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Eigenvarieties for reductive groups

By Eric URBAN

Abstract

We develop the theory of overconvergent cohomology introduced by
G. Stevens, and we use it to give a construction of eigenvarieties associated
to any reductive group G over Q such that G(R) has discrete series. We
prove that the so-called eigenvarieties are equidimensional and generically
flat over the weight space.
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0. Introduction

The theory of p-adic families of automorphic forms has known many de-
velopments since the original breakthrough of H. Hida in the early eighties
who constructed p-adic families of ordinary modular cusp eigenforms. His re-
sults were further extended to finite slope modular forms by Coleman using
the p-adic spectral theory of the Atkin U, operator and the construction by
Coleman-Mazur of the eigencurve brought a more geometric and global aspect
to the theory.

Although Hida’s original approach as well as Coleman’s strategy were built
on Katz’ theory of p-adic and overconvergent modular forms, the cohomolog-
ical’ method, whose idea is originally due to Shimura, using cohomology of
arithmetic subgroups to study congruences between Hecke eigenvalues led sev-
eral authors following H. Hida in the ordinary case and G. Stevens in the finite
slope case to construct families of Hecke eigensystems for reductive groups G
over Q whose archimedean part G(R) is compact modulo center. For example,

1 The original geometric approach has also been also generalized by Hida to all Shimura
varieties of PEL type and also in some nonordinary case by other authors. See, for example,
[Kas04], [Kas06], [KL05], [SU0O6b].
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see [Buz04], [Che04], [Eme06]. However, the extension of these techniques to
more general reductive groups was hindered by the difficulty to handle the
torsion of the cohomology of the corresponding arithmetic subgroups.

In this paper, we bypass this difficulty for groups G such that G9°*(R)
satisfies the Harish-Chandra condition? (i.e., contains a compact Cartan sub-
group) and construct p-adic families of automorphic (cuspidal) representations
for G. In particular, we construct eigenvarieties associated to such groups
whose points are in bijection with automorphic representations having nontriv-
ial Euler-Poincaré characteristics, and we prove that it is equidimensional of
the expected dimension. The main difference between our approach and other
authors’ strategies is to work with the total cohomology instead of studying
the cohomology separately in each degree. More precisely, we work with some
kind of “perfect complex” that computes the cohomology of the corresponding
arithmetic groups with coefficients in a family of certain p-adic distribution
spaces. Moreover, instead of trying to construct a universal module that inter-
polates the cohomology when the weight of the system of coefficients varies, we
rather make a p-adic analytic interpolation of the trace of the Hecke operators
acting on the total cohomology. Our approach is somehow similar to Wiles’
idea of constructing families of Galois representations by the use of pseudo-
representations. We give two applications of the p-adic analyticity property
with respect to the weight of these traces. One concerns the construction of
eigenvarieties and therefore of p-adic families of automorphic representations.
We actually give an axiomatic treatment of the construction of eigenvarieties
from the existence of p-adic analytic families of traces of Hecke operators. The
other one is to derive a p-adic trace formula in geometric terms very similar to
the one by Arthur-Selberg.

For groups G such that G(R) do not satisfy the Harish-Chandra condition,
like GL,, with n > 2, our method provides evidences that the presence of
torsion is related to the vanishing of the Euler-Poincaré characteristic of the 7-
isotypical component of the cohomology when 7 is a cuspidal representation of
G(A). In fact, for GL3 /Q,?’ Ash and Stevens have noticed that certain cuspidal
representations do not lie in a p-adic family, and they came up with a conjecture
that vaguely says that a cuspidal representation can be deformed p-adically in
a family of classical cuspidal representations if and only if it is essentially
self-dual. According to Langlands’ philosophy, all such representations should
come from orthogonal or symplectic groups, and the “if” part of this conjecture
would follow from our result applied to these classical groups. Surprisingly, it

2For example, it applies to any unitary or symplectic groups over a totally real field.
3For G = GL(2),x with K imaginary quadratic, Calegari and Mazur have remarked the
same phenomena.
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turns out? that our method can be modified in order to give a proof of this
without assuming Langlands’ transfer principle (see §5.6).

After I gave several lectures on this work, I learned that M. Koike and
L. Clozel had worked on a somehow similar approach in the past, similar in
the sense that they also proved some continuity statement with respect to the
weight of the trace of the Hecke operators (see Clozel’s unpublished manuscript
[Clo93] and Koike’s papers [Koi75], [Koi76]) by using the explicit form of the
Selberg trace formula. Our approach differs from theirs in two ways. Firstly,
we do not use an explicit form of the trace formula to prove the analyticity
statement, and we use p-adic spectral theory on the Banach spaces defined
by the locally analytic induction of p-adic characters. Secondly, our trace is a
trace of a compact operator acting on a complex of p-adic Banach spaces while
theirs is the usual classical trace computed by Arthur-Selberg. As a byproduct,
we have obtained a p-adic trace formula. We hope to give some applications
of it in the future.

To illustrate our work, we now give a description of a special case of our
main result on the existence of p-adic families of automorphic representations.
We want to stress the fact that we have constructed here deformations of
automorphic representations rather than deformations of automorphic forms
as is usually done in the literature. It has the advantage of giving better
control over the information at the ramified places. This fact is very useful for
applications such as those in [SUO06a], [SU06D].

We let G be a reductive group such that G(R) has discrete series. Let
Sa(K) be the locally symmetric space associated to G and a neat open sub-
group K of the finite adelic points of G. Let m be an automorphic repre-

sentation of G(A) occurring in the cohomology of Sg(K) with the system of
Xalg
est weight A& with respect to some Borel pair. Such a representation will be

coefficients VY, (C) the dual of the irreducible algebraic representation of high-
called automorphic and cohomological of weight A8, It can be seen (and we
will see such a representation in this way) as a representation of the Hecke alge-
bra of the Q-valued locally constant functions on G(Af) with compact support
that we denote C°(G(Ay), Q).

We now fix a prime p. For simplicity let us assume in this introduction
that G splits over Q, and let (B,T) be a Borel pair. Let RT be the set of the
corresponding positive roots. We denote by I an Iwahori subgroup of G(Q))
in good position with respect to (B,T). More generally, we denote I, the

4T am grateful to D. Vogan for drawing my attention to the fact that the twisted Eu-
ler characteristic by a Cartan type involution is not trivial for most of the cohomological
representations.
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Iwahori subgroup of depth m defined by
I :={g € G(Zp)lg (mod p™) € B(Z/p"L)}.
We consider the monoid
T~ = {t e T(Q)lla(®)], < 1 Va € R"},

and we denote T~ C T~ as the sub-monoid of elements ¢t such that the
inequalities in the above definition are strict. Then put A~ := [.T~.1 and
A™7 = I1.T7".1. We consider U, the local Hecke algebra® at p generated
over Zjy, by the characteristic function of the double classes u; := Ip,tl,,. Let
KP C G(Az}) be an open compact subgroup of the finite adelic points of G
away from p. We now consider

Hy(KP) = C(KP\G(A})/KP,Qp) @ Uy C CZ(G(Ay), Qp),

where the left-hand side of the tensor product denotes the locally constant
functions on G(Af) with compact support which are bi-invariant by K?. We
call finite slope representations of G of level K? the finite-dimensional repre-
sentations of #,(K?) over a complete field extension of Q, such that, for each
t € T—, the double class u; acts as an invertible automorphism. In particular,
if such a representation is irreducible, then the u;’s act by multiplication by
nonzero scalars.

Let 7w be a cohomological automorphic representation. Let us choose
KP C G(Afc) and some sufficiently deep pro-p-Iwahori subgroup I/, such that

Wfp'l;” # 0. We consider the action of I,,/I], = T(Z/p™Z) on this subspace
and choose a character ¢ of this group such that the e-isotypical component of
w;{p'ﬂ” is nontrivial. Then we have an action of H,(K?) on W;{p'ﬂ” ®e 1l An
irreducible constituent of the representation of H,(K?) acting on this space
will be called a p-stabilization of 7. The finite slope irreducible representations
of H,(KP) obtained in this way will be called finite slope classical automorphic
representations of weight A = A\*8¢ that we consider to be a p-adic valued con-
tinuous character of T'(Z,). If the original 7 is cuspidal, then a p-stabilization
of it will be called cuspidal too.

Let S be a finite set of primes such that the open subgroup K? C G (A?) is
maximal hyperspecial away from S. Then denote by Rg, the abstract Hecke
algebra defined as the sub-algebra of #H,(K?) of Z,-valued locally constant

functions with compact support contained in G(A?U{p }).A*. Note that Rg),
is contained in the center of H,(K?). Therefore, the action of Rg ), on a finite

5t is an easy fact that the structure of this algebra does not depend upon m. Hence we
have dropped m from the notation.



1690 ERIC URBAN

slope representation o of H,(KP?) is given by multiplication by a character 0,
of RSJ,.

Let my be a finite slope irreducible cuspidal representation of G(A) of
weight A\gp. We normalize the Rg,-action so that the double class u; acts
by multiplying the standard action by |Ag(t) and we denote by 6y the
corresponding character of Rg .

-1
b

We say that 6y is not critical with respect to Ay if, for some t € T, we
have

up(fo(ur)) < (Mo(Ha) + L)vp(a(t))

for each simple root «, with H, denoting the corresponding co-root.

Finally, we introduce the weight space. Let Z, = Z,(K?) be the p-adic
closure of the image of Z(Q) N K?.T(Z,) in T(Z,) for some KP neat and
hyperspecial maximal away from S. It easy to see that Z, does not depend
on K? but only on S. If G is Q-split, then Z,, is trivial; otherwise, its rank is
related to the rank of some units and also some Leopoldt defect. Our weight
space is the rigid analytic space X = Xg» defined over Q, such that %(@p) =

Homcont(T(Zp)/Zp,@;). Then we have the following theorem (see §5.4.3).

THEOREM. Assume that 0y is not critical with respect to Ao and that the
algebraic part of \g is dominant reqular. Then, there exists

(1) an affinoid open neighborhood 4 C X of Ao;

(2) a generically flat finite cover B of I with structural morphism w;

(3) a homomorphism 6y from Rg, to the ring O(0) of analytic functions
on ‘U;

(4) a distribution character Iz : Hp(KP) — O(D);

(5) a point yo € B(Q,) above o;

(6) a Zariski dense subset > C B(Q,) such that w(y) is algebraic regular
dominant for all y € X;

(7) for each y € ¥, a nonempty set I, of finite slope irreducible automor-
phic representation of weight Ay = w(y) = )\Zlgsy;

satisfying the following:
(i) The specialization of Oy at yo is equal to Oy.
ii) For anyy € %, the specialization 8, of Oy at y is a character occurring
Y

in the representation of Rgp in 7K for all m € IL,.
(iii) For each y € X, the specialization I, of Iy at y satisfies

L(f) =Y m(m, \I(f)

o€lly
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for all f € Hp(KP), where m(m, \) is the Euler-Poincaré characteristic
of min H*(Sq,VY) defined as

m(m, ) =Y (=1)'dimcHomyy (g (™" HE L (Sa (KP 1), VX)),
where f > I.(f) is the trace distribution f — tr(w(f)) defined on
Hp(KP).

Moreover, the distribution character Iy can be chosen such that 11, is a sin-
gleton for a Zariski dense subset of X.

In a recent preprint, Ash-Stevens have constructed® all we need to con-
struct the total eigenvariety for any reductive group (see [AS08]). By total, we
mean that the points occurring in that eigenvariety are in a ono-to-one corre-
spondence with systems of Hecke eigenvalues of finite slope occurring in the
cohomology with coefficients in a Banach space of p-adic distributions (and not
only those having a nontrivial Euler-Poincaré characteristic). However, their
result does not give any information about the dimension of the irreducible
components. Our construction gives a complete description of the components
of the eigenvariety having the same dimension as weight space. When the
group is anisotropic, it is exactly the set of Hecke eigensystems having a non-
trivial Euler-Poincaré characteristic. In general, we describe it as a union of
cuspidal and various Eisenstein components. In Section 5.4 of the present pa-
per, we present a conjecture for the dimension of the irreducible components
passing through a given point of the eigenvariety in terms of the multiplicities
of the corresponding system of Hecke eigenvalues in the various degrees of the
cohomology. It is also worth noticing that these components do not always’
contain a Zariski dense subset of classical points (i.e., attached to a classical
automorphic representation). I hope this paper will convince the reader that
the good framework to study p-adic automorphic representations and their
families is the one of the derived category.

We now give a brief description of the content of the different sections.
In Section 1, we introduce the basic notation, and we give a brief account
of the cohomolgy of arithmetic groups with algebraic coefficients. Especially,
we recall the important results of Borel-Wallach, Saper, Li-Schwermer and
Franke. In Section 2, we introduce the formalism of the derived category
of complexes of Banach spaces and the spectral theory of compact operators
acting on them. In Section 3, we define the locally p-adic analytic induction

6They have actually constructed local pieces of the total eigenvariety. A global construc-
tion has been recently carried out by Z. Xiang in [Xial2].

"See the GL(3) g-example of Ash-Pollack-Stevens [APS] or the GL(2),k-case with K
imaginary quadratic case considered by Calegari-Mazur [CMO09].



1692 ERIC URBAN

spaces “a la Ash-Stevens-Hida” that will be used to define what we have called
the “overconvergent cohomology.” In Section 4, we study this cohomology and
we prove that the trace of the compact operators u; acting on it is an analytic
function of the weight A\ € X(Q,). We also introduce the notion of effective
finite slope character distribution, which is a linear functional on the Hecke
algebras H;,(K?) that behaves like the trace of compact operator acting on a
p-adic Banach space. In Section 5, we make an axiomatic construction of the
eigenvariety associated to analytic families of effective finite slope distribution,
and we apply it to the analytic families of finite slope distribution constructed
in the previous chapter. In Section 6, we establish some p-adic trace formulae
interpolating Arthur’s and Franke’s trace formulae.

Acknowledgments. It will be obvious to the reader that this work is greatly
influenced by the works of Ash-Stevens, Coleman-Mazur and Hida. But it is
especially my pleasure to thank H. Hida for many inspiring conversations over
the years and also for pointing out a few inaccuracies in an earlier version of
this paper. I would also like to thank A. Ash, L. Clozel, M. Harris, B. Mazur,
J. Newton, S. Shah, C. Skinner, G. Stevens, J. Tilouine and D. Vogan for
useful conversations during the preparation of this work. I am also grateful to
the organizers of the eigenvarieties semester at Harvard in the spring 2006 for
giving me the opportunity to think about these questions again. I would like
also to thank the CRMS® for its hospitality during which some revisions of this
paper were made. Finally, I want to thank the anonymous referee for pushing
me to improve the writing of earlier versions of this work.

1. Cohomology of arithmetic groups
1.1. Notation and conventions.

1.1.1. General notation. We denote respectively by Q, R and C the fields
of rational, real and complex numbers. For any prime p, Q, is the field of
p-adic numbers, and we denote by C, the p-adic closure of an algebraic closure
@p of Qp. Throughout this paper, we denote by Q an algebraic closure of Q
and we fix the embeddings 1o and ¢, of Q into C and C, respectively. Any
number field M will be considered as a subfield of Q.

We denote by | - |, the non-archimedean norm of C, normalized by |p|, =
p~ 1. We denote by A the adele ring over Q, and we fix a decomposition such
that A = Ay x R. If M is a number field, we will also denote Ay = A ® M
and, for each place v of M, we write M, for the completion of M at v.

Sometimes we denote by | X| or by #X the cardinal of a finite set X.

8Centre de Recerca Matematica (Bellaterra, Spain).
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For any algebraic group H defined over Q, we set Hy = H(Ay) and Hy, =
H(R). We denote by HI the connected component of H, containing the
identity. Whenever we put the superscript + to a given group, it will mean
that we consider the subgroup of the elements whose infinity part belongs to
the connected component of this infinity part.

1.1.2. Locally symmetric spaces and reductive groups. We let G be a con-
nected reductive group over Q. We denote by Z = Zg the center of G. We let
Py be a minimal parabolic subgroup defined over Q and a Levi decomposition
Py = My.Ny, and we denote by Pg the set of standard parabolic subgroup P
of G defined over Q (i.e., those containing Py). We also denote Lg as the set
of standard Levi subgroup (i.e., containing Mjy). For any Levi subgroup M,
we will denote by WY, its (rational) Weyl group; i.e., W3, := Nyr(Moy)/Mo.
(Here Njs(My) denotes the normalizator of My in M.)

We let K, be a maximal compact subgroup of G := G(R) and put C$ =
Koo Zoo. We denote by G the identity component of Go,. We also write
Gl C GL for the kernel of the map from G, onto the connected component
of the R-split part of the co-center Goo /G of Goo.

We let K, = Kmax C G(Ay) be a maximal compact subgroup and dg a

/ dg = 1.
Krnax

If K C Gy is a measurable set, we write

Haar measure of Gy such that

Meas(K') = Meas(K, dg) ::/ dg.
K

For any open compact subgroup K C Gy, we consider the locally sym-
metric space
Sa(K) = G(Q)\G(A)/K.CE.
Let He = GL/CS N GE. Throughout this paper, we assume that the strong
approximation theorem applies to G9°*. In particular, for any open compact
subgroup K C Gy), we have a finite decomposition

1) G(h) = | |G(Q) x G x gi.K.

For any = € G(Ay) and any open subgroup K C G(Ay), we denote by I'(z, K)
the image of Kz~ ' N G(Q)' in G*(Q) = G(Q)/Z5(Q). Then we have

Sa(K) = |_|F7;\HG,

with T'; := I'(g;, K). We say that K is neat if none of the I'; := TI'(g;, K)
contains finite order elements. In that case, Sg(K) is a smooth real analytic
variety, and for each connected component, the universal covering morphism
is étale.
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1.2. Local systems and cohomology. We will be interested in the cohomol-
ogy of local systems on Sg(K). They are defined by representations of the
fundamental group of each connected component. Below, we recall different
equivalent constructions of these local systems.

1.2.1. First definition. If M is a Q-vector space equipped with an action
of G(Q), we denote by M the local system defined as the sheaf of locally
constant sections of the cover

M := G(Q)\(G(A) x M)/K.Cso — G(Q\G(A)/K.Cso = Sa(K),
with left action of G(Q) and right action of K.Cy defined by the formula

v-(g9:m).k == (vgk,v.m)

for any v € G(Q), g € G(A), k € K.Co, and m € M.
Let Zi = Zg(Q)N K. Then a necessary condition for M to be nontrivial
is that

(2) Zx acts trivially on M.

When this condition is satisfied, the subgroups I'(z, K') act on M. Then
for each irreducible component I';\#H, the local system is defined by

M; :=T\(Ha x M) = T')\Hg,
and the isomorphism M 2 L;M; is induced by the maps (7-9i-9oo -k, m) —
(9o, ¥ ™M)

1.2.2. Second definition. If M is a left K-module, we can define also the
local system

Mg = G(Q\G(A) x M/K.Cso — G(Q\G(A)/K.Cso = Sc:(K),
with left action of G(Q) and right action of K.C given by the formula
v-lg,ml-k = [ygk, k~hm).

When the action of K or G(Q) on M in the definitions (1.2.1) and (1.2.2)
above extends in a compatible way to an action of G(A), then the two defined
local systems M and M K coincide by the isomorphism (g,m) + [g,g*
Again the sheaf M is nontrivial only if condition (2) is satisfied.

1.2.3. Let v be a place of Q such that the action of K factorizes through
the projection K +— K,, with K, the image of K into G(Q,). Assume that
the image of g; in G(Q,) be trivial. Then we can describe the local system M
on each irreducible component by

Mi = M|Fi\HG = Fi\(HG X M) — Fi\/HG
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Here the left action of I'; is defined by ~.[z,m] = [y.2,7.m] for all z € Hg,
m € M and v € Ty, and the isomorphism between M; and I';\(Hg x M) is
defined by

[-9i-goo Ky m] = [7-goo, k).

1.2.4. Cohomology. We write H®*(Sq(K),F) and H2(Sq(K),F) respec-
tively for the cohomology and cohomology with compact support of a local sys-
tem F on Sg(K'). We also denote by H(Sq(K), F) the image of the canonical
map from H*(Sg(K),F) into H*(Sg(K),F). When F = M, we will some-
times drop the symbol ~ from the notation; thus we write H*(Sq(K), M).
When M is defined by an action of G(Q), we also write H$(Sg, M) for the
projective limit of the Hj(Sq(K), M) over all the open compact subgroups
K C G(Af).

We also recall that the decomposition into connected components induces
a canonical isomorphism

(3) H*(Sc(K), M) = &;H*(Di\He, M;) = &;H*(I';, M).

1.2.5. Hecke operators. We now briefly recall some equivalent definitions
of the action of the Hecke operators on the cohomology.

Assume that x € G(Ay). Then the right translation by x defines an
isomorphism R, : Sg(K) — Sg(z7!Kw), and we expect that it induces a
map

(4) H*(Sg(z 'Kz), M) — H*(Sq(K), M).

This is indeed so if M is defined by a representation of G(Q) (i.e., as in defini-
tion (1.2.1)). In that case, the definition above induces a left action of G(Ay)
on H*(Sg, M) such that there is a canonical isomorphism

H*(Sq, M)X = H*(Sa(K), M),

where the left-hand side of the above equation denotes the K-invariants of
H*(Sg,M). If M is a Q-vector space, we can therefore define an action of
the Hecke algebra C°(G(A¢), Q) on H*(Sg, M) from our choice of an Haar
measure on G(Ay).

When M is not a representation of G(Q) but is a left K-module, we need
to make some additional assumptions on M. Let Ay C G(Ay) be a semi-group
containing K and let us assume further that M is equipped with a A-left
action extending the action of K. Then for any x € Ay, the map m — z.m
induces canonically a map R;MI—I Kz — Mpg. We therefore have a map in
cohomology

(5) H*(Sg(z7'Kz), M) — H*(Sq(K), M).

In each case, this enables us to define a left action of the double cosets Kz K.
Moreover, these actions coincide when the definitions (1.2.1) and (1.2.2) are
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compatible as explained at the end of Section 1.2.2. We can also compare this
action with the definition (1.2.3). We write g;z = 7;,9j,hgsc with h € K.
To the double class Fm;ill“ji, we can associate the map H*(I')\Hqg, M) —
H*(I';,\Hg,M). In view of the isomorphism (3), the action of the double
coset KxK can equivalently be seen as

(6) [KaK] = ®iTing ; Tj].

1.3. Cohomology and automorphic forms. In this section, we review some
of the important known results establishing a link between the cohomology of
arithmetic groups and automorphic forms. The study of this relationship has
been originally undertaken by A. Borel and N. Wallach [BW00] and developed
by many authors including G. Harder, J. Schwermer, J.-S. Li, and the the-
ory has culminated with the results of J. Franke [Fra98] who proved Borel’s
conjecture.

1.3.1. Algebraic representations of G. We recall here the definition and
construction of some irreducible and algebraic representations of G. Let F C Q
be the smallest splitting field for G. We let (B/r, T)r) be a Borel pair contained
in the pair (Py/p, Mo/p. For all field L containing F, we denote respectively by
Ny, B/_L and N/_L the unipotent radical of B/, the Borel subgroup opposite
to B,y and the unipotent radical of B/_L. For any algebraic dominant weight
A of G, with respect to the Borel pair (B, 7)), we denote by V§(L) the
irreducible algebraic representation over L of Gy, of highest weight A defined
as the set of algebraic functions G, — A} 1» such that

f(n"tg) = A(t)f(g)

foralln™ € N~ (L),t € T(L) and g € G(L). When G is clear from the context,
we usually drop it from the notation and write Vy(L).

We are interested in the cohomology of VY(C) because it can be inter-
preted in terms of automorphic forms. We will recall below the main results
about this fact.

1.3.2. (g, K)-cohomology. Let g := Lieg(GL,) and € := Lieg(Ko). For
any (g, Ko )-module H, one denotes its (g, K )-cohomology by H*(g, Koo; H).
The reader can consult [BWO00] for the definitions and basic properties of
this notion. Let wy be the character of Z acting on V,(C). We denote
by C*(G(Q)\G(A)/K,w)y) the space of C*-functions ¢ on G(Q)\G(A)/K
such that ¢(gz) = wx(2)¢(g) for all g € G(A) and z € Z. This is a (g, Keo)-
module. By noticing that the tangent space at the origin of Sg(K) is canonicaly
isomorphic to g/¢ and that multiplication by g € G(A) gives an isomorphism
between the tangent space at the origine and the one at the class of g, it is not
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difficult and classical to obtain an isomorphism

H*(g, Ko C(GQ)\G(A) /K. ) 8 V(€)) & Hig(Sc(K), V3(C))
= H*(Sa(K), Vi (C)).

1.3.3. Cuspidal and L?-cohomology. Let L*(G(Q)\G(A),w,) be the space
of square integrable functions on G(Q)\G(A) which tranform by wy under the
action of Z,. There is a natural action of G(A) on these spaces. Moreover,
we have a decomposition

LA(G(Q\G(A), wx) = LG(GQ\G(A),wr) © L (GQ\G(A), wx),

where L2, and L3 denote respectively the continuous and discrete spectrum
of L? for the action of G(A). We also denote by L2 (G(Q)\G(A),w,)the

cusp

subspace of automorphic functions ¢ € L2(G(Q)\G(A),w,) satisfying

/ ¢(ng)dn =0

Np(A/Np(Q))

for the unipotent radical Np of any Q-rational parabolic subgroup P of G. We
have L2 .. C Lfl. Notice also that there is a spectral decomposition:

LIAGQ\G(A),w) = P V™,

where (7, V) runs in a set of irreducible representation with central character
at infinity wy. Similarly, we have

Lzusp(G(Q)\G(A), UJ)\), = @ vﬂmcusp(ﬂ)

where now the representations 7 are irreducible and cuspidal. In the above de-
composition, m(m) and meysp(7) are nonnegative integer denoting respectively
the multiplicities of 7 in L3 and L2,.

For an irreducible representation 7 as above, let Vwﬁn be the subspace of
vectors that generate a finite dimensional vector space under the action of
K. It can be shown that, under the decomposition above, an is contained
in C*(G(Q)/G(A),wy). (In fact, more generally, if 7o, is an admissible rep-
resentation of Goo, then 7 is a (g, Koo )-module.) One defines the cuspidal

cohomology as

Heusp(Sa(K),VX(C) := @ H*(g, Koo; (Vi)™ @ VY (C))
ﬂ—CLgusp

and the square integrable cohomology as
H3(Sa(K),VX(C)) :== @ H*(g, Keo; (Vi)™ @ VX(C)).

2
mCL3
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By a theorem of A. Borel, both inject via d in the cohomology of S¢(K). Thus
we have the following inclusions:

ngsp(SG(K)’VX(C)) - H'.(SG(K)aVX((C)) - HQ.(SG(K)7VX(C))
For 7 = (,!, cusp or 2, we put

H3 (56, V3(C)) = lim H(Sa(K), V¥ (C)).
KCGf
It has a natural action of Gy. Any irreducible representation m has a decom-
position m = 7y ® T, Where my and 7., are respectively representations of Gy
and Go,. We now recall which 7., intervene in the cohomology.

1.3.4. L-packet at infinity. For each dominant weight A\, one defines the
“cohomological ” packet Il as the set of essentially unitary representation s,
of G(R) of central character wy and such that

H*(g, Koo; moe @ VX(C)) # 0.

A cuspidal representation 7 is said to be cohomological if its archimedean
component 7, belongs to ITy for some weight A (that we call its cohomological
weight).

1.3.5. The Harish-Chandra condition. We say that G, satisfies the Harish-
Chandra condition if the compact rank of G4 equals its semi-simple rank.
In other words, Gggr contains a compact Cartan subgroup. In that case, it is
known by the foundational work of Harish-Chandra that G, has discrete series
representations (i.e., with square integrable matrix coefficients). In that case,
the dimension of Sg(K) is even, and we write dg for half its real dimension.

Assume that G, satisfies the Harish-Chandra condition. Then, if A is
dominant and regular, it is known that

(VZ): The representations in II are in the discrete series (i.e., can be
realized in L?(Gso,wy)). Moreover, mo, € II, has cohomology only in
degree dg, and it has dimension 1.

(HC): The set I, is in bijection with {w.(A+p) —p;w € Wa_ /Wk..}-
(VZ) is due to Vogan and Zuckerman and (HC) is due to Harish-Chandra.
Even if G4, does not satisfies the Harish-Chandra condition, the representa-
tions in IIy are known to be tempered? when \ is regular. By a theorem of
N. Wallach, it is known that if 7 is such that 7, is tempered, then the respec-
tive multiplicities meysp(m) and m(nw) of 7 in L2, and in L? are equal. An

cusp
immediate consequence of these facts is the following (well-known) proposition.

9This means that the matrix coefficients of this representations belong to L2+ (Goo/Zao)
for all ¢ > 0.
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PROPOSITION 1.3.6. Assume that G satisfies the Harish-Chandra con-
dition and that A is reqular; then
(i) We have

CuSp(S07V>\ ((C)) ((12)(50,VX((C)),

and these groups vanish except for ¢ = dg.
(ii) For q = dg, we have an isomorphism of G ¢

HigG, (56, Wy (C)) = D1 g Kocim o vy 0" 2@
Here m=m; @7 TUNS N the set of cuspidal representations such that ms €11

1.4. Franke’s trace formula. When the group G is not anisotropic, the
cohomology of S¢(K) is not reduced to its cuspidal or square integral part. In
the case of GL(2), G. Harder has proved that it can be decomposed into its
cuspidal part and Eisenstein part [Har87]. This result has been generalized by
him [Har93] and J. Schwermer [Sch83] in many other cases including the rank
one case and when A is regular. The question has been settled in fairly good
generality thanks to the work of J. Franke [Fra98] and works built on it. See,
for example, the results of J.-S. Li and J. Schwermer [LS04]. It also results
from the works of J. Franke that there is a trace formula for the cohomology
H*(Sq,VY(C)) in terms of trace of the square integral cohomology of the
Levi subgroup of G. This formula becomes quite simple when the weight A is
regular.

1.4.1. Fisenstein classes. Recall that Pg and Lg denote respectively the
set of the standard parabolic subgroups of G and the standard Levi subgroups
of G. We also write L¢, for the subset of L5 of Levi’s satisfying the Harish-
Chandra condition. For P € Pg with Levi decomposition P = M N, we denote
by pp the modulus function associated to P. Recall that it is defined by

pp(m) := det(m;n)!/?
with n := Lie N for m € M acting on n via the adjoint representation. Let
WM = fweWg | wta) e R, Ya € RY N Ry}

This is the set of representatives of the cosets Wg /Wiy of minimal length.
Here R* is the set of positive roots with respect to (B/L,T/L), and R,y is
the set of root for the pair (M, T} 1) Then we have the so-called Kostant
decomposition

H(n,VA(C) == B Vi) ()
ok
w)=q

where ny denotes the irreducible algebraic representation of M of highest
weight p. From the definition of WM, w(A + pp) — pp is a dominant weight
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with respect to the pair (B, N M/, T/L). For further use, let us remind the
reader that we have the relation

(7) wxA:=w(A+pp) —pp =wA+pp) —pp

for all w € WM. Since HY™"(n,C) = C(—2pp), by Poincaré duality the
Kostant decomposition gives
H(n, VX(C)) := @ V%MerHpP(C)V.
wewM

l(w)=dim n—gq

Let Rp C X*(Zy) be the set of roots for the pair (Zy;,n), and denote by
RY, C X.(Zy) the corresponding set of coroots. Then we put

W = {w e WM w™L(8) € RY, V5 € Rp}.

From the definition, we see that if A is regular, then (w * A)|z, Agaer is Rp-
dominant if and only if w € W, From results of Harder, Schwermer-Li and
Franke, it is known that for w € Wé?s and for regular A, the Eisenstein series
associated to a cohomology class in H*(Sy(Kay), VM, (C)Y) is in the domain
of convergence; therefore it defines an Eisenstein class in H*(Sg(K), VY (C)).
When the weight A is regular, these authors have furthermore proved that the
cohomolgy can be expressed in terms of cuspidal and Eisenstein classes. One
formulation of this fact is stated in the next theorem.

For any function f € C°(G(Ay)) and any M € Lg, we denote its constant
term far € C°(M(Ay)). Recall that it is defined for any m € M(Ay) by

fu(m) = / f(k™tmnk)dndk,
K xN(Ay)

where P = M N is the Levi decomposition of the unique standard parabolic
subgroup of G of Levi subgroup M. This definition is relevant in view of the
following (standard) formula:

(8) tr(f : Indggiiga) =tr(fa : o).

The induced representation'” here is the set of smooth functions on G(Ay)
such that ¢(pg) = o(p).¢(g) for all p € P(Ay) and g € G(Ay).

10Notice here that we do not consider the unitary induction. The main reason is that the
nonunitary induction preserves rationality and integrality of the Hecke eigenvalues.
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THEOREM 1.4.2 (Franke). Assume that X is regular and f € C°(G(Ay));
then we have

tr(f : H*(S, VY(C))= 3 (~1)dimn
MeLe

> Dt far Heup (S3,V i ak ppy o (O)Y).

we Wé/i[s

Proof. This follows from formula (2) on page 266 of the paper of Franke
[Fra9s]. O

2. Spectral theory on p-adic Banach spaces

The aim of this section is to set up some basic facts about the spectral
theory for the derived category of Banach modules over a Banach algebra. We
define what we call the finite slope cohomology attached to complexes of p-adic
Banach spaces equipped with completely continuous (or compact) operators.
Then we extend it to p-adic Fréchet spaces. We do not pretend any originality
in this section, but it gives a convenient frame for the theory developed in the
fourth section.

2.1. Perfect complexes of Banach spaces. We introduce the notion of per-
fect complexes of Banach spaces that will be suitable to our spectral theory. It
arises naturally as the theory of perfect complexes in the Grothendieck theory
of Lefschetz trace formula in étale cohomology.

2.1.1. In this section, A will be a topologically finitely generated Banach
Qp-algebra. Recall that it is a Q, algebra equipped with an ultrametric norm
|.|4 satisfying

|abla < |a|a -|bla for all a,b e A

and that we can normalize such that |z[4 = |z|, for all x € Q,. We will
assume (A, |.|) satisfies the Hypothesis M of [Col97, Al]. We write A° :=
{a€Alla] <1} and m :={a € A | |a|] < 1} € A°. Then we furthermore
assume that A is semi-simple in the sense of [Col97, A1], which means A°/m
is a field and that the norm on it induced by that of A is multiplicative. We
again refer to the reference [Col97] for the notions and the basic properties
of Banach A-modules. We call a Fréchet A-module a topological QQ,-vector
space V equipped with a continuous A-module structure, which is topologically
isomorphic to a projective limit of Banach A-modules. A Fréchet A-module
will be said to be compact if the transition maps of the projective limit are
completely continuous.

2.1.2. The categories Bana and Frey. For any Q,-Banach algebra A, we
consider the category Ban 4 (respectively Fre4) whose objects are the Banach
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(respectively Fréchet) A-modules, and the homomorphisms are the continu-
ous A-linear maps. These categories are obviously additive but not abelian.
However, they are exact in the sense of Quillen, the short exact sequences be-
ing those exact in the category of A-modules. Moreover, Ban 4 satisfies'! the
axiom 1.3.0 of [Lau83]. Every morphism f € Hom(E, F) has a kernel and a
coimage (and therefore an image and a cokernel). One can check easily that

Ker f = f_l(()), Im f = W, Coker f = F/m and Coim f = E/f_l(O).

Recall that a morphism f is said to be strict if and only if it induces an
isomorphism from Coim f onto Im f. This means here that f(E) is closed in
F. Equivalently, an epimorphim is strict if it is surjective as a morphism of
A-module, and a monomorphism is strict if its image is closed.

2.1.3. Let C(Bana) be the category of complexes of Banach A-modules
in which the homomorphisms are the maps of degree 0 between complexes. We
denote by K(Ban4) the triangulated category of complexes of objects of Ban 4
“modulo homotopy.” We say that a complex is acyclic if it is exact at every
degree and denote by K% (Ban 4) the full subcategory of acyclic complexes. This
category is “épaisse,” and, following Deligne, it is therefore possible to consider
the derived category D(Ban,) as the quotient category K(Bana)/K?(Bana).
The objects of D(Bana) are the same as those of K(Bana). Recall that if
M?® N* € Ob(D(Bana)), then a homomorphism from M*® to N*® is a triple
(P, s, f), where s € Homy (gap, ,)(P*, N*®) and f € Homy(ggy ,)(P*, M*) such
that s is a quasi-isomorphism. The latter means that the cone of s is acyclic.

Recall the following definition.

Definition 2.1.4. Let A be a Banach p-adic algebra over a p-adic field
L and M a Banach A-module. One says that M is an orthonormalizable
A-module or is orthonormalizable over A if there exists a countable family
B = (m;)ier € M7 of elements of norm < 1 such that for any m € M there is
a unique family (a;);e; € Al satisfying lim; a; = 0 and m = Y ;¢; a;.m;. We
call B an orthonormal basis of M.

For any Banach space N over L, we denote by IN° the lattice of elements
of norm < 1. We recall the following lemma.

LEMMA 2.1.5. Let M be a Banach A-module and a € A such that |a| < 1.
If there exists a subset B C M such that the image of B in M°/a.M° is a

Hpe category Bana is quasi-abelian in the sense of [Sch98]. This means that the pull-
back (resp. push-forward) of any strict epimorphism (resp. any strict monomorphism) is still
a strict epimorphism (resp. strict monomorphism). This fact can be easily verified as in
[Sch98, Prop. 3.2.4].
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basis of this module over A°/a.A°, then B is an orthonormal basis of N. In
particular any Banach space over L is orthonormalizable on L.

2.1.6. Projective Banach A-modules. An object P of Ban 4 is said to be
projective if, for any strict epimorphism f: N — M and any map g: P — M,
there exists a map h from P to N so that the following diagram is commutative:

A complex M* is called perfect if it is bounded and if MY is projective for all q.
We denote KCp¢(Ban 4) as the full subcategory of IC(Ban 4) of perfect complexes.

LEMMA 2.1.7. A Banach A-module is projective (in the category Ban )
if and only it is a direct factor of an orthonormalizable A-module.

Proof. Let us prove that an orthonormalizable P is projective. Let N, M, f
and g be as above. Since f is strict, it induces an isomorphism of Q,-Banach
spaces from N/ Ker f onto M. Then we choose a Q,-direct factor M’ of Ker f
inside N so that f induces an isomorphism of Q,-Banach spaces from M’
onto M. If (e;); is an A-basis of P, let h; € M’ for each i be such that
f(h;) = g(e;) for all i. Since g is continuous and f|y; is an isomorphism of
Qp-Banach spaces, we know that the family (h;); is bounded. Therefore there
exists a continuous A-linear map from P to N such that h(e;) = h; for all 4
and foh = ¢g. What remains to be proved is formal and left to the reader. [

LEMMA 2.1.8. Let M*® and N°® be two complexes of Banach A-modules.
Assume that M® is perfect; then the following canonical morphism is an iso-
morphism

HomlC(BanA)(M.v N.) - HomD(BanA)(M.7 N.)

Proof. This is a special case of [Lau83, Cor. 2.2.3] in which the space X
is reduced to one point, the fibred category C over X is Bany and Cj is the
full subcategory whose objects are the projective objects of Ban 4. U

2.1.9. Category of perfect complexes. By Dps(Ban ) we denote the image
of Kpe(Bana) in D(Ban 4). From the lemma above, it follows that Dp¢(Bana)
is a full subcategory of D(Bana). If A = L is a finite extension of Q,, every
Banach space over L is orthonormalizable. Therefore, Dy¢(Bany) = D(Bany,).

2.2. Compact operators.

2.2.1. Fredholm determinant. Let M be an orthonormalizable Banach A-
module and u be a compact (or completely continuous) operator acting on M.
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By definition, recall that this means there exists a sequence of projective and
finitely generated Banach A-modules (M;); such that u|ys, converges to u when
i — 00. One can define its Fredholm determinant by
Pyr(u, X) = det(1 — X.u|M) := lim det(1 — X.u;|M;),
1—00

where for all 4, we have written u; for the composite of u|ys, with the projection
onto M;. This definition is independent of the choice of the sequence (M;);;
cf. [Col97]. It extends easily to projective Banach modules.

2.2.2. Trace versus determinant. The first coefficient of the series det(1 —
X.u|M) is the opposite of the trace tr(u; M). On the other hand, one can
recover the Fredholm series from the trace map. There exists a universal
sequence of polynomials!? Q,(X1,...,X,) € Q[X1,...,X,] for n > 1 such
that we have

Pyr(u, X) =det(1 — Xu|M) = Z tr(Qn(u, u?, ..., u™); M)X™.
n=1

These polynomials are well known; for instance, Q1(X1) = — X1, Qa2(X1, X2) =
$(X? — Xo), etc.

From this, one can see that many properties of the Fredholm determinant
follow from the corresponding properties of the trace map. In particular, if
we have an A-valued linear map ¢ from an ideal of a sub-algebra of End 4 (M),
then one can define the associated formal series for any element u of this ideal
by

Pi(u, X) = i tH(Qn(u,u?, ... u™))X™.
n=1

2.2.3.  We consider the category Ban® whose objects are pairs (M, upr)
with M € Ob(Bana). Let ups be an A-linear compact operator on M. A
morphism (M, upr) — (N, un) is given by a morphism M I, Nin Ban g such
that foups = unyof. This category is also exact and has a kernel and a cokernel.
A sequence is exact if its image under the forgetful functor Bans — Ban’, is

an exact sequence in Bany. We can define similarly the categories C(Ban?),
K(Ban%), Kpe(Ban’), D(Ban*) and Dpe(Ban¥).

LEMMA 2.2.4. Let M, N and P be three projective Banach A-modules
fitting in an exact sequence in the category Ban’:

0= (N,uy) L (M, up) % (P,up) — 0.

12 The Q@»’s are sometimes called Newton polynomials.
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Then we have
det(1 — X.ups|M) = det(1 — X.uy|N) - det(1 — X.up|P).
Proof. This follows easily from [Col97, Lemma A.2.4]. O

2.2.5. Definition. Let (M®,u®) € Ob(C(Ban’)) be such that M* is a per-
fect complex. Then we put

det(1 — X.u®|M®) := [ det(1 — X.u?|p?) V"
q

It follows from Lemma 2.2.4 that det(1 — X.u®|M®) =1 if M* is acyclic.

2.2.6. Let M*€Ob(Dy¢(Bana)). A homomorphism Homp gy, ,) (M, M*®)
is said to be compact (or completely continuous) if it has a representative
u® € Homy(gan ) (M®, M*®) (i.e., in its homotopy class) such that (M®, u®) €
Ob(C(Ban%)).

LEMMA 2.2.7. The operator u® is compact if and only if there exists a
sequence of operators of finite rank (uy,)n in Homppgan .\ (M®, M*®) such that

le ul = u? for all q. FEquivalently, there are finite rank projection operators
n oo

ey, € Hompgap ) (M®, M*®) such that HILI{}O el ou? =l for all q.
Proof. This follows easily from [Col97, A.1.6]. O

LEMMA 2.2.8. Let u® and v® be two A-linear compact operators on a
perfect complex M®. If u® and v* are homotopically equivalent, then det(1 —
X.u®|M®) =det(l — X.v®|M*®).

Proof. From the remark made in Section 2.2.2, it suffices to show that if
u* and v* are homotopically equivalent, then they have the same trace. For
this, it is sufficent to treat the case where v®* = 0. Then there are operators
k9 : M9 — M?! such that u? = d9! o k9 + k97! o d? for all ¢ with d¢

denoting the differential of the complex M® in degree q. Let (e!), be as
in the previous lemma such that li_)rn el ou? = u? for all q. Let us put
n—oo

kd := edlokdoed. Since edtlod? = d9oed, we have tr(elou?) = tr(edoudoel) =
tr(ed odilokloed +edokitlodioed) = tr(di okl +kitlodd). This implies
that tr(ey, o u®) := 3 ,(—1)%tr(ef o u?) = 0; therefore passing to the limit, we
have tr(u®) = 0. O

2.2.9. For any M* € Ob(Dp¢(Ban4)) and any compact A-linear operator
u® of M*, it follows from the previous lemma that the Fredholm determinant
det(1 — X.u®|M*®) does not depend on the homotopy class of u®. For any
compact homomorphism u € HomDpf(Ban A)(M *, M?*), the Fredholm determi-
nant of u is therefore (well) defined as the Fredholm determinant of any of its
representatives in its homotopy class.
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COROLLARY 2.2.10. Let (uly,ul;, up) be the morphism of a distinguished
triangle of Dypf(Ban 4)

N* M® p* N*[1]
R P P
N°* M* re N*[1]

such that uy;,u}y,; and up are compact. Then we have
det(1 — X.uj;|M*®) = det(1 — X.uy|N®) - det(1 — X.up|P°®).

Proof. Since this triangle is distinguished, (P*®,u}) is homotopic to the
cone of (N®,uy) — (M® u};). The corollary follows from this observation
and the previous lemma. O

2.3. Spectral decompositions.

2.3.1. Slope decompositions. We recall here a notion'? introduced by Ash-
Stevens [AS97] in their work on GL,. Let L/Q, be a finite extension. A
polynomial Q(X) € L[X]| of degree d € Z>¢ is said to be of slope < h if
Q(0) € OF and if the roots of Q*(X) := X9Q(1/X) in Q, have their slope
(i.e., p-adic valuation) less or equal to h.

Let M be a vector space over L, and let u be a (continuous) linear endo-
morphism of the vector space M. We do not require M to be equipped with a
p-adic topology. A < h-slope decomposition of M with respect to u is a direct
sum decompostion M := M; & M, such that

(1) M; and My are stable under the action of u.

(2) M; is finitely dimensional over L.

(3) The polynomial det(1 — X.u|M;) is of slope < h.

(4) For any polynomial @ of slope < h, the restriction of Q*(u) to My is
an invertible endomorphism of Ma.

LEMMA 2.3.2. Let M and M’ be two L-vector spaces. Let u and u' be
two endomorphisms of M and M’ respectively. Let M = My @® Mo and M’ =
M @& M} be < h-slope decompositions of M and M’ with respect to u and u’
respectively. Let f be a (continuous) L-linear map from M to M’ satisfying
fou=u'of. Then f maps respectively My and My into M{ and M} (i.e.,
F(M;) € M| fori=1,2).

Proof. Let Q(X) := det(1— X.u|M;) and Q'(X) := det(1— X.u'|M]). Let
z € My and write f(z) = x + y with 2 € M| and y € MJ. Since Q*(u).z = 0,

130ur definition is actually stronger than theirs since they do not require that M; has a
stable direct factor.
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we must have Q*(u').x = —Q*(u’).y = 0. By hypothesis, Q*(u') is invertible
on M. Therefore y = 0 and f(z) € M{|. Let now z € Ms. Since Q™ (u)
is invertible on Ms, there exists w € My such that z = Q"™ (u).w. Write
f(w) =z +y with € M{ and y € M. Since Q™*(v').z = 0, we must have
f(z) = Q" (W).f(w) = Q" ().y € My. O

COROLLARY 2.3.3. Let M, u and h be as in 2.3.1. Then we have unique-
ness of the < h-slope decomposition of M. We will write M<" for My and
M>" for Ms.

Proof. Apply the previous lemma for M = M’ and f = idyy. O

COROLLARY 2.3.4. Let M ,M’, u, u' and f be as in the previous lemma
and suppose there is a map ¢ : M' — M such that we have a commutative
diagram

M*f>M’

e

M —— M.

Assume that M and M’ have < h-slope decompositions with respect to u and
u'. Then f induces an isomorphism between M<=" and M'S".

Proof. By Lemma 2.3.2, f induces a map M =" — M'S" We want to show
that it is an isomorphism. From the definition of the < h-slope decomposition,
the restrictions of v and v’ to respectively M =" and M'S" are invertible. Since
we have ¢ o f = w and f o ¢ = o/, this easily implies that f induces an
isomorphism from M=" onto M'<". O

COROLLARY 2.3.5. Let M, u and h be as in 2.3.1 and N C M a subspace
stable under the action by u. Assume that M has a < h-slope decomposition.
Then N has < h-slope decomposition if and only if M/N does. When this is
the case, we have

o (M/N)Sh = M<h/NSM gnd NS = N 0 M<h,
o (M/N)>" = M>"/N>" and N>" = Nn M>".

Proof. Assume that N has a slope decomposition. (The other case is left to
the reader.) From Lemma 2.3.2, we have N<" ¢ M <P and N>" ¢ M>". Hence
N<h = NN M=" and N>" = NN M>"; therefore M = M/N = M; ® M, with
My := M=""/N<h and My := M>"/N>"._ The first three conditions of 2.3.1
are obviously satisfied. If @ is a polynomial of slope < h, then @*(u) induces
an isomorphism of M>" and of N>". It therefore induces an isomorphism on
the quotient My which proves the fourth condition. O
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2.3.6. Finite slope part of M for an operator u. Let M and u be as in Sec-
tion 2.3.1. Let h' € Q with A/ > h. Then if M has a < h/-slope decomposition
with respect to u, it has a < h-slope decomposition, and we have a wu-stable
decomposition MM = M=h @ M>"=h guch that M>" = M>ms g M=,
We will say that M has a slope decomposition with respect to w if for an in-
creasing sequence h, of rationals going to infinity (and therefore for all such
sequences), M has a < h,-slope decomposition for all h,. Then we put

det(l — X.u) := lim det(1 - X u| M=)

for (hy), any sequence of rationals going to infinity. It is straightforward to
check that this sequence is convergent in L[[X]] and that the limit does not
depend on the sequence (h,,). If M has a slope decomposition with respect to u,
we sometimes write Mjs to denote the inductive limit over n of the M=hn’g,
We call it the finite slope part of M. The space Mg obviously has a slope
decomposition and Mfgh = M=" for all h.

2.3.7. Let now N C M be a u-stable subspace of M. Assume that N has
a slope decomposition. Then, by Corollary 2.3.5, so does M /N and we have

det(1 — X.u[M) = det(1 — X.u|N).det(1 — X.u|(M/N)).

THEOREM 2.3.8. Let A be a Banach Qp-algebra, M be a projective Ba-
nach A-module and u be a compact A-linear operator of M. Then P(X,u) :=
det(1—X.u|M) is an entire power series with coefficient in A (i.e., € A{{T}}).

If we have a prime decomposition P(X,u) = Q(X)S(X) in A{{X}} with
Q@ a polynomial such that Q(0) = 1 and Q*(0) is invertible in A, then there
exists an entire power series Ro(T) € TA{{T'}} whose coefficients are polyno-
mials in the coefficients of Q and S, and we have a decomposition of M

M = Nu(Q) @ Fu(Q)
of closed sub A-modules such that

(1) The projector on N, (Q) is given by Rg(u).
(2) Q*(u) annihilates N, (Q).
(3) Q*(u) is invertible on F,(Q).

If, moreover, A is noetherian, then N,(Q) is projective of rank r and
det(1 — X.u|Nu(Q)) = Q(X).

Proof. This follows directly from the results of Serre’s and Coleman’s
works and their proofs and some generalizations by Buzzard; see [Col97],
[Ser62], [Buz04] O

If A= L = is a finite extension of @, then an immediate consequence of
the previous result is that M has a < h-slope decomposition for any h € Q.
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Moreover, the definitions of det(1 — X.u|M) of Sections 2.3.6 and 2.2 coincide.
The following proposition is not really needed but it shows that taking the
Hausdorff quotient is not harmful when considering the finite slope part for a
given operator.

PROPOSITION 2.3.9. Let N <% M a continuous injection of L-Banach
spaces (we do not assume the image is closed). Let uy and up; be respectively
compact endomorphisms of N and M such that jouny = uproj. Then M/j(N)
has slope decompositions with respect to upr/ny = up (mod j(N)), and

det(1 — X.ups) = det(l — X.up). det(1 — XUM/N)

Let j(N) be the closure of j(N) inside M. Then u induces a compact operator
/N on the Hausdorf quotient M/N = M/j(N) of M/N, and we have

Proof. By Serre’s theorem (Theorem 2.3.8 with A = L), N has a slope
decomposition with respect to uy, and therefore so does j(N) with respect to
uys since j is injective and j o uy = ups o j. The first formula follows from
2.3.7. We now prove the second part of the proposition. Notice first that

(9) JN) = j(N)=h @ j(N)>".

Indeed let z, = x, + y, be a sequence of N with z,, € N=h and UYn € N>h
such that j(z,) is converging in M. To prove our claim, it suffices to show, for
example, that j(y,) converges in M>". Let Q = det(1 — X.u|M="). Then the
sequence Q*(u).j(zn) = Q*(u).j(yn) must converge. Since Q*(u) is a continu-
ous isomorphism of the Banach subspace M>". it is bi-continuous by the open
mapping theorem. Therefore, y,, converges to y and we have proved (9). From
the fact that M =" and M>" are closed and the inclusion j(N)<" ¢ M=" and
§(N)>" ¢ M>" we easily deduce that (9) is the < h-slope decomposition of

§(N). Since N= is finite-dimensional, we have j(N<") = j(N<h), and, from

the decomposition (9), this is equal to the < h-slope part of j(INV). Therefore,
det(1 — X.un| NP = det(1 — Xoupg|7(N)~"). This equality for all A implies

that det(1 — X.uy) = det(1 — X.ups|7(N)), and the last claim follows from the

first equality for the lemma applied to j(N) C M and j(N) C M. O

2.3.10. Fredholm determinant for compleres revisited. We assume that
M?*® is a perfect complex of Banach vector spaces over L a finite extension
of Q. Let u® : M®* — M?* be a continuous endomorphism of M* such that,
for all ¢, the operator u? € Endy, (M?) is a compact operator.

Let us denote by d? the differential homomorphism of the resolution from
M9 to M9t By definition, this homomorphism is continuous, and there-
fore Ker d? is a Banach subspace of M?. However, Ind¢~' C Kerd? is not
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necessarily closed, and therefore H4(M®) = Kerd?/d4~!(M9~!) might not be
Hausdorff. We denote by H 2(M*) its maximal Hausdorff quotient. We have
H(M®) = Kerd?/Im d9~! = Ker d?/di—1(Ma—1).

On the other hand, since d? is continuous and commutes with u?, Ker(d?)
is a Banach space with action of u?. It therefore has a slope decomposition, and
this implies that M9/ Ker(d?) = Im(d?) has a slope decomposition. This is true
for all ¢’s; therefore H(M*®) = Ker(d?)/Im(d?~!) has a slope decomposition.
Let us write qus(M *) for its finite slope part. By the proposition above and
its proof, we can therefore deduce that

H{(M*) = HI(M")gs.
COROLLARY 2.3.11. With the notation as above, we have

det(1 — Xu®|M*®) = Hdet(l _ X.uq]ﬁq(M'))(*l)q'
q

Proof. We put M = Kerd!, N = M9~'/Kerdi~! with its structure of
quotient Banach space and let j be the continuous injective homomorphism
from N into M induced by d? so that j(N) = Imd?'. By the previous
proposition, we have

~ det(1 — X.u9| Ker d?)
det(1 — X.u?|HY(M®)) = det(1 — X.ui|HI(M®)) = .
et(l = Xl M) = det(l = Xl HUM) = Gt X Tm(di )
On the other hand, from the exact sequence 0 — Kerd? — M9 — Imd? — 0,
by the previous proposition we have

det(1 — X.u?|M7) = det(1 — X.u9| Kerd?).det(1 — X.u?| Imd?).

Our claim follows now easily by making the alternate product of the two pre-
vious equalities and rearranging the terms. ([

2.3.12. Generalization to compact p-adic Fréchet spaces or p-adic nuclear
spaces. Recall that a p-adic topological vector space V is called a compact
p-adic Fréchet space if it is the projective limit of p-adic Banach spaces V,,
such that the transition maps V,, — V,,, for n > m are completely continuous.
An endomorphism u of V' will be said to be compact if it is continuous and if
for each n we have a commutative diagram of continuous maps

V—"Vo

A
V——V,,
where the horizontal arrows are the canonical projection maps coming from the

projective limit. By composing u/, with the transition map V,, — V;,_1, we get
an endomorphism wu, of the Banach space V,, which is completely continuous.
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It is easy to check that u, is uniquely determined by u and that we have the
following commutative diagram for any n:

V—"sV),——=Vi

A

V—sV, —V,_1.
If the V,, are projective Banach space on some Banach algebra A, then we put
tr(u; V) = tr(upn; Vy),

and it is clear from the above diagram that this definition is independent
of n. Similarly, we can write a slope decomposition for V' as we did for p-adic
Banach spaces. More generally, it is easy to see that all the previous discussion
on compact operators on complexes of p-adic Banach spaces extends mutatis
mutandis to the case of compact operators on complexes of compact Fréchet
spaces. We will take this fact for granted in the following sections and apply
the results explicitly stated for Banach spaces to the case of compact p-adic
Fréchet spaces without further notice. We need to state the following lemma.

LEMMA 2.3.13. Letu be a compact operator on a compact Fréchet space V
over a finite extension of Q,. For any h > 0, there is a < h-slope decomposition
of V' with respect to w. Moreover, we have

<h ~ 1/<h
yshxys

for all n where for each n, V,, = Vngh &) Vn>h is the slope decomposition of V,,
with respect to u,. This fact holds as well for compact maps between com-
plexes of compact Fréchet spaces and the induced slope decomposition on their
cohomology.

Proof. By Lemma 2.3.2, the projection V,, — V, for n > m induces
projections on the < h-slope decompositions of V;, and V,, with respect to
Uy and u,. This implies that V=" = im V,=" and V>" = lim V7" are well

defined and provide a < h-slope decompogition for V. We are now left to prove
that the projections V=" — V=" are actually isomorphisms. By an induction
argument, it is sufficient to prove this for any m > n. But for m = n’ as in
the diagram above, this follows from Corollary 2.3.4. The result holds clearly
when one replaces V' by a complex of compact Fréchet spaces and this implies
the result for the cohomology by the arguments used in this section. O
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3. p-adic overconvergent coefficients

Let L be a finite extension of Q,. The goal of this section is to define
the system of overconvergent'* coefficients that will be used to interpolate the
cohomology of the local systems Vy(L). As in the original GL(2)-situation
carried over by H. Hida in the ordinary case and by G. Stevens in general, the
idea to do this is to replace V(L) by a system of coefficients which does not
depend on the weight but is endowed with an action'® of G which does depend
on the weight. When G' = GL(n), one recovers the construction due to A. Ash
and G. Stevens in [AS97] which they recently generalized in [ASO08].

3.1. Basic notations and definitions.

3.1.1. Algebraic data. In this section, G is a connected reductive group
over Q, that we suppose to be quasi-split.!6 We let T' be a maximal torus
of G and let B be a Borel subgroup containing T". We choose a finite Galois
extension F'/Q, such that G,p is split. Then (B,p,T)) defines a Borel pair
of G/p. We denote by N the unipotent radical of B and B~ (resp. N™) the
opposite Borel subgroup (resp. opposite unipotent radical). We will use gothic
letters to denote the corresponding Lie algebra over Q,, g,t,b,b7,n,n".

We set the lattice of algebraic weights X*(T") := Homgy,(T/p, Gm/p) —
Hompg(t/p, F') and algebraic co-weights X.(T') := Hom(Gy, /r, T/r) , and we
denote by (.,.) the canonical pairing on X*(T) ® X,(T). We let Rt C X*(T)
be the set of positive roots with respect to (B, T)/F. For each root a € R, we
denote H, (resp. ) the corresponding coroot in t/p (resp. in X.(T'); recall
that (a,a") = a(H,) = 2. For each root a, we also choose a basis X, of
0o = {X € g/p | ad(t).X = a(t)X Vt € T} such that [Xo, X o] = Ha- A
weight A\ € X*(T) is called dominant with respect to B if A\(H,) > 0 for all
positive root a, and we write X*(T')" for the cone of dominant weights.

We denote by W the Weyl group of the pair (G g, T/r) acting on T, and
therefore on the lattices X*(7T) and X, (7). It is generated by elements of order
two called simple reflexions s, for a running among the simple roots of R. The
action on the weights is given by the well-known formula s, (A) = A — A(Hy)«
for any « € R. We will also need the notion of length of an element of W.
It can be defined as the smallest integer [ such that there is a decomposition

Mg terminology is nonstandard. It is used as a reminiscence of the notion of overcon-
vergent modular forms.

15Not an action of G in fact but of some sub-semi-group of it containing an Iwahori
subgroup.

16T his assumption is certainly unnecessary if one wants to use the language of Bruhat-Tits’
buildings.
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W = Sq, * ** Say, Where the a;’s are simple roots. Such a decomposition is called
a reduced decomposition.

3.1.2. Iwahori subgroups and semi-groups. We let I C G(Q,) be an Iwa-
hori subgroup in good position with respect to B. By this, we mean that we
have fixed compatible integral models for G, B,T, N, N~ over Z, such that
I = I;, where for every integer m > 1, we have put

I :={g € G(Zp) lg mod p™ € B(Z/p"ZL)},
I, =={9 € G(Z)) |g mod p™ € N(Z/p"Z)}.
We have I,,/I], = T(Z/p™"Z). Recall that we have the Iwahori decomposition
Iy = 1,,.T(Zy).N(Zyp)
with I, := I, " N~ (Q,). We consider " as the set of elements t € T(Q))
such that
tL.N(Z,).t C N(Zp)
and Tt C T as the set of elements ¢ such that
()t " .N(Zp).t" = {1},
i>1

and we put Af = I, T 1, and AtT = I, TT"1I,,. We will drop the index m
from the notation when it is equal to 1. Using the Iwahori decomposition, it is
straightforward to see that any element g € A} has a unique decomposition

(10)  g=n,tynt  with n, €I, t, € T andn € N(Z,).

The sets T and T are sub-semi-groups of T(Q,), and we clearly have
T(Z,) C T*. Since T(Q,)/T(Z,) is isomorphic to a sum of copies of Z, we
may choose a splitting!” ¢ of the canonical projection T(Q,) — T(Q,)/T(Z,)
which induces an isomorphism of groups

T(Qp) = T(Zy) x T(Qp) /T (Zp)-

We will also write & for the composite T(Q,) — T'(Q,)/T(Z,) — T'(Qp). Notice
that £(TT) C T since £(t)t~1 € T(Z,) for all t € T(Q,). If T is split over an
unramified extension of Z,, we can (and do) choose £ so that for any algebraic
character A& € X*(T), we have

(11) N (E(t)) = A1)
for all t € T(Qp).

L

1"This choice is similar to the choice of uniformizing elements in the definition of Hecke
operators at places dividing p in [Hid88].
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3.1.3. The left x-action of I and AT on some p-adic spaces. We consider
the following p-adic cells:

Qo := I T(Zp)\I € B~ (Qp)\G(Qp),

0, = I)\T € N (@)\G(Qy).
By the Iwahori decomposition, we have Q¢ = N(Z,) and ©; = B(Z,). For
any element z € G(Q,), let us denote by [z] its class in B~(Q,)\G(Qp). Then
the right translation by I defines an action on Qg by [z] x g = [xg]. We can

extend this action into an action of AT. For this it is convenient to introduce
the p-adic spaces

Qp = I; T(Zy)\AT C B™(Q@p)\G(Qy),

Qf =17 \AT C NT(Q)\G(Qp).
We have a retraction s : Q(J)r — Qg for the natural inclusion Qg C Qar defined by
[g] = s([g]) := [£(ty)"tg], where the element , is defined via the decomposition
(10) and £ is the section defined in the previous paragraph. Since £(ty) = 1
when g € I, this is a well-defined retraction of the inclusion gy C QE{. Then
the action'® of g € AT on € is defined by

[2] + g := s([zg]) = [€(ty) " 2g].

We define the action of I and AT on Q; using the same retraction of Q; C Qf

LEMMA 3.1.4. The above formula gives a well-defined left action of the
monoid AT on ; that extends the natural action of I.

Proof. One needs to show that [z] x g¢' = ([x] * g) * ¢’ for any g,¢ € AT.
This follows from the fact that t4y = t4t4, which is easily checked using

the Iwahori decomposition. Indeed we have [z] * gg' = [{(tyty) zgg] =
[£(t, gl g = ([2] ¥ g) * g'. Moreover, if g € I, then £(t,) = 1. Therefore the
action of AT restricted to I is the same as the right translation by 1. O

3.2. Local analytic induction.

3.2.1. Analytic functions. We now recall some definitions and some facts
on locally analytic functions. We will call a p-adic space any topological space
X which is isomorphic'® to an open subset of Q) for some r. We will always
identify such a space with an open subset of Q},, and the definitions below will
not depend on this identification. In the examples we will consider later, X

18The reader should keep in mind now and in all this paper that the x-action depends of
the splitting character &.
9gefined up to a (locally) Q,-algebraic isomorphism



EIGENVARIETIES FOR REDUCTIVE GROUPS 1715

will be either a compact open subset of G(Q,) or £ that we will identify with
N(Z,)(C G(Qp)) via the Iwahori decomposition.

Let L be a finite extension of @,. A continuous function on such a space,
f: X — L, is said to be L-analytic if it can be expressed as a converging power

series
(12> f(xlv o 71.7’) == Z anh,,.,nr (xl — al)nl s (l'r,« — ar)nr
N1y Np
for all (z1,...,2,) € X, where ay, ., € L for some a = (ay,...,a,) € X.

Of course, it is algebraic if almost all the ay, . ,,’s are zero. Basic exam-
ples of analytic functions are given by the logarithm or exponential functions
respectively defined on p-adic Lie groups and Lie algebras.

For any integer n € Z, we will say that f: X — L is n-locally L-analytic
if X can be covered by disks of radius p™"
is said to be locally L analytic if it is n-locally L-analytic for some n. We
usually denote by A(X, L) the space of locally L-analytic functions on X and
by A, (X, L) C A(X, L) those that are n-locally analytic. Of course, we have

AX, L) = | Au(X,L).

n>0

over which f is L-analytic. It

If X is compact, then each A, (X, L) is a p-adic Banach space equipped with
the sup norm

1£lln = Subg|an,,....n, (@) |pp~ " 2i=1 ™,

where the a = (ai,...,a,)’s run through the set of centers of disks of radius
p~" inside X and where the o, . n,(a)’a are the coefficients of the Taylor
expansion at the point a described as in the expression (12). The L-vector
space A(X, L) is then naturally equipped with the inductive limit topology of
the A, (X, L)’s. We have the well-known elementary lemma.

LEMMA 3.2.2. Assume that X is compact. Then the inclusions Ay, (X, L)
C An11(X, L) are completely continuous.

Proof. Since X is compact, it easy to reduce this statement to the com-
pactness of the restriction map A, (p"Z;) — Apy1(p"T1Zy). This fact is an
elementary exercise left to the reader. O

Let D(X, L) (resp. Dy (X, L)) be the continuous L-dual of A(X, L) (resp.
A, (X, L)). The space D(X, L) is called the space of L-valued distribution on
X. Then D(X, L) is the projective limit over n of the D, (X, L). An immediate
corollary of the previous lemma is

COROLLARY 3.2.3. If X is compact, then D(X, L) is a compact Fréchet
space.
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3.2.4. Weights. A (p-adic) weight is a continuous (for the p-adic topology)
group homomorphism
At T(Zy) - Q,.

A weight is called algebraic if it can be obtained as the composite
alg x —x
T(Zp) = T(F) = F* C Q,
for some A8 € X*(T). In fact, we can see that any weight is locally analytic.

LEMMA 3.2.5. Let L C @p be a finite extension of F. Any continuous
p-adic character A€ Homeon (T'(Zy,), L) is n-locally L-analytic for some n>0.
We sometimes denote by ny the smallest n for which this is the case.

Proof. This is a special case of Lemma 3.4.6. Let t := Lie T)z . Then
H +— log(A(exp(H)) is well defined if H is sufficiently close to 0 in t. It is
Zy-linear and so defines an element A** € Hom(t, L) = X*(T) ® L. Then we
have A(t) = exp(A*"(log(t)) if ¢ is sufficiently close to 1 in T'(Z,). In particular,
A is analytic on a neighborhood of 1 and it is therefore locally analytic. O

Notice that A is n-locally algebraic for some n if and only if \** € X*(T)).
In that case, we write A& for the corresponding algebraic character, and we
have a decomposition
A= )\8e

with € a finite order character factorizing through T'(Z,/p"Z). We will say in
that case that € of A is of level p”. We will say that A is arithmetic if it is
locally algebraic and if \*# is dominant (i.e., A& € X*(T)*).

3.2.6. Locally analytic induction spaces. Let L C @p be a finite extension
of @, and A be an L-valued weight (i.e., A\ € Homeont(T(Zy), L*)). Then we
denote by Ax(L) C A(I, L) the space of locally L-analytic function on I such
that

f(n"tg) = A(t)f(g)
for all n= € Iy, t € T(Zy) and g € I. This space is a closed subspace
of the topological space Ay(I, L) and is therefore a compact inductive limit
of L-Banach spaces. By the Iwahori decomposition, we see that we have a
canonical linear homeomorphism ¥y : Ax(L) = A(Qo, L) via the map f —

Ua(f), where ¥y (f) is defined by

U(f)([g]) := f(ng),  Vgel.

Therefore, we see that Ay (L) satisfies the topological properties of A(Qy, L).
In particular, its L-dual, which we denote D, (L), is a compact Fréchet space.
Our space A)(L) is equipped with a continuous left action of I defined by
(g-f)(h) :== f(hg) for all g,h € I. It is easy to check that this action is
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continuous. We therefore inherit a (dual) continuous right action of I on
Di(L).

Since elements of f are left invariant by I~, we also have a natural inclu-
sion Ay(L) C A(Qq,L). If f € Ax(L), then let us write f the corresponding
element in A(Qy, L). Then we have f([g]) := f(g). We have a natural action
of T(Zy) on Ay, L). If ¢ € A, L) and t € T(Z,,), we set

(t.9)([9]) := &([tg])-
It is easy to check that it is well defined and that ¢ = f for some f € Ay(L)
if and only if t.¢p = A(t)¢. In other words, we have an identification
AN(L) = A )N = 6 € Al D)] 16 = A(D)0}

We now consider the *-action of AT on these spaces. For any ¢ € AT and
¢ € A(Q, L), we define g x ¢ by

(g% @)([2]) := ([x] * g)
for all [x] € Q.
LEMMA 3.2.7. The *-action of AT commutes with the natural action of
T(Zyp) on A(Q,L). In particular, A\(L) is stable by the x-action of AT.

Moreover, for any g € I, the x-action of I on Ax(L) coincides with the natural
left action

(g% [)([h]) = f(hg)
forall g,h e 1.

Proof. Let x € I, t € T(Z,) and g € AT. Then we have

(t.(9 * 9)([2]) = (9 * ¢)([tz]) = ([E(ty)"tg))
= o([t&(ty) " xg]) = (t.0)([E(tg) " zg]) = (9 (t.9))([z])

This obviously implies that Ay (L) is stable by the *-action. Let us check the
last point now. Indeed we have [h] x g = [hg] if g € I; therefore (g * f)([h]) =
f([h] = g) = f([hg])- O

We consider the dual right action of AT on D) (L). This x-action is a very
important ingredient of the theory developed in this paper. In particular, the
following lemma (although easy) is crucial.?’

LEMMA 3.2.8. If§ € AT, then the right x-action of § defines a compact
operator on the compact Fréchet space Dy(L).

201n other words, this lemma is saying that the action of § improves the local analyticity.
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Proof. We may suppose that 6 € T since the action of I is contin-
uous. Let us put A, (L) = ¥y (An(Q,L)). To prove the lemma, we
check that the x-action of 6 on A, x(L) factorizes through the natural in-
clusion A,,_1 (L) C A, A(L). Since this one is completely continuous by
Lemma 3.2.2, this will prove our claim. If f € A, »(L), then

(13) (@ * f)([n]) = ea(H)([E(8) " nd]) = AED) T 0)wa(f)([6~ ' nd))

for all n € N(Z,). We make a choice of a basis of n which gives a system
of coordinates of N(Z,) that we denote by z1(n),...,z,(n) € Z, for all n €
N(Zy). Let Ts be the matrix of the action of Ad(6~ ) on N(Z,). Sinced € T+,
the p-adic limit of (75)* is 0 when k& — oo. Therefore the entries of the
matrix Ty are divisible by p. Now if f(z1,...,,) is an analytic function of
radius of convergence p~™, this implies that f((x1,...,x,)!Ts) has a radius of
convergence at least p~™%!. In view of the identity (13) above, this implies
that our claim follows. O

3.2.9. Locally algebraic induction. Let A be an arithmetic weight with the
decomposition A = \¥8.¢ with ¢ a finite order character of T(Z,) of conductor
p™ and A& ¢ X*(T)T. We then denote by Vy(L) the subset of functions
f € Ax(L) which are locally L-algebraic.

Let us assume that L contains F'. Recall that B/_L

opposite to B/r. Then we write (Indg/f A) e for the set of L-algebraic func-
/L

is the Borel subgroup

tions f: G/p :— A}L such that

f(bg) = X"2(b) f(g)

for all b € B~(L) and g € G(L), where A\*8 is seen as a character of B}, via
the canonical projection B/_L — Tyr. One defines an action of G(L) on this

induction by right translation: (g.f)(h) := f(gh). As we have recalled in the
first section of this paper, we have

G alg
Vs (L) = (Ind B;‘i A
as the irreducible algebraic representation of G(L) of highest weight A& with
respect to the Borel pair (B, T)r).
Let L(e) be the one-dimensional representation of I,,, given by the char-

acter
I, — B(Z/p™Z) — T(Z/p™Z) < L*.

Then we have a canonical injection of I,,-left module

Vst (¢, L) := Vg (L) @1, L(e) Vi (L)
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given by f ® 1 — f. with

(14) fe(g) = 5<tg)f(”g_tgng)-
We have Vyae(e, L) = VA(L) N A (I, L) (i.e., the elements of Vyag(e, L) are
those that are m-locally L-algebraic).

For a later use, let us record here that the x-action of A}l and the twisted
algebraic action on V) (L) are related by the relation

(15) dx f = AE(ts) (8- f)-

We will see below how to check that an element of Ay (L) actually belongs
to Vyae (L). We first need to define an action of W on the locally algebraic
character. For any A = A\*8.¢ and any w € Wg, we write wx \ for the character
given by

t s o0 —0g (1),
We consider now the left [-action of I on A(I, L) defined by

U(h).f(g9) = f(h™'g)  Vhgel
This action is L-analytic and therefore induces an action of the Lie algebra
g/r- We have the following proposition.

PROPOSITION 3.2.11. Let A\ be a weight and « be a simple root. Assume
that X*(Hy) = N € Z>_1. Then there exists an intertwining (for the x-action
of I) map O,

AN(L) — As,n(L)
defined by
Oa(f) = Z(Xa)N+1-f-

Moreover, we have

Oa(g * f) = £(tg)*>** % Oa(f)
for all g € A™.

Proof. The fact that ©, commutes with the action of I is clear from its
definition. We will need to prove that it lands in Ay,-~-1(L). Let f € Ax(L).
First notice that
(16> l(Ha)-f - _)‘an(Ha)f

since I(t).f = A(t) "1 f for any t € T(Z,). Now put f1 := 0,(f) = [(X)VTL.f.
One first sees that fi(n~g) = fi(g) for any n~ € I~ and any g € I. In order
to prove this claim, we first check that [(X_g).f1 = 0 for any simple root 8. If
B # —a, then this is due to the fact that in this case we have [X_g, X,] = 0.
If B = —a, we use the following relation in the enveloping algebra of g:

[X o, X&) = —(i + 1) X0 (Ha + 1),
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which is valid for any integer i > 0. Now I(X_,).f = 0 since f(n_.g) = f(g)
for any n~ € I~. Therefore,

UX—a)-fi = UX -0 X3 = U([X ooy X3H).S

Thus, [(X_,).f1 = 0 by the relation above for i = N = \*"(H,) and rela-
tion (16). This implies that [(X).f; =0 for all X € Lie(N/_L) since the X_,’s
generate Lie(N;L) as a Lie algebra. This easily implies that fi(n”¢g) = f1(9)
for all n= € I~ and g € I (for instance one can use the log and exponential
map). Now, for any ¢t € T(Z,), we have

1t XNTY f = a@)N X8 f = VTN U XY f

Therefore I(t).f1 = A 'aN*(t)fy and f; € A,,—~-1(L). We conclude by
noticing that s * A = da~ N1, O

We have the following proposition.

PROPOSITION 3.2.12. Let A be a locally algebraic dominant weight. Then
we have a canonical isomorphism

VA(L) =2 A\(L) N ﬂ Ker(0,),

acd

where ® stands for the set of simple roots for the Borel pair (B/p,T/r).

Proof. We give an elementary proof here. Notice that this proposition is a
refinement?! of the exactness in degree 1 of the locally analytic BGG complex
(see next paragraph).

We first prove V(L) C Naco Ker(04). Let f € Vi(L). We may assume
without loss of generality that f is actually algebraic. Then, for each simple
root a, O, (f) belongs to the algebraic induction from B~ to G of the algebraic
character s, * A. Therefore, ©,(f) = 0 since the weight s, (A& + p) — p is no
longer dominant. So the first inclusion is proved.

We now prove the opposite inclusion. Take f € N,co Ker(0,). Since f
is locally L-analytic, the restriction of f to a neighborhood U of the identity
is an analytic function which is invariant by left translation by elements in
UNN~(F). Now since f € Ker(0,), for all g € U, the function n — f(ng) is
a locally polynomial function on N, for N, the image by the exponential map
(which is an algebraic map on n) of a neighborhood of 0 in F.X, Cn /F- Now
since the N,’s for a € ® generate a neighborhood of the identity in N(F'), the
restriction of f to this neighborhood will be algebraic. Because A is locally
algebraic by assumption, we deduce that f is algebraic on a neighborhood of

2lgince it gives a precise form of the differential maps in degree 1 of the BGG complex
that could be explicitly described as it was done in [BGGT5].
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the identity in B(F'). This implies that f is locally algebraic as claimed since
N~.B is Zariski dense in G. ([

3.2.13. Integral structure. Recall that Op is the ring of integers of L. We
denote by A(I,Or) the Op-submodule of A(I, L) consisting of functions f
taking values in Op. For any weight A\ € X(Op), we consider the topologi-
cal Or-module A)(Or) := A\(L) N A(1,0r) and its Or-dual Dy(Op). If A
is arithmetic, then we can also define V(Op) := V(L) N A(I,Or). From the
definition of the x-action, it is clear that these Op-submodules are stable under
the action of A*. With regard to formula (15), this gives important informa-
tion about the p-divisibility of the usual left action. The *-action can then be
viewed as the optimal normalization of the usual left action on Vyaie (L) that
preserves the integrality.

3.3. The locally analytic BGG-resolution. The fact that there should be a
locally analytic version of the BGG-resolution is an outcome of a conversation
with M. Harris.

3.3.1. Let L be a finite extension of F' and let A be an L-valued arithmetic
weight. The purpose of this paragraph is to define a bounded complex of
Fréchet spaces C3(L) in terms of the spaces of distributions we have defined
previously, which gives a resolution of V\Y(L) := Homeont(Vr(L), L). Such a
resolution is nowadays well known as the Berstein-Gelfand-Gelfand complex
when one replaces respectively distributions by Verma modules and V,'(L)
by VY(L). We just have to adapt the usual theory to the locally L-analytic
context.

3.3.2. Let X be a p-adic space as in Section 3.2.1. We have defined
the space A(X, L) of locally L-analytic functions on X. More generally, we
denote by A*(X, L) the space of locally L-analytic differential i-forms on X.
Then A°(X,L) = A(X, L). We also denote by LC(X, L) the space of locally
constant L-valued functions on X. We have exterior differential maps d; from
AN (X, L) to A"TY(X, L). Clearly, LC(X, L) is the kernel of dy. More generally,
it is easy to check that we have a locally L-analytic version of the Poincaré
lemma.

LEMMA 3.3.3. Let d be the dimension of X. Then the following sequence
18 exact:

0= LO(X,L) — AX, L) B AV X, L) B AX(X,L) B ... — A%(X, L) — 0.

Proof. The corresponding Poincaré lemma for the sheaf of locally analytic
differential forms can be proved in the same way as in the classical case of real
analytic differential forms. The local analyticity condition is important here
since integration may decrease the radius of convergence (on closed disks) of
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p-adic power series. The exact sequence now follows from the Poincaré lemma
since a p-adic space is completely discontinuous. The details are left to the
reader and can probably be found in the literature. ([l

3.3.4. We will apply this lemma when X = Q¢ = B~ (Z,) N I\I. In that
case, we have a natural action of I on A*(Q, L). If w € A, L), g € I and
X1,...,X; belong to the tangent space of 2y at x € (g, then

(gw)(z)(X1,..., X)) =w(@xg)(Xixg,...,X; *g),

where X — X * z is the map between the tangent spaces Tq, , and To, z«g
of Q) at respectively x and x * g induced by the map = — x * g. It is then
straightforward to check that the differential maps d’ are equivariant for the
action of [

3.3.5. Analytic induction of B~ -representations. For any finite-dimen-
sional analytic L-representation V of B~ (Z,) N I, we denote by A(V) the
space of locally analytic functions f from [ to V such that f(b=g) = b~.f(g)
for any g € B~(Z,) N 1. Let g and b~ be the F-Lie algebras of G and B~
respectively. They are respectively equipped with the adjoint action of G(F')
and B~ (F'). We can therefore consider g/b~ as a representation of B~ (Z,)NI.
This action is F-algebraic.

LEMMA 3.3.6. For any integer © between 0 and d, we have a canonical
I-equivariant isomorphism
i
A'(Q0, L) = A(A\(g/67)" ®p L),

where *x stands for F-dual.

Proof. Let w € A% (2, L). We consider the function f,, on I taking values
in A'(g/b7)* @ L defined by

fol@)(Xi A= A X) = w((g]) (X1 g, Xix g),

where we have identified Tq, ;4 With g/b™. It is now easy to check that the
map w +—> f, is I-equivariant and that it defines an isomorphism. O

3.3.7. For simplicity, we now assume that )\ is an algebraic dominant
weight. Let A{ := AY(Qo, F) ®p V,(L). Tensoring the exact sequence of
Lemma 3.3.3 for X = Qg by V(L) gives the I-equivariant exact sequence

(17) 0= Vyug(L) > AQ B AL B 258 .5 4d 0.
On the other hand, we have the I-equivariant isomorphism
(18) § = A (Q, L) @p Vi(L)

= A(N(g/b7)") @ Vi 2 AN (g/67)" @ VA(L)).
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Now, we remark that as an algebraic representation of B~, we have a stable
filtration of (g/b™)* @ Vi(L),

0=FCFHCF,C ---CF.=(g/b7) ®@p Vy(L),

such that for all j > 1, F;j/Fj_; is one-dimensional over L with action of B~
given by some algebraic character ;. We denote by S;(\) the set of these
characters. By the isomorphism (18), the above filtration induces a stable
filtration on Aj with graded pieces isomorphic to A, (L) for & € Si(\).

3.3.8. Infinitesimal characters. Recall that t := Lie T. Harish-Chandra
has defined a homomorphism ¢ from Z(g), the center of the universal algebra
of g, into U(t), the universal algebra of t. Recall that the natural action of
the Weyl group W¢ on t induces an automorphism of U(t). Then the Harish-
Chandra homomorphism ¢ induces an isomorphism

Z(g) = U(1)"e.

For a given algebraic character £ of T, let d§ be the corresponding character
of U(t). We set x¢ := d€ o). For any irreducible algebraic representation W
of U(g), the induced action of Z(g) on W is given by a character xyy, called
the infinitesimal character of W. For any representation space W of U(g) and
any character y of Z(g), we denote by W, the x-generalized eigenspace of .
Similarly, if now W is a locally analytic representation of I, then differentiation
yields an action of U(g) on W. It can be easily seen that W, is stable under
the I-action and that the functor W +— W, is exact. It is well known that we
have xv, = xx. Similarly, one can remark that for any character A € X*(T),
the infinitesimal character of Ay (L) is given by x.

3.3.9. Construction of the locally analytic BGG resolution. Let us write
for short Ai\,m := (A})y,- By applying the exact functor W — W, to the
exact sequence (17), we have the exact sequence

(19) 0 A(L) > A, Bl BA3, B...sal —o.

Now we recall the following well-known fact; for example, see [BGGT75]. Let
£ € X*(T). Then £ € S;(\) with x¢ = x if and only if there exist w € W of
length ¢ such that £ = w+*\. Moreover, this character appears with multiplicity
one. Using the filtration of Ag\ and the fact recalled above, we deduce that
we have a filtration of I-modules on ‘Ag\,m such that the corresponding graded
object is isomorphic to

(20) (AX )"

I

P Avall).
wl|l(w)=i
Now, we remark that since g is reductive, we have an isomorphism of g-modules

‘Ai\&u > ( Q,XA)QT. Since these spaces are locally analytic representation, this
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isomorphism is left equivariant for the action of a neighborhood of the identity
in I. Since such a subgroup is a finite index in I and that L is characteristic
zero, this isomorphism is moreover an isomorphism of I-modules.

We write C§ (L) for the continuous L-dual of Af\,xx Then we have proved
the following theorem.

THEOREM 3.3.10. Let A be an arithmetic weight of level p™. There exists
a long exact sequence of right I,,-modules

(21) o O B (L) = -+ — CYL) = V(L) — 0,
where for each q we have

Ci(L)= €D Duu(L).

weEWqg,
l(w)=1

Proof. For algebraic dominant weight, this follows from dualizing the exact
sequence (19) and the isomorphisms (20). In the general case, it suffices to
remark that for any locally algebraic weight u = p®8e, f ~— f. (where f.
is defined as in formula (14)) induces an isomorphism between A (L) and
Au(L) and between W e (L) and W, (L) when 1?8 is dominant. O

3.3.11. Remark. It could be proved that the maps d, are defined as fol-
lows. Let ¢ > 1 and w € Wg of length i. Let a be a simple root. As-
sume that [(sqw) = i + 1. Then w™!(a) > 0, and therefore w(\¥8)(H,) =
)\alg(Hw—l(a)) > 0, since A8 is dominant. We deduce that

w e NUE(Hy) = w(A%)(Hy) + (w(p) — p)(Ha) > 1,

and we therefore have a map O : A (L) = As wea(L) defined by Propo-
sition 3.2.11. Summing over the simple roots « satisfying [(sqw) =i + 1 and
then over the w of length i, we get after dualizing the map

d; : Y (L) — CA(L).

The proof of this description of these differential maps is left to the reader
since it is not going to be used anywhere in this paper, although it would im-
ply the following proposition for which we have a shorter and more conceptual
proof. Let us introduce some notation first. For each ¢, we have a decom-
position dq = >, 4 dw,w, Where dy, o is the map from Dy (L) to Dyyrin(L)
induced by d, where the sum is over w,w’ with [(w) = ¢+ 1 and I(v') = q.

PROPOSITION 3.3.12. Let w,w’ € Wg be such that l(w) = l(w')+1. Then
we have

ua (0:58) = (€O 7) .y (0) 54
for each t € T and v € Dyux(L).
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Proof. For any arithmetic weight A, let us denote by DE(L) the continuous

dual of the locally analytic induction A§ (L) := (indggg )L()\))an defined as
D

the space of locally analytic L-valued function of G(Q)) such that
f(n"tg) =At)f(g)  VgeG(Qp), t€T(Qp), n~ € N™(Qp).

Here we have extended A = A\¥8¢ to a character of T(Q,) by putting
A(t) = A8 ()e(t(t)™") Ve T(Qp).
Rewriting the construction of the locally analytic BGG complex with
B~ (Qp)\G(Qy) in place of B~ (Z,) N I\I provides a resolution of V\(L)" as
a G(Qp)-representation in which we replace the D\ (L)’s by the D&, (L)’s.
The maps of the complex are then G(Qp)-equivariant for the action induced
by the usual right translation in the argument of the locally analytic func-

tions in A%, (L). Now the restriction maps A%, (L) — Ay (L) induce a
AT -equivariant (for the x-action) inclusion of complexes

G

CFUL) = @ DEAD) = ClL) = @ DunlL
weEWqg, weWqg,
lg(w)=q lg(w)=q

which are compatible with the G(Q))-equivariant maps d,, .. Since we have
the following relation between the x-action and the usual right translation
action on AY | (L):

txf=¢t)" M. f  VteTT and Vf e A%, (L),

we deduce that we have the relation of the proposition from the fact that the
maps dy, v are G(Qp)-equivariant for the usual right translation action. O

3.4. Analytic variation and weight spaces. We explain in this section how
the spaces Ay (L) can be interpolated when A varies in the space of continuous
@; -valued characters of T'(Z,). We first recall the rigid analytic structure of
this space.

3.4.1. Open and closed disks. Let a € Q, and let r be a rational power
of p. We denote by By ,. (vesp. By, ) the open unit disk (resp. the closed unit
disk) of @p of center a and radius . These spaces are rigid analytic spaces
defined over Q, in the sense of Tate. These closed disks are in fact affinoid
domains. The ring of analytic function on B, , is given by the Tate algebra

o
r) = {z‘aan(z —a)"| Jim lan|r™ = 0}.
n—=

The rigid analytic structure of By, is obtained by taking the following admis-
sible covering of it by closed disks:
Ba,r — U Ba,rna
Tn<T

where r, is any sequence of rational powers of p converging to r.
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3.4.2. Weight spaces. For any finitely generated Zjy-module S, we can give
a rigid analytic structure to Homgop (S, @; ). For any algebraic extension L
of Qp, let us write Xg(L) := Homeont (S, L™). We write Sior for the torsion
part of S, and we let S = Sior X Sgree be a decomposition with Sgee a free Z,-
submodule of S. Let r be the rank of Sgee over Zj,. The choice of a Z,-basis
of Skee therefore gives an isomorphism
(22) Xs(Qp) = Sior x (B1,1(Qy)°)"
with Sf, = Homgp(Stor,@;). We will fix such a basis once and for all. Let K

be a finite extension of @, containing the values of all the characters in S7,.
Then for any finite extension L of K, we have Xg(L) = Sf,, < (B1,1(L)°)". This
gives %5(@19) a rigid analytic structure over @,. Moreover, Xg is isomorphic

over K to a disjoint union of finitely many open unit disks of dimension r.

3.4.3. Remark. Notice that if S” is a Zy-submodule of S, then Xg/sr can
be identified to the Zariski closure of the characters of X5(Q,) which are trivial
on S’. This observation will be useful in the next section.

3.4.4. Rigid analytic neighborhoods of S. Let x1,...,x, be the system of
coordinates of Siee attached to the chosen basis giving the identification (22).
For each integer n, consider the affinoid

(23) SHe = S0 X Uar,ar)Baip—n X ==+ X B, p=n,
where (ai,...,a,) runs in a set of representatives of (Z/p"Z)". Using the
system of coordinates x1,...,x,, we can embed S into Sflig(@p) via the iden-

tification S = S&8(Q,) for all nonnegative integer n. So S, can be seen as a
rigid analytic neighborhood of S, and the ring of rigid analytic functions on .S,
is isomorphic to the set of n-locally analytic functions on S. In other words,
for any finite extension L of Q,, we have

»An(S7 L) = O(Sfmlg/L)

The construction above can be made for any p-adic space X in the sense of
our definition of Section 3.2.1. We have considered here the compact case in
which our rigid analytic neighborhoods are actually affinoid neighborhoods.

3.4.5. Let 4 C Xg be arigid analytic subspace. For any s € S, we denote
by (s)y the function on U(Q,) defined by (s)y(A) = A(s) for any A € 4(Q,) C
Homcont (S, @;) Then (s)g is an analytic function on S, and the map s — (s)y
defines continuous injective homomorphism from S into O(U)*.

The following lemma is the essential ingredient for the construction of
analytic families of locally analytic induction spaces.

LEMMA 3.4.6. For any affinoid subdomain I C Xg defined over L, there
exists a smallest integer n(Y) such that any element A € U(Qy,) defined over a
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finite extension L/Q, is n(i)-locally L-analytic. Moreover, the map (X, s) —
A(s) induces a rigid analytic map L x S,y — B1,1 defined over L.

Proof. Since it is possible to cover 4 with a finite number of closed disks,
we may assume that U is a closed disk. So let U = By, r for some R < 1. We
can even assume that g is the trivial character. Let uq,...,uq be a Zy,-basis
of Stree defining the identification (22) and for any A € Xg(Q,). Let us put
Ai = M(u;). Then we have A € 4(Q,) if and only if [A; — 1| < R < 1. Now fix
some integer n = np depending only on R such that [A? - 1| < p~! for all
i=1,...,7. Now if s € p"Spee, then we have \(s) = [[; \}* = Hi()\fn)si/pn,
where the s;’s belong to p"Z, and are the coordinates of s with respect to the

chosen basis (u1,...,uq). Therefore, for all s € p"Spee and X € u(@p), we have
> (s /p" n n
21 A<s>:n(z( / ))w — 1y
i n;=1 g

where we have denoted y — (¥) for the well-known function on Z, defined by

yy—-Dy—2)---(y—n+1)
n!

Yy € Zp.

The series (24) is convergent for (s1,...,5.:) X (A1,...,Ar) € By ,-n X By g by
our choice of n and thanks to the well-known Lemma 3.4.7 below. The claims
of our lemma follow from this observation. O

LEMMA 3.4.7. The series (14 2)° =3, () 2" converges for z,s € C,
such that || < p~! and |s|, < 1.

Proof. This follows from an elementary evaluation of the p-adic valuation
of the binomial coefficients and this is well known. ([l

3.4.8. Analytic families of analytic inductions. We will consider now the
case S = T(Zp) and denote by X7 the corresponding weight space.

Let ${ € X7 be an affinoid subdomain defined over a finite extension
L/Qy, and choose an integer n > 0. We define Ay, as the set of rigid analytic
functions f on U x (1)1, such that

(25) FO [tn]) = M) F (A, [n])
for all A € U(Q,), t € T(Z,)15(Q,) and n € N(Z,)18(Q,). This space might

be trivial. However, we have the following lemma.

LEMMA 3.4.9. Let 4 C X7 be an affinoid subdomain and n an integer
such that n > n(Y). Then we have a canonical bicontinuous isomorphism

Agn = OW)E LA (N(Zy), L).

In particular, Ay, is a nontrivial O(LU)-orthonormalizable Banach space.
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Proof. The inclusion $ x N(Z,)He < 81 x (€)1 induces a continuous
map

(26) Ay n — O3 x N(Zp)58) = O(U)@ g A (N(Zy), K).

By relation (25), it is straightforward to see that this map is injective. To
prove the surjectivity, it suffices to show that any pure tensor ¢ ® f is in the
image. So consider the function

(A, [tn]) == d(A)A®) f(n)

defined for any (\,t,n) € (U x T(Zy)H8 x N(Zy)58)(Q,). By our assumption
n > n(4) and Lemma 3.4.6, this function is clearly rigid analytic and its image,
by the restriction map (26), is ¢ ® f. Therefore (26) is an isomorphism, and
since it is a surjective continuous between Banach spaces, its inverse is also
continuous by the open mapping theorem. This proves our claim. ([

COROLLARY 3.4.10. For any n > n(il), the inclusion map Ay p C Agpt1
1s completely continuous.

Proof. These inclusion maps are induced by the inclusions
Au(N(Zy), K) C Anir (N(Z,), K)

which are completely continuous. Our claim follows from this observation and
Lemma 3.2.2. U

We put now

Ay = | Aun
n>n(4)
and define the continuous O()-dual D;,  := Homp gy (A u, O(81)) from the

previous lemma we have a canonical injective map
in: O Dy (N(Zp), L) — D;w,

and we write D,y C Dy for the image of i,. Then we denote by Dy the
projective limit over n of the D, g’s. It follows easily from the definitions that
Dy, g is an orthonormalizable O(4l)-module and that Dy is a O(Ll)-projective
compact Fréchet space.

3.4.11. x-Action of A*. We can define the *-action on the spaces Ay,
as in the case where il is reduced to a singleton. For this, we remark that the
right *-action of A™ on 1, being algebraic, extends into an action of A™ on
()58 for all n > 0. Similarly, we also remark that the left action of T'(Z,)
on )y, defined in Section 3.2.6, can be extended into a left action of T'(Z,)5#
on (Q1)18. If t € T(Zp)5& and f € O((1)H8), we write t.f for the action of
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f obtained by left translation on the argument of f. Now, as in Section 3.2.6,
we have the identification

Anu = {f € O((W)2)@OW)] t.f © 1= f® (t)uVt € T(Zp)n*}-
Since the *-action of AT commutes with the left action of T'(Z,)5#, it follows

n

that we have a left action of AT on A, . We deduce that we have a left action
of AT on Ay and a right action on Dy.

3.4.12. Remark. Notice that if we define (-)y to be the O(Ll)-valued char-
acter of T'(Z,) given by t — (t)y, where (t)y € O(L)* is the analytic function
on Y defined by A — A(t), then Ay, can be seen as the n-locally O(l)-analytic
induction of (-)g. When 4 is reduced to a single point { = {\}, we recover the
definition of Ay ,,(L) for a n-locally analytic character A € X(L). In particular,
we have the following lemma.

LEMMA 3.4.13. Let L be a finite extension of K and A € U(L). Then we

have the canonical isomorphism of AT -modules
Ay @y L = A\(L) and Dy @y L = Dy(L).
Proof. This follows from the definitions and Lemma 3.4.9. U
We also have the following very important lemma.

LEMMA 3.4.14. If § € ATT ) then the x-action of § defines a compact
operator on the O(L)-projective compact Fréchet space Dy.

Proof. Assume that K is the field of definition of {{. By Lemma 3.4.9, we
have the bi-continuous isomorphism

Dy = O(U)®@xD(N(Zy), K).

From this remark, it is easy to see that the proof of our claim follows exactly the
same lines as the proof of Lemma 3.2.8. The details are left to the reader. [

4. Overconvergent finite slope cohomology

In this section, G/q is a reductive group as in the first section. We fix a
prime p and we assume that G g, is quasi-split as in the previous section.

4.1. Hecke algebras and finite slope representations. In this subsection, we
define the notion of finite slope representation for the group G. We start by
defining some Hecke algebras.

4.1.1. The Hida-Hecke algebra. We will freely use the notation of Sec-
tion 3. For all positive integers m, let A, = (Af)~ and A~ := (ALF) L.
As usual we will drop m from the notation when it is equal to 1. We similarly
define T~ and T~ ~. The spaces of distributions D)(L) and their quotients
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Vi\/alg (L) that we have defined in Section 3 are equipped with the right *-action
of A*. We will consider them now as left A~-modules since we have made the
choice to consider the adelic action on the left to define Hecke operators.

Let m be a positive integer and let C2°(A;,//Im, Zy) be the subspace of
Zy-valued locally constant functions with compact support in A, which are
bi-invariant by I,,,. This is an algebra for the convolution product defined with
the Haar measure on G(Q,) such that I, is of measure 1. For ¢t € T, we write
U = Ut = Imtly, € C°(A,,//In, Zy) for the characteristic function of the
double class I,,tl,, C A,,. Then it is well known, and it can be easily checked
that

Ut U = Ugpg!
for any t,t € T~. Therefore, the map t + wu; defines an algebra homo-
morphism Z,[T~ /T (Z,)] = C>*(A,,//Im,Zy). Then we put U, = U,(G) :=
Zp|T~ /T (Zp)], and we will identify its elements as Z,-valued functions with
compact support on A, which are bi-invariant by I,,, for m chosen according
to the space on which we will let ), act.

4.1.2. Slope of a character of T~ or of U,. The notion of slope that we
introduce here is equivalent to a notion introduced by Emerton in [Eme06].
Recall that

X*(T)p) := Homyuigop(T/p, Ginyr)
and

X*(T/F) = Homalg_gp(Gm/F, T),
where F' is the smallest Galois extension of Q, that splits G. Since T' is defined
over Q, we have an action of the Galois group Gal(F/Q,) on X*(T/r) and
X.(T / r). Recall also that we have a Galois equivariant duality pairing

(= =): X (Typ) © Xu(Typ) = Z

such that po pY(t) = t*+") for any p € XH(Typ),p" € Xu(Typ) and t € Gy,
Let X.(T/p)* be the dual cone of the cone generated by the positive roots
of X*(T). Then, by definition, for any p" € (X.(T)p)")%F/%) we have
p'(p) €T~ B

Let ¢ now be a Q,-valued character of U, . If 6(u;) = 0 for some t € T,
then we say that the slope of # is infinite and we write pug = oco. Otherwise
¢ induces a homomorphism of monoids from 7'~ /T(Z,) into @; and can be
easily extended to T'(Qp)/T(Zy). Such a character is said to be of finite slope.
Equivalently 6 is finite slope if 8(u;) # 0 for at least one ¢t € T~ ~. This can
be easily checked since for any ¢ € T~ there exists a positive integer N such
that ¢t = ¢/t with ¢ € T~

When 6 is of finite slope, the slope of 8 is the element py of

X*(T/F)Sal(F/Qp) — X*(T/F)Gal(F/Qp) 2Q
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defined by
(:u07 'u\/) = 'Up(e(uuv(p)))

for all 4" € (X (T} #)T)CAE/Q) where v, denotes the p-adic valuation of Q,
normalized by v,(p) = 1. In particular, we have

|(@-0) (8)]p = [0(use)

for any integer a such that a.uy € X*(T)p) and t € T~~. Notice that if 0
is integrally valued, then pg belongs to the obtuse positive cone X*(7T)4 g
generated over Q4 by the simple roots relative to the pair (B,T'). Of course
X*(T)+0 D X*(T)a, and the inclusion is strict in general. If pu, 1/ € X*(T)q,
we write 4 > g/ if and only if p — 1/ € X*(T)4 @.

Definition 4.1.3. Let A8 be an algebraic character of Typ and p = pyg.
This slope will be said to be noncritical with respect to A8 if g — X8 4 w *
238 ¢ X*(T), g for each w # id. When A\*# is implicit in the context, we will
just say that 8 or py is noncritical.

4.1.4. Finite slope part of a Uy-module. Let L C @p be a finite extension
of Q, and let V' be a (possibly non-Hausdorff) quotient of Banach (or compact
Fréchet), as in Section 2, L-vector topological spaces equipped with an action
of U, such that the action of u; is completely continuous for any ¢t € T~ ~. For
any character 6 of T~ in @; , we denote by V@p [0] the subspace of V &, @p

of vectors v such that for all t € T, (us — 0(uy))%.v = 0 for some integer q.
Since the operators u; commute, and their action is completely continuous on
V, the Vg [6]’s are finite-dimensional if ¢ is of finite slope.

P

Let p € X*(T)(Sal(F/Qp) and V as above. We put

< ._ - T
V@p = QP Vg, 1] € Vg,
Ho<H

Then this space is finite-dimensional over @p. We have Vg“ =Vt @ @p for
P

VSH = Vg“ NV. Forany t € T~ and h € Q, we can define, as in Section 2,

52
V=" and set Vs as the inductive limit over h of the V=" when h — co. Since

U, is commutative, this space is clearly stable by the action of U, and we have
<h _ r
Vsh = @ Vg, 1.
vp(0(ug)<h

This implies that the inductive limit of the V= for p € X*(T)g.+ is equal
to Vis.
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4.1.5. Global Hecke algebras. We define the Hecke algebra H, by
Hp = Hp(G) == CSO(G(AI}),QP) ® U, C C(G(Ay),Qp).

To define the algebra structure on H,, we choose that the product is given
by the convolution product for the Haar measure dg on G(Af) such that
Meas(KP .. .I,dg) = 1 with KP?_
defined in Section 1.1.2.

We denote by ’H; the ideal of H, generated by f = fP ® u; with f? ¢

CSO(G(AZ}),QP) and ¢t € T~~. For any open compact subgroup K? C G(AZ}),
we write

be the prime to p part of K a.x which we

My (KP) = C(KP\G(A}) /K, Qp) @ Uy

for the subalgebra of H, of functions which are bi-invariant by K.
If S is a finite set of primes not containing p, then we also consider the
Hecke algebra Rg; defined by

Rsy = CR(KRPPNGAT 2,) | K5V o 1y,
where K;%U{p } stands for a maximal compact of G(A?U{p })
special at every prime ¢ ¢ S U {p}. It is well known that this algebra is
commutative. Moreover, if K? C K, is hyperspecial away from S, then Rg ),

can be seen as a subalgebra of the center of H,(K?) via the map f — 1x,® f,
where Kg stands for the open compact subgroup of [];cs G(Q;) such that

which is hyper-

KP =K S.K}?lu{p }. Here we have denoted 1k, as the characteristic function
of Kg.

Definition 4.1.6. A @p—valued character 6 of Rg, will be said to be of
finite slope if its restriction to U, is (i.e., O(u;) # 0 for all t € T7).

We further generalize the above definition to admissible representations

of H,p.

4.1.7. Finite slope admissible representations of H,. Let (o,V) be an ad-
missible representation of H, defined over a p-adic field F. Recall that this
means that for any open compact subgroup K? C G(Ay), the action of an
element of H,(K?) on V defines an endomorphism of finite rank. Since H,, is
the inductive limit of the H,(KP)’s, the character map f — tr(o(f)) is well
defined and will be denoted by J,. It is a classical fact that J, determines o
up to semi-simplification. Assume now that o is absolutely irreducible. Since
U, is included in the center of H,, the action of U, on V is then given by a
character of degree one. We then say that o is of finite slope if this character
is and if 0" contains an Op-lattice stable by the action of Zy-valued Hecke
operators in H,(KP).
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We will say that this representation is of level K if the action of H,(K?)
is nontrivial. In that case, we write VX" or 0" for the image of o(1x»), and
we have an action of H,(K?) on this subspace. It is well known that this
representation determines o entirely. Let S be a finite set of primes such that
K? is maximal hyperspecial away from S. Since Rg,, is included in the center
of Hp(KP), Rs, acts on 0" by a character we denote as ,. Then we say that
o is of finite slope if and only 6, is. A general admissible representation of H,
will be said to be of finite slope if all its absolutely irreducible sub-quotients
are.

4.1.8. p-reqularized constant terms and parabolic induction. Let P C G
be a standard parabolic subgroup (i.e., P contains the fixed minimal parabolic
subgroup Fp). In particular, Pjq, contains the Borel subgroup B. We fix a
Levi decomposition P = M N such that Mg, contains T'. Such an M will be
called a standard Levi subgroup of G. Then we can consider the Hecke algebras
Hp(M) and Uy(M) and admissible finite slope representations or characters of
them.

For any standard Levi subgroup M € Lg, recall that WM are the elements
w of the Weyl group of G such that w=!(a) > 0 for all positive roots a for
the pair (BN M, T). Let w € WM. We are going to define a linear map from
Hp(G) into Hp(M) f— fﬁ%w. To do so, we first define the image of an element
fe H;) of the form f = fP ® u;. Notice first that for w € WM and t € T,
wtw™! belongs to T}, where T}, is defined as the set of ¢t € T(Q,) such that
tN(Z,) N M(Z,)t~' € N(Z,). This follows from the very definition of WM
which tells us that BN M = wBw™'N M for all w € WM,

For any t € T(Qp) and w € Wg we also write

T/p>s

cea(t) = §(1) PP PR | or)er,

It is easily checked that e¢,, induces a character of T'(Q),)/T(Z,) taking val-
ues in Op. If ¢ satisfies the condition (11), then this character is trivial since
w(pp) + pp = > aeRpnuw—1(Rp) @ The reason for introducing this normal-
ization factor will become clear in the proof of Proposition 4.6.3.

We then define f);5, by

Xf[,gw = gé,w(t)flz\} @ Ugyay—1,M

where f}, stands for the (nonunitary) constant term defined as in Section 1.4.1.
By the remark above, ,,,,-1 5 is a well-defined element of U,(M). For general
f, we extend the definition by linearity. Now if a? is an irreducible admissible
representation of M (A%}) and if Iﬁ(o?) is the (nonunitary) parabolic induction,
then, as recalled in Section 1.4.1, we have that

tr(f7; 157 () = tr(fig; o)
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If o is an irreducible finite slope representation of #,(M), then we denote by
I]%w the admissible finite slope representation defined by

Iﬂcjf,w(o') = I]\Cj(o'?) ® QJ,M,wv
where 05 114, is the character of U, (G) defined by

Ut — 9J(thw—1,M)-

It then follows from the definitions and what we have recalled that we have
the character identity
JIG

M,w(d)(f) = Jo(far)-

4.1.9. p-stabilization of automorphic representations. The main examples
of finite slope representations are obtained as follows. Let m = 7y ® T be an
irreducible cohomological automorphic representation of G(A) of weight A28,
It is defined over a number field, and we can therefore extend the scalar to
a p-adic number field L. Then H, has a nontrivial action on WJIC;" for some
integer m sufficiently large, and there exists some character ¢ of I,,,/I], such
that ch;n ® L(e~!) contains a nontrivial subspace invariant by I,, and over
which we therefore have an action of #,. An irreducible constituent of this
space for the action of H, is called a p-stabilization of 7. It is a standard
fact that can be checked using the theory of Jacquet modules that a given
representation m has only finitely many p-stabilizations. Notice also that this
notion is purely local at p. If such a p-stabilization is of finite slope, it will
be called a finite slope automorphic representation of G of weight A\ = \*&¢,
It is then straightforward to see that it will also appear in the cohomology of
Vyaie (L) with A = e.\318

4.1.10. Finite slope character distributions. Let L be a finite extension of
Qp. We call an L-valued virtual finite slope character distribution J a Q,-linear
map J : H, — L such that there exists a collection of finite slope (absolutely)
irreducible representations {0;;i € Z~o} and integers m; € Z such that

(i) For allt € T~~, h € Q and KP, there are finitely many indexes ¢ such
that m; # 0, v,(0y, (u)) < h and oX" 0.
(ii) For all f € H;,, we have

() =Y mido (f).
=1

Notice that the sum in (ii) is convergent thanks to the condition (i). If the m;
are nonnegative, then J is called a finite slope character distribution. We also
say that J is an effective finite slope character distribution. In that case, for
each open compact KP, we can consider the space V;(KP) as the completion
of @;(VE")®™ for the norm defined by || 3;vil| = Sup;||vs||. This defines a
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p-adic Banach space over C,, over which H,(K?) acts continuously and such
that the action of the elements of ’H; is completely continuous. Moreover, for
each f € H,(KP), we have

tr(f; Vi (KP)) = J(f).

Let J be a virtual representation. Then for each isomorphism class of
finite slope absolutely irreducible representation o, we denote by mj(o) the
virtual multiplicity of o in J. By definition, it means that we have the following
equality for all f € H,;:

J(f) - ZmJ(U)JU(f)'

Here o runs in the set of isomorphism classes of finite slope absolutely irre-
ducible representations. If t € T~—, h € Q and an open compact subgroup
KP C G(A%), we denote by X7 (KP,t, h) the (finite) set of classes of irreducible
o such that m (o) # 0, v,(0,(ur)) < h and o&” £ 0.

4.1.11. Fredholm determinants attached to a virtual finite slope character
distribution. Let J be a virtual finite slope character distribution and f €
Hpy(KP) of the form f = fP ® u; with t € T7~. Then we put

oo
Pyp(T) := [ det(1 — Tos(f))™.
i=1
This is clearly a ratio of Fredholm series.
Ifae @; and o is an irreducible finite slope representation, we denote by
me(f, @) the multiplicity of the eigenvalue « for the Hecke operator f acting
on V,. Then

my(f,a) = ij(a).mg(f, a)

is a well-defined finite sum by condition (i), and m,(f,a) is the order of the
zero T = a1 for the meromorphic function P;(f,T) on A]®. This integer is
called the multiplicity of the eigenvalue « in J for the operator f.

LEMMA 4.1.12. If for all f € H,,, P;(f,T) is an entire power series, then
J is an effective finite slope character distribution.

Proof. Let oy such that m(og) # 0. We want to prove that mj(og) > 0.
Let K? be such that of" # 0. Let t € T~~ and let h = vy(,,(uz)). Also put
h = Min{v,(0,(ut)), Vo & X 7(KP,t,h) such that m(o) # 0 and o™" # 0}.

From condition (i), it is easy to see that h’ > h. Since X ;(KP,t, h) is finite,
we know by Jacobson’s lemma that there exists f1 € H,(KP) such that for all
o € Xj(KP,t,h), we have o(f1) = id xr if 0 = 0¢ and o(f1) = 0 otherwise.
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Now consider f = (1gr ®@ uyn)f1 with N > v1/(h' — h), with v; the valuation
of the denominator of fi. Then we have

Py(f,T) = det(1 — T.oo(1xr @ u,n )™ 70 S(T),

where S(T') = [Tojv, (60, (ur))>h) det(l = To((1xr @ un)-f1))™ (@) is a meromor-
phic function with the set of zeroes and poles of p-adic norm greater or equal
tO ph/Nf’Ul
set of zeroes of det(1 — T.oo(1xr ® uun)) are of p-adic norm smaller or equal
to p™V, this implies that m (o) > 0. O

. Since by assumption Pj(f,T) is an entire function of T" and the

4.1.13. Assume now that J is effective; we have Pj;(T) = det(l —
T.f;Vy(KP)). Lett € T~~ and suppose that we have a factorization Py, (1) =
Q(T)S(T) with @ a polynomial such that Q(0) = 1 and @ and S relatively
prime. Then we know, by Theorem 2.3.8, that we have a decomposition stable
by uy,

Vi(KP) = Nj(Q) & F;(Q),
such that Q*(ut) acts trivially on N;(Q) and is invertible on F;(Q). Moreover,
there is a power series Rq g such that Rg g(u:) is the projector of V;(K?) onto
Ny (Q).

Since u; is in the center of H,(KP), this decomposition is stable by the
action of H,(KP), and for all f € H,(KP), we have

(27) JQu(f) = J(f o Rq,s(ut)) = tr(f o Rq,s(u); Vi(KP)) = tr(f; Ns(Q));
therefore Jg; is a character of H,(KP) of degree deg Q).

4.2. Automorphic finite slope representations. We would like now to define
the cohomology of arithmetic subgroups acting on the p-adic A~-modules that
we defined in Section 3 and study the action of H, on it. Because the standard
resolution of group cohomology by inhomogeneous cochains is not of finite
type, it is not suitable for topological properties. We will therefore use some
projective resolutions of finite type. Their existence is due to the work of
Borel and Serre. Ideally, we would like the cohomology of Dy to be projective
over O(U). In general, this is not quite true because of the possible presence
of torsion in the cohomology and also because the cohomology might not be
Hausdorff. To bypass these difficulties, we will work in the derived category of
perfect complexes in the sense of Section 2. We will also construct finite slope
character distributions for each p-adic weight and show that these are analytic
functions of the weight. We will use some of the notations and definitions of
Section 1.1.2.

4.2.1. Resolution for arithmetic subgroups. Let T C G(Q)/Zg(Q) C G*4(Q)
be a subgroup containing no nontrivial elements of finite order. Therefore,
it acts freely and continuously from the left on the symmetric space Hg =
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Goo/ZxK so that I'\H¢ is a C°° manifold. Let d be its dimension. Unless
G is anisotropic this quotient is not compact, and by the work of Borel-Serre,
there exists a canonical compactification F\?-_[G where H¢ is a contractile real
manifold with corners [BS73]. This fact will be useful to prove the following
lemma.

LEMMA 4.2.2. Let I' as above; then there exist length d finite free resolu-
tions of the trivial I'-module Z. In other words, there exist exact sequences of
I'-modules of the form

0—=Cy(l)— -+ = Ci(T) = Cp(T') = Z — 0,
where the C;(I')’s are free Z[I'|-modules of finite rank.

Proof. Since I'\Hg is compact, we may choose a finite triangulation of
I'\Hg. We pull it back to Hg by the canonical projection Hg — I'\Hg and
denote by Cy(I") the free Z-module over the set of g-dimensional simplexes of
the triangulation obtained by pull-back of Hq. This is the module of ¢-chains
obtained from this triangulation. Since the action of I on H is free, the Cy(T")
are free Z[I'-modules and they are of finite type since the chosen triangulation
of I'\H is finite. We therefore obtain a complex of free Z[I']-modules of finite
rank

0— C’d(F) 8t>1 (A Cl(l“) @) C()(F) —0
whose homology is the singular homology of Hg. Since H¢ is contractile, this
complex is exact except in degree zero. In degree zero, we have

Co(T)/00(C1(T)) = Ho(H, Z) = Z
which implies our claim. ([

4.2.3. These resolutions are obviously not unique but two such resolu-
tions are Z[I'|-homotopy equivalent. This is a standard fact that is true for
any projective resolutions in abelian categories. We will use this fact in the
following situation. Consider I" C T to be a finite index subgroup; then
the restriction to I of any such resolution Co(I") for I' is Z[I"]-homotopy
equivalent to any resolution Co(I") for I'. We will use these resolutions
to study the cohomology of these arithmetic groups. If M is a I'-module,
then we can compute H*(I', M) = Exth(Z, M) by taking the cohomology of
C*(T', M) := Homp(C,e(T"), M). This complex is particularly nice because of
the following corollary.

COROLLARY 4.2.4. For any I' and M as above, each term of the complex
C*(I", M) is isomorphic to finitely many copies of M.

Proof. This follows from the fact that the Cy(I')’s are free of finite rank
over Z[I']. O
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It is well known that we can define an action of Hecke operators on
H*(T',M). We will be explaining how we can directly define an action of
them on C*(I', M).

4.2.5. Fonctoriality. We first consider a somewhat general situation. As-
sume that we have two groups I' and I' together with a group homomor-
phism ¢ : I' — I”. Assume also that we have a right I'-module N and a
right I"-module M with a map of abelian groups f : M — N, such that
f(m.¢(v)) = f(m).y for all m € M and v € I". If we consider M as a I-module
via ¢, this f is [-equivariant. A pair (¢, f) like this is called compatible. It is
trivial that f induces a map from M'" into NT.

Let Co(I") and Co(I') be respectively two finite free resolutions of Z by
Z[I'] and Z[I"]-modules of finite rank. By considering Co(I"”) as a I'-module
by ¢, it is a I'-resolution of Z. Since C,(I") is a I-projective resolution of Z, it
follows from the universal property of projective modules that we have a map,
unique up to homotopy, ¢e : Ce(I') — Ce(T"), which is compatible with ¢.

We deduce that we have a map compatible with ¢:

(¢e)*®

Homz(C4(I”), M) L, Homg(C4(I), N).

By taking respectively I' and I" invariants, it induces a map C*(I”, M) f—>
C*(I", N). Again this is uniquely defined up to homotopy.

IfT c I, M = N and ¢ is the identity map, we obtain the restriction
map

Resh : C*(D, M) — C*(I', M)

that induces the usual restriction map on the cohomology.

Assume now that I is a subgroup of finite index of I'. Let us fix a system
of representatives {v;}; of I'\T' (i.e., ' = UI'"y;). The corestriction map is
obtained as follows. Again we choose free and finitely generated resolutions
Co(I'") and Co(T"). Then Co(T") is also a free and finitely generated resolution of
the trivial Z[I"]-module Z since Z[I'] is free of finite rank over Z[I'']. Therefore
we have a I"-equivariant homotopy 1 : Co(I') — Co(I'). So we have the
maps

Hom(TF,F’ 7ldj\/[)

Homp: (Ca(T"), M) Homys (Co(T'), M) 22 Homp(Cy(T'), M),

where the second map is the usual average sum m +— >, m.7y; that sends
I-invariant to I'-invariants. We call this composite the corestriction map

Cork : C*(I", M) — C*(T', M).

It induces the usual corestriction map in cohomology. Again, this is uniquely
defined up to homotopy.
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4.2.6. Hecke operators. We refer to [Shi71] for the abstract definition and
the properties of Hecke operators. Let A be the monoid containing I' and I
and such that 60'6~! NI’ is of finite index in I for all § € A. Then we can
consider the abstract Hecke operators IV0I" € Z[I"\A/T]. We say that I' and
IV are A-commensurable. Assume that M is a right A-module; then we can
define the map [IVoT'] : C*(I, M) — C*(I';, M) as the composition

[T'8T) = Corjipsr © [6] © Resfrs-1

where [§] is defined by the pair of compatible maps (z + dzd~—!,m — m.d)
respectively from I' N 6~ 'I'§ onto dT'6 ' NI’ and from M into M. Again the
action of IVéT is well defined up to homotopy.

Consider now a third subgroup I'” C A which is A-commensurable with
I and I'. Then we can compose the double classes I''4I" and I'”§'T” and get an
element I''§'T" o IV0T" € Z[I'"\A/T'] (see [Shi71l, Chap. 3|, for example). Then

we have

LEMMA 4.2.7. The maps [I"0'T"|o[IV6T] and [I"§'T' oIVéT] are equivalent
up to homotopy.

Proof. This easily follows from the definitions and the fact that we have
an equality when we define the maps on the level of the ®-invariants for ® =
I,TV,T”. We leave the details to the reader. O

4.2.8. The adelic point of view. Let K be a neat open compact subgroup
of G(Ay) and let K, be the image of K into G(Qp). Let M be a left K-module
such that K acts on M through its projection on K. We fix a decomposition
as (1) so that the p-part of each g; is trivial. Recall that I'(g;, K) is defined as
the image of g;.Kg; ' N G(Q)* in G(Q)/Z(Q). We put

RT*(K, M) = &;C*(I'(g;, K), M).

We can make another description. Consider the space S¢ := G(Q)\G(Ay) x
Hg. Then Sg(K) = Sg/K is the Borel-Serre compactification of Sg(K).
Let mx be the canonical projection S — Sg(K). Then choose a finite tri-
angulation of Sg(K) and its pullback by 7. Let us denote by Co(K) the
corresponding chain complex. It is equipped with a right action of K. It
is an easy exercise to check that if we consider the decomposition of S¢(K)
in the connected components determined by the g;’s and the triangulation
on each connected component Hg/T'(g, K) associated to the chain complex
Ce(T'(gs, K)) (in the proof of Lemma 4.2.2), then we have the isomorphism

RT*(K,M) = Homg (Co(K), M),

where the right action of K on M is given as usual by m.k := k~'.m. In
particular, this implies that if we had chosen another system of representatives
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g, we would have obtained another complex homotopical to the first one.
Therefore it defines an object in the homotopy category of abelian groups
whose cohomology computes the cohomology of the local system M on Sa(K).

Moreover, the map M +— RI'*(K, M) is functorial with respect to left
K-module and there is an isomorphism

H*(RT*(K, M)) = H*(S(K), M).

Suppose, more generally, that we have a pair (¢, f), where ¢ : K/ — K is
a continuous and open group homomorphism and f : M — M’ is a map of
abelian groups where M (resp. M) is equipped with a left K-action (resp. with
a left K'-action) such that f(¢(k').m) = k'.f(m) for all ¥’ € K and m € M.
Using the description RI'*(K, M) = Homg (C*(K), M) and the arguments of
Section 4.2.5, we can define a map

RT*(K, M) ‘2 gre(k M)

uniquely defined up to homotopy.

We now make a description using the decomposition in connected compo-
nents associated to the g;’s and g.’s respectively for K and K’. For simplicity,
we assume that ¢ extends to a map from G(Ay) to itself since it will be the
case for all the examples that will be considered. For each i, let j; such that
o(9)) = vigj,ki € G(Q)g;, K. We can define maps ¢; : I'(¢;, K') — I'(g;,, K)
and f; by

¢i(x) == ' p(x)vi,  film) = f(yim).
Since the p-component of g, is trivial, the p-component of ~; belongs to the p-
component of K and therefore v; acts on M. This justifies the definition of f;.
It is easy to check that the pairs (¢;, f;) satisfy the assumption of Section 4.2.5.
We therefore have a map C*(I'(g;,, K), M) — C*(I'(¢j, K'), M’). Summing up
over the i’s, we get the map

Rr*(K, M) I e (i, ),
which is uniquely defined up to a homotopy.

4.2.9. Completely continuous action. It is useful and important for our
application to notice that if f satisfies certain properties, then so does the
map (¢*, f) between the complexes. For example, if M and M’ are Banach
spaces or compact Fréchet spaces equipped with continuous actions of K and
K’ and if f is completely continuous, then so is the map induced by (¢*, f) at
the level of the complexes. This follows from the very definition of our map, the
fact that composition between continuous and compact maps is compact and
that each term of the complex RI'*(K’, M') is isomorphic to a finite number
of copies of M'.
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4.2.10. Special cases. Of course, if f is the identity map and K’ is an open
subgroup of K, then we get the restriction map that we denote by Reslfg,.

Another special case also arises if Ay C G(Ay) is a monoid acting on
M on the left via its projection into G(Qp). For any x € Ay, we consider
¢ =Int;!: K' = xKz~! — K given by Int;!(k) = 2~ 'kz and the map
M — M given by m +— xz.m. We therefore get a map

Rr* (K, M) 25D, pre (ka1 M),

which depends only on the coset x.K modulo homotopy.

Consider now two open subgroups K, K’ of Ay and x € Ay. Then we
have the decompositions

K'zK =Ujz; K and K =Ukj.(K'nzKz™t)

with z; = kjz for j running through a finite set of indices. Notice that
:chxj*l = Kz~ ' is independent of j. Therefore it makes sense to define
the action of the double coset K’z K from RI'*(K, M) into RI'*(K', M) by

[K'zK] =Y RU(K,z;) =Y RU(K'NeKz ' k;)oRests? . 1 o R (z, K).
j j

Again this action is defined up to homotopy and does not depend on the coset
decomposition of K’z K above. One can see also that it is homotopic to
Y RT(K'NaKa ™' kj) o RT(z,a ' K'a N K) o Res! 1 1o, .
J

When K’ D K and x = 1, we recover the corestriction map.

We now compare this action with the one defined by arithmetic subgroups.
For this purpose, it is convenient to make M a right A;l—module by the action
m.6~1 :=8.m for all § € Ay and m € M. For each i, we write ¢;x = V4.,:9j; hgoo
with h € K as in Section 1.2.5. Then 7,; € Ay N G(Q), and we have the
equality in the homotopy category

[KaoK] = @i[Ling; T,

where [I’ﬂ;j I';,] is the map from C*(T';, M) into C*(I';;, M) defined previously.
Of course, this equality is up to homotopy. The reader should compare this
with relation (6) which was seen at the level of cohomology.

4.2.11. Action of an automorphism on the resolutions. We let ¢ be an
automorphism of G such that K* = K, and we fix an automorphism ¢p; of M
such that

g.tar(m) = ap(g.m)
for all g € K and m € M. Therefore, (¢,cpr) induces an automorphism of
RI*(K, M) in the homotopy category. We can also describe this map using the
decomposition in connected components. For any arithmetic subgroup I', we
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have a canonical isomorphism from Homp(C*(T'), M) onto Homra (C*(T'*), M)
induced by ¢ — ¢* for all ¢ € Homp(CUT), M) with ¢*(n) := tp(d(n)).
Now note that since K* = K, we should have I'(z, K)* = I'(z*, K). Since for
any representative systems {g¢;}, {g} is another system of representatives, we
can see that the map induced by (¢, tpr) is obtained from the maps above for
I' =T'(g;, K) for each ¢ up to homotopy.

4.3. Finite slope cohomology.

4.3.1. We will freely use the notations and assumptions of Section 3.
Let A be a Q,-Banach algebra. Let K? be a neat open compact subgroup of
G(A%). For such KP, we choose representatives g; for the cosets G(Q)\G/(Ay) x
He)/KP.I that are trivial at p. Then, from the previous discussion, it follows
that the map M +— RI'*(KP?.I,,, M) defines a functor from the category of left
A[A;, /Z,]-Fréchet modules in the homotopy category of Fre(A). We let the
algebra U, act on the cohomology of Sg(KP.1,,) with coefficients M or on a
complex RI'(K?.I,,, M) through the projection on C°(A;,//Im,Zy) and the
canonical action of the latter on the cohomology or the complex. Moreover,
RI*(KP.I,,, M) is equipped with an action of the Hecke operators H,(KP)
that defines an algebra homomorphism

Hp(KT) = Endpy ey (BT (B I, M)).

4.3.2. Weight space revisited. Let Z(KP) := Zg(Q)NKP.I. Then the nat-
ural map of Z(KP) inside I'(g;, KPI) is trivial for each i. Therefore D) and
V(L) are I'(g;, KPI)-modules only if A is trivial on Z(KP?). This is condi-
tion (2). We set X = Xgr C X7 to be the Zariski closure of the weights A
which are trivial on Z(KP). Let Z,(K?) be the p-adic closure of Z(KP) inside
T(Zy). Then we have

X v (L) = Homeont (T(Zy)/Z,(KP), L)

for any finite extension L of Q,. Moreover, Xg» is of dimension rkz, T(Z,) —
rkz, Zy(KP). Notice that if G is Q-split or semi-simple, then Z,(KP?) is trivial
since K? is neat by assumption. Otherwise, its rank depends of the rank of
some global units together with some Leopold defect. For instance, if G =
GSp(2n, F) for a totally real field F', then X is of dimension

M+ DF:Q—([F:Q—1—=06pp) =n[F: Q]+ 14 0pp,

where 07, designs the defect of the Leopoldt conjecture for (F,p).

If S is a finite set of prime and KP? is maximal hyperspecial away from
S, then Z,(KP?) does not depend of KP if it is sufficiently small. In general,
when KP? decreases, Xkp» can get more connected components. However its
dimension will stay the same.
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4.3.3. Finite slope cohomology. Let M be any left L[A™ /Z,(K?)]-module.
We assume that M is a L-Banach or a compact L-Fréchet for which the el-
ements in A7 act completely continuously. Let t € T~~. We equip the
complex RI'*(KPI,,, M) with an action of the Hecke operators u; (defined
up to homotopy). By the definition of this action and the assumption on
M, this operator is completely continuous on this complex and the latter
has finite slope decomposition with respect to u;. By the results of Chap-
ter 2, this induces a slope decomposition for its cohomology. We then write
HE (Sq(KPIy,), M) C H*(Sg(KPI;,), M) for the finite slope part of its coho-
mology. Since for any t,t' € T~ there exits an N such that tV = ¢/t” for
t" € T~ and u; commutes with uy, it is easy to see that the finite slope part
does not depend of the choice of t. We also put

H{(Sg, M) := lim H{(Sg(K?.I), M).
KP

The spaces M that we will mainly consider are Dy(L) and V\Y(L) for weights
A trivial on Z(KP).

4.3.4. Finite slope p-adic automorphic representations. Let A € Xg»p (@p).
An irreducible finite slope representation o of H,, will be called p-adic automor-
phic of weight X if and only if it appears as a subquotient of the representation
of H, on qus(gg, D (L)) for some integer ¢ and some p-adic field L. It will be
further called (M, w)-ordinary Eisenstein if there exist M € Lg, w € WM and
a finite slope p-adic automorphic character o,; of M of weight A such that J,
is a direct factor of the character f — J-(f}/5,) for all f € H, and J; is the
character of an automorphic finite slope représentation for M. Moreover, M
is supposed to be minimal for this property.

PROPOSITION 4.3.5. Let A\ € Xgp(L). For any irreducible finite slope
representation o of G, there is an integer mi(o, \) € Z such that for all f € ’H;?,

we have ~
tr(f; Hi.(Sa, Da(L))) = Y m (0, A)Jo(f)-

In particular, o is automorphic of weight X if and only if mi(o,\) # 0 for
some q.

Proof. Let ¢ € T™~ and any h € Q. Then the < h-slope part for u;

of HgS(SG,'D)\(L)) is quS(SGf,DA(L))Sh = hiI}ngS(Sg(Kp.I),D)\(L))Sh. It is
KP

equipped with an action of H, since u; is in the center of H,, and this repre-

sentation of H, is clearly admissible. Therefore we have a decomposition
tr(f; HE(Sa, DA(L)=") = >0 mU o, M) Jo(f)

Up(ea(c;t))fh
for all f € H,. The proposition then easily follows by considering this equality
with f € H,, and letting h go to infinity. O
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One defines the overconvergent Euler-Poincaré multiplicity by

(28) m&(0,A) ==Y (~1)9mi(a, N).
q
In the sequel of this section, we want to relate the action of the Hecke
operators on the finite slope cohomology of Dy(L) to the one of V)(L). We
start by the following important lemma which goes back to Hida.

LEMMA 4.3.6. Let M be a left A~ /Z,-module. Lett € T~ and m be a
positive integer. Then the following commutative diagram is commutative in
the homotopy category of complexes of abelian groups:

m

RT(K?.I,, M) ——— RU(KP.I,n, M)

T Im+1.t.lm] T
um+1

RU(KP .11, M) —— RU(KP.I,,, 1, M).

In particular, if M is a Fréchet L[A™/Z,(KP)-vector space over which the
elements of A=~ act completely continuously, then the restriction map induces
an isomorphism on the finite slope parts:

HE(Sq(KPI), M) = HE(Sa(KPIn), M).

Proof. The first part is a consequence of the definition of the action of
double cosets and of the fact that the decomposition in right coset of the
double cosets I,tl,, and I,,41tl, are the same. This last fact follows from
L1 Nttt = I, Nt 't for t € T~~. To prove the second part of our
lemma, we apply Lemma 2.3.4 to the following commutative diagram that
follows from the first part of our lemma:

H*(KP.Ipy, M) — = H*(KP.I,, M)

T Im+1.t.[m] T
um+1

H*(KP Iy, M) —— H*(K?.I,41, M). 0

4.3.7. Let X be an algebraic dominant character of T. The next lemma
shows that the finite slope part of the cohomology of VY (L) can be replaced
by finite slope part of the cohomology of V,Y(L).

LEMMA 4.3.8. Let A\ = \8¢ be an arithmetic weight of conductor p"*.
Then, for any m > ny, we have

HE(Sq(KP 1), Vy' (L)) = HL(Sa(KP.Inm), VX(e, L))
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Proof. Let V) (L) be the subspace of locally algebraic functions on I which
are n-locally analytic on I}, . Then VA(L) = lim V) »(L). By Lemma 2.3.13,
the canonical map n

H*(SG(K?.1n), VY (L)) = H*(Sc(K? 1), Vi, (L))

induces an isomorphism on the finite slope part. The previous proposition
applied to the M = V/\YO(L) together with the case n = 0 of the isomorphism
above imply our claim since Vy(e, L) = V) o(L). O

Definition 4.3.9. For any t € T~ and any A € X*(T)", we put
N(A 1) i= Inf ozt
We are now ready to compare the cohomology of Dy (L) and of Vyai (g, L).

PROPOSITION 4.3.10. Let A = \*8c € X(L) be an arithmetic weight of
conductor p\ and p be a noncritical slope with respect to X8 Then for any
positive integer m > ny, we have the canonical isomorphisms

H*(Sq(KP.I),Dy(L))S* = H*(Sq(KP.1,,), VY (e, L))S*.

Similarly, for any rational h < v,(N (X, t)) and any Hecke operator f = fP®@u,
with t € T~~, we have

H*(Sq(KP.1),Dy\(L))=" =2 H*(Sq(KP.I), Vug(e, L)="
for the < h-slope decomposition with respect to the action of f.

Proof. We just prove the first part. The second part can be similarly
proven. By the previous lemmas, it suffices to show that

H*(Sc(KP.I), DA(L))=" = H*(Sa(K?.1), Vy/ (L))=".

For any simple root «, recall that we have defined in Proposition 3.2.11 a
homomorphism of left I-module

Ou : Ax(L) — Ay r(L).

Let us write ©, for the dual homomorphism. Then by Proposition 3.2.12, we
have a canonical exact sequence

B Ds.a(L) = DA(L) = V(L) — 0.
acA

Let us fix an ordering aq, ..., «a, of the simple roots in A such that for each
integer ¢ between 1 and r, ©f = ©F, + --- + ©,.. For i = 0, we define
Of = 0. Then Coker ©f = Dy(L), Coker ©F = V\Y(L), and for each integer
i€ {l,...,r}, we have an exact sequence

or
0 — Q; = Coker ©;_; — Coker O] — 0,
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where @); is the exact quotient of D;,,.« A(L) making the short sequence exact.
This induces the long exact sequence

HY(Sq(KP.I), Q;)St~A"(Ha)thai _y Fa( G (KP.T), Coker ©F )SH
— HY(Sg(KP.I), Coker ©F)<F — HITL(Sg(KP.I),Q;)S#~ W& (Hap)t o,

There is a shift in the slope truncation because the operator O is not
exactly equivariant for the action of U),. In fact, we have the following formula
for any eigenvector v in H®(Sq(KP.I,), Q:)[0):

uh (0% (1)) = ap ()" Had 10, (upv) = () (1)) +1.07 (),

which implies our claim since the character of ©} (v) is therefore of slope
pg — (N8 (Hag,) + 1a.

Now since ); contains a stable Op-lattice under the left action of A™,
the slope of any character occurring in H®(Sg(KP.I),Q;) must belong to
X*(T)g.+- Since p is not critical with respect to A, u — (A8(H,,) + 1)a; ¢
X*(T)q,4, which implies H*(Sg(KP?.I), Q;)<to~A"#(Hap)+1)ei — () Therefore
HY(KP.I,Coker ©F ;)S* is independent of 4. This fact for i = r and i = 0
means that

H*(S(KP.I), DA(L))=" = H*(Sa(K".1), V' (L))=". O

4.3.11. More multiplicities. Let 6 be a finite slope L-valued character of
the Hecke algebra Rg,. For any A € X(L) and any K? which is maximal
outside S, let us consider

mT(H, A KP) = Z(—l)qdimLHq(Sg(Kp.I),'D)\(L))[Q].
q
When A is arithmetic, we also define
m(0, A, KP) := " (—=1)4dim HY(Sg(K?.I), VY (L))[0].
q

An immediate consequence of the previous proposition is the following clas-
sicity result on multiplicities.

COROLLARY 4.3.12. Let A be an arithmetic weight. Then for any 6 such
that pg is noncritical with respect to A8, we have

m (0, \, KP) = m'(6, \, KP).

4.4. A spectral sequence. Let A be an arithmetic weight of level p™. We
can refine the classicity result explained above by using the BGG complex. For
this purpose, we consider the following double complex:

CY = RIY(KPL,, (L) = D RI'(KPLy, Dur(L)).
wli(w)=j
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Since the BGG complex is exact except in degree 0, where its cohomolgy is iso-
morphic to VyY(L), the spectral sequence that one obtains, by taking cohomol-
ogy with respect to j first degenerates and converges to H™ (S¢(K?I),V\Y(L)).
On the other hand, the spectral sequence obtained by taking cohomology with
respect to i first has a E’ term given by Buli(w)=H' (Sa(KPI), Dyur(L)).
Then Proposition 4.3.10 is a corollary of the following theorem.

THEOREM 4.4.1. Let A = \8¢ be an arithmetic weight of level p™ and a
slope p € X*(T)q. Then we have the following spectral sequence:

D  HL(E Ly, Duper (D)5 = H (Sa(KP L), Vg (e, L)
wll(w)=j

Proof. This follows from the fact that the two spectral sequences attached
to the double complex (Ci’j)fs converge to the same limit. The slope trunca-
tion follows from the fact (due to Proposition 3.3.12) that the differential map
Eij — Ei] 1 is equivariant with respect to the action of U, if one renormal-
izes the *-action of u; on HE(KPIy, Dy«\(L)) by multiplying by the factor
f(t)w*)‘alg. O

4.5. The p-adic automorphic character distributions. In the beginning of
this chapter, we have defined finite slope p-adic character distributions as cer-
tain p-adic linear functionals on 7—[;,. In this section, we define the finite slope
p-adic (virtual) character distributions of the p-adic automorphic spectrum
that we will decompose as alternating sums of cuspidal and FEisenstein parts.

4.5.1. Definition of Ig and IZ. Let L be a finite extension of Q, and fix
A€ X(L). For f € H,,, we put

IL(f,X) = tr(f3 HE (S, Da(L)).
If f € H,(KP), we easily see that

IL(f,\) = Meas(K?, dg) x tr(f; HR(Sc(KP.I), Dr(L)))
= Meas(K?,dg) x tr(f; RT®*(KP.I, Dy(L))).
X(

This second equality comes from Corollary 2.3.11. If A € X(L) is algebraic

dominant, one also defines IS(f, \) by

IS(f ) = tr* (f; H*(Se, Ve (L)),

Wy

where the superscript “«” is here to remind the reader that VY, (L) is con-
sidered as a left A7-module for the x-action. If f = fP ® u; with t € T~
it follows from the comments of Section 1.2.5, relation (15) and Lemma 4.3.8

that we have the following formula:

(29) IS(f, ) = €O ™ (f; H*(Sa, VX (C)),
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where the superscript “st” means that we have considered the standard action
of the Hecke operators on H*(S¢, VY (C)) as defined in Section 1.2.5.

LEMMA 4.5.2. Let A be an algebraic dominant weight and let f = fPRu; €
H,(KP). Then the following congruence holds:

I5(f.0) = I8(£,A)  mod N(A,t)Meas(K?, dg),
with N (A, t) the power of p defined in Definition 4.3.9.

Proof. Let KP be such that fP is bi-KP-invariant. Let h be the largest
slope (strictly) less than v,(N(A,t)) and ocurring in the cohomology of Dy (L)
or Vy(L). Then one has

tr(f, HE(Sa(K?.1), DA(L)=" = I5(f. ) mod N(X,t)Meas(K?, dg),

tr(f, H*(Sq(KP.L,), VY (L))S" = IE(f, ) mod N(\, t)Meas(KP,dg).

By Proposition 4.3.10, the left-hand side of both congruences are equal and
the lemma is proved. O

4.5.3. Twist with respect to a pair (w,\). For any pair (w, \) with w € W
and A a locally algebraic weight, one defines a Q,-linear automorphism of the
Hecke algebra H,

[ ot
defined by
For =g g
if f=fP®u withteT™ and f¥ € C?(G(A?)v@p) and extended to H, by

linearity. For any character 6 of Rg,, we then consider the twisted character
6w defined by

0N (f) = ()

for all f € Rg,. Similarly, for any irreducible finite slope representation o, we
denote by o the twisted finite slope representation defined by

"N f) = a(fN).
It is straightforward to verify that we have
(30) Lgu = pg + A& — w x N8,

In particular, when g is not critical with respect to A&, pigw . ¢ X*(T)q+,
and therefore m (0" w, A\, KP) = 0 as long as w # id since the cohomology
as an integral structure (if the multiplicity is not zero, it means that
must be integrally valued and its slope must belong to X*(T")g +). In view of
Corollary 4.5.5 below, this gives another proof of Corollary 4.3.12.
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THEOREM 4.5.4. Let f € 7-[1'0; then for any locally algebraic character A,
we have

IS N) = D (—1) L (£ w x 0.

w

Proof. One applies the finite slope spectral sequence of Theorem 4.4.1.
One again needs to pay attention to the fact that the action on the BGG
resolution is the standard action (i.e., the action of ¢ on Dy, (L) is the x-action
multiplied by &(#)***"*). The reason why the twists of the Hecke operators
appear here is that the distribution I é is the trace with respect to the x-action.
The details are left to the reader. O

Recall that for any irreducible finite slope representation o, we have de-
fined in (28) the Euler-Poincaré multiplicity mg(a, A). It satisfies

IS = S mb (0, ) (),

where the sum runs over (absolutely) irreducible finite slope representations.
If, moreover, X is locally algebraic, then we can also define m (s, \) in a
similar way by replacing ITc( fyA) by I&(f,\). Then we have the following
straightforward corollary.

COROLLARY 4.5.5. Let A be an arithmetic weight. Then for any finite
slope irreducible representation o, we have

m (e, ) = > (=1 mb (0", w N,
weWw

There is a similar formula for the multiplicities m(6, A, K?) and m(, \, KP).

4.6. The FEisenstein and cuspidal finite slope p-adic character distribu-
tions. As in the classical case, the p-adic automorphic distribution (which is
not in general effective) can be decomposed as a sum indexed on Levi M and
elements of WM of Eisenstein and a cuspidal p-adic character distributions.

4.6.1. Definitions of Ié7M7w and I&O. For any standard Levi M € Lg
and w € WM | recall that we have defined linear maps from H,(G) into H,(M)
f— f;;:gw to relate the character of the parabolic induction of an admissible
finite slope to the character of the representation which is induced. We define
character distributions I&O and Ig M forany M € Lg and w € Wé\{{s, by
induction on the rk(G). If 7k(G) =0, we put

16 (£ ) = T g (£, 0) 1= I5(f ).

Assume now that rk(G) = r and that these distributions are defined for groups
of rank less than r. Then, for any proper Levi M € Lg and f = fP ® us, we
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put

I (£ ) o= Ty o (f35w * A + 2pp)
where 2pp stands for the sum of positive roots of the unipotent radical of the
standard parabolic subgroup of Levi M and

Ig,M(fv A) = Z (_1)l(w)+dimnMI£’,M,w(fv )‘)7
wEWé/{S
where nj; stands for the Lie algebra of the standard parabolic of Levi M. We
define
1Eo(f ) = LN = 0 10 (F ),

MeLg
M#dQ

Let A = \*8¢ be an arithmetic weight of level p™. In view of the formula
(29), for f € Hy(KP) we define

I&o(f:A) = Meas(KP).£()*tr™ (f; Hoysp(Sa(KP-In), VX (C)(€)))-

LEMMA 4.6.2. For any f = fP ® uy € Hy and regular arithmetic weight
A, we have

g =S > >

MeLé woewM wewM
; =1
(1m0 gl (RS wo x A+ 2p,).

Proof. This is a consequence of the trace formula of Franke and a standard
computation that we now explain. In order to have lighter notations, we will
write the proof only when A is algebraic (i.e., e = 1) and f = 1x» ®u; since the
proof is strictly the same in the general case. We first fix a standard parabolic
P of Levi subgroup M. For any algebraic dominant character y , let us write
oy = Hc'usp(gM, v (C))E”, which is viewed as a representation of M (Q,). Let
P be the standard parabolic subgroup with Levi M and let N be its unipotent
radical. Then by relation (8), we have

5 (far, o) = tr¥ (uy - Indgggzgau).
Here again, the subscript “st” stands as usual for “standard action” and the
parabolic induction is the smooth nonunitary parabolic induction. If ¢ €
(Indggggau)l and w € WM then ¢(w) is invariant by wlw™! N M(Q,) =
INM(Q,) = Iy since w € WM. Therefore, from the decomposition

G(@p): |_| P(Qp)wL
weWwM

we see that the map ¢ — (¢(w)),cpym defines an isomorphism

G(Qp I M
(Indpggpgau) :(UIILM)W .
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Then a classical computation gives

t15° (g (Ind E g u) )
= Y [Nu(Zp) : tNu(Zp)t e (Inyywtw ™ Tag = ofM)

weWwM

= 2

wewM

[Nu(Zp) : tNw(Zp)t™
Meas(KP)

1
—ap—1
ey I 0 (L g 101+10)-

Here we have considered Ip;wtw ™'y, as the element 1,1 M € Uy(M) thanks
to the remarks of Section 4.1.8 and N,, := N Nw~!Nw. Notice that

[Nw(Zp) : tNw(Zp)t ] = I1 e[, = e erter

OzGRpﬁw_l(Rp)
If u=wo*xA+2pp = wo(A+ pp) + pp for some wy € Wé\/ils, we therefore have
EMNw(Zyp) : tNw(Zp)t1E(#) ™
= (¢ )>\ w™ (wo(A+pp)+pp) |t“’ Ypp +pP’ 1

— () Hwo(A+pp)t+pp)+w™ (PP)+PP5§7w( t) = g(t)’\_wflwo*ksgw(t).

)

Recall also that we have

ew(t) T (Lkp) M ® U1 3 = Meas(K?) ™! ]r\zgw.

Combining all the previous identities, we get

(31) f(t) trSt(f cusp(S ng*)\—l-Qpp (C)v)

-1
Z f )\ w wo*AI]C\ILO( ]r\;:gw,wo*)\—i-Qpp).
wewM

Recall that by Theorem 1.4.2 due to J. Franke, since A is regular, we have

trs*(f : H*(Sq, VX(C)))

Z Z l(wo +dlmthrSt(fM cusp(SM’ Vwo*)\+2PPM ))

MeLg wy EWg{S

Therefore, after multiplying by £(¢)*, we get

=2 X

MeLg wo GWé\/ljb

. (_l)l(wo)-f—dlmnMg( ))\trst(f cusp<SM’ Vwo*)\-f-?pPM ))

The statement that we have claimed now results from the combination of this
formula and (31). O
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COROLLARY 4.6.3. Let f = fP @ uy € Hy(KP) be Zy-valued and let X be
a regular arithmetic weight. Then we have the congruence

Lo (£ ) = I80(f.0)  (mod Meas(K?, dg).N (), 1)).

Proof. Notice first that since f = fP ® uy € Hp(KP) is Zy-valued, the im-
ages of f by all the character distributions we have defined are Meas(K?).Z,-
valued. We prove this proposition by induction on the rank of G. The case
of rank 0 follows from the previous paragraph (see Lemma 4.5.2). We now as-
sume that the proposition is satisfied for all proper Levi subgroups M of Lg. If
wo # w, then N (A, ¢) divides (£)* % 'wo*A Tt therefore follows from the pre-
vious lemma that we have the following congruence modulo Meas(KP)N (A, t):

GO— a(fN) — Z (— 1)l(w)+dimnMIX14,o( Moo Wk A+ 2ppy,).

M
wEWg,

By Lemma 4.5.2, we also have
IS(f,A\) = IL(f, ) (mod Meas(K?, dg).N (A, t)).
We can now conclude the proof, using the induction hypotheses and the defi-
nition of ITG,O' (]
4.6.4. For any A € X(Q,), by Proposition 4.3.5, we have
IT (f, N\ Zm o, \)J,

with m'(o, A) = 3,(=1)mi(o, A) € Z. By induction on the rank of G, we eas-
ily see that ITG o(f,A) and ITG M (f3A) are finite slope character distributions,
and we have spectral decompositions

Igof, Zmoa)\

and
[ng (f, ) ZmGMw(U Mo (f),

where mTG M and erG’()(O', A) € Z denote the corresponding multiplicities.
If X\ is a dominant algebraic weight, then we also denote mao(a, A) as the
multiplicity of ¢ with respect to the finite slope character distributions f —

Ig,[)(.ﬂ )‘)

COROLLARY 4.6.5. Let A be a reqular arithmetic weight. If o is not crit-
ical with respect to N8, then we have

meo(0, ) = mf (e, \).

Proof. Using an appropriate ¢t € T~ 7, this is an easy consequence of Corol-
lary 4.6.3. The details are left to the reader. O
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Definition 4.6.6. Let (\,,)n be a sequence of algebraic dominant weight in
X(Qp) such that (\y)y is converging p-adically to a weight A in X(Q,). We say
that this sequence is highly regular if, for all positive simple root «, we have

Jim An(Hy) = 4o0.
This notion is used in the following situation. If ¢t € T~ 7, then
(32) lim N(A,, ) =0,
where the limit is understood for the p-adic topology.

COROLLARY 4.6.8. Let (\,)n be a highly regular sequence of dominant
weight converging p-adically to a weight X € X(L). Then for any Hecke operator
[ =f"@u €My, we have

Tim T8 o (f, M) = 155 (£, N)
for?7=10,0.

Proof. This is a direct consequence of the congruences of Lemma 4.5.2
and Corollary 4.6.3. (]

4.7. Automorphic Fredholm series.

4.7.1. Definition. We consider automorphic Fredholm series only when
G(R) has discrete series. Under this hypothesis, dg stands for half the dimen-
sion of the corresponding locally symmetric space. For any f € H,,, A € xX(Q,)

and 7 = (0,0, let us denote by PCT; »(f, A, X) the Fredholm power series associ-
ated to the finite slope character distribution:

h (—1)"Meas(K?) "L .1f, , (b, ))

for KP the maximal open compact subgroup of G(A?) such that f is KP bi-
invariant. If, moreover, A is an arithmetic weight, then we set

PE (£, A X) 1= det(1 = X.f; H*(Sa(KP, 1), Vi (L)) 7).
LEMMA 4.7.2. Assume that X\ is a regqular arithmetic weight and f =
fP®up witht € T~—. Then the power series
- PL(f; A X)
PE A X) = S
PG,O(f, )‘a X)

is a meromorphic function of X on C, (i.e., the ratio of two Fredholm series
in X)) with coefficients in O, and its set of zeroes and poles lies in

{z € C, such that |z|, > N(\,t)}.

P
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Proof. This follows from the definition of the Fredholm power series and
Corollary 4.6.5. O

Let Ay := Zy[[T(Zyp)/Zy)] C O(X) and Ax g, = Ax ® Qp. We have the
following theorem.

THEOREM 4.7.3. Let f € Hy,(KP) and X = Xk»; then the following prop-
erties hold:
(i) The functions of X defined by IL(f, ), I v (f. ) and If o(f. \) be-
long to Axq,. In particular, they are analytic on X.
(ii) If Goo has no discrete series, then Iéo(f, A) =0.
(ii) If M has no discrete series or if aim(%KmM) < dim(Xgvr), then
I&M’w(f, A) =0.
(iii) Assume that f = fP @ uy with t € T3 then we have P&O(f,)\,X) €
Ax{{X}}. In other words, it defines an analytic function on X X Agig.
Proof. Again from the definitions, it suffices to prove (i) for ITG( fyA\) since
the other cases will follow from an induction argument on the rank of G. Let
U C X be a an open affinoid subdomain and let n > ng. Then we have

RU*(K?.1,Dy) @\ L = RU*(KP.1, Dy (L))

for any A € U(L). Therefore Fy := Meas(KP)tr(f, RI*(K?.I1,Dyy)) is a
function inside O(U) satisfying Fy(\) = I(T;(f, A) for any A € U(Q,). Let
O°(4) be the ring of analytic functions on 4 which are bounded by 1. If f is
Meas(KP)~1.Z,-valued, then Fy € O°(8) since f preserves the O%(U)-lattice
RT*(KP.I,(Dy,)°). Here (Dy,,)° is the intersection of Dy, with the O%(4)-
dual of the lattice of functions f of Ag, bounded by 1 on il x I. Since this
can be done for any such i C X, we deduce that Ig(f, A) € lim O(U) = Ax.

o
Therefore (i) follows.

For the proof of (ii), we see from (i) that it suffices to show the vanishing
of Ig;,o( f,A) for all algebraic dominant weights A because those weights are
Zariski dense in X. Let A\ be such a weight and let (\,), be a highly regular
sequence converging p-adically to A. For each n, 1870( fsAn) = 0 since G, has
no discrete series and A, is dominant regular. By Corollary 4.6.8, this implies
that

Ig;,o(fv A) = nhanolo Ig,O(fv An) =0,
which concludes the proof of (ii). The first part of assertion (ii)’ follows from
assertion (ii) for the group M. The second assertion follows from the fact that

for any algebraic dominant A € Xg»(L) such that w * A 4 2pp is nontrivial on
Zy(Q) N KP.I, we have

51 o(fifhwx A+ 2pp) =0 (mod Meas(K?)Nas(wtw™", w + A+ 2pp)).
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Since those \'s are Zariski dense by our hypothesis on the dimensions of the
weight spaces for G and M, this implies, using a highly regular sequence, that
I}L\/LO( ]r\zgw, wx A+ 2pp) = 0. Using again the Zariski density of those \’s, one
can conclude our proof since this is an analytic function of A by (i).

We now prove point (iii) for which we may assume that G, has discrete
series by point (ii). Let & C X as above in the proof of (i). We furthermore
assume that it contains algebraic weights. This implies that algebraic weights
are dense in {l. We will also assume that O(4l) is factorial which is the case for
instance if il is a closed disc. Since X can be covered by a union of such discs, we
may assume that O(Y) is a factorial ring. We need to prove that Pg,o( fLiANX) e
O°%(){{X}}. From the construction and the description above in the proof of
(i), this series is the ratio of two series in O°(4){{X}}. Since O(Y) is factorial,
by [CM98, Th. 1.3.11] we have a prime factorization of P&O(f, A X) as

Plo(f 0 X) = T P(X)
i€lr
with m; € Z\{0} and {F;(X)}; a set of distinct prime Fredholm series in

O°(){{X}}. We therefore can write Pf,o(f,A, X) = Hix) with N(A, X)

and D(A, X) relatively prime Fredholm series.

Before continuing the proof, we refer the reader to Section 5.1.4 for the
definition and basic properties of the hypersurface Z(F') C 4 x A%ig defined for
any Fredholm series F'(\, X) € O(U){{X}}.

Assume now that D(A, X) # 1. Since (N, D) = 1, it follows that ¥ :=
Z(D)— Z(D)NZ(N) is a nonempty open rigid subvariety of the hypersurface
Z(D). Since the projection of w : Z(D) — 4 is flat, for any open affinoid
subdomain 20 C Y, w(20) is an open affinoid subdomain of i, and it therefore
contains a Zariski dense set of algebraic weights.

Let us fix such a 20 and let w = (A\,z) € W(Q,) such that A € Y(Q,)
is an algebraic weight. Since x # 0, we can easily choose an element w' =
(XN, a"), p-adically close to w inside 20(Q,) so that A’ is regular dominant and
|z'|, < N(N,t). Since (X,2') is a pole of PCT;’O(f, N, X), it therefore follows,
from Lemma 4.7.2, that z’ is a pole of the rational fraction P&O(f, N, X). But,
since ) is regular dominant,

PEo(f, N, X) = det(1 — X.f|H O (Sq(KP.I, VY, (L))

it is a polynomial and has no pole. This contradiction implies D(\, X) = 1,
and therefore P(T;’O(f, A X) € O {{X}} as claimed. O

COROLLARY 4.7.4. For any finite slope representation o, w € Wé/{s and
A € X(Q,), we have

(=)™ mf w0, 3) >0,
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and erG,M,w(U’ A) is always 0 unless M € L¢. In particular, for each \ €

X(Q,), the map f — (—1)dmlg’M,w(f, A) is an effective finite slope character
distribution.

Proof. Since Ijy ;o (£, A) = Ih, o(f15,), it is sufficient to prove the result
for G = M. This is a consequence of Lemma 4.1.12 together with the parts
(iii) and (ii) of Theorem 4.7.3. O

4.7.5. A twisted version. Let ¢ be a finite order automorphism of G pre-
serving the pair (B,p,T)r) for I the finite extension of Q, that splits G and
the center of GG. Especially it preserves the Iwahori subgroups I, and the
subgroup T'(Zy). It therefore acts on X by A'(t) := A(t"") and this action
preserves the cone of dominant weights. We denote by X* C X the subvari-
ety of weights A fixed by ¢. Since ¢ preserves I, it acts on f € A(I,L) by
(t.f)(g) :== f(g" ). Moreover, if A € X*(L), then this action leaves A, stable.
The Fréchet space D, inherits an action of ¢ compatible with the action of ¢ on
the groups I in the sense of Section 4.2.11. For any f € H,, we can therefore
study the traces of ¢ x f (a notation for ¢+ composed with f) on the Fréchet
spaces or Fréchet complexes we have defined. We can especially define the dis-
tributions I¢;(¢ x f,A), I o(¢ % f,A) and of I (¢ X f,A) as well as a twisted
multiplicity m*(o x ¢, A) with * = { or cl. We can also define the corresponding
power series Pg5(t X f, A\, X), P& ot x f,A, X) and of Pg 5,(¢ x f, A, X). The
following definition will be relevant in the theorem below which is the twisted
version of Theorem 4.7.3.

Definition 4.7.6. We say that ¢ is of Cartan type if there exists goo € Goo
such that Int(go) o ¢ is a Cartan involution of G,. For instance, if G, has
discrete series, one can show that ¢ = id is of Cartan type.

Let Ay := Zy[[T"/Z,]] C O(X') and Ay g, = Axe ® Qp. In the twisted
situation, a variant of Theorem 4.7.3 is the following.

THEOREM 4.7.7. For any f € H,,, the following properties hold:
(i) The functions of \ defined by Ig(b X fyA), ITG,M(L x f,A) and Ié7O(L X
[, A) belong to Ax. q,. In particular, they are analytic on X*.
(ii) If ¢ is not of Cartan type, then ITG70(L X f,A) =0 for all X € X(Q,).
(iii) Assume that f = fPQu; witht € T~ ; then we have P&O(fo, AN X) e
Ax{{X}}. In particular, it defines an analytic function on X* X A%ig.
Proof. Tt is similar to the proof of Theorem 4.7.3. A detailed construction
and proof will appear in Zhengyu Xiang’s thesis. In particular, one needs
to write the decomposition of the twisted finite slope character distribution
attached to rational parabolic subgroups which are stable by the involution .
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It can be done exactly in the same way. One has to replace the trace formula of
Franke by the associated twisted trace formula which can be in turn obtained
from Franke’s spectral sequence expressing the cohomology of V)'(C) as a
limit of the spectral sequence constructed out of the cuspidal cohomology of
the standard Levi subgroups when A is regular. O

4.7.8. The next two sections will be devoted to some applications of the
important analyticity property of the distributions Ig,?(f ,A) we have defined
in the previous paragraphs. The first application is the construction of eigen-
varieties a la Coleman-Mazur. The second is the proof of a formula for these
distribution in geometric terms a la Arthur-Selberg.

5. Construction of eigenvarieties
5.1. Spectral varieties.

5.1.1. Analytic families of finite slope character distributions. Let X be a
rigid analytic space defined over an extension of @Q,. A Q,-linear map

J=Jx: 'H; — Ax@p C O(%)

is called a X-family of character distribution if, for all A € X(Q,), the com-
posite Jy of this map with the evaluation map at X is an effective finite slope
character distribution. For any irreducible finite slope representation o, we
write my(o,\) € Zso for the multiplicity of J, in Jy. Let KP be an open
compact subgroup of G (A’}). The goal of this section is to attach to the pair
(Jx, KP) an eigenvariety over X parametrizing the spherical Hecke eigensys-
tems of the irreducible finite slope representations o for which mj(o,A) > 0
and 0" % 0. We will then apply our construction to the analytic families of
finite slope distributions we have studied in the previous chapter. Let S be
the smallest finite set of primes such that KP is hyperspecial away from S.
In our main application, X will be the weight space Xg» (which is actually
only depending upon S) introduced in the previous chapter and J will be Iz:,o-
One can also construct Eisenstein components attached to the distributions
I& Mjw’s.

5.1.2. Remark. Before starting up the task that we propose to perform in
this chapter, we would like to mention that our construction extends a con-
struction of K. Buzzard in [Buz07] who did such a construction with the weaker
hypothesis that for each affinoid £ C X, there is a i-family of orthonormal-
izable O(4)-Banach spaces equipped with an action of the Hecke algebra and
such that certain Hecke operators at p are completely continuous on them.

5.1.3. Let f € M. Then for each A € X(Q,), let us write P;(f, X, X) for
the Fredholm power series (in X) attached to f and Jy. Then we can write
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Py(f,A\,X) =1—Jx(f)X +---. Therefore, we see that the first term of the
X-expansion for Py(f, A\, X) is an analytic function of A\. A similar statement
is also true for all the coefficients of Py(f, A, X) since the coefficient of X can
be expressed as a polynomial of degree n in Jy\(f), JA(f?),..., Jx(f™). Thus,
there exists P;(f, X) € Ax,{{T}} such that P;(f, X)(\) = P;(f, A, X) for
all X € X(Q,).

5.1.4. Fredholm hypersurfaces. We recall some of the definitions due to
Coleman and Mazur of Fredholm hypersurfaces. We refer the reader to [CM98]
and [Buz07] for the notions and properties recalled here. One says that an ele-
ment P € Agg{{X}} is a Fredholm series if P(0) = 1. For such a P, we denote
by Z(P) the rigid subvariety of X x Al}ig cut out by P. It is called a Fredholm
hypersurface, and its projection onto X is flat. Z(P)(Q,) is equipped with the
natural topology such that the inclusion Z(P)(Q,) C Q, x X(Q,) is contin-
uous. An admissible affinoid subdomain of Z(P) can be obtained as follows.
Let 4 C X be an affinoid subdomain and assume that we have a factorization
Ply = Q-Rwith Q, R € O(W){{X}}, with @ a polynomial of degre d relatively
prime to R such that Q(0) = 1. Then ¢ g := Sp(O(L)[X]/(X?Q(X1))(Q,)
imbeds naturally in Z(P)(Q,) where, for any Tate algebra A, we denote by
Sp(A) the corresponding rigid affinoid variety as in [BGR84]. Moreover, 2 g
is open if and only if 4 is. Any such subset will be called admissible. It is
not difficult to check that it defines a Grothendieck topology on the ring space
Z(P) by taking finite covering by admissible open subsets. This gives Z(P)
the structure of a rigid analytic variety. Of course, this ringed space is not nec-
essarily reduced. Its reduction Z(P),eq is a union of irreducible components
that are themselves of the form Z(P) for irreducible Fredholm series P.

5.1.5. Spectral varieties attached to J. For any f = fP ®uy € H,(KP)
with ¢ € T, we denote by 3;(f) := Z(P;(f)) C X x A}ig the Fredholm
hypersurface cut out by the Fredholm series Py(f, A, X).

PROPOSITION 5.1.6. Let = (A, ) € X(Q,) x@;. Then x € 3;5(f)(Q,)
if and only if a; ' appears as an eigenvalue of f acting on Vi, (KP) with a
nontrivial multiplicity.

Proof. This is obvious from the definition. O
5.2. First construction of the eigenvarieties.

5.2.1. We fix K? C G(A?). Let S be the smallest finite set of primes

away from which K? is hyperspecial. Let Eg,p be the p-adic completion of
Rsplug !, t € T~]. For any subfield L C Q,, we define

mS,p(L) = Homct.alg.(ﬁs,py L)-



EIGENVARIETIES FOR REDUCTIVE GROUPS 1759

By construction, the characters of Rg,, contained in g ,(L) are those of finite
slope. The canonical p-adic topology of g, (L) is the topology induced by
the metric [0 — 6’| = Supsep, [0(f) — 0'(f)|p- In particular, for all f € ﬁs,p,
the map from g ,(L) into L defined by 6 — 6(f) is continuous. We consider
P =Ysyp = X x Rgyp. A point y of @(@p) is a pair (Ay,8,), where A, is a
weight and 0, is a homomorphism Rg, — @p of finite slope.

5.2.2. Construction of €x» j. Let Rg be the p-adic completion of the Lopy-

valued smooth function on G(A?U{p }) which are bi-invariant by K52 A
Hecke operator f € 7-[;, will be said to be KP-admissible if it is of the form
f=1ks®f @u, with f/ € R and t € T~ For any such f, one defines a map
of ringed spaces R from 9)g, into X x A}ig by y = (Ay, 0y) = (Ay, 0,(f)~1) on
the set of L-points and on the ring of functions R} : O(X){{X}} — O(%)&Rs,
defined by

dan X" an- (f)7
n=0 n=0

We define the eigenvariety €g» ;j as the following infinite fiber product

over s p:

Cxrg = [[R; 1 (34(1)),
f

where the fiber product is indexed on the set of KP-admissible Hecke opera-
tors f. For each admissible f, we will denote by r; the restriction of Ry to the
eigenvariety.

From the definition, €g» ; is clearly a ringed space whose underlying
topological space is the set of @p—points QEK;D’](@I)) with the topology induced

by the canonical p-adic topology of X x Rg,(Q,). Of course, we have

@KP7J(@p) = n R;1(3G,J(f)(@p))
f

By definition of the canonical topology of Rg (@p), the maps r are there-
fore continuous. We also need to define a G-topology of €g» ;. We say that
an open subset of €g»p ; is an admissible open subset if it is the union of
open subsets of the form (ry, x --- x rg, )" (). Here fi,...f, stand for
KP-admissible operators and 20 is an open admissible affinoid subdomain of
37(f1)x--x3s(fr). Similarly, we define the admissible coverings as the inverse
images by the projections r’s of the admissible coverings of the corresponding
spectral varieties. Naturally €x» ; is also a ringed space for its G-topology.
Notice also that by construction, for any KP-admissible f, we have a map of
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ringed spaces 7y : €xp ; — 37(f) fitting in a canonical diagram:

Ckr g

A
X <—3¢s(f)

In the next subsections, we will prove the desired expected properties of
the eigenvarities we have defined from those of the spectral varieties. We first
give a description of the points of the eigenvariety €g» ;. Let us denote by
my(A, 0, KP) the multiplicity of 6 in Vj, (KP?). Then we have the following

PROPOSITION 5.2.3. Let KP be an open compact subgroup of G(Aiﬁ) and
let y = (Ay,0y) € (X x Rgp)(Q,). Then my(Ay, 0y, KP) > 0 if and only if
y € €x» 1(Q,). Moreover, if y = (N\y,0y) € €gr 1(Q,), then there exists a
KP-admissible f such that

ret(rr(y) = {y}-

Proof. The argument of this lemma is essentially due to Coleman and
Mazur. For any f € H;(K”) and 8 € @p, let us denote by m (A, f, 5, K?)
the multiplicity of the eigenvalue 8 for f acting on Vi, (KP). Then we have

mJ()\yafaey(f)va) = Z mJ(Ay,eaKp)'
9(f):99y(f)

Assume now that mj(Ay,8,, K?) > 0. Then for any KP-admissible f, we
deduce from the formula above that mj(\y, f,0y(f), K?) > 0, and therefore
ri(y) = Ay, 0,(f)~1) € 35(f)(Q,) by Proposition 5.1.6. Since this is true for
all KP-admissible f, we deduce that y € €x» ;(Q,).

Let now L be the finite extension of Q, such that y € €x» j(L). Let
t € T~ and h = v, (0y(us)). Let us consider the action of Rgj, on the L-Banach
space Vy, (KP) and let V :=Vj, (KP)<h be its < h-slope part of V7, (K?) for
the action of the operator 1x» ®u;. Let A be the image of Rg ) inside Endp, (V)
and consider f1, fa,..., fr to be a subset of Rg, whose images in A form a
system of generators of A over L. Let R € Z, be of positive p-adic valuation
such that two distinct eigenvalues o and o' of the operators 1x» @uy, f1,..., fr
acting on V must satisfy v,(a — o’) < v,(R). Then we consider the operators
hi,...,h, defined by hy = f; and the induction formula h;+1 = fi11-(1+R.h;),
and we take f = (1xp®@u¢)(1+R.hg). Let now 6 be a character of Rg ) occurring
in the representation Vy, (K?) and such that 0(f) = 6,(f). In particular, this
implies that v, (6(u¢)) = vp(0y(us)), and therefore 6 occurs in V. Moreover,
this implies that v, (6(u¢) — 6, (ur)) > vp(R), and therefore (u,) = 0y(u) by
our assumption on R. We deduce that §(h,) = 6, (h,). Repeating the previous



EIGENVARIETIES FOR REDUCTIVE GROUPS 1761

argument, we deduce that 6(f;) = 0,(f,) and then by a descending induction
that 0(f;) = 0,(f;) for i = ¢q,q—1,...,1, and therefore # = 6, since # and 6,
agree on a system of generators of the Hecke algebra acting on V.

For this f, we therefore have mj(\y, f,0,(f), K?) = mj(\y, 0y, K?). Since
r#(y) € 35(f)(Q,), this implies that m(Ay, 6,, K?) > 0 by Proposition 5.1.6,
and we have r;l(rf(y)) NExr s(Qy) = {y}- O

5.3. Second construction. We now give a construction of a rigid analytic
variety whose set of points is in bijection with & x» (@p). We first construct
the local pieces and we show how we can glue them together to construct a
rigid analytic space over X.

5.3.1. Construction of local pieces. We fix t € T~ and write fy for the
KP-admissible Hecke operator fo := 1x» @ uz. Let 4 C X be an affinoid subset
of X and let 2 g be the admissible affinoid subset of 3;(fy) over Y attached
to an admissible factorization P;(f, X)|y = Q(X)S(X) € O(W{{X}}. For
any A € H(Q,), let us write Qx(X) for the evaluation of Q(X) at A. Then
recall that there is a unique #H,(KP)-stable decomposition (see §4.1.13)

Vi, (K?) = Ny, (Qx) © F, (Qx)

such that Ny, (Q)) is finite-dimensional of dimension deg(Q), QA(X) is the
characteristic polynomial of f acting on Ny, (@) and Q3(f) is invertible on
F7,(Qy). Let Rgs(X) € XOM){{X}} be the entire power series attached
to @ and S by Theorem 2.3.8. Then for any A € 4(Q,), Rq,s(fo)(A) acts on
Vi, (KP) as the projector on N, (@) with respect to the above decomposition.
In particular, for any f € H,(KP) the trace Jg, +(f) of f acting on Ny, (@) is
equal to J(f.Rg(fo)(X\)) (see §4.1.13). This implies that the map Ty : f —
J(f-Rg(fo)) € O(L) is a pseudo-representation of H,(K?) of dimension the
degree of ) (see, for instance, [Tay91] for the definitions and basic properties
of pseudo-representations). Then we put Ry = Rg, ® Ol) and hjqy =
RL[/ Ker(TQ,n) N Ry with

Ker(Tou) = {f € Hp(K") ® OW)|Tou(ff) =0, Vf' € Hy(KP)}.

By the basic properties of pseudo-representations, we see that h g ¢ is a finite
algebra over O(4l) and is therefore an affinoid algebra. Let us assume that { is
reduced. By the theory of pseudo-representations, a theorem of Taylor [Tay91]
implies that h ;g ¢ is the image of Ry by a semi-simple representation pj g«
of H,(KP) of dimension deg((Q) defined over a finite extension of the total ring
of fractions of O(U). Moreover, for all f € H,(K?), Chygu(f, X) := det(1 —
Xpru(f)) has coefficients in O(4) since tr(prou(f)) = Tou(f) € O(LL) for
all f € H,(KP).
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We then write Y g := Sp(hjgu) for the corresponding affinoid variety.
There is a canonical map Yy — Y which fits in a canonical diagram

Yiou C Dsp =X X Rgp
U C X.

Moreover, the map Ry, induces a canonical surjective map

T+ YrQu — Wou C 3s(fo)

above 4 which is finite since both the source and the target are finite over 4l.

In this construction, 4 is not necessarily supposed to be open. In the par-
ticular case where 4l is reduced to a point 4 = {A}, then Y; 5 3y = Sp(h g (\})
is the set of finite slope characters 6 of Rg, such that Qx(f(u;)~') = 0 and
mj(A, 0, K?) > 0. Moreover, h ;g (1} is the unique quotient of Rg,®Q), having
these characters.

LEMMA 5.3.2. Let &' C 4 be an affinoid subdomain (not necessarily
open); then the kernel of the canonical surjective map hjqu ®@owy OW') —
hyquv is contained in the nilradical of hjqu @ew O&'). In particular,

Yiu(@,) = (Wo.u(@y)) = {(A,0) € (€1xr xx 4)(Q,)Qx(0(fo) ") = 0}.

Proof. We may clearly assume that 4l is reduced as this case will trivially
imply the general case. Let f be in the kernel of this map. Then the coefficients
of the characteristic polynomial Ch g «(f, X) must belong to the kernel of b :=
ker(O(U) — O(V)). By Cayley-Hamilton’s theorem, Ch g u(f, psou(f)) =0,
and therefore f4¢8(9) can be expressed as a polynomial in f with coefficients
in b. This implies that f is nilpotent in h 5, u®o s OU) /b = hjQu®@o OW)
which proves the first part of the proposition. The second part follows from
the case Y’ = {A} for any A € 4(Q,) and the description of Y} ¢ ry3 which was
done before. O

5.3.3. Gluing of the local pieces. We need to show that the pieces Y; g«
glue together when the 20¢ ¢ do in the spectral variety 3;(fo).

LEMMA 5.3.4. Let &' C Y be an inclusion of open affinoid subdomains
of X; then the canonical surjective map hjqgu ®o) OW) — hyg is an
isomorphism.

Proof. Since {' C U is an inclusion of open affinoid subdomains of X, the
map O(U) — O(ﬂ/) is flat. Let Ry := R57p®0(ﬂ); then hJ,Q’u = Ru/ker(TQ,u).
Now since O(U) — O(W) is flat, we have ker(Tg ) = ker(Tgu) ®ow) OW').
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Therefore,

hygsw = Ry /ker(Tg )
= (Ry @0y OW))/ (ker(To.u) o OK))
= (Ry/ker(Tou)) ®ow) OW)
=hjou Xo(w) O(il’). O
PROPOSITION 5.3.5. Assume that we have a factorization Q = Q'Q" with

(Q,Q") =1 in OW)[X]. Then the canonical inclusion map Wy y — W«
induces the following canonical isomorphism:

Yo u = Y704 Xwgq Wo u — Yiou
x \L rf() l
lezu wQ,M-

Proof. Since (Q',Q") = 1, we have N, (Q) = N, (Q') ® Ny, (Q") for all
A € 1(Q,). Moreover, if we write 1 = Q'(X)R'(X)+Q"(X)R"(X) in O()[X],
then the evaluation at A of e := Q"(fo)R"(fo) (resp. ef = Q'(fo)R'(fo))
acting on Ny, (Q) is the projector onto Ny, (Q) (resp. onto Ny, (Q") ). We
deduce that

(33) ker(TQ,u) = ker(TQ/M) N ker(TQu,u).

Indeed notice first that the splitting above shows that T s = Ty +T y, and
therefore the intersection is included inside the left-hand side of equality (33).
Now if g € ker(Tg), then Ty «(g9f) = Tou(gfep) = 0 for all f € Ry, which
implies that ker(Tg ) C ker(Tg g). Similarly, ker(Tg ) C ker(Tgrg) which
finishes the proof of (33). On the other hand, Ry = ker(Tqy ) + ker(Tg» g)
since any f € Ry can be written as fe( + fej. By the Chinese Remainder
Theorem, this implies we have a canonical isomorphism

hjgu = hygu X hyors

compatible with the canonical maps from Rg, in the algebras hjg, hjq u
and hjgn g, respectively. This easily implies the claim of the proposition. [

5.3.6. From the previous proposition and lemma, we can deduce, as was
done by other authors (for example, see [Buz07, §5]) from Propositions 9.3.2/1
and 9.3.3/1 of [BGR84], that the Yy glue together into a reduced rigid
analytic variety (’EfL e With a finite map rz, over 3;(fo) such that for each pair
(Q,41), we have

€] i X3,(0) Wa.u = YiQu
The cocycle conditions defining the descent data are satisfied since they are sat-
isfied for the spectral variety 3,(fo). Moreover, by Lemma 5.3.2, € -, Q) =
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¢ Kr (@p). This implies that € g» is a rigid analytic space whose correspond-
ing reduced closed subspace is (‘EfL xr- We will therefore denote the later by
Qiff?(p. We may summarize our results by the following theorem.

THEOREM 5.3.7. Let J and K? as before. Then €;xr C Ys,p 15 a rigid
analytic equidimensional space over Q, satisfying the following properties:
(i) For any y = (Ay,0y) € Ds(Q,), we have y € €5 x»(Q,) if and only if
my(A, 0, KP) > 0.
(ii) For any KP-admissible Hecke operator f, the projection map

Ty GJ’KP — 3J(f>

18 a finite surjective morphism.
(iii) €jxv is equi-dimensional of dimension dim X.

Proof. Point (i) is Proposition 5.2.3. Point (iii) follows from the fact that
€y rr = UQuSp(hygu), where (Q,4l) runs over the open affinoid subdomain
of sl and @ over the polynomial of O(H)[X] inducing a prime factorization of
Pi(fo, X) € OW){{X}} and the fact that hjgy is a finite torsion free O(Ll)-
algebra. We are left with point (ii). The surjectivity follows from the fact that
for any KP-admissible f, we have

mJ(Ay7f10y(f)7Kp) = Z mJ()\yaeaKp)
9(f)=99y(f)

and the caracterization of the points of €;g» and 3;(f) given by Proposi-
tions 5.1.6 and 5.2.3. Now let (Q, ) as before and let Q}(X) := Chyqu(f, X).
Then the map 7"3‘2 is induced by the O(il)-algebra homomorphism

OW[X]/(Q3(X)) = huqu

induced by X +— f. Since hjqy is finite over O(U) and the image of Y«
by ry is clearly Sp(O(t)[X]/(Q}(X))), we deduce that ry is finite on Q‘Efﬁl{p.
Since it factorizes through € g», it is also finite on the latter. This finishes
the proof of our theorem. O

COROLLARY 5.3.8. Every irreducible component of € kv projects surjec-
tively onto a Zariski dense subset of X.

Proof. Let U be an irreducible component of €;x» and let us choose a
point y € m(@p) belonging to only one irreducible component of €x». By
Proposition 5.2.3, we can choose a KP-admissible f such that r;l(rf(y)) is
reduced to {y}. Let 20 be an irreducible component of 3 ;(f) containing r¢(y).
Because 7y is finite and surjective, there is one irreducible component %’ of
r;l(ﬂﬁ) such that r;(U’) = 20. In particular, U'(Q,) N r;l(rf(y)) # 0, and
therefore y € U'(Q,). Since U is the irreducible component of € ; g» containing
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y, we must have U’ = 2. Note that we also have 7¢(0) = 20 which implies
that there is also only one irreducible component of 3(f) containing 7¢(y).
Since the statement of our corollary is true for the projection 3;(f) — X, we
deduce that the projection of U onto X has a Zariski dense image. (]

5.3.9. Families of irreducible finite slope representations of H,(KP). An
irreducible component of €x» ; can be seen as a family of finite slope characters
of Rgp. We now want to generalize this to representations of H,(K?) having
positive multiplicity with respect to J. We have the following proposition.

PROPOSITION 5.3.10. Let Ay € %(@p) and og be an irreducible finite slope
representation such that mj(Xg,00) > 0. Let yo = (Ao, 05,) be the correspond-
ing point of the eigenvariety € gr. Then there exist

(i) a finite flat covering U over an affinoid open subdomain AW of € kr
containing yo which is finite and generically flat over its projection
U C X in to weight space,

(ii) a point xy € sII(@JT,) above 1,

(iii) for all x € B(Q,), a (nonempty) finite set 11, of irreducible finite slope
representations o of H,(KP) such that 8, = 0, is the character of Rgy
attached to the projection of x into W(Q,) C €5 x»(Q,),

(iv) a nontrivial linear map Iy : Hp(KP) — O(),

such that if for any x € ‘Z](@p), we write I, for the composite of Iy with the
evaluation map at x from O(V) into @p and X\, for the image of T in Z{(@p).
Then

(a) For all x € B(Q,), I = Ysen, mal(o)Jy with my(o) > 0 only if
mj()\;m J) > 0.

(b) There exists a Zariski dense subset B(Q,)e " € B(Q,) such that
[T, is a singleton {o,} and my(c) = my(Ay,04) is constant for all
= m(@p)generic;

(c) o0 € g,;

(d) Let Oy be the canonical character of Rg, corresponding to 20; then
Io(ff') = Oan(F)Tan(f") for all f € Rs,, and f' € Hy(K?).

Proof. Let yo = (Ao, 6p) with 6y = 6,,. Then yo € @J’Kp(@p). Let 20 be
an affinoid neighborhood of yg inside fo,‘f?(p. We may assume that Y =Yg«
for some admissible pair (@, ) with £ an open affinoid neighborhood of Ag
inside X. Then we consider the character T'; g g representation p ;g g. Because
the image of H,(K?) ® O() by pj o« is finite over O(Y), after extending the
scalar to a finite extension of O(Y) or equivalently after replacing Y by a
finite cover Y’, it decomposes as a sum of isotypical components Tjq g =
Ty + - -+ + T, where the T;’s are characters of isotypical representations of

Hp(KP) defined on the fraction ring of O(Y’). Since these are isotypical,
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the action of Rg), on the semi-simple representation of each T; is given by
characters taking values in the ring of analytic functions of some irreducible
components of Y. Moreover, there exists a point xg of Y’ (@p) above yy =
(Ao, 00) € Y(Q,) such that the specialization of Ty« at x¢ contains Jy, as
a summand. A fortiori there exists iy such that the specialization at zg at
T;, contains J,, as a summand. Let U be the irreducible component of Y’
containing o such that the character T;, is defined over the fraction field of
O() and let 2 be the image of Y via the finite projection Y' — Y. Let us
call Iy the composite of T;, with the restriction map O(Y’) — O(Y). Then
we must have Ig(ff’) = Oy (f)Iy(f’). From the definitions and construction,
it is clear that (a), (c) and (d) are satisfied. Point (c) is a direct consequence
of the following easy fact: If a character Iy from an algebra A into an affinoid
algebra O() is generically irreducible, then the set of y € U(Q,), such that
the specialization at y of Iy is reducible, is a proper closed affinoid subspace
of . 0

5.4. Application to finite slope automorphic character distributions. We
can apply the formal result of the previous section to the families of finite
slope character distributions we have constructed in the previous chapter. Let
L¢ C Lg be the subset of standard Levi subgroups of G having discrete series.
For each J = (—l)df‘fj'(T;J\/Lw7 when M € LS and w € WAL, we obtain an
eigenvariety €xp prq. If G(R) has discrete series, then we denote by €g» o the
previous eigenvariety when M = G. We also write

Cxp = U U Crp Maws

MELE, wewM

Eis
Cxr .M = U Crr.Mw CKp Eis = U Cxr M-
M /A c
weWgio A]ff:g

From the previous section and the construction and properties of the automor-
phic p-adic finite slope distributions of the previous chapter, these eigenvari-
eties are equidimensional. It is also useful to notice the following proposition.

PROPOSITION 5.4.1. Let M, M’ € L¢, with M # M'; then the intersec-
tion of the subvarieties Exv p and Egp pp is of dimension smaller than the
dimension of Xgr.

Proof. By an easy reduction step, we can reduce to the case M’ = G and
M any proper Levi of G in L. Assume that the statement of this proposition
is wrong. That means that we have an irreducible component in the inter-
section of dimension dim X. By the corollary above, we can find a noncritical
point y such that ), is a very regular point (as regular as we want in fact) in
this intersection. This point y would be classical and associated to cuspidal
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representation and an Eisenstein series at the same time. This cuspidal repre-
sentation would be CAP in the sense of Piatetski-Shapiro. By a result of M.
Harris [Har84], this is not possible if A, is chosen sufficiently regular. (]

5.4.2. Noncritical and classical points. A point y = (Ay,0,) € €x»(Q,)
is called classical if A, is arithmetic and if 6, is attached to an automorphic
classical finite slope representation of weight )\Zlg . A point y = (A, 8,) is said
to be noncritical if A\, is an arithmetic weight and if 6, is noncritical with
respect to )\Zlg . Finally y is said to be regular if A\, is arithmetic regular. By
the discussion of the previous chapter (in particular Corollary 4.6.5), we know
that any noncritical regular point of the eigenvariety is classical. In particular,
these points in any open affinoid subdomain of the eigenvariety are Zariski
dense.

5.4.3. Families of finite slope automorphic representations. Let m be an
automorphic representation of G(A) occurring in the cohomology with the sys-
tem of coeflicient V){O (C). It is defined over a @p after we have fixed embeddings

. — Il KP .
of Q in C and Q,. We assume that 7 #" isnonzero for some m > 0 and some

open compact subgroup KP. We further fix a @p—valued finite order charac-
ter € of T(Z/p™Z) and let 6y be a finite slope character of Rg), occurring in
W]Ic;"'Kp ®@p(5_1). This determines what we have called a p-stabilization of 7,
and we suppose that it is of finite slope. Let og be the irreducible constituent of
the restriction of W?”'Kp ®Q,(e7!) to Hy(KP) such that Jo,(fg) = 00(f)Je(9)
for any f € Rg, and any g € H,(KP?). Then oy is a finite slope automorphic
representation, and the following theorem is perhaps the most striking result

of this paper.
THEOREM 5.4.4. Assume that mg(ao,)\o) # 0. Then, there exists
1

(1) an affinoid open neighborhood 4 C X of Ao;

(2) a finite cover W of U with structural morphism w;
(3) a homomorphism 6y : Rgs, — O(Y);

(4) a character distribution Iy : Hp(KP) — O(D);
(5)
(6)

5) a point yg € m(@p) above \g;

6) a Zariski dense subset ¥ C 0(Q,,) such that A, = w(y) is an arithmetic
weight for all y € 3;

(7) for each y € ¥, a finite set 11, of irreducible finite slope cohomological

cuspidal representations of weight Ay = w(y);
satisfying the following:

(i) The specialization of Oy at yo is equal to Oy.
(ii) The character distribution I, is an irreducible component of the spe-
cialization I, of Iy at yo.
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iii) For any y € X, the specialization 0, of Oy at y is a character occurring
Y
in the representation of Rg, in 75" for all w € IT,,.
iv) For each y € ¥ the specialization I, of Iy at y satisfies
Y
L(f) = Z mCl(Ua Ay)tr(my(f)),

o€lly
where m® (o, Ay) is the Euler-Poincaré characteristic of o defined as
m (o, \y) ==Y _(=1)"dimcHomy, (0, lim H' (Sc:(KP.1,), Vzglg(gy, Q)))
i KP
: _ yal
with Ay = A ®ey.
Moreover, Il contains only one representation for y in a Zariski dense subset

of X.

Proof. We just apply Proposition 5.3.10 to J = (—1)dGIgyo. Then we con-
sider X as the subset of points y = (X,6) of U(Q,) such that A is arithmetic
regular and @ is of noncritical slope with respect to A. This set is easily seen to
be Zariski dense in U(Q,) since the projection of U onto X contains the arith-
metic point Ag. Moreover, these points are classical and correspond to cuspidal
representations by Corollary 4.6.5. More precisely, for y € ¥ and o € II,, we
have mgyo(a, Ay) = m (o, \y). This concludes the proof of Theorem 5.4.4. [

5.5. Ezxamples.

5.5.1. About the hypothesis. We now explain that the hypothesis of the
previous theorem is satisfied for a very large class of automorphic represen-
tations. We assume that G(R) has discrete series. For my an irreducible
representation of Gy and A a dominant algebraic weight, let us define the
Euler-Poincaré multiplicity of 7y with respect to A by

mgp(ms, ) = > (—1)'dimcHomg, (7, H' (S, VX (C))).
i
When the weight A is regular let us also define
m(mg, A) = (—1)dG Z m(Tf @ Too).
Too €11y
By the results recalled in the first chapter, we then have

m(7rf, )\) = mEp(ﬂ'f, )\)
If o is a p-stabilization of 7y, we therefore have
m(o,\) = m(my,\) x dim Homy, (0, (7¢]3,)%),
where (7¢[4,)% stands for the semi-simplification of the restriction of 7y to
Hp. So if this p-stabilization is noncritical with respect to A, then mi(o,\) is
nonzero if and only if m (7, A) # 0, which is the case, for example, when 7

is attached to a cuspidal representation of weight X. This applies in particular
to all cuspidal forms of regular weight for symplectic or unitary groups over
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totally real fields. In those cases, the previous theorem applies and there exist
families passing through o.

However, if m(ms, \) # 0 but o is critical, then it is not clear in general
that m'(o, ) # 0. In what follows, we look at some examples of this situation.

5.5.2. An example in the GL(2)-case. Let G = GL(2),p. Assume that
mp = triv is the trivial one-dimensional representation and Ag = 1 is the trivial
weight. There is only one p-stabilization ¢ since 7 is one-dimensional, and
this is the trivial representation itself. The U, operator attached to the double
class of diag(1,p~!) has eigenvalue p, and the eigenvalue of T, for £ # p is
1+£. It is easy to check that my shows up only in degree 0 since the Eisenstein
series F is not holomorphic. Therefore in that case md(a, A) = 1. However,
mg (o, A\) must vanish since otherwise one would have a p-adic family of slope
1 passing through the p-adic form FEs(q) — E2(¢P), and we know that this is
impossible by a theorem of Coleman-Gouvea-Jochnowitz (see also [SU02]). We
could in fact show that mg(a, A) = 0 in that case using the multiplicity formula

of Corollary 4.5.5. Notice that mEis(a, A) = 0 since ¢ is not ordinary.

5.5.3. An example in the GSp(4)-case. In this example, we will use the
standard notations without defining all of them in detail. In particular, we refer
the reader to [TU99] or [SU06a] for the definitions on the group G = GSp(4)
and its corresponding automorphic forms. Let (B,T) be the Borel pair with
T the diagonal torus and B the Borel subgroup stabilizing the standard flag
of the symplectic space attached to G. Let s; and sy be the symmetries of
X*(T) attached, respectively, to the small and long simple roots attached to
the pair (B,T). An algebraic weight A is a triple (a, b; ¢) with a,b,c € Z and
a+b = ¢ (mod 2), and it maps T to the multiplicative group by the rule
diag(ty,to, t7 v, ty ') > t950(¢7a7b)/2 A weight is dominant if @ > b > 0.
The simple short and long roots are respectively (1, —1;0) and (0,2;0) and the
corresponding simple reflexion s; and sg act on X*(T') by s1(a,b;c) = (b, a;c)
and sa2(a,b;c) = (a,—b;c). Since p = (2,1;0), we have s1 x (a,b;¢c) = (b — 1,
a+ 1;¢) and s2 * (a,b;¢) = (a, —b — 2;¢).

We denote respectively by Mg = GLg X G, and Mg = GLy x Gy, the
standard Levi of the Siegel and Klingen parabolic subgroup of G. The corre-
sponding isomorphisms are given in the Siegel case by (g,v) + diag(g,’g~'v)
and in the Klingen case by

z 0 0 0

((ab) ) 0 a 0 b
cd)t) 0 0 (ad—bc)z~!

0 ¢ 0 d

One can easily check that Wé\{ss = {id, s2} and WE])V[iSK ={id, s1}.
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Let 7 be a unitary cuspidal representation of PGL(2) o whose correspond-
ing classical Hecke newform f is of weight 2k — 2 with k an integer greater
than 2. We make the following assumption:

L(f,k—1) = L(m,1/2) = 0.

Under this hypothesis, there exists a unique cuspidal nontempered representa-
tion SK(7m) on GSp(4),q such that its degree 4 L-function is given by

L(SK(), ) = L(m, 8)C(s — 1/2)¢(s +1/2),

and each local component of SK(7) at a finite place is the nontempered Lang-
lands quotient of the unitary parabolic induction from the Siegel parabolic
Indf/fs(ﬂf @ - I1V2x || |72, (e, mp@ |- |2 % || - |72 with the notation
of Sally-Tadic¢ [ST93]).

The corresponding p-adic Galois representation is, up to twist, given by

psk(r) = Py D Qp(l — k) © Qp(2 — k),

where we have denoted by p; the p-adic Galois representation attached to
f which has a determinant given by the cyclotomic character raised to the
(3—2k)-th power. This automorphic representation is called a Saito-Kurokawa
lifting of f. When k > 2, SK(7) ® |v|>~* is cohomological of weight \; =
(k — 3,k — 3;2k — 6). Here we have denoted by |v| the adelic norm of the
multiplier of G.

Let ¢ = e¢(m,1/2) = £1. This sign determines the nature of the archi-
medean component of SK(7). When € = 1, then SK(7)s and its contragredi-
ent are nontempered and cohomological in degree-2 and 4. Therefore SK(r)
shows up in the cuspidal cohomology in degree-2 and 4 with multiplicity one. If
e = —1, then SK(7) and its contragredient are the holomorphic and antiholo-
morphic discrete series. Therefore SK(m¢) appears in the cuspidal cohomology
of degree-3 with multiplicity two. As remarked by Harder, in both cases there
are also Eisenstein classes attached to SK(ms) providing a multiplicity one sub-
space in the Eisenstein cohomology in degree 2 and 3 isomorphic to SK(7) . All
together, we deduce that mgp(SK(7)s) = =2 if e = —1 and mgp(SK(7)s) = 2
if e = +1. In other words, mgp (SK(7)¢) = 2¢(7,1/2). For an account of these
facts recalled here and their credits, the reader can consult [Har93], [Sch05],
[SUO6Ga], [Wal80], [Wal91].

Let us assume that 7 is unramified at p and that we can fix a root « of the
Hecke polynomial of f at p such that 0 < v = v,(a) < k — 2. (The case v =0
can be done but it requires a bit more work, and the corresponding result is
already known by the work [SU06a].) An element ¢t = diag(ty, to,t; ‘v, t5 ')
belongs to T~ if 2v,(t1) > 2v,(t2) > v,(v). The slope of a p-stabilization is
therefore determined by the eigenvalues of the two Hecke operators Uy, =
Idiag(1,1,p,p)~ 11 and Uy, = I diag(1,p, p?,p) 1. In [SU06a], it is explained
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that there exists a p-stabilization o, of SK(7)® |v[>~* such that the eigenvalue
of U1 is a, and the one of Uy, is ap®~2. After renormalization, the eigenvalues
are therefore respectively o and ap.

This implies that the slope of this p-stabilization is given by u,, = (v +
1,v — 1;0) with v = vp(ap). We want to compare 5, to w * A\ — A for
w = 81, S2. We have s1x A\, — A\, = (—1,1;0) and so *x A, — A\ = (0, —2k +4;0).
Therefore piy, + $1 % A — A = (v, v;0) belongs to the boundary of the obtuse
cone. Thus p, is critical. Notice also that p,+sa*Ap— Ay = (14+v,v—2k+3;0)
does not belong to the obtuse cone by our assumption on v. From these remarks
we can deduce that

(34) M (0o, \e) = M (0w, M) — mI (5% 51 % ).
We will show the following
PRrOPOSITION 5.5.4. With the above hypothesis and notation, we have
mi (0, M) = 2(e(m,1/2) — 1).
In particular, it is nonzero if and only if e = e(w,1/2) = —1.

Proof. First we notice that m (o, A\t) = mpp(SK(7)s). To show the
proposition, we now need to make use of formula (34). To relate m'(cq, Ax)
to m(];(aa, M\x) and also to compute mf (o5, 51 % \), we now have to study
the Eisenstein multiplicities.

If mTG’MK?w(Ja, Ax) # 0, then there exists o,, for w = id or s a finite slope
representation of GL(2),p and a Dirichlet character x,, such that if w = id,
then o, is of weight (k — 3;6 — 2k) with 0,,(Uy) = a and xw(p)bs,, (p.id) =
0,(Uzp) = pa, or, if w = s1, then oy, is of weight (k—2,6 —2k) with 6, (U,) =
ap and xid(p)bo, (p.id) = 0,(Uzp) = pa. Since we know that o is a Weil
number of weight 2k — 3, we see that these situations cannot occur. Therefore
m&MK’id(aa,/\k) = mTG,MK,sl<‘7w)‘k) = 0. Similarly, we could show that
mTG?MK ,w(agl’A’f, s1* ;) = 0 for w € {id, s1}. We also have the same vanishing
results if we replace Mg by T by similar but simpler arguments. We therefore
deduce that

mi (0o, \i) = mg(aa, i) — mTG7MS7Z-d(aa, k) + mg,MS,SQ(Uaa S9 % A ).

If maM&id(aa, k) # 0, then we have o = 05, (U1 ) = x(p) for some Dirichlet
character x. This is impossible since « is a Weil number of weight 2k — 3. If
ma Mg.s,(Tas A) # 0, then there exists a finite slope (cuspidal) representation
oo of GL(2) of weight 2k — 2 and Dirichlet characters x2 and x5 such that
a = 06,,(U1p) = b5,(Up)x2(p) and p.av = 05, (U2p) = 00,(Up)x5(p). This is

impossible; we therefore have

mT(Ua, Ak) = mg(oa, Ak)-
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We now need to compute mTG,MS’w(Ughkk,sl x A\g) for w € {id, s9}. Write
ol = o™ and N, = sy % A, = (k — 4,k — 2;6 — 2k). We have 0, (Up) = o
and 0y (Uzp) = p 05, (Uzp) = . If mE’MS’id(agl’/\k,sl * \g) # 0, then
a = 0y (U1p) = x(p) for some Dirichlet character x which is again impossible
since « is a Weil number. Now from the formula defining the distribution
IG Mg.sy, We see that rrﬂLG’MS’S2 (031’)"“, S1% ) = mEL(%O(WQ, (0;2k—4)) = -2,
where 7 is the p-stabilization of 7 such that 6., (U,) = «. Therefore we deduce

that
mT(Jéu )‘Qc) = mg(afxv A;c) - 2.
Combining all the previous considerations, we therefore get
my(0a, Ak) = 26 — 24+ mb(ah, \p).

Since mg(ag, M%) <0, this, in particular, implies that mzr] (0o, k) <0ife = —1.
In fact, one can show that mg(ag&,/\;) = 0. Otherwise one would be able
to construct a very peculiar 3-dimensional family of generically large Galois
representations which would have a stable line by the inertia subgroup at p.
This family would have a specialization whose semi-simplification would be
isomorphic to pgg(r). Moreover, at this specialization the generic stable line
by the inertia subgroup at p would be the line Q,(2 — k). Then by arguments
similar to those of [SU06a], [SU06b|, one would get infinitely many elements
in the Selmer groups corresponding to the Galois representations Q,(—1) or
pt(k—2). But the former cannot exist by Class Field Theory, and the latter is
known to be impossible by a theorem of Kato [Kat04]. This finishes the proof of
our proposition. It shows that the use of nontempered cuspidal representation
does not lead to results like the one of [SU06a] when the sign of the functional
equation is +1. This is why it is better to use Eisenstein series as it is explained
in [SUO06b]. This result also implies that the main theorem of [SU06a] is also
true in the nonordinary case. We leave the verification of details of this fact
to the conscientious reader. U

5.6. The twisted eigenvarieties for GL,. In this section, we assume (for
simplicity)?? that G = GL, /F over a totally real number field or a CM fields F'.
We denote by F' its maximal totally real subfield and by ¢ the complex con-
jugation automorphism of F'.

Let T and B be respectively the diagonal torus of G and the group of
upper triangular matrices in G. Let J be the anti-diagonal matrix defined by

J = (6in—j)1<ij<n-

220ne could extend this to a more general situation.
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We consider the involution ¢ defined by t(g) = ¢* := Jig=tJ 1 if F is totally
real and by «(g) = ¢* := Jig=¢J ! if F is CM. This is clearly an involution of
Cartan type.

It is easy to check that T and B are stable under the action of ¢. A weight
A € X4(Q,) is such that

Adiag(t1, ..., tn)) = x1(t1) - - Xn(tn)
with x; = xn—j if F'is totally real and x; = xn—j; o cif F'is CM and where the
xi’s are characters of (Op ®Z,)*. So dimX* = ([n/2] —1).[F" : Q]+ 1455+ .
This is the subvariety of essentially self-dual weights.
For any f € C3°(G(Ay),Qp), we set f* defined by

fg) = f(g"),
and for any character 6 of Rg,, we denote by ¢* the character defined by
0°(f) = 0(f").
Then it is possible to construct rigid analytic spaces €y, by applying the
construction we have made in the beginning of this section for the finite slope
character distributions IéLmO( f xt, f,A), and we have the following theorem.

A detailed proof of the following theorem will appear in the forthcoming thesis
of Z. Xiang [Xial2].

THEOREM 5.6.1. Let KP be an open compact subgroup of GLn(A? ® F).
The ringed spaces €y, are rigid analytic varieties and the following properties
hold:
(i) Oy = 0. and Ny = N, for any y = (N, 0,) € €4, (Q,) . In particular,
Chp sits over X*.

(ii) Let y = (N\y,0y) € (X x D%)(Q,). Then y € (‘E;(p,o(@p) if and only if
mt(\, 6 x 1, KP) # 0.

(iii) For any KP-admissible Hecke operator f, the projection map €kr 0 (@p)
— 3¢(f) is a finite surjective morphism.

(iv) The restriction of the map €%, — X' to any irreducible component
is generically flat. In particular, €Y, is equidimensional and has the
same dimension as dim X*.

5.7. Some more eigenvarieties. We would like to end this section by dis-
cussing some conjectures on p-adic families. What we have constructed here is
the Zariski closure of all the points y = (6, \) for which m(6, A, K?) does not
vanish. We have proved that they form a nice rigid analytic variety €gp» which
is generically flat over weight space X. But what about the other cohomo-
logical systems of Hecke eigenvalues for which the Euler-Poincaré multiplicity
vanishes? Can we still construct an eigenvariety containing all the points (6, A)
such that H*(Sg(KPL,,), Dy)[0] # 07 What is the dimension of the irreducible
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components passing through such a point when mf(6, A\, K?) = 07 We would
like to give some speculative answers to these questions.

5.7.1. The full eigenvariety. A point y = (6,) € Ds,(Q,) is said to be
cohomological of level K? if H*(Sq(KPI,,),Dy)[6] # 0.

We want to give a construction of a variety that contains all the coho-
mological points. This construction is mainly due to Ash-Stevens?® but our
construction is a variant. We will only sketch it. We fix f = u; with ¢t € T77.
We consider the action of f on the Banach spaces RI'Y(KP?.I,,, Dyy)’s. For
each degree g, let RY(f, A\, X) € O°(U){{X}} the Fredholm determinant of f
acting on RT'Y(K? I, Dy,) and let Ry(f, X, X) := [], R{ (A, X). (We do not
take alternatings product here.) Since we can make this construction for any
il we can easily see that there exists Ry(f, A\, X) € Ax{{X}} that specializes
to Ry(f, A\, X) by the canonical map Ay — O(4). We then denote by 3'(f)
the spectral variety?! associated to Rx(f,\, X). We now choose 20 C 3(f)
an admissible affinoid subdomain of 3(f). We denote by il its image by the
projection onto weight space X. Let egy be the idempotent attached to 20 by
the associated factorization of the Fredholm series of f. Consider the complex
eqy.RU(KPI,,, Dy). Each term is of finite rank over O(4l), and we consider the
action of Rg ), on it modulo homotopy. Let Byy be the O(4l) algebra generated
by the image of Rg) in Endps(egy. RI'(KPI,,, Dy) which is of finite type over
O(Y). Then put E(20) := Sp(Byy). It is a finite affinoid domain over {. We
define the eigenvariety Expr by gluing the E(20). A detail of the gluing of
similar pieces has been written up by Z. Xiang [Xial2].

5.7.2. Conjectures. It would not be difficult to check that the eigenvariety
€xr we have constructed in this paper is the union of the components of Exp
of dimension d. We would like to formulate two conjectures on the dimension
of the other components.

CONJECTURE 5.7.3. Let x = (\,0) be a point of the eigenvariety con-
tained in only one irreducible component C of Exp. Then the projection of C
onto X is codimension d in weight space if and only if there exist two nonneg-
ative integers p,q, and a positive integer m(0, A, KP) such that

(a) The 0-generalized eigenspace of H" (S (KPI,,), DA(L)) is nonzero only
if p <r <gq and its dimension is m(f,\, KP) x (g:ﬁ).
(b) d=q—p.

We now give a few examples to support this conjecture.

23They basically proved that the eigenvariety is locally (for its canonical p-adic topology)
rigid analytic which is actually all we need for the conjectures that we state here.

24 1t is not hard to see that 3(f) € 3'(f) but the latter might be much bigger as it depends
of the resolution we have chosen unlike 3(f).
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Ezample 1: G = SL(2, F') with F a totally real field of degree d over Q. In
this case, weight space is dimension d. Consider z = (0, k) with 0 the system of
Hecke eigenvalue associated to an Eisenstein series of weight k. It is determined
by a Hecke character 1) of the idele class group of F. If the p-stabilization is
chosen ordinary, then it is known that there is a p-adic family of Eisenstein
series of dimension 14§, where ¢ is the defect of the Leopold conjecture for F
and p. The study of the Eisenstein cohomology (see [Har87]) shows that the
Fisenstein classes occur in degree ¢ only if d < ¢ < 2d — 1 with multiplicity
(Z:Cll) since the rank of the group of units is d — 1. We see that in that case,
our conjecture is satisfied if and only if Leopold conjecture is true for (F,p).

Ezxample 2: G = D* with D a quaternion algebra over a number field
having exactly one complex place and which is ramified at all the real places.
In this situation, the cuspidal cohomology is nontrivial only in degree 1 and 2 so
in this situation ¢ = 2 and p = 1, and it is expected by the conjecture that the
projection onto weight space of the irreducible components are codimension 1.
In fact, in the ordinary case this is a theorem of Hida [Hid94].

Ezample 3: G = GL(n,Q). . We write n = 2m or n = 2m+1 according to
the parity of n. In this situation, the cuspidal cohomology Hp,(Sa(K),VY)
with regular \ vanishes except in degree i with m? < i < m?+m—1if n is even
and m(m+1) <i < m(m+1)+mif n is odd. Notice also that the cohomology
vanishes if A is not essentially self-dual. (See [Clo90] for these assertions.) The
prediction of our conjectures then says that the dimension of the eigenvariety
should be 2m — (m — 1) = m + 1 in the even case and 2m+1—m =m + 1
in the odd case (compare to a conjecture of Hida in [Hid98]). One can remark
that m + 1 is actually the dimension of the subvariety of essentially self-dual
weights denoted X* in the previous section. For n = 3, the arguments of Hida
in [Hid94] implies that our conjecture is true in the GL(3) /q-case.

The following proposition, proved independently by G. Stevens and by
the author, gives some more evidence for the conjecture above. Its proof will
be published in another paper in which we hope to give more evidence for
Conjecture 5.7.3.

PROPOSITION 5.7.4. Let © = (X, 60) be a point of the eigenvariety Egop.
Assume that H"(Sq(KPIy,), DA(L))[0] # 0 for exactly q consecutive degrees .
Then there is a component of the eigenvariety containing x of dimension at
least dim X — q.

This especially means that our conjecture states the opposite inequalities.
It therefore should be seen as a non-abelian generalization of Leopoldt con-
jecture. We end this section by a giving a refined conjecture when there are
several irreducible components (of possibly different dimensions).
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CONJECTURE 5.7.5. Let x = (A, 0) be a point of the eigenvariety Exr and
let C1,...,Cs the irreducible components containing x.
For eachi=1,...,s, there exists p;, q;, m; such that

(a) The 0-generalized eigenspace of H"(Sq(KPIy,), DA(L)) has rank >°5_; m;
% <(Irp¢)‘
r—pi

(b) The component C; has dimension dim X — d; with d; = q; — p;.

6. A p-adic trace formula

6.1. Spectral side of the p-adic trace formula. Let A € .’{(@p). By Sec-
tion 4, we know that we can write the p-adic finite slope character distribution
[ Ié(f, A) defined over H,, as a sum

(35) ILF ) =Y mb (N o)L (f),

where o runs in the set of irreducible finite slope representations of #,. This
sum is infinite but we know it is p-adically convergent.

The aim of this section is to apply the p-adic analyticity with respect to
the weight of the map A\ — Ié( f, A) to establish a formula for (35) in geometric
terms similar to Arthur-Selber type trace formulas. Inspired by Franke’s trace
formula for the Lefschetz numbers, we introduce an overconvergent version of
it and show that it equals the corresponding p-adic automorphic distribution
Ié( fyA). Tt is possible to obtain a similar result for the distribution ITG70,
but we have decided to do this in a future paper, so as to keep this article a
reasonable length.

6.2. Franke’s trace formula for Lefschetz numbers. The purpose of this
paragraph is to recall Franke’s formula. We start by recalling the main terms
involved in it.

6.2.1. Tamagawa numbers. Let H,q be a connected reductive group. As-
sume that H(R) contains a compact Cartan subgroup and let H(R) be the
compact modulo center inner form of H(R). We denote by Ay the maximal
split-torus of the center of H and denote by K (R) one of its maximal com-
pact subgroup. Let dh be a Haar measure on H. Then the Tamagawa number
X(H) = x(H,dh) associated to H is defined by
dy VOLH (Q\H (A)/Au(R)?) ~ wh)

vol(H(R)/Au(R)?)  wi,m)’
where dh denotes an Haar measure on H(A¢) and where the Haar measures
used for H(R) and H(R) correspond by the (inner) isomorphism between H ¢
and Hc. The cardinality of the Weyl group of H(R) and Ky (R) are respec-

tively denoted by wpr) and wg, (r). The factor uq;uHi@z) is then equal to the

X(H,dh) = (—1)

number of representations in a discrete series L-packet of H(R).
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6.2.2. Semi-simple elements. We write G(Q)® for the set of semi-simple
elements of G(Q). For all v € G(Q)**, we write G for the centralizor of v in G,
G,OY for its connected component, and we put i(7y) := [G5 : Gg]. To define the
integral orbitals intervening in the trace formula, we use the fixed Haar measure
on G we have taken at the beginning of this paper. Let h € C°(G(Ay),Q);
then we define the orbital integral

O, (h,dgy) := / h(gvg~")dg,
G(As)/Gr(Ag)

where dg is the quotient of the Haar measure dg by the Haar measure dg, on
G,. If v € G(Q)*, following Franke, we define e(y) € {—1,0,1} by putting
e(y) = 0if G4 (R) does not contain a Cartan subgroup which is compact modulo
A%7 (R). In other words, e(y) = 0 when + is not elliptic. Otherwise we put
e(y) = (—1)dm Ac(R)/Aq,, (R)

THEOREM 6.2.3 (Franke). Let f be any Hecke operators and let A be an
algebraic dominant weight; then we have

tr(f; H*(Sq, V¥ (C))

X(G5, dg,)
=% D Ty O dgy)ir(n VX(©)
1EG(Q)*/~ K
Proof. This is formula (24) of [Fra98] built on the formula of Theorem 1.4.2
and Arthur’s trace formula on Lo-Lefschetz numbers. O

6.3. A formula for Ié( fyA). Before establishing our p-adic trace formula,
we introduce a certain p-adic function on A~

LEMMA 6.3.1. For any g € A™" as above, the map A\ — <I>T0(g, A) =
tr(g, DA(L)) is analytic on X7(Q,).

Proof. For any affinoid subdomain i C X7 and A € 4U(L), we have
(36) Dy, @x L =Dy, (L)

for any n > ny. Now Dy, is O(4)-orthonormalizable, and therefore ¢y =
tr(y, Dy,n) € O(Y) is analytic on 4 and by (36) satisfies ¢y () = tr(g; Dry) =
<I>TG(g, A) for all X € 4(Q,). O

The following lemma is analogue to Corollary 4.6.8.

LEMMA 6.3.2. Let A be an algebraic dominant weight and (), be a very
reqular sequence converging to A\. Then for any g € A™~, we have

Tim A (&(t))tr(g, V5, (L)) = Dl(g, M),
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Proof. Let g € A=~. From Theorem 3.3.10 and Proposition 3.3.12 it then
follows that we have the congruence

tr(g: Da(L)) = M&(tg))tr(g: V' (L)) = A(E(tg))tr(g; VX(L)) mod N(,ty).
We now deduce the result from (32) and the analyticity of the map A —
L (7. ). O

We are now ready to state and prove a formula for the distribution 1, g It
is given by the following theorem. We consider a Haar measure dg of G(Ay)
such that the p-component gives the measure 1 to the Iwahori subgroup I.
Then we have the following

THEOREM 6.3.3. Let f = fP ® f, € H;, and X € %(@p); then we have

x(GY, dg,)

(N = (1% 37 ()=S0 (P dgy TG (£, ),
VEG(Q)* /= ic(7)

where the sum is taken over the conjugacy classes of R-elliptic semi-simple

elements of G(Q), with

= [ flaya™")@l(@ra™!, Ndz,
& G(@p)/G (@) “

Proof. Tt is sufficient to prove the formula for f = fP ® us. It is clear that
both the right- and left-hand side of the formula are analytic functions of \.
To prove the equality, it is therefore sufficient to prove it for A\ algebraic and
dominant. For such a A, consider a highly regular sequence (), converging
p-adically to A. We multiply both sides of the trace formula of Theorem 6.2.3
for each A, by £(t)* and consider the term corresponding to some semi-simple
element v:

f(t))\" X(va dg"/)
ic(7)
. X(prv dg’v)

=T - N An O P d -1 VY (L)d
o) O gﬁ/@(@p)/cw(@p) Folana)ix(y, V3, (1))de

M) (42,45, [ folara O tx(a 9, VY, (1))
ic(7) G(Q,)/G+(@y)
Then pass to the limit when n goes to infinity. From Lemma 6.3.2 we then get
X(pradg'y) ) /
ic(7) @) /64(@)
Therefore the limit of the right-hand side of the trace formula of Franke for A,
multiplied by £(t)* has the limit of the right-hand side of the formula stated

in the theorem. The fact that the limit of the left-hand side is Ig( fiA) was
known by Corollary 4.6.8. O

O4(f,dgy)tr(v, VY )

O,(f?, dg folzyaz )@ (z e, N da.
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