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On De Giorgi’s conjecture
in dimension N ≥ 9

By Manuel del Pino, Micha l Kowalczyk, and Juncheng Wei

Abstract

A celebrated conjecture due to De Giorgi states that any bounded so-

lution of the equation ∆u + (1 − u2)u = 0 in RN with ∂yNu > 0 must be

such that its level sets {u = λ} are all hyperplanes, at least for dimension

N ≤ 8. A counterexample for N ≥ 9 has long been believed to exist. Start-

ing from a minimal graph Γ which is not a hyperplane, found by Bombieri,

De Giorgi and Giusti in RN , N ≥ 9, we prove that for any small α > 0 there

is a bounded solution uα(y) with ∂yNuα > 0, which resembles tanh
Ä

t√
2

ä
,

where t = t(y) denotes a choice of signed distance to the blown-up mini-

mal graph Γα := α−1Γ. This solution is a counterexample to De Giorgi’s

conjecture for N ≥ 9.

Contents

1. Introduction 1486

2. The BDG minimal graph 1490

3. Local coordinates near Γα and the construction of

a first approximation 1494

3.1. Coordinates in R9 near Γ and the Euclidean Laplacian 1497

3.2. Error of approximation 1499

3.3. Global first approximation 1500

4. The proof of Theorem 1 1501

4.1. Reduction by a gluing procedure 1502

4.2. An infinite dimensional Lyapunov-Schmidt reduction 1504

4.3. Solving the reduced problem 1504

4.4. Conclusion 1508

5. The proof of Lemma 4.1 1509

6. The proofs of Proposition 4.1 and Lemma 4.2 1511

6.1. Proof of Proposition 4.1 1512

6.2. Lipschitz dependence on h: The proof of Lemma 4.2 1513

6.3. Proof of Proposition 6.1 1514

1485

http://annals.math.princeton.edu/annals/about/cover/cover.html
http://dx.doi.org/10.4007/annals.2011.174.3.3


1486 MANUEL DEL PINO, MICHA L KOWALCZYK, and JUNCHENG WEI

6.4. A priori estimates 1516

6.5. Existence: Conclusion of the proof of Proposition 6.1 1519

6.6. An equation on Γα 1521

7. Solvability theory for the Jacobi operator:

Proof of Proposition 4.2 1521

7.1. The approximate Jacobi operator 1522

7.2. Supersolutions for the approximate Jacobi operator 1522

7.3. Proof of Proposition 4.2(b) 1526

7.4. Proof of Proposition 4.2(a) 1529

8. Local coordinates on Γ:

The effect of curvature and closeness to Γ0 1532

8.1. The proof of Proposition 3.1 1532

8.2. Comparing G and G0 1536

8.3. Approximating Γ by Γ0 and their Jacobi operators:

Proof of Lemma 7.1 1541

8.4. The proof of Lemma 7.8 1545

9. Asymptotic behavior of the BDG graph:

Proofs of Lemma 2.1 and Theorem 2 1548

9.1. Equation for g: Proof of Lemma 2.1 1548

9.2. A new system of coordinates 1550

9.3. Proof of Theorem 2 1555

9.4. A refinement of the asymptotic behavior of F 1560

10. Appendix: The proof of formula (7.4) 1564

References 1566

1. Introduction

This paper deals with entire solutions of the Allen-Cahn equation

(1.1) ∆u+ (1− u2)u = 0 in RN .

Equation (1.1) arises in the gradient theory of phase transitions by Cahn-

Hilliard and Allen-Cahn, in connection with the energy functional in bounded

domains Ω

(1.2) Jε(u) =
ε

2

∫
Ω
|∇u|2 +

1

4ε

∫
Ω

(1− u2)2, ε > 0,

whose Euler-Lagrange equation corresponds precisely to an ε-scaling of equa-

tion (1.1) in the expanding domain ε−1Ω. The theory of Γ-convergence de-

veloped in the 70’s and 80’s, showed a deep connection between this problem

and the theory of minimal surfaces; see Modica, Mortola, Kohn, Sternberg,

[21], [28], [29], [30], [36]. In fact, it is known that a family {uε}ε>0 of local
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minimizers of Jε with uniformly bounded energy must converge as ε → 0, up

to subsequences, in L1-sense to a function of the form χE − χEc where χ de-

notes characteristic function of a set, and ∂E has minimal perimeter. Thus

the interface between the stable phases u = 1 and u = −1, represented by the

sets {uε = λ} with |λ| < 1 approach a minimal hypersurface; see Caffarelli and

Córdoba [7, 8] (also Röger and Tonegawa [32]) for stronger convergence and

uniform regularity results on these level surfaces.

The above described connection led E. De Giorgi [9] to formulate in

1978 the following celebrated conjecture concerning entire solutions of equa-

tion (1.1).

De Giorgi’s conjecture. Let u be a bounded solution of equation (1.1)

such that ∂xNu > 0. Then the level sets {u = λ} are all hyperplanes, at least

for dimension N ≤ 8.

Equivalently, u depends on just one Euclidean variable so that it must

have the form

(1.3) u(x) = tanh

Ç
x · a− b√

2

å
for some b ∈ R and some a with |a| = 1 and aN > 0. We observe that the

function

w(t) := tanh

Ç
t√
2

å
is the unique solution of the one-dimensional problem

w′′ + (1− w2)w = 0, w(0) = 0, w(±∞) = ±1.

The monotonicity of u implies that the scaled functions u(x/ε) are, in

a suitable sense, local minimizers of Jε; moreover, the level sets of u are all

graphs. In this setting, De Giorgi’s conjecture is a natural, parallel statement

to Bernstein’s theorem for minimal graphs, which in its most general form,

due to Simons [35], states that any minimal hypersurface in RN , which is also

a graph of a function of N − 1 variables, must be a hyperplane if N ≤ 8.

Strikingly, Bombieri, De Giorgi and Giusti [5] proved that this fact is false in

dimension N ≥ 9. This was most certainly the reason for the particle at least

in De Giorgi’s statement.

Great advance in De Giorgi’s conjecture has been achieved in recent years,

having been fully established in dimensions N = 2 by Ghoussoub and Gui [16]

and for N = 3 by Ambrosio and Cabré [2]. Partial results in dimensions

N = 4, 5 were obtained by Ghoussoub and Gui [17]. More recently Savin

[33] established its validity for 4 ≤ N ≤ 8 under the following additional

assumption (see [1] for a discussion of this condition):

(1.4) lim
xN→±∞

u(x
′
, xN ) = ±1.
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Condition (1.4) is related to the so-called Gibbons’ Conjecture.

Gibbons’ Conjecture. Let u be a bounded solution of equation (1.1)

satisfying

(1.5) lim
xN→±∞

u(x
′
, xN ) = ±1, uniformly in x′.

Then the level sets {u = λ} are all hyperplanes.

Gibbons’ Conjecture has been proven in all dimensions with different

methods by Barlow, Bass and Gui [3], Berestycki, Hamel, and Monneau [4],

Caffarelli and Córdoba [8], and Farina [14]. In references [3], [8] it is proven

that the conjecture is true for any solution that has one level set which is

globally a Lipschitz graph. If the uniformity in (1.5) is dropped, then a coun-

terexample can be built using the method by Pacard and the authors in [11],

so that Savin’s result is nearly optimal.

A counterexample to De Giorgi’s conjecture in dimension N ≥ 9 has been

believed to exist for a long time, but the issue has remained elusive. Partial

progress in this direction was made by Jerison and Monneau [19] and by Cabré

and Terra [6]. See the survey article by Farina and Valdinoci [15].

In this paper we show that De Giorgi’s conjecture is false in dimension

N ≥ 9 by constructing a bounded solution of equation (1.1) which is mono-

tone in one direction and whose level sets are not hyperplanes. The basis of

our construction is a minimal graph, different from a hyperplane, found by

Bombieri, De Giorgi and Giusti [5]. In this work a solution of the zero mean

curvature equation

(1.6) ∇ ·

Ñ
∇F»

1 + |∇F |2

é
= 0 in RN−1,

different from a linear affine function was found, provided that N ≥ 9. This

solution is, in other words, a nontrivial minimal graph in RN . Let us observe

that if F (x′) solves equation (1.6) then so does

Fα(x′) := α−1F (αx′), α > 0,

and hence

(1.7) Γα = {(x′, xN ) | x′ ∈ RN−1, xN = Fα(x′)}

is a minimal graph in RN . It turns out that the scaling parameter in (1.6)

provides a natural bridge between (1.1) and (1.6).

Our main result states as follows:

Theorem 1. Let N ≥ 9. There is a solution F to equation (1.6) which

is not a linear affine function, such that for all α > 0 sufficiently small, there
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exists a bounded solution uα(y) of equation (1.1) such that uα(0) = 0,

∂yNuα(y) > 0 for all y ∈ RN ,

and

(1.8) |uα(y)| → 1 as dist (y,Γα) → +∞,

uniformly for all small α > 0, where Γα is given by (1.7).

Property (1.8) implies that the 0 level set of uα lies inside the region

dist (y,Γα) < R for some fixed R > 0 and all small α, and hence it cannot

be a hyperplane. Much more accurate information about the solution will be

drawn from the proof. The idea is simple. If t(y) denotes a choice of signed

distance to the graph Γα then, for a small fixed number δ > 0, our solution

looks like

uα(y) ∼ tanh

Ç
t√
2

å
if |t| < δ

α
.

As we have mentioned, a key ingredient of our proof is the existence of

a nontrivial solution of equation (1.6) proven in [5]. We shall derive precise

information about its asymptotic behavior, which in particular will help us to

find global estimates for its derivatives. This is a crucial step since the mean

curvature operator yields in general poor gradient estimates. In addition we

shall derive a theory of existence and a priori estimates for the Jacobi oper-

ator of the minimal graph. Subsequently, a suitable first approximation for a

solution of (1.1) is built. Next, we linearize our problem around the approxi-

mate solution in order to carry out an infinite-dimensional Lyapunov Schmidt

reduction. This procedure eventually reduces the full problem (1.1) to one of

solving a nonlinear, nonlocal equation which involves as a main term the Ja-

cobi operator of the minimal graph. Schemes of this type have been successful

in establishing existence of solutions to singular perturbation elliptic problems

in various settings. For the Allen-Cahn equation in compact situations this

has been done in the works del Pino, Kowalczyk and Wei [13], Kowalczyk

[22], Pacard and Ritore [31]. In particular in [31] solutions concentrating on

a minimal submanifold of a compact Riemannian manifold are found through

an argument that shares some similarities with the one used here. In the non-

compact setting, for both (1.1) and nonlinear Schrödinger equation, solutions

have been constructed by del Pino, Kowalczyk and Wei [12], del Pino, Kowal-

czyk, Pacard and Wei [11], [10], and Malchiodi [24]. See also Malchiodi and

Montenegro [25], [26]. We should emphasize here the importance of our earlier

works [11], [10] in the context of the present paper, and especially the idea of

constructing solutions concentrating on a family of unbounded sets, all coming

from a suitably rescaled basic set. While in [11], [10] the concentration set was

determined by solving a Toda system and the rescaling was the one appropriate
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to this system, here the concentration set is the minimal graph and the rescal-

ing is the one that leaves invariant the mean curvature operator. We mention

that our work are partly motivated by earlier works of Kapouleas [20], Mazzeo

and Pacard [27], and Mahmoudi, Mazzeo and Pacard [23] on construction of

noncompact constant mean curvature surfaces in Euclidean three space.

Let us observe that a counterexample to De Giorgi’s conjecture in N = 9

gives one in RN = R9 × RN−9 for any N > 9, by extending the solution in

R9 to the remaining variables in a constant manner. For this reason, in what

follows we shall assume N = 9 in problem (1.1). We will also denote

f(u) := (1− u2)u.

We shall devote the rest of the paper to the proof of Theorem 1. The

proof is rather long and technical, but has steps that are logically independent

and can be divided into nearly independent blocks. The exposition is designed

so that the proof is completed by page 1508, except for some steps which

are isolated in the form of lemmas and propositions, and whose full proofs,

postponed to the subsequent sections, are not necessary to follow the logical

thread of the proof of Theorem 1. That is the purpose of the Sections 2–4.

In Section 2 the BDG graph and its asymptotic behavior are described.

The proof of the main result there, Theorem 2, which involves a delicate im-

provement of the supersolution in [5], is carried out in Section 9. In Section 3

a first approximation, about which we linearize, is built and the error of ap-

proximation and its features are analyzed in detail. In Section 4 we present

the full proof of the theorem in various steps, with several intermediate results

stated, with proofs in turn are given in the proceeding Sections 5–9. Each of

these last five sections is largely independent and can be read individually.

2. The BDG minimal graph

The minimal surface equation for a graph in R9 corresponds to the Euler-

Lagrange equation for the functional

A(F ) =

∫ »
1 + |∇F |2dx,

integrated over subsets of R8. In other words, F represents a minimal graph

if for any compactly supported test function φ

A′(F )[φ] :=

∫ ∇F · ∇φ»
1 + |∇F |2

dx = 0.

We observe that

A′(F )[φ] = −
∫
H[F ]φdx,
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where

(2.1) H[F ] := ∇ ·

Ñ
∇F»

1 + |∇F |2

é
= 0 in R8.

Quantity H[F ] corresponds to the mean curvature of the hypersurface in R9,

Γ := {(x′, F (x′)) | x′ ∈ R8}.

The Bombieri-De Giorgi-Giusti minimal graph [5] is a nontrivial, entire smooth

solution of equation (2.1) that enjoys some simple symmetries which we de-

scribe next.

Let us write x′ ∈ R8 as x′ = (u,v) ∈ R4×R4 and denote u = |u|, v = |v|.
Let us consider the set

(2.2) T := {(u,v) ∈ R8 | v > u > 0}.

We should remark here the set {u = v} ∈ R8 is the famous Simons minimal

cone [35]. The solution found in [5] is radially symmetric in both variables,

namely F = F (u, v). In addition, F is positive in T and it vanishes along the

Simons cone. Moreover, it satisfies

(2.3) F (u, v) = −F (v, u) for all u, v > 0.

Let us observe that for a function F that depends on (u, v) only, the area

functional becomes, except for a multiplicative constant,

A(F ) =

∫ »
1 + F 2

u + F 2
v u

3v3dudv,

and hence equation (2.1) for such a function becomes

H[F ] =
1

u3v3
∂u

Ñ
u3v3Fu»

1 + F 2
u + F 2

v

é
+

1

u3v3
∂v

Ñ
u3v3Fv»

1 + F 2
u + F 2

v

é
= 0.

It is useful to introduce in addition polar coordinates (u, v) = (r cos θ, r sin θ)

for which we get (up to a multiplicative constant)

A(F ) =

∫ »
1 + F 2

r + r−2F 2
θ r

7 sin3 2θ dr dθ,

so that (2.1) reads

H[F ] =
1

r7 sin3 2θ
∂r

Ñ
Frr

7 sin3 2θ»
1 + F 2

r + r−2F 2
θ

é
(2.4)

+
1

r7 sin3 2θ
∂θ

Ñ
Fθr

5 sin3 2θ»
1 + F 2

r + r−2F 2
θ

é
= 0.
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θ = π
4

θ = π
2

T

v u

Figure 1. Schematic view of the function F (u, v) representing Γ in

the sector T = {0 < u < v}.

Set F0 = r3g(θ). Then we get

(2.5)

H[F0] =
1

r7 sin3 2θ
∂r

Ñ
3r7g sin3 2θ»
r−4 + 9g2 + g′2

é
+

1

r sin3 2θ
∂θ

Ñ
g′ sin3 2θ»

r−4 + 9g2 + g′2

é
.

For F0 to be a good approximation of a solution of the minimal surface equation

H[F ] = 0, we neglect terms of order r−4 in the denominators, and, additionally

because of (2.3), we require that g(θ) solves the two-point boundary value

problem

(2.6)

21g sin3 2θ»
9g2 + g′2

+

Ñ
g′ sin3 2θ»
9g2 + g′2

é′
= 0 in

Å
π

4
,
π

2

ã
, g

Å
π

4

ã
= 0 = g′

Å
π

2

ã
.

Regarding (2.6), we have the following result.

Lemma 2.1. Problem (2.6) has a unique solution g ∈ C2([π4 ,
π
2 ]) such that

g and g′ are positive in (π4 ,
π
2 ) and such that g′(π4 ) = 1.

We fix in what follows the function g as above and we set F0(x′) = r3g(θ).

Let us observe that

(2.7) H[F0] = O(r−5) as r = |x′| → +∞.

The next result, crucial in the arguments to follow, refines the existence result

in [5] in what concerns the asymptotic behavior of the minimal graph, which

turns out to be accurately described by F0; see also Figure 1.
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Theorem 2. There exists an entire solution F = F (u, v) to equation (2.1)

which satisfies (2.3) and such that

(2.8) F0 ≤ F ≤ F0 +
C

rσ
min{F0, 1} in T, r > R0,

where 0 < σ < 1, C ≥ 1 and R0, are positive constants.

We will carry out the proofs of Lemma 2.1 and Theorem 2 in Section 9.

In what remains of this paper we will denote, for F and F0 as in Theorem 2,

Γ = {(x′, F (x′)) | x′ ∈ R8}, Γ0 = {(x′, F0(x′)) | x′ ∈ R8}.

By Γα we will denote the dilated surfaces Γα = α−1Γ. Also, in the rest of this

paper we shall use the notation

(2.9) r(x) := |x′|, rα(x) := r(αx), x = (x′, x9) ∈ R8 × R = R9.

We conclude this section by introducing the linearization of the mean cur-

vature operator, corresponding to the second variation of the area functional,

namely the linear operator H ′(F ) defined by

H ′(F )[φ] :=
d

dt
H(F + tφ) |t=0 = ∇ ·

Ñ
∇φ»

1 + |∇F |2
− (∇F · ∇φ)

(1 + |∇F |2)
3
2

∇F

é
.

When the second variation is measured with respect to normal, rather

than to vertical perturbations, we obtain the Jacobi operator of Γ, defined for

smooth functions h on Γ as

JΓ[h] = ∆Γh+ |AΓ(y)|2h,

where ∆Γ is the Laplace-Beltrami operator on Γ and |AΓ|2 is the Euclidean

norm of its second fundamental form, namely |AΓ|2 =
∑8
i=1 k

2
i where k1, . . . , k8

are the principal curvatures. See [35, Th. 3.2.2].

These two operators are linked through the simple relation

(2.10) JΓ[h] = H ′(F )[φ], where φ(x′) =
»

1 + |∇F (x′)|2 h(x′, F (x′)).

Similarly, using formula (2.4), we compute for vertical perturbations φ =

φ(r, θ) of Γ0,

H ′(F0)[φ] =
1

r7 sin3(2θ)

{
(9g2 w̃r3φθ)θ + (r5g′

2
w̃φr)r(2.11)

− 3(gg′ w̃r4φr)θ − 3(gg′ w̃r4φθ)r
}

+
1

r7 sin3(2θ)

{
(r−1 w̃φθ)θ + (rw̃φr)r

}
,

w̃(r, θ) :=
sin3 2θ

(r−4 + 9g2 + g′2)
3
2

.
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3. Local coordinates near Γα and the construction of

a first approximation

We are studying the equation

(3.1) ∆U + f(U) = 0 in R9, f(U) = U(1− U2).

It is natural to look for a solution U(x) that obeys the symmetries of Γα. Let

us consider the linear isometry in R9 given by

(3.2) Q(u,v, x9) = (Pv, Qu,−x9),

where P and Q are orthogonal transformations of R4. We observe that this

isometry leaves Γα invariant and that if U(x) solves (3.1) then so does the

function −U(Qx). We look for a solution with the property

(3.3) U(Qx) = −U(x)

for any Q of the form (3.2). In other words, we look for U = U(u, v, x9) with

U(v, u,−x9) = −U(u, v, x9).

The proof of Theorem 1 relies on constructing a first, rather accurate

approximation to a solution whose level sets are nearly parallel to Γα, and

then linearize the equation around it to find an actual solution by fixed point

arguments. A neighborhood of Γα can be parametrized as the set of all points

of the form

(3.4) x = Xα(y, z) := y + zν(αy), y ∈ Γα,

where |z| is conveniently restricted for each y. We observe that ν(αy) corre-

sponds to the normal vector to Γα at the point y. It seems logical to consider

u0(x) = w(z) as a first approximation to a solution near Γα. Rather than

doing this, we consider a smooth small function h defined on Γ and set

u0(x) := w(z − h(αy)).

The function h is left as a parameter which will be later adjusted. Consistently,

we ask that h obeys the symmetries of Γ requiring that for any Q of the form

(3.2) we have

(3.5) h(y) = −h(Qy) for all y ∈ Γ.

We notice that this requirement implies that h = 0 on Simons cone {u = v}.
Suitably adapted to this initial guess is the change of variables

(3.6) x = Xh(y, t) := y + (t+ h(αy)) ν(αy), y ∈ Γα,

so that u0(x) = w(t).
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Since F (u,v) = F (u, v) = −F (v, u), we have that Qν(αy) = −ν(αQy),

and hence

(3.7) Xh(Q y,−t) = −QXh(y, t).

Thus, if V =V (x) and we set with some abuse of notation V (y, t) :=V (Xh(y, t)),

then

(3.8) V (Qx) = −V (x) if and only if V (y, t) = −V (Qy,−t).

In particular, u0(x) satisfies the symmetry requirement (3.3) where it is defined,

since the function w is odd.

To measure the accuracy of this approximation, and to set up the lin-

earization scheme, we shall derive an expression for the Euclidean Laplacian

∆x in terms of the coordinates (y, t) in a region where the map Xh defines a

diffeomorphism onto an open neighborhood of Γα.

At this point we make explicit our assumptions on the parameter function

h besides (3.5). We require that h is of size of order α and that it decays at

infinity along Γ at a rate O(r(y)−1), while its first and second derivatives decay

at respective rates O(r−2) and O(r−3). Precisely, let us consider the norms

‖g‖∞,ν := ‖(1 + rν) g‖L∞(Γ), ‖g‖p,ν := sup
y∈Γ

Ä
1 + r(y)ν

ä
‖g‖Lp(Γ∩B(y,1)).

Let us fix numbers M > 0, p > 9 and assume that h satisfies

(3.9) ‖h‖∗ := ‖h‖∞,1 + ‖DΓh‖∞,2 + ‖D2
Γh‖p,3 ≤ Mα.

In order to find the desired expression for the Laplacian in coordinates (3.6),

we do so first in coordinates (3.4) for α = 1. Let us consider the smooth map

(3.10) (y, z) ∈ Γ× R 7−→ x = X(y, z) = y + zν(y) ∈ R9.

As we will justify below (Remark 8.1), there is a number δ > 0 such that the

map X is one-to-one inside the open set

(3.11) O = {(y, z) ∈ Γ× R | |z| < δ(r(y) + 1)}.

It follows that X is actually a diffeomorphism onto its image, N = X(O).

The Euclidean Laplacian ∆x can be computed by a well-known formula

(see for instance [31]) in terms of the coordinates (y, z) ∈ O as

(3.12) ∆x = ∂zz + ∆Γz −HΓz(y)∂z, x = X(y, z), (y, z) ∈ O,

where Γz is the manifold

Γz = {y + zν(y) | y ∈ Γ}.

By identification, the operator ∆Γz is understood to act on functions of the

variable y, and HΓz(y) is the mean curvature of Γz measured at y + zν(y).

To make expression (3.12) more explicit, we consider local coordinates around

each point of Γ.
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Let p ∈ Γ be a point such that r(p) = R. Then a neighborhood of p in

Γ can be locally represented in coordinates as the graph of a smooth function

defined on its tangent space TpΓ. Let us fix an orthonormal basis Π1, . . . ,Π8

of TpΓ. Then there is a neighborhood U of 0 in R8 and a transformation of the

form

(3.13) y ∈ U ⊂ R8 7→ Yp(y) = p+
8∑
i=1

yiΠi +Gp(y)ν(p)

onto a neighborhood of p in Γ. Here Gp is a smooth function with DyGp(0)=0.

As we will prove in Section 8.1, the fact that curvatures at y ∈ Γ are of order

O(r(y)−1) (as follows from a result by L. Simon [34]) yields:

Proposition 3.1. There exists a number θ0 > 0 independent of p ∈ Γ

such that U can be taken to be the ball B(0, θ0R) whenever R = r(p) > 1.

Moreover, the following estimates hold :

|DyGp(y)| ≤ C |y|
R
, |Dm

y Gp(y)| ≤ C

Rm−1
, m ≥ 2 for all |y| ≤ θ0R.

The explicit dependence on p will be dropped below for notational simplic-

ity. Let us denote by gij the metric on Γ expressed in these local coordinates,

namely

(3.14) gij = 〈∂iYp, ∂jYp〉 = δij + ∂iGp(y) ∂jGp(y).

Then, by Propoisition 3.1,

gij = δij +O(|y|2R−2), Dm
y gij = O(R−m−1).

The Laplace-Beltrami operator on Γ is represented in coordinates y ∈ U as

(3.15) ∆Γ =
1√

det g
∂i(
»

det g gij ∂j) = a0
ij(y)∂ij + b0j (y)∂j ,

where

a0
ij(y) := gij = δij +O(|y|2R−2), b0i (y) :=

1√
det g

∂j(
√

det g gij) = O(|y|R−2).

We should point out that here as well as throughout the remainder of this paper

we use Einstein summation convention for repeated indices. Let us observe in

addition that for y = Yp(y) we have that

ν(y) =
1»

1 + |DyGp(y)|2
( ν(p)− ∂iGp(y) Πi);

hence

(3.16) Dyν = O(R−1), D2
yν = O(R−2).
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3.1. Coordinates in R9 near Γ and the Euclidean Laplacian. From esti-

mate (3.16) it can be proven that, normal rays emanating from two points

y1, y2, of Γ for which r(y1), r(y2) > R, cannot intersect before a distance of

order R from Γ, which justifies the definiteness of the coordinates (y, z) in

(3.11) (see Remark 8.1).

Local coordinates y = Yp(y), y ∈ U ⊂ R8, as in (3.13) induce natural local

coordinates in Γz, Yp(y) + zν(y). The metric gij(z) on Γz can be computed:

(3.17) gij(z) = 〈∂iY, ∂jY 〉+ z(〈∂iY, ∂jν〉+ 〈∂jY, ∂iν〉) + z2 〈∂iν, ∂jν〉 ,

and hence for r = r(y), and gij as in (3.14),

gij(z) = gij+z O(|y|r−2)+z2O(r−2), Dy gij(z) = Dy gij+z O(r−2)+z2O(r−3).

Thus,

(3.18) ∆Γz =
1»

det g(z)
∂i(
»

det g(z) gij(z) ∂j) = aij(y, z)∂ij + bi(y, z)∂i,

where aij , bi are smooth functions which can be expanded as

(3.19) aij(y, z) = a0
ij(y) + za1

ij(y, z), bi(y, z) = b0i (y) + z
Ä
b1i (y) + z b2i (y, z)

ä
︸ ︷︷ ︸

b̄1i (y,x)

with

a1
ij(y, z) = O(r−2), b1i (y) = O(r−2), b2i (y, z) = O(r−3) for all |y| < 1.

Let us consider the remaining term in the expression (3.12). We have the

validity of the formula

(3.20) H(y, z) := HΓz(y) =
8∑
i=1

ki
1− kiz

=
∞∑
j=1

zj−1Hj(y), Hj(y) :=
8∑
i=1

kji ,

where ki = ki(y), i = 1, . . . , 8 are the principal curvatures of Γ at y, namely

the eigenvalues of the second fundamental form AΓ(y), which correspond to

the eigenvalues of D2
yG(0) for y = p in the local coordinates (3.13). Since Γ is

a minimal surface, we have that H1 = 0. We will denote |AΓ(y)|2 := H2(y).

We write, for later reference, for m ≥ 2,

(3.21) H(y, z) = zH2(y) + z2H3(y) + . . .+ zm−2Hm−1(y) + zm−1H̄m(y, z),

where, since ki = O(r−1), we have

Hj(y) = O(r−j), H̄m(y, z) = O(r−m).

Thus in local coordinates (y, z), y = Yp(y), we have the validity of the

expression

(3.22) ∆x = ∂zz + aij(y, z) ∂ij + bi(y, z) ∂i −H(y, z) ∂z,

with the coefficients described above.
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We can use the above formula to derive an expression for the Laplacian

near Γα by simple dilation as follows: We consider now the coordinates near Γα:

(3.23)

x = Xα(y, z) = y + z ν(αy), (y, z) ∈ Oα = {y ∈ Γα, |z| <
δ

α
(r(αy) + 1)}.

If p ∈ Γα and pα := αp ∈ Γ, then the local coordinates y = Ypα(y) defined

in (3.13) inherit corresponding coordinates in an α−1-neighborhood of p by

setting, with some θ > 0 (depending in Γ),

(3.24) y = Yp,α(y) := α−1Ypα(αy), |y| < θ

α
.

Let us consider a function u(x) defined near Γα. Then letting v(y, z) =

u(Xα(y, z)), and defining u(x) =: ũ(αx) we find

∆xu|x=Xα(y,z) = α2∆x̃ũ(x̃)|x̃=X(αy,αz)

= α2 (∂z̃z̃ + aij(ỹ, z̃) ∂ij + bi(ỹ, z̃) ∂i −H(ỹ, z̃) ∂z̃)

× v(α−1ỹ, α−1z̃) |(ỹ,z̃)=(αy,αz),

which means precisely that for the coordinates (3.23) we have

(3.25) ∆x = ∂zz + aij(αy, αz) ∂ij + αbi(αy, αz) ∂i − αH(αy, αz) ∂z.

Let us fix now a smooth, small function h defined on Γ as in (3.9) and

consider coordinates (3.23) defined near Γα as

x = Xh(y, t) = y + (t+ h(αy)) ν(αy),(3.26)

(y, t) ∈ Oh =

®
y ∈ Γα, |z + h(αy)| < δ

α
(r(αy) + 1)

´
.

If v(y, t) = u(Xh(y, t)) = ṽ(y, t+ h(αy)), then

∆xu|x=Xh(y,t) = ∆xu|x=Xα(y,t+h(αy))

= (∂zz + aij(αy, αz) ∂ij + αbi(αy, αz) ∂i − αH(αy, αz) ∂z)

× [ṽ(y, z − h(αy))]|(y,z)=(y,t+h(αy)),

where by slight abuse of notation we are denoting by h(αy) the function h ◦
Y (αy). Carrying out the differentiations and using the symmetry of aij , we

arrive at the following expression for the Laplacian in coordinates (3.26)

∆x =
Ä
1 + α2aij∂ih∂jh)∂tt + aij ∂ij − 2αaij∂ih∂jt + αbi ∂i(3.27)

− (α2(aij∂ijh+ bi∂ih) + αH)
ä
∂t,

where all coefficients are evaluated at αy or (αy, α(t+ h(αy)).

We observe that for y = Yp,α(y), we have that (with some θ > 0 small)

(3.28) ∆Γα = a0
ij(αy)∂ij + αb0i (αy)∂i, |y| < θ

α
.
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Therefore if we write

(3.29) ∆x = ∂tt + ∆Γα +B,

then, with the notation (3.19), the operator B acting on functions of (y, t) ∈
O ⊂ Γα × R is given by

B = α2aij∂ih∂jh ∂tt + α(t+ h)( a1
ij ∂ij + αb1i ∂i)(3.30)

− 2αaij∂ih∂jt − (α2(aij∂ijh+ bi∂ih) + αH)) ∂t.

3.2. Error of approximation. Let us take as a first approximation to a

solution of the Allen-Cahn equation simply the function u0(x) := w(t). We set

S(u) = ∆u+ f(u).

Since w′′(t) + f(w(t)) = 0, we find that

S(u0) = α2aij∂ih∂jhw
′′(t)−

Ä
α2(aij∂ijh+ bi∂ih) + αH

ä
w′(t).

We expand H(αy, α(t+ h)) according to (3.21) as

H = α(t+ h)|AΓ(αy)|2 + α2(t+ h)2H3(αy) + α3(t+ h)3H̄4(αy, α(t+ h)),

and we also expand

aij∂ijh+ bi∂ih = ∆Γh(αy) + α(t+ h)(a1
ij∂ijh+ b1i ∂ih).

Next we improve the approximation by eliminating the only term of size

order α2 in the error, namely −α2|AΓ(αy)|2tw′(t). Let us consider the differ-

ential equation

ψ′′0(t) + f ′(w(t))ψ0(t) = tw′(t),

which has a unique bounded solution with ψ0(0) = 0, given explicitly by the

formula

ψ0(t) = w′(t)

∫ t

0
w′(t)−2

∫ s

−∞
sw′(s)2ds.

Observe that this function is well defined and it is bounded since
∫∞
−∞ sw

′(s)2ds

= 0 and w′(t) ∼ e−σ|t| as t → ±∞, any σ <
√

2. We consider as a second

approximation

(3.31) u1 = u0 + φ1, φ1(y, t) := α2|AΓ(αy)|2ψ0(t).

Let us observe that

S(u0+φ) = S(u0)+∆xφ+f ′(u0)φ+N0(φ), N0(φ) = f(u0+φ)−f(u0)−f ′(u0)φ.

We have that

∂ttφ1 + f ′(u0)φ1 = α2|A(αy)|2tw′.
Hence we get that the largest term in the error is cancelled. Indeed, we have

S(u1) = S(u0) + α2|AΓ(αy)|2tw′ + [∆x − ∂tt]φ1 +N0(φ1).
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Let us write H2(αy) = |AΓ(αy)|2. We compute

S(u1) = −α2[∆Γh+ |AΓ|2h+ α(t+ h)2H3 + α2(t+ h)3H̄4]w′(3.32)

+ α2aij∂ih∂jhw
′′ + α3(t+ h)(a1

ij∂ijh+ b1i ∂ih)w′

− [α3H + α4(aij∂ijh+ bi∂ih)]H2 ψ
′
0

+ α4((aij∂ijH2 + bi∂iH2)ψ0 − 2α4aij∂ih∂jH2ψ
′
0

+ α4aij∂ih∂jhH2ψ
′′
0 +N0(α2H2ψ0),

where all coefficients are evaluated at αy or (αy, α(t+h(αy)). Roughly speak-

ing, the largest terms remaining in the above expression (recalling assumption

(3.9)) are of size O(α3r−3
α (y)e−σ|t|). We introduce next a suitable norm to

account for this type of decay. This norm will be used throughout the paper

in the functional analytic set up.

For numbers 0 < σ <
√

2, p > 9, ν > 0, and a function g defined on

Γα × R, let us write

(3.33) ‖g‖p,ν,σ := sup
(y,t)∈Γα×R

eσ|t|rνα(y) ‖g‖Lp(B((y,t),1).

Then, for instance,

(3.34) ‖(∆Γh)(αy)w′(t)‖p,3,σ ≤ C sup
y∈Γ
‖D2

Γh‖Lp(B(y,α)∩Γ) α
− 8
p ≤ CMα

1− 8
p .

In all we get, assuming for instance that S(u1) is extended as zero outside Oh,

(3.35) ‖S(u1)‖p,3,σ ≤ CM α
3− 8

p .

3.3. Global first approximation. The function u1 built above is sufficient

for our purposes as an approximation of the solution near Γα but it is only

defined in a neighborhood of it. Let us consider the function H defined in

R9 \ Γα as

(3.36) H(x) :=

 1, if x9 > Fα(x′),

−1, if x9 < Fα(x′).

The global approximation we will use consists simply of interpolating u1 with

H outside of a large, expanding neighborhood of Γα using a cut-off function

of |t|.
We recall that the set Oh in Γα × R was defined as (see (3.26)):

(3.37) Oh =

®
(y, t) ∈ Γα × R, |t+ h(αy)| < δ

α
(1 + rα(y))

´
,

where δ is small positive number. We will denote Nδ = Xh(Oh). The fact

that Oh is actually expanding with rα along Γα makes it possible to choose

the cut-off in such a way that the error created has both smallness in α and

fast decay in rα.
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Let η(s) be a smooth cut-off function with η(s) = 1 for s < 1 and η(s) = 0

for s > 2. Let us introduce the cut-off functions ζm, m = 1, 2, . . . ,

(3.38) ζm(x) :=

 η( |t+ h(αy)| − δ
2α(1 + rα(y))−m), if x ∈ Nδ,

0, if x 6∈ Nδ.

Then we let our global approximation w(x) be simply defined as

(3.39) w := ζ5u1 + (1− ζ5)H,

where H is given by (3.36) and u1(x) is just understood to be H(x) outside Nδ.
The global error of approximation becomes

(3.40) S(w) = ∆w + f(w) = ζ5S(u1) + E,

where

E = 2∇ζ5∇u1 + ∆ζ5(u1 −H) + f(ζ5u1 + (1− ζ5)H) ) − ζ5f(u1).

The new error terms created are of exponentially small size and have fast decay

with rα. In fact, we have

|E| ≤ Ce−
δ
α

(1+rα).

Remark 3.1. Tracking back the way w was built we see that it has the

required symmetry near Γα, namely w(Qy,−t) = −w(y, t), which is as well

respected by the cut-off functions. Using relation (3.8) we conclude that, glob-

ally in R9, w(Qx) = −w(x). Since the orthogonal transformations P,Q in

the definition of Q in (3.2) are arbitrary, we get that w = w(u, v, x9) with

w(v, u,−x9) = −w(u, v, x9). It follows that exactly the same symmetry is

obeyed by the error S(w).

4. The proof of Theorem 1

We look for a solution u of the Allen-Cahn equation (3.1) in the form

U = w + ϕ,

where w is the global approximation defined in (3.39) and ϕ is in some suitable

sense small, with the additional symmetry requirement

(4.1) ϕ(Qx) = −ϕ(x) for all x ∈ R9,

so that (3.3) holds.

Thus we need to solve the following problem

(4.2) ∆ϕ+ f ′(w)ϕ = −S(w)−N(ϕ),

where

N(ϕ) = f(w + ϕ)− f(w)− f ′(w)ϕ.

The procedure of construction of a solution is made up of several steps which

we explain next, postponing the proof of major facts for later sections.
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4.1. Reduction by a gluing procedure. Here we perform a procedure that

reduces (4.2) to a similar problem on entire Γα×R, which in Oh coincides with

the expression of (4.2) in (y, t) coordinates, except for the addition of a very

small nonlocal, nonlinear operator.

Let us consider the cut-off functions ζm introduced in (3.38). We look for

a solution ϕ(x) of problem (4.2) of the following form:

(4.3) ϕ(x) = ζ2(x)φ(y, t) + ψ(x),

where φ is defined in entire Γα × R, ψ(x) is defined in R9 and ζ2(x)φ(y, t) is

understood to be zero outside Nδ. We see that ζ2(Qx) = ζ2(x). Thanks to

relation (3.8), ϕ will satisfy (4.1) if we require

φ(Qy,−t) = −φ(y, t) for all (y, t) ∈ Γα × R,(4.4)

ψ(Qx) = −ψ(x) for all x ∈ R9.(4.5)

We compute, using that ζ2ζ1 = ζ1,

S(w + ϕ) = ∆ϕ+ f ′(w)ϕ+N(ϕ) + S(w)

(4.6)

= ζ2
[
∆φ+ f ′(u1)φ+ ζ1(f ′(u1)− f ′(1))ψ + ζ1N(ψ + φ) + S(u1)

]
+ ∆ψ + [ (1− ζ1)f ′(u1) + ζ1f

′(1)]ψ

+ (1− ζ2)S(w) + (1− ζ1)N(ψ + ζ2φ) + 2∇ζ1∇φ+ φ∆ζ1.

We recall that f ′(±1) = −2.

Thus, we will construct a solution ϕ = ζ2φ + ψ to problem (4.2) if we

require that the pair (φ, ψ) satisfies the following coupled system:

∆φ+ f ′(u1)φ+ ζ1(f ′(u1) + 2)ψ + ζ1N(ψ + φ) + S(u1) = 0(4.7)

for |t| < δ

2α
(1 + rα(y)) + 3,

∆ψ + [ (1− ζ1)f ′(u1)− 2ζ1]ψ + (1− ζ2)S(w) + (1− ζ1)N(ψ + ζ2φ)(4.8)

+2∇ζ1∇φ+ φ∆ζ1 = 0 in R9.

We will first extend equation (4.7) to entire Γα × R in the following manner.

Let us set

(4.9) ‹B(φ) := ζ4[∆x − ∂tt −∆Γα ]φ = ζ4B(φ),

where ∆x is expressed in (y, t) coordinates using expression (3.27) with B

described in (3.30), and ‹B(φ) is understood to be zero for (y, t) outside the

support of ζ4. Similarly, we extend the local expression (3.32) for the error of

approximation S(u1) in (y, t) coordinates, to entire Γα × R as

S̃(u1) = ζ4S(u1),

with this expression understood to be zero outside the support of ζ4.
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Thus we consider the extension of equation (4.7) given by

∂ttφ+ ∆Γαφ+ ‹B(φ) + f ′(w(t))φ(4.10)

= −S̃(u1)−
¶

[f ′(u1)− f ′(w)]φ+ ζ1(f ′(u1) + 2)ψ
©
− ζ1N(ψ + φ)

in Γα × R.

Consistently with estimate (3.35) for the error, we consider the norm

‖ · ‖p,σ,ν defined in (3.33) and consider for a function φ(y, t) the norm

(4.11) ‖φ‖2,p,σ,ν := ‖D2φ‖p,σ,ν + ‖Dφ‖∞,σ,ν + ‖φ‖∞,σ,ν .

To solve the resulting system (4.7)–(4.8), we first solve equation (4.8) for

ψ with a given φ, which is a small function in the above norm. For a function

ψ(x) defined in R9, we define

(4.12) ‖ψ‖p,ν,∗ := sup
x∈R9

(1 + r(αx))ν‖ψ‖Lp(B(x,1)), r(x′, x9) = |x′|.

Noting that the potential [ (1 − ζ1)f ′(u1) − 2ζ1] is strictly negative, so that

the linear operator in (4.8) is qualitatively like ∆ − 2 and using contraction

mapping principle, a solution ψ = Ψ(φ) is found according to the following

lemma, whose detailed proof we carry out in Section 5.

Lemma 4.1. Let µ > 0. Given φ satisfying the symmetry (4.4) and

‖φ‖2,p,3,σ ≤ 1, for all sufficiently small α, there exists a unique solution ψ =

Ψ(φ) of problem (4.8) such that

(4.13) ‖ψ‖2,p,3+µ,∗ := ‖D2ψ‖p,3+µ,∗ + ‖ψ‖∞,3+µ,∗ ≤ Ce−
σδ
α .

Besides, Ψ satisfies the symmetry (4.5) and the Lipschitz condition

(4.14) ‖Ψ(φ1)−Ψ(φ2)‖2,p,3+µ,∗ ≤ C e−
σδ
α ‖φ1 − φ2‖2,p,3,σ.

Thus if we replace ψ = Ψ(φ) in the first equation (4.7) by setting

(4.15) N(φ) := ‹B(φ)+[f ′(u1)−f ′(w)]φ+ζ1(f ′(u1)+2)Ψ(φ)+ζ1N(Ψ(φ)+φ),

then our problem is reduced to finding a solution φ to the following nonlinear,

nonlocal problem in Γα × R:

(4.16) ∂ttφ+ ∆Γαφ+ f ′(w)φ = −S̃(u1)− N(φ) in Γα × R.

Examining the terms in (4.15), we notice that if φ satisfies the symmetry (4.4)

then so do N(φ) and S̃(u1). Thus we will solve the original problem (1.1) if we

find a solution to problem (4.16). We will be able to do this for a certain spe-

cific choice of the parameter function h on which all elements in the right-hand

side of (4.16) depend.
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4.2. An infinite dimensional Lyapunov-Schmidt reduction. In order to find

a solution to (4.16), we follow an infinite dimensional Lyapunov-Schmidt re-

duction procedure: we consider first the projected problem

∂ttφ+ ∆Γαφ+ f ′(w)φ = −S̃(u1)− N(φ) + c(y)w′(t) in Γα × R,(4.17) ∫
R
φ(y, t)w′(t) dt = 0 for all y ∈ Γα,

where

(4.18) c(y) :=
1∫

Rw
′2

∫
R

[S̃(u1) + N(φ)]w′(t) dt.

The correction c(y)w′(t) to the right-hand side provides unique solvability for

any choice of the parameter h satisfying (3.9) in the sense of the following

result, whose proof will be given in Section 6.1.

Proposition 4.1. Assume p > 9, 0 < σ <
√

2. There exists a K > 0

such that for any sufficiently small α and any h satisfying (3.9), problem (4.17)

has a unique solution φ = Φ(h) that satisfies the symmetry (4.4) and such that

(4.19) ‖φ‖2,p,3,σ ≤ Kα3− 8
p , ‖N(φ)‖p,5,σ ≤ Kα5− 8

p .

Proposition 4.1 reduces the problem of finding a solution to problem (4.16)

to that of finding a function h satisfying the constraint (3.9) such that c(y) ≡ 0

with c given by (4.18) for φ = Φ(h), in other words such that

(4.20)

∫
R

[S̃(u1) + N(Φ(h))] (y, t)w′(t) dt = 0 for all y ∈ Γα.

4.3. Solving the reduced problem. We concentrate next in expressing the

reduced problem (4.20) in a convenient form. We begin by computing an

expansion of the quantity
∫
R S̃(u1)w′(t) dt making use of the expression (3.32)

for S(u1). Let us decompose, using also expansion (3.21) for H,

−α−2S(u1) = [∆Γh+ |AΓ|2h+ αt2H3]w′ + E1(y, t) + E2(y, t),

where

E1(y, t) = 2αhH3tw
′ − αb1i (αy, 0)∂ih tw

′ − a0
ij∂ih∂jhw

′′

+ α2[H4 t
3w′ +H2

2 tψ
′
0 −H2

2f
′′(w)ψ2

0 − (a0
ij∂ijH2 + b0i ∂iH2)ψ0]

and

E2(y, t) = [αh2H3 + α2((t+ h)3 − t3)H4 + α3(t+ h)4H̄5]w′
(4.21)

− α(t+ h)[a1
ij∂ih∂jhw

′′ + a1
ij∂ijhw

′]

− α∂ih [(t+ h)b1i (αy, α(t+ h)) − tb1i (αy, 0)]w′

+ [α2hH2 + α3(t+ h)2H̄3 + α2(aij∂ijh+ bi∂ih)]H2 ψ
′
0
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+ 2α2aij∂ih∂jH2ψ
′
0 − α3(t+ h)((a1

ij∂ijH2 + b1i ∂iH2)ψ0

− α2aij∂ih∂jhH2ψ
′′
0 − α−2 [N0(α2H2ψ0)− f ′′(w)(α2H2ψ0)2].

We recall that evaluation of the coefficients is made in local coordinates at y

or (αy, α(t+ h(αy)).

The logic of this decomposition is that terms in E1 decay at most like

O(r−4
α ) but the functions of t involved in them are all odd, while those in E2

decay like O(r−5
α ), according to assumption (3.9) in h and the estimates we

have obtained in the coefficients. We have∫
R
E1(y, t)w′(t) dt = 0,

while there is a constant C, possibly depending on the number M in constraint

(3.9) such that for all h satisfying those relations, we have

(4.22) |E2(y, t)| ≤ C(1 + r5
α)−1

î
α | (1 + r3

α)D2
Γh(αy) |+ α2

ó
.

Thus, setting c1 =
∫
Rw
′2 dt, c2 =

∫
R t

2w′2 dt, we find

(4.23)

−α−2
∫
R
S̃(u1) (y, t) w′(t) dt = c1[∆Γh+ |AΓ|2h](αy)+c2αH3(αy)−G1[h](αy),

where, we recall, H3 =
∑8
i=1 k

3
i , and

G1[h](αy) :=

∫
R

(ζ4 − 1)[ (∆Γh+ |AΓ|2h+ αt2H3)w′ + E1(y, t)]w′ dt(4.24)

+

∫
R
ζ4E2(y, t)w′ dt.

Let us observe that

(1− ζ4)(|w′|+ |w′′|) ≤ Ce−
σ
α
−σrα ;

hence the contribution of the first integral above is exponentially small in α

and in rα. Using (4.22) we get

(4.25) ‖ G1[h] ‖p,5 ≤ C α2.

Now let us consider the operator

(4.26) G2[h](αy) = α−2
∫
R
N(Φ(h))w′dt.

More generally, it will be convenient to consider a function ψ(y, t) defined in

Γα × R and the function g defined on Γ by the relation

g(y) =

∫
R
ψ(α−1y, t)w′dt.

Then ∫
A
|g(y)|p dVΓ(y) ≤ C

∑
|k|≥1

α8
∫
α−1A

∫
|t−k|<1

|ψ(y, t)|p dt dVΓα(y).
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If A = B(ȳ, 1) ∩ Γ, then α−1A can be covered by O(α−8) balls of radius 1 in

Γα. Thus∫
α−1A

∫
|t−k|<1

|ψ(y, t)|p dt dVΓα(y) ≤ Cr(ȳ)−νpe−pσ|k| ‖ψ‖pp,ν,σ,

and hence

(4.27) ‖g‖p,ν = sup
ȳ∈Γ

(1 + r(ȳ)ν) ‖g‖Lp(B(ȳ,1)∩Γ) ≤ Cα
− 8
p ‖ψ‖p,ν,σ.

Now, examining the expression (4.15) for the operator N and using the

bound (4.19) for Φ(h) we have that

‖ N(Φ(h)) ‖p,5,σ ≤ Cα4;

hence for G2 defined above, we get

‖G2(h)‖p,5,σ ≤ Cα2− 8
p

uniformly in h satisfying (3.9). In summary, the reduced equation (4.20) reads

(4.28) JΓ[h](y) := ∆Γh(y) + |AΓ(y)|2h(y) = cαH3(y) + G[h](y), y ∈ Γ,

where

c = −c2/c1, G[h] := −c−1
1 (G1[h] + G2[h]).

The operator G satisfies

(4.29) ‖ G[h] ‖p,5 ≤ Cα2− 8
p

for all h satisfying (3.9). Moreover, we observe that if p(y, t) satisfies p(Qy,−t)
= −p(y, t), then ∫

R
p(Qy, t)w′(t) dt = −

∫
R
p(y, t)w′(t) dt,

since w′ is an even function. Since p = S̃(u1) + N(Φ(h)) satisfies this require-

ment, we conclude that so does the operator G[h] and it is hence consistent to

look for a solution h in this class of symmetries.

It seems natural to attempt to solve problem (4.28) for functions h, with

‖h‖∗ < Mα (see (3.9)) by a fixed point argument that involves an inverse for

the Jacobi operator JΓ. Thus we consider the linear problem

(4.30) ∆Γh+ |AΓ(y)|2h = g, y ∈ Γ.

We stress here the fact that functions h and g belong to the admissible class

of symmetries. The solvability theory for (4.30) needs to consider separately

the case g = cαH3(y), which has a decay of order O(r−3) and an additional

vanishing property, and the case of a g with decay O(r−5). We prove the

following proposition in Section 7.
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Proposition 4.2. The following statements hold :

(a) If g(y) = cH3(y), then problem (4.30) has a solution h0 with ‖h0‖∗ <
+∞.

(b) Given g with ‖g‖p,5 < +∞, there exists a unique solution h := T (g)

to problem (4.30) with ‖h‖∗ < +∞. Moreover, for a certain C > 0,

‖h‖∗ ≤ C‖g‖p,5.

Writing h := αh0 + h1, the equation becomes, in terms of h1,

(4.31) ∆Γh1 + |AΓ(y)|2h1 = G[h0 + h1], y ∈ Γ.

Finally, we solve problem (4.31) by an application of contraction mapping

principle. We write it in the form

(4.32) h1 = T (G(h0 + h1)) =:M(h1), ‖h1‖∗ ≤ α2− 8
9 .

Bound (4.29) and the proposition above implies that the M applies the

region ‖h1‖∗ ≤ α2− 8
9 into itself if α is sufficiently small. Not only this, we will

prove in Section 6.2:

Lemma 4.2.

(4.33) ‖G(h1)− G(h2)‖p,5 ≤ Cα1− 16
p ‖h1 − h2‖∗

for all h1, h2, satisfying (3.9).

HenceM is also a contraction mapping. The existence of a unique solution

of (4.32) follows. It is simply enough to choose the number M in (3.9) such

that M > ‖h0‖∗.

Remark 4.1. We emphasize that, as we will see in Section 7, equation (4.30)

can actually be solved with right-hand sides g = O(r−4−µ) for h = O(r−2−µ),

whenever 0 < µ < 1, but we do not expect in general the existence of a

solution h = O(r−1) when g = O(r−3). However assuming additionally that

g has the form g = g(θ)τr−3 where τ > 1
3 we can establish statement (a) of

Proposition 4.2. We will prove that H3 =
∑8
i=1 k

3
i is of the required form

except for a term which decays fast in r. Individually, the principal curvatures

ki do not have this vanishing property but their mutual cancelations gives it

for the average of their cubic powers. To track this property it is necessary to

compare curvatures at a point of Γ with those at its closest neighbor in Γ0,

and the suitably defined closeness for large r of the Jacobi operator on Γ to

that on Γ0. We discuss these issues in Section 8.2 and Section 8.3, using as

the basis the result of Theorem 2, whose self-contained proof we postpone to

the last part of the paper.
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4.4. Conclusion. Let us summarize the results of our considerations so far.

Given the solution to the nonlinear projected problem φ and the corresponding

solution hα to the reduced problem found above we have found Uα such that

Uα = w + ζ2φ+ ψ(φ)

and

∆Uα + (1− U2
α)Uα = 0 in R9.

The function Uα is a bounded function which obeys the symmetry of the min-

imal graph Γα:

Uα(u, v, x9) = −Uα(v, u,−x9),(4.34)

from which it follows in particular Uα(0) = 0. We show next that Uα is in fact

monotone in the x9-direction. Let us observe that the function ψα := ∂x9Uα is

a solution of the linear equation

∆ψα + f ′(Uα)ψα = 0.

We claim that the construction yields the following: given M > 0, at

points within distance at most M from Γα we have ψα > 0 whenever α is

sufficiently small. Indeed,

∂x9Uα(x) = ∂x9w(t) +O

Ç
α2

1 + r2
α

å
= w′(t)∂x9t+O

Ç
α2

1 + r2
α

å
.

The coordinates x and (y, t) are related by x = y + (t+ h(αy))ν(αy); hence

e9 = ∂x9y + ∂x9tν + α[DΓh(αy)∂x9y]ν + α(t+ h) [DΓν ∂x9y].

If |t| ≤M , then we deduce that ∂x9y is uniformly bounded, and also

∂x9t = ν9 +O

Ç
α

1 + r2
α

å
=

1»
1 + |∇Fα|2

+O

Ç
α

1 + r2
α

å
≥ c

1 + r2
α

by an estimate in [34]; see (8.33) below. This shows our claim.

Taking M sufficiently large (but independent of α) we can achieve f ′(Uα)

> −3/2 outside of NM := {|t| ≤ M}. We claim that we cannot have that

ψα < 0 in N c
M . Indeed, a nonpositive local minimum of ψα is discarded by

maximum principle. If there was a sequence of points xn ∈ R9, such that

ψα(xn)→ inf
R9
ψα < 0,

|xn| → ∞, and at the same time dist (xn,Γα) > M , for a large M , the usual

compactness argument applied to the sequence ψn(x) = ψα(x+xn) would give

us a nontrivial bounded solution of

∆ψ − c(x)ψ = 0 in R9, c(0) > 1,
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with a negative minimum at the origin, hence a contradiction. We conclude

that ψα > 0 in entire R9 and the proof of the theorem is concluded, except for

the steps postponed. We shall devote the rest of this paper to their proofs.

5. The proof of Lemma 4.1

Here we prove Lemma 4.1, which reduces the system (4.7)–(4.8) to solving

the nonlocal equation (4.16). Let us consider equation (4.8):

(5.1)

∆ψ−Wα(x)ψ+(1−ζ2)S(w)+(1−ζ1)N(ψ+ζ2φ)+2∇ζ1∇φ+φ∆ζ1 = 0 in R9,

where

Wα(x) := [ (1− ζ1) (−f ′(u1)) + 2ζ1],

and we assume that φ satisfies the symmetry (4.4) with ‖φ‖2,p,3 ≤ 1. Let us

observe that Wα(Qx) = Wα(x) for all x and hence that the function −ψ(Qx)

solves (5.1) if ψ(x) does.

Let us consider first the linear problem

(5.2) ∆ψ −Wα(x)ψ + g(x) = 0 in R9.

We observe that globally we have 2− τ < Wα(x) < 2 + τ for arbitrarily small

τ > 0.

We recall that for 1 < p ≤ +∞, we defined

‖g‖p,ν,∗ := sup
x∈R9

(1 + r(αx))ν‖g‖Lp(B(x,1)), r(x′, x9) = |x′|.

Lemma 5.1. Given p > 9, ν ≥ 0, there is a C > 0 such that for all

sufficiently small α and any g with ‖g‖p,ν,∗ < +∞, there exists a unique ψ

solution to problem (5.2) with ‖ψ‖∞,ν,∗ < +∞. This solution satisfies

(5.3) ‖D2ψ‖p,ν,∗ + ‖ψ‖∞,ν,∗ ≤ C‖g‖p,ν,∗.

Proof. We claim that the a priori estimate

(5.4) ‖ψ‖∞,ν,∗ ≤ C‖g‖p,ν,∗

holds for solutions ψ with ‖ψ‖∞,ν,∗ < +∞ to problem (5.2) with ‖g‖p,ν,∗ < +∞
provided that α is small enough. This and local elliptic estimates in turn imply

the validity of (5.3). To prove the claim, let us assume the opposite, namely

the existence αn → 0, and solutions ψn to equation (5.2) with ‖ψn‖∞,ν,∗ = 1,

‖gn‖p,ν,∗ → 0. Let us consider a point xn with

(1 + r(αnxn))νψn(xn) ≥ 1

2
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and define

ψ̃n(x) =
Ä
1 + r(αn(xn + x))

äν
ψn(xn + x),

g̃n(x) =
Ä
1 + r(αn(xn + x))

äν
gn(xn + x),

W̃n(x) = Wαn(xn + x).

Then, we check that the equation satisfied by ψ̃n has the form

∆ψ̃n − W̃n(x)ψ̃n + o(1)∇ψ̃n + o(1)ψ̃n = g̃n.

Additionally, we know that ψ̃n is uniformly bounded; hence elliptic estimates

imply L∞-bounds for the gradient and the existence of a subsequence uniformly

convergent over compact subsets of R9 to a bounded solution ψ̃ 6= 0 to an

equation of the form

∆ψ̃ −W∗(x)ψ̃ = 0 in R9,

where 0 < a ≤ W∗(x) ≤ b. But maximum principle makes this situation

impossible, hence estimate (5.4) holds.

Now, for existence, let us consider g with ‖g‖p,ν,∗ < +∞ and a collection

of approximations gn to g with ‖gn‖∞,ν,∗ < +∞, gn → g in Lploc(R
9) and

‖gn‖p,ν,∗ ≤ C‖g‖p,ν,∗. The problem

∆ψn −Wn(x)ψn = gn in R9

can be solved since this equation has a positive supersolution of the form

C(1 + r(αx))−ν , provided that α is sufficiently small, independently of n. Let

us call ψn the solution thus found, which satisfies ‖ψn‖∞,ν,∗ < +∞. The

a priori estimate shows that

‖D2ψn‖p,ν,∗ + ‖ψn‖∞,ν,∗ ≤ C‖g‖p,ν,∗.

Passing to the limit in the topology of uniform convergence over compacts,

we find a subsequence which converges to a solution ψ to problem (5.2), with

‖ψ‖∞,ν,∗ < +∞. The proof is complete. �
Next, we conclude the proof of Lemma 4.1. Let us call ψ := Θ(g) the

solution of problem (5.2) predicted by Lemma 5.1. Let us write problem (5.1)

as a fixed point problem in the space X of W 2,p
loc -functions ψ with ‖ψ‖2,p,3+µ,∗ <

+∞,

(5.5) ψ = Θ(g1 +K(ψ)),

where

g1 = (1− ζ2)S(w) + 2∇ζ1∇φ+ φ∆ζ1, K(ψ) = (1− ζ1)N(ψ + ζ2φ).

Let us consider a function φ defined in Γα × R such that ‖φ‖2,p,ν,σ ≤ 1. Let

us observe that derivatives of the function ζ1 are supported inside the set of
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points x with

(5.6)

x = y+ (t+h(αy)) ν(αy),
δ

α
(1 + rα(y))−5 < |t+h(αy)| < δ

α
(1 + rα(y)) + 5.

Note that if x satisfies (5.6), then

a rα(y) ≤ r(αx) ≤ b rα(y), e−σ|t| ≤ e−
σδ
2α e−σrα(x)

for some positive numbers a, b. Setting δ′ = σ
2 δ, we have that for any µ > 0,

| 2∇ζ1∇φ+ φ∆ζ1 | ≤ Ce−
δ′
α (1 + r(αx))−3−µ‖φ‖2,p,ν,σ.

We also have that ‖S(w)‖p,3,σ ≤ Cα3− 8
p ; hence

‖(1− ζ2)S(w)‖p,3,σ ≤ Ce−
δ′
α (1 + r(αx))−3−µ

and therefore

‖g1‖p,3+µ ≤ Ce−
δ′
α .

Let us consider the set

Λ = {ψ ∈ X | ‖ψ‖2,p,3+µ,∗ ≤ Ae−
δ′
α }

for a large number A > 0. Since

|K(ψ1)−K(ψ2) | ≤ C(1− ζ1) sup
t∈(0,1)

|tψ1 + (1− t)ψ2 + ζ2φ| |ψ1 − ψ2|,

we find that

‖K(ψ1)−K(ψ2) ‖∞,3+µ ≤ C e−
δ′
α ‖ψ1 − ψ2 ‖∞,3+µ

while ‖K(0)‖∞,ν,∗ ≤ C e−
δ′
α . It follows that the right-hand side of equation

(5.5) defines a contraction mapping of Λ, and hence a unique solution ψ =

Ψ(φ) ∈ Λ exists, provided that the number A in the definition of Λ is taken

sufficiently large and ‖φ‖2,p,3,σ ≤ 1. In addition, it is direct to check the

Lipschitz dependence of Ψ as stated in (4.14) on ‖φ‖2,p,3,σ ≤ 1. Since, as we

have mentioned, −ψ(Qx) satisfies the same equation, the symmetry assertion

follows from uniqueness. The proof is concluded. �

6. The proofs of Proposition 4.1 and Lemma 4.2

To solve problem (4.17), we derive first a solvability theory for the follow-

ing linear problem:

∂ttφ+ ∆Γαφ+f ′(w)φ = g(y, t) + c(y)w′(t) in Γα × R,(6.1) ∫
R
φ(y, t)w′(t) dt = 0 for all y ∈ Γα, c(y) = −

∫
R g(y, t)w′dt∫

Rw
′2dt

.

We have the following result.
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Proposition 6.1. Given p > 9 and 0 < σ <
√

2, there exists a constant

C > 0 such that for all sufficiently small α > 0, the following holds : given g

with ‖g‖p,3,σ < +∞, problem (6.1) has a unique solution φ with ‖φ‖∞,3,σ <
+∞, which in addition satisfies

(6.2) ‖φ‖2,p,3,σ ≤ C‖g‖p,3,σ.

We will carry out the proof of Proposition 4.1 assuming for the moment

the validity of the above result.

6.1. Proof of Proposition 4.1. Let φ = T (g) be the linear operator de-

fined as the solution of (6.1) in Proposition 6.1. Then problem (4.17) can be

reformulated as the fixed point problem

(6.3) φ = T (−S̃(u1)− N(φ)), ‖φ‖2,p,3,σ ≤ Kα3− 8
p .

We claim that there is a positive constant C, possibly dependent of M in (3.9),

such that for all small α and any φ1, φ2, with

‖φl‖2,p,3,σ ≤ Kα3− 8
p ,

we have

(6.4) ‖N(φ1)− N(φ2)‖p,5,σ ≤ C α ‖φ1 − φ2‖2,p,3,σ.

To prove this, we decompose the operator N as

(6.5)

N(φ) := ‹B(φ) + [f ′(u1)− f ′(w)]φ︸ ︷︷ ︸
N1(φ)

+ ζ1(f ′(u1) + 2)Ψ(φ)︸ ︷︷ ︸
N2(φ)

+ ζ1N(Ψ(φ) + φ)︸ ︷︷ ︸
N3(φ)

.

Let us start with N1. This is a second order linear operator with coefficients

of order α which decay at least like O(r−1
α ). We recall that ‹B = ζ4B, where in

local coordinates, B is given in (3.30). It is direct to see that

(6.6) ‖N1(φ)‖p,5,σ ≤ C α ‖φ‖2,p,3,σ.

For instance, a computation similar to that in (3.34) yields that for p ≥ 9, we

have

‖α2(aij∂ijh)∂tφ ‖p,5,σ ≤ C α
2− 8

p ‖D2
Γh‖3,p ‖Dφ‖∞,3,σ ≤ C α

3− 8
p ‖φ‖2,p,3,σ.

Now, let us assume that ‖φ1‖2,p,3,σ, ‖φ2‖2,p,3,σ ≤Kα3− 8
p . Using Lemma 4.1,

we immediately obtain

(6.7) ‖N2(φ1)− N2(φ2)‖p,3,σ ≤ C e−σ
δ
α ‖φ1 − φ2‖p,3,σ

and

(6.8) ‖N3(φ1)−N3(φ2)‖p,6,σ ≤ C (‖φ1‖∞,3,σ+‖φ2‖∞,3,σ+e−σ
δ
α ) ‖φ1−φ2‖∞,3,σ.

From (6.6), (6.7) and (6.8), inequality (6.4) follows. The proof of the claim is

concluded.
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To conclude the existence part of Proposition 4.1 we use the contraction

mapping principle to deal with problem (6.3). First, using formula (3.32)

we have that ‖S̃(u1)‖p,3,σ ≤ Cα
3− 8

p . Let Bα = {φ | ‖φ‖2,p,3,σ ≤ Kα
3− 8

p }
where K is a constant to be chosen. Second, we observe that for small α,

and all φ ∈ Bα we have ‖N(φ)‖p,4,σ ≤ Cα
5− 8

p . Then, from (6.4) we see that

if K is fixed large enough independently of α, then the right-hand side of

equation (5.5) defines a contraction mapping of Bα into itself. The contraction

mapping principle implies the existence of a unique φ as stated. Finally, since

the function −φ(Qy,−t) satisfies the same equation, the symmetry assertion

follows from uniqueness. �

6.2. Lipschitz dependence on h: The proof of Lemma 4.2. We claim first

that the solution φ = Φ(h) in Proposition 4.1 has a Lipschitz dependence on

h satisfying (3.9) in the sense that

(6.9) ‖Φ(h1)− Φ(h2)‖2,p,3,σ ≤ Kα2− 8
p ‖h1 − h2‖∗.

This is a consequence of various straightforward considerations of the Lipschitz

character in h of the operator in the right-hand side of equation (4.17) for the

norm ‖ ‖∗ defined in (3.9). Let us recall expression (3.29) for the operator B,

and consider as an example, two terms that depend linearly on h:

A(h1, φ) := αa0
ij ∂jh1∂itφ.

Then

|A(h1, φ)| ≤ Cα|∂jh1| |∂itφ.
Hence

‖A(h1, φ)‖p,ν+2,σ ≤ Cα‖(1 + r2
α) ∂jh1‖∞ ‖∂itφ ‖p,ν,σ ≤ Cα4‖h1‖∗ ‖φ‖2,p,ν,σ.

Similarly, for A(φ, h1) = α2∆Γh1 ∂tφ, we have

|A(φ, h1) | ≤ Cα2|∆Γh1(αy)| (1 + rα)−νe−σ|t|‖φ‖2,p,ν,σ.

Hence

‖α2∆Γh1 ∂tφ ‖p,ν+2,σ ≤ Cα
5− 8

p ‖h1‖∗ ‖φ‖2,p,ν,σ.
We should take into account that some terms involve nonlinear, however mild

dependence, in h. We recall for instance that a1
ij = a1

ij(αy, α(t + h0 + h1)).

Examining the rest of the terms involved we find that the whole operator

N produces a dependence on h1 which is Lipschitz with small constant, and

gaining decay in rα,

(6.10) ‖N(h1, φ)− N(h2, φ)‖p,ν+1,σ ≤ Cα2‖h1 − h2‖∗ ‖φ‖2,p,ν,σ.

Now, in the error term R = −S̃(u1), we have that

(6.11) ‖R(h1)−R(h2)‖p,3,σ ≤ C α2− 8
p ‖h1 − h2‖∗.
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To see this, again we check term by term expansion (4.21). For instance we

have

|α2 a0
ij ∂ih0∂jh1| ≤ C α2 (1 + rα)−3 e−σ|t| ‖h1‖∗

so that

‖α2 a0
ij ∂ih0 ∂jh1‖p,3,σ ≤ C α2 ‖h1‖∗,

and the remaining terms are checked similarly. We observe that the factor α
2− 8

p

in (6.9) is due to the term α2∆Γh1w
′ in the expression for S(u1). Combining

estimates (6.10), (6.11) and the fixed point characterization (5.5), we obtain

the desired Lipschitz dependence (6.9) of Φ.

In particular, if we set φ1 = Φ(h1), φ2 = Φ(h2), we get, after invoking

estimates (6.10) and (6.4),

‖N(h1, φ1)− N(h2, φ2)‖p,5,σ(6.12)

≤ ‖N(h1, φ1)− N(h1, φ2)‖p,5,σ + ‖N(h1, φ2)− N(h2, φ2)‖p,5,σ
≤ Cα‖φ1 − φ2‖2,p,3,σ + Cα2‖h1 − h2‖∗ ‖φ2‖2,p,3,σ

≤ C(α
3− 8

p + α
5− 8

p )‖h1 − h2‖∗.

Now we recall that G = G1 +G2, with the latter operators defined in (4.24)

and (4.26). We have

G2(h)− G2(h2) = α−2
∫
R

(N(Φ(h1))−N(Φ(h1))) (α−1y, t)w′ dt

so that using relation (4.27) we get

‖G2(h1)− G2(h2)‖p,5 ≤ C α
1− 16

p ‖h1 − h2‖∗.

The operator G1 in (4.24) is analyzed in similar way, taking into account that

the estimates in (6.11) involve terms carrying one more power of α and O(r−5)

as decay in r. We again get

‖G1(h1)− G1(h2)‖p,5 ≤ Cα1− 16
p ‖h1 − h2‖∗.

This concludes the proof. �

6.3. Proof of Proposition 6.1. At the core of the proof of the stated a priori

estimates is the fact that the one-variable solution w of (1.1) is nondegenerate

in L∞(R9) in the sense that the linearized operator

L(φ) = ∆yφ+ ∂ttφ+ f ′(w(t))φ, (y, t) ∈ R9 = R8 × R

satisfies the following:

Lemma 6.1. Let φ be a bounded, smooth solution of the problem

(6.13) L(φ) = 0 in R8 × R.

Then φ(y, t) = Cw′(t) for some C ∈ R.
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Proof. We begin by reviewing some known facts about the one-dimensional

operator L0(ψ) = ψ′′ + f ′(w)ψ. Assuming that ψ(t) and its derivative decay

sufficiently fast as |t| → +∞ and defining ψ(t) = w′(t)ρ(t), we get that∫
R

[|ψ′|2 − f ′(w)ψ2] dt =

∫
R
L0(ψ)ψ dt =

∫
R
w′

2|ρ′|2 dt;

therefore this quadratic form is positive unless ψ is a constant multiple of w′.

Using this and a standard compactness argument, we get that there is a con-

stant γ > 0 such that whenever
∫
R ψw

′ = 0 with ψ ∈ H1(R), we have that

(6.14)

∫
R

(|ψ′|2 − f ′(w)ψ2) dt ≥ γ

∫
R

(|ψ′|2 + |ψ|2) dt.

Now, let φ be a bounded solution of equation (7.3). We claim that φ has

exponential decay in t, uniform in y. Let us consider a small number σ > 0 so

that for a certain t0 > 0 and all |t| > t0, we have that

f ′(w) < −2σ2.

Let us consider for ε > 0 the function

gε(t, y) = e−σ(|t|−t0) + ε
2∑
i=1

cosh(σyi).

Then for |t| > t0, we get that

L(gε) < 0 if |t| > t0.

As a conclusion, using maximum principle, we get

|φ| ≤ ‖φ‖∞ gε if |t| > t0,

and letting ε→ 0, we then get

|φ(y, t)| ≤ C‖φ‖∞e−σ|t| if |t| > t0.

Let us observe the following fact. The function

φ̃(y, t) = φ(y, t)−
Å∫

R
w′(ζ)φ(y, ζ) dζ

ã
w′(t)∫
Rw
′2

also satisfies L(φ̃) = 0 and, in addition,

(6.15)

∫
R
w′(t) φ̃(y, t) dt = 0 for all y ∈ R8.

In view of the above discussion, it turns out that the function

ϕ(y) :=

∫
R
φ̃2(y, t) dt
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is well defined. In fact, so are its first and second derivatives by elliptic reg-

ularity of φ, and differentiation under the integral sign is thus justified. Now

let us observe that

∆yϕ(y) = 2

∫
R

∆yφ̃ · φ̃ dt+ 2

∫
R
|∇yφ̃|2,

and hence

0 =

∫
R

(L(φ̃) · φ̃)(6.16)

=
1

2
∆yϕ−

∫
R
|∇yφ̃|2 dz −

∫
R

(|φ̃t|2 − f ′(w)φ̃2) dt.

Let us observe that because of relations (6.15) and (6.14), we have∫
R

(|φ̃t|2 − f ′(w)φ̃2) dt ≥ γϕ.

It then follows that
1

2
∆yϕ− γϕ ≥ 0.

Since ϕ is bounded, from maximum principle we find that ϕ must be identically

equal to zero. But this means

(6.17) φ(y, t) =

Å∫
R
w′(ζ)φ(y, ζ) dζ

ã
w′(t)∫
Rw
′2 .

Then the bounded function

g(y) =

∫
R
w′(ζ)φ(y, ζ) dζ

satisfies the equation

(6.18) ∆yg = 0 in R8.

Liouville’s theorem implies that g ≡ constant and relation (6.17) yields φ(y, t)

= Cw′(t) for some C. This concludes the proof. �

6.4. A priori estimates. We shall consider problem (6.1) in a slightly more

general form, also in a domain finite in y-direction. For a large number R > 0

let us set

ΓRα := {y ∈ Γα | r(αy) < R}
and consider the variation of problem (6.1) given by

∂ttφ+ ∆Γαφ+ f ′(w(t))φ = g(y, t) + c(y)w′(t) in ΓRα × R,(6.19)

φ = 0 on ∂ΓRα × R,∫ ∞
−∞

φ(y, t)w′(t) dt = 0 for all y ∈ ΓRα ,
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where we allow R = +∞ and

c(y)

∫
R
w′

2
dt = −

∫
R
g(y, t)w′ dt.

We begin by proving a priori estimates.

Lemma 6.2. Let us assume that 0 < σ <
√

2 and ν ≥ 0. Then there exists

a constant C > 0 such that for all small α and all large R, and every solution

φ to problem (6.19) with ‖φ‖∞,ν,σ < +∞ and right-hand side g satisfying

‖g‖p,ν,σ < +∞, we have

(6.20) ‖D2φ‖p,ν,σ + ‖Dφ‖∞,ν,σ + ‖φ‖∞,ν,σ ≤ C‖g‖p,ν,,σ.

Proof. For the purpose of establishing the a priori estimate (6.19), it

clearly suffices to consider the case c(y) ≡ 0. By local elliptic estimates, it

is enough to show that

(6.21) ‖φ‖∞,ν,σ ≤ C‖g‖p,ν,σ.

Let us assume by contradiction that (6.21) does not hold. Then we have the

existence of sequences α = αn → 0, R = Rn → ∞, gn with ‖gn‖p,ν,σ → 0, φn
with ‖φn‖∞,ν,σ = 1 such that

∂ttφn + ∆Γαφn + f ′(w(t))φn = gn in ΓRα × R,(6.22)

φn = 0 on ∂ΓRα × R,∫ ∞
−∞

φn(y, t)w′(t) dt = 0 for all y ∈ ΓRα .

Then we can find points (pn, tn) ∈ ΓRα × R such that

(6.23) e−σ|tn|(1 + r(αnpn))ν |φn(pn, tn)| ≥ 1

2
.

Let us consider the local coordinates for Γαn around pn, defined by (3.24):

Ypn,αn(y) = α−1
n Yαnpn(αny), |y| < θ

αn
,

where Yp(y) is given by (3.13). We observe that, read in these coordinates,

φn(y, t) satisfies |φn(0, tn)| ≥ γ > 0.

We consider different possibilities. Let us assume first that

rα(pn) + |tn| = O(1) as n→∞.

We recall that the Laplace-Beltrami operator of Γαn written in local coordi-

nates has the form

∆Γαn = a0
ij(αny)∂ij + αnb

0
j (αny)∂j ,

where, uniformly on |y| < θα−1, we have

a0
ij(αny) = δij + o(1), b0i = O(1) as α→ 0.
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Then

a0
ij(αny)∂ijφn + αnb

0
j (αny)∂jφn + ∂ttφn + f ′(w(t))φn = gn(y, t), |y| < θ

α
.

Since φn is bounded, and gn → 0 in Lploc(R
9), we obtain local uniform W 2,p-

bound. Hence we may assume, passing to a subsequence, that φn converges

uniformly in compact subsets of R9 to a function φ(y, t) that satisfies

∆R8φ+ ∂ttφ+ f ′(w(t))φ = 0.

Thus φ is nonzero and bounded. But Lemma 6.1 implies that, necessarily,

φ̃(y, t) = Cw′(t). On the other hand, we have

0 =

∫
R
φn(y, t)w′(t) dt −→

∫
R
φ(y, t)w′(t) dt as n→∞.

Hence, necessarily φ ≡ 0. But we have |φn(0, tn)| ≥ γ > 0, and since tn and

r(αnyn) were bounded, the local uniform convergence implies φ 6= 0. We have

reached a contradiction.

If rα(pn) = O(1) but tn is unbounded, say, tn → +∞, the situation is

similar. The difference is that we now define

φ̃n(y, t) = eσ(tn+t)φn(y, tn + t), g̃n(y, t) = eσ(tn+t)gn(y, tn + t).

Then φ̃n is uniformly bounded, and g̃n → 0 in Lploc(R
9). Now φ̃n satisfies

a0
ij(αny)∂ijφ̃n + ∂ttφ̃n + αnbj(αny)∂jφ̃n − 2σ∂tφ̃n + (f ′(w(t+ tn) + σ2)φ̃n= g̃n.

Passing to the limit we obtain

(6.24) ∆R8φ+ ∂ttφ̃ − 2σ ∂tφ̃− (2− σ2) φ̃ = 0 in R9,

where φ̃ 6= 0. But since by assumption 2 − σ2 > 0, the maximum principle

implies that φ̃ ≡ 0. We obtain a contradiction.

Let us consider the case r(αnpn)→ +∞ but r(αnpn)� Rn. Assume first

that the sequence tn is bounded and set

φ̃n(y, t) := (1 + r(αny))ν φn(y, t).

Direct differentiation yields

∂j(r
−ν
α φ̃n) = r−να

î
∂jφ̃+O(αr−1

α )φ̃
ó
,

∂ij(r
−ν
α φ̃n) = r−να

î
∂ijφ̃+O(αr−1

α )∂iφ̃+O(α2r−2
α )φ̃

ó
,

and the equation satisfied by φ̃n therefore has the form

∆yφ̃n + ∂ttφ̃n + o(1)∂ijφ̃n + o(1) ∂jφ̃n + o(1) φ̃n + f ′(w(t))φ̃n = g̃n,
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where φ̃n is bounded, g̃n → 0 in Lploc(R
9). From elliptic estimates, we also get

uniform bounds for ‖∂jφ̃n‖∞ and ‖∂ijφ̃n‖p,0,0. In the limit, we obtain a φ̃ 6= 0

bounded solution of

(6.25) ∆yφ̃+ ∂ttφ̃+ f ′(w(t))φ̃ = 0,

∫
R
φ̃(y, t)w′(t) dt = 0 ,

a situation which is discarded in the same way as before if φ̃ is defined in R9.

Now, if tn is still bounded but r(αnyn)−Rn = O(1), then passing to the

limit we find the limit equation (6.25) satisfied in a half-space, which after a

rotation in the y-plane can be assumed to be

H = {(y, t) ∈ R8 × R / y8 < 0},
with φ(ỹ, 0, t) = 0 for all ỹ = (y, . . . , y7) ∈ R7, t ∈ R.

By Schwarz’s reflection, the odd extension of φ̃, which is defined for y8 > 0, by

φ̃(ỹ, y8, t) = −φ̃(ỹ,−y8, t), satisfies the same equation, and thus the problem

reduces to one of the previous cases again yielding a contradiction.

Let us now assume that r(αnpn)→ +∞ and |tn| → +∞. If tn → +∞, we

define

φ̃n(y, t) = (1 + r(αny))ν etn+t φn(y, tn + t).

In this case we end up in the limit with a φ̃ 6= 0 bounded and satisfying the

equation

∆yφ̃+ ∂ttφ̃ − 2σ ∂tφ̃− (2− σ2) φ̃ = 0,

either in the entire space or in a half-space under zero boundary condition.

This implies again φ̃ = 0, and a contradiction has been reached. All cases have

been discarded, and the proof is concluded. �

6.5. Existence: Conclusion of the proof of Proposition 6.1. Let us now

prove existence. We assume first that g has compact support in Γα × R:

∂ttφ+ ∆Γαφ+ f ′(w(t))φ = g(y, t) + c(y)w′(t) in ΓRα × R,(6.26)

φ = 0 on ∂ΓRα × R,∫ ∞
−∞

φ(y, t)w′(t) dt = 0 for all y ∈ ΓRα ,

where we allow R = +∞ and

c(y)

∫
R
w′

2
dt = −

∫
R
g(y, t)w′ dt.

Problem (6.26) has a weak formulation which is as follows. Let

H = {φ ∈ H1
0 (ΓRα × R) |

∫
R
φ(y, t)w′(t) dt = 0 for all y ∈ ΓRα}.
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H is a closed subspace of H1
0 (ΓRα × R), hence a Hilbert space when endowed

with its natural norm:

‖φ‖2H =

∫
ΓRα

∫
R

(|∂tφ|2 + |∇Γαφ|2 − f ′(w(t))φ2) dVΓα dt.

Function φ is then a weak solution of problem (6.26) if φ ∈ H and satisfies

a(φ, ψ) :=

∫
ΓRα×R

(
∂tφ∂tψ +∇Γαφ · ∇Γαψ − f ′(w(t))φψ

)
dVΓα dt

= −
∫

ΓRα×R
g ψ dVΓα dt for all ψ ∈ H.

Indeed, decomposing a general smooth compactly supported test function in

the form

ψ(y, t) = a(y)w′(t) + ψ̃(y, t), ψ̃ ∈ H,
we obtain, after an integration by parts and using the orthogonality constraint

in φ, that equation (6.26) is satisfied in the usual weak sense. Moreover,

standard elliptic estimates yield that a weak solution of problem (6.26) is also

classical provided that g is regular enough.

Let us observe that because of the orthogonality condition defining H, we

have

γ

∫
ΓRα×R

ψ2 dVΓα dt ≤ a(ψ,ψ) for all ψ ∈ H.

Hence the bilinear form a is coercive in H, and existence of a unique weak so-

lution follows from Riesz’s theorem. If g is regular and compactly supported, φ

is also regular. Local elliptic regularity implies in particular that φ is bounded.

Indeed for some t0 > 0, the equation satisfied by φ is

(6.27) ∆φ+ f ′(w(t))φ = c(y)w′(t), |t| > t0, y ∈ ΓRα ,

and c(y) is bounded. Then, enlarging t0 if necessary, we see that for σ <
√

2,

the function v(y, t) := Ce−σ|t| + εeσ|t| is a positive supersolution of equation

(6.27) for a large enough choice of C and arbitrary ε > 0. Hence |φ| ≤ Ce−σ|t|,
from maximum principle. Since ΓRα is bounded, we conclude that ‖φ‖p,ν,σ <
+∞. From Lemma 6.2, we obtain that if R is large enough, then

(6.28) ‖D2φ‖p,ν,σ + ‖Dφ‖∞,ν,σ + ‖φ‖∞,ν,σ ≤ C‖g‖p,ν,σ.

Now let us consider problem (6.26) for R = +∞, allowed above, and for

‖g‖p,ν,σ < +∞. Then solving the equation for finite R and suitable compactly

supported gR, we generate a sequence of approximations φR which is uniformly

controlled in R by the above estimate. If gR is chosen so that gR → g in

Lploc(Γα×R) and ‖gR‖p,ν,σ ≤ C‖g‖p,ν,σ, we obtain that φR is locally uniformly

bounded, and by extracting a subsequence, it converges uniformly locally over

compacts to a solution φ to the full problem which respects the estimate (6.2).

This concludes the proof of existence, and hence that of the proposition. �



DE GIORGI’S CONJECTURE IN DIMENSION N ≥ 9 1521

6.6. An equation on Γα. With arguments similar to those above, we an-

alyze the following equation that will be relevant in the study of the Jacobi

operator in Section 7:

(6.29) ∆Γαh− h = g in Γα.

We prove:

Corollary 6.1. Let p > 8, ν ≥ 0. Then there exists C > 0 such that for

all sufficiently small α and any g ∈ Lploc(Γα) with

sup
y∈Γα

(1 + rνα(y))‖g‖Lp(B(y,1)∩Γα) < +∞,

there exists a unique solution h of problem (6.29) with ‖(1 + rνα)h‖∞ < +∞.

This solution satisfies

‖D2
Γαh‖p,ν + ‖DΓαh‖∞,ν + ‖h‖∞,ν ≤ ‖g‖p,ν .

Proof. With the notation used above, we consider the approximate prob-

lem

(6.30) ∆Γαh− h = g in ΓRα , h = 0 on ∂ΓRα ,

where we allow R = +∞. Exactly the same arguments used in the proof of

Lemma 6.2 lead to the existence of a constant C > 0 such that for all small

α and all large R, such that for any solution h with ‖(1 + rνα)h‖∞ < +∞, we

have the a priori estimate

sup
y∈ΓRα

(1 + rνα(y))‖D2
Γαh‖Lp(B(y,1)∩ΓRα ) + ‖(1 + rνα)DΓαh‖∞ + ‖(1 + rνα)h‖∞

≤ C sup
y∈ΓRα

(1 + rνα(y))‖g‖Lp(B(y,1)∩ΓRα ).

This estimate and the Fredholm alternative yields the existence of a unique

solution hR of (6.30). Letting R→ +∞ possibly passing to a subsequence, we

obtain the existence of a solution as predicted. �

7. Solvability theory for the Jacobi operator:

Proof of Proposition 4.2

In this section we consider the linear problem

(7.1) JΓ[h] = ∆Γh+ |AΓ(y)|2h = g(y) in Γ

and derive estimates and existence results that lead to the proof of Proposi-

tion 4.2. For this, the main tool we use is the method of barriers. This is

suitable for the operator JΓ since it has a positive, bounded element in its

kernel. In fact Z = 1√
1+|∇F |2

satisfies JΓ[Z] = 0.



1522 MANUEL DEL PINO, MICHA L KOWALCZYK, and JUNCHENG WEI

7.1. The approximate Jacobi operator. The surfaces Γ and Γ0 are uni-

formly close for r large. Let p ∈ Γ with r(p) � 1 and let ν(p) be the unit

normal to Γ at p. Let π(p) ∈ Γ0 be a point such that for some tp ∈ R, we have

π(p) = p+ tpν(p).(7.2)

As we will see below, the point π(p) exists and is unique when r(p) � 1, and

the map p 7−→ π(p) is smooth.

Computations on Γ0 can be made in very explicit terms since F0 is explicit.

Hence it is important to relate them with analogous computations carried

out on Γ, at least for r large. This leads us to considering the approximate

Jacobi operator JΓ0 , corresponding to first variation of mean curvature (or

second variation of area) at Γ0, measured along normal perturbations. This

corresponds to the operator acting on functions h : Γ0 → R given by

(7.3)

JΓ0 [h](y) := H ′(F0)[φ](x′), φ(x′) =
»

1 + |∇F0(x′)|2h(y), y = (x′, F0(x′)).

The expression for JΓ0 is similar to that in (4.28) for JΓ, but it involves

a correction that gives account of the fact that Γ0 is not a minimal surface,

while very close to being so. In fact we have

(7.4) JΓ0 [h] := ∆Γ0h+ |AΓ0(y)|2h+O(r−4)D2
Γ0
h+O(r−5)DΓ0h+O(r−6)h.

This expression follows from a standard calculation which we carry out in

coordinates adapted to the graph in the appendix.

For large r, JΓ is “close to” the approximate Jacobi operator JΓ0 in the

sense of the following result, whose proof we carry out in Section 8.3.

Lemma 7.1. Assume that h and h0 are smooth functions defined respec-

tively on Γ and Γ0 for r large, and related through the formula

h0(π(y)) = h(y), y ∈ Γ, r(y) > r0.

There exists a σ > 0 such that

(7.5)

JΓ[h](y) = [JΓ0 [h0] +O(r−2−σ)D2
Γ0
h0 +O(r−3−σ)DΓ0h0 +O(r−4−σ)h0] (π(y)).

7.2. Supersolutions for the approximate Jacobi operator. We look for pos-

itive supersolutions of JΓ0 far away from the origin, or in other words for

positive functions h which satisfy a differential inequality of the form

(7.6) − JΓ0 [h] ≥ g(y) in Γ, r(y) > r0,

for a class of right-hand sides that are decaying in r = r(y) and additionally

satisfy either

(7.7) g(y) =
1

r4+µ
,
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or

(7.8) g(y) =
g(θ)τ

r3
,

where (r, θ) are the polar coordinates in R8 introduced in Section 2 and function

g satisfies Lemma 2.1, and µ ∈ (0, 1), τ ∈ (1
3 ,

2
3).

We want to establish the following key result.

Lemma 7.2. For a function g as in (7.7) with 0 < µ < 1, there exists a

positive supersolution h of (7.2) such that

cr−2−µ ≤ h(y) ≤ Cr−2−µ, r > r0.

Proof. We recall that JΓ0 [h] = H ′(F0)[
»

1 + |∇F0|2h] and that in polar

coordinates we can write (see (2.7))

(7.9) H ′(F0)[φ] := L̃ := L̃0 + L̃1,

with

L̃0(φ) =
1

r7 sin3(2θ)

{
(9g2 w̃r3φθ)θ + (r5g′

2
w̃φr)r(7.10)

− 3(gg′ w̃r4φr)θ − 3(gg′ w̃r4φθ)r
}
,

and

L̃1(φ) =
1

r7 sin3(2θ)

{
(r−1 w̃φθ)θ + (rw̃φr)r

}
,(7.11)

w̃(r, θ) :=
sin3 2θ

(r−4 + 9g2 + g′2)
3
2

.(7.12)

We can expand

w̃(θ, r) = w̃0(θ) + r−4w1(r, θ),

where

w̃0(θ) :=
sin3(2θ)

(9g2 + g′2)
3
2

, w1(r, θ) = −3

2

sin3(2θ)

(9g2 + g′2)
5
2

+O(r−4 sin3(2θ)).

We set

L0(φ) =
1

r7 sin3(2θ)

{
(9g2 w̃0r

3φθ)θ + (r5g′
2
w̃0φr)r

−3(gg′ w̃0r
4φr)θ − 3(gg′ w̃0r

4φθ)r
}
.

Let us compute this last operator for a function of the form

φ(r, θ) = rβq(θ).
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We obtain

r7 sin3(2θ)L0(rβq(θ))

= r3+β
î
9(g2 w̃0q

′)′ − 3β(gg′q w̃0)′ + w̃0(β + 4)(βg′
2
q − 3gg′q′)

ó
.

It is clear, by direct substitution, that L0(F
β
3

0 ) = L0(rβg
β
3 ) = 0. Hence q = g

β
3

annihilates the operator on the right-hand side. As a consequence, the operator

takes a divergence form with h ≡ g−
β
3 q, namely

r7 sin3(2θ)L0(rβq(θ)) = 9r3+β g
β+4

3

[
w̃0g

2
3 (g−

β
3 q)′

]′
.

We want to find a positive function q such that the following equation holds:

−L0(rβq(θ)) = 9
g(θ)τ

r4−β , θ ∈
Å
π

4
,
π

2

ã
,

or equivalently,

−
[
w̃0g

2
3 (g−

β
3 q)′

]′
= gτ−

β+4
3 sin3(2θ).

Then we can solve explicitly for q by direct integration, getting

q(θ) = g
β
3 (θ)

(∫ θ

π
4

ds

w̃0(s)g
2
3 (s)

∫ π
2

s
gτ−

β+4
3 (s

′
) sin3(2s

′
) ds

′
)
,

or equivalently

q(θ) = g
β
3 (θ)

∫ θ

π
4

g−
2
3 (9g2 + g′

2
)

3
2

ds

sin3(2s)
(7.13)

×
∫ π

2

s
gτ−

β+4
3 (τ

′
) sin3(2τ

′
) dτ

′
, θ ∈

Å
π

4
,
π

2

ã
,

provided of course that the choices of τ and β make this formula well defined.

We will analyze this formula in the two cases of interest.

Let us consider the case τ = 0, β = −µ, 0 < µ < 1, corresponding to the

right-hand side of (7.7). Then

q(θ) = g−
µ
3 (θ)

∫ θ

π
4

g−
2
3 (9g2 + g′

2
)

3
2

ds

sin3(2s)

×
∫ π

2

s
g
µ
3
− 4

3 (s
′
) sin3(2s

′
) ds

′
, θ ∈

(π
4
,
π

2

]
.

Since g′(π4 ) > 0, q is well defined, positive and smooth in (π4 ,
π
2 ]. More than

this: for instance expanding g(θ) = g1x+g3x
3 +· · · for x = θ− π

4 , and similarly

with the other functions involved in the formula, we realize that q in reality

extends smoothly up to θ = π
4 in the form

q(θ) = q0 + q2x
2 + q4x

4 + . . . ,
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and we have q0 = q(π4 ) > 0, q′(π4 ) = 0. Hence if we extend q by even reflection

around π
4 : q(θ) = q(π2 − θ) if θ ∈ (0, π4 ], then the symmetric, positive func-

tion φ0 := q(θ)r−µ satisfies −L0(φ0) = 9r−4−µ in R8. Since q is smooth, we

also find that the remaining terms in the expansion of H ′(F0)[φ0] contribute

quantities of size O(r−8−µ). Thus

−H ′(F0)[φ0] ≥ 1

r4+µ
,

or equivalently

−JΓ0 [h0] ≥ 1

r4+µ
in Γ0, r > r0, φ0 =:

»
1 + |∇F0|2h0,

which is what we were looking for since h0 = O(r−2−µ). �
In the case of g given by (7.8), we consider the problem in the sector

(7.14) Γ0+ =

®
y ∈ Γ | θ ∈

Å
π

4
,
π

2

ã´
,

(7.15) − JΓ0 [h] ≥ g(θ)τ

r3
in Γ0+, r(y) > r0.

We prove:

Lemma 7.3. If 1
3 < τ < 2

3 , then there exists a supersolution h of (7.15),

smooth and positive in Γ0+ with h = 0 on ∂Γ0+ and

h(y) ≤ Cr−1, y ∈ Γ0+, r > r0.

Proof. We consider now the case β = 1, 1
3 < τ < 2

3 , in formula (7.13),

corresponding to the case (7.8). Now we get

q(θ) = g
1
3 (θ),

∫ θ

π
4

g−
2
3 (9g2 + g′

2
)

3
2

ds

sin3(2s)
(7.16)

×
∫ π

2

s
gτ−

5
3 (s′) sin3(2s′) ds′, θ ∈

Å
π

4
,
π

2

ã
.

Here q is smooth up to θ = π
2 with q′(π2 ) = 0 and it extends continuously to

θ = π
4 with q(π4 ) = 0. Again setting x = θ − π

4 , we see that now h becomes

expanded near π
4 as

q(θ) = xσ (q0 + q2x
2 + q4x

4 + · · · ), q0 > 0.

Here we have used that fact that 1
3 < τ < 2

3 . In particular,

(7.17) q′′(θ) = −τ(1− τ)q0x
τ−2 +O(xτ ) = −cg(θ)τ−2 +O(g(θ)τ ), c > 0.

By direct substitution, we see that for large r,

−L̃0(rq(θ)) = 9
g(θ)τ

r3
+O(g(θ)τr−7),
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while for θ − π
4 � 1, we have, using (7.11) and (7.17),

−L̃1(rq(θ)) = cgτ−2r−7 +O(gτ−2r−11) +O(gτr−7), c > 0,

and in general −L̃1(rq(θ)) = O(gτ−2r−7). Combining the above estimates, we

see that for all sufficiently large r,

−L̃(rq(θ)) >
g(θ)τ

r3
,

and the desired conclusion follows with h = rq(θ)√
1+|∇F0|2

= O(r−1). �

Remark 7.1. The result of Lemma 7.3 is of course true if τ ≥ 2
3 . The

supersolution found will then be near θ = π
4 of the order O(g(θ)τr−1) for any

τ < 2
3 . On the other hand, if we choose directly τ ≥ 2

3 in formula (7.16),

this boundary behavior gets refined to O(g(θ)
2
3 log g(θ)r−1) if τ = 2

3 and to

O(g(θ)
2
3 r−1) if τ > 2

3 . In all cases these supersolutions are not smooth up

θ = π
4 .

7.3. Proof of Proposition 4.2(b). This result is just a special case of the

following:

Proposition 7.1. Let 4 < ν < 5. There exists a positive constant C > 0

such that if g satisfies ‖g‖p,ν < +∞, then there is a unique solution of the

equation

(7.18) JΓ[h] = g in Γ

such that ‖h‖∞,ν−2 < +∞. This solution satisfies

‖D2
Γh‖p,ν− 8

p
+ ‖DΓh‖∞,ν−1 + ‖h‖∞,ν−2 ≤ C ‖g‖p,ν .

For the proof, we first show the existence of the supersolution in Lemma 7.2

for Γ0 replaced with Γ.

Lemma 7.4. For 0 < µ < 1, there exists a positive supersolution h of

(7.19) − JΓ[h] ≥ 1

r4+µ
in Γ, r(y) > r0,

such that

h(y) ≤ Cr−2−µ, r > r0.

Proof. Let h0 be the supersolution built in Lemma 7.2 for

(7.20) − JΓ0 [h0] ≥ 1

r4+µ
in Γ0, r(y) > r0,
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and consider the function h defined on Γ as h(y) = 2h0(π(y)). Then according

to Lemma 7.1, we have that

JΓ[h](y) ≥ 2

r(π(y))4+µ
+ Θ (π(y)),

where

Θ(y) = O(r−2−σ)D2
Γ0
h0 +O(r−3−σ)DΓ0h0 +O(r−4−σ)h0.

Using the explicit form of h0 in the proof of the previous lemma, we compute

directly that

Θ(y) = O(r−6−σ−µ).

Finally, since π(p) is uniformly close to p, we have that r(π(y)) = r(y) +O(1),

and thus we find that for all large r0,

−JΓ[h] ≥ 1

r4+µ
in Γ, r(y) > r0.

The proof is concluded. �

A second element needed is a regularity estimate for equation (7.30).

Lemma 7.5. Let p > 8, ν ≥ 2. Then there exists a C > 0 such that if

‖g‖∞,ν + ‖h‖∞,ν−2 < +∞ and h solves (7.30), then

(7.21) ‖D2
Γh‖p,ν− 8

p
+ ‖DΓh‖∞,ν−1 ≤ C (‖h‖∞,ν−2 + ‖g‖∞,ν).

Proof. Without loss of generality, we may assume that ‖h‖∞,ν−2 +‖g‖∞,ν
≤ 1. We use the local coordinates (3.13). Then, around a point p with r(p) =

R, for any sufficiently large R, the equation reads on B(0, 2θR) for a small,

fixed θ > 0 as

a0
ij(y)∂ijh+ b0i (y)∂ih = −|AΓ(y)|2h+ g(y) in B(0, 2θR).

Consider the scalings

h̃(y) = Rν−2h(Ry), g̃(y) = Rνg(Ry).

Then |AΓ(Ry)|2|h̃|+ |g̃| ≤ C in B(0, 2θ), and

a0
ij(Ry)∂ij h̃+ b0i (Ry)∂̃ih = g̃ in B(0, 2θ), g̃ := |AΓ(Ry)|2h̃+ g̃,

where aij = δij +O(θ). By interior elliptic regularity we find that

‖∂ih̃‖L∞(B(0,θ)) + ‖∂ij h̃‖Lp(B(0,θ)) ≤ C,

and, in particular, |∂ih̃(0)| = Rν−1|∂ih(p)| ≤ C so that

|DΓh(p)| ≤ CR1−ν ,∫
B(0,θ)

Rνp−8|∂ijh|p(Ry)R8 dy = Rνp−8
∫
B(0,θR)

|∂ijh|p(y) dy ≤ C.
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Hence

r(p)ν−1 |DΓh(p)| + r(p)
ν− 8

p ‖D2
Γh‖Lp(B(p,1)∩Γ) ≤ C

provided that r(p) is large enough. On a bounded region, the correspond-

ing estimate follows from interior elliptic estimates, and hence estimate (7.21)

follows. �

Proof of Proposition 7.1. We begin by proving existence assuming that

‖g‖∞,ν < +∞. Let us consider the approximate problems

(7.22) JΓ[h] = g(y) in Γ ∩B(0, R), h = 0 on ∂(Γ ∩B(0, R))

where we allow R = +∞.

We claim the existence of a C > 0 uniform in R and g such that the

a priori estimate

(7.23) ‖h‖∞,ν−2 ≤ C ‖g‖∞,ν

holds. Let us assume the opposite, namely the existence of sequences R =

Rn → +∞, h = hn and g = gn such that (7.30) holds, but ‖hn‖∞,ν−2 = 1,

‖gn‖∞,ν → 0.

Passing to a subsequence, we may assume that hn → h locally uniformly

in Γ, where h satisfies the homogeneous equation JΓ[h] = 0 and ‖h‖∞,ν−2 ≤ 1.

We claim that h = 0. To prove this, we let Z = 1√
1+|∇F |2

and observe that

JΓ[Z] = 0. Since h = o(r−2) as r → +∞, it follows that given ε > 0, we have

that |h(y)| ≤ εZ whenever r(y) is large enough. It follows from the maximum

principle that

|h(y)| ≤ ε»
1 + |∇F |2

in Γ

and hence that h = 0, as claimed.

Now, from Lemma 7.4, we know that there is a positive supersolution h̄ of

−JΓ[h̄] ≥ r−ν for r > r0 such that h̄≥Cr2−ν . We also have that |gn| ≤ ρnr2−ν

with ρn → 0. Furthermore,

−JΓ[±hn − o(1)h̄] ≤ 0 in {r0 < r < Rn} ∩ Γ,

and ±hn − o(1)h̄ ≤ 0 on the boundary of this set, where we are using that

hn → 0 locally uniformly. From maximum principle, we conclude that for all

large n, |hn| ≤ o(1)h̄ and thus ‖hn‖∞,ν−2 → 0, a contradiction that proves the

validity of the a priori estimate (6.2).

Now, as for existence of a solution to (7.18) for a given g, we use the

a priori estimate found. The approximate problem is indeed uniquely solvable

when R < +∞, thanks to the a priori estimate and Fredholm alternative.

Possibly passing to a subsequence, we get that hR converges locally uniformly
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to a solution h of the equation. The limiting function clearly satisfies the

estimate (6.2). Now, Lemma 7.5 yields the stronger estimate

(7.24) ‖D2
Γh‖p,ν− 8

p
+ ‖DΓh‖∞,ν−1 + ‖h‖∞,ν−2 ≤ C ‖g‖∞,ν

for any p > 8

Let us assume now that we only have ‖g‖p,ν < +∞. We find a solution

to equation (7.18) by reducing the problem to one in which g is replaced by

a ḡ with ‖ḡ‖∞,ν < +∞. We do this using the result of Corollary 6.1. Let us

consider the equation

−∆Γψ + λ−2ψ = g in Γ,

where λ > 0 is a small number, to be chosen. The transformation ψ̄(y) :=

ψ(λy) makes this equation is equivalent to

−∆Γλψ̄ + ψ̄ = λ2g(λy) in Γλ.

From the result of Corollary 6.1 with λ replacing α, we find a sufficiently small

λ for which this problem has a unique solution respecting the corresponding

decay estimate for the right-hand side. In terms of ψ the estimate achieved

reads

‖D2
Γψ‖p,ν + ‖DΓψ‖∞,ν + ‖ψ‖∞,ν ≤ Cλ ‖g‖p,ν .

We denote ψ := ψ(g). Then writing in equation (4.24) h = ψ(g)+h1 we obtain

the following equation for h1:

(7.25) ∆Γh1 + |AΓ(y)|2h1 = ḡ(y) in Γ,

where

ḡ = λ2ψ(g)− |AΓ(y)|2ψ(g).

Clearly ‖ḡ‖∞,ν ≤ C‖g‖p,ν . But we know by the previous step that there exists

a unique solution h1 to (7.25), which satisfies

‖D2
Γh1‖p,ν− 8

p
+ ‖DΓh1‖∞,ν−1 + ‖h1‖∞,ν−2 ≤ C ‖ḡ‖∞,ν ,

and the result follows. �

7.4. Proof of Proposition 4.2(a).

Lemma 7.6. The results of Lemma 7.5 and Proposition 7.1 remain un-

changed when Γ is replaced by Γ0 for the problem

JΓ0 [h] = g in Γ0.

Proof. The proof of the analog of Lemma 7.5 is identical, taking into

account suitable local coordinates y = Y0(y) for Γ0, for instance for large r

one can use those introduced in (8.28) below that lead to exactly the same

asymptotic properties for the Laplace Beltrami operator. The proof of the
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corresponding result to Proposition 7.1 is also the same, on the basis of the

supersolution found on Γ0 and the fact that JΓ0 [ 1√
1+|∇F0|2

] = 0. �

Our next task is to solve the problem

(7.26) JΓ0 [h] = g in Γ0,

where we assume now that g decays only at rate O(r−3) but it is symmetric

in the sense that

g(Qy) = −g(Qy) for all y ∈ Γ0

and for all Q of the form (3.2). In particular, g = g(r, θ).

We look for a solution to (7.26) that shares the same symmetries. Thus

it suffices to solve the problem in Γ0+ with h symmetric and vanishing at its

boundary, namely

(7.27) JΓ0 [h] = g in Γ0+, h = 0 on ∂Γ0+,

since then the odd extension of h = h(r, θ) through θ = π
4 will satisfy (7.26).

We require in addition that in polar coordinates, the function g is dominated

in the following way:

(7.28) |g(y)| ≤ Cg(θ)

r3 + 1
in Γ0+.

We prove:

Lemma 7.7. Let p > 8 and assume that g satisfies (7.28). Then there

exists a solution h to problem (7.27) such that

(7.29) ‖D2
Γ0
h‖p,3− 8

p
+ ‖DΓ0h‖∞,2 + ‖h‖∞,1 < +∞.

Proof. Let us consider the supersolution h0 for (7.27) defined by r > r0

given by Lemma 7.3. (We fix an arbitrary exponent τ ∈ (1
3 ,

2
3)). Let η(r)

be a smooth cut-off function such that η(r) = 1 for r < r0 and η(r) = 0 for

r > r0 + 1. We consider the function, defined in entire Γ0+ as

h1 = η + (1− η)h0.

Then

−JΓ0 [h1] = −(1− η)JΓ0 [h0] + ḡ0 ≥ (1− η)gτ (θ)r−3 + ḡ0

≥ ς(1− η)gτ (θ)(1 + r)−3 + ḡ0,

where ḡ0 is compactly supported and ς > 0 is a constant depending in r0. Let

h2 be the unique solution of

−JΓ0 [h2] = |ḡ0|+ ςηg(θ)τ (1 + r)−3,
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given by Lemma 7.6, which is positive in Γ0+ and symmetric. Then if h3 :=

h1 + h2, we get

−JΓ0 [h3] ≥ ςg(θ)τ (1 + r)−3 ≥ Cςg(θ)(1 + r)−3,

and hence h3 is a positive supersolution of the problem (7.27)–(7.28).

Since JΓ0 satisfies maximum principle, we have that the approximation

scheme

(7.30) JΓ0 [hR] = g(y) in Γ0+ ∩B(0, R), h = 0 on ∂(Γ0+ ∩B(0, R))

is such that its unique solution satisfies |hR| ≤ Ch3. Standard diagonal argu-

ment gives a subsequence of hR which converges locally uniformly to a smooth

solution h of

(7.31) JΓ0 [h] = g in Γ0+, h = 0 on ∂Γ0+,

with the property that ‖h‖∞,1 ≤ C. Observe that we also have ‖g‖∞,3 ≤ C.

From Lemma 7.6, we then get that for any p > 8,

(7.32) ‖D2
Γ0
h‖p,3− 8

p
+ ‖DΓ0h‖∞,2 + ‖h‖∞,1 ≤ C,

as desired. �

To conclude with the proof of the proposition, we need to consider the

equation

(7.33) JΓ[h] = H3(y) :=
8∑
i=1

k3
i (y) in Γ.

A main fact we need is the following lemma, whose proof is postponed to

Section 8.4.

Lemma 7.8. Let k0
i (y) denote the principal curvatures at a point y ∈ Γ0+

(see (7.15) for the definition of Γ0+). Then we have that for all large enough

r(y), ∣∣∣∣∣∣
8∑
i=1

k3
i0(y)

∣∣∣∣∣∣ ≤ C g(θ)

r3
+O(r−5) on Γ0+,(7.34)

8∑
i=1

k3
i (y) =

8∑
i=1

k3
i0(π(y)) +O(r−5).(7.35)

Let us conclude the proof of the proposition. From Lemma 7.7 and using

an odd extension by reflection, we see that there exists a solution h0 of

JΓ0 [h0] =
8∑
i=1

k3
i0 in Γ,
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satisfying the appropriate estimates. Let h1(y) = h0(π(y)) for r(y) > r0,

and extended smoothly in an arbitrary way to all of Γ. Then according to

Lemma 7.1, we find that for large r,

JΓ[h1](y) =
8∑
i=1

k3
i0(π(y)) +

[
O(r−2−σ)D2

Γ0
h0 +O(r−3−σ)DΓ0h0(7.36)

+O(r−4−σ)h0

]
(π(y)) in Γ.

To solve problem (7.33) we set h = h1 + h2 and then get the equation for h2,

JΓ[h2] = Θ(y) in Γ,

where, using relation (7.35) and Lemma 7.6, we get

‖Θ‖p,5 < +∞.

Then we choose h2 to be unique solution to that problem given by Propo-

sition 7.1. The function h built this way satisfies the requirements of the

proposition. �

8. Local coordinates on Γ:

The effect of curvature and closeness to Γ0

8.1. The proof of Proposition 3.1. Let p0 = (x0, F (x0)) with |x0| = R.

Then there is a function G(y) such that, for some ρ, a > 0,

Γ ∩Bρ(p0) = p0 + {(y, G(y)) | |y| < a},

where y = (y1, . . . , y8) are the Euclidean coordinates on Tp0Γ. More precisely,

F (x) and G(y) are linked through the following relation:

(8.1)

ñ
x

F (x)

ô
=

ñ
x0

F (x0)

ô
+ Πy +G(y)ν(p0).

Here

Πy =
8∑
j=1

yiΠi, y ∈ R8,

where {Π1,Π2, . . . ,Π8} is a choice of an orthonormal basis for the tangent

space to the minimal graph at the point p0 = (x0, F (x0)), and

ν(p0) =
1»

1 + |∇F (x0)|2

ñ
∇F (x0)

−1

ô
,

so that

G(y) =
1»

1 + |∇F (x0)|2
Ä
F (x)− F (x0)−∇F (x0) · (x− x0)

ä
.

The implicit function theorem implies that G and x, given in equation (8.1),

are smooth functions of y, at least while |y| < a for a sufficiently small number
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a > 0. Clearly when p0 is restricted to some fixed compact set, then there

exists a θ > 0 such that

a = θ(1 +R), R = |x0|.

To show a similar bound for all p0 ∈ Γ, we will assume |x0| = R > 1. The

bound we are seeking amounts to estimating (from below) the largest a so that

sup
|y|<a

|DyG(y)| < +∞.

Here and below, by Dy, D
2
y, etc. we will denote the derivatives with respect to

the local variable y. Let ν(z) denote unit normal at the point z = (y, G(y))

(with some abuse of notation ν(p0) ≡ ν(0)). Let us set

ŷ =
y

|y|
and consider the following curve on the minimal surface:

r 7→ γ(r) := (rŷ, G(rŷ)), 0 < r ≤ |y|.

Then

∂rν(γ(r)) = AΓ(γ(r))[(ŷ, DyG(rŷ) · ŷ)],

where AΓ is the second fundamental form on Γ and DyG(rŷ) = DyG(y)
∣∣
y=rŷ .

Thus

|ν(γ(r))− ν(0)| ≤ sup
0<s<r

|AΓ(γ(s))|
∫ r

0
(1 + |DyG(sŷ)|) ds.

We will now make use of Simon’s estimate ([34, Th. 4, p. 673 and Rem. 2,

p. 674]) which yields

sup
0<s<r

|AΓ(γ(s))| < c

R
,

since we can assume that |y| < θR, with some small θ > 0. In addition, we

have that

|ν(γ(r))− ν(0)| ≥
|DyG(rŷ)|

1 + |DyG(rŷ)|
;

hence
|DyG(rŷ)|

1 + |DyG(rŷ)|
≤ c

R

∫ r

0
(1 + |DyG(sŷ)|) ds.

Let us write ε = c
R and

ψ(r) :=

∫ r

0
(1 + |DyG(sŷ)|) ds.

The above inequality reads

1− 1

ψ′(r)
≤ εψ(r),

or

(1− εψ(r))ψ′(r) ≤ 1,



1534 MANUEL DEL PINO, MICHA L KOWALCZYK, and JUNCHENG WEI

so that for all sufficiently small (relative to the size of ε) r > 0, we have that

1− (1− εψ(r))2 ≤ 2εr.

Since ψ(0) = 0, it follows that

(1− 2εr)
1
2 ≤ (1− εψ(r));

hence

1− 1

1 + |DyG(rŷ)|
≤ εψ(r) ≤ 1− (1− 2εr)

1
2 ,

which implies

|DyG(y)| ≤ (1− 2ε|y|)−
1
2 − 1 ≤ 8ε|y|,

provided that ε|y| < 1
4 . Hence we have established that there are positive

numbers θ, c, independent of R such that

(8.2) |DyG(y)| ≤ c

R
|y| for all |y| < θR.

In particular, we obtain a uniform bound on DyG(y) for |y| ≤ θR, while at the

same time

(8.3) |ν(y, G(y))− ν(0)| ≤ c

R
|y| for all |y| < θR.

This guarantees the fact that our minimal surface indeed defines a graph over

the tangent plane at p0, at least for |y| ≤ θR. The quantities x(y) and G(y)

linked by equation (8.1) are thus well defined, provided that |y| < θR. The

implicit function theorem yields, in addition, their differentiability. We have

(8.4)

ñ
Dyx(y)

DxF (x)Dyx(y)

ô
= Π +DyG(y)ν(p0),

and, in particular, |Dyx(y)| is uniformly bounded in |y| < θR. The above

relation also tells us that

(8.5) |Dm
y x(y)| ≤ |Dm

y G(y)|, m ≥ 2, |y| < θR.

Let us estimate now the derivatives of G. Since G(y) represents a minimal

graph, we have that

(8.6) H[G] = ∇y ·

Ñ
∇yG»

1 + |∇yG|2

é
= 0 in B(0, θR) ⊂ R8.

Let us consider now the change of variable‹G(y) =
1

R
G(Ry)

and observe that ‹G is bounded and satisfies

(8.7) H[‹G] = ∇y ·

Ñ
∇y
‹G»

1 + |∇y
‹G|2é = 0 in B(0, θ).
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In fact from (8.2), we have

|‹G(y)| ≤ C for all |y| ≤ θ;

hence, potentially reducing θ, from standard estimates for the minimal surface

equation (see for instance [18]) we find

(8.8) |Dy
‹G(y)| ≤ C for all |y| ≤ θ,

with a similar estimate for D2
y
‹G, and in general the same bound for Dm

y
‹G,

m ≥ 2 in this region. As a conclusion, using also (8.5) we obtain

(8.9) |Dm
y x(y)|+ |Dm

y G(y)| ≤ C

Rm−1
for all |y| ≤ θR

for m = 2, 3, . . . . This estimate and (8.2) provide in particular the result of

the lemma. �

Remark 8.1. From the above considerations it follows that the local coor-

dinates near Γ in (3.11) are well defined. Indeed this is the case as long as the

function x 7→ (y, z) is invertible. We claim that this holds, and consequently

that the Fermi coordinates are well defined if

|z| ≤ θ|AΓ(y)|−1,(8.10)

whenever r(y), the distance from the origin of the projection of y ∈ Γ onto

R8, is large enough, and θ is chosen to be a small number. We argue by

contradiction; i.e., we assume that x 7→ (y, z) is not one-to-one. Because of

the symmetry of the surface Γ, it is enough to consider the situation in which,

for certain x = (x′, x9) such that x′ ∈ T , we have the existence of two different

points y1, y2 ∈ Γ ∩ T such that

x = yi + zν(yi), i = 1, 2,(8.11)

with z satisfying (8.10). We may assume that |r(y1)| = R1 is large. Then it

follows that

|y1 − y2| ≤ |z||ν(y1)− ν(y2)| ≤ θ|AΓ(y1)|−1.(8.12)

In the portion of Γ where (8.12) holds, we in fact have

|y1 − y2| ≤ |z||ν(y1)− ν(y2)|(8.13)

≤ θ|AΓ(y1)|−1 sup
|y1−y|≤θ|AΓ(y1)|

|AΓ(y)||y1 − y2|.

≤ CθR1 + 1

R1
|y1 − y2|.

We get a contradiction if we take θ > 0 to be sufficiently small, and thus the

claim follows.
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R8

x9

p0

Tp0Γ

ν(p0)

n(q0)
q0

Tq0Γ0

Γ

Γ0

G(y)

G0(y)

y

Figure 2. Local configuration of the two surfaces Γ and Γ0.

8.2. Comparing G and G0. We want to estimate with higher accuracy

derivatives of G, in their relation with the approximate minimal graph Γ0,

x9 = F0(x). We shall establish next that in the situation considered above we

also have that Γ0 can be represented as the graph of a function G0(y) over the

tangent plane to Γ at the point p0, at least in a ball on that plane of radius

θR for a sufficiently small, fixed θ > 0 and for all large R. Below we let n and

ν denote respective normal vectors to Γ0 and Γ, with the convention n · ν ≥ 0.

For convenience the situation is presented schematically in Figure 2.

To prove the above claim we will show that for fixed, sufficiently small θ,

we have the estimate

(8.14) |n(q)− ν(p0)| < Cθ for all q ∈ Γ0 ∩B(p0, θR).

Since by Theorem 2

F (x)− F0(x) = O(|x|−σ), some σ ∈ (0, 1),

we have that the points p0 = (x0, F (x0)) and q0 = (x0, F0(x0)) satisfy

(8.15) |p0 − q0| ≤
C

Rσ
.

Let Tp0Γ, Tq0Γ0, be the corresponding tangent hyperplanes, namely

Tp0Γ = {z ∈ R9 | (z − p0) · ν(p0) = 0},

Tq0Γ0 = {z ∈ R9 | (z − q0) · n(q0) = 0}.
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We assume that ν(p0) · n(q0) ≥ 0. We claim that there is a number M > 0

such that for all large R,

(8.16) |ν(p0)− n(q0)| ≤ 5M

R
.

Let us assume the opposite and let us consider a point z ∈ Tq0Γ0 with

θR > |z − q0| >
θ

2
R,

with θ > 0 as in (8.2). Let us write cosα = ν(p0) · n(q0) with 0 ≤ α ≤ π
2 .

Then, using (8.15) we get

(8.17) dist (z, Tp0Γ) ≥ |z − p0| sinα ≥
Å
θ

2
R−R−σ

ã
|ν(p0)− n(q0)| ≥Mθ.

Now let q̃ ∈ Γ0 be the point whose projection onto Tq0Γ0 is z. Point q̃ is unique

by the analog of (8.3) for the surface Γ0. Let us write q̃ = (x̃, F0(x̃)). Notice

that |x̃| ∼ R. We will also set p̃ = (x̃, F (x̃)) ∈ Γ. Since the second fundamental

form of the surface Γ0 satisfies an estimate similar to the one for Γ, we may

assume, reducing θ if necessary, that

dist (q̃, Tq0Γ0) ≤ cθ.

Now, estimate (8.2) implies that

dist (p̃, Tp0Γ) ≤ cθ.

If M is fixed so that Mθ is sufficiently large, the above two relations and

(8.15) are not compatible with (8.17). Indeed, we get

Mθ ≤ dist (z, Tp0Γ) ≤ dist (p̃, q̃) + dist (p̃, Tp0Γ0) + dist (q̃, Tq0Γ0)

≤ cθ + dist (p̃, q̃)

≤ C

Rσ
+ cθ;

hence (8.16) holds. Moreover, using estimate (8.3) and the analogous estimate

for the variation of n, we have the validity of the estimate

|n(q)−n(q0)|+|ν(p)−ν(p0)|<Cθ for all p∈Γ∩B(p0, θR), q∈Γ0∩B(q0, θR).

Furthermore, we observe that the analog of estimate (8.3) implies that in the

set Γ0 ∩B(q0, θR), the distance between Γ0 and its tangent plane at q0 varies

by no more than cθ. From this and (8.15), (8.16), the desired conclusion (8.14)

immediately follows (taking θ smaller if necessary). Hence the function G0(y)

is well defined for |y| < θR.

Let us observe that F0 and G0 are linked through the following relation:

(8.18)

ñ
x̃

F0(x̃)

ô
=

ñ
x0

F (x0)

ô
+ Πy +G0(y)ν(p0).
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By the implicit function theorem, x̃ and G0(y) define differentiable functions

of y for |y| ≤ θR. We shall establish derivative estimates for G0 similar to

those found for G. We claim that

(8.19) |Dm
y x̃(y)|+ |Dm

y G0(y)| ≤ C

Rm−1
for all |y| ≤ θR,

for m = 1, 2, . . . . Differentiation of relation (8.18) yields

(8.20)

ñ
∂j x̃

DF0(x̃)∂j x̃

ô
= Πj + ∂jG0ν(p0).

Let q = (x̃, F0(x̃)) and

n(q) =
1»

1 + |∇F0(x̃)|2

ñ
DF0(x̃)

−1

ô
.

From (8.20) and the fact that n(q) · ν(p0) ≥ c > 0, we then get

|∂jG0(y)| ≤ C|Πj · n(q)| ≤ C.

Using again relation (8.20), we also get

|∂j x̃(y)| ≤ C.

Let us differentiate again. Now we get

(8.21)

ñ
∂jkx̃

DF0(x̃)∂jkx̃

ô
+

ñ
0

D2F0(x̃)[∂j x̃, ∂j x̃]

ô
= ∂jkG0ν(p0).

Again, taking the dot product against ν(p0), we get

|∂jkG0(y)| ≤ C |D2F0(x̃)|»
1 + |∇F0(x̃)|2

≤ C

R
,

and thus

|∂jkx̃(y)| ≤ C

R
.

Iterating this argument, using that

|DmF0(x̃)| ≤ CR3−m, m = 1, 2, . . .

the desired result (8.19) follows.

Let us write

G(y) = G0(y) + h(y).

We will estimate first the size of h(y) in the ball |y| ≤ θR. We claim that we

have

(8.22) |h(y)| ≤ CR−1−σ for all |y| ≤ θR.

The first observation we make is that when y = 0, we have

|h(0)| = |G0(0)| ≤ C

R1+σ
.(8.23)
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To show this let x̃ be such thatñ
x̃

F0(x̃)

ô
=

ñ
x0

F (x0)

ô
+G0(0)ν(p0),

and let ỹ be such thatñ
x̃

F (x̃)

ô
=

ñ
x0

F (x0)

ô
+ Πỹ +G(ỹ)ν(p0).

Comparing these two expressions and using |F (x̃)−F0(x̃)| ∼ R−σ, we see that

|ỹ| ∼ R−σ; hence, by (8.2), we get that |G(ỹ)| ∼ R−1−2σ. Now multiplying the

above relations by ν(p0) and subtracting them, we infer (8.23) since by [34,

Th. 4, p. 673 and Th. 5, p. 680], we have that

|ν9(p0)| = 1»
1 + |DF (p0)|2

≤ C

R
.

To prove (8.22), now we let p1 = (x1, F (x1)) ∈ Γ ∩B(p0, θR) so that

p1 = p0 + Πy +G(y)ν(p0), |y| ≤ θR.

Then |G(y)−G0(y)| corresponds to the length of the segment in the direction

ν(p0) starting at p1, which ends on the surface Γ0. Let p2 = (x1, F0(x1)). Then

|p1 − p2| ≤ CR−σ.

Let us consider the tangent plane Tp2Γ0 to Γ0 at p2, with normal ν(p2). Then,

Γ0 ∩B(p2, CR
−σ) lies within a distance O(R−1−σ) from Tp2Γ0; more precisely,

Γ0 ∩B(p2, CR
−σ) ⊂ CR,

where CR is the cylinder

CR = {z̄ + sν(p2) | z̄ ∈ Tp2Γ0, |z̄ − p2| ≤ CR−σ, |s| ≤ CR−1−σ}.

Using (8.23) we may assume that p1 ∈ CR. In particular, the line starting from

p1 with direction ν(p1) intersects Γ0 inside this cylinder. Since ν(p1) · ν(p2) ≥
c > 0, the length of this segment is of the same order as the height of the

cylinder, and we then get

|G(y)−G0(y)| ≤ CR−1−σ;

hence (8.22) holds.

Next we shall improve the previous estimate. We claim that we have

(8.24) |Dm
y h(y)| ≤ c

Rm+1+σ
in |y| < θR

for m = 0, 1, 2, . . . . Let us set‹G(y) =
1

R
G(Ry), ‹G0(y) =

1

R
G0(Ry), h̃(y) =

1

R
h(Ry).
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We compute (for brevity dropping the subscript in the derivatives)√
1 + |∇‹G|2H[‹G] = ∆‹G− D2‹G [∇‹G,∇‹G]

1 + |∇‹G|2 = 0.

Now,

D2‹G [∇‹G,∇‹G]

1 + |∇‹G|2 =
D2h̃ [∇‹G,∇‹G]

1 + |∇‹G|2 +
D2‹G0 [∇‹G,∇‹G]

1 + |∇‹G|2 ,

and

D2‹G0 [∇‹G,∇‹G]

1 + |∇‹G|2 =
D2‹G0 [∇‹G0,∇‹G0]

1 + |∇‹G|2 +
D2‹G0 [2∇‹G0 +∇h,∇h]

1 + |∇‹G|2 .

Furthermore,

D2‹G0 [∇‹G0,∇‹G0]

1 + |∇‹G|2 =
D2‹G0 [∇‹G0,∇‹G0]

1 + |∇‹G0|2

− D2‹G0 [∇‹G0,∇‹G0] (2∇‹G0 +∇h̃) · ∇h̃
(1 + |∇‹G0|2)(1 + |∇‹G|2)

.

Collecting terms we see that h̃ satisfies the equation

∆h̃− D2h̃ [∇‹G,∇‹G]

1 + |∇‹G|2 + b · ∇h̃ + E = 0 in B(0, θ),

where

E = ∆‹G0 −
D2‹G0 [∇‹G0,∇‹G0]

1 + |∇‹G0|2
=
√

1 + |∇‹G0|2H(‹G0),

and

b = −D
2‹G0 [∇‹G0,∇‹G0] (2∇‹G0 +∇h)

(1 + |∇‹G0|2)(1 + |∇‹G|2)
+
D2‹G0 [2∇‹G0 +∇h]

1 + |∇‹G|2 .

Notice that

|∇‹G(y)| ≤ C, |h̃(y)| ≤ CR−2−σ in |y| < θ.

Also by (9.36) it follows that the mean curvature of Γ0 decays like R−5. From

|E(y)| = R

∣∣∣∣(∆G0 −
D2G0 [∇G0,∇G0]

1 + |∇G0|2
)
(Ry)

∣∣∣∣
= R
»

1 + |∇G0|2H[G0](Ry)

= R
»

1 + |∇G0(Ry)|2H[F0](x̃(Ry))

(in the notation of (8.18)), we then find

|E(y)| = O(R−4),

and, as a conclusion, reducing θ if needed,

|Dyh̃(y)| ≤ c

R2+σ
in |y| < θ,
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so that for h, accordingly we get

|Dyh(y)| ≤ c

R2+σ
in |y| < θR.

On the other hand, using (8.19) we have for instance that

DyH[G0](y) = DxH[F0](x̃(y))Dyx̃(y) = O(R−6);

hence

|DyE(y)| = O(R−4).

More generally, since

Dm
x H[F0](x) = O(|x|−5−m),

we get

Dm
y E(y) = O(R−4).

Thus, estimates (8.19), (8.9) and standard higher regularity elliptic estimates

yield

|Dm
y h̃(y)| ≤ c

R2+σ
in |y| < θR.

Hence

|Dm
y h(y)| ≤ c

Rm+1+σ
in |y| < θR

for m ≥ 1.

8.3. Approximating Γ by Γ0 and their Jacobi operators :

Proof of Lemma 7.1. The surfaces Γ and Γ0 are uniformly close for r large.

Let p ∈ Γ with r(p)� 1. Let us consider the point π(p) ∈ Γ0 defined in (7.2).

Using local coordinates (8.18) around p, we have

π(p) = p+G0(0)ν(p).

Here of course the function G0 depends on p. From this it follows that π(p)

exists and is unique when r(p)� 1. As we will see below, the map p 7−→ π(p)

is smooth.

We recall that the Jacobi operators associated to Γ and Γ0, respectively,

are

JΓ[h] = ∆Γh+ |AΓ|2h, JΓ0 [h] = H ′(F0)[
»

1 + |∇F0|2],

where we recall that from (7.4), JΓ0 is the sum of ∆Γ0 + |AΓ0 |2 perturbed by

a second order operator with very rapidly decaying coefficients.

Let us consider two smooth functions h and h0 defined on Γ and Γ0 for r

large, and related through the formula

h0(π(y)) = h(y), y ∈ Γ, r(y) > r0.

Then, to prove Lemma 7.1 we have to establish the relation

(8.25)

JΓ[h](y) = [JΓ0 [h0] +O(r−2−σ)D2
Γ0
h0 +O(r−3−σ)DΓ0h0 +O(r−4−σ)h0] (π(y)).
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8.3.1. Projection map π(p) and its derivatives. We show next that this

map is smooth and estimate its derivatives. In local coordinates y we have

that in a neighborhood of y = 0,

(8.26)

π(y) = p+
8∑
i=1

yiΠi +G(y)ν(0) + (G0(0) + t)ν(y) = p+
8∑
i=1

ỹiΠi +G0(ỹ)ν(0)

for certain scalar function t(y) and vector function ỹ(y). Here and in what

follows, with some abuse of notation, we write f(y) to mean f(Y (y)). Thus

we should have t(0) = 0, ỹ(0) = 0. Local existence and smoothness of these

functions can be found by the implicit function theorem. Indeed (8.26) is

equivalent to the system

A(y, ỹ, t) :=


y1 − ỹ1 + (G0(0) + t)ν(y) ·Π1

...

y8 − ỹ8 + (G0(0) + t)ν(y) ·Π8

G(y) + (G0(0) + t)ν(y) · ν(0)−G0(ỹ)

 = 0.

Note that A(0, 0, 0) = 0 and that

Dy,tA(0, 0, 0) =

ñ
IdR8 +G0(0)D2

yG(0) 0

DyG0(0) 1

ô
= IdR9 +O(r−2−σ)

is invertible; hence the existence of the smooth functions ỹ(y) and t(y) as

required follows. Moreover, implicit differentiation yields

Dyt(0) = [Dy,tA(0, 0, 0)]−1G′0(0) = O(r−2−σ),

while

Dyỹ(0) = IdR8 +O(r−2−σ).

Iterating the implicit differentiation, using that one negative power of r is

gained in successive differentiations of the coefficients G(y) and ν(y), we find

that

Dm
y ỹ(0), Dm

y t(0) = O(r−m−1−σ), m ≥ 2.

8.3.2. Comparing ∆Γ and ∆Γ0 . Given a smooth function f(y) defined on

Γ for all large r, it is natural to associate to it the function f0 defined on Γ0

for large r by the formula

(8.27) f0(π(y)) := f(y).

The question is now how to compare the quantities [∆Γf ](y) and [∆Γ0f0](π(y)).

Given a point p on Γ, the corresponding local coordinates y are good, both for

parametrizing locally Γ near p and Γ0 near π(p) respectively by

(8.28) Y (y) = p+ yiΠi +G(y)ν(p) and Y0(y) = p+ yiΠi +G0(y)ν(p).
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The observation is that, by definition, π(Y (y)) = Y0(ỹ(y)) and thus the relation

(f0 ◦ π)(Y (y)) = f(Y (y)) means f0(Y0(ỹ(y))) = f(Y (y)). In other words, with

the usual abuse of notation,

f0(ỹ(y)) = f(y),

and the question is to compare ∆Γf(y) and (∆Γ0f0)(ỹ(y)) where these two

operators are expressed in the local coordinates y.

Let us recall that the metric tensor g on Γ near p satisfies the estimate

gij = δij + ∂iG(y)∂jG(y) = δij +O(|y|2r−2), |y| ≤ θr, r = r(p),(8.29)

where ∂i = ∂yi . Similar estimates hold for the metric tensor g0 on the surface

Γ0 expressed in the same local coordinates. In fact we have

g0,ij = 〈∂iY0, ∂jY0〉 = δij + ∂iG0(y)∂jG0(y)(8.30)

= gij − ∂iG(y)∂jh(y)− ∂jG(y)∂ih(y) + ∂ih(y)∂jh(y)

= gij + |y|O(r−3−σ).

Hence if we write

∆Γ = a0
ij(y)∂ij + b0i (y)∂i, ∆Γ0 = ā0

ij(y)∂ij + b̄0i (y)∂i,

then we now find for |y| < 1,

∆Γ = [ā0
ij(y) +O(r−3−σ)]∂ij + [b̄0i (y) +O(r−3−σ)]∂i.

We compute

∂i(f0◦ỹ) = (∂kf0◦ỹ) ∂iỹk, ∂ij(f0◦ỹ) = (∂klf0◦ỹ) ∂iỹk ∂j ỹl+(∂kf0◦ỹ) ∂ij ỹk.

We recall that we found at y = 0

∂iỹk = δik +O(r−2−σ), ∂ij ỹk = O(r−3−σ),

and hence

∆Γ(f0 ◦ ỹ)(0) = ∆Γ0f0(0) +O(r−2−σ)(∂ijf0)(0) +O(r−3−σ)(∂if0)(0),

so that

(8.31)

∆Γf(p) = ∆Γ0f0 (π(p)) +O(r−2−σ) [D2
Γ0
f0] (π(p)) +O(r−3−σ) [DΓ0f0] (π(p)).
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8.3.3. Comparing curvatures : Conclusion of proof of Lemma 7.1. Let us

consider the second fundamental form on Γ, AΓ, and the second fundamental

form on Γ0, AΓ0 . We observe that for a given point p ∈ Γ, we get that

in the local coordinates y (3.13), the matrix representing AΓ(p) in the basis

Π1, . . . ,Π8 of TpΓ is A = −D2
yG(0) since DyG(0) = 0.

We consider next Γ0 described by the coordinates Y0(y) near the point

q = π(p). The tangent space Tπ(p)Γ0 is spanned by the vectors‹Πj := Πj + ∂jG0(0)ν0 = Πj +O(r−2−σ),

and the the normal vector to Γ0 at the point p+ Πy +G(y)ν0 is given by

n(y) =
1»

1 + |∇G0(y)|2
(−∂jG0(y)Πj + ν0) .

We have that

∂jn(0) =
8∑
i=1

aij‹Πi

for certain numbers aij . By definition, the matrix of the second fundamental

form of AΓ0(p) with respect to the basis Π̃i corresponds to the 8 × 8 matrix

A0 = [aij ]. Now,

∂jn(0) = − 1»
1 + |∇G0(0)|2

∂ijG0(0)Πj−
∂ijG0(0)∂jG0(0)

(1 + |∇G0(0)|2)
3
2

(−∂ijG0(0)Πj+ν0);

hence

∂jn(0) = −∂ijG0(0)Πj +O(r−4−σ) = −∂ijG0(0)‹Πj +O(r−3−σ),

and therefore

aij = −∂ijG0(0) +O(r−3−σ) = −∂ijG(0) +O(r−3−σ).

In summary, the matrix representing AΓ0(π(p)) is

A0 = −D2
yG(0) +O(r−3−σ).

The eigenvalues of this symmetric matrix, which are of order O(r−1), differ

at most O(r−3−σ) from those of A = −D2
yG(0). As a conclusion, we get in

particular that

(8.32) |AΓ(p)|2 = |AΓ0(π(p))|2 +O(r−4−σ).

Let us consider now the operators JΓ and JΓ0 . According to relations

(8.31) and (3.33), and using formula (7.4), we find that if h0(π(y)) = h(y),

y ∈ Γ, then

JΓ[h](y) = [JΓ0 [h0] +O(r−2−σ)D2
Γ0
h0 +O(r−3−σ)DΓ0h0 +O(r−4−σ)h0] (π(y)),

and the proof of the Lemma 7.1 is thus concluded. �
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Remark 8.2. The estimates obtained for the second fundamental form of

Γ in comparison to that in Γ0 makes it simple to see that for some a > 0

(8.33)
a

r2
≤ 1»

1 + |∇F (p)|2
≤ a−1

r2

for all r(p) sufficiently large, which is a special case of the estimate in [34,

Th. 5, p. 679].

8.4. The proof of Lemma 7.8.

8.4.1. Proof of estimate (7.35). Denoting by ki and ki0 the principal cur-

vatures respectively on Γ and Γ0 we get, according to the considerations above

on the second fundamental forms,

8∑
i=1

k3
i (p) =

8∑
i=1

(ki0 +O(r−3−σ))3(π(p)) =
8∑
i=1

k3
i0(p) +O(r−5−σ),

and thus estimate (7.35) in Lemma 7.8 holds.

8.4.2. Proof of estimate (7.34). To prove (7.34) on Γ0, we compute ex-

plicitly its second fundamental form. The surface Γ0 given by the graph of

F0 = F0(u, v) can be parametrized by the map

(u, v, û, v̂) ∈ R+ × R+ × S3 × S3 7−→ (uû, vv̂, F0(u, v)).

Let us consider an arbitrary point p ∈ Γ0, p = (uû, vv̂, F0(u, v)) and local

parametrizations of S3 given by u = u(t), v = v(s), t, s ∈ R3, with

u(0) = û, v(0) = v̂, ∂tiu(0) = τi, ∂siv(0) = σi,

where τi, σi i = 1, 2, 3 are the vectors of an orthonormal basis, respectively of

TûS
3 and TûS

3. Then we have

TpΓ = span {(û, 0, F0u), (0, v̂, F0v), (uτi, 0, 0), (0, vσi, 0), i = 1, 2, 3}
:= span{e1, e2, fi, gi, i = 1, 2, 3},

and

n(p) =
(F0uû, F0vv̂,−1)»

1 + |∇F0|2
.

A direct computation yields

nu · e1 =
F0uu»

1 + |∇F0|2
, nu · e2 =

F0vu»
1 + |∇F0|2

,

nv · e1 =
F0uv»

1 + |∇F0|2
, nv · e2 =

F0vv»
1 + |∇F0|2

,

nu · fi = 0 = nu · gi, nv · fi = 0 = nv · gi.
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Likewise, we get

nti =
(F0uτi, 0, 0)»

1 + |∇F0|2
, nsi =

(0, F0uσi, 0)»
1 + |∇F0|2

;

hence

nti · fi =
uF0u»

1 + |∇F0|2
, nsi · e1 = nsi · e2 = nsi · gj = nsi · fk = 0,

nsi · gi =
vF0v»

1 + |∇F0|2
, nti · e1 = nti · e2 = nti · f j = nti · gk = 0,

j = 1, 2, 3, k 6= i.

The matrix of the second fundamental form AΓ0(p) relative to the basis of

TpΓ0,

TpΓ0 = span {e1, e2, f1, f2, f3, g1, g2, g3}

is by definition the 8× 8 matrix A = (aij) such that

nu = a11e1 + a12e2 +
5∑
j=3

a1jfj +
8∑
j=6

a1jgj−5,

nv = a21e1 + a22e2 +
5∑
j=3

a2jfj +
8∑
j=6

a2jgj−5,

nsi = a2+i1e1 + a2+i2e2 +
5∑
j=3

a2+ijfj +
8∑
j=6

a2+ijgj−5, i = 1, 2, 3,

nti = a5+i1e1 + a5+i2e2 +
5∑
j=3

a5+ijfj +
8∑
j=6

a5+ijgj−5, i = 1, 2, 3.

Using the above computations, we readily get that A is a block matrix of the

form

A =

A1 0 0

0 A2 0

0 0 A3

 ,
where

A1 =
1»

1 + |∇F0|2

ñ
F0uu F0uv

F0vu F0vv

ô ñ
1 + F0

2
u 1 + F0uF0v

1 + F0vF0u 1 + F0
2
v

ô−1

,

and

A2 =
F0u

u
»

1 + |∇F0|2

1 0 0

0 1 0

0 0 1

 , A3 =
F0v

v
»

1 + |∇F0|2

1 0 0

0 1 0

0 0 1

 .
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The principal curvatures are the eigenvalues ki0 of the matrix A. Thus we find

k10 = λ1, k20 = λ2,

k30 = k40 = k50 =
F0u

u
»

1 + |∇F0|2
= µ1,

k60 = k70 = k80 =
F0v

v
»

1 + |∇F0|2
= µ2,

where λi, i = 1, 2 are the eigenvalues of the 2× 2 block A1. Expressing µ1, µ2,

in polar coordinates,

µ1 :=
F0u

u
»

1 + |∇F0|2
=

1

r
»

9g2 + g′2
(3g(θ) cos θ − g′(θ) sin θ),

µ2 :=
F0v

v
»

1 + |∇F0|2
=

1

r
»

9g2 + g′2
(3g(θ) sin θ + g′(θ) cos θ);

hence

µ3
1 + µ3

2 =
R

r3(9g2 + g′2)
3
2

,

R :=
î

(3g(θ) cos θ − g′(θ) sin θ)3 + (3g(θ) sin θ + g′(θ)
3

cos θ)3
ó
.

Now, since g(θ) vanishes at π
4 with g′(π4 ) > 0, we get

R = O(g(θ)) + g′(θ)
3
(cos3 θ − sin3 θ) = O(g(θ)),

and therefore
8∑
i=3

k3
i0 = O(g(θ)r−3).

It remains to estimate k3
10 + k3

20.

We know that, globally, all principal curvatures are O(r−1). Let us con-

sider the case θ ∈ (π4 ,
3π
5 ). Since second derivatives of F in (u, v) are of order

O(r), we then get that

A1 = O(r−5)

ñ
r−4 + 9g2 cos2 θ + g′2 sin2 θ r−4 − 3g′g sin θ cos θ

r−4 − 3g′g sin θ cos θ r−4 + 9g2 sin2 θ + g′2 cos2 θ

ô−1

= O(r−5)

ñ
9g2 cos2 θ + g′2 sin2 θ −3g′g sin θ cos θ

−3g′g sin θ cos θ 9g2 sin2 θ + g′2 cos2 θ

ô−1

+O(r−9).

The latter inverse is uniformly bounded in the region considered. As a con-

clusion we get that the eigenvalues of this matrix are of size at most O(r−5)

near θ = π
4 , while for θ away from π

4 the eigenvalues are of the size O(r−1).

Globally we then get
8∑
i=1

k3
i0 = O(g(θ)r−3) +O(r−5),

and the proof is concluded. �
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9. Asymptotic behavior of the BDG graph:

Proofs of Lemma 2.1 and Theorem 2

9.1. Equation for g: Proof of Lemma 2.1. We want to solve the problem

(9.1)
21 sin3(2θ)g»

9g2 + g2
θ

+

Ñ
sin3(2θ)gθ»

9g2 + g2
θ

é
θ

= 0, θ ∈
Å
π

4
,
π

2

ã
,

with the boundary conditions

(9.2) g

Å
π

4

ã
= 0, gθ

Å
π

2

ã
= 0.

Let us observe that if g(θ) is a solution of (9.1), then so is Cg(θ) for any

constant C. The following lemma proves the existence of solutions to (9.1).

Lemma 9.1. Problem (9.1) has a solution such that

g(θ) ≥ 0, gθθ(θ) ≤ 0, gθ(θ) ≥ 0,(9.3)

and the last inequality is strict for θ ∈ [π4 ,
π
2 ).

Proof. If g is a solution to (9.1), then the function

ψ(θ) =
gθ(θ)

g(θ)
, g(θ) 6= 0

satisfies the following equation:

9ψ′ + (9 + ψ2)[21 + 6 cot(2θ)ψ] = 0.(9.4)

Our strategy is to solve (9.4) first and then find the function g. To this end

we will look for a solution of (9.4) in the interval I = (π/4, π/2) with

ψ(π/2) = 0.(9.5)

In order to define the function g we also need ψ to be defined and positive in

the whole interval (π4 ,
π
2 ] and limθ→π

4
+ ψ(θ) = +∞. Let (θ∗, π2 ], π

4 ≤ θ
∗, be the

maximal interval for which the solution of (9.4) exists.

We set ψ+(θ) = −11 tan(2θ). Then we have

9ψ′+ + (9 + ψ2
+)[21 + 6 cot(2θ)ψ+] < 0, θ ∈

Å
π

4
,
π

2

ò
,

ψ+

Å
π

2

ã
= 0 = ψ

Å
π

2

ã
, ψ′+

Å
π

2

ã
= −22 < −21 = ψ′

Å
π

2

ã
.

Substituting ψ−(θ) = −2 tan(2θ) for ψ in (9.4), we get

9ψ′− + (9 + ψ2
−)[21 + 6 cot(2θ)ψ−] > 0.(9.6)

We have ψ(π/2) = ψ−(π/2) = 0 and, from (9.4),

ψ′(π/2) = −21 < −4 = ψ′−(π/2).
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From this we get that the maximal solution of (9.4) satisfies

ψ+(θ) = −11 tan(2θ) > ψ(θ) ≥ ψ−(θ) = −2 tan(2θ) ≥ 0, θ ∈ (θ∗, π/2)

(9.7)

and that θ∗ = π
4 . Let us now define

g(θ) = exp
{
−
∫ π/2

θ
ψ(t) dt

}
,(9.8)

where ψ is the unique solution of (9.4)–(9.5). Clearly we have gθ(π/2) = 0 and

from (9.7) it follows that g(π/4) = 0. Thus g defined in (9.8) is a solution of

(9.1)–(9.2).

We have gθ > 0 in (π4 ,
π
2 ), since gθ = gψ. To show that gθ(

π
4 ) > 0 we will

improve the upper bound on ψ. Let us define

ψ1 = −2 tan(2θ) + ψ̃, where ψ̃ = A
Ä
− tan(2θ)

äη
,

and 2
3 < η < 1, A > 1, are to be chosen. Direct calculation gives

9ψ′1 + (9 + ψ2
1)[21 + 6ψ1 cot(2θ)] = 9ψ̃′ cos2(2θ) + 45 cos2(2θ)

+ 6ψ̃ cot(2θ)[4 + 5 cos2(2θ)] + 36ψ̃ sin(2θ)(− cos(2θ))

+ 9ψ̃2 cos2(2θ) + 6ψ̃2 cot(2θ)[4 sin(2θ)(− cos(2θ)) + ψ̃ cos2(2θ)].

Using the definition of ψ̃, after some calculation, we find that the last expression

is negative for θ ∈ (π4 ,
π
2 ) when

0 > −18Aη + 45(− tan(2θ))1−η cos2(2θ)− 6A[4 + 5 cos2(2θ)] + 36A sin2(2θ)

− 15A2(− tan(2θ))1+η cos2(2θ)− 6A3(− tan(2θ))1−2η sin(2θ)(− cos(2θ)),

which can be achieved if 2
3 < η < 1 and A is chosen sufficiently large. Since

η < 1, it follows that

ψ(θ) ≤ ψ1(θ), θ ∈
Å
π

4
,
π

2

ã
;

hence, for certain constant C > 0,

−C cos(2θ) ≤ g(θ) ≤ − cos(2θ), θ ∈
ï
π

4
,
π

2

ò
.(9.9)

In fact the inequalities in (9.3) are strict for θ ∈ (π4 ,
π
2 ). It follows in addition

that

gθ(θ) ≥ C sin(2θ), θ ∈
ï
π

4
,
π

2

ò
.

This shows, in particular, that gθ > 0 in [π4 ,
π
2 ). The remaining estimate for

gθθ follows from the second order equation for g. �
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Given function g as above let us define

(9.10) cosφ =
3g»

9g2 + g2
θ

, sinφ =
gθ»

9g2 + g2
θ

.

We see from Lemma 9.1 that φ satisfies

(9.11) φ′ + 7 + 6 cot(2θ) tanφ = 0, φ

Å
π

4

ã
=
π

2
, φ

Å
π

2

ã
= 0.

We need the following lemma.

Lemma 9.2. It holds that

(9.12) φ′
Å
π

4

ã
= −3, φ′

Å
π

2

ã
= −7

4
, φ′(θ) > −3 for θ ∈

Å
π

4
,
π

2

ã
.

Proof. To prove the first identity we observe that tanφ = 1
3ψ, which after

differentiation yields

φ′ =
1

3
ψ′ cos2 φ = −1

3
[21 + 6 cot(2θ)ψ] ≥ −3(9.13)

since ψ(θ) ≥ −2 tan(2θ). Now considering (9.11) we see that when θ → π/4+,

we can have φ′(π/4+) = −3 or φ′(π/4+) = −4. From (9.13) we get the required

formula.

The second identity follows from simple analysis near θ = π
2 .

To prove the last estimate, we suppose that there exists a point θ1 ∈ (π4 ,
π
2 )

such that φ′(θ1) = −3. We claim that φ′′(θ1) < 0. This gives a contradiction.

(We may take θ1 to be the point closest to π
2 . Then necessarily φ′′(θ1) ≥ 0.)

In fact, from (9.11), we deduce that

2 sin(2θ1) cosφ+ 3 cos(2θ1) sinφ = 0,

which is equivalent to

(9.14) 5 sin(2θ1 + φ) = sin(2θ1 − φ).

Note that 2θ−φ ∈ (0, π) and hence 0 < 2θ−φ < 2θ+φ < π. Now we compute

φ′′(θ1) =
6

sin2 θ1 cos2 φ

Å
sin 2φ− 1

2
sin 4θ1φ

′
ã

=
6

sin2 θ1 cos2 φ
sin(2θ1 − φ) cos(2θ1) cosφ < 0,

which completes the proof. �

9.2. A new system of coordinates. One of the key results of our paper

is a refinement of the results in [5] which amounts to finding more precise

information about the asymptotic behavior of the minimal graph of Bombieri,

De Giorgi and Giusti. This is the purpose of introducing function F0. It is

easy to see that far enough from the origin F0 is a subsolution of the mean

curvature equation and therefore, at least away from the origin, the BDG
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minimal should lie above the graph of F0. Finding a supersolution which

asymptotically behaves like F0 is, however, a different story. We observe that

the supersolution found in [5] asymptotically resembles something like ∼Mr3

with M � 1 and therefore lies above a multiple of F0. On the other hand our

approach requires a more accurate estimate F ∼ F0 away from the origin.

For this reason we next introduce new coordinates (s, t) in the sector T

which depend on the function F0 = r3g(θ). These coordinates, which are

given explicitly in (9.17)–(9.18), correspond to “geographical” orthogonal co-

ordinates for the graph of F0. The coordinate t is simply its height and s mea-

sures a weighted length along the level sets. The weight takes into account the

actual higher dimensional character of the coordinate s (its two-dimensional

analog would simply be arclength on the level curves of F0). Expressing the

mean curvature operator in these coordinates leads to formula (9.24). Its main

feature is that the degeneracy of the mean curvature operator for a function

close to F0 is removed. This expression is a useful tool for separating terms of

the mean curvature operator with distinct features when we examine suitable

candidates for a supersolution of the minimal surface equation.

Lemma 9.3. There exists a diffeomorphism Φ : Q → T , where Q =

{(t, s) | t > 0, s > 0} such that Φ(t, s) = u(t, s) =
Ä
u(t, s), v(t, s)

ä
and u

satisfies the coupled system of differential equations

(9.15)
∂u

∂t
=
∇F0

|∇F0|2
,

∂u

∂s
=

1

(uv)3

∇F⊥0
|∇F0|

,

where we denote

∇F = (Fu, Fv), ∇F⊥ = (Fv,−Fu).

Moreover, Φ maps (t = 0, s) onto the line u = v and (t, s = 0) onto (u = 0, v).

Proof. Introducing polar coordinates

u = r cos θ, v = r sin θ,

and using (9.15), we find
∂r
∂t =

F0,r

|∇F0|2 = 3g
r2(9g2+g2

θ
)

∂θ
∂t =

F0,r

|∇F0|2 = gθ
r3(9g2+g2

θ
)

,(9.16)


∂r
∂s = 8F0θ

r7 sin3(2θ)|∇F0|
= 8gθ

r6 sin3(2θ)
√

9g2+g2
θ

∂θ
∂s = −8F0r

r7 sin3(2θ)|∇F0|
= − 24g

r7 sin3(2θ)
√

9g2+g2
θ

.

Using the formal relationsñ
tr tθ
sr sθ

ô ñ
rt rs
θt θs

ô
=

ñ
1 0

0 1

ô
,



1552 MANUEL DEL PINO, MICHA L KOWALCZYK, and JUNCHENG WEI

we arrive in particular at the equations for s:

3gsr +
gθ
r
sθ = 0,

8gθsr

r6 sin3 2θ
»

9g2 + g2
θ

− 24gsθ

r7 sin3 2θ
»

9g2 + g2
θ

= 1,

or 
∂s
∂θ = −3r7 sin3 2θg

8
√

9g2+g2
θ

∂s
∂r = r6 sin3 2θgθ

8
√

9g2+g2
θ

,

which are satisfied by the function

(9.17) s =
r7 sin3(2θ)gθ

56
»

9g2 + g2
θ

because of the equation satisfied by g. Similarly, for t, we obtain the solution

(9.18) t = r3g(θ).

Using the properties of the function g, we can directly check that function given

by formulas (9.17)–(9.18) is a diffeomorphism with the required properties. �
For future reference let us keep in mind that setting sinφ, cosφ as in

formula 9.10, we simply find

∂r

∂s
=

r

7s
sin2 φ,

∂θ

∂s
=− 1

14s
sin(2φ),(9.19)

and
∂r

∂t
=

r

3t
cos2 φ,

∂θ

∂t
=

1

6t
sin(2φ).(9.20)

Our next goal is to express the mean curvature operator in terms of the

variables (t, s). Denoting by u′ the matrix (ut,us), the minimal surface equa-

tion is transformed to

(9.21) (uv)−3 1√
det u′u′T

∇t,s ·

Ñ
(uv)3

√
det u′u′T»

1 + |∇F |2
(u′u′

T
)−1∇t,sF

é
= 0.

From Lemma 9.3 we find

(9.22) 〈ut,ut〉 =
1

|∇F0|2
, 〈ut,us〉 = 0, 〈us,us〉 =

1

(uv)6
:= ρ2;

hence we compute

(9.23) detu′ =
−ρ
|∇F0|

, (u′u′
T

)−1 =

Ñ
|∇F0|2 0

0 ρ−2

é
.
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Then equation (9.21) becomes

(9.24) |∇F0|∂t

Ñ
|∇F0|∂tF»
1 + |∇F |2

é
+ |∇F0|∂s

Ñ
ρ−2∂sF

|∇F0|
»

1 + |∇F |2

é
= 0.

Let us observe that

∇F =

Æ
∇F, ∇F0

|∇F0|

∏
∇F0

|∇F0|
+

Æ
∇F, ∇F

⊥
0

|∇F0|

∏
∇F⊥0
|∇F0|

= Ft∇F0 + ρ−1Fs
∇F⊥0
|∇F0|

.

From this we have

1 + |∇F |2 = 1 + |∇F0|2
Ç
F 2
t +

ρ−2F 2
s

|∇F0|2

å
= |∇F0|2

Ç
1

|∇F0|2
+ F 2

t +
ρ−2F 2

s

|∇F0|2

å
.

Denoting by Q(∇t,sF ) the function

Q(∇t,sF ) =
1

|∇F0|2
+ F 2

t +
ρ−2F 2

s

|∇F0|2
,

we see the mean curvature equation is equivalent to

H[F ] =
|∇F0|

Q3/2(∇t,sF )
G[F ] = 0,

where

G[F ] = Q(∇t,sF )Ftt −
1

2
∂tQ(∇t,sF )Ft(9.25)

+Q(∇t,sF )∂s

Ç
ρ−2Fs
|∇F0|2

å
− 1

2
∂sQ(∇t,sF )

ρ−2Fs
|∇F0|2

.

Now we derive the mean curvature operator for functions of the form

F = F0 +Aϕ(t, s) = t+Aϕ(t, s),

where A is a real number. Our goal is to write the resulting equation in the

form of a polynomial in A. In general we assume that for r � 1,

(9.26) |ϕt|+
|ϕsρ−1|
|∇F0|

= o(1).

We compute

∇F = ∇F0 +

Æ
∇ϕ, ∇F0

|∇F0|

∏
∇F0

|∇F0|
+

Æ
∇ϕ, ∇F

⊥
0

|∇F0|

∏
∇F⊥0
|∇F0|

= ∇F0 + ϕt∇F0 + ρ−1ϕs
∇F⊥0
|∇F0|

.
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Then we have

1 + |∇F |2 = 1 + |∇F0|2
[
(1 +Aϕt)

2 +A2 ρ
−2φ2

s

|∇F0|2
]

= |∇F0|2
(
1 +

1

|∇F0|2
+ 2Aϕt +A2R1

)
,

where we denote

R1 = ϕ2
t +

ρ−2ϕ2
s

|∇F0|2
.

It is convenient to introduce

R =
(
1 +

1

|∇F0|2
+ 2Aϕt +A2R1

)
.

With this notation, we have

|∇F0|−1R3/2H[F0 +Aϕ](9.27)

=
[
AR∂2

t ϕ−
1

2
(1 +A∂tϕ)∂tR+AR∂s

(ρ−2∂sϕ

|∇F0|2
)
− 1

2
A
ρ−2∂sϕ

|∇F0|2
∂sR

]
= −1

2
∂t|∇F0|−2 +A

[
|∇F0|−2∂2

t ϕ−
1

2
∂t|∇F0|−2∂tϕ

+ ∂s
(ρ−2∂sϕ

|∇F0|2
)
(1 + |∇F0|−2)− 1

2

(ρ−2∂sϕ

|∇F0|2
)
∂s|∇F0|−2

]
+A2

[
∂tϕ∂

2
t ϕ−

1

2
∂tR1 + 2∂tϕ∂s

(ρ−2∂sϕ

|∇F0|2
)
−
(ρ−2∂sϕ

|∇F0|2
)
∂2
tsϕ
]

+A3
[
R1∂

2
t ϕ−

1

2
∂tϕ∂tR1 +R1∂s

(ρ−2∂sϕ

|∇F0|2
)
− 1

2

(ρ−2∂sϕ

|∇F0|2
)
∂sR1

]
.

In the sequel we will refer to the consecutive term in (9.27) as the A0, A1, A2

and A3 terms respectively. For future reference we observe that the A0 term

can be written as

−1

2
∂t|∇F0|−2 = |∇F0|−1(1 + |∇F0|−2)3/2H[F0](9.28)

and the A1 term can be written as

[
·
]

= |∇F0|−1L̃0[ϕ]

(9.29)

− 3

2
∂t|∇F0|−2∂tϕ+ |∇F0|−2∂s

(ρ−2∂sϕ

|∇F0|2
)
− 1

2

(ρ−2∂sϕ

|∇F0|2
)
∂s|∇F0|−2,

where

L̃0[ϕ] = |∇F0|
[
∂t
( ∂tϕ

|∇F0|2
)

+ ∂s
(ρ−2∂sϕ

|∇F0|2
)]
.(9.30)



DE GIORGI’S CONJECTURE IN DIMENSION N ≥ 9 1555

9.3. Proof of Theorem 2. Taking the existence result in [5] as the point of

departure, we find the asymptotic behavior of the minimal graph by proving

Theorem 2. Our approach, which is based on a comparison principle, relies

on a refinement of the supersolution/subsolution in [5]. We need the following

comparison principle.

Lemma 9.4. Let Ω be a smooth and open bounded domain. If F1 and F2

satisfies

(9.31) H[F1] ≤ H[F2] in Ω, F1 ≥ F2 on ∂Ω,

then

(9.32) F1 ≥ F2 in Ω.

Proof. The proof is simple since

H[F1]−H[F2] =
∑
i,j

aij
∂2

∂xixj
(F1 − F2)

where the matrix (aij) is uniformly elliptic in Ω. By the usual maximum

principle, we obtain the desired result. �

Let us observe that from (9.9), we have

(9.33) min

Ç
− cos(2θ)

g(θ)

å
≥ 1, θ ∈

Å
π

4
,
π

2

ã
.

Thus for F0 = r3g(θ), it holds that

(9.34) F0 = r3g(θ) ≤ (v2 − u2)(v2 + u2)
1
2 .

We will now construct a subsolution to the mean curvature equation.

Lemma 9.5. Let H[F ] denote the mean curvature operator. We have

(9.35) H[F0] ≥ 0.

It holds as well that

H[F0] = O(r−5).(9.36)

Proof. Since H[F ] and G[F ] (defined in (9.25)) differ only by a nonnega-

tive factor, it suffices to show that

(9.37) G[F0] ≥ 0.

In fact, let F = F0 = t. We then have

G[F0] = −1

2
∂tQ(∇t,sF0)

= −1

2
∂t
( 1

|∇F0|2
)
,
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where
1

|∇F0|2
=

1

r4(9g2 + g2
θ)

=
r2 cos2 φ

9t2
.

By formula (9.20), we have

−∂t
(r2 cos2 φ

9t2

)
=

r2

9t3

ñ
2 cos2 φ− 2trt cos2 φ

r
+ tφ′θt sin(2φ)

ô
(9.38)

=
2r2 cos2 φ

9t3

ï
2

3
cos2 φ+

1

3
sin2 φ(φ′ + 3)

ò
≥ 0,

where we have used the fact that φ′(θ) ≥ −3. Estimate (9.36) follows easily

from the expansions; see also (2.7). This ends the proof. �
By the standard theory of the mean curvature equation for each fixed

R > 0, there exists a unique solution to the following problem:

(9.39)
1

(uv)3
∇ ·
Ç

(uv)3∇F»
1 + |∇F |2

å
= 0 in ΓR, F = F0 on ∂ΓR,

where ΓR = BR ∩ T , T = {u, v > 0, u < v}. Let us denote the solution to

(9.39) by FR.

Using (9.34), the comparison principle and the supersolution found in [5],

(9.40) F0 ≤ FR ≤ H
Ç

(v2−u2) + (v2−u2)(u2 + v2)1/2(1 +A(| cos(2θ)|)λ−1)

å
,

where

H(t) :=

∫ t

0
exp

Ç
B

∫ ∞
|w|

dt

t2−λ(1 + t2αλ−2α)

å
dw,

λ > 1 is a positive fixed number, α = 3
2 , and A, B are sufficiently large positive

constants. This inequality, combined with standard elliptic estimates, implies

that as R→ +∞, FR → F which is a solution to the mean curvature equation

H[F ] = 0 with

(9.41) F0 ≤ F ≤ H
Ç

(v2 − u2) + (v2 − u2)(u2 + v2)1/2(1 + A(| cos(2θ)|)λ−1)

å
.

Next we need the following key lemma.

Lemma 9.6. There exists σ0 ∈ (0, 1) such that for each σ ∈ (0, σ0), there

exists a0 > 1 such that for each sufficiently large Ã ≥ 1, we have

(9.42) H

ñ
F0 +

ÃF0

rσ

ô
≤ 0 for r > a0.

Moreover, under the same assumptions for each sufficiently large A ≥ 1, we

have

(9.43) H

ñ
F0 +

A

rσ

ô
≤ 0 for r > a0A

1
3+σ .
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Proof. We will consider (9.42) first. We will use formula (9.27) to write

H[F0 + ÃF0
rσ ] multiplied by a nonnegative factor as a polynomial in Ã. Explicit

computation (9.27) yields

|∇F0|−1R3/2H

ñ
F0 +

ÃF0

rσ

ô
= H0 + ÃH1 + Ã2H2 + Ã3H3,

where

H0 = |∇F0|−1(1 + |∇F0|−2)3/2H[F0] =
r2 cos2 φ

9t3

ï
2

3
cos2 φ+

1

3
sin2 φ(φ′ + 3)

ò
,

H1 =
−7σ cos2 φ

9trσ
(7 + (2φ′ − σ) sin2 φ) +

cos2 φ

trσ
O(r−4).

(9.44)

Below we will show in addition that

H2 =
cos2 φ

trσ
O(r−σ) ≤ 0,(9.45)

H3 =
cos2 φ

trσ
O(r−2σ) ≤ 0.

We assume for the moment the validity of these estimates. Let us observe that

the first term in (9.44) is bounded by

H0 ≤ c1
r2 cos4 φ

t3
≤ c1

cos2 φ

tr4
.(9.46)

Estimate (9.46) follows from (9.44) and the fact that φ(π/4) = π/2, φ′((π/4)+)

= −3, φ′′((π/4)+) = 0. Summarizing, we have

H[F0 +
ÃF0

rσ
] ≤ H0 + ÃH1(9.47)

≤ −7Ãσ cos2 φ

9trσ
(7 + (2φ′ − σ) sin2 φ) +

cos2 φ

trσ
O(r−4+σ)

≤ 0.

To prove (9.43) we use a similar argument. Writing H[F0 + A
rσ ] as a polynomial

in A, we get that the A0 term is equal to H0 in (9.44) and

H1 =
−7σ cos2 φ

9g2(θ)r6+σ
(7 + (2φ′ − σ) sin2 φ) +

1

r6+σ
O(r−1).(9.48)

The other terms satisfy

H2 =
1

r6+σ
O(r−3−σ), (A2 term),

H3 =
1

r6+σ
O(r−6−2σ), (A3 term).

Since H0 = O(r−7), the lemma follows by combing the above estimates.
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It remains to establish inequalities (9.45). We will collect first some terms

appearing in the expansion formula (9.27). We have ϕ(t, s) = tr−σ and

∂tϕ =
1

rσ
(1− σ

3
cos2 φ), ∂sϕ = −σt sin2 φ

7rσs
,(9.49)

∂2
t ϕ =

Cσ

9rσt
cos2 φ[σ cos2 φ− 3 + 2φ

′
sin2 φ],

∂tsϕ = −σ sin2 φ

7rσs

(
1 +

2φ′ cos2 φ

3
− σ cos2 φ

3

)
.

We also have

ρ−2ϕs
|∇F0|2

= −7sσ cos2 φ

9trσ
,(9.50)

∂s
( ρ−2ϕs
|∇F0|2

)
= −7σ cos2 φ

9trσ

[
1 +

sin2 φ

7
(2φ

′ − σ)
]
,

ρ−2ϕ2
s

|∇F0|2
=
σ2 sin2 φ cos2 φ

9r2σ
,

∂s
( ρ−2ϕ2

s

|∇F0|2
)

= −2σ2 sin2 φ cos2 φ

63r2σs
(σ sin2 φ+ φ

′
cos(2φ)),

∂t
( ρ−2ϕ2

s

|∇F0|2
)

=
2σ2 sin2 φ cos2 φ

27tr2σ
[−σ cos2 φ+ φ

′
cos(2φ)].

Using formula (9.27), we get

H2 = −1

2
∂t
( ρ−2ϕ2

s

|∇F0|2
)

+ 2∂tϕ∂s
( ρ−2ϕs
|∇F0|2

)
−
( ρ−2ϕs
|∇F0|2

)
∂tsϕ,

H3 =
( ρ−2ϕ2

s

|∇F0|2
)
∂2
t ϕ−

1

2
∂tϕ∂t

( ρ−2ϕ2
s

|∇F0|2
)

+
[
(∂tϕ)2 +

( ρ−2ϕ2
s

|∇F0|2
)]
∂s
( ρ−2ϕs
|∇F0|2

)
− ∂tϕ∂tsϕ

( ρ−2ϕs
|∇F0|2

)
− 1

2

( ρ−2ϕs
|∇F0|2

)
∂s
( ρ−2ϕ2

s

|∇F0|2
)
.

(9.51)

From (9.49)–(9.51), by direct calculation we get

H2 =
σ2 sin2 φ cos2 φ

27tr2σ
[σ cos2 φ− cos(2φ)φ

′
](9.52)

− 2σ cos2 φ

27tr2σ
(3− σ cos2 φ)[7 + (2φ

′ − σ) sin2 φ]

+
σ cos2 φ sin2 φ

27tr2σ
(3− σ cos2 φ+ 2 cos2 φφ

′
)

=
σ cos2 φ

27tr2σ
[−6(7 + 2φ

′
sin2 φ) + (3 + 2 cos2 φφ

′
) sin2 φ+O(σ)]

=
σ cos2 φ

27tr2σ
[−42 + sin2 φ(−12φ

′
+ 3 + 2φ′ cos2 φ) +O(σ)] < 0
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and

H3 =
σ2 sin2 φ cos2 φ

81tr3σ
[σ cos2 φ− 3 cos 2φ]φ

′
(9.53)

− σ cos2 φ

81tr3σ
(9− 6σ cos2 φ+ σ2 cos2 φ)(7 + (2φ

′ − σ) sin2 φ)

+
σ3 sin2 φ cos4 φ

81tr3σ
(σ sin2 φ+ cos(2φ)φ

′
)

+
σ sin2 φ cos2 φ

81tr3σ
(3− σ cos2 φ)(3− σ cos2 φ+ 2 cos2 φφ

′
)

=
σ cos2 φ

27tr3σ

î
sin2 φ(3 + 2 cos2 φφ

′
)− 3(7 + (2φ

′ − σ) sin2 φ)

−σ sin2 cos(2φ)φ
′
+O(σ2 cos2 φ)

ó
=
σ cos2 φ

27tr3σ

î
−21 cos2 φ− (6− σ) sin2 φ(φ

′
+ 3)

+(2− 2σ) cos2 φ sin2 φφ
′
+O(σ2 cos2 φ)

ó
≤ 0

when σ > 0 is sufficiently small. From this we get (9.42). The proof of (9.43)

is similar. �

Now we can prove Theorem 2. In fact, from (9.40), we have

(9.54) F0 ≤ FR ≤ F0 +
ÃF0

rσ
for r = a0

if we choose Ã ≥ 1 such that

(9.55) max
θ

H
(
a0(− cos(2θ)) + a

3/2
0 (− cos(2θ))(1 + A(| cos(2θ)|)λ−1)

)
(a3

0 + Ãa3−σ
0 )g(θ)

≤ 1,

which is possible since supθ
| cos(2θ)|
g(θ) < +∞ (this follows from (9.9) and the fact

that gθ(
π
4 ) > 0). Note that (9.55) holds for any Ã large.

By the comparison principle in the domain ΓR \ Ba0 (noting that the

function F0 + ÃF0
rσ is a super-solution for r > a0 by Lemma 9.6 and the function

F0 is a sub-solution by Lemma 9.5), we deduce that

(9.56) F0 ≤ FR ≤ F0 +
ÃF0

rσ
in ΓR \Ba0 ,

and hence

(9.57) F0 ≤ FR ≤ F0 + Ãr3−σ in ΓR \Ba0

for Ã large.
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Let A ≥ 1 be a constant to be chosen later and let us consider the region

ΓR ∩ {r > R0}, where R0 = a0A
1

3+σ . From (9.57), we then have

(9.58) F0 ≤ FR ≤ F0 + ÃR3−σ
0 ≤ F0 +

A

Rσ0
for r = R0

if we choose

(9.59) Ã ≤ A

R3
0

=
A

a3
0A

3
3+σ

= a−3
0 A

σ
3+σ .

By the comparison principle applied now in ΓR ∩ {r > R0}, using Lemma 9.6,

we then obtain

(9.60) F0 ≤ FR ≤ F0 +
A

rσ
, for r ≥ R0 = a0A

1
3+σ .

The assertion of the theorem follows now by combing (9.56) and (9.60) and

letting R→∞. �

9.4. A refinement of the asymptotic behavior of F . While Theorem 2 is

enough for our purposes, we establish next a result that estimates accurately

the BDG graph near ∂T , which is interesting in its own right.

Theorem 3. There exists σ0 ∈ (0, 1) such that for each σ ∈ (0, σ0), there

exists a0 > 1 such that for each sufficiently large A ≥ 1, we have

(9.61) H

ñ
F0 +

A tanh(F0r
−1)

rσ

ô
≤ 0 for r > a0A

1
1+σ .

As a consequence there are constants C, R0, such that the solution to the mean

curvature equation described in Theorem 2 satisfies

(9.62) F0 ≤ F ≤ F0 +
C tanh(F0r

−1)

rσ
for r > R0.

Proof. Let us prove (9.61) first. We will denote

F = F0 +
A

rσ
ϕ(t, s), ϕ(t, s) = tanh(t/r).

Note that the A0 and A1 terms in (9.27) are

− 1

2
∂t
( 1

|∇F0|2
)

+
A

|∇F0|2
∂2
t ϕ−

A

2
∂t
( 1

|∇F0|2
)
∂tϕ

+A
(
1 +

1

|∇F0|2
)
∂s
( ρ−2ϕs
|∇F0|2

)
− A

2
∂s
( 1

|∇F0|2
) ρ−2ϕs
|∇F0|2

= |∇F0|−1H[F0] +A|∇F0|−1
[
|∇F0|∂t

( ϕt
|∇F0|2

)
+ |∇F0|∂s

( ρ−2ϕs
|∇F0|2

)]
−A

[3

2
∂t
( 1

|∇F0|2
)
∂tϕ−

1

|∇F0|2
∂s
( ρ−2ϕs
|∇F0|2

)
+

1

2
∂s
( 1

|∇F0|2
) ρ−2ϕs
|∇F0|2

]
.

(9.63)
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By (9.46), we have

H0 = |∇F0|−1H[F0] ≤ c1
cos2 φ

tr4
≤ c1

cosφ

r7
.(9.64)

Now we will deal with the first A1 term in (9.63). This term is given explicitly

in (9.29). We recall here that in (9.30) we have defined the following operator:

L̃0[ϕ] := |∇F0|∂t
Ç

ϕt
|∇F0|2

å
+ |∇F0|∂s

Ç
ρ−2ϕs
|∇F0|2

å
.(9.65)

We will prove the following lemma.

Lemma 9.7. There exists σ0 > 0 such that for each σ ∈ (0, σ0), there

exist a0 > 0 and c0 > 0 such that

L̃0[r−σ tanh(t/r)] ≤ − c0

r4+σ
min{1, t/r}, r > a0.(9.66)

Proof. Let us denote

β(η) = tanh(η), η =
t

r
, β1(η) = β(η)− 1

σ
β′η

and

(9.67) ϕ = β(η)r−σ, σ > 0.

Then we compute

∂sϕ = −σr
−σ sin2 φ

7s
β1;

hence

∂s

Ç
ρ−2∂sϕ

|∇F0|2

å
= −c1σ∂s

Ç
r−σ

t2
cos2 φβ1

å
,

where c1 > 0. From now on, by ci > 0 we will denote generic positive constants.

We obtain

∂s

Ç
ρ−2

|∇F0|2
∂sϕ

å
(9.68)

= −c1σr
−6−σ

9g2 + g2
θ

®
β1

ñ
1 +

2 sin2 φ

7

Ç
−σ
2

+ φ′
åô
− η sin2 φ

7
β′1

´
.

On the other hand, we have

∂tϕ = −σr
−σ

3t
β cos2 φ+ β′

Ç
1− cos2 φ

3

å
r−σ−1

and
∂tϕ

|∇F0|2
=
r1−σ cos2 φ

9t2

ñ
−σ
3

(
β

η
) cos2 φ+

Ç
1− cos2 φ

3

å
β′
ô
;
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hence

∂t

Ç
1

|∇F0|2
∂tϕ

å
=

ñ
− 2r1−σcos2 φ

9t3
+
r1−σ sin2(2φ)φ′

63t3

ôÇ
1− cos2 φ

3

å
β′

(9.69)

+
r−σ cos2 φ

9t2

ñ
−σ
3

Ç
β

η

å′
cos2φ+

Ç
1− cos2 φ

3

å
β′′
ôÇ

1− cos2 φ

3

å
+O

Ç
cosφ

r8+σ

å
.

The first term in (9.69) is negative. The second term can be estimated as

follows:

r−σ cos2 φ

9t2

ñ
−σ
3

Ç
β

η

å′
cos2 φ+ (1− cos2 φ

3
)β′′
ôÇ

1− cos2 φ

3

å
(9.70)

≤ c2

r6+σ

ñ
−σ
3

Ç
β

η

å′
cos2 φ+

2

3
β′′
ô
.

Combining (9.68) and (9.70), we have

L̃0[ϕ] ≤ c3

r4+σ

®
− σβ1

ñ
1 +

2 sin2 φ

7

Ç
−σ
2

+ φ′
åô

+
ησ sin2 φ

7
β′1(9.71)

+

ñ
−σ
3

Ç
β

η

å′
cos2 φ+

2

3
β′′
ô´

+O
Äcosφ

r6+σ

ä
.

Denoting the term in brackets above by ã we can estimate as follows:

ã ≤ β′′
Ç
c4η

2 sin2 φ+
2

3

å
− c5σ

ñ
β − c6|β′η| − c7

∣∣∣∣∣
Ç
β

η

å′∣∣∣∣∣ô.
Given small ε0 > 0, let η0 > 0 be such that

β − c6|β′η| − c7

∣∣∣∣∣
Ç
β

η

å′∣∣∣∣∣ ≥ ε0, η ≥ η0;

hence for η > η0, we have

ã ≤ −c8ε0σ for σ ∈ (0, 1/2).(9.72)

On the other hand, when 0 ≤ η ≤ η0, then

ã ≤ −c9η

Ç
1

7
η2 +

2

3

å
− c10ση ≤ −c11η,(9.73)

where σ ∈ (0, σ0) with σ0 > 0 small. Finally let us consider the last term in

(9.71). When η ≤ 1, then
cosφ

r6+σ
≤ c12η

r8+σ
,

while when 1 ≤ η, then
cosφ

r6+σ
≤ 1

r6+σ
.
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Summarizing the above and (9.71)–(9.73), we have that for each σ ∈ (0, σ0),

where σ0 is small, there exists r0 > 0, c0, such that

L̃0[ϕ] ≤ −
Ç
c13

r4+σ
− c14

r6+σ

å
min{1, η}(9.74)

≤ − c0

r4+σ
min{1, η}, r > r0. �

Continuing the proof of Theorem 3 we notice that

(9.75) − 3

2
∂t

Ç
1

|∇F0|2

å
∂tϕ ≤

c15 cosφ

r8+σ
≤ c15 min{η, 1}

r8+σ

since cosφ ≤ η
r2 , and

1

|∇F0|2
∂s

Ç
ρ−2ϕs
|∇F0|2

å
≤ c16

r8+σ
min{η, 1}(9.76)

−1

2
∂s

Ç
1

|∇F0|2

å
ρ−2ϕs
|∇F0|2

≤ c17
|β1(η)|
r10+σ

≤ c17
min{η, 1}
r10+σ

.(9.77)

We analyze the A2 term and A3 terms in the expansion of

H[F0 +Ar−σ tanh(t/r)].

A typical term in (9.27) is

−1

2
∂t

Ç
ρ−2F 2

s

|∇F0|2

å
= −σ

2 sin2 φ cos2 φ

27t3r2σ
[−σ cos2 φ− 3 + cos(2φ)φ

′
]β2

1(9.78)

− σ2 sin2 φ cos2 φ

9t3r2σ
2β1β

′
1η

Ç
1− cos2 φ

3

å
= sin2 φmin{η, 1}O(r−7−2σ).

Other A2 terms are estimated in a similar way. Direct calculation shows that

the A3 term satisfies

H3 = sin2 φmin{η, 1}O(r−8−3σ).(9.79)

In conclusion, we have

H[F0 +Ar−σ tanh(F0/r)] ≤
Ç
c1

r7
− c0A

r6+σ
+
c18A

2

r7+2σ
+
c19A

3

r7+3σ

å
min{1, η}

(9.80)

≤ 0,

if we choose a0 large and r ≥ a0A
1

1+σ . This proves (9.61).

Now we will show (9.62). From (9.57), we have

(9.81) F0 ≤ FR ≤ F0 + ÃF0r
−σ for r ≥ a0

for some Ã ≥ 1.
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Let us consider the region

Σ := BR ∩ {v > u} ∩ {r > R0} ∩
ß

0 ≤ F0

r
< 1

™
,

where R0 = a0A
1

1+σ , and A is to be chosen. From (9.57), in Σ we have

(9.82) F0 ≤ FR ≤ F0 + ÃF0R
−σ
0 ≤ F0 +

A tanh(F0R
−1
0 )

Rσ0
for r = R0

if we choose

(9.83) Ã ≤ A

R0

tanh(F0R
−1
0 )

F0R
−1
0

= Aσ/(1+σ)a−1
0 sup
|η|<1

tanh η

η
.

Consider now the boundary {F0
r = 1}. By (9.60),

F0 ≤ FR ≤ F0 +
A tanh(1)

rσ

(9.84)

≤ F0 +
A tanh(F0/r)

rσ
for r ≥ R0 ≥ a0(tanh(1)A)

1
3+σ and F0/r = 1

if we choose (cf. (9.59))

Ã ≤ a−3
0 (tanh(1)A)

σ
3+σ .(9.85)

Choosing A larger if necessary, we can assume that in addition to (9.83), also

(9.85) is satisfied. By the comparison principle applied to Σ, we then obtain

(9.86) F0 ≤ FR ≤ F0 +
A tanh(F0/r)

rσ
for r ≥ R0.

Passing to the limit R→∞ we then get

(9.87) F0 ≤ F ≤ F0 +
A tanh(F0/r)

rσ
for r ≥ R0

in Σ. Combining this with the statement of Theorem 2 to estimate F for

r > R0 in the complement of Σ, we complete the proof. �

10. Appendix: The proof of formula (7.4)

In this appendix we carry out the main computation leading to formula

(7.4) for the approximate Jacobi operator

JΓ0 [h] := H
′
(F0)[

»
1 + |∇F0|2h].

Following the notation in Section 9.2, the minimal surface equation H[F ]

= 0 becomes

(10.1)

H[F ] := |∇F0|∂t
Ç

|∇F0|»
1 + |∇F |2

∂tF

å
+ |∇F0|∂s

Ç
ρ−2

|∇F0|
»

1 + |∇F |2
∂sF

å
= 0.
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It is easy to see that

(10.2)

H
′
[F0](φ) = |∇F0|∂t

Ç
|∇F0|

(1+ |∇F0|2)3/2
∂tφ

å
+|∇F0|∂s

Ç
ρ−2

|∇F0|
»

1+ |∇F0|2
∂sφ

å
.

Let us now set

φ =
»

1 + |∇F0|2 h.

Then after some simple computations, we obtain

|∇F0|∂t
Ç

|∇F0|
(1 + |∇F0|2)3/2

∂tφ

å
=

|∇F0|2

1 + |∇F0|2
∂2
t h−

|∇F0|
(1 + |∇F0|2)2

∂t|∇F0|∂th

+ |∇F0|∂t
Ç

|∇F0|
(1 + |∇F0|2)2

∂t|∇F0|
å
h

and

|∇F0|∂s
Ç

ρ−2

|∇F0|
»

1 + |∇F0|2
∂sφ

å
= ∂s(ρ

−2∂sh)

− 1

|∇F0|(1 + |∇F0|2)
∂s|∇F0|ρ−2∂sh

+ |∇F0|∂s
Ç

ρ−2

1 + |∇F0|2
∂s|∇F0|

å
h.

Note that

(10.3)
|∇F0|

(1 + |∇F0|2)2
∂t|∇F0| = O(r−7),

1

|∇F0|(1 + |∇F0|2)
ρ−1∂s|∇F0| = O(r−5).

The operator in terms of h then becomes

JΓ0 [h] : = H
′
[F0](

»
1 + |∇F0|2h) = ∂2

t h+ ∂s(ρ
−2∂sh)

+ h

Ç
|∇F0|∂2

t

Ç
− 1

|∇F0|

å
+ |∇F0|∂s(ρ−2∂s

Ç
− 1

|∇F0|

åå
+O(r−4|∂2

t h|+ r−7|∂th|+ r−5|ρ−1hs|+ r−6|h|).

The desired expression (7.4) is then deduced from the following two identities:

∆Γ0h = ∂2
t h+ ∂s(ρ

−2∂sh)

and

|AΓ0 |2 =

Ç
|∇F0|∂2

t

Ç
− 1

|∇F0|

å
+ |∇F0|∂s(ρ−2∂s

Ç
− 1

|∇F0|

åå
,

which follow from standard computations. We omit the details.
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