M,ζ)

M
sc−→ M ,

where the vertical arrows are linear isomorphisms. The assertion follows by

observing that NJp1(N, ζ) = detDp′1(N, ζ), NJγ(N, ζ) = detDγP(N, ζ), and

using that the R-linear map sc : M →M , N 7→ M = ∆−1N has the determi-

nant 1/Dn+1. �

Proposition 8.5 combined with Lemma 8.7 immediately gives

(8.22) NJΨ(q, ζ) =
1

D
· NJp1(N, ζ)

NJp1(M, ζ)

for N = Dq(ζ), M = ∆−1N .

8.5. Induced probability distributions. By Bézout’s theorem, the fiber V (q)

of the projection π1 : V → Hd at q ∈ Hd is a disjoint union of D = d1 · · · dn
unit circles and therefore has the volume 2πD, provided q does not lie in the

discriminant variety.

Recall that ρHd
denotes the density of the Gaussian distribution N(q, σ2I)

for fixed q ∈ Hd and σ > 0 and EHd
stands for expectation taken with respect

to that density. We associate with ρHd
the function ρV : V → R defined by

(8.23) ρV (q, ζ) :=
1

2πD
ρHd

(q) NJπ1(q, ζ).

The next result shows that ρV is the probability density function of the distri-

bution on V we described in §8.2.

Lemma 8.8. (1) The function ρV is a probability density on V .

(2) The expectation of a function ϕ : V → R with respect to ρV can be

expressed as EV (ϕ) = EHd
(ϕav), where

ϕav(q) :=
1

2πD

∫
V (q)

ϕdV (q).

(3) The pushforward of ρV with respect to π1 : V → Hd equals ρHd
.

(4) For q 6∈ Σ, the conditional density on the fiber V (q) is the density of

the uniform distribution on V (q).

(5) The probability density ρst on VP introduced in Section 3.2 is obtained

from the density ρV in the case q = 0, σ = 1 as the pushforward under

the canonical map V → VP, (f, ζ) 7→ (f, [ζ]). Explicitly, we have

ρst(q, [ζ]) =
1

D
1

(2π)N
e−

1
2
‖q‖2NJπ1(q, ζ).
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Proof. The coarea formula (Proposition 8.3) applied to π1 : V →Hd implies∫
V
ϕρV dV =

∫
q∈Hd

( ∫
ζ∈V (q)

ϕ(q, ζ)
ρV (q, ζ)

NJπ1(q, ζ)
dV (q)

)
dHd

=

∫
q∈Hd

ϕav(q) ρHd
(q) dHd.

Taking ϕ = 1 reveals that ρV is a density, proving the first assertion. The

above formula also shows the second assertion.

By equation (8.11) the pushforward density ρ of ρV with respect to π1

satisfies

ρ(q) =

∫
ζ∈V (q)

ρV (q, ζ)

NJπ1(q, ζ)
dV (q) = ρHd

(q),

as
∫
dV (q) = 2πD. This shows the third assertion. By (8.12) the conditional

density satisfies

ρV (q)(q) =
ρV (q, ζ)

ρHd
(q) NJπ1(q, ζ)

=
1

2πD
,

which shows the fourth assertion. The fifth assertion is trivial. �

We can now determine the various probability distributions induced by ρV .

Proposition 8.9. We have
ρV

NJΨ
(gM,ζ + h, ζ) = ρW (M, ζ) · ρRζ (h),

where the pushforward density ρW of ρV with respect to Ψ: V →W satisfies

ρW (M, ζ) =
1

2π
ρCζ (0) · ρWζ

(M) ·NJp1(M, ζ).

Proof. Using the factorization of Gaussians (8.5) and equation (8.21), the

density ρV can be written as

ρV (gM,ζ + h, ζ) =
1

2πD
ρCζ (0) ρWζ

(M) ρRζ (h) NJp1(N, ζ),

where N = ∆M . It follows from (8.22) that

(8.24)
ρV

NJΨ
(gM,ζ + h, ζ) =

1

2π
ρCζ (0) ρWζ

(M) ρRζ (h) NJp1(M, ζ).

This implies, using (8.11) for Ψ : V → W and the isometry Ψ−1(M, ζ) ' Rζ
for the fiber at ζ, that

ρW (M, ζ) =

∫
h∈Rζ

ρV
NJΨ

(gM,ζ + h, ζ) dRζ

=
1

2π
ρCζ (0) · ρWζ

(M) ·NJp1(M, ζ)

∫
h∈Rζ

ρRζ (h)dRζ

=
1

2π
ρCζ (0) · ρWζ

(M) ·NJp1(M, ζ)
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as claimed. Replacing in (8.24) we therefore obtain

ρV
NJΨ

(gM,ζ + h, ζ) = ρW (M, ζ) ρRζ (h). �

The claimed formula (8.7) for the pushforward density ρM of ρW with re-

spect to p1 : W →M immediately follows from Proposition 8.9 by integrating
ρW

NJp1
over the fibers of p1.

Lemma 8.10. Let cζ denote the expectation of det(MM∗) with respect

to ρWζ
. We have

ρW
NJp2

(M, ζ) = ρSn(ζ) · ρ̃Wζ
(M),

where ρSn(ζ) =
cζ
2πρCζ (0) is the pushforward density of ρW with respect to

p2 : W → Sn, and where the conditional density ρ̃Wζ
on the fiber Wζ of p2 is

given by
ρ̃Wζ

(M) = c−1
ζ · det(MM∗)ρWζ

(M).

Proof. In [23] (see also [8, §13.2, Lemmas 2–3]) it is shown that

(8.25)
NJp1

NJp2
(M, ζ) = det(MM∗).

Combining this with Proposition 8.9 we get

ρW
NJp2

(M, ζ) =
1

2π
ρCζ (0) · ρWζ

(M) · det(MM∗).

Integrating over Wζ we get ρSn(ζ) = 1
2π ρCζ (0) · cζ , and finally (cf. (8.12))

ρ̃Wζ
(M) =

ρW (M, ζ)

ρSn(ζ) NJp2(M, ζ)
= c−1

ζ · ρWζ
(M) · det(MM∗)

as claimed. �

This lemma shows that the conditional density ρ̃Wζ
has the form stated

in (8.9) and therefore completes the proof of Theorem 3.6.

8.6. Expected number of real zeros. As a further illustration of the inter-

play of Gaussians with the coarea formula in our setting, we give a simplified

proof of one of the main results of [23]. This subsection is not needed for

understanding the remainder of the paper.

Our developments so far took place over the complex numbers C, but

much of what has been said carries over the situation over R. However, we

note that algorithm ALH would not work over R since the lifting of the segment

Ef,g will likely contain a multiple zero (over C this happens with probability

zero since the real codimension of the discriminant variety equals two).

Let Hd,R denote the space of real polynomial systems in Hd endowed

with the Bombieri-Weyl inner product. The standard Gaussian distribution

on Hd,R is well defined, and we denote its density with ρHd,R .
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Corollary 8.11. The average number of zeros of a standard Gaussian

random f ∈ Hd,R in the real projective space Pn(R) equals
√
D.

Proof. Let χ(q) denote the number of real zeros in Pn(R) of q ∈ Hd,R.

Thus the number of real zeros in the sphere Sn = S(Rn+1) equals 2χ(q). The

real solution variety VR ⊆ Hd,R × Sn is defined in the obvious way and so is

WR ⊆MR × Sn, where MR = Rn×(n+1).

The same proof as for Proposition 8.5 shows that the normal Jacobian of

the map ΦR : VR →WR, (q, ζ) 7→ (Dq(ζ), ζ) has the constant value Dn/2 (the 2

in the exponent due to the considerations opening §8.4).

Applying the coarea formula to the projection π1 : VR → Hd,R yields∫
Hd,R

χρHd,R dHd,R =

∫
q∈Hd,R

ρHd,R(q)
1

2

∫
π−1

1 (q)
dπ−1

1 (q) dHd,R

=

∫
VR

1

2
ρHd,R NJπ1 dVR.

We can factor the standard Gaussian ρHd
into standard Gaussian densi-

ties ρCζ and ρLζ on Cζ and Lζ , respectively, as was done in Section 8.5 over

C (denoting them by the same symbol will not cause any confusion). We also

have an isometry Wζ → Lζ as in (8.2) and ρLζ induces the standard Gauss-

ian density ρWζ
on Wζ . The fiber of ΦR : VR → WR, (q, ζ) 7→ (N, ζ) over

(N, ζ) has the form Φ−1
R (N, ζ) = {(gM,ζ + h, ζ) | h ∈ Rζ}, where M = ∆−1N ;

cf. Lemma 8.2. We therefore have ρHd,R(gM,ζ + h) = ρCζ (0) ρWζ
(M) ρRζ (h).

The coarea formula applied to ΦR : VR →WR, using equation (8.21), yields∫
VR

1

2
ρHd,R NJπ1 dVR

=
1

2 NJΦR

∫
(N,ζ)∈WR

ρCζ (0) ρWζ
(M) NJp1(N, ζ)

∫
h∈Rζ

ρRζ (h) dRζ dWR

=
1

2 NJΦR

∫
(N,ζ)∈WR

ρCζ (0) ρWζ
(M) NJp1(N, ζ) dWR.

Applying the coarea formula to the projection p1 : WR →MR, we can simplify

the above to
1

NJΦR

∫
N∈MR

ρCζ (0) ρWζ
(M)

1

2

∫
ζ∈p−1

1 (N)
dp−1

1 (N) dMR

=
1

NJΦR

∫
N∈MR

ρCζ (0) ρWζ
(M) dMR

=
D

n+1
2

NJΦR

∫
M∈MR

ρCζ (0) ρWζ
(M) dMR,

where the last equality is due to the change of variables MR →MR, N 7→ M

that has the Jacobian determinant D−
n+1

2 . Now we note that

ρCζ (0) · ρWζ
(M) = (2π)−n/2 (2π)−n

2/2 exp
(
− 1

2
‖M‖2F

)
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is the density of the standard Gaussian distribution on MR ' Rn×(n+1), so

that the last integral (over M ∈MR) equals one. Altogether, we obtain, using

NJΦR = Dn/2, ∫
Hd,R

χρHd,R dHd,R =
D

n+1
2

NJΦR
=
√
D. �

9. Effective sampling in the solution variety

We turn now to the question of effective sampling in the solution variety

endowed with the measure ρst introduced in Section 3.2. The goal is to provide

the proof of Proposition 3.3.

Proposition 9.1. In the setting of Section 8.5 suppose q = 0, σ = 1.

Then the pushforward density ρM of ρW with respect to p1 : W → M equals

the standard Gaussian distribution in M . The conditional distributions on the

fibers of p1 are uniform distributions on unit circles. Finally, the conditional

distribution on the fibers of Ψ: V →W is induced from the standard Gaussian

in Rζ via the isometry (8.2).

Proof. Since ρHd
is standard Gaussian, the induced distributions on Cζ ,

Lζ , and Rζ are standard Gaussian as well. Hence ρWζ
equals the standard

Gaussian distribution on the fiber Wζ . Moreover, ρCζ (0) = (
√

2π)−2n. Equa-

tion (8.7) implies that

ρM (M) = ρCζ (0) · ρWζ
(M) = (2π)−n (2π)−n

2
exp

(
− 1

2
‖M‖2F

)
,

which equals the density of the standard Gaussian distribution on M .

Lemma 8.10 combined with (8.25) gives

ρW
NJp1

(M, ζ) =
1

2π
ρCζ (0) · ρWζ

(M) =
1

2π
ρM (M).

Hence the conditional distributions on the fibers of p1 are uniform. (Note that

this is not true in the case of nonstandard Gaussians.) The assertion on the

conditional distributions on the fibers of Ψ follows from Proposition 8.9. �

Proof of Proposition 3.3. Proposition 9.1 (with Lemma 8.8) shows that

the following procedure generates the distribution ρst:

(1) choose M ∈M from the standard Gaussian distribution (almost surely

M has rank n),

(2) compute the unique [ζ] ∈ Pn such that Mζ = 0,

(3) choose a representative ζ uniformly at random in [ζ] ∩ Sn,

(4) compute gM,ζ , cf. (8.2),

(5) choose h ∈ Rζ from the standard Gaussian distribution,

(6) compute q = gM,ζ + h and return (q, [ζ]).
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An elegant way of choosing h in step 5 is to draw f ∈ Hd from N(0, I) and

then to compute the image h of f under the orthogonal projection Hζ → Rζ .

Since the orthogonal projection of a standard Gaussian is a standard Gaussian,

this amounts to draw h from a standard Gaussian in Rζ . For computing the

projection h we note that the orthogonal decomposition f = k+ gM,ζ +h with

k ∈ Cζ , M = [mij ] ∈M , and h ∈ Rζ is obtained as

ki = fi(ζ)〈X, ζ〉di ,

mij = d
−1/2
i

Ä
∂Xjfi(ζ)− difi(ζ)ζj

ä
,

h= f − k − gM,ζ .

(Recall DgM,ζ(ζ) = ∆M and note ∂
Xj
〈X, ζ〉di(ζ) = diζj .)

It is easy to check that O(N) samples from the standard Gaussian distri-

bution on R are sufficient for implementing this procedure. As for the operation

count: step (4) turns out to be the most expensive one and can be done, e.g.,

as follows. Suppose that all the coefficients of 〈X, ζ〉k−1 have already been

computed. Then each coefficient of 〈X, ζ〉k = (X0ζ0 + · · · + Xnζn)〈X, ζ〉k−1

can be obtained by O(n) arithmetic operations, hence all the coefficients of

〈X, ζ〉k are obtained with O
Ä
n
(n+k
n

)ä
operations. It follows that 〈X, ζ〉di can

be computed with O(dinNi) operations, hence O(DnN) operations suffice for

the computation of gM,ζ . It is clear that this is also an upper bound on the

cost of computing (q, ζ). �

10. Homotopies with a fixed extremity

We provide now the proof of the remaining results stated in Section 3.

The next two cases we wish to analyze (the condition-based analysis of LV and

a solution for Smale’s 17th problem with moderate degrees) share the feature

that one endpoint of the homotopy segment is fixed, not randomized. This

sharing actually allows one to derive both corresponding results (Theorems 3.7

and 3.8, respectively) as a consequence of the following statement.

Theorem 10.1. For g ∈ S(Hd) \ Σ, we have

E
f∈S(Hd)

Ç
dS(f, g)

∫ 1

0
µ2

2(qτ )dτ

å
≤ 818D3/2N(n+ 1)µ2

max(g) + 0.01.

The idea to prove Theorem 10.1 is simple. For small values of τ , the

system qτ is close to g and therefore, the value of µ2
2(qτ ) can be bounded by

a small multiple of µ2
max(g). For the remaining values of τ , the corresponding

t = t(τ) is bounded away from 0 and therefore so is the variance σ2
t in the

distribution N(qt, σ
2
t I) for qt. This allows one to control the denominator in

the right-hand side of Theorem 3.6 when using this result. Here are the precise

details.
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In the following fix g ∈ S(Hd) \ Σ. First note that we may again replace

the uniform distribution of f on S(Hd) by the truncated Gaussian NA(0, I).

As before we chose A :=
√

2N . We therefore need to bound the quantity

Qg := E
f∼NA(0,I)

Ç
dS(f, g)

∫ 1

0
µ2

2(qτ )dτ

å
.

To simplify notation, we set as before ε = 0.13, C = 0.025, λ = 6.67 · 10−3,

and define

δ0 :=
λ

D3/2µ2
max(g)

, tA :=
1

1 +A+ 1.00001 A
δ0

.

Proposition 10.2. We have

Qg ≤ (1 + ε)2δ0 µ
2
max(g) +

A

PA,1

∫ 1

tA
E

qt∼N(qt,t
2I)

Ç
µ2

2(qt)

‖qt‖2

å
dt,

where qt = (1− t)g.

Proof. Let ζ(1), . . . , ζ(D) be the zeros of g and denote by (qτ , ζ
(j)
τ )τ∈[0,1]

the lifting of Ef,g in V corresponding to the initial pair (g, ζ(j)) and final

system f ∈ Hd \ Σ.

Equation (4.1) for i = 0 in the proof of Theorem 3.1 shows the following:

for all j and all τ ≤ λ
dS(f,g)D3/2µ2

norm(g,ζ(j))
, we have

µnorm(qτ , ζ
(j)
τ ) ≤ (1 + ε)µnorm(g, ζ(j)) ≤ (1 + ε)µmax(g).

In particular, this inequality holds for all j and all τ ≤ δ0
dS(f,g) and hence, for

all such τ , we have

(10.1) µ2(qτ ) ≤ (1 + ε)µmax(g).

Splitting the integral in Qg at τ0(f) := min
¶

1, δ0
dS(f,g)

©
we obtain

Qg = E
f∼NA(0,I)

(
dS(f, g)

∫ τ0(f)

0
µ2

2(qτ ) dτ
)

+ E
f∼NA(0,I)

(
dS(f, g)

∫ 1

τ0(f)
µ2

2(qτ ) dτ
)
.

Using (10.1) we bound the first term in the right-hand side as follows:

E
f∼NA(0,I)

(
dS(f, g)

∫ τ0(f)

0
µ2

2(qτ ) dτ
)
≤ (1 + ε)2 δ0µmax(g)2.

To bound the second term, we without loss of generality assume that τ0(f) ≤ 1.

We apply Proposition 5.2 to obtain, for a fixed f ,

dS(f, g)

∫ 1

τ0(f)
µ2

2(qτ ) dτ ≤
∫ 1

t0(f)
‖f‖µ

2
2(qt)

‖qt‖2
dt,
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where t0(f) is given by

t0(f) =
1

1 + ‖f‖(sinα cot δ0 − cosα)
, α := dS(f, g).

Now note that ‖f‖ ≤ A since we draw f from NA(0, I). This will allow us to

bound t0(f) from below by a quantity independent of f . For ‖f‖ ≤ A, we have

0 ≤ sinα cot δ0 − cosα ≤ 1

sin δ0
− cosα ≤ 1

sin δ0
+ 1,

and, moreover, sin δ0 ≥ 0.99999 δ0 since δ0 ≤ 2−3/2λ ≤ 0.00236. We can

therefore bound t0(f) as

t0(f) ≥ 1

1 +A+ A
sin(δ0)

≥ 1

1 +A+ 1.00001 A
δ0

= tA.

We can now bound the second term in Qg as follows:

E
f∼NA(0,I)

(
dS(f, g)

∫ 1

τ0(f)
µ2

2(qτ ) dτ
)
≤ E

f∼NA(0,I)

(
A

∫ 1

tA

µ2
2(qt)

‖qt‖2
dt
)

= A

∫ 1

tA
E

f∼NA(0,I)

Ç
µ2

2(qt)

‖qt‖2

å
dt ≤ A

PA,1

∫ 1

tA
E

f∼N(0,I)

Ç
µ2

2(qt)

‖qt‖2

å
dt.

To conclude, note that, for fixed t and when f is distributed following N(0, I),

the variable qt = (1 − t)g + tf follows the Gaussian N(qt, t
2I), where gt =

(1− t)g. �

Proof of Theorem 10.1. By homogeneity we can replace the uniform dis-

tribution on S(Hd) by NA(0, I), so that we only need to estimate Qg by the

right-hand side of Proposition 10.2. In order to bound the first term there we

note that

(1 + ε)2δ0 µ
2
max(g) = (1 + ε)2λD−3/2 ≤ (1 + ε)2λ ≤ 0.01.

For bounding the second term we apply Theorem 3.6 to deduce that∫ 1

tA
E

qt∼N(qt,t
2I)

(µ2
2(qt)

‖qt‖2
)
dt ≤

∫ 1

tA

e(n+ 1)

2t2
dt =

e(n+ 1)

2

Ç
1

tA
− 1

å
=
e(n+ 1)A

2

(
1 +

1.00001

δ0

)
.

Replacing this bound in Proposition 10.2 we obtain

Qg ≤
eA2(n+ 1)

2PA,1

Ç
1 +

1.00001

λ
D3/2µ2

max(g)

å
+ 0.01

≤ 2eN(n+ 1)D3/2µ2
max(g)

Ç
1

D3/2
+

1.00001

λ

å
+ 0.01

≤ 818N(n+ 1)D3/2µ2
max(g) + 0.01,

where we used D ≥ 2 for the last inequality. �
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10.1. Condition-based analysis of LV (proof ).

Proof of Theorem 3.7. The result follows immediately by combining Prop-

osition 5.1 with Theorem 10.1, with the roles of f and g swapped. �

10.2. The complexity of a deterministic homotopy continuation. We next

prove Theorem 3.8, beginning with some general considerations. The unitary

group U(n+1) naturally acts on Pn as well as on Hd via (ν, f) 7→ f ◦ν−1. The

following lemma results from the unitary invariance of our setting. The proof

is immediate.

Lemma 10.3. Let g ∈ Hd, ζ ∈ Pn be a zero of g, and ν ∈ U(n+ 1). Then

µnorm(g, ζ) = µnorm(g ◦ ν−1, νζ). Moreover, for f ∈ Hd, we have K(f, g, ζ) =

K(f ◦ ν−1, g ◦ ν−1, νζ). 2

Recall U i = 1√
2n

(Xdi
0 − X

di
i ) and denote by z(i) a dith primitive root of

unity. The D zeros of U = (U1, . . . , Un) are the points zj =
Ä
1 : zj1(1) : . . . :

zjn(n)

ä
∈ Pn for all the possible tuples j = (j1, . . . , jn) with ji ∈ {0, . . . , di − 1}.

Clearly, each zj can be obtained from z1 := (1 : 1 : . . . : 1) by a unitary

transformation νj , which leaves U invariant; that is,

νjz1 = zj , U ◦ ν−1
j = U.

Hence Lemma 10.3 implies µnorm(U, zj) = µnorm(U, z1) for all j. In particular,

µmax(U) = µnorm(U, z1).

Proposition 10.4. KU (f) = K(f, U, z1) satisfies

E
f∈S(Hd)

KU (f) = E
f∈S(Hd)

1

D

D∑
j=1

K(f, U, zj).

Proof. Lemma 10.3 implies, for all j,

K(f, U, z1) = K(f ◦ ν−1
j , U ◦ ν−1

j , νjz1) = K(f ◦ ν−1
j , U, zj).

It follows that

KU (f) = K(f, U, z1) =
1

D

D∑
j=1

K(f ◦ ν−1
j , U, zj).

The assertion follows now since, for all measurable functions ϕ : S(Hd) → R
and all ν ∈ U(n+ 1), we have

E
f∈S(Hd)

ϕ(f) = E
f∈S(Hd)

ϕ(f ◦ ν),

due to the isotropy of the uniform measure on S(Hd), �
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Lemma 10.5. We have

µ2
max(U) ≤ 2n max

i

1

di
(n+ 1)di−1 ≤ 2 (n+ 1)D.

Proof. Recall µmax(U)=µnorm(U, z1), so it suffices to bound µnorm(U, z1).

Consider M := diag(d
− 1

2
i ‖z1‖1−di)DU(z1) ∈ Cn×(n+1). By definition we have

(cf. §2.3)

µnorm(U, z1) = ‖U‖ ‖M †‖ = ‖M †‖ =
1

σmin(M)
,

where σmin(M) denotes the smallest singular value of M . It can be character-

ized as a constrained minimization problem as follows:

σ2
min(M) = min

u
‖Mu‖2 subject to u ∈ (kerM)⊥, ‖u‖2 = 1.

In our situation, kerM = C(1, . . . , 1) and DU(z1) is given by the following

matrix, shown here for n = 3:

DU(z1) =
1√
2n

d1 −d1 0 0

d2 0 −d2 0

d3 0 0 −d3

 .
Hence for u = (u0, . . . , un) ∈ Cn+1,

‖Mu‖2 =
1

2n

n∑
i=1

di
(n+ 1)di−1

|ui − u0|2 ≥
1

2n
min
i

di
(n+ 1)di−1

·
n∑
i=1

|ui − u0|2.

A straightforward calculation shows that

n∑
i=1

|ui − u0|2 ≥ 1 if
n∑
i=0

ui = 0,
n∑
i=0

|ui|2 = 1.

The assertion follows by combining these observations. �

Proof of Theorem 3.8. Equation (5.1) in the proof of Proposition 5.1 im-

plies for g = U that

1

D

D∑
i=1

K(f, U, zi) ≤ 245D3/2 dS(f, U)

∫ 1

0
µ2

2(qτ ) dτ.

Using Proposition 10.4 we get

E
f∈S(Hd)

KU (f) ≤ 245D3/2 E
f∈S(Hd)

(
dS(f, U)

∫ 1

0
µ2

2(qτ ) dτ
)
.

Applying Theorem 10.1 with g = U we obtain

E
f∈S(Hd)

KU (f) ≤ 245D3/2
Ä
818D3/2N(n+ 1)µ2

max(U) + 0.01
ä
.
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We now plug in the bound µmax(U)2 ≤ 2(n+ 1)D of Lemma 10.5 to obtain

E
f∈S(Hd)

KU (f) ≤ 400820D3N(n+ 1)D+1 + 2.45D3/2.

This is bounded from above by 400821D3N(n + 1)D+1, which completes the

proof. �

11. A near solution to Smale’s 17th problem

We finally proceed with the proof of Theorem 3.9. The algorithm we will

exhibit uses different routines for D ≤ n and D > n. Our exposition reflects

this structure.

11.1. The case D ≤ n. Theorem 3.8 bounds the number of iterations of

Algorithm MD as

E
f∈S(Hd)

KU (f) = O(D3NnD+1).

For comparing the order of magnitude of this upper bound to the input size

N =
∑n
i=1

(n+di
n

)
we need the following technical lemma (which will be useful

for the case D > n as well).

Lemma 11.1. (1) For D ≤ n, n ≥ 4, we have

nD ≤
Ç
n+D

D

ålnn

.

(2) For D2 ≥ n ≥ 1, we have

lnn ≤ 2 ln ln

Ç
n+D

n

å
+ 4.

(3) For 0 < c < 1, there exists K such that for all n,D,

D ≤ n1−c =⇒ nD ≤
Ç
n+D

n

åK
.

(4) For D ≤ n, we have

nD ≤ N2 ln lnN+O(1).

(5) For n ≤ D, we have

Dn ≤ N2 ln lnN+O(1).

Proof. Stirling’s formula states n! =
√

2πnn+ 1
2 e−ne

Θn
12n with 0 < Θn < 1.

Let H(x) = x ln 1
x + (1− x) ln 1

1−x denote the binary entropy function, defined

for 0 < x < 1. By a straightforward calculation we get from Stirling’s formula
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the following asymptotics for the binomial coefficient: for any 0 < m < n, we

have

(11.1) ln

Ç
n

m

å
= nH

(m
n

)
+

1

2
ln

n

m(n−m)
− 1 + εn,m,

where −0.1 < εn,m < 0.2. This formula holds as well for the extension of

binomial coefficients on which m is not necessarily integer.

(1) The first claim is equivalent to eD ≤
(n+D
D

)
. The latter is easily checked

for D ∈ {1, 2, 3} and n ≥ 4. So assume n ≥ D ≥ 4. By monotonicity it suffices

to show that eD ≤
(2D
D

)
for D ≥ 4. Equation (11.1) implies

ln

Ç
2D

D

å
> 2D ln 2 +

1

2
ln

2

D
− 1.1,

and the right-hand side is easily checked to be at least D for D ≥ 4.

(2) Put m :=
√
n. If D ≥ m, then

(n+D
n

)
≥
(n+dme

n

)
, so it is enough to

show that lnn ≤ 2 ln ln
(n+dme

n

)
+ 4. Equation (11.1) implies

ln

Ç
n+ dme

n

å
≥ ln

Ç
n+m

n

å
≥ (n+m)H

( m

n+m

)
+

1

2
ln

1

m
− 1.1.

The entropy function can be bounded as

H
( m

n+m

)
≥ m

n+m
ln
(
1 +

n

m

)
≥ m

n+m
lnm.

It follows that

ln

Ç
n+ dme

n

å
≥ 1

2

√
n lnn− 1

4
lnn− 1.1 ≥ 1

4

√
n lnn,

where the right-hand inequality holds for n ≥ 10. Hence, for n ≥ 10,

ln ln

Ç
n+ dme

n

å
≥ 1

2
lnn+ ln lnn− ln 4 ≥ 1

2
lnn− 2.

This shows the second claim for n ≥ 10. The cases n ≤ 9 are easily directly

checked.

(3) Writing D = nδ we obtain from equation (11.1)

ln

Ç
n+D

n

å
= (n+D)H

( δ

1 + δ

)
− 1

2
lnD +O(1).

Estimating the entropy function yields

H
( δ

1 + δ

)
≥ δ

1 + δ
ln
(
1 +

1

δ

)
≥ δ

2
ln

1

δ
=
δε

2
lnn,

where ε is defined by δ = n−ε. By assumption, ε ≥ c. From the last two lines

we get
1

D lnn
ln

Ç
n+D

n

å
≥ c

2
− 1− c

2D
+O
Ç

1

lnn

å
.
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In the case c ≤ 3
4 we have D ≥ n1/4 and we bound the above by

c

2
− 1

2n1/4
+O
Ç

1

lnn

å
,

which is greater than c/4 for sufficiently large n. In the case c ≥ 3
4 we bound

as follows:

1

D lnn
ln

Ç
n+D

n

å
≥ c

2
− 1− c

2
+O
Ç

1

lnn

å
= c− 1

2
+O
Ç

1

lnn

å
≥ 1

5

for sufficiently large n.

We have shown that for 0 < c < 1, there exists nc such that for n ≥ nc,

D ≤ n1−c, we have

nD ≤
Ç
n+D

n

åKc
,

where Kc := max{4/c, 5}. By increasing Kc we can achieve that the above

inquality holds for all n,D, with D ≤ n1−c.

(4) Clearly, N ≥
(n+D

n

)
. If D ≤

√
n then, by part (3), there exists K such

that

nD ≤
Ç
n+D

n

åK
≤ NK .

Otherwise D ∈ [
√
n, n] and the desired inequality is an immediate consequence

of parts (1) and (2).

(5) Use
(n+D

n

)
=
(n+D
D

)
and swap the roles of n and D in part (4) above.

�

Theorem 3.8 combined with Lemma 11.1(4) implies that

(11.2) E
f
KU (f) = N2 ln lnN+O(1) if D ≤ n.

Note that this bound is nearly polynomial in N . Moreover, if D ≤ n1−c for

some fixed 0 < c < 1, then Lemma 11.1(3) implies

(11.3) E
f
KU (f) = NO(1).

In this case, the expected running time is polynomially bounded in the input

size N .

11.2. The case D > n. The homotopy continuation algorithm MD is not

efficient for large degrees — the main problem being that we do not know how

to deterministically compute a starting system g with small µmax(g). However,

it turns out that an algorithm due to Jim Renegar [18], based on the factor-

ization of the u-resultant, computes approximate zeros and is fast for large

degrees.
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Before giving the specification of Renegar’s algorithm, we need to fix some

notation. We identify Pn0 := {(x0 : · · · : xn) ∈ Pn | x0 6= 0} with Cn via the

bijection (x0 : · · · : xn) 7→ x := (x1/x0, . . . , xn/x0). If x ∈ Pn0 , then we denote

by ‖x‖aff the Euclidean norm of x, i.e.,

‖x‖aff := ‖x‖ =
( n∑
i=1

∣∣∣∣ xix0

∣∣∣∣2) 1
2
,

and we put ‖x‖aff = ∞ if x ∈ Pn \ Pn0 . Furthermore, for x, y ∈ Pn0 , we shall

write daff(x, y) := ‖x−y‖ and we set daff(x, y) :=∞ otherwise. An elementary

argument shows that dP(x, y) ≤ daff(x, y) for x, y ∈ Pn0 .

By a δ-approximation of a zero ζ ∈ Pn0 of f ∈ Hd we understand an x ∈ Pn0
such that daff(x, ζ) ≤ δ. The following result relates δ-approximations to the

approximate zeros in the sense of Definition 2.1.

Proposition 11.2. Let x be a δ-approximation of a zero ζ of f . Recall

C = 0.025. If D3/2µnorm(f, x)δ ≤ C , then x is an approximate zero of f .

Proof. We have dP(x, ζ) ≤ daff(x, ζ) ≤ δ. Suppose that D3/2µnorm(f, x)δ

≤ C. Then, by Proposition 4.1 with g = f , we have

µnorm(f, ζ) ≤ (1 + ε)µnorm(f, x)

with ε = 0.13. Hence

D3/2µnorm(f, ζ)dP(x, ζ) ≤ (1 + ε)D3/2µnorm(f, x)δ ≤ (1 + ε)C.

We have (1 + ε)C ≤ u0 = 3−
√

7. Now use Theorem 2.2. �

Consider now R ≥ δ > 0. Renegar ’s Algorithm Ren(R, δ) from [18] takes

as input f ∈ Hd , decides whether its zero set V (f) ⊆ Pn is finite, and if so,

computes δ-approximations x to at least all zeros ζ of f satisfying ‖ζ‖aff ≤ R.

(The algorithm even finds the multiplicities of those zeros ζ; see [18] for the

precise statement.)

Renegar’s Algorithm can be formulated in the BSS-model over R. Its

running time on input f (the number of arithmetic operations and inequality

tests) is bounded by

(11.4) O
Ç
nD4(logD)

Ç
log log

R

δ

å
+ n2D4

Ç
1 +

∑
i di

n

å4å
.

To find an approximate zero of f we may use Ren(R, δ) together with Propo-

sition 11.2 and iterate with R = 4k and δ = 2−k for k = 1, 2, . . . until we are

successful. More precisely, we consider the following algorithm:
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Algorithm ItRen

input f ∈ Hd

for k = 1, 2, . . . do

run Re(4k, 2−k) on input f

for all δ-approximations x found

if D3/2µnorm(f, x)δ ≤ C stop and RETURN x

Let Σ0 := Σ ∪ {f ∈ Hd | V (f) ∩ Pn0 = ∅}. It is obvious that ItRen stops

on inputs f 6∈ Σ0. In particular, ItRen stops almost surely.

The next result bounds the probability Probfail that the main loop of

ItRen, with parameters R and δ, fails to output an approximate zero for a

standard Gaussian input f ∈ Hd (and given R, δ). We postpone its proof to

Section 11.3.

Lemma 11.3. We have Probfail = O(n3N2D6Dδ4 + nR−2).

Let T (f) denote the running time of algorithm ItRen on input f .

Proposition 11.4. We have for standard Gaussian f ∈ Hd

E
f
T (f) = (nND)O(1).

Proof. The probability that ItRen stops in the (k + 1)th loop is bounded

above by the probability pk that Re(4k, 2−k) fails to produce an approximate

zero. Lemma 11.3 tells us that

pk = O
Ä
n3N2D6D 16−k

ä
.

If Ak denotes the running time of the (k + 1)th loop, then we conclude

E
f
T (f) ≤

∞∑
k=0

Akpk.

According to (11.4), Ak is bounded by

O
Ç
nD4(logD)(log k) + n2D4

Ç
1 +

∑
i di

n

å4

+ (N + n3)D
å
,

where the last term accounts for the cost of the tests. The assertion now follows

by distributing the products Akpk and using that the series
∑
k≥1 16−k, and∑

k≥1 16−k log k have finite sums. �

Proof of Theorem 3.9. We use Algorithm MD if D ≤ n and Algorithm

ItRen if D > n. We have already shown (see (11.2), (11.3)) that the assertion

holds if D ≤ n. For the case D > n we use Proposition 11.4 together with the

inequality DO(1) ≤ DO(n) ≤ NO(log logN) which follows from Lemma 11.1(5).

Moreover, in the case D ≥ n1+ε, Lemma 11.1(3) implies D ≤ Dn ≤ NO(1). �
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11.3. Proof of Lemma 11.3. Let E denote the set of f ∈ Hd such that

there is an x on the output list of Ren(R, δ) on input f that satisfies C <

D3/2µnorm(f, x)δ. Then

Probfail ≤ Prob
f∈Hd

{
min
ζ∈V (f)

‖ζ‖aff ≥ R
}

+ Prob E .

Lemma 11.3 follows immediately from the following two results.

Lemma 11.5. For R > 0 and standard Gaussian f ∈ Hd, we have

Prob
f∈Hd

¶
min
ζ∈V (f)

‖ζ‖aff ≥ R
©
≤ n

R2
.

Proof. Choose f ∈ Hd standard Gaussian and pick one of the D zeros

ζ
(1)
f , . . . , ζ

(D)
f of f uniformly at random, call it ζ. Then the resulting distribu-

tion of (f, ζ) in VP has the density ρst. Lemma 8.8 implies that ζ is uniformly

distributed in Pn. Therefore,

Prob
f∈Hd

¶
min
i
‖ζ(i)
f ‖aff ≥ R

©
≤ Prob

ζ∈Pn

¶
‖ζ‖aff ≥ R

©
.

To estimate the right-hand side probability we observe that

‖ζ‖aff ≥ R⇐⇒ dP(ζ,Pn−1) ≤ π

2
− θ,

where θ is defined by R = tan θ and Pn−1 := {x ∈ Pn | x0 = 0}. Therefore,

Prob
ζ∈Pn

¶
‖ζ‖aff ≥ R

©
=

vol
¶
x ∈ Pn | dP(x,Pn−1) ≤ π

2 − θ
©

vol(Pn)
.

Due to [11, Lemma 2.1] and using vol(Pn) = πn/n!, this can be bounded by

vol(Pn−1)vol(P1)

vol(Pn)
sin2

Ç
π

2
− θ
å

= n cos2 θ =
n

1 +R2
≤ n

R2
. �

Lemma 11.6. We have Prob E = O(n3N2D6Dδ4).

Proof. Assume that f ∈ E . Then, there exist ζ, x ∈ Pn0 such that f(ζ) = 0,

‖ζ‖aff ≤ R, daff(x, ζ) ≤ δ, Ren returns x, and D3/2µnorm(f, x)δ > C.

We proceed by cases. Suppose first that δ ≤ C
D3/2µnorm(f,ζ)

. Then, by

Proposition 4.1,

(1 + ε)−1C < (1 + ε)−1D3/2µnorm(f, x)δ ≤ D3/2µnorm(f, ζ)δ;

hence

µmax(f) ≥ µnorm(f, ζ) ≥ (1 + ε)−1CD−3/2δ−1.

If, on the other hand, δ > C
D3/2µnorm(f,ζ)

, then we have

µmax(f) ≥ µnorm(f, ζ) ≥ CD−3/2δ−1.

Therefore, for any f ∈ E ,

µmax(f) ≥ (1 + ε)−1CD−3/2δ−1.
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Theorem C of [23] states that Probf{µmax(f) ≥ ρ−1} = O(n3N2Dρ4) for all

ρ > 0. Therefore, as claimed, we get

Prob E ≤ Prob
f∈Hd

¶
µmax(f) ≥ (1 + ε)−1CD−3/2δ−1

©
= O(n3N2DD6δ4). �

Note added in proof. Since the posting of this manuscript on September

2009, at arXiv:0909.2114, a number of references have been added to the

literature. The nonconstructive character of the main result in [21] — the

bound in (1.3) — had also been noticed by Carlos Beltrán. In a recent paper

(A continuation method to solve polynomial systems, and its complexity, Num.

Math. 117 (2011), 89–113), Beltrán proves a very general constructive version

of this result. Our Theorem 3.1 can be seen as a particular case (with a

correspondingly shorter proof) of Beltrán’s paper main result. We understand

that yet another constructive version for the bound in (1.3) is the subject of a

paper in preparation by J.-P. Dedieu, G. Malajovich, and M. Shub.

Also, Beltrán and Pardo have recently rewritten their paper [6] (Fast linear

homotopy to find approximate zeros of polynomial systems, Found. Comput.

Math. 11, (2011), 95–129). This revised version, which increases the length of

the manuscript by a factor of about three, adds considerable detail to a number

of issues only briefly sketched in [6]. In particular, the effective sampling from

the solution variety is now given a full description (which is slightly different

to the one we give in §9).
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