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The spherical Hecke algebra for
affine Kac-Moody groups I

By Alexander Braverman and David Kazhdan

Abstract

We define the spherical Hecke algebra for an (untwisted) affine Kac-

Moody group over a local non-archimedian field. We prove a generalization

of the Satake isomorphism for this algebra, relating it to integrable repre-

sentations of the Langlands dual affine Kac-Moody group. In the next

publication we shall use these results to define and study the notion of

Hecke eigenfunction for the group Gaff .

1. Introduction

1.1. Langlands duality and the Satake isomorphism. Let F be a global

field, and let AF denote its ring of adeles. Let G be a split reductive group

over F . The classical Langlands duality predicts that irreducible automorphic

representations of G(AF ) are closely related to the homomorphisms from the

absolute Galois group GalF of F to the Langlands dual group G∨. Similarly,

if G is a split reductive group over a local-nonarchimedian field K, Langlands

duality predicts a relation between irredicible representations of G(K) and

homomorphisms from GalK to G∨.

The starting point for Langlands duality, which allows one to relate the

“simplest” irreducible representations ofG(K) (the so called spherical represen-

tations) to the “simplest” homomorphisms from GalK to G∨ (the unramified

homomorphisms), is the Satake isomoprhism, whose formulation we now re-

call. Let O ⊂ K denote the ring of integers of K. Then the group G(K) is a

locally compact topological group and G(O) is its maximal compact subgroup.

One may study the spherical Hecke algebra H of G(O)-biinvariant compactly

supported C-valued measures on G(K). The Satake isomorphism is a canonical

isomorphism between H and the complexified Grothendieck ring K0(Rep(G∨))

of finite-dimensional representations of G∨. For future purposes it will be con-

venient to note that K0(Rep(G∨) is also naturally isomorphic to the algebra

C(T∨)W of polynomial functions on the maximal torus T∨ ⊂ G∨ invariant

under the Weyl group W of G (which is the same as the Weyl group of G∨).

1.2. The group Gaff . To a connected reductive group G as above one can

associate the corresponding affine Kac-Moody group Gaff in the following way.
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Let Λ denote the coweight lattice of G let Q be an integral, even, negative-

definite symmetric bilinear form on Λ which is invariant under the Weyl group

of G.

One can consider the polynomial loop group G[t, t−1] (this is an infinite-

dimensional group ind-scheme). It is well known (cf. [10]) that a form Q as

above gives rise to a central extension ‹G of G[t, t−1]:

1→ Gm → ‹G→ G[t, t−1]→ 1.

(We will review the construction in §6.3.) Moreover, ‹G has again a natural

structure of a group ind-scheme.

The multiplicative group Gm acts naturally on G[t, t−1], and this action

lifts to ‹G. We denote the corresponding semi-direct product by Gaff ; we also

let gaff denote its Lie algebra. Thus if G is semi-simple, then gaff is an un-

twisted affine Kac-Moody Lie algebra in the sense of [7]; in particular, it can

be described by the corresponding affine root system.

1.3. The Hecke algebra for affine Kac-Moody groups. Our dream is to

develop some sort of Langlands theory in the case when G is replaced by an

affine Kac-Moody group Gaff . As the very first step towards realizing this

dream we are going to define the spherical Hecke algebra of Gaff and prove an

analog of the Satake isomorphism for it.

Let K and O be as above. Then one may consider the group Gaff(K) and

its subgroup Gaff(O). The group Gaff , by definition, maps to Gm; thus Gaff(K)

maps to K∗. We denote this homomorphism by ζ̃. In addition, the group K∗
is endowed with a natural (valuation) homomoprhism to Z. We denote its

composition with ζ̃ by π.

We now define the semigroup G+
aff(K) to be the subsemigroup of Gaff(K)

denerated by

• the central K∗ ⊂ Gaff(K);

• the subgroup Gaff(O);

• all elements g ∈ Gaff(K) such that π(g) > 0.

We show (cf. Theorem 4.6(1)) that the convolution of any two double

cosets of Gaff(O) inside G+
aff(K) is well defined in the appropriate sense and

gives rise to an associative algebra structure on a suitable space of Gaff(O)-

biinvariant functions on G+
aff(K). This algebra turns out to be commutative

and we call it the spherical Hecke algebra of Gaff and denote it by H(Gaff). The

algebra H(Gaff) is graded by nonnegative integers (the grading comes from the

map π which is well defined on double cosets with resepct to Gaff(O)); it is

also an algebra over the field C((v)) of Laurent power series in a variable v,

which comes from the central K∗ in Gaff(K).
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1.4. The Satake isomorphism. The statement of the Satake isomorphism

for Gaff is very similar to that for G. First of all, in Section 4.2 we are going to

define an analog of the algebra C(T∨)W which we shall denote by C(“T∨aff)Waff .

(Here Taff = C∗×T∨×C∗ is the dual of the maximal torus of Gaff , Waff is the

corresponding affine Weyl group and C(“T∨) denotes certain completion of the

algebra of regular functions on T∨aff .) This is a finitely generated Z≥0-graded

commutative algebra over the field C((v)) of Laurent formal power series in

the variable v which should be thought of as a coordinate on the third factor in

T∨aff = C∗ × T∨ ×C∗. (The grading has to do with the first factor.) Moreover,

each component of the grading is finite-dimensional over C((v)).

Assume that either G is simply connected or that G is a torus.1 In this

case we define (in §4) the Langlands dual group G∨aff . This is a group ind-

scheme over C. If G is semi-simple, then G∨aff is another Kac-Moody group

whose Lie algebra g∨aff is an affine Kac-Moody algebra with root system dual

to that of gaff . (Thus, in particular, it might be a twisted affine Lie algebra.)

The group G∨aff contains the torus T∨aff ; moreover the first C∗-factor in T∨aff is

central in G∨aff ; also the projection T∨aff → C∗ to the last factor extends to a ho-

momorphism G∨aff → C∗. It makes sense to consider integrable highest weight

representations of G∨aff and one can define certain category Rep(G∨aff) of such

representations which is stable under tensor product. (This category contains

all highest weight integrable representations of finite length, but certain infinite

direct sums must be included there as well.) The complexified Grothendieck

ring K0(G∨aff) of this category is naturally isomorphic to the algebra C(“T∨aff)Waff

via the character map. The corresponding grading on K0(Gaff) comes from

the central charge of G∨aff -modules and the action of the variable v comes from

tensoring G∨aff -modules by the one-dimensional representation coming from the

homomorphism G∨aff → C∗, mentioned above.

The Satake isomorphism (cf. Theorem 4.6(2)) claims that the Hecke alge-

bra H(Gaff) is canonically isomorphic to C(“T∨aff)Waff (and thus, when it makes

sense also to K0(G∨aff)).

As was mentioned, in the case when G is semi-simple and simply con-

nected, the group Gaff is an affine Kac-Moody group. We expect that with

slight modifications our Satake isomorphism should make sense for any sym-

metrizable Kac-Moody group. However, our proofs are really designed for the

affine case and do not seem to generalize to more general Kac-Moody groups.

1.5. Further questions. It would definitely be interesting to extend the

results of this paper to subgroups of Gaff(K) other than Gaff(O). Arguably

1We believe that this assumption is not necessary, but at the moment we cannot remove

it.
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the most interesting of these subgroups is the analog of the Iwahori subgroup

of Gaff(O). In this case we expect that the Hecke algebra is well defined and

will be closely related to Cherednik’s double affine Hecke algebra. We plan to

address this issue in [2].

Another natural question is this. By definition, the algebra H(Gaff) is

endowed with a natural basis given by the characteristic functions of Gaff(O)×
Gaff(O) orbits on Gaff(K). It would be quite interesting to determine the image

of this basis under the Satake isomorphism. When we deal with G instead of

Gaff , the answer is given by the so-called Hall polynomials and it is essentially

equivalent to the “Macdonald formula for the spherical function” (cf. [12]). A

generalization of Macdonald formula to the affine case (closely related to the

results of [4] on affine Hall polynomials) will also be discussed in [2].

Let us also point out that the idea to interpret the convolution in H(Gaff)

in geometric terms (which is used in order to prove the main results of this pa-

per) came to us from the joint works of the first-named author with M. Finkel-

berg which give a partial generalization of the “geometric Satake correspon-

dence” (cf. [13] and references therein) to the affine case.

1.6. Organization of the paper. This paper is organized as follows. In

Section 2 we introduce some notions related to general Hecke algebras. In

Section 3 we consider an example of (generalized) Hecke algebras (which later

turns out to be closely related to the algebra Haff in the case when G is a

torus). In Section 4 we formulate our main Theorem 4.6 describing the Hecke

algebra Haff in the general case. The proof of Theorem 4.6 occupies the last

four sections of the paper. Although the statement of Theorem 4.6 is quite

elementary, the proof uses heavily the machinery of algebraic geometry related

to moduli spaces of G-bundles on various algebraic surfaces. (In particular, we

do not know how to generalize our proofs to the case when Gaff is replaced by

a more general (nonaffine) Kac-Moody group.) In addition, in Section 8 we

construct explicitly the Satake isomorphism for Haff by looking at its action

on the principal series for Gaff (in the spirit of [9]).
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related to the contents of this paper.
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2. Generalities on Hecke algebras

2.1. Good pairs. Let Γ be a group, and let Γ0 ⊂ Γ be a subgroup. Consider

the multiplication map

m : Γ ×
Γ0

Γ→ Γ.

(Here the subscript Γ0 means taking quotient by the diagonal action of Γ0.)

Let X (resp. Y ) be a subset of Γ which is right (resp. left) invariant with

respect to Γ0. Then we denote by mX,Y the restriction of m to X ×
Γ0

Y .

We say that the pair (Γ,Γ0) is good if for any two double cosets X and Y

in Γ with respect to Γ0, we have

1) The image of mX,Y consists of finite union of double cosets.

2) The map mX,Y has finite fibers.

In this case one can define the Hecke algebra H(Γ,Γ0) as the convolution

algebra of Γ0-bi-invariant functions on Γ supported on finitely many double

cosets with respect to Γ0.

Lemma 2.2. The pair (Γ,Γ0) is good if and only if, for any x ∈ Γ, the set

Γ0xΓ0/Γ0 is finite. Also, condition 2) above implies condition 1).

Proof. Assume that the condition of Lemma 2.2 holds. Let us prove that

(Γ,Γ0) is a good pair. Take any x, y ∈ Γ and set X = Γ0xΓ0, Y = Γ0yΓ0.

Choose some x1, . . . , xn ∈ X, y1, . . . , yk ∈ Y such that

X =
n⊔
i=1

xiΓ0, Y =
k⊔
j=1

yjΓ0.

Then X ×
Γ0

Y =
n⊔
i=1

xiY . Since the restriction of mX,Y to each xiY is obviously

injective, it follows that every fiber of mX,Y has at most n elements. This

proves condition 2). On the other hand, xiY is the union of all the xiyjΓ0,

and thus it follows that the image of mX,Y is a finite union of right Γ0-cosets.

In particular, it is a finite union of double cosets with respet to Γ0.

Let us now show that condition 2) implies that Γ0xΓ0/Γ0 is finite for

all x ∈ Γ. (In view of the preceeding paragraph this will also imply that 2)

implies 1).) Indeed, let X = Γ0xΓ0, and let Y = Γ0x
−1Γ0. Consider the fiber

of mX,Y over the unit element e ∈ Γ. It is clearly equal to X/Γ0, and thus

condition 2) implies that it has to be finite. �
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The main source of an example of good pairs is the following. Assume

that Γ is actually a locally compact topological group, and let Γ0 be any open

compact subgroup. (In particular, Γ can be a discrete group and Γ0 — a finite

subgroup.)

2.3. Generalization : almost good pairs. We want to generalize the above

notion in two directions. First, let Γ and Γ0 be as above, and let Γ+ ⊂ Γ be

a sub-semi-group containing Γ0. Then we may speak about the pair (Γ+,Γ0)

being good, and the Hecke algebra H(Γ+,Γ0) makes sense.

Remark. In this case condition 2) no longer implies condition 1), since in

the proof of this implication given above we used inversion in Γ.

Let us also consider the following situation. Assume that we are given a

central extension
1→ A→ Γ̃→ Γ→ 1

of Γ by means of an abelian group A. Let also B ⊂ A be a subgroup of A such

that A/B ' Z. Assume that Γ0 ⊂ Γ can be lifted to a subgroup of Γ̃0 ⊂ Γ̃

fitting into the short exact sequence

1→ B → Γ̃0 → Γ0 → 1.

Note that in this case the group Z = A/B acts naturally on the set of double

cosets of Γ̃ with respect to Γ̃0. We shall say that a subset W ⊂ Γ̃ is almost

a finite union of double cosets with respect to Γ̃0 if W is contained in the set

Z+(Z), where Z ⊂ Γ is a finite union of double cosets.

Let Γ+ ⊂ Γ be a semi-group as above, and let Γ̃+ be its preimage in Γ̃.

Then we say that the pair (Γ̃+, Γ̃0) is almost good if for any two double cosets

X and Y of Γ̃+ with respect to Γ̃0, condition 2) above is satisfied, and in

addition, the following generalization of condition 1) is satisfied:

1′) The image of the map mX,Y is almost a finite union of double cosets

with respect to Γ̃0.

Warning. It is by no means true that if the pair (Γ̃+, Γ̃0) is almost good,

then the pair (Γ+,Γ0) is good!

In the above situation one may define the algebra H(Γ̃+, Γ̃0) as the con-

volution algebra of Γ̃0-bi-invariant functions on Γ̃+ whose support is almost a

finite union of double cosets. Note that this algebra can naturally be regarded

as an algebra over formal Laurent power series C((v)); here multiplication by

v corresponds to shifting the support of a function by 1 ∈ Z.

The algebra H(Γ̃+, Γ̃0) has a natural subspace Hfin(Γ̃+, Γ̃0) consisting of

functions supported on finitely many double cosets; it is naturally a module

over the ring C[v, v−1] of Laurent polynomials. By definition, we have

H(Γ̃+, Γ̃0) = Hfin(Γ̃+, Γ̃0) ⊗
C[v,v−1]

C((v)).



THE SPHERICAL HECKE ALGEBRA 1609

In general Hfin(Γ̃+, Γ̃0) is not a subalgebra of H(Γ̃+, Γ̃0). Let R be any sub-

ring of C((v)) containing C[v, v−1]. We say that H(Γ̃+, Γ̃0) is defined over

R if Hfin(Γ̃+, Γ̃0) ⊗
C[v,v−1]

R is a subalgebra of H(Γ̃+, Γ̃0). In this case we set

HR(Γ̃+, Γ̃0) = Hfin(Γ̃+, Γ̃0) ⊗
C[v,v−1]

R.

2.4. Good actions. Let (Γ,Γ0) be a (not necessarily good) pair, and let Ω

be a Γ-set. Let a : Γ ×
Γ0

Ω→ Ω be the natural map, coming from the action of

Γ on Ω. Let now X, as before, be a subset of Γ which is right-invariant under

Γ0, and let Z be a Γ0-invariant subset of Ω. Then we shall denote by aX,Z the

restriction of a to X ×
Γ0

Z.

We say that the action of Γ on Ω is good if for any double coset X in Γ

with respect to Γ0 and for any Γ0-orbit Z in Ω, then the following conditions

are satisfied:

1Ω: The image of aX,Z is a union of finitely many Γ0-orbits.

2Ω: The map aX,Z has finite fibers.

Let F(Ω) denote the space of Γ0-invariant C-valued functions on Ω, which are

supported on finitely many Γ0-orbits. (In other words, F(Ω) is the space of

functions on Γ0\Ω with finite support.) Then conditions 1Ω and 2Ω above

guarantee that we can define an action of H(Γ,Γ0) on F(Ω) by putting

h(f)(z) =
∑

(g,w)∈Γ×
Γ0

Ω, a(g,w)=z

h(g)f(w).

Here h ∈ H(Γ,Γ0), f ∈ F(Ω), z ∈ Ω.

The following lemma is straightforward.

Lemma 2.5. Let (Γ,Γ0) be any pair, and let Ω be any Γ-set. Assume

that condition 2Ω is satisfied. Then the pair (Γ,Γ0) satisfies condition 2 from

Section 2.1.

2.6. Almost good actions. Let (Γ̃, Γ̃+, Γ̃0) be as in Section 2.3, and let Ω,

as before, be a Γ-set. Let also ‹Ω be an A-torsor over Ω on which Γ̃ acts in

such a way that A ⊂ Γ̃ acts on it in the natural way and the action of Γ̃ on ‹Ω
is compatible with the action of Γ on Ω. Then we may define the notion of an

almost good action of Γ̃+ on ‹Ω (similarly to the notion of an almost good pair).

Namely, we say that a Γ̃0-invariant subset W of ‹Ω is almost a finite union of

Γ̃0-orbits (or just almost finite for brevity) if W is contained in Z+(Z), where

Z is a finite union of Γ̃0-orbits. (Note that Z = A/B acts naturally on the set

of Γ̃0-orbits in ‹Ω.) We say that the action of Γ̃ on ‹Ω is almost good if condition

2
Ω̃

is satisfied together with the following condition 1′
Ω̃

:
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1′
Ω̃

: For any Γ̃0 double coset X in Γ̃+ and for any Γ̃0-orbit Z in ‹Ω, the

image of aX,Z is almost a finite union of Γ̃0-orbits.

We now let Ffin(‹Ω) denote the space of Γ̃0-invariant C-valued functions on ‹Ω
which are supported on a finite union of Γ̃0-orbits, and we also let F(‹Ω) denote

the space of Γ̃0-invariant C-valued functions on ‹Ω which are supported on an

almost finite union of Γ̃0-orbits. It is easy to see that if the action of Γ̃+ on ‹Ω
is almost good, then the algebra H(Γ̃+, Γ̃0) acts on F(‹Ω).

2.7. A generalization. Let (Ω,‹Ω) be as above, and let (Ω′,‹Ω′) be another

such pair. Assume that we are given an Γ̃-equivariant morphism $ : ‹Ω→ ‹Ω′.
We shall say that a Γ̃0-invariant subset Z of ‹Ω is almost finite with respect to‹Ω′ if

a) $(Z) is almost finite.

b) The natural map Γ̃0\Z → Γ̃0\$(Z) has finite fibers.

We shall say that ‹Ω is almost good with respect to ‹Ω′ if the following two

conditions hold:

(i) For any X ∈ Γ̃0\Γ̃+/Γ̃0 and any Z ∈ Γ̃0\‹Ω, the image of the map aX,Z
is almost finite with respect to ‹Ω′.

(ii) ‹Ω′ is almost good.

We claim that condition (ii) implies condition 2
Ω̃

. Indeed, without loss of

generality, we may assume that Ω and Ω′ are homogenous spaces for Γ (resp. ‹Ω
and ‹Ω′ are homogenous spaces for Γ̃); i.e., Ω = Γ/∆,‹Ω = Γ̃/‹∆,Ω′ = Γ/∆′,‹Ω =

Γ̃/‹∆′, where ∆ ⊂ ∆′ ⊂ Γ and ‹∆ ⊂ ‹∆′ ⊂ Γ̃. Let X be a double coset in

Γ̃+ with respect to Γ̃0. Choose z, γ ∈ Γ̃. Set X = Γ̃0xΓ̃0, Z = Γ̃0z‹∆/‹∆ and

Z ′ = Γ̃0z‹∆/‹∆′. Then the fiber of aX,Z over the image of γ in ‹Ω consists of

all triples (x, δ) ∈ X × ‹∆ such that xzδ = γ. Similarly, the fiber of aX,Z′ over

the image of γ in ‹Ω′ consists of all triples (x, δ′) ∈ X × ‹∆′ such that xzδ′ = γ.

Since ‹∆ ⊂ ‹∆′, it follows that the former fiber is embedded in the latter. Thus,

the fact that the fibers of aX,Z′ are finite implies that the fibers of aX,Z′ are

finite.

In addition it is obvious that condition (ii) implies part a) of condition (i).

Let now F
Ω̃′

(‹Ω) denote the space of all Γ0-invariant functions on ‹Ω whose

support is almost finite with respect to ‹Ω′. Then it is easy to see that conditions

(i) and (ii) imply that the Hecke algebra H(Γ̃+, Γ̃0) acts on F
Ω̃′

(‹Ω).

3. An example

3.1. The setup. Let Λ be a lattice of finite rank (i.e., Λ is an abelian group

isomorphic to Zl for some l). Let Γ = (Λ⊕ Λ) o Z, where Z acts on Λ⊕ Λ by

means of the autormorphism σ sending (λ, µ) to (λ, λ + µ). We shall usually
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write an element of Γ as (λ, µ, k). Define the subgroup Γ0 ⊂ Γ as the subgroup

consisting of all elements of the form (λ, 0, 0).

Define also the semigroup Γ+ by setting

Γ+ = {(λ, 0, 0)| λ ∈ Λ}
⋃
{(λ, µ, k) where λ and µ are arbitrary and k > 0}.

Let b(·, ·) be any Z-valued bilinear form on Λ. We set

Q(λ, µ) = b(λ, µ) + b(µ, λ).

Then Q is a symmetric Z-valued form on Λ. Moreover, Q is even; i.e., Q(λ, λ)

is even for any λ ∈ Λ. We define the central extension ÷Λ⊕ Λ of Λ⊕Λ by means

of Z in the following way: ÷Λ⊕ Λ = Z× (Λ⊕Λ) as a set and the multiplication

is defined by

(a1, λ1, µ1)(a2, λ2, µ2) = (a1 + a2 + b(λ1, µ2)− b(µ1, λ2), λ1 + λ2, µ1 + µ2).

It is well known that ÷Λ⊕ Λ depends (canonically) only on Q and not on b.

The automorphism σ of Λ ⊕ Λ considered above extends naturally to÷Λ⊕ Λ. Abusing the notation, we shall denote the resulting automorphism of÷Λ⊕ Λ also by σ. It is defined by

σ : (a, λ, µ) 7→ (a, λ, λ+ µ).

We define Γ̃ = ÷Λ⊕ Λ o Z, where the generator of Z acts on ÷Λ⊕ Λ by means

of σ. Explicitly, we have Γ̃ = Z× (Λ⊕ Λ)× Z as a set and the multiplication

is given by

(a1, λ1, µ1, k1)(a2, λ2, µ2, k2) = (a1 + a2 + b(λ1, µ2)− b(µ1, λ2)

(3.1)

+ k1b(λ1, λ2), λ1 + λ2, µ1 + µ2 + k1λ2, k1 + k2).

We set Γ̃0 to consist of all elements of Γ̃ of the form (0, λ, 0, 0). Note that in

this case Γ̃0 is naturally isomorphic to Γ0.

As before we define Γ̃+ to be the preimage of Γ+ in Γ̃.

3.2. The variety XQ,v . From now on we assume that Q is nondegenerate.

Let Λ∨ denote the dual lattice to Λ. Then Q defines a homomorphism e : Λ→
Λ∨, which is injective since Q is nondegenerate. Let T = Λ⊗C∗, T∨ = Λ∨⊗C∗.
Then Λ∨ is a lattice of characters of T and Λ is the lattice of characters of T∨.

For every v ∈ C∗ and any λ∨ ∈ Λ∨, we denote by vλ
∨

the corresponding

element of T∨. Assume that |v| < 1. In this case we set

XQ,v = T∨/ve(Λ).

It is well known that XQ,v is a complex abelian variety. The form Q also

defines a holomorphic line bundle LQ,v on XQ,v in the following way. Let

π : T∨ → XQ,v be the natural projection. Then for any open subset U of
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XQ,v we define the space of holomorphic sections of LQ,v to be the space of

holomorphic functions F on π−1(U) satisfying

F (xve(ν)) = v−
Q(ν,ν)

2 x−νF (x).

Here x ∈ T∨ and xν = ν(x). The line bundle LQ,v is ample if and only if Q is

negative definite. In this case we set

C[XQ,v] =
∞⊕
k=0

Γ(XQ,v,L⊗kQ,v).

Then C[XQ,v] is a graded holomorphic vector bundle of algebras on the punc-

tured unit disc D∗ = {v ∈ C∗, |v| < 1}. More precisely, let R denote the

subring of C((v)) consisting of those formal series which are convergent for

0 < |v| < 1. Then there exists a pair (XQ,LQ), where XQ is an abelian variety

over R and LQ is a line bundle over it, such that the specialization of (XQ,LQ)

to any v ∈ D∗ is isomorphic to (XQ,v,LQ,v). We set C[XQ] to be the direct

image of the sheaf ⊕k≥0L⊗kQ to Spec(R); it can be naturally regarded as a

graded R-algebra. We also set ◊�C[XQ] = C[XQ]⊗
R
C((v)).

Below is the main result of this section.

Theorem 3.3. Assume that Q is negative-definite. Then

(1) The pair (Γ̃+, Γ̃0) defined above is almost good.

(2) There is a natural isomorphism

H(Γ̃+, Γ̃0) ' ◊�C[XQ]

of graded C((v))-algebras.

(3) The algebra H(Γ̃+, Γ̃0) is defined over the ring R, and we have the

natural isomorphism

HR(Γ̃+, Γ̃0) ' C[XQ]

of graded R-algebras.

Proof. The proof is a straightforward calculation. Let us first describe

H(Γ̃+, Γ̃0) as a vector space. It follows from (3.1) that we have the following

formula:

(3.2) (0, ν, 0, 0)(a, λ, µ, k) = (a+ b(ν, µ), λ+ ν, µ, k).

Hence it follows that every left Γ̃0-coset contains unique element of the form

(a, 0, µ, k). Let us investigate when two such elements lie in the same double

coset with respect to Γ̃0. For any ν ∈ Λ, we have

(a, 0, µ, k)(0, ν, 0, 0) = (a− b(µ, ν), ν, µ+ kν, k).
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Multiplying the result on the left by (0,−ν, 0, 0) and applying (3.2) again we

get

(a− b(ν, µ)− b(µ, ν)− kb(ν, ν), 0, µ+ kν, k)

=

Ç
a−Q(µ, ν)− kQ(ν, ν)

2
, 0, µ+ kν, k

å
.

In other words, we see that an element of H(Γ̃+, Γ̃0)k is a function f on Z×Λ

(“corresponding” to a and µ) satisfying the relation

(3.3) f(a, µ) = f

Ç
a−Q(µ, ν)− kQ(ν, ν)

2
, µ+ kν

å
for any ν ∈ Λ and such that

1) For fixed a, the number f(a, µ) is nonzero only for finitely many values

of µ.

2) There exists some a0 ∈ Z such that f(a, µ) = 0 for any µ and any

a < a0.2

Now set

F (v, x) =
∑

(a,µ)∈Z×Λ

f(a, µ)vaxµ.

Then (3.3) together with 1) and 2) above imply that F can naturally be re-

garded as an element of ◊�C[XQ]k. In other words, we get an isomorphism of

graded vector spaces H(Γ̃+, Γ̃0) ' ◊�C[XQ]. Let us prove that this is actually an

isomorphism of algebras.

Let L be the collection of all the elements of Γ̃ of the form (a, 0, µ, k).

It is easy to see that L is actually a normal subgroup of Γ̃ isomorphic to

Z× Λ× Z, which can also be identified with the kernel of the homomorphism

Γ̃→ Λ sending (a, λ, µ, k) to λ. It is also easy to see that L and Γ0 satisfy the

following properties:

1) L ∩ Γ0 = {e}.
2) Γ̃ = L · Γ0 = Γ0 · L.

In other words L is a normal subgroup of Γ̃ whose elements provide unique

representatives for both left and right cosets of Γ̃ with respect to Γ0. In par-

ticular, since L is normal, we have a natural (conjugation) action of H on L.

Let C[L] denote the space C-valued functions on L with almost finite support.

This is an algebra with respect to convolution (this algebra is a completion of

the group algebra of L). Let also C[L]Γ0 be the space Γ0-invariants in C[L].

(Note that it follows from (3.3) that every Γ0-orbit in L is almost finite.) Then

it is easy to see that conditions 1) and 2) above imply that the restriction map

2Note that here we use the assumption that Q is negative-definite.
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from Γ̃ to L defines an isomorphism of algebras H(Γ̃+, Γ̃0) ' C[L]Γ0 . However,

L is isomorphic to Z× Λ× Z, which implies that C[L]Γ0 ' ◊�C[XQ]. �

3.4. A reformulation. The above result can be reformulated as follows.

Define an action of Λ on the torus T∨ × C∗ by the following formula:

(3.4) ν(x, t) =

Å
ve(ν)x, txνv

Q(ν,ν)
2

ã
.

Then the quotient (T∨×C∗)/Λ can be naturally identified with the total space

of the complement to the zero section in the line L−1
Q,v on XQ,v. In particular,

the algebra C[XQ,v] is equal to the algebra of regular functions on (T∨×C∗)/Λ.

In other words, let us consider the torus T∨aff = C∗×T∨×C∗ with “coordinates”

(t, x, v). There is a natural action of Λ on T∨aff , defined by the obvious analog

of (3.4):

(3.5) ν(t, x, v) =

Å
txνv

Q(ν,ν)
2 , ve(ν)x, v

ã
.

Also, for every k ∈ Z, let C(T∨aff)k denote the space of regular functions

on T∨aff which are homogeneous of degree k with respect to the first C∗. Let

C(“T∨aff)k denote the completion of this space in the v-adic topology. We also

set

(3.6) C(“T∨aff) =
⊕
k∈Z

C(“T∨aff)k.

Then there is natural identification ◊�C[XQ] ' C(“T∨aff)Λ. (It is easy to see that

C(T∨aff)Λ
k 6= 0 if and only if k ≥ 0.)

4. The main result

4.1. Loop groups and their cousins. In this paper, for convenience, we

adopt the polynomial version of loop groups (as opposed to formal loops ver-

sion; the case of formal loops can also be treated with some modifications).

Let G be a split connected reductive algebraic group over a field k with

Lie algebra g. Let T be a maximal (split) torus in G, and let t denote the

corresponding Cartan subalgebra of g. We also denote by W the Weyl group

of G.

Let Λ denote the coweight lattice of G. Note that we can regard Λ as a

subset of h. We shall assume that there exists an integral, negative-definite

symmetric bilinear form Q on Λ which is W -invariant. In this case Q⊗ k is a

restriction to Λ of a G-invariant form on g, which we shall denote by Qg.

Consider the corresponding polynomial Lie algebra g[t, t−1] and the group

G[t, t−1]. As was mentioned in the introduction, the form Q gives rise to a
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central extension ‹G of G[t, t−1]:

1→ G∗m → ‹G→ G[t, t−1]→ 1.

Moreover, both G[t, t−1] and ‹G have a natural structure of a group ind-scheme

over k.3 We denote by ĝ the corresponding Lie algebra; it fits into the exact

sequence

0→ k → g̃→ g[t, t−1]→ 0.

The group Gm acts naturally on G[t, t−1], and this action lifts to ‹G. We

denote the corresponding semi-direct product by Gaff ; we also let gaff denote

its Lie algebra. Thus if G is semi-simple, then gaff is an untwisted affine Kac-

Moody Lie algebra in the sense of [7]; in particular, it can be described by the

corresponding affine root system.

We also let G′aff denote the semi-direct product Gm nG[t, t−1].

4.2. The algebra C(“T∨aff)Waff . Let us recall that for G as above one can

consider the Langlands dual group G∨. One of its crucial properties says that

the complexified Grothendieck group K0(RepG∨) of the category Rep(G∨)

of finite-dimensional representations is naturally isomorphic to the algebra

C(T∨)W of W -invariant polynomials on the torus T∨.

We would like to define analogous notions when G is replaced by Gaff .

First of all, let us describe the analog of the algebra C(T∨). Similarly to

Section 3, let us set Taff = Gm × T ×Gm and T∨aff = C∗ × T∨ × C∗. (We shall

only work with the dual torus T∨aff over C.) It will be convenient for us to think

about the first Gm-factor in Taff as dual to the second C∗-factor in T∨aff (and

vice versa). We also define C(“T∨aff) as in (3.6).

The weight lattice Λaff of T∨aff is naturally identified with Z × Λ × Z. It

is also the coweight lattice of Taff . (However, let us stress that according to

our conventions, the first multiple in Λaff = Z×Λ×Z corresponds to the loop

rotation in Gaff and the last multiple corresponds to the center of Gaff .) Let

Λ′aff = Z× Λ. For any k ∈ Z we denote by Λaff,k (resp. by Λ′aff,k) the set of all

elements of Λaff (resp. of Λ′aff) whose first coordinate is equal to k.

Let Waff denote affine Weyl group of G which is the semi-direct product

of W and Λ. It acts on the lattice Λaff (resp. Λ′aff) preserving each Λaff,k

(resp. each Λ′aff,k). In order to describe this action explicitly, it is convenient

to set Waff,k = W n kΛ which naturally acts on Λ. Then the restriction of the

Waff -action to Λaff,k ' Λ×Z comes from the natural Waff,k-action on the first

multiple.

In the case whenG is semi-simple and simply connected, the set Λaff,k/Waff

admits the following description. Let us denote by Λ+
aff the set of dominant

3This group-scheme is nonreduced if G is not semi-simple.
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coweights of Gaff (i.e., those coweights whose product with every positive root

of Gaff is nonnegative). We put Λ+
aff,k = Λ+

aff ∩ Λaff,k.

Let Λ+
k ⊂ Λ denote the set of dominant coweights of G such that 〈λ, α) ≤ k

when α is the highest root of g. It is well known that a weight (k, λ, n) of G∨aff

lies in Λ+
aff,k if and only if λ ∈ Λ+

k (thus Λ+
aff,k = Λ+

k × Z).

Then (under the assumption that G is simply connected) every Waff -orbit

on Λaff,k contains unique element of Λ+
aff,k. This is equivalent to saying that

Λ+
k ' Λ/Waff,k.

4.3. The Langlands dual group. We would like to interpret the algebra

C(“T∨aff)Waff as the Grothendieck ring of a certain category of representations

of the appropriately defined affine Langlands dual group G∨aff . Unfortunately,

we do not know a good definition of G∨aff for general G. However, we can

define G∨aff (and the appropriate category of representations) in the following

two cases:

1) G is torus

2) G is simply connected.

Let us explain these definitions. (We are not going to use the group G∨aff

in the remaining part of the paper; however, we think that interpreting the

algebra C(“T∨aff)Waff (that will one of the most important players in our main

Theorem 4.6) at least in some cases is very instructive.)

Case 1: G is a torus. Let us use the notations of the previous section. In

particular, we let e : Λ→ Λ∨ denote the map given by the form Q. We let G∨Q
denote the torus over C whose lattice of cocharacters is e(Λ). Thus G∨Q fits

into the short exact sequence

0→ Z → G∨Q → G∨ → 0,

where Z = Λ∨/e(Λ). Note that the form Q can be used to define the dual

form Q∨ on e(Λ) which is also integral and even. Thus we can form the group

(G∨Q)aff . It contains the group G∨Q as a subgroup; it is easy to see that Z ⊂ G∨Q
is central in (G∨Q)aff . Thus we may define G∨aff = (G∨Q)aff/Z.

The quotient of G∨aff by the central C∗ can be described as follows. Con-

sider the group ind-scheme (G∨)′aff . It is easy to see that its connected compo-

nents are numbered by Λ∨. Then G∨aff/C∗ is equal to the union of the above

connected components corresponding to the elements of e(Λ) ⊂ Λ∨.

Case 2: G is semi-simple and simply connected. In this case let g∨aff denote

the Langlands dual affine Lie algebra of gaff (considered as a Lie algebra over

C. By definition, this is an affine Kac-Moody Lie algebra whose root system

is dual to that of gaff . Moreover, it comes also with a fixed central sublagebra

C ⊂ g∨aff which is determined uniquely by the choice of Qg. Note that in general
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(when g is not simply laced) the algebra g∨aff is not isomorphic to (g∨)aff . (Here

g∨ as before denotes the Langlands dual Lie algebra of g.) Moreover, if g is

not simply laced, then g∨aff is a twisted affine Lie algebra. However, the algebra

g∨aff always contains g∨ × C2 as a Levi subalgebra.

We now let G∨aff denote any connected group ind-scheme over C such that

a) The Lie algebra of G∨aff is g∨aff

b) The above embedding g∨ ↪→ g∨aff extends to an embedding G∨ ↪→ G∨aff .

The existence (and uniqueness) of G∨aff follows immediately from [14].

In both cases 1) and 2), the group G∨aff contains the torus T∨aff = C∗ ×
T∨ × C∗. Here the first Z-factor is responsible for the center of G∨aff ; it can

also be thought of as coming from the loop rotation in Gaff . The second

Z-factor is responsible for the loop rotation in G∨aff . Similarly, we shall denote

by Λ′aff = Λ× Z the weight lattice of G′aff .

It follows easily from the above definitions that (in both cases 1) and

2)) the group G∨aff maps naturally to C∗. (This homomorphism is dual to the

central embedding C∗ → Gaff .) We denote the kernel of this homomorphism by‹G∨ and we let g̃∨ denote its Lie algebra. It is clear that in fact G∨aff = ‹G∨oC∗.
We shall fix such an isomorphism, which, in particular, endows G∨aff with a

subgroup C∗, which we shall call the loop rotation subgroup in G∨aff .

Also G∨aff has a natural central subgroup isomorphic to C∗. In addition,

it is easy to see that G∨aff is generated by (G∨aff)0 and by T∨aff .

4.4. Representations of G∨aff . The Lie algebra gaff is endowed with a canon-

ical “parabolic” subalgebra p0 which is equal to k⊕ g[t]⊕ k. We let p∨0 denote

the corresponding dual subalgebra of g∨aff and we set n∨0 = [p∨0 , p
∨
0 ].

By an integrable highest weight representation of G∨aff , we shall mean an

algebraic representation of G∨aff whose restriction to the Lie algebra n∨0 is locally

nilpotent. It is easy to see that any such representation is semi-simple. We say

that such a representation L is of level k if the central C∗ acts on L by means

of the character z 7→ zk. Then it is well known that

a) If L is a nonzero representation of level k, then k ≥ 0.

b) Any representation of level 0 is a pull-back of a representation of C∗
under the above-mentioned map G∨aff → C∗.

c) The irreducible representations of level k > 0 are in one-to-one corre-

spondence with elements of Λaff,k/Waff .

Let Rep(G∨aff) denote the category of integrable highest weight represen-

tations L of G∨aff satisfying the following conditions:

(i) L is a direct sum of irreducible representations of G∨aff with finite mul-

tiplicities.
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(ii) For every n ∈ Z, let us denote by Ln the subspace of L on which the

loop rotation subgroup C∗ acts by means of the character z 7→ zn.

Then Ln = 0 for 0� n.

The category Rep(G∨aff) is stable under a tensor product (cf. [7]). Also the

group Z acts naturally on this category by multiplying every L by the cor-

responding character of G∨aff coming from the homomorphism G∨aff → Gm.

We denote by K0(G∨aff) the complexified Grothendieck ring of Rep(G∨aff) ten-

sored with C. It is clear that the above Z-action gives rise to a C((v))-module

structure on K0(G∨aff). In addition, the algebra K0(G∨aff) is Z+-graded. By

definition, elements of degree k in K0(G∨aff) correspond to representations of

G∨aff of level k. In this way, K0(G∨aff) becomes a graded C((v))-algebra.

To every L ∈ Rep(G∨aff), we can consider its character ch(L) which is an

element of C(“T∨aff). The assignment L 7→ ch(L) extends to an isomorphism

(4.1) K0(G∨aff) ' C(“T∨aff)Waff .

In the future we are going to work with the algebra C(“T∨aff)Waff , which is defined

for any reductive G. However, we think that intuitively it is important keep

in mind the isomorphism (4.1).

4.5. The spherical Hecke algebra of Gaff . Let now k be a finite field. We

shall choose a ring K and its subring O, which will come from one of the

following two situations:

a) K is a local non-archimedian field with residue field k and O is its ring

of integers

b) K = k[s, s−1], O = k[s].

Case a) is somewhat more interesting and natural. However, we still include

case b), since our proofs are a little more transparent in this case (although

the difference between the two cases is not essential). In both cases we are

given the natural valuation homomorphism val : K∗ → Z, whose kernel is O∗.
It now makes sense to consider the group Γ̃ = Gaff(K) and its subgroup

Γ̃0 = Gaff(O). (We also have Γ = G′aff(K),Γ0 = G′aff(O).) Note that this pair

satisfies the conditions of Section 2.3 with A = K∗ which, in both cases a) and

b), has a natural map to Z with kernel being B = O∗.
We have the natural homomorphisms

ζ : Γ = G′aff(K)→ K∗ and val : K∗ → Z.

We set π = val ◦ ζ. Similarly we have the homomorphisms ζ̃ : Gaff(K) → K∗
and π̃ : Gaff(K)→ Z.

We set

Γ+ = G′aff(O) ∪ π−1(Z>0).

As in Section 2.3 we let Γ̃+ denote the preimage of Γ+ in Γ̃.
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Below is the main result of this paper.

Theorem 4.6. (1) The pair (Γ̃+, Γ̃0) defined above is almost good in

the terminology of Section 2.3.

(2) The Hecke algebra H(Γ̃+,Γ0) is naturally isomorphic to C(“T∨aff)Waff as

a graded C((v))-algebra.

In fact, we are going to construct the isomorphism (2) explicitly; we shall

call it the Satake isomorphism for the group Gaff . We expect that it should

be possible to describe this isomorphism explicitly in terms of representation

theory of G∨aff in the spirit of [11] (cf. also [1] for some closely related conjec-

tures). However, we shall postpone the detailed discussion of this question for

another publication.

The proof of the first assertion occupies Sections 5, 6 and 7. Although the

first assertion seems to be quite elementary, the only proof of Theorem 4.6(1)

that we know requires interpreting the fibers of the corresponding maps mX,Y

in terms of algebraic geometry. The proof of the second assertion occupies

Section 8.

5. The algebra H(Γ̃+, Γ̃0) via bundles on surfaces

5.1. Double cosets and Kleinian singularities. For any k > 0, let Sk be

the scheme Spec(k[x, y, z]/xy−zk); let also S0
k be the complement to the point

(0, 0, 0) in Sk. This is a smooth surface over k.

Let A2 denote the 2-dimensional affine plane over k; the multiplicative

group Gm acts on A2 by t : (x, y) 7→ (tx, t−1y). Let µk denote the group-

scheme of roots of unity of order k; this is a group sub-scheme of Gm. Then

the natural map pk : A2 → Sk given by

(u, v) 7→ (uk, vk, uv)

identifies Sk with (A2\{0})/µk. (Note that the action of Gm (and thus also of

µk) on (A2\{0}) is free.)

Let Σ be some other surface over k, and let a be a point of Σ. We shall

say that a is of type Ak if there is an étale neighborhood of a in Σ which is

isomorphic to an étale neighborhood of (0, 0, 0) in Sk. In particular, if k = 1,

then this will just mean that a is a smooth point of Σ.

5.2. A variant : the case of an arbitrary local field. The surface Sk intro-

duced above will play a crucial role in the proof of Theorem 4.6 in case b) from

Section 4.5. Let us explain how to define it in case a), i.e., when we work over

a local nonarchimedian field K with ring of integers O. Let z be a uniformizer

in O. (It is convenient to choose it, though nothing will actually depend on

this choice.) In this case we shall set Sk = Spec(O[x, y]/xy − zk). This is a

scheme over O. It is easy to see that if k = 1, then this scheme is regular.
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(Warning: it is, however, not regular as a scheme over O.) We set S0
k to be the

complement in Sk of the (closed) point given by the equations x = y = z = 0.

The scheme S0
k is regular for all k > 0. We define a map pk : S1 → Sk of

O-schemes which sends (u, v) to (x = uk, y = vk). It is clear that under this

identification we get S0
k = S0

1/µk where µk is the group-scheme of k-th roots

of unity (over O).

We shall say that a two-dimensional scheme Σ has a singularity of type

Ak at a closed point p if near p it is étale-locally isomorphic to Sk, with p

corresponding to the point (0, 0, 0). (In particular, if k = 1, then this implies

that p is a smooth point of Σ.)

In all the proofs that follow, we shall always assume that we are in case b)

(in the terminology of §4.5). The extension to case a) will be straightforward

using the notation introduced in this subsection.

For any k-variety S, we shall denote by BunG(S) the set of isomorphism

classes of principal G-bundles on S.

Proposition 5.3. The following sets are in natural bijection :

(1) the set BunG(S0
k);

(2) the set G′aff(O)\π−1(k)/G′aff(O);

(3) the set Λ/Waff,k;

(4) the set of G-conjugacy classes of homomorphisms µk → G.

Proof. Let us first establish the bijection between (1) and (4). Let F de-

note a G-bundle on Sk. Consider the G-bundle p∗k(F) on A2\{0}. It extends

uniquely to the whole of A2 and thus it is trivial. On the other hand, the bun-

dle p∗k(F) is µk-equivariant. Since this bundle is trivial, such an equivariant

structure gives rise to a homomorphism µk → G defined uniquely up to con-

jugacy. This defines a map BunG(S0
k) → Hom(µk, G)/G. It is clear that this

is actually a bijection, since a µk-equivariant G-bundle on A2\{0} descends

uniquely to Sk.

Let us now establish the bijection between (1) and (2). To do that let us

denote by σ the automorphism of G(K) sending g(t, s) to g(ts, s). Let us now

identify π−1(k) with G(K), with right G(K) action being the standard one (by

right shifts), and with left G(K)-action given by g(h) = σk(g)h. Thus we have

the bijection

(5.1)

G′aff(O)\π−1(k)/G′aff(O) = G[tsk, t−1s−k, s]\G[t, t−1, s, s−1]/G[t, t−1, s].

Let Uk = Spec k[tsk, t−1s−k, s], Vk = Spec k[t, t−1, s]. Both Uk and Vk are

isomorphic to Gm × A1, and thus every G-bundle on either of these surfaces

is trivial. Both Uk and Vk contain W = Spec k[t, t−1, s, s−1] ' Gm × Gm as a

Zariski open subset. Thus the right-hand side of (5.1) can be identified with
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BunG(S′), where S′ is obtained by gluing Uk and Vk along W . Hence it remains

to construct an isomorphism S′→̃Sk. Such an isomorphism can be obtained

by setting x = tsk, y = t−1, z = s.

It remains to construct a bijection between (3) and (4). Recall that Λ =

Hom(Gm, T ). Thus, since µk is a closed subscheme of Gm, given every λ ∈ Λ,

we may restrict it to µk and get a homomorphism µk → T . By composing it

with the embedding T ↪→ G, we get a homomorphism µk → G which clearly

depends only on the image of λ in Λ/Waff,k. Thus we get a well-defined map

Λ/Waff,k → (Hom(µk, G)/G). The surjectivity of this map follows from the

fact that µk is a diagonalizable group-scheme. For the injectivity, note that

any two elements in T which are conjugate in G lie in the same W -orbit in T .

Thus it is enough to show that for any two homomorphisms λ, µ : Gm → T

whose restrictions to µk coincide the difference, λ−µ is divisible by k. This is

enough to check for T = Gm where it is obvious. �

5.4. Groupoids. Recall that a groupoid is a category in which all mor-

phisms are isomorphisms. All groupoids that will appear in this paper will be

small. A typical example of a groupoid for us will be as follows. If a group H

acts on a set X, then we can consider the groupoid X/H, where the objects

are points of X and a morphism from x to y is an element h ∈ H such that

h(x) = y. Using the terminology common in the theory of algebraic stacks, we

shall say that a functor f : Y → Y ′ between two groupoids is representable if

any y ∈ Y has no nontrivial automorphisms which act trivially on f(y). In this

case, for any y′ ∈ Y ′, we define the fiber f−1(y′) to be the set of isomorphism

classes of pairs (y, α), where y ∈ S and α is an isomorphism between f(y)

and y′.

By a groupoid structure on a set Y we shall mean a groupoid Y whose set

of isomorphism classes is identified with Y .

The double quotient G′aff(O)\π−1(k)/G′affO) and the set BunG(S0
k) have

natural groupoid structures and it is easy to see that the above identification

between the them is actually an equivalence of groupoids.

From now on we shall treat these sets as groupods. (Abusing the notation,

we shall denote them in the same way as before.)

5.5. The convolution diagram. Choose any two positive integers k and l.

Consider the following “convolution diagram:”

(5.2) G′affO)\π−1(k) ×
G′

aff
O)
π−1(l)/G′affO)

m→ G′affO)\π−1(sk+l)/G′affO),

where m denotes the multiplication map. As was mentioned above we shall

think about this diagram as a map of groupoids. We want to give an interpre-

tation of this diagram in geometric terms, i.e., in terms of G-bundles on some



1622 ALEXANDER BRAVERMAN and DAVID KAZHDAN

surfaces. The right-hand side of (5.2) is clearly equal to BunG(S0
k+l). Let us

interpret the left-hand side.

The surface Sk+l has canonical crepant resolution S̃k+l. Its fiber over

0 ∈ Sk+l consists of a tree of k + l − 1 rational curves E1, . . . , Ek+l−1, where

the self-intersection of each Ej is −2. Thus it is possible to blow down all the

Ej except Ek. Let us call the resulting surface Sk,l. It has two potentially

singular points corresponding to 0 and ∞ in Ek. They are of type Ak and Al
respectively (i.e., these points are really singular if the corresponding integer

(k or l) is greater than 1). More precisely, we claim that Sk,l can be covered by

two open subsets which are isomorphic to Sk, Sl, respectively. Let us describe

how this is done in more detail.

The surface Sk can be covered by two open subsets Uk and Vk, each

one isomorphic to A1 × Gm. Namely, if Sk = Spec k[x, y, z]/xy − zk, then

Uk = Spec k[x, x−1, z] and Vk = Spec[y, y−1, z]. (Note that Uk and Vk can

be considered as open subsets both Sk and S0
k .) Similarly, let us consider

Sl = Spec k[u, v, w]/uv − wl. Let us identify Vk with Ul by setting z = w

and y = u−1. Let us now glue Sk and Sl along Vk and Ul respectively. The

resulting surface Σ maps to Sk+l = Spec k[p, q, r]/pq−rk+l in the following way.

We map Sk to Sk+l by sending (x, y, z) to (x, yzl, z), and we map Sl to Sk+l

by sending (u, v, w) to (uwk, v, w). These formulas are compatible, since by

multiplying the equality y = u−1 by xu on both sides, we get uxy = uzk in the

left-hand side and x in the right-hand side, which implies that x = uzk = uwk.

Similarly, multiplying u = y−1 by vy on both sides, we get the equality yzl = v.

These equalities make sense as long as y and u are invertible. It is now easy to

see that the resulting map Σ → Sk+l is an isomorphism away from the point

(0, 0, 0) and the fiber over (0, 0, 0) is naturally isomorphic to P1. From this it is

easy to deduce that Σ ' Sk,l. We let pk,l denote the natural map Sk,l → Sk+l.

Note that Sk,l\p−1
k,l (0, 0, 0) ' Sk+l.

We let S0
k,l denote the complement to the two singular points in Sk,l.

Proposition 5.6. a) The left-hand side of (5.2) can be naturally identi-

fied with BunG(S0
k,l) (as a groupoid).

b) The corresponding map BunG(S0
k,l) → BunG(S0

k+l) is just the restric-

tion to the complement of p−1
k,l (0, 0, 0).

Proof. According to the proof of Proposition 5.3, the convolution diagram

(5.2) can be identified with

(5.3)

G[tsk+l, t−1s−k−l, s]\G[t, s, t−1, s−1] ×
G[tsl,t−1s−l,s]

G[t, t−1, s, s−1]/G[t, t−1, s]

m→ G[tsk+l, t−1s−k−l, s]\G[t, s, t−1, s−1]/G[t, t−1, s].
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We claim now that the left-hand side of (5.3) can be naturally identified with

BunG(S0
k,l). Indeed, let us set

x = tsk+l, y = t−1s−l, u = tsl, v = t−1, z = w = s.

Then we have xy = zk and uv = wl and k[tsk+l, t−1s−k−l, s] = k[x, x−1, z],

k[tsl, t−1s−l, s] = k[y, y−1, z]. Thus the product

G[tsk+l, t−1s−k−l, s]\G[t, t−1, s, s−1]×G[t, t−1, s, s−1]/G[t, t−1, s]

classifies (Fk,Fl, βk, αl), where

a) Fk is a G-bundle on Sk and βk is a trivialization of Fk on Vk;

b) Fl is a G-bundle on Sl and βl is a trivialization of Fl on Ul.

It follows from this that the product

G[tsk+l, t−1s−k−l, s]\G[t, s, t−1, s−1] ×
G[tsl,t−1s−l,s]

G[t, t−1, s, s−1]/G[t, t−1, s]

classifies the triples (Fk,Fl, γ), where Fk and Fl are as above and γ is an

isomorphism between Fk|Vk and Fl|Ul (with respect to the identification of Vk
and Ul discussed in the previous subsection). But such a triple is the same as

a G-bundle Fk,l on Sk,l since the latter surface is obtained by gluing Sk and Sl
by identifying Vk with Ul. �

5.7. A generalization. Fix now some positive integers k1, . . . , kn, and let

k = k1+· · · kn. In this case we can define the surface Sk1,...,kn which is obtained

by gluing the surfaces Sk1 , . . . , Skn by identifying Vk1 with Uk2 , Vk2 with Uk3 ,

etc. We have the map pk1,...,kn : Sk1,...,kn → Sk. The surface Sk1,...,kn is smooth

away from n singular points which all lie in the preimage of zero under pk1,...,kn

and are of types Ak1 , . . . , Akn respectively. We shall denote by S0
k1,...,kn

the

complement to these singular points.

It is easy to see that away from p−1
k1,...,kn

(0, 0, 0) the map pk1,...,kn is an

isomorphism. In particular, S0
k embeds into S0

k1,...,kn
as an open subset.

On the other hand, we can consider the map (of groupoids)

G′aff(O)\π−1(k1) ×
G′

aff
(O)

π−1(k2) ×
G′

aff
(O)
· · · ×

G′
aff

(O)
π−1(kn)/G′aff(O)

→ G′aff(O)\π−1(k)/G′aff(O).

Then, using the same argument as above, we can identify this map with the

restriction map

BunG(S0
k1,...,kn)→ BunG(S0

k).
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5.8. Fibers of the convolution morphism. Consider again the convolution

morphism (5.2). It is easy to see that this morphism is representable and we

would like to understand its fibers. According to Section 5.5, we can instead

look at the fibers of the restriction map BunG(S0
k,l)→ BunG(S0

k+l). By defini-

tion, the fiber of this map over a bundle Fk+l consists of all extensions Fk,l of

Fk+l to Sk,l. If the pair (Γ+,Γ0) were good, this would imply that this set is

finite. However, it is easy to see that this set is actually infinite. In Section 7

we shall see that this problem can be remedied by changing the group G′aff

by Gaff . First we need to recall some (mostly well-known) constructions from

algebraic geometry.

6. Determinant torsors

6.1. Relative determinants. Let X be a smooth variety (over an arbitrary

field), and let Q be a vector bundle on X. Then we shall denote by det(Q) ∈
Pic(X) the top exterior power of Q. More generally, let Q be an arbitrary

coherent sheaf on X. Then locally Q has a resolution

0→ En → · · · → E1 → E0 → Q→ 0,

where all Ei are locally free. In this case we set

det(Q) =
n⊗
i=0

det(Ei)(−1)i .

It is well known that the result is canonically independent of the choice of the

resolution. (Thus, in particular, it makes sense globally.)

Let now S be a smooth variety, and let X be a smooth divisor in S. (In

the future, S will usually be a surface and X will usually be a closed curve

inside S.) Set S0 = S\X.

Let F1,F2, be two locally free sheaves on S together with an isomor-

phism α : F1|S0→̃F2|S0 . In this case we can form the relative determinant

detX(F1,F2, α) ∈ Pic(X) of F1 and F2 in the following way.4

Assume first that α defines an embedding of F1 into F2 as coherent

sheaves. Then we may consider the quotient Q = F2/F1. This is a coherent

sheaf on S which is set-theoretically concentrated on X. Thus we can find a

filtration 0 ⊂ Q1 ⊂ Q2 ⊂ · · · ⊂ Qr = Q of Q by coherent subsheaves such that

each successive quotient Qi/Qi−1 is scheme-theoretically concentrated on X.

In particular, we may regard each quotient Qi/Qi−1 just as a coherent sheaf

4In the sequel we shall just write detX(F1,F2) or detX(α) when it does not lead to a

confusion.
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on X. We set

detX(F1,F2) =
r⊗
i=1

det(Qi/Qi−1).

It is easy to see that the result does not depend on the choice of the above

filtration.

In the general case, there exists another locally free sheaf F3 and embed-

dings β1, β2 : F1,F2 ↪→ F3 such that

a) Both β1 and β2 are isomorphisms away from X.

b) α = β1|S0 ◦ β2|−1
S0 .

In this case we set detX(F1,F2, α) = detX(F1,F3, β1)⊗detX(F2,F3, β2)−1. It

is easy to see that the result is canonically independent of the choice of F3 and

β1, β2. (This definition is certainly well known, but we were unable to find a

good reference for it.)

Let now G be an algebraic group, and let V be a finite-dimensional rep-

resentation of G. In this case for any G-bundle F (on any variety) we can

consider the associated vector bundle FV . Given two G-bundles F1 and F2 on

S with an isomorphism between their restrictions to S0, we set

detX,V (F1,F2) = detX((F1)V , (F2)V ).

6.2. Representations and bilinear forms. We now go back to the case when

G is reductive and keep all the notations from the previous sections. Then any

finite-dimensional representation V of G as above defines a symmetric bilinear

W -invariant form on Λ in the following way. By restricting V to T we get a

collection of n = dimV weights λ∨1 , . . . , λ
∨
n of T , which gives an action of Λ on

Zn. We set

QV (λ, µ) = −TrZn(λ · µ).

It is clear that this form is nonpositive definite, integral and W -invariant. Also,

if we assume that the determinant of V is an even character of G (i.e., it is

a square of another character), then this form is even. (In particular, that is

always the case when G is semi-simple.) This form is negative-definite if V is

almost faithful (i.e., if V is a faithful representation of a quotient of G by a

finite central subgroup).

Moreover, it is well known that for any negative-definite W -invariant form

Q, there exists a positive integer c and a representation V as above such that

cQ = QV . It is easy to see that Theorem 4.6 holds for the form Q if and only

if it holds for cQ. Thus we may assume that Q = QV .

6.3. Description of the central extension. We now want to define the cen-

tral extension Gaff of the group G[t, t−1] oGm (which we shall only do in the

case Q = QV ). For any test k-scheme W, we need to define Gaff(W). Let us

first do it just for G[t, t−1]; i.e., let us define ‹G(W).
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Consider some element g ∈ G[t, t−1](W). By definition, this is the same

as a mapW×Gm → G. Let S = A1×W. Then to g there corresponds a triple

(F1,F2, αg) as above, where F1 and F2 are both trivial bundles onW×A1 and

αg is an isomorphism between their restrictions to W × Gm which is “equal

to g” in the obvious sense. Then we can consider Lg := detW(F1,F2) which

is a line bundle on W. It is clear that Le is canonically trivial (here e is the

identity element). Moreover, for any g1, g2 ∈ G[t, t−1](W), we have the natural

isomorphism

(6.1) Lg1 ⊗ Lg2 ' Lg1g2 .

We set ‹G(W) to be the set of pairs (g, κ) where κ is a trivialization of Lg. The

group structure on ‹G(W) comes from (6.1).

It is easy to see that with the above definition of ‹G the action of Gm on

G[t, t−1] by loop rotations extends to ‹G (this follows from the fact that the

line bundle Lg considered above does not change when we change g by a loop

rotation), and thus we may consider the semi-direct product Gaff = ‹GnGm.

Remark. In [5] Faltings explains how to construct geometrically the cen-

tral extension (and the determinant torsor) associated with any even symmetric

invariant form Q. In principle, in what follows we could work with arbitrary

Q using the construction of [5]. However, this would considerably complicate

the exposition. As mentioned above, in order to prove Theorem 4.6(1), it is

enough to assume that Q = QV for some V .

6.4. Torsors of extension. Here is another source of examples of Z-torsors

that will be important in the future. Let X be a curve, and let x be a smooth

point of X. Set X0 = X\{x}. Assume that we are given a line bundle L0 on

X0. Then the set of all possible extensions L of L0 to the whole of X (as a line

bundle) is naturally a Z-torsor, which we shall call the torsor of extensions of

L0 to X.

The following remark will become very important later. Assume that X

is projective. Then the above torsor of extensions is canonically trivial. Indeed

to any extension L we can associate the integer degL (the degree of L).

6.5. More Z-torsors. Let now S be a smooth surface, and let X1, . . . , Xn

be a collecton of smooth curves S, intersecting at a point y ∈ S. Let us

denote their union by X. Let now F1 and F2 be two vector bundles on S

with an isomorphism away from X. Let X0
i = X\{y}. Then we can consider

the relative determinants detX0
i
(F1,F2) ∈ Pic(X0

i ). Let Ti be the Z-torsor of

extensions of detX0
i
(F1,F2) to the whole of Xi. The following result is probably

well known, but we were not able to find a reference. The proof given below

is due to V. Drinfeld.
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Lemma 6.6. The Z-torsor
n⊗
i=1

Ti

is canonically trivial.

Proof. Clearly, we can replace S by the formal neighbourhood of y. Let

also D denote the one-dimensional formal disc (formal neighbourhood of 0 in

A1). Let us choose formal coordinates u, v, around y. Then for any a, b ∈ k,

we can consider the map fa,b : S → D sending (u, v) to au + bv. Then for

generic pair (a, b), this map induces an isomorphism Xi ' D. Let us choose

such a pair.

As before we may assume that the identification F1|S\X ' F2|S\X comes

from an embedding F1 ↪→ F2. Let Q = F2/F1. This is a coherent sheaf

on S, which is set-theoretically supported on X. Consider the direct image

R = (fa,b)∗Q. Then we may consider detR. This is a line bundle on D; it is

clear that its restriction to D0 is canonically isomorphic to the tensor product

of all the detX0
i
(F1,F2) (where we identify X0

i with D0 by means of fa,b). Thus

the Z-torsor
n⊗
i=1

Ti

is canonically isomorphic to the torsor of extensions of detR|D0 to D. But

since detR is a line bundle defined on all of D, it defines such an extension

canonically and thus our Z-torsor is canonically trivial.

The collection of all pairs (a, b) for which the above arguments works is a

Zariski open subset X of A2; in particular, X is an irreducible algebraic variety.

It is clear that the above trivialization depends regularly on (a, b) ∈ X ; thus

the irreducibility of X implies that the trivialization is independent of the

choice of the pair (a, b). Similar argument shows that the above trivialization

is independent of the choice of coordinates (u, v). �

It the sequel, we shall say that a curve X ⊂ S is good if it is a union of

smooth irreducible components.

6.7. Relative c2. Let again S be a smooth surface, and let X be a smooth

connected projective curve inside S. Let also F1,F2, be two G-bundles on S.

Let also α be an identification between F1 and F2 on S0 = S\X (compatible

with the trivialization of the determinants). Then we set

c2(F1,F2) = deg(detX(F1,F2)).

More generally, assume that X is a good connected curve. In this case

detX(F1,F2) is not well defined as a line bundle on X. (It is only well defined

on the smooth part X0 of X.) It follows, however, from Lemma 6.6 that the

degree of detX(F1,F2) does make sense and we again denote it by c2(F1,F2).
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Assume now that G = GL(n). In this case we can think about F1 and F2

as vector bundles of rank n, and we can define the relative Euler characteristic

χ(F1,F2) in the following way. First, as before, we choose some vector bundle

F3 on S of rank n containing both F1 and F2 as locally free subsheaves. We set

Qi = F3/Fi for i = 1, 2. Then both Q1 and Q2 are set-theoretically supported

on X and, therefore, their cohomology is finite-dimensional. We set

χ(F1,F2) = χ(Q1)− χ(Q2),

where χ(Qi) denotes the Euler characteristic of Qi. It is clear that the result

does not depend on the choice of F3.

Proposition 6.8. Assume that the triple (F1,F2, α) is such that det(α)

(which is an isomorphism between detF1|S0 and detF2|S0) extends (as an

isomoprhism) to the whole of S. Then

χ(F1,F2) = c2(F1,F2).

Proof. Assume first that X is irreducible. Let us choose F3 as above.

Since both Q1 and Q2 have a filtration with quotients supported on X, it

follows that it makes sense to speak about the rank and the degree of Qi on

X, which we shall denote by rkQi and degQi. Then the fact that det(α)

extends to the whole of X implies that rkQ1 = rkQ2. On the other hand, by

definition, we have
c2(F1,F2) = degQ1 − degQ2.

Thus Proposition 6.8 follows from the Riemann-Roch theorem for the curve X.

In the general case (i.e., when X is not necessarily irreducible) we can find

a sequence F0 = F ,F1, . . . ,Fm = F ′ of vector bundles of rank n on S together

with the isomorphisms αi : Fi|S0→̃Fi+1|S0 for all i = 0, . . . ,m− 1 such that

a) The composition of all the αi is equal to α.

b) Each αi is an isomorphism away from one irreducible component of X.

In this case the above proof shows that for all i = 0, . . . ,m − 1, we have

c2(Fi,Fi+1) = χ(Fi,Fi+1). Since we have

c2(F ,F ′) =
m−1∑
i=0

c2(Fi,Fi+1) and χ(F ,F ′) =
m−1∑
i=0

χ(Fi,Fi+1),

the assertion of Proposition 6.8 follows. �

Proposition 6.8 implies the following result, which in some sense explains

the notation c2(F ,F2). (This result will not be used in this paper and we leave

the proof to the reader.)

Lemma 6.9. Assume that S is projective. Assume also that G = SL(n).

(In other words, F1 and F2 are vector bundles, detF1 and detF2 are trivialized

and α is compatible with these trivializations.) Then

c2(F1,F2) = c2(F2)− c2(F1).
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6.10. The torsor TF . Let now S and X be as above, and let F be a

G-bundle on S0. Then to this data we can associate a Z-torsor TF , which is

uniquely characterized by the following properties:

1) Any extension F1 of F to S defines a trivialization of κF1 of TF .

2) Let F1 and F2 be two extensions of F to S. Then the difference between

κF1 and κF2 is equal to c2(F1,F2).

6.11. The case of disconnected X . We would like to refine slightly the

above definitions. Namely, assume X has r connected components. Then the

relative Chern class c2(F1,F2) naturally takes values in Zr (since it makes

sense to talk about c2(F1,F2) in the formal neighbourhood of each connected

component of X). In particular, in this case we shall denote by TF the corre-

sponding Zr-torsor.

6.12. Consider the groupoid BunG(S0). We let fiBunG(S0) denote the “to-

tal space of all the TF ’s.” (In other words, a point of fiBunG(S0) is given by a

G-bundle F on S0 together with the trivialization of the torsor TF .) By defini-

tion, we have a natural map q : BunG(S)→fiBunG(S0) which is representable.

Theorem 6.13. Assume that X can be blown down, i.e., that there exists

a (not necessarily smooth) surface Σ with a point y ∈ Σ and a proper birational

map f : S → Σ such that

a) X is equal to the set-theoretic preimage of y.

b) The restriction of f to S0 is an isomorphism between S0 and Σ0 =

Σ\{y}.
Assume also that G is semi-simple. Then

(1) Let ‹F ∈ fiBunG(S0) and assume that X has r connected components.

Then there exists A ∈ Z such that for any
→
a = (a1, . . . , ar) ∈ Zr such

that ai > A for some i = 1, . . . , r, we have

→
a · ‹F 6∈ im(q).

(Here, by
→
a · ‹F , we mean the action of

→
a on ‹F as an element of the

Zr-torsor fiBunG(S0).)

(2) q has finite fibers.

Remark. When X is smooth this is exactly Theorem 2.2.1 of [8], since

in this case our condition is equivalent to the fact that X has negative self-

intersection.

Proof. First of all, without loss of generality, we may assume that X is

connected. We shall denote by y ∈ Σ the image of X in Σ.

The first assertion of Theorem 6.13 is equivalent to the following state-

ment. Fix some F ∈ BunG(S). Then we must show that for all triples
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(F ,F ′, α) (where F ′ ∈ BunG(S) and α is an isomorphism between the re-

strictions of F and F ′ to S0), the set of all possible values of c2(F ,F ′) is

bounded above.

For any F ∈ BunG(S) and l ∈ Z, let us consider the set of isomorphism

classes of triples (F ,F ′, α) as above such that

(6.2) c2(F ,F ′) = l.

Then the second assertion of Theorem 6.13 says that this set is finite.

Since G is semi-simple, we can choose an embedding G ↪→ SL(n). Without

loss of generality, we may assume that the quadratic form Q comes from this

embedding. Then the set of all possible (F ′, α) forG embeds into the similar set

for SL(n). Hence we may assume that G = SL(n). In this case F and F ′ above

should be thought of as vector bundles of rank n with trivial determinant.

Let us first concentrate on Theorem 6.13(2). Then

χ(F ,F ′) = c2(F ,F ′) = l.

The proof of the required finiteness is based on the following result.

Lemma 6.14. There exists a locally free subsheaf E of F , which is equal

to F on S0 and such that for any F ′ as above, the resulting identification

E|S0 ' F ′|S0 extends to an embedding E ↪→ F ′.

Proof. Let j denote the (open) embedding of S0 into Σ. Then we can

consider the sheaf G = j∗(F|S0) on Σ. Since the complement of S0 in Σ con-

sists of one point, it follows that this sheaf is coherent. Also, for any F ′ as

above, we have the natural embedding (of coherent sheaves) f∗F ′ ↪→ G which

is an isomorphism away from y. Hence there exists some N > 0 such that f∗F ′
contains mN

Σ,yG, where mΣ,y denotes the maximal ideal of the point y in Σ.

We claim now that the number N as above can be chosen uniformly for

all F ′ satisfying (6.2). To prove this let us define

η(F ′) = length(coker(f∗F ′ → G)) + length(R1f∗F ′).
Then it is clear that l = χ(F ,F ′) = η(F)− η(F ′). Thus

length(coker(f∗F ′ → G)) = η(F)− length(R1f∗(F ′))− l.
Hence length(coker(f∗F ′ → G)) ≤ η(F) − l. Hence (by Nakayama lemma) if

we choose a number N such that length(G/mN
Σ,yG) ≥ η(F)− l, then the sheaf

f∗F ′ must contain mN
Σ,yG.

Let now H = mN
Σ,yG. This a coherent sheaf on Σ. The embedding

H ↪→ f∗F ′ gives rise to a morphism f∗H → F ′, which is an isomorphism

on S0. Let E ′ denote the quotient of f∗H by torsion. This is a torsion-free co-

herent sheaf on S. Let E denote its saturation (i.e., minimal locally free sheaf,

containing E ′). Then the morphism f∗H → F ′ gives rise to an embedding

E ↪→ F ′ of locally free sheaves, which is an isomorphism on S0. �
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Let us now explain why Lemma 6.14 implies Theorem 6.13(1). Without

loss of generality, we may assume that E = F(N · X). Applying the same

argument to the dual of F we see that we may also assume that any F ′ as

above is contained in F(−N · X). Let Q = F(−N · X)/F(N · X). This is

a coherent sheaf on S, which is set-theoretically supported on X. Any F ′
as above is uniquely determined by its image F ′Q = F ′/F(−N · X) in Q.

Moreover, the Euler characteristic χ(F ′Q) is independent of F ′. (It is equal to

χ(F ,F ′) + χ(F(N ·X),F) = l + χ(F(N ·X),F).)

Hence it is enough for us to show that there exists a scheme of finite type

over k whose k points are subsheaves of Q with given Euler characteristic. (In-

deed, since k is finite, the set of k-points of a scheme of finite type is finite.)

Without loss of generality, we can assume that S is projective. We shall choose

an embedding of S into some projective space. In other words, we are going

to choose some very ample line bundle L on S. Thus Q is a coherent sheaf on

a projective scheme S; hence, according to [6], there exists a scheme Quot(Q)

whose k-points are subsheaves G of Q. Moreover, the subscheme of Quot(Q)

corresponding to looking at G as above with fixed Hilbert polynomial is of finite

type over k. For every irreducible component Xi of X we can define the generic

rank rki(G) of G as follows. First, we can find a filtration 0 ⊂ G1 ⊂ · · · ⊂ Gs = G
of G such that every quotient Gj/Gj−1 is scheme-theoretically concentrated

on X. Then we define rki(G) =
∑
j rki(Gj/Gj−1), where rki(Gj/Gj−1) is the

rank of the restriction of Gj/Gj−1 to the generic point of Xi. It is clear that

0 ≤ rki(G) ≤ rki(Q); hence there are finitely many possibilities for each of the

numbers rki(G). Thus to finish the proof, it is enough to show the following.

Lemma 6.15. The Hilbert polynomial of F is uniquely determined by χ(G)

and by the numbers rki(G).

Proof. For each Xi as above, let us set Li = L|Xi . Let di = degXi Li. Also,

let us choose a filtration Gj of G as above such that every quotient Gj/Gj−1

is concentrated scheme-theoretically on some irreducible component Xij of X.

We shall denote by Sj the corresponding coherent sheaf on Xij . By definition,

the Hilbert polynomial of G is determined by the numbers dimH0(G ⊗ L⊗n)

for n sufficiently large. However, if n is large, then Hp(G⊗L⊗n) = 0 for p > 0,

and thus we have

dimH0(G ⊗ L⊗n) = χ(G ⊗ L⊗n) =
∑
j

χ(Sj ⊗ L⊗nij )

=
∑
j

χ(Sj) + rk(Sj) · n · dij = χ(G) +
∑
i

rki(G) · n · di,

which finishes the proof. �
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Remark. The same proof works for arbitrary reductive G if we fix the

G/[G,G]-bundle obtained from F ′ by push-forward with respect to the natu-

ral map G→ G/[G,G].

Let us now prove Theorem 6.13(1). We are going to use the notation

introduced in the proof of Lemma 6.14. We need to show that χ(F ,F ′) is

bounded above. However, we have

χ(F ,F ′) = η(F)− η(F ′).
By definition, η(F ′) ≥ 0. Hence χ(F ,F ′) ≤ η(F). �

7. Turning on the central extension

7.1. We now want to generalize Proposition 5.3 to the case where the

group G′aff is replaced by its central extension using the results of the previous

section. For this, we have to first interpret the Z-torsorGaff(O)\π̃−1(k)/Gaff(O)

over G′aff(O)\π−1(k)/G′aff(O) in geometric terms. To do this we are going to

apply the constructions of the previous Section to S = S̃k, where the role of

X will be played by the exceptional fiber of the morphism S̃k → Sk which we

shall denote by E. (We want to reserve the notation X for something else.)

Note that in this case S0 = S0
k . We shall write fiBunG(S0

k) instead of writingfiBunG(S0).

Proposition 7.2. The groupoid Gaff(O)\π̃−1(k)/Gaff(O) is canonically

equivalent to the groupoid fiBunG(S0
k).

Proof. Consider the quotient ‹G(K)/O∗,where we take the quotient by the

central O∗ ⊂ K∗. This is a central extension of G(K[t, t−1]) by Z. In particular,

it defines a Z-torsor over every g(t, s) ∈ G(K), which we shall denote by Tg.
By definition, this torsor can be described as follows.

Consider the plane A2 with coordinates t and s. Let C ⊂ A2 be given

by the equation s = 0, and let D ⊂ A2 be given by the equation t = 0. Let

y ∈ A2 be the point t = 0, s = 0. Set C0 (resp. D0) to be the complement

of y in C (resp. D). Let now M1,M2, be two trivial bundles on A2. Let ξ

be the isomorphism between their restrictions on Gm × Gm given by g. (ξ is

the natural isomorphism between two trivial bundles on Gm ×Gm multiplied

by g(t, s).) Consider detD0(M1,M2); this is a line bundle on D0 (which is

isomorphic to Gm with coordinate s). Then by definition, the Z-torsor Tg is

the torsor of extensions of detD0(M1,M2) from D0 to D. On the other hand,

by Lemma 6.6 this torsor is canonically isomorphic to the inverse of the torsor

of extensions of detC0(M1,M2) to C.

On the other hand, given g(t, s) as above, we can construct a G-bundle

F on S0
k together with trivializations on Uk and Vk as in the proof of Proposi-

tion 5.3. What we need to do is construct a trivialization of Tg starting from
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a trivialization of TF . (Recall that we consider S0
k as an open subset of S̃k

and the torsor TF is constructed via this embedding.) In other words, we need

to start with an extension F ′ of F to S̃k and construct a trivialization of Tg.
(The fact that this construction gives rise to an isomorphism TF ' Tg will

eventually be obvious.)

Let X ⊂ Sk be given by the equation x = 0 in Sk. Let X0 = X\{0, 0, 0} =

S0
k ∩ X. Let α denote the trivialization of F on Uk = Spec k[x, x−1, y]. Let

us also identify X0 with C0 by setting y = t−1. Then it is easy to see that

detC0(M1,M2) = detX0(α). Thus the torsor of extensions of detC0(M1,M2)

to 0 is canonically isomorphic to the torsor of extensions of detX0(α) to ∞.

The latter torsor is inverse to the torsor of extensions of detX0(α) to 0. In

other words, we get the canonical isomorphism between Tg and the torsor of

extensions of detX0(α) to 0.

We claim now that an extension F ′ of F to S̃k as above provides a canon-

ical extension of detX0(α) to the whole of X. Indeed, let us identify X with

its proper preimage in S̃k, and let also E denote the exceptional divisor in Sk.

Then E and X intersect at a unique point p in S̃k, and Y = E ∪X is a good

curve in S̃k. We set E0 = E\{p}. Let F0 denote the trivial bundle on S̃k. We

may regard α as an isomorphism between F ′|S0
k

and F0|S0
k
. Then by Lemma 6.6

the torsor of extensions of detX0(α) to X is inverse to the torsor of extensions

of detE0(F ′,F0, α) to E. However, since E is proper, by Section 6.4 the latter

torsor acquires a canonical trivialization and hence the same is true for the

former. �

7.3. Geometric interpretation of the convolution diagram. We now want

to generalize the results of Section 5.5 in order to give a geometric interpreta-

tion of the convolution diagram in the presence of a central extension. Namely,

let us choose as before two positive integers k and l. Recall that in this case we

have the partial resolution pk,l : Sk,l → Sk+l. Also we have the full resolution

p1,...,1 : S̃k+l = S1,...,1 → Sk+l which factorizes through a map r : S̃k+l → Sk,l
composed with pk,l.

The map r is an isomorphism over S0
k,l. Note that the complement of S0

k,l in

S̃k+l is disconnected. (It has two connected components, which correspond to

the two singular points of Sk,l.) Hence the groupoid fiBunG(S0
k,l) (here we view

S0
k,l as a complement to a divisor in the smooth surface S̃k+l) is Z × Z-torsor

over BunG(S0
k,l). Since Sk,l contains Sk+l as an open subset, it follows that the

restriction map BunG(S0
k,l) → BunG(S0

k+l) extends to a map fiBunG(S0
k,l) →fiBunG(S0

k+l). This map is Z×Z-equivariant, where Z×Z acts naturally on the

left-hand side and on the right-hand side it acts by means of the homomorphism

Z× Z→ Z sending (a, b) to a+ b.
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Proposition 7.4. The groupoid

(7.1) Gaff(O)\π̃−1(k) ×
Gaff(O)

π̃−1(l)/Gaff(O)

can be canonically identified with fiBunG(S0
k,l). Under this identification the

natural Z× Z-action on (7.1) corresponds to the Z× Z-action on fiBunG(S0
k,l).

Moreover, under this identification the multiplication map

Gaff(O)\π̃−1(k) ×
Gaff(O)

π̃−1(l)/Gaff(O)→ Gaff(O)\π̃−1(sk+l)/Gaff(O)

corresponds to the map fiBunG(S0
k,l)→fiBunG(S0

k+l) discussed above.

The proof of Proposition 7.4 is essentially the same as the proof of Propo-

sition 7.2 and we leave it to the reader.

7.5. Proof of Theorem 4.6(1). We now claim that Proposition 7.4 together

with Theorem 6.13 imply Theorem 4.6(1). First of all, this is clear if G is

semi-simple. In this case condition 1′) of Section 2 follows immediately from

Theorem 6.13(1) and condition 2) follows from Theorem 6.13(2). Also, when

G is a torus, Theorem 4.6(1) follows from Section 3. Hence it is easy to see

that Theorem 4.6(1) holds for any reductive group G′ which is isomorphic to

a product of a semi-simple group and a torus. Also assume that we are given

an isogeny G → G′ of split reductive groups. Then it is easy to see that

Theorem 4.6(1) for G′ implies Theorem 4.6(1) for G. By taking G′ to be the

product of the adjoint group of G and of G/[G,G], we see that Theorem 4.6(1)

is true for any G.

8. Action on the principal series and proof of Theorem 4.6(2)

8.1. Principal series. Consider first the subgroup ‹∆′ of Γ̃ which is equal

to O∗ ×G(K[t]) oO∗. We shall denote by ∆′ its image in Γ.

Now we define subgroups ∆ ⊂ ∆′ and ‹∆ ⊂ ‹∆′. First of all note that‹∆′ maps naturally to O∗ × G(K) × O∗ (by setting t = 0). Let B be a Borel

subgroup of G. It has the decomposition B = TU , where T is a maximal torus

in G and U is the unipotent radical of B. We set ‹∆ to be the preimage of

O∗ × T (O)U(K)×O∗ in ‹∆′. We denote by ∆ the image of ‹∆ in Γ.

We now set

Ω = Γ/∆, ‹Ω = Γ̃/‹∆, Ω′ = Γ/∆′, ‹Ω′ = Γ̃/‹∆′.
Clearly, Γ acts on Ω and Ω′, and Γ̃ acts on ‹Ω and ‹Ω′. In addition, we have the

natural map $ : ‹Ω→ ‹Ω′, which is Γ̃-equivariant.

Theorem 8.2. The action of Γ̃+ on ‹Ω is good with respect to ‹Ω′.
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As before, it is enough to prove Theorem 8.2 in the case Q = QV for some

representation V ; so we are going to assume this until the end of Section 8.9.

8.3. The structure of Ω. Before we go to the proof of Theorem 8.2, we

would like to discuss how ‹Ω and ‹Ω′ look. First of all, let us introduce another

pair of groups (∆′′, ‹∆′′) such that ∆ ⊂ ∆′′ ⊂ ∆′ (resp. ‹∆ ⊂ ‹∆′′ ⊂ ‹∆′).
These are defined exactly as ∆ and ‹∆ except that the group T (O)U(K), used

in the definition, has to be replaced by B(K). It is easy to see that ∆ is

normal in ∆′′ (resp. ‹∆ is normal in ‹∆′′) and we have the natural isomorphism

∆′′/∆ = ‹∆′′/‹∆ = T (K)/T (O) ' Λ. Thus Λ acts on Ω on the right. In

addition, the group Z acts on Ω. (This action comes from the center of Γ.)

Altogether, we get an action of Z× Λ = Λ′aff on Ω, and this action commutes

with the action of Γ. In particular, Λ′aff acts on Γ0\Ω. Similarly, the lattice

Λaff = Z × Λ × Z acts on ‹Ω and this action commutes with the action of Γ̃.

In particular, Λaff acts on Γ̃0\‹Ω. The following lemma follows easily from [9,

Prop. 1.4.5].

Lemma 8.4. (1) The action of Λ′aff on Γ0\Ω is simply transitive. Sim-

ilarly, the action of Λaff on Γ̃0\‹Ω is simply transitive.

(2) The action of Z× Z on Γ̃0\‹Ω′ is simply transitive.

(3) Let us identify Γ0\‹Ω with Λaff = Z×Λ×Z by acting on the unit element.

Similarly, let us identify Γ̃0\‹Ω′ with Z × Z. Then the natural map

Γ̃0\‹Ω → Γ̃0\‹Ω′ induced by $ : ‹Ω → ‹Ω′ corresponds to the projection

onto the first and the third factor.

Lemma 8.4 implies that Ffin(‹Ω) ' C[Λaff ]. Similarly, F
Ω̃′

(‹Ω) is the v-adic

completion of C[Λaff ] (here as before the action of v on the right-hand side

comes from the “central” copy of Z in Λaff)), which consists of all functions

f(k, λ, n) such that

1) f(k, λ, n) = 0 for k � 0.

2) For almost all n, we have f(k, λ, n) = 0 for all λ, k.

3) For given k, the function f(k, λ, n) is not equal to 0 only for finitely

many pairs (λ, n).

8.5. ‹Ω′ is almost good. Let us now move to the proof of Theorem 8.2. By

definition we first have to prove that the action of Γ̃ on ‹Ω′ is almost good.

The proof is similar to that of Theorem 4.6. Namely, we are going to give a

geometric interpretation of the convolution diagram for the action of Γ̃ on ‹Ω′.
More precisely, for any l ∈ Z, let ‹Ω′l = π̃−1(l)/‹∆′ (resp. Ω′l = π−1(l)/∆′). Then

for any k > 0, we want to give a a geometric interpretation of the morphism

(of groupoids)

Γ̃0\‹Ω′l ← Γ̃0\π̃−1(k) ×
Γ̃0

‹Ω′l → Γ0\‹Ω′k+l.
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First let us do this for Γ and Ω′. In other words, we want to give a

geometric interpretation of the morphism (of groupoids)

Γ0\Ω′l ← Γ0\π−1(k) ×
Γ0

Ω′l → Γ0\Ω′k+l.

First, we need some preparatory material.

8.6. Blow ups. Let Σ be a smooth surface, and let Y be a smooth curve in

Σ. Let x be some point in Y . Set Σ0 = Σ\{x}. Let OΣ (resp. OY ) denote the

structure sheaf of S (resp. of Y ), and let mY,x be the ideal sheaf of the point x

in OY . Abusing the notation, we shall regard OY as a sheaf on S with support

on Y . For each k > 0, let Jk be the preimage of mk
Y,y under the natural map

OΣ → OY . We shall denote by Blx,k(Σ) the blow up of Σ at the ideal Jk. This

is a new surface which has unique singular point y of type Ak.
5 It is endowed

with a proper birational map f : Blx,k(Σ) → Σ, which is an isomorphism

away from x and whose fiber over x is isomorphic to P1. We shall denote by

Blx,k(Σ)0 the complement to the point y in Blx,k(Σ). Also we shall identify

the proper preimage of Y in Blx,k(Σ) with Y . Let Σ′ = Blx,k(Σ)\Y . Thus

we have the natural morphism of groupoids q : BunG(Blx,k(Σ)0) → BunG(Σ)

and p : BunG(Blx,k(Σ)0) → BunG(Σ′). (The first morphism is obtained by

restricting a G-bundle to Σ0 and then taking the unique extension to Σ; the

second morphism is obtained just by restriction to Σ′.)

The surface Blx,k(Σ) admits canonical resolution of singularities B̃lx,k(Σ).

This is a smooth surface, containing Blx,k(Σ)0 as an open subset. Moreover,

the complement to Blx,k(Σ)0 in B̃lx,k(Σ) is a good connected projective curve.

Thus it makes sense to consider fiBunG(Blx,k(Σ)0). We have canonical mor-

phism q̃ : fiBunG(Blx,k(Σ)0) → BunG(Σ) × Z (which modulo Z give rise to q)

constructed as follows. Let us pick up an element in fiBunG(Blx,k(Σ)). We

may assume that it comes from a G-bundle ‹F on B̃lx,k(Σ). To describe q̃(‹F)

we only need to describe its projection to Z. Consider q(‹F|Blx,k(Σ)0). Let us

denote by F ′ its lift to B̃lx,k(Σ). Then the desired integer is c2(F ,F ′).
We shall also denote by p̃ : fiBunG(Blx,k(Σ)0)→ BunG(Σ′) the composition

of the projection fiBunG(Blx,k(Σ)0)→ BunG(Blx,k(Σ)0) with p.

Here is an example of such a situation. Let X be another smooth curve,

and let L be a line bundle over X. Let also x be some point of X. We want

to consider the above construction in the case when S = L and Y = Lx —

the fiber of L over x. In this case it is easy to see that Blx,k(Σ)\Y is naturally

isomorphic to L(−kx).

5In fact, if k = 1, then this point is smooth; in this case Blx,k(Σ) is the usual blow up of

S at the point x and the point y corresponds to the tangent space to Y at x.



THE SPHERICAL HECKE ALGEBRA 1637

Let us now consider the case X = A1. In this case the bundle L is

automatically trivial and thus we can identify Σ with A2 with coordinates (p, s),

where the point x corresponds to (0, 0) and the curve Y is given by the equation

s = 0. In this case the surface Blx,k(Σ) can be described as follows. Consider

two surfaces Σ1 and Σ2, where Σ1 = Spec k[p, q, s]/pq−sk and Σ2 = Spec k[u, s].

(Here p, q and u are some additional variables.) Let us identify the open subset

of Σ1, given by the equation q 6= 0, with the open subset of Σ2, given by the

equation u 6= 0 by setting u = q−1. Then Blx,k(Σ) is obtained by gluing Σ1 and

Σ2 along this common open subset. The corresponding map Blx,k(Σ) → Σ is

obvious. On Σ1 it is given by (p, q, s) 7→ (p, s), and on Σ2 it is given by

(u, s) 7→ (usk, s). The proper preimage of Y lies inside Σ1 and is given there

by the equation q = 0. Thus in this case Σ′ = Σ2 and it can be naturally

identified with A2 with coordinates (u, s).

In what follows we shall only work with Σ,Σ′, in this case. We shall also

set Σ0
1 = Σ1∩Blx,k(Σ)0. We have natural isomorphisms Σ1 ' Sk and Σ0

1 ' S0
k .

Now we claim the following proposition.

Proposition 8.7. The diagram of groupoids

Γ0\Ω′l ← Γ0\π−1(k) ×
Γ0

Ω′l → Γ0\Ω′k+l

is equivalent to the diagram

BunG(Σ′)
p← BunG(Blx,k(Σ)0)

q→ BunG(Σ).

Similarly, the diagram

Γ̃0\‹Ω′l ← π̃−1(k) ×
Γ0

‹Ω′l → Γ0\‹Ω′k+l

is equivalent to

BunG(Σ′)× Z p̃×id← fiBunG(Blx,k(Σ)0)× Z q̃+id→ BunG(Σ)× Z.

(Here, by q̃+id, we mean the map which sends a pair (‹F , a) ∈fiBunG(Blx,k(Σ)0)

× Z, such that q̃(‹F) = (G, b), to (G, a+ b).)

Proof. The proof is very similar to the proof of Propositions 5.6 and 7.4.

First, for any n ∈ Z, let us consider the quotient

Γ0\Ω′n = G[tsn, t−1s−n, s]\G[t, t−1, s, s−1]/G[t, s, s−1].

We claim that (as a groupoid) it can naturally be identified with BunG(A2)

with coordinates (u, s), where u = tsn. The proof is exactly the same as the

proof of the bijection (1)⇔ (2) from Proposition 5.3.

Next, we claim that the Z-torsor Γ̃0\‹Ω′n → Γ\Ω′n is canonically trivialized.

In other words, we get an equivalence

Γ̃0\‹Ω′n ' BunG(Σ)× Z.
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This would have been obvious if we were dealing with sets, rather than with

groupoids, since the set of isomorphism classes of points of Γ\Ω′n consists of

one element. In order to construct the required trivialization on the level of

groupoids we must prove the following result.

Lemma 8.8. The group of automorphisms of the unique point of Γ\Ω′n
acts trivially on Z.

Proof. Note that by definition, this group is equal to ∆′ = G(K[t]) nO∗.
It is easy to see that it is enough to prove this separately in the case when G is

a torus and when G is semi-simple. If G is a torus, then our statement follows

from the calculations of Section 3. When G is semi-simple, then ∆′ is actually

the group of k-points of a connected group ind-scheme G∆′ over k and it is

clear that the above homomorphism from ∆′ → Z comes from an algebraic

homomorphism G∆′ → Z, which has to be trivial since G∆′ is connected. �

Let us now recall that Blx,k(Σ)0 is glued from Σ0
1 ' S0

k and Σ2 ' A2. Thus

setting p = tsk+n, q = ts−n, and arguing as in the proof of Proposition 5.6, we

get the the equivalence

Γ0\π−1(k) ×
Γ0

Ω′l ' BunG(Blx,k(Σ)0).

The rest of the proof is essentially a word-by-word repetition of the proof of

Propositions 5.6 and 7.4. It is left to the reader. �

8.9. Proof of Theorem 8.2. We can now prove Theorem 8.2. Indeed, the

fact that the action of Γ̃ on ‹Ω′ is good follows from Proposition 8.7 together

with Theorem 6.13 (as in the proof of Theorem 4.6(1)). What is left to show

is property (i) from Section 2.7. For this we need some additional geometric

construction.

Recall that Σ is a (trivial) line bundle over X ' A1. In particular, X is

embedded into Σ. In coordinates (p, s) it is given by the equation s = 0.

Let now BunG,∆(Σ) denote the groupoid of G-bundles F on Σ endowed

with the following additional data:

1) A reduction of F|X0=X\{x} to B. We shall denote the corresponding

B-bundle on X0 by F0
B. We shall also denote by F0

T the corresponding

T -bundle.

2) An extension F ′T of F0
T to X.

Then arguing as in the previous subsection, for any n ∈ Z, we can construct

an equivalence of groupoids

Γ0\Ωn ' BunG,∆(Σ), Γ̃0\‹Ωn ' BunG,∆(Σ)× Z.

Recall that the set of isomorphism classes of the groupoid Γ0\Ωn is Λ. Geo-

metrically the corresponding map BunG,∆(Σ) → Λ is constructed as follows.
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Since the quotient G/B is proper, any B-structure on X0 extends uniquely to

X. Let us denote by FB the corresponding B-bundle on X and by FT the

induced T -bundle. In particular, this shows that BunG,∆(Σ) classifies triples

(F ,FB,F ′T ), where FB is a reduction of F to B on X and F ′T is a modifica-

tion of FT at x; i.e., F ′T is a T -bundle on X endowed with an isomorphism

F ′T |X0 ' FT |X0 . It is well known that the set of isomorphism classed of pairs

of T -bundles (FT ,F ′T ) on (any smooth curve) X together with an isomor-

phism on X0 is in one-to-one correspondence with elements of Λ. Given some

(F ,FB,F ′T ) ∈ BunG,∆(Σ) we shall denote by d(F ,FB,F ′T ) the corresponding

element of Λ, and we shall call it the defect of (F ,FB,F ′T ).

Similarly, we can define BunG,∆(Bl0x,k) (in that case we should work with

the proper preimage of X in Blx,k(Σ) which we shall identify with X) andfiBunG,∆(Bl0x,k) = BunG,∆(Bl0x,k) ×
BunG(Bl0x,k)

fiBunG(Bl0x,k)

together with natural equivalences

Γ0\π−1(k)×
Γ0

Ωl ' BunG,∆(Blx,k(Σ)0), Γ̃0\π̃−1(k)×
Γ̃0

‹Ωl 'fiBunG,∆(Blx,k(Σ)0).

The corresponding maps

BunG,∆(Σ′)
p∆← BunG,∆(Blx,k(Σ)0)

q∆→ BunG,∆(Σ)

and fiBunG,∆(Blx,k(Σ)0)
q̃∆→ BunG,∆(Σ)× Z

are constructed in the obvious way.

With this notation, in order to prove property (i), we must show the

following. Fix some a ∈ Z and λ ∈ Λ. Consider the set Ξ of isomorphism

classes of all points ξ ∈fiBunG,∆(Blx,k(Σ)0) such that

a) d(ξ) = λ.

b) The projection of q̃∆(ξ) to Z is equal to a.

Consider now the set d(q̃∆(Ξ)) of all possible defects of elements of q̃∆(Ξ).

We must show that this set is finite. To see this, assume that we have a point ξ

as above of the form (‹F ,FB,F ′T ), where ‹F is an element of fiBunG,∆(Blx,k(Σ)0)

lying over some F ∈ BunG,∆(Blx,k(Σ)0) and FB and F ′T are as before. Let

F denote the underlying G-bundle on Blx,k(Σ)0. Let G denote the unique

extension of F|Σ0 to Σ, and let F ′ denote the pull-back of G to Blx,k(Σ)0. Note

that F|X0 = F ′|X0 ; thus F ′ comes with canonical ∆-structure. Moreover, it

is clear that d(F ′,FB,F ′T ) is equal to d(q(F ,FB,F ′T )). Thus what we have to

show is that the defect of (F ′,FB,F ′T ) lies in some finite subset of Λ. This

follows from condition b) together with Theorem 6.13.
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8.10. Construction of the Satake isomorphism. We are now in the position

to construct the isomorphism claimed in Theorem 4.6(2). As mentioned above,

the quotient Γ̃0\‹Ω can be naturally identified with Λaff . Thus the space of Γ̃0-

invariant functions on ‹Ω, supported on finitely many Γ̃0-orbits, is naturally

isomorphic to C[Λaff ] = C(T∨aff). This together with Theorem 8.2 implies that

the action of H(Γ̃,Γ0) on F(Γ̃0\‹Ω) gives rise to a homomorphism H(Γ̃, Γ̃0)→
C(“T∨aff). Let ρ∨aff denote any element of Λ∨aff whose scalar product with every

simple root of G∨aff is equal to 1. Then Theorem 3.3.5 of [9] implies that

the composition of the above homomorphism with the shift by q−ρ
∨
aff lands in

C(“T∨aff)Waff . We claim that the resulting homomorphism

(8.1) ι : H(Γ̃+, Γ̃0)→ C(“T∨aff)Waff

is an isomorphism.

Proposition 8.11. ι is injective.

Proof. Recall that

H(Γ̃+, Γ̃0) = H(Γ̃+, Γ̃0)fin ⊗
C[v,v−1]

C((v)),

where H(Γ̃, Γ̃0)fin is the space of finitely supported functions on Γ̃0\Γ̃+/Γ̃0.

Moreover, for any k > 0, we have Γ̃0\π̃−1(k)/Γ̃0 = Λaff,k/Waff . In particular,

H(Γ̃, Γ̃0)fin ' C[Λ+
aff ] as a vector space. It is enough to show that the restriction

of ι to Hfin(Γ̃+, Γ̃0) is injective, since ι is a morphism of graded C((v))-algebras

and every graded component of H(Γ̃, Γ̃0)fin is of finite rank over C[v, v−1].

For any λaff ∈ Λaff , let δλaff
denote the characteristic function of Γ̃0s

λaff Γ̃0.

Then we have to show that the functions ι(δλ) are linearly independent for all

λ ∈ Λaff/Waff .

To simplify the discussion, let us prove this in the case when G is simply

connected. (The general case is similar, but notationally a bit more cumber-

some; we shall leave it to the reader.) Recall that when G is simply connected,

the quotient Λaff/Waff can be identified with the set Λ+
aff of dominant coweights

of Gaff . Let us define a partial ordering on Λaff/Waff by saying that λaff ≥ µaff

if λaff − µaff is a sum of positive roots of g∨aff . Then we claim that for any

λaff ∈ Λ+
aff , we have

(8.2) ι(δλaff
) = sλaff

+
∑

µaff<λaff

aµaff
sµaff

.

It is clear that (8.2) implies that all the ι(δλaff
) are linearly independent. The

proof of (8.2) is a word-by-word repetition of the corresponding statement for

finite-dimensional semi-simple groups (cf., e.g., [3, p. 148]). �
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To prove the surjectivity, let us note that ι is a morphism of graded C((v))-

algebras. On the other hand, we have

dimC((v))(H(Γ̃+, Γ̃0)k) = #(Λaff,k/Waff) = dimC((v))(C(“T∨aff)Waff
k ).

Thus the injectivity of ι implies its surjectivity.
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