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The link between the shape of the
irrational Aubry-Mather sets and their

Lyapunov exponents

By Marie-Claude Arnaud

Abstract

We consider the irrational Aubry-Mather sets of an exact symplectic

monotone C1 twist map of the two-dimensional annulus, introduce for them

a notion of “C1-regularity” (related to the notion of Bouligand paratingent

cone) and prove that

• a Mather measure has zero Lyapunov exponents if and only if its

support is C1-regular almost everywhere;

• a Mather measure has nonzero Lyapunov exponents if and only if its

support is C1-irregular almost everywhere;

• an Aubry-Mather set is uniformly hyperbolic if and only if it is irreg-

ular everywhere;

• the Aubry-Mather sets which are close to the KAM invariant curves,

even if they may be C1-irregular, are not “too irregular” (i.e., have

small paratingent cones).

The main tools that we use in the proofs are the so-called Green bundles.
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1. Introduction

The exact symplectic twist maps of the two-dimensional annulus were

studied for a long time because they represent (via a symplectic change of

coordinates) the dynamic of the generic symplectic diffeomorphisms of surfaces
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near their elliptic periodic points (see [8]). One motivating example of such a

map was introduced by Poincaré for the study of the restricted 3-Body problem.

For these maps, the first invariant sets which were studied were the peri-

odic orbits. The “last geometric Poincaré’s theorem” was proved by G. D. Birk-

hoff in 1913 in [7]. Later, in the 50’s, the K.A.M. theorems provided the

existence of some invariant curves for sufficiently regular symplectic diffeomor-

phisms of surfaces near their elliptic fixed points (see [20], [3], [31] and [33]).

Then, in the 80’s, the Aubry-Mather sets were discovered simultaneously and

independently by Aubry and Le Daeron (in [5]) and Mather (in [29]). These

sets are the union of some quasi-periodic (in a weak sense) orbits, which are not

necessarily on an invariant curve. We can define for each of these sets a rota-

tion number and for every real number, there exists at least one Aubry-Mather

set with this rotation number.

In 1988, Le Calvez proved in [22] that for every generic exact symplectic

twist map f , there exists an open dense subset U(f) of R such that every

Aubry-Mather set for f whose rotation number belongs to U(f) is hyperbolic.

Of course this does not imply that all the Aubry-Mather sets are hyperbolic

(in particular the K.A.M. curves are not hyperbolic).

Some results concerning these hyperbolic Aubry-Mather sets are known.

It is proved in [26] that their projections have zero Lebesgue measure, and in

[24] it is proved that they have zero Hausdorff dimension.

The main question in which we will be interested is then: given some

Aubry-Mather set of a symplectic twist map, is there a link between the geo-

metric shape of these set and the fact that it is hyperbolic? Or: Can we deduce

the Lyapunov exponents of the measure supported on the Aubry-Mather set

from the “shape” of this measure?

I did not hear of such results for any dynamical systems and I think that

the ones contained in this article are the first in this direction.

Before explaining which kind of positive answers we can give to this ques-

tion, let us introduce some notations and definitions. For classical results

concerning exact symplectic twist map, the reader is referred to the books

[13], [23], [35] and the article [30].

Notation.

• T = R/Z is the circle.

• A = T× R is the annulus and an element of A is denoted by (θ, r).

• A is endowed with its usual symplectic form, ω = dθ∧ dr and its usual

Riemannian metric.

• π : T× R→ T is the first projection and π̃ : R2 → R its lift.

• p : R2 → A is the usual covering map.
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Definition. A C1 diffeomorphism f : A→ A of the annulus that is isotopic

to identity is a positive twist map (resp. negative twist map) if, for any given

lift f̃ : R2 → R2 and for every θ̃ ∈ R, the maps r 7→ π̃ ◦ f̃(θ̃, r) are increasing

(resp. decreasing) diffeomorphisms. A twist map may be positive or negative.

Moreover, f is exact symplectic if the 1-form f∗(rdθ)− rdθ is exact.

Notation. ET +
ω is the set of exact symplectic positive C1 twist maps of A

(C1 ESPT), ET −ω is the set of exact symplectic negative C1 twist maps of A
and ETω = ET +

ω ∪ ET −ω is the set of exact symplectic C1 twist maps of A.

Definition. Let M be a nonempty subset of A, let f : A→ A be an exact

symplectic twist map and let f̃ : R2 → R2 be one of its lifts. The set M is

f -ordered if

• M is compact;

• M is f -invariant;

• for all z, z′ ∈ p−1(M), π̃(z) < π̃(z′)⇔ π̃(f̃(z)) < π̃(f̃(z′)).

(Note that this definition does not depend on the choice of the lift f̃ of f .)

A classical result in the subject asserts that every f -ordered set is a Lips-

chitz graph above a compact subset of the circle. Moreover, if K is a compact

subset or A, then there exists a constant k > 0 depending only on K and

f such that the Lipschitz constant of every f -ordered set meeting K is less

than k.

Definition. An Aubry-Mather set for an exact symplectic twist map f is

an f -ordered set M0 that is minimal in the following sense:

If M is a f -ordered set such that M ⊂M0, then M = M0.

Remark. The original definition of the Aubry-Mather sets was done by

J. Mather in a variational setting and is a little different from this one. The

orbits of such a set have to minimize a certain functional called the action.

These sets are f -ordered, but not necessarily minimal in the previous sense

(the dynamic restricted to such a set is not necessarily minimal). Moreover,

the Aubry-Mather sets that we introduce here are not necessarily minimizing

for the action.

Then it is well known that if M is an Aubry-Mather set of a f ∈ ETω, then

there exists a bi-Lipschitz orientation-preserving homeomorphism h : T → T
of the circle such that for all (θ, r) ∈ M , π ◦ f(θ, r) = h(θ). The dynamic

of f on M is conjugate via the first projection to the one of a bi-Lipschitz

homeomorphism of the circle on a minimal invariant compact set. If we write

the previous equality for a lift f̃ of f , then we can associate to every Aubry-

Mather set M of f a rotation number (which is the rotation number of any h̃
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such that for all (θ̃, r) ∈ M̃ = p−1(M), h̃(θ̃) = π̃ ◦ f̃(θ̃, r)) denoted by ρ(M, f̃).

Then for every ρ ∈ R, there exists at least one Aubry-Mather set M for f

such that ρ(M, f̃) = ρ. With our definition of Aubry-Mather set (minimal), if

ρ(M, f̃) is rational, then M is a periodic orbit; in the other case, we will say

that the Aubry-Mather set is irrational and two cases may happen:

• either M is a curve (and h is C0-conjugate to a rotation);

• or M is a Cantor (and h is a Denjoy counter example).

Moreover, every Aubry-Mather set carries a unique f -invariant Borel prob-

ability measure denoted by µ(M,f). This measure is always ergodic (even

uniquely ergodic on its support) and its support is M . Such a measure µ (as-

sociated to an Aubry-Mather set M for f) will be called a Mather measure.

Let us now explain what we mean by “shape of a set” or of a measure. This

notion is related to a notion of regularity.

Definition. Let M ⊂ A be a subset of A and x ∈ M a point of M .

The paratingent cone to M at x is the cone of TxA denoted by PM (x) whose

elements are the limits

v = lim
n→∞

xn − yn
τn

,

where (xn) and (yn) are sequences of elements of M converging to x, (τn) is

a sequence of elements of R∗+ converging to 0, and xn − yn ∈ R2 refers to the

unique lift of this element of A that belongs to [−1
2 ,

1
2 [2.

We will say that M is C1-regular at x if there exists a line D of TxA such

that PM (x) ⊂ D. If M is not C1-regular at x, we say that M is C1-irregular

at x.

This notion of (Bouligand’s) paratingent cone comes from nonsmooth

analysis (see for example [4]). Of course, at an isolated point, the notion of

regularity does not mean anything, and we will use it only for Aubry-Mather

sets having no isolated point, i.e., irrational Aubry-Mather sets.

Theorem 1. Let f be an exact symplectic C1 twist map and let µ be an

irrational Mather measure of f . The following two assertions are equivalent :

• for µ-almost every x, supp(µ) is C1-regular at x;

• the Lyapunov exponents of µ (for f ) are zero.

An alternative statement of this result is

Theorem 2. Let f be an exact symplectic C1 twist map and let µ be an

irrational Mather measure of f . The following two assertions are equivalent :

• for µ-almost every x, supp(µ) is C1-irregular at x;

• the Lyapunov exponents of µ (for f ) are nonzero.
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Hence we do not obtain exactly the kind of result we wanted. Knowing

the measure µ (and not the diffeomorphism f !), we can say if the Lyapunov

exponents are zero or not, but the a priori knowledge of the Aubry-Mather set

is not sufficient to deduce if the Lyapunov exponents are zero or no.

We can easily construct two C1 ESPT f and g for which the zero section

is an irrational invariant curve, the dynamic restricted to the zero section is

minimal, but the two invariant measures µ(M,f) and µ(M, g) are not mutually

absolutely continuous. Indeed, there exists a C∞ minimal diffeomorphism h

of the circle that is transitive but whose invariant measure is not absolutely

continuous with respect to the Lebesgue measure (see [16] for example). Then

we choose f such that its restriction to the zero section is h and g such that

its restriction to the zero section is an irrational rotation. For this example,

“almost everywhere” for one measure is different from “almost everywhere”

for the other one.

However, in the extreme cases, we obtain a result concerning the shape of

the Aubry-Mather sets.

Corollary 1. Let f be an exact symplectic C1 twist map and let M be

an irrational Aubry-Mather set of f . If for all x ∈ M , M is C1-regular at x,

then the Lyapunov exponents of µ(M,f) (for f ) are zero.

It is not hard to see that an Aubry-Mather set is C1-regular everywhere

if and only if there exists a C1 map γ : T → R whose graph contains M .

Therefore we can state Corollary 1 in the following nicer form:

If an irrational Aubry-Mather set is contained in a (not necessarily

invariant) C1 curve, then the Lyapunov exponents of µ(M,f) are zero.

In [18], M. Herman gives some examples of irrational Aubry-Mather sets

which are invariant by a twist map, contained in a C1 graph but not contained

in an invariant continuous curve. I do not know any example of an irrational

Aubry-Mather set with zero Lyapunov exponents which is not contained in a

C1 curve.

Problem. Is it possible to build an irrational Aubry-Mather set with zero

Lyapunov exponents which is not contained in a C1 graph?

Theorem 3. Let f be an exact symplectic C1 twist map and let M be an

irrational Aubry-Mather set of f . The following two assertions are equivalent :

• for all x ∈M , M is C1-irregular at x;

• the set M is uniformly hyperbolic (for f ).

In the nonuniformly hyperbolic case, we can be more specific.
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Theorem 4. Let f be an exact symplectic C1 twist map and let µ be

an irrational Mather measure of f which is nonuniformly hyperbolic; i.e., the

Lyapunov exponents are nonzero but the corresponding Aubry-Mather set M =

supp(µ) is not (uniformly) hyperbolic. Then there exists a dense Gδ subset G
of M such that M is C1-regular at every point of G.

I must say that I do not know any example of an irrational Aubry-Mather

set which is nonuniformly hyperbolic.

Questions.

• Is it possible to build an irrational nonuniformly hyperbolic Aubry-Mather

set for an exact symplectic C1 twist map?

• Is it possible to build an essential irrational nonsmooth invariant curve for

an exact symplectic C1 twist map? (This question is due to J. Mather.)

• Are there essential invariant irrational curves that support a measure with

positive Lyapunov exponents?

Let us now consider what happens near a K.A.M. invariant curve C for

a generic f ∈ ETω. If α is the rotation number of this K.A.M. curve, then

for every neighbourhood V of C for the Hausdorff topology, there exists ε > 0

such that every Aubry-Mather set whose rotation number is in ]α − ε, α + ε[

belongs to V. (Indeed, a limit of f -ordered set is f -ordered and the rotation

number is continuous on the set of f -ordered sets; moreover, a classical result

asserts that if there is a KAM curve, it is the unique f -ordered set having this

rotation number.) Hence, using Le Calvez’s result mentioned before, we find

in every neighbourhood V of C some irrational uniformly hyperbolic Aubry-

Mather sets, and hence some C1-irregular Cantor sets (see the beginning of

the proof of Theorem 10 to see why it cannot be a curve). But even if these

Cantor sets are C1-irregular, the closest they are to C, then the less irregular

they are in the following sense.

Theorem 5. Let f ∈ ETω be an exact symplectic twist map and C be a C1

invariant curve which is a graph such that f|C is C1 conjugate to a rotation.

Let W be a neighbourhood of T 1C, the unit tangent bundle to C in T 1A, the

unit tangent bundle to A. Then there exists a neighbourhood V of C in A such

that for every Aubry-Mather set M for f contained in V ,

∀x ∈M,P 1
M (x) ⊂W,

where P 1
M (x) = PM (x) ∩ T 1A refers to the unit paratingent cone.

It implies that in this case, even if the paratingent cone at x to M is not

a line, it is a thin cone close to a line.
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Let us mention that we dealt only with irrational Aubry-Mather sets or in-

variant curves. Even in this case, it is interesting to understand the connection

with the periodic orbits. Let us now explain this.

If we consider a sequence of periodic f -ordered orbits whose rotation num-

bers converge to an irrational one, then we can extract a subsequence of peri-

odic orbits that converge to an irrational f -ordered set.

Hence, for example, if we want to “draw” (with a computer) our irregular

(and hyperbolic) Aubry-Mather sets, then we can use some sequences of min-

imizing periodic orbits. But if we look at the pictures of Aubry-Mather sets

that exist, we see Cantor sets or curves, but we never see angles of the tangent

spaces. That is why the following question was raised by X. Buff.

Question (X. Buff). Is it possible (for example by using minimizing peri-

odic orbits) to draw some Aubry-Mather sets with “corners”?

Another interesting connection is the so-called “Greene’s criterion” ( see

[10], [15] or [25]). Greene introduced a quantity attached to any periodic orbit,

called the residue, and stated that if a “good” sequence of minimizing periodic

orbit converge to an irrational f -ordered set, then

(1) either this f -ordered set is contained in an invariant curve and the

logarithms of the mean residues tend to 0;

(2) or there exist no invariant curve with this irrational number and the

logarithms of the mean residues do not tend to 0.

The logarithm of the mean residue is closely related to the Lyapunov exponents.

If Greene’s criterion is true, then any sequence of periodic orbits tending to

an invariant curves has its Lyapunov exponent that tends to 0. This seems to

be related to the question “Are there essential invariant irrational curves that

support a measure with positive Lyapunov exponents?” The problem is that

Greene criterion is not completely proved, only certain particular cases have

been considered in the mentioned articles. But we see that our problem has

some connections with Greene’s criterion.

To prove the results contained in this article, we will use a very useful

mathematical object, the Green bundles. They were introduced by L. W. Green

in [14] for Riemannian geodesic flows. Then P. Foulon extended this construc-

tion to Finsler metrics in [11], and G. Contreras and R. Iturriaga extended it

in [9] to optical Hamiltonian flows. In [6], M. Bialy and R. S. Mackay give an

analogous construction for the dynamics of sequence of symplectic twist maps

of T ∗Td without conjugate point. Let us also cite a very short survey [19] of

R. Iturriaga on the various applications of these bundles (problems of rigidity,

measure of hyperbolicity. . . ).

In [2] and [1], I constructed these bundles along invariant graphs and

proved, under various dynamical assumptions, that they may be used to prove
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some results of C1-regularity. In particular, the strongest result contained

in [2] for twist maps is that the essential invariant curves are more regular

than Lipschitz (more precisely C1-regular on a dense Gδ subset that has full

Lebesgue measure) or, equivalently that the C1 solutions of the Hamilton-

Jacobi equation H(q, du(q)) = c for a Tonelli Hamiltonian H : T ∗S → R
defined on the cotangent bundle of a surface are C2 on Gδ-dense subset of S
that has full measure.

In the second section of this new article, I enlarge the construction of the

Green bundles to a set that is called the Green set, which contains all the

irrational Aubry-Mather sets and is denoted by Green(f). I then give some

of their properties (semi-continuity. . . ), introduce a notion of C1-regularity

(which is quite different from the one contained in [2]) and explain how the

coincidence of the two Green bundles implies some regularity of the Aubry-

Mather sets. The main statement in this section is the following theorem (the

exact definition of the relation � will be given in next section, it is related to

the order between the slopes of the lines), that explains the link between the

Green bundles and the regularity.

Theorem 6. Let f : A → A be a C1 ESPT. Then the Green bundles,

defined at every point of Green(f), are invariant by Df .

The map (x ∈ Green(f) → G+(x)) is upper semi-continuous and the

map x → G−(x) is lower semi-continuous and we have that for all x ∈
Green(f), G−(f) � G+(f). Therefore, the set

G(f) = {x ∈ Green(f);G−(x) = G+(x)}
is a Gδ subset of Green(f).

Moreover, for every irrational Aubry-Mather set M of f and every x ∈M ,

we have G−(x) � PM (x) � G+(x), and for every x0 ∈ G(f) ∩M , M is C1-

regular at x0 and PM (x0) = G+(x0) = G−(x0). Moreover, G− and G+ are

continuous at such an x0.

In the third section, I explain how the transversality of the Green bun-

dles implies some hyperbolicity. The same result with an extra dynamical

assumption (the fact that the dynamic is nonwandering) is due to Contreras

and Iturriaga.

Theorem 7. Let f be a C1 ESPT and let K ⊂ Green(f) be an invariant

compact subset of Green(f) such that, at every point of K , G−(x) and G+(x)

are transverse. Then K is uniformly hyperbolic and at every x ∈ K , we have

G−(x) = Es(x) and G+(x) = Eu(x).

To obtain Theorem 7, I prove a result concerning symplectic quasi-hyper-

bolic cocycles (a cocycle is quasi-hyperbolic if the orbit of every nonzero vector

is unbounded).
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Theorem 8. Let (Fk) be a continuous, symplectic quasi-hyperbolic cocycle

on a linear and symplectic (finite dimensional) bundle P : E → K above a

compact metric space K . Then (Fk)k∈Z is hyperbolic.

Then I prove a similar statement for nonuniformly hyperbolic measure.

Theorem 9. Let f ∈ ET +
ω be a C1 ESPT and let µ be an irrational

Mather measure for f . We assume that at µ-almost every point, G− is trans-

verse to G+. Then the Lyapunov exponents of µ are nonzero.

This result concerning Lyapunov exponents is completely new.

In the fourth section, I prove that hyperbolic Aubry-Mather sets are C1-

irregular. I deal with the uniformly and nonuniformly hyperbolic cases.

Theorem 10. Let M be a uniformly hyperbolic irrational Aubry-Mather

set of a C1 ESPT f of A. Then at every x ∈M , M is C1-irregular.

Theorem 11. Let f ∈ ETω be a C1 ESPT and let µ be an irrational

Mather measure of f whose Lyapunov exponents are nonzero. Then, at µ

almost every point, supp(µ) is C1-irregular.

Finally, in the last section, I prove the four first theorems contained in the

introduction.

Acknowledgments. I am grateful to R. Perez-Marco who first suggested

to me that the result for Aubry-Mather sets could be “hyperbolicity versus

regularity”, to J.-C. Yoccoz whose questions led me to the appropriate defini-

tion of regularity, to L. Rifford who pointed to me the notion of Bouligand’s

paratingent cone and to S. Crovisier who suggested me to send one Green

bundle on the “horizontal” for the proof of the “dynamical criterion,” which

gives a significant improvement of the proof. I thank X. Buff for stimulating

discussions and the referees for many improvements of the article.

2. Construction of the Green bundles along an irrational

Aubry-Mather set, link with the C1-regularity

Notation.

π : T× R→ T is the projection.

If x ∈ A, then V (x) = kerDπ(x) ⊂ TxA is the vertical at x.

If x ∈ A and k ∈ Z, then Gk(x) = Dfk(f−k(x))V (f−k(x))is a 1-

dimensional linear subspace (or line) of TxA.

Definition. If we identify TxA with R2 by using the standard coordinates

(θ, r) ∈ R2, then we may deal with the slope s(L) of any line L of TxA which

is transverse to the vertical V (x): this means that L = {(t, s(L)t); t ∈ R}.
If x ∈ A and if L1 and L2 , are two lines of TxA which are transverse to the

vertical V (x), then L2 is above (resp. strictly above) L1 if s(L2) ≥ s(L1) (resp.
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s(L2) > s(L1)). In this case, we write: L1 � L2 (resp. L1 ≺ L2). Similarly, if

L1 and L2 are two sets of lines of TxA which are transverse to the vertical V (x),

L2 is above (resp. strictly above) L1 if s(L2) ≥ s(L1) (resp. s(L2) > s(L1)) for

all L1 ∈ L1, L2 ∈ L2. In this case, we write: L1 � L2 (resp. L1 ≺ L2).
A sequence (Ln)n∈N of lines of TxA is nondecreasing (resp. increasing) if

for every n ∈ N, Ln is transverse to the vertical and Ln+1 is above (resp. strictly

above) Ln. We similarly, define the nonincreasing and decreasing sequences of

lines of TxM .

Remark. A decreasing sequence of lines corresponds to a decreasing se-

quence of slopes.

Definition. If K is a subset of A or of its universal covering R×R and if F

is a not necessarily 1-dimensional sub-bundle of TKA (resp. TKR2) transverse

to the vertical, we say that F is upper (resp. lower) semi-continuous if the

map which maps x ∈ K onto the slope s(F (x)) of F (x) is upper (resp. lower)

semi-continuous.

Proposition 1. Let f : T×R→ T×R be an exact symplectic positive C1

twist map (C1 ESPT) and let M be a f -ordered set. Then, for every x ∈ M
which is not an isolated point of M , the lines Gk(x) for k ∈ Z∗ are transverse

to the vertical V (x) and we have

∀n ∈ N∗, G−n(x) ≺ G−(n+1)(x) ≺ PM (x) ≺ Gn+1(x) ≺ Gn(x).

In particular, if M is an irrational Aubry-Mather set, then it has no isolated

point.

(In this statement we identify the cone PM (x) with the set of the lines

which are contained in this cone.)

Proof. As M is an f -ordered set, it is the graph of a Lipschitz map γ

above a nonempty and compact set K of T. Now let x = (t, γ(t)) be a point

of M . We will use the left and right paratingent cones to M at x, defined by

• the right paratingent cone of M at x, denoted by P rM (x), is the set

whose elements are the limit, v = limn→∞
(un,γ(un))−(sn,γ(sn))

τn
, where

(un) and (sn) are sequences of elements of K converging to t from

above (i.e., un, sn ∈ [t,+∞[) and (τn) is a sequence of elements of R∗+
converging to 0;

• similarly, the left paratingent cone of M at x, denoted by P lM (x), is

the set whose elements are the limits v = limn→∞
(un,γ(un))−(sn,γ(sn))

τn
where (un) and (sn) are sequences of elements of K converging to t

from below and (τn) is a sequence of elements of R∗+ converging to 0.
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It is not hard to verify that every element of PM (x) is in the convex hull

of P lM (x)∪P rM (x) (we identify the lines of TxA transverse to the vertical with

their slopes in order to deal with their convex hull). Hence, we only have to

prove the inequalities of Proposition 1 for P rM (x) and P lM (x) (and even for

those of these two cones that are not trivial) to deduce the inequalities of this

proposition. Because the four proofs are similar, we will assume, for example,

that P rM (x) 6= {0} and we will prove that for all n ∈ N∗, P rM (x) ≺ Gn+1(x) ≺
Gn(x).

In fact we shall need to deal with half lines instead of lines. Hence we

define PrM (x) as being the set of the half lines of TxA, which are contained in

P rM (x) such that their points have positive abscissa. Equivalently, PrM (x) is

the set of the limits v = limn→∞
(un,γ(un))−(sn,γ(sn))

τn
, where (un) and (sn) are

sequences of elements of K converging to t such that for all n, t ≤ sn < un
and (τn) is a sequence of elements of R∗+ converging to 0. As M is f -ordered,

for all y ∈ M , we have Df(PrM (y)) = PrM (f(y)) (in particular the image

through Df of the right paratingent cone at y is the right paratingent cone

at the image f(y)). Hence for all k ∈ Z, PrM (fkx) = Dfk(PrM (x)). Now let

V+(x) = {(0, R), R > 0} ⊂ TxA be the upper vertical at x and let us denote by

gk(x) the half line gk(x) = Dfk(f−k(x))V+(f−kx).

Let us look at the action of Df on the half lines of the tangent linear spaces

Tfk(x)A. As f is a positive twist map, we have (identifying as before Tf(x)A
with R2) Df(x)(0, 1) = (a, b) with a > 0. As a result, G1(f(x)) is transverse

to V (f(x)). Now if R+(α, β) ∈ PrM (x), then we know that α > 0. Hence

the base ((α, β), (0, 1)) is a direct base (for ω) of TxA; as Df(x) is symplectic,

the image base ((α′, β′), (a, b)) is also direct. It means exactly that the line

R(a, b) = G1(f(x)) is strictly above the line R(α′, β′) of P rM (f(x)). Repeating

this argument for every half line of PrM (x) and every point of the orbit of x,

we obtain that for all k ∈ Z, P rM (fk(x)) ≺ G1(f
k(x)).

Let us consider the action of Df on the circles bundle of the half lines

along the orbit of x: as f is orientation-preserving, this action preserves the

orientation of the circles. Moreover, if these circles are oriented in the direct

sense, then any half line of PrM (fk(x)), g1(f
k(x)) and V+(fkx) are in the direct

sense (let us recall that on the oriented circle, we can speak of the orientation

of three points but not of a pair). Hence their images under Df , Df2, . . . are

in the same order; i.e, any half line of PrM (fk(x)), gn+1(f
k(x)) and gn(fk(x))

are in the direct sense, and then all the Gn(fk(x)) are transverse to the vertical

and P rM (fk(x)) ≺ Gn+1(f
k(x)) ≺ Gn(fk(x)) ≺ · · · ≺ G1(f

k(x)). �

Remark. Let us notice that in the proof of Proposition 1, we have seen

that

∀x ∈M, ∀n ≥ 1, Dπ ◦Dfn(x)(0, 1) > 0.
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Similarly, we have

∀x ∈M,∀n ≥ 1, Dπ ◦Df−n(x)(0, 1) < 0.

Hence (Gn(x)) is a strictly decreasing sequence of lines of TxA which is

bounded below. Then it tends to a limit G+(x). Similarly, the sequence

(G−n(x)) tends to a limit, G−(x).

Definition. If x ∈ A belongs to a f -ordered set M of f ∈ ET +
ω and if x is

not an isolated point of M , then the bundles G−(x) and G+(x) are called the

Green bundles at x associated to f .

Example. Let us assume that M is an f -ordered set and that x ∈ M is

a periodic hyperbolic periodic point of f that is not an isolated point of M .

Then G+(x) = Eu(x) is the tangent space to the unstable manifold of x, and

G−(x) = Es(x) is the tangent space to the stable manifold.

In fact, in order to build the Green bundles for f at a point x ∈ A, we

do not need that x belongs to a f -ordered set. Let us introduce the exact

set which will be useful for us (the one along which we can define the Green

bundles).

Definition. Let f ∈ ET +
ω (f) be a C1 ESPT. Then the Green set of f ,

denoted by Green(f), is the set of points x ∈ A such that

• for all n ≥ 1 and k ∈ Z,

Dπ ◦Dfn(fkx)(0, 1) > 0 and Dπ ◦Df−n(fkx)(0, 1) < 0;

• for all n ≥ 1 and k ∈ Z,

G−n(fkx) = Df−n(fn+kx)V (fn+kx) ≺ Df−(n+1)(fn+1+kx)V (fn+1+kx)

= G−(n+1)(f
kx) ≺ Gn+1(f

kx)

= Dfn+1(f−(n+1)+kx)V (f−(n+1)+kx)

≺ Dfn(f−n+kx)V (−n+kx) = Gn(fkx).

Let us notice that the first point is not useful to define the Green bundles

(we only need to ask that Gn(fkx) and G−n(fkx) are transverse to the ver-

tical), but will be used in the next section to prove the so-called “dynamical

criterion.” Then we have

Proposition 2. Let f ∈ ET +
ω be a C1 ESPT. Then Green(f) is a

nonempty, closed subset of A which contains every irrational Aubry-Mather

set of f and is invariant by f . At every x ∈ Green(f), we can define G−(x)

and G+(x).
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Remark. Let us notice that every essential invariant curve by f ∈ ET +
ω

is a subset of Green(f) (see [2] or apply Proposition 1). Moreover, it can be

proved by using the construction done by M. Bialy and R. MacKay in [6] that

any Aubry-Mather set in the sense of Mather (i.e., minimizing for an action,

for example, any minimizing periodic orbit) is in Green(f).

Proof of Proposition 2. The only thing we need to prove is that Green(f)

is closed. Because f is a positive twist map, for every x ∈ A, we have Dπ ◦
Df(x)(0, 1) > 0 and Dπ ◦Df−1(x)(0, 1) < 0. Hence for every x ∈ A, V (x) and

G1(x) are transverse, and V (x) and G−1(x) are also transverse. We deduce

that for every x ∈ A and every n ∈ N∗, Gn(x) = Df−(n+1)G1(f
n+1x) and

Gn+1(x) = Df−(n+1)V (fn+1x) are transverse, and G−(n+1)(x) and G−n(x)

are transverse. Let us now consider C(f) the set of x ∈ A such that

• for all n ≥ 1, Dπ ◦Dfn(x)(0, 1) ≥ 0 and Dπ ◦Df−n(x)(0, 1) ≤ 0;

• for all n ∈ N∗, G−1 � · · · � G−n(x) � G−(n+1)(x) � Gn+1(x) �
Gn(x) � · · · � G1(x).

Then C(f) is closed. If we prove that C(f) = Green(f), we have finished the

proof. We have Green(f) ⊂ C(f). Moreover, if x ∈ C(f), we know that for all

n ∈ N∗, Gn+1(x) � Gn(x). As Gn(x) and Gn+1(x) are transverse, we deduce

that Gn+1(x) ≺ Gn(x). Similarly, we obtain that G−n(x) ≺ G−(n+1)(x). From

G−n(x) ≺ G−(n+1)(x) � Gn+1(x) ≺ Gn(x), we deduce that G−n(x) ≺ Gn(x).

Thus if x ∈ C(f), then x satisfies the second point of the definition of Green(f).

Hence every Gk(x) for k ∈ Z∗ is transverse to the vertical and for all k ∈ Z∗
and x ∈ C(f), Dπ ◦ Dfk(x)(1, 0) 6= 0. Therefore, x ∈ C(f) satisfies the first

point of the definition of Green(f) too. Finally, C(f) ⊂ Green(f) and then

C(f) = Green(f). �

Having built the Green bundles on Green(f), we can give some of their

properties, similar to the ones given in [2], which in particular give a link

between these Green bundles and the notion of C1-regularity. We recall the

theorem that was given in the introduction.

Theorem 6. Let f be a C1 ESPT f : A → A. Then the Green bundles,

defined at every point of Green(f), are invariant by Df .

The map (x ∈ Green(f) → G+(x)) is upper semi-continuous, the map

x → G−(x) is lower semi-continuous, and for all x ∈ Green(f), we have

G−(f) � G+(f). Therefore, the set

G(f) = {x ∈ Green(f);G−(x) = G+(x)}

is a Gδ subset of Green(f).
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Moreover, for every irrational Aubry-Mather set M of f and every x ∈M ,

we have G−(x) � PM (x) � G+(x) and for every x0 ∈ G(f) ∩M , M is C1-

regular at x0 and PM (x0) = G+(x0) = G−(x0). Moreover, G− and G+ are

continuous at such an x0.

This theorem is a corollary of Proposition 1 and of usual properties of

real functions (the fact that the (simple) limit of a decreasing sequence of

continuous functions is upper semi-continuous).

Corollary 2. Let M be an irrational Aubry-Mather set of a C1 ESPT

f : A→ A. We assume that

∀x ∈M,G−(x) = G+(x).

Then M is C1-regular at every x ∈ M , and therefore there exists a C1 map

γ : T → R whose graph contains M . Moreover, in this case, at every x =

(t, γ(t)) ∈M , the sequences (Gn(x))n∈N and (G−n(x))n∈N converge uniformly

to R(1, γ′(t)).

Everything in this corollary is a consequence of Theorem 6; the fact that

the convergence is uniform comes from Dini’s theorem: if an increasing or

decreasing sequence of real valued continuous functions defined on a compact

set converges simply to a continuous function, then the convergence is uniform.

This corollary gives us some criterion using the Green bundles to prove

that an Aubry-Mather set is C1-regular. But of course we never said that the

transversality of the Green bundles implies the irregularity of the corresponding

Aubry-Mather set. This will be explained later.

3. Green bundles and Lyapunov exponents

3.1. A dynamical criterion. We begin by giving a criterion to determine

if a given vector is in one of the two Green bundles.

Proposition 3. Let f be a C1 ESPT and let x ∈ Green(f) be a point of

the Green set whose orbit {fk(x), k ∈ Z} is relatively compact. Then

lim
n→+∞

Dπ ◦Dfn(x)(1, 0) = +∞ and lim
n→+∞

Dπ ◦Df−n(x)(1, 0) = −∞.

Corollary 3 (dynamical criterion). Let f be a C1 ESPT and let x ∈
Green(f) be a point of the Green set whose orbit {fk(x), k ∈ Z} is relatively

compact. Let v ∈ TxA. Then

• if v /∈ G−(x), then lim
n→+∞

|Dπ ◦Dfn(x)v| = +∞;

• if v /∈ G+(x), then lim
n→+∞

|Dπ ◦Df−n(x)v| = +∞.

Proof of Proposition 3. We will only prove the part of the proposition

corresponding to what happens in +∞. We use the standard symplectic co-

ordinates (θ, r) of A, and we define xk = fk(x) for every k ∈ Z. In these
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coordinates, for j ∈ Z∗, the line Gj(xk) is the graph of (t → sj(xk)t) (sj(xk)

is the slope of Gj(xk)).

The matrix Mn(xk) of Dfn(xk) (for n ≥ 1) is a symplectic matrix

Mn(xk) =

Ç
an(xk) bn(xk)

cn(xk) dn(xk)

å
with detMn(xk) = 1. We know that the coordinate D(π ◦ fn)(xk)(0, 1) =

bn(xk) is strictly positive. Using the definition ofGn(xk+n), we obtain dn(xk) =

sn(xk+n)bn(xk).

The matrix Mn(xk) being symplectic, we have

Mn(xk)
−1 =

Ç
dn(xk) −bn(xk)

−cn(xk) an(xk)

å
.

From the definition of G−n(xk), we deduce that an(xk) = −bn(xk)s−n(xk).

Finally, if we use the fact that detMn(xk) = 1, then we obtain

Mn(xk) =

Ç
−bn(xk)s−n(xk) bn(xk)

−bn(xk)
−1 − bn(xk)s−n(xk)sn(xk+n) sn(xk+n)bn(xk)

å
.

Lemma 1. Let K be a compact subset of Green(f). There exists a constant

A > 0 such that

∀x ∈ K,∀n ∈ N∗,max{|sn(x)|, |s−n(x)|} ≤ A.

Proof. From the definition of Green(f), we deduce that

∀x ∈ Green(f), ∀n ∈ N∗, s−1(x) ≤ s−n(x) < sn(x) ≤ s1(x).

Therefore, we only have to prove the inequalities of the lemma for n = 1.

The real number s−1(x), which is the slope of Df−1(f(x))V (f(x)), de-

pends continuously on x and is defined for every x belonging to the compact

subset K. Hence it is uniformly bounded. The same argument proves that s1
is uniformly bounded on K and concludes the proof of Lemma 1. �

Lemma 2. Let x ∈ Green(f) be such that its orbit is relatively compact.

Then we have lim
n→∞

bn(x) = +∞.

Let us notice that this gives exactly the first part of Proposition 3.

Proof. We will use a change of basis along the orbit of x. Let us denote by

s−(fkx) the slope of G−(fkx) and by s+(fkx) the slope of G+(fkx). We will

choose G−(x) as new “horizontal line;” i.e., if the “old coordinates” in TyA are

(Θ, R), the new coordinates are given via the 2-by-2 matrix P (y) as follows:

P (y).

Ç
Θ

R

å
=

Ç
1 0

−s−(y) 1

åÇ
Θ

R

å
=

Ç
Θ

−s−(y)Θ +R

å
.
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In general, P does not depend continuously on the considered point, but by

Lemma 1, P (fkx) and P−1(f−kx) are bounded uniformly in k ∈ Z (because

s− is uniformly bounded). Moreover, P is symplectic. Let us compute in the

new coordinates Nn(xk) = P (xn+k)Mn(xk)P (xk)
−1.

Nn(xk) =

Ç
bn(xk)(s−(xk)− s−n(xk)) bn(xk)

0 bn(xk)(sn(xk+n)− s−(xk+n))

å
.

We know that lim
n→∞

↑ s−n(xk) = s−(xk). Hence, lim
n→+∞

(s−(xk)− s−n(xk))

= 0+. By Lemma 1, we have sn(xk+n)−s−(xk+n) ≤ 2A for all n ≥ 1. As Nn is

symplectic, we have 1 = detNn(xk) = bn(xk)
2(s−(xk) − s−n(xk))(sn(xk+n) −

s−(xk+n)). We deduce that

∀n ∈ N∗, 1 ≤ 2Abn(xk)
2(s−(xk)− s−n(xk)),

and then lim
n→∞

bn(xk) = +∞. �

Proof of Corollary 3. We will only prove the part of the corollary that

corresponds to what happens in +∞. Let us assume that v ∈ TxA\G−(x).

We use the “old coordinates” (the usual ones) and write v = (v1, v2). Because

v /∈ G−(x), we have s−(x)v1 − v2 6= 0. Let us compute Dπ ◦Dfn(x)(v1, v2) =

bn(x)(v2 − s−n(x)v1) with

lim
n→+∞

(v2 − s−n(x)v1) = v2 − s−(x)v1 6= 0 and lim
n→+∞

bn(x) = +∞.

We deduce that

lim
n→+∞

|Dπ ◦Dfn(x)v| = +∞. �

3.2. Some easy consequences concerning (nonuniform) hyperbolicity. All

the results contained in this subsection are not new; see, for example, [9]. At

first, an easy and well-known consequence of the dynamical criterion is the

following:

Proposition 4 (Contreras-Iturriaga). Let M be an f -ordered and uni-

formly hyperbolic set where f is a C1 ESPT. Then at every x ∈ M , G−(x) =

Es(x) and G+(x) = Eu(x) are transverse.

The proposition clearly follows from the characterization of the stable

and unstable tangent spaces for a uniformly hyperbolic set and the dynamical

criterion for G− and G+.

Let us now consider an irrational Mather measure µ for a positive twist

map f . We have noticed that µ is ergodic. Hence we can associate to µ two

Lyapunov exponents, −λ and λ (because f is area preserving). If λ 6= 0, we

say that the measure is (nonuniformly) hyperbolic and the Oseledet theorem

asserts that at µ almost every point there exists a measurable splitting TxA =

Esx ⊕ Eux in two transverse lines, invariant under Df such that
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• ∀v ∈ Esx, lim
n→+∞

‖Dfn(x)v‖ = 0;

• ∀v ∈ Eux , lim
n→+∞

‖Df−n(x)v‖ = 0.

Then we again deduce from the dynamical criterion that G−(x) = Es(x) and

G+(x) = Eu(x) are transverse µ almost everywhere:

Proposition 5 (Contreras-Iturriaga). Let µ be a Mather measure of a

C1 ESPT. If the Lyapunov exponents of µ are nonzero, then at µ almost all

points, G− and G+ are transverse.

We have explained why, for (nonuniformly) hyperbolic Mather measures,

the Green bundles are transverse almost everywhere. We will now interest

ourselves in the converse assertion: if the Green bundles are transverse (almost

everywhere), is the dynamic (nonuniformly) hyperbolic?

We begin by the uniform case, and then consider the nonuniform one.

3.3. What happens when the Green bundles are transverse everywhere. It

is known that, with some additional hypothesis, the transversality of the Green

bundles implies hyperbolicity. For example, in [9], the authors prove that if

K ⊂ Green(f) is an invariant compact subset such that on K, the Green

bundles are transverse and such that f|K is nonwandering, then K is hyperbolic

for f . As we know that the dynamic on Aubry-Mather sets is minimal and

then nonwandering, we can deduce a result for the Aubry-Mather sets.

In fact, we prove that the hypothesis “f|K is nonwandering” is not nec-

essary and that is why we give a new statement (it was also given in the

introduction).

Theorem 7. Let f be a C1 ESPT and let K ⊂ Green(f) be an invariant

compact subset of Green(f) such that, at every point of K , G−(x) and G+(x)

are transverse. Then K is uniformly hyperbolic and at every x ∈ K , we have

G−(x) = Es(x) and G+(x) = Eu(x).

Corollary 4. Let M be an irrational Aubry-Mather set for a C1 ESPT

f such that, at every point of M , G−(x) and G+(x) are transverse. Then M

is uniformly hyperbolic and at every x ∈ M , we have G−(x) = Es(x) and

G+(x) = Eu(x).

Corollary 5. Let M be an irrational Aubry-Mather set for a C1 ESPT

f which is not uniformly hyperbolic. Then the set

G(M) = {x ∈M ;G−(x) = G+(x)}

is a dense Gδ-subset of M and at every x ∈ G(M), M is C1-regular.

This corollary is a consequence of Theorems 7 and 6. In order to prove

Theorem 7, let us give a definition.
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Definition. Let (Fk)k∈Z be a continuous cocycle on a linear normed bundle

P : E → K above a compact metric space K. We say that the cocycle is quasi-

hyperbolic if

∀v ∈ E, v 6= 0⇒ sup
k∈Z
‖Fkv‖ = +∞.

A consequence of the dynamical criterion (Corollary 3) is: IfK ⊂ Green(f)

is a compact invariant subset of Green(f) such that for every x ∈ K, G+(x) and

G−(x) are transverse, then (Dfk|K)k∈Z is a quasi-hyperbolic cocycle. Hence, we

only have to prove the following statement to deduce the proof of Theorem 7.

Theorem 8. Let (Fk) be a continuous, symplectic and quasi-hyperbolic

cocycle on a linear and symplectic (finite dimensional) bundle P : E → K

above a compact metric space K . Then (Fk)k∈Z is hyperbolic.

We will deduce Theorem 8 from two lemmas we will now state and prove.

The ideas of the two lemmas and their proofs are not really new. The reader

can find similar statements in the setting of the so-called “quasi-Anosov dif-

feomorphisms,” for example in [27].

Lemma 3. Let (Fk)k∈Z be a continuous and quasi-hyperbolic cocycle on

a linear normed bundle P : E → K above a compact metric space K . Let us

define

• Es = {v ∈ E; sup
k≥0
‖Fkv‖ <∞};

• Eu = {v ∈ E; sup
k≤0
‖Fkv‖ <∞}.

Then (Fn|Es)n≥0 and (F−n|Eu)n≥0 are uniformly contracting.

Lemma 4. Let (Fk)k∈Z be a continuous and quasi-hyperbolic cocycle on a

linear normed bundle P : E → K above a compact metric space K . If (xn) is

a sequence of points of K tending to x and (kn) a sequence of integers tending

to +∞ such that lim
n→∞

P ◦ Fkn(xn) = y ∈ K , then dimEu(y) ≥ codimEs(x).

Let us explain how to deduce Theorem 8 from these lemmas.

Proof of Theorem 8. If the dimension of E is 2d, then we only have to

prove that for all x ∈ K, dimEu(x) = dimEs(x) = d. Let us prove for

example that dimEu(x) = d.

By Lemma 3, (Fn|Es)n≥0 and (F−n|Eu)n≥0 are uniformly contracting. As

the cocycle is symplectic, we deduce that every Es(x) and Eu(x) is isotropic

for the symplectic form and then dimEs(x) ≤ d and dimEu(x) ≤ d.

Let us now consider x ∈ K. As K is compact, we can find a sequence (kn)n∈N
of integers tending to +∞ such that the sequence (P ◦ Fkn(x))n∈N converges

to a point y ∈ K. Then, by Lemma 4, we have dimEu(y) ≥ codimEs(x).
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But we know that dimEu(y) ≤ d, hence 2d− dimEs(x) ≤ dimEu(y) ≤ d and

dimEs(x) = d. �

Let us now prove the two lemmas.

Proof of Lemma 3. We will only prove the result for Es. Let us assume

that we know that

(∗)∀C > 1,∃NC ≥ 1,∀v ∈ Es,∀n ≥ NC , ‖Fnv‖ ≤
sup{‖Fkv‖; k ≥ 0}

C
.

Then in this case,

sup{‖Fkv‖; k ≥ 0} = sup{‖Fkv‖; k ∈ |[0, NC ]|}.

We define M = sup{‖Fk(x)‖;x ∈ K, k ∈ |[0, NC ]|}. Then, if j ∈ |[0, NC − 1]|
and n ∈ N,

‖FnNc+jv‖ ≤
1

C
sup{‖F(n−1)NC+j+kv‖; k ≥ 0}

≤ 1

C2
sup{‖F(n−2)NC+j+kv‖; k ≥ 0}

· · · ≤ 1

Cn
sup{‖Fj+kv‖; k ≥ 0} ≤ 1

Cn
sup{‖Fkv‖; k ≥ 0} ≤ M

Cn
‖v‖.

This prove exponential contraction.

Let us now prove (∗). If (∗) is not true, then there exists C > 1, a sequence

(kn) in N tending to +∞ and vn ∈ Es with ‖vn‖ = 1 such that

∀n ∈ N, ‖Fknvn‖ ≥
sup{‖Fkvn‖; k ≥ 0}

C
.

We define wn =
Fkn (vn)
‖Fkn (vn)‖

. If we take a subsequence, we can assume that the

sequence (wn) converges to a limit w ∈ E. Then we have

∀n ∈ N,∀k ∈ [−kn,+∞[, ‖Fkwn‖ =
‖Fk+kn(vn)‖
‖Fknvn‖

≤ sup{‖Fjvn‖; j ≥ 0}
‖Fknvn‖

≤ C.

Hence, for all k ∈ Z, ‖Fkw‖ ≤ C. This is impossible because ‖w‖ = 1, and the

cocycle is quasi-hyperbolic. �

Proof of Lemma 4. With the notation of this lemma, we choose a linear

subspace V ⊂ Ex such that V is transverse to Es(x). We want to prove

that dimEu(y) ≥ dimV . We choose Vn ⊂ Exn such that lim
n→∞

Vn = V . If we

use a subsequence, we have lim
n→∞

Fkn(Vn) = V ′ ⊂ Ey. Then we will prove that

V ′ ⊂ Eu(y).

Let us assume that we have proved that there exists C > 0 such that

(∗) ∀n,∀0 ≤ k ≤ kn, ‖F−k|Fkn (Vn)
‖ ≤ C.

Then, for all w ∈ V ′ and k ∈ Z−, ‖Fkw‖ ≤ C‖w‖ and w ∈ Eu(y).
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Let us now assume that (∗) is not true. Replacing (kn) by a subse-

quence, for all n ∈ N , we find an integer in between 0 and kn such that

‖F−in|Fkn (Vn)
‖ ≥ n. We choose wn ∈ Fkn(Vn) such that ‖wn‖ = 1 and

‖F−in(wn)‖ = ‖F−in|Fkn (Vn)
‖. We may even assume that

‖F−in(wn)‖ = sup{‖Fk(wn)‖;−kn ≤ k ≤ 0} ≥ n.

Then lim
n→+∞

in = +∞. If vn =
F−in (wn)
‖F−in (wn)‖ , we may extract a subsequence

and assume that lim
n→∞

vn = v, with ‖v‖ = 1. Then for all k ∈ |[0, in]|, we have

‖Fkvn‖ ≤ ‖vn‖ and therefore ‖Fkv‖ ≤ ‖v‖ for all k ∈ N and v ∈ Es.
Now, we have two cases.

Case 1. (kn − in) does not tend to +∞. We may extract a subsequence

and assume that lim
n→+∞

(kn − in) = N ≥ 0. Then

F−Nv = lim
n→∞

Fin−kn(vn) = lim
n→∞

F−kn(wn)

‖F−in(wn)‖
.

We have
F−kn (wn)
‖F−in (wn)‖ ∈Vn, and then F−Nv∈V . Moreover, F−Nv∈F−NEs=Es.

As ‖v‖ = 1 and V is transverse to Esx, we obtain a contradiction.

Case 2. lim
n→∞

(kn − in) = +∞. In this case, for every k = −kn+ in, . . . , in,

we have −kn ≤ k − in ≤ 0, and therefore ‖Fkvn‖ =
‖Fk−inwn‖
‖F−inwn‖ ≤ 1 = ‖vn‖.

Hence, since vn → v, in → +∞, and −kn + in → −∞, when n → +∞, we

obtain ‖Fkv‖ ≤ ‖v‖ = 1 for all k ∈ Z. This implies v ∈ Es ∩ Eu. This

contradicts ‖v‖ = 1 and the fact that the cocycle is quasi-hyperbolic. �

3.4. What happens for the Mather measures whose Green bundles are

transverse almost everywhere. Let us now consider a Mather measure of f ∈
ET +

ω . The map d : supp(µ) → {0, 1} defined by d(x) = dim(G−(x) ∩ G+(x))

being measurable and constant along the orbits of f , we know that d is con-

stant µ-almost everywhere. This constant is 0 or 1. In this subsection, we will

study the case of a constant equal to zero and prove

Theorem 9. Let f ∈ ET +
ω be a C1 ESPT and let µ be an irrational

Mather measure for f . We assume that at µ-almost every point, G− is trans-

verse to G+. Then the Lyapunov exponents of µ are nonzero.

Corollary 6. Let f ∈ ET +
ω be a C1 ESPT and let µ be an irrational

Mather measure for f . We assume that the Lyapunov exponents of µ are zero.

Then µ almost everywhere, supp(µ) is C1-regular.

Indeed, in this case, d = dim(G− ∩ G+) is µ-almost equal to 1, i.e., µ-

almost everywhere, we have G− = G+. Hence we deduce from Theorem 6 that

µ-almost everywhere, supp(µ) is C1-regular. We deduce
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Corollary 7. Let f ∈ ET +
ω be a C1 ESPT and let µ be an irrational

Mather measure for f . We assume that µ almost everywhere, supp(µ) is C1-

irregular. Then the Lyapunov exponents of µ are nonzero.

Proof of Theorem 9. We will use the same notations as in the proof of

Proposition 3. At x ∈ supp(µ), we have

Mn(x) =

Ç
−bn(x)s−n(x) bn(x)

−bn(x)−1 − bn(x)s−n(x)sn(xn) sn(xn)bn(x)

å
.

Instead of using a change of basis which sends G− on the horizontal, we will

use such a change which sends G+ on the horizontal:

P (x) =

Ç
1 0

−s+(x) 1

å
.

In the new coordinates, the new matrix of Dfn(x) is

Nn(x)= P (xn)Mn(x)P (x)−1

with

Nn(x) =

Ç
bn(x)(s+(x)− s−n(x)) bn(x)

0 bn(x)(sn(xn)− s+(xn))

å
.

In the proof we will use Lemma 1 and two other lemmas.

Lemma 5. Let ε > 0. There exists a subset Kε ⊂ supp(µ) such that

µ(Kε) > 1− ε and such that on Kε, (s−n) and (sn) converge uniformly on Kε

to their limits s− and s+.

This lemma is just a consequence of Egorov theorem (see, for example,

[21]).

Lemma 6. Let ε > 0. There exists a subset Fε ⊂ supp(µ) such that

µ(Fε) > 1− ε and α > 0 such that for all x ∈ Fε, s+(x)− s−(x) ≥ α.

Proof. We have assumed that at µ-almost every point x ∈ A, G−(x) and

G+(x) are transverse, i.e., s+(x)− s−(x) > 0. Hence

µ

Ñ⋃
n≥1

®
x; s+(x)− s−(x) ≥ 1

n

´é
= 1.

As the previous union is monotone, we deduce that there exists n ≥ 1 such

that

µ

Ç®
x; s+(x)− s−(x) ≥ 1

n

´å
≥ 1− ε. �

From these two lemmas we deduce that there exists Jε and a constant

α > 0 such that µ(Jε) ≥ 1 − ε, (sn) and (s−n) converge uniformly on Jε and

s+(x)− s−(x) ≥ α for all x ∈ Jε.
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Lemma 7. Let A > 0 and ε > 0. Then there exists N = N(A, ε) such

that

∀n ≥ N, ∀x ∈ Jε, fnx ∈ Jε ⇒ bn(x) ≥ A.

Proof. We use the matrix Nn(x) and obtain

1 = detNn(x) = bn(x)2(s+(x)− s−n(x))(sn(xn)− s+(xn))

with xn = fn(x). By Lemma 1, there exists B > 0 such that for all y ∈
supp(µ) and k ∈ Z, −B ≤ sk(x) ≤ B. Then for all x ∈ supp(µ) and n ∈ N∗,
0 < s+(x) − s−n(x) ≤ 2B. We deduce that for all x ∈ supp(µ) and n ∈ N∗,
1 ≤ 2Bbn(x)2(sn(xn)− s+(xn)).

By definition of Jε, we know that sn converge uniformly on Jε to s+. Hence

there exists N ≥ 1 such that for all n ≥ N and y ∈ Jε, 0 < sn(y) − s+(y) <
1

2BA2 .

Let us now assume that x, xn = fn(x) ∈ Jε. Then 1 ≤ 2Bbn(x)2(sn(xn)−
s+(xn)) ≤ 2Bbn(x)2 1

2BA2 = bn(x)2

A2 and bn(x) ≥ A. �

To a given ε > 0, we have associated a set Jε ⊂ supp(µ) such that

µ(Jε) > 1 − ε, (sn) and (s−n) converge uniformly on Jε to their limits and

∀x ∈ Jε, s+(x)− s−(x) ≥ α > 0. By Lemma 7, we find N ≥ 1 such that

∀x ∈ Jε,∀n ≥ N, fn(x) ∈ Jε ⇒ bn(x) ≥ 2

α
.

Let us notice that because µ is an irrational Mather measure, it is ergodic not

only for f but also for fN (we do not say in general that an ergodic measure

for f is ergodic for fN , but this is true for f homeomorphism of the circle with

a irrational rotation number). If we denote by ]Y the cardinal of a set Y , then

we know by the ergodic theorem of Birkhoff (see, e.g., [28]) that for almost

x ∈ Jε,
1

`
]{0 ≤ k ≤ `− 1; fkN (x) ∈ Jε}

`→+∞−→ µ(Jε) ≥ 1− ε.

We denote by λ and −λ the Lyapunov exponents of f (with λ ≥ 0).

Then Lε is the set of points of Jε such that

• 1
` ]{0 ≤ k ≤ `− 1; fkN (x) ∈ Jε}

`→+∞−→ µ(Jε);

• x is a regular point for µ; i.e., at x there exists a splitting of the tangent

space TxA corresponding to the Lyapunov exponents (see, e.g., [28]).

Then µ(Lε) = µ(Jε) ≥ 1−ε and if x ∈ Lε, we have: lim
n→+∞

1

n
log ‖Dfn(x)‖ = λ.

If x ∈ Lε, we define

n(`) = ]{0 ≤ k ≤ `− 1; fkN (x) ∈ Jε},

and 0 = k(1) < k(2) < · · · < k(n(`)) ≤ ` are such that fk(i)Nx ∈ Jε.
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The chain rule of derivatives implies that for all x ∈ Lε,

Dfk(n(`))N (x) = Df (k(n(`))−k(n(`)−1))N (fk(n(`)−1)Nx)

Df (k(n(`)−1)−k(n(`)−2))N (fk(n(`)−2)Nx) · · ·Dfk(1)N (x).

We write this equality for the matrices Nk and especially for the terms ak,

bk(n(`))N (x)(s+(x)− s−k(n(`))N (x))

= b(k(n(`))−k(n(`)−1))N (fk(n(`)−1)Nx)

×∆s(k(n(`))−k(n(`)−1))N (fk(n(`)−1)Nx) · · · bk(1)N (x)∆sk(1)N (x),

where ∆sn(x) := s+(x)− s−n(x).

Let us notice that ‖Dfk(n(`))N (x)‖ ≥ bk(n(`))N (x)(s+(x) − s−k(n(`))N ) =

ak(n(`)). Moreover, since we have fk(j)N (x) ∈ Jε for every 0 ≤ j ≤ n(`),

we know that b(k(j+1)−k(j))N (fk(j)N (x)) ≥ 2
α for every 0 ≤ j ≤ n(`) − 1.

Furthermore, ∆s(k(j+1)−k(j))N (fk(j)N (x)) > s+((fk(j)N (x))) − s−(fk(j)N (x))

≥ α. We deduce that

‖Dfk(n(`))N (x)‖ ≥ bk(n(`))N (x)(s+(x)− s−k(n(`))N (x)) ≥ (
2

α
.α)n(`) = 2n(`).

We also deduce that

1

k(n(`))N
log ‖Dfk(n(`))N (x)‖ ≥ n(`)

k(n(`))N
log 2.

But we have k(n(`)) ≤ `; then 1
k(n(`))N log ‖Dfk(n(`))N (x)‖ ≥ n(`)

`N log 2.

As lim
`→+∞

n(`)

`
= µ(Jε) ≥ 1− ε, we obtain

λ = lim
`→+∞

1

k(n(`))N
log ‖Dfk(n(`))N (x)‖ ≥ 1− ε

N
log 2 > 0;

hence the Lyapunov exponents are nonzero. �

4. The hyperbolic case: proof of its irregularity

4.1. Case of uniform hyperbolicity.

4.1.1. Theorem 10. Let M be a uniformly hyperbolic irrational Aubry-

Mather set of a C1 ESPT f of A. Then at every x ∈M , M is C1-irregular.

Proof of Theorem 10. At first, let us notice that such a M cannot be a

curve. We proved in [2] that if the graph of a continuous map γ : T → R
is invariant by f , then Lebesgue almost everywhere, we have G−(t, γ(t)) =

G+(t, γ(t)), which contradicts Proposition 4 that asserts that G− = Es and

G+ = Eu. Another argument is the fact, proved in [26], that π(M) has zero

Lebesgue measure.
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Hence M is a Cantor and the dynamic on M is Lipschitz conjugate to

the one of a Denjoy counterexample on its minimal invariant set. Then we

consider two points x 6= y of M such that there exists an open interval I ⊂ T
whose ends are π(x) and π(y) and which does not meet π(M): I ∩ π(M) = ∅.
From the dynamic of the Denjoy counter examples (see [17]) , we deduce that

• the positive and negative orbits of x and y under f are dense in M ;

• lim
n→+∞

d(fnx, fny) = lim
n→+∞

d(f−nx, f−ny) = 0.

As M is uniformly hyperbolic, we can define a local stable and unstable lami-

nations on M (see, for example, [34]), W s
loc and W u

loc. Then for big enough n,

fnx and fny belong to the same local stable leaf, and f−nx and f−ny belong

to the same local unstable leaf. Hence, because

lim
n→+∞

d(fnx, fny) = lim
n→+∞

d(f−nx, f−ny) = 0,

for big enough n, the vector joining fnx to fny (resp. f−nx to f−ny) is close

to the stable bundle Es (resp. the unstable bundle Eu).

Now let z ∈ M be any point. Then there exist two sequences (in) and

(jn) of integers which tend to +∞ and are such that

lim
n→+∞

f inx = lim
n→+∞

f iny = lim
n→+∞

f−jnx = lim
n→+∞

f−jny = z.

The direction of the “vector” joining f inx to f iny tends to Es(z), and the

direction of the vector joining f−jnx to f−jny tends to Eu(z). Hence Eu(z) ∪
Es(z) ⊂ PM (z) and M is C1-irregular at z. �

4.2. Case of nonuniform hyperbolicity.

Theorem 11. Let f ∈ ETω be a C1 ESPT and let µ be an irrational

Mather measure of f whose Lyapunov exponents are nonzero. Then, at µ

almost every point, supp(µ) is C1-irregular.

To prove this result, we will need some results concerning ergodic theory

(see, for example, [32]). For us, every probability space (X,µ) will be such

that X is a metric compact space endowed with its Borel σ-algebra.

Definition. Let (X,µ) be a probability space, T be a measure-preserving

transformation of (X,µ) and (fn) ∈ L1(X,µ) be a sequence of µ-integrable

functions from X to R. Then (fn) is T -sub-additive if for µ almost every

x ∈ X and n,m ∈ N, we have fn+m(x) ≤ fn(x) + fm(Tnx).

A useful result in ergodic theory is the following:

Theorem (Sub-additive ergodic theorem, Klingman). Let (X,µ) be a

probability space, let T be a measure-preserving transformation of (X,µ) such

that µ is ergodic for T and let f = (fn) ∈ L1(X,µ) be a T -sub-additive se-

quence. Then there exists a constant Λ(f) ≥ −∞ such that for µ-almost every
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x ∈ X , we have

lim
n→+∞

1

n
fn(x) = Λ(f).

Moreover, the constant Λ(f) satisfies

Λ(f) = lim
n→∞

1

n

∫
fndµ = inf

n

1

n

∫
fndµ.

We will use the following refinement of this proposition, which concerns

only the uniquely ergodic measures. A proof of it in the case of continuous

functions is given in [12]; the proof for upper semi-continuous functions is

exactly the same.

Theorem (Furman). Let (X,µ) be a probability space, T be a measure-

preserving transformation of (X,µ) such that µ is uniquely ergodic for T and

(fn) ∈ L1(X,µ) be a T -sub-additive sequence of upper semi-continuous func-

tions. Let Λ(f) be the constant associated to f via the sub-additive ergodic

theorem. We assume that Λ(f) ∈ R. Then

∀ε > 0,∃N ≥ 0, ∀n ≥ N, ∀x ∈ X, 1

n
fn(x) ≤ Λ(f) + ε.

Proof of Theorem 11. At first, let us notice that the set R of points where

supp(µ) is C1-regular is a Gδ subset of supp(µ) and then is measurable. Let

us assume that µ(R) = a > 0. If supp(µ) is the graph of γ above π(supp(µ)),

then γ is differentiable at every θ ∈ π(R), and its derivative is continuous at

such a θ. Moreover, R is invariant by f .

We know that there exists an orientation-preserving bi-Lipschitz homeo-

morphism h : T → T such that for all (θ, r) ∈ supp(µ), we have π ◦ f(θ, r) =

h(θ). We denote by m the unique h-invariant probability measure on T (this

measure is supported in π(supp(µ))).

We may choose h in a more precise way. If I =]a, b[ is an open interval

which is a connected component of T\π(supp(µ)), then we may choose h affine

on I. Let D be the (countable) set of the points of π(supp(µ)) which are ends

of such intervals. Let us prove that every hk is differentiable on π(R)\D.

Let us consider θ ∈ π(R)\D and (αn) < (βn) two sequences of elements

of T converging to θ. Let In = [α1
n, α

2
n] (resp. Jn = [β1n, β

2
n]) be

• either the longest closed interval of (T\π(supp(µ))) ∪D containing αn
(resp. βn) if αn /∈ π(supp(µ))\D (resp. βn /∈ π(supp(µ))\D);

• or {αn} (resp {βn}) if αn ∈ π(supp(µ))\D (resp. βn ∈ π(supp(µ))\D).

As θ /∈ D, we have

lim
n→∞

α1
n = lim

n→∞
α2
n = lim

n→∞
β1n = lim

n→∞
β2n = θ.
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Moreover (we denote by CH the convex hull),

hk(αn)− hk(βn)

αn − βn

∈ CH

®
hk(αn)− hk(α2

n)

αn − α2
n

,
hk(α2

n)− hk(β1n)

α2
n − β1n

,
hk(β1n)− hk(βn)

β1n − βn

´
.

(When the written slope is not defined, we do not write it.)

As hk is affine on In and Jn, this last set is equal to

CH

®
hk(α1

n)− hk(α2
n)

α1
n − α2

n

,
hk(α2

n)− hk(β1n)

α2
n − β1n

,
hk(β1n)− hk(β2n)

β1n − β2n

´
.

As α1
n, α

2
n, β

1
n, β

2
n ∈ π(supp(µ)) tend to θ ∈ π(R) when n goes to +∞, we have

(when the slope is defined, i.e., α1
n 6= α2

n)

lim
n→∞

hk(α1
n)− hk(α2

n)

α1
n − α2

n

= lim
n→∞

π ◦ fk(α1
n, γ(α1

n))− π ◦ fk(α2
n, γ(α2

n))

α1
n − α2

n

= Dπ ◦Dfk(θ, γ(θ))(1, γ′(θ))

and similarly (if defined)

lim
n→∞

hk(α2
n)− hk(β1n)

α2
n − β1n

= lim
n→∞

hk(β1n)− hk(β2n)

β1n − β2n
= Dπ ◦Dfk(θ, γ(θ))(1, γ′(θ)).

Hence lim
n→∞

hk(αn)− hk(βn)

αn − βn
= Dπ ◦Dfk(θ, γ(θ))(1, γ′(θ)).

Finally, every hn is differentiable on π(R)\D and

∀θ ∈ π(R)\D,∀n ∈ N, lim
α,β→θ

hn(α)− hn(β)

α− β
= (hn)′(θ)

= Dπ ◦Dfn(θ, γ(θ))(1, γ′(θ)).

For every θ ∈ T, we define h′n(θ) = lim inf
y 6=z→θ

hn(z)− hn(y)

z − y
> 0. Then every

h′n is lower semi-continuous and then measurable. As h is bi-Lipschitz, there

exists Kn > 1 such that for every x ∈ T, 1
Kn
≤ h′n(x) ≤ Kn. Hence every

gn = − log h′n is bounded and measurable and thus belongs to L1(m), and

the sequence g = (gn)n≥1 is a h-sub-additive sequence. Moreover, every gn is

upper semicontinuous. As m is uniquely ergodic for h, we may apply Furman’s

theorem:

∀ε > 0,∃N ≥ 0, ∀θ ∈ T,∀n ≥ N, 1

n
gn(θ) ≤ Λ(g) + ε.

Let λ be the Lebesgue measure on T. As (− log) is convex, we have by Jensen

inequality

− log

Å∫
h′ndλ

ã
≤ −

∫
log h′ndλ =

∫
gndλ.
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Moreover, h being Lipschitz is differentiable λ-almost everywhere and
∫
h′ndλ ≤∫

(hn)′dλ = h̃n(1)− h̃n(0) = 1. Hence

0 = − log 1 ≤ − log

Å∫
h′ndλ

ã
≤

∫
gndλ;

i.e.,
∫
gndλ ≥ 0. Let us now choose ε > 0. We know that there exists N ≥ 1

such that for all n ≥ N and x ∈ T, 1
ngn(x) ≤ Λ(g) + ε and thus for all n ≥ N ,

0 ≤ 1
n

∫
gndλ ≤ Λ(g) + ε. We deduce that Λ(g) ≥ 0.

By Klingman theorem, we know that we have lim
n→+∞

1

n
gn(θ) = Λ(g) for

m-almost θ ∈ T. Hence for m-almost θ ∈ π(R)\D, we have lim
n→+∞

1

n
gn(θ) ≥ 0;

we denote by A = π(R′) the set of such θs. We have noticed that for such a θ,

if (θ, r) ∈ supp(µ)

• every hn is differentiable at θ and even: (hn)′(θ) = lim
y 6=z→θ

hn(z)− hn(y)

y − z
= hn(θ) and then gn(θ) = − log((hn)′(θ));

• we have also seen that (hn)′(θ) = Dπ ◦Dfn(θ, r)(1, γ′(θ)).

Let us now denote by ν > 0,−ν the Lyapunov exponents of µ for f . Then

there exists a subset S of R′ such that µ(S) = µ(R′) = a > 0 and such that at

every (θ, r) ∈ S, we can define the Oseledet’s splitting Es ⊕ Eu:

∀v ∈ Eu(θ, r), lim
n→±∞

1

n
log ‖Dfnv‖ = ν;

∀v ∈ Es(θ, r), lim
n→±∞

1

n
log ‖Dfnv‖ = −ν.

Then for (θ, r) ∈ S, we have (we recall that γ′ is bounded because supp(µ) is

Lipschitz)

∀n ∈ N∗,
1

n
log ‖Dfn(θ, r)(1, γ′(θ))‖ =

1

n
log ‖((hn)′(θ), γ′(hn(θ))(hn)′(θ))‖

=
1

n
log |(hn)′(θ)|+ 1

n
log ‖(1, γ′(hn(θ)))‖

= − 1

n
gn(θ) +

1

n
log ‖(1, γ′(hn(θ)))‖

n→∞−→ −Λ(g) ≤ 0.

We deduce that (1, γ′(θ)) ∈ Es(θ, r). A similar argument for n going to −∞
(replacing f by f−1 and h by h−1) proves that (1, γ′(θ)) ∈ Eu(θ, r). As

Eu(θ, r) ∩ Es(θ, r) = {0}, we obtain a contradiction. �
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5. Proof of the remaining results contained in the introduction

Notation. We denote the diffeomorphism (θ, r)→ (−θ, r) of the 2-dimen-

sional annulus A by I. The map I : f ∈ ETω → I ◦ f ◦ I−1 ∈ ETω is then an

involution I of ETω such that I(ET +
ω ) = T −ω .

Proof of Theorem 1. We assume that µ is an irrational Mather measure

of f ∈ ETω; considering I(f) instead of f , we may assume that f ∈ ET +
ω .

1) Let us assume that for µ-almost x, supp(µ) is C1-regular at x. Then

by Theorem 11, the Lyapunov exponents of f are zero.

2) Let us assume that the Lyapunov exponents of µ are zero. Then we

deduce from Corollary 6 that supp(µ) is C1-regular µ-almost everywhere. �

Proof of Theorem 2. We assume that µ is an irrational Mather measure

of f ∈ ETω. Considering I(f) instead of f , we may assume that f ∈ ET +
ω .

1) Let us assume that for µ-almost x, supp(µ) is C1-irregular at x. Then

by Theorem 1, the Lyapunov exponents of µ are nonzero.

2) Let us assume that the Lyapunov exponents of µ are nonzero. Then

by Theorem 11, supp(µ) is C1-irregular at µ-almost every point. �

Proof of Theorem 3. We assume that M is an irrational Aubry-Mather

set of f ∈ ETω. Considering I(f) instead of f , we may assume that f ∈ ET +
ω .

1) We assume that M is nowhere C1-regular. By Theorem 6, at every x ∈
M , G+(x) and G−(x) are transverse. Hence, by Corollary 4, M is uniformly

hyperbolic.

2) We assume that M is uniformly hyperbolic. Then by Theorem 10, M

is nowhere C1-regular. �

Proof of Theorem 4. Let f ∈ ET +
ω be a C1 ESPT and let µ be an irrational

Mather measure of f which is nonuniformly hyperbolic; i.e., the Lyapunov

exponents are nonzero but the corresponding Aubry-Mather set M = supp(µ)

is not uniformly hyperbolic. The set G of the points x of M , where G−(x) =

G+(x), is a Gδ of M which is invariant by f . As f|M is minimal, either G is

empty or it is a dense Gδ of M . Moreover, by Theorem 6, at every point of G,

M is C1-regular.

Hence we only have to prove that G 6= ∅. By Theorem 7, as M is not

uniformly hyperbolic, G 6= ∅. �

Proof of Theorem 5. Let f ∈ ET +
ω be a C1 ESPT and let C be a C1-

invariant curve, which is a graph such that f|C is C1 conjugate to a rotation.

Then we know (see [2], it is an easy consequence of the dynamical criterion)

that at every x ∈ C, G−(x) = G+(x).

Then, by Theorem 6, the map (x ∈ Green(f) → G−(x)) and (x ∈
Green(f)→ G+(x)) are continuous at every point of C.
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Let W be a neigbourhood of T 1C, the unit tangent bundle to C in T 1A (the

unit tangent bundle to A). We may assume that W is “symmetrically fibered

convex” (i.e., if u, v ∈ W ∩ TxA, if Ru � Rw � Rv, then w ∈ W ). We denote

by G1
− and G1

+ the unit Green bundles. Then there exists a neighbourhood V

of C in A such that

∀x ∈ Green(f) ∩ V, G1
−(x) ∪G1

+(x) ⊂W.

Hence for every Aubry-Mather set M for f contained in V , G1
−(x), G1

+(x) ⊂W
for all x ∈M .

Moreover, by Theorem 6 we know that G−(x) � PM (x) � G+(x). For

every Aubry-Mather set M for f contained in V , we deduce that

∀x ∈M,P 1
M (x) ⊂W. �
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vatif: de Poincaré et Birkhoff à Aubry et Mather, in Seminar Bourbaki, 1983/84,
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à des rotations, Inst. Hautes Études Sci. Publ. Math. (1979), 5–233. MR 0538680.

Zbl 0448.58019. Available at http://www.numdam.org/item?id=PMIHES 1979

49 5 0.

[18] , Sur les courbes invariantes par les difféomorphismes de l’anneau,
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complément sur les algèbres de Banach, par V. M. Tikhomirov, Traduit du russe

par Michel Dragnev. MR 0367598. Zbl 0299.46001.

[22] P. Le Calvez, Les ensembles d’Aubry-Mather d’un difféomorphisme conservatif
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