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Abstract

A celebrated conjecture due to De Giorgi states that any bounded so-
lution of the equation Au 4 (1 — u?)u = 0 in RY with 8, u > 0 must be
such that its level sets {u = A} are all hyperplanes, at least for dimension
N < 8. A counterexample for N > 9 has long been believed to exist. Start-
ing from a minimal graph I'" which is not a hyperplane, found by Bombieri,

De Giorgi and Giusti in RY, N > 9, we prove that for any small o > 0 there
_t

7))
where t = t(y) denotes a choice of signed distance to the blown-up mini-

is a bounded solution uq(y) with 9y, ua > 0, which resembles tanh (

mal graph 'y := o 'TI". This solution is a counterexample to De Giorgi’s
conjecture for N > 9.
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1. Introduction
This paper deals with entire solutions of the Allen-Cahn equation
(1.1) Au+(1—u?)u=0 inR",

Equation (1.1) arises in the gradient theory of phase transitions by Cahn-
Hilliard and Allen-Cahn, in connection with the energy functional in bounded
domains 2

€ 1
1 _¢ 2 7/1_22
(1.2) T (u) Q/Q\w +o [a=ud e>0

whose Euler-Lagrange equation corresponds precisely to an e-scaling of equa-
tion (1.1) in the expanding domain e~!€. The theory of I'-convergence de-
veloped in the 70’s and 80’s, showed a deep connection between this problem
and the theory of minimal surfaces; see Modica, Mortola, Kohn, Sternberg,
[21], [28], [29], [30], [36]. In fact, it is known that a family {u.}.>0 of local
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minimizers of J. with uniformly bounded energy must converge as ¢ — 0, up
to subsequences, in L'-sense to a function of the form yg — xge where y de-
notes characteristic function of a set, and 0F has minimal perimeter. Thus
the interface between the stable phases u = 1 and u = —1, represented by the
sets {us = A} with |A\| < 1 approach a minimal hypersurface; see Caffarelli and
Cérdoba [7, 8] (also Réger and Tonegawa [32]) for stronger convergence and
uniform regularity results on these level surfaces.

The above described connection led E. De Giorgi [9] to formulate in
1978 the following celebrated conjecture concerning entire solutions of equa-
tion (1.1).

DE GIORGI'S CONJECTURE. Let u be a bounded solution of equation (1.1)
such that Oy u > 0. Then the level sets {u = A} are all hyperplanes, at least
for dimension N < 8.

Equivalently, v depends on just one Euclidean variable so that it must
have the form

(1.3) u(z) = tanh (x\aﬁ_b>

for some b € R and some a with |a] = 1 and ay > 0. We observe that the

w(t) = tanh (\%)

is the unique solution of the one-dimensional problem

w4+ (1 —ww =0, w(0)=0, w(+oo)==+l.

function

The monotonicity of w implies that the scaled functions u(x/e) are, in
a suitable sense, local minimizers of .J.; moreover, the level sets of u are all
graphs. In this setting, De Giorgi’s conjecture is a natural, parallel statement
to Bernstein’s theorem for minimal graphs, which in its most general form,
due to Simons [35], states that any minimal hypersurface in R, which is also
a graph of a function of N — 1 variables, must be a hyperplane if N < 8.
Strikingly, Bombieri, De Giorgi and Giusti [5] proved that this fact is false in
dimension N > 9. This was most certainly the reason for the particle at least
in De Giorgi’s statement.

Great advance in De Giorgi’s conjecture has been achieved in recent years,
having been fully established in dimensions N = 2 by Ghoussoub and Gui [16]
and for N = 3 by Ambrosio and Cabré [2]. Partial results in dimensions
N = 4,5 were obtained by Ghoussoub and Gui [17]. More recently Savin
[33] established its validity for 4 < N < 8 under the following additional
assumption (see [1] for a discussion of this condition):

(1.4) lim u(z,zy) = +1.

TN —Foo
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Condition (1.4) is related to the so-called Gibbons’ Conjecture.
GIBBONS’ CONJECTURE. Let u be a bounded solution of equation (1.1)
satisfying

(1.5) lim w(z,zn) = +1, uniformly in z'.
x Ny —F00

Then the level sets {u = A} are all hyperplanes.

Gibbons’ Conjecture has been proven in all dimensions with different
methods by Barlow, Bass and Gui [3], Berestycki, Hamel, and Monneau [4],
Caffarelli and Cérdoba [8], and Farina [14]. In references [3], [8] it is proven
that the conjecture is true for any solution that has one level set which is
globally a Lipschitz graph. If the uniformity in (1.5) is dropped, then a coun-
terexample can be built using the method by Pacard and the authors in [11],
so that Savin’s result is nearly optimal.

A counterexample to De Giorgi’s conjecture in dimension N > 9 has been
believed to exist for a long time, but the issue has remained elusive. Partial
progress in this direction was made by Jerison and Monneau [19] and by Cabré
and Terra [6]. See the survey article by Farina and Valdinoci [15].

In this paper we show that De Giorgi’s conjecture is false in dimension
N > 9 by constructing a bounded solution of equation (1.1) which is mono-
tone in one direction and whose level sets are not hyperplanes. The basis of
our construction is a minimal graph, different from a hyperplane, found by
Bombieri, De Giorgi and Giusti [5]. In this work a solution of the zero mean
curvature equation

(1.6) v )0 in RN-1,
V14 |VF?

different from a linear affine function was found, provided that N > 9. This
solution is, in other words, a nontrivial minimal graph in RY. Let us observe
that if F'(z') solves equation (1.6) then so does

Fo(2') :=a 'F(az’), a>0,
and hence
(1.7) Lo ={(@,zn) |2 e RN, 2y = Fo(2))}

is a minimal graph in R™. It turns out that the scaling parameter in (1.6)
provides a natural bridge between (1.1) and (1.6).
Our main result states as follows:

THEOREM 1. Let N > 9. There is a solution F' to equation (1.6) which
s not a linear affine function, such that for all a > 0 sufficiently small, there
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exists a bounded solution uq(y) of equation (1.1) such that uy(0) =0,
OynUa(y) >0 forall ye RV,

and

(1.8) lua(y)] — 1 as dist (y,T) — oo,

uniformly for all small oo > 0, where T, is given by (1.7).

Property (1.8) implies that the 0 level set of u, lies inside the region
dist (y,I's) < R for some fixed R > 0 and all small «, and hence it cannot
be a hyperplane. Much more accurate information about the solution will be
drawn from the proof. The idea is simple. If ¢(y) denotes a choice of signed
distance to the graph I'y, then, for a small fixed number § > 0, our solution

(o3 y \/» .

As we have mentioned, a key ingredient of our proof is the existence of
a nontrivial solution of equation (1.6) proven in [5]. We shall derive precise
information about its asymptotic behavior, which in particular will help us to
find global estimates for its derivatives. This is a crucial step since the mean
curvature operator yields in general poor gradient estimates. In addition we
shall derive a theory of existence and a priori estimates for the Jacobi oper-
ator of the minimal graph. Subsequently, a suitable first approximation for a
solution of (1.1) is built. Next, we linearize our problem around the approxi-
mate solution in order to carry out an infinite-dimensional Lyapunov Schmidt
reduction. This procedure eventually reduces the full problem (1.1) to one of
solving a nonlinear, nonlocal equation which involves as a main term the Ja-
cobi operator of the minimal graph. Schemes of this type have been successful
in establishing existence of solutions to singular perturbation elliptic problems
in various settings. For the Allen-Cahn equation in compact situations this
has been done in the works del Pino, Kowalczyk and Wei [13], Kowalczyk
[22], Pacard and Ritore [31]. In particular in [31] solutions concentrating on
a minimal submanifold of a compact Riemannian manifold are found through
an argument that shares some similarities with the one used here. In the non-
compact setting, for both (1.1) and nonlinear Schrédinger equation, solutions
have been constructed by del Pino, Kowalczyk and Wei [12], del Pino, Kowal-
czyk, Pacard and Wei [11], [10], and Malchiodi [24]. See also Malchiodi and
Montenegro [25], [26]. We should emphasize here the importance of our earlier
works [11], [10] in the context of the present paper, and especially the idea of
constructing solutions concentrating on a family of unbounded sets, all coming
from a suitably rescaled basic set. While in [11], [10] the concentration set was
determined by solving a Toda system and the rescaling was the one appropriate
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to this system, here the concentration set is the minimal graph and the rescal-
ing is the one that leaves invariant the mean curvature operator. We mention
that our work are partly motivated by earlier works of Kapouleas [20], Mazzeo
and Pacard [27], and Mahmoudi, Mazzeo and Pacard [23] on construction of
noncompact constant mean curvature surfaces in Euclidean three space.

Let us observe that a counterexample to De Giorgi’s conjecture in N =9
gives one in RY = R? x RN~ for any N > 9, by extending the solution in
RY to the remaining variables in a constant manner. For this reason, in what
follows we shall assume N =9 in problem (1.1). We will also denote

fu) = (1 —u?)u.

We shall devote the rest of the paper to the proof of Theorem 1. The
proof is rather long and technical, but has steps that are logically independent
and can be divided into nearly independent blocks. The exposition is designed
so that the proof is completed by page 1508, except for some steps which
are isolated in the form of lemmas and propositions, and whose full proofs,
postponed to the subsequent sections, are not necessary to follow the logical
thread of the proof of Theorem 1. That is the purpose of the Sections 2—4.

In Section 2 the BDG graph and its asymptotic behavior are described.
The proof of the main result there, Theorem 2, which involves a delicate im-
provement of the supersolution in [5], is carried out in Section 9. In Section 3
a first approximation, about which we linearize, is built and the error of ap-
proximation and its features are analyzed in detail. In Section 4 we present
the full proof of the theorem in various steps, with several intermediate results
stated, with proofs in turn are given in the proceeding Sections 5-9. Each of
these last five sections is largely independent and can be read individually.

2. The BDG minimal graph

The minimal surface equation for a graph in R? corresponds to the Euler-
Lagrange equation for the functional

A(F) = / 1+ |VFda,

integrated over subsets of R®. In other words, F' represents a minimal graph
if for any compactly supported test function ¢

A(F)o) = [

V1+I|VF?

dr =0

We observe that
AP = - [ HIF 9ds,
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where

._ . VFE _ in RS
(2.1) HIF] == V <W> 0 inR®.

Quantity H[F|] corresponds to the mean curvature of the hypersurface in R?,
I':={(2,F(z') | 2’ € R®}.

The Bombieri-De Giorgi-Giusti minimal graph [5] is a nontrivial, entire smooth
solution of equation (2.1) that enjoys some simple symmetries which we de-
scribe next.

Let us write 2’ € R® as 2/ = (u,v) € R* x R* and denote u = [u|, v = |v]|.
Let us consider the set

(2.2) T:={(u,v) €R®| v>u>0}.

We should remark here the set {u = v} € R is the famous Simons minimal
cone [35]. The solution found in [5] is radially symmetric in both variables,
namely F' = F(u,v). In addition, F' is positive in 7" and it vanishes along the
Simons cone. Moreover, it satisfies

(2.3) F(u,v) = —F(v,u) forall wu,v>0.

Let us observe that for a function F' that depends on (u,v) only, the area
functional becomes, except for a multiplicative constant,

A(F) = /\/1 + F2 4+ F2 v3v3dudv,

and hence equation (2.1) for such a function becomes

1 3 3F 1 3 3F
H[F]: 338u U'U2u ) + 33811 uUZU ) = 0.
udv J1+F2+F2 ) wbv 1+ F2 + F2
It is useful to introduce in addition polar coordinates (u,v) = (r cosf,rsin6)
for which we get (up to a multiplicative constant)

A(F) = / 1+ F2+72F2 v7sin® 20 dr do,

so that (2.1) reads

(2.4) HIF) 1 a( F.r" sin® 20 )

T r7sin320 " \/1 + F2 47 2F2

1 Fyrb sin® 26
+ 7, 32939 5 S =0.
r’sin \/1+FT+T— F;
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0=1

Figure 1. Schematic view of the function F(u,v) representing I" in
the sector T'= {0 < u < v}.

Set Fy = r3g(0). Then we get
(2.5)

1 3r7g sin® 20 1 'sin® 26
H[Fy| = — 3298r<\/ 7”49 Sln2 2>+ ; 32930<\/ Zsm 5 5 |-
' Ssin r— +99 +g/ T S1n r— +9g +gl

For Fj to be a good approximation of a solution of the minimal surface equation
H[F] = 0, we neglect terms of order 7~* in the denominators, and, additionally
because of (2.3), we require that g(f) solves the two-point boundary value

problem

(2.6)

/
21g sin® 26 g’ sin® 20 . (T T v (T
s (Y (25)o(5)-0-0(3)
9g2 + ¢’ 9g2 + ¢’ 4’2 4 2

Regarding (2.6), we have the following result.

LEMMA 2.1. Problem (2.6) has a unique solution g € C*([5,%]) such that

g and g are positive in (§,%5) and such that ¢'(§) = 1.

We fix in what follows the function g as above and we set Fy(z') = 73g(6).
Let us observe that

(2.7) H[Fy) =O0(r™®) asr=|z/| = 4o0.

The next result, crucial in the arguments to follow, refines the existence result
in [5] in what concerns the asymptotic behavior of the minimal graph, which
turns out to be accurately described by Fpy; see also Figure 1.
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THEOREM 2. There exists an entire solution F' = F(u,v) to equation (2.1)
which satisfies (2.3) and such that

c . )
(2.8) Fo <F<Fy+ prs min{Fp,1} inT, r> Ry,
where 0 < 0 <1, C>1 and Ry, are positive constants.

We will carry out the proofs of Lemma 2.1 and Theorem 2 in Section 9.
In what remains of this paper we will denote, for F' and Fj as in Theorem 2,

I ={(,F))| 2’ €eR®}, To={(,F))]| =’ €R®}.
By I', we will denote the dilated surfaces I'y = o 'T". Also, in the rest of this
paper we shall use the notation
(2.9) r(z) = |2'|, 7Ta(z) = r(ax), z=(2',19) € R® x R=R"

We conclude this section by introducing the linearization of the mean cur-
vature operator, corresponding to the second variation of the area functional,
namely the linear operator H'(F') defined by

o= e )

When the second variation is measured with respect to normal, rather

than to vertical perturbations, we obtain the Jacobi operator of I', defined for
smooth functions h on I' as

Jr[h] = Arh + |Ar(y)*h,

where Ar is the Laplace-Beltrami operator on I' and |Ar|? is the Euclidean
norm of its second fundamental form, namely |Ar|?> = S8 | k? where ky, ..., ks
are the principal curvatures. See [35, Th. 3.2.2].

These two operators are linked through the simple relation

(2.10)  Jrlh] = H'(F)[¢], where ¢(z') =+/1+ |VF(2')|?2h(z', F(z)).

Similarly, using formula (2.4), we compute for vertical perturbations ¢ =
o(r,0) of Iy,

(211) H/(FO)[¢] = M{(ggQ 71773(?0)9 + (7’59/2 QIJ¢T)7,
— 3(g9’ wr'e,)e — 3(g9’ @T4¢>9)r}
1 - e ~
g 0 B0 + (126,
i) = — 2
(r=4+9¢%>+¢'%)>2
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3. Local coordinates near I', and the construction of
a first approximation
We are studying the equation
(3.1) AU + f(U)=0 inR% fU)=UQ1-U?.

It is natural to look for a solution U(z) that obeys the symmetries of I',. Let
us consider the linear isometry in R° given by

(3.2) Q(u,v,x9) = (Pv,Qu, —xy9),

where P and @ are orthogonal transformations of R*. We observe that this
isometry leaves I', invariant and that if U(x) solves (3.1) then so does the
function —U(Qx). We look for a solution with the property

(3.3) U(Qx) = —-U(x)
for any Q of the form (3.2). In other words, we look for U = U(u, v, x9) with
U(v,u, —z9) = —U(u, v, xg).

The proof of Theorem 1 relies on constructing a first, rather accurate
approximation to a solution whose level sets are nearly parallel to I'y,, and
then linearize the equation around it to find an actual solution by fixed point
arguments. A neighborhood of I', can be parametrized as the set of all points
of the form

(3'4) T = Xa(yv'Z) =y + ZI/(Ozy), y €la,

where |z| is conveniently restricted for each y. We observe that v(ay) corre-
sponds to the normal vector to I',, at the point y. It seems logical to consider
ug(z) = w(z) as a first approximation to a solution near I',. Rather than
doing this, we consider a smooth small function h defined on I' and set

uo(x) == w(z — h(ay)).

The function h is left as a parameter which will be later adjusted. Consistently,
we ask that h obeys the symmetries of I' requiring that for any Q of the form
(3.2) we have

(3.5) h(y) = —h(Qy) forall yeT.

We notice that this requirement implies that A~ = 0 on Simons cone {u = v}.
Suitably adapted to this initial guess is the change of variables

(3.6) = Xp(y,t) =y + ({t+hlay))v(ay), y€Tlq,

so that ug(z) = w(t).
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Since F(u,v) = F(u,v) = —F(v,u), we have that Qu(ay) = —v(aQy),
and hence
(3.7) Xn(Qy,—t) = —QXn(y,1).

Thus, if V=V (z) and we set with some abuse of notation V (y,t):=V (X (y, 1)),
then

(3.8) V(Qx) =—-V(x) ifandonlyif V(y,t)=—-V(Qy,—1).

In particular, ug(x) satisfies the symmetry requirement (3.3) where it is defined,
since the function w is odd.

To measure the accuracy of this approximation, and to set up the lin-
earization scheme, we shall derive an expression for the Euclidean Laplacian
A, in terms of the coordinates (y,t) in a region where the map X}, defines a
diffeomorphism onto an open neighborhood of T',.

At this point we make explicit our assumptions on the parameter function
h besides (3.5). We require that h is of size of order o and that it decays at
infinity along I' at a rate O(r(y) '), while its first and second derivatives decay
at respective rates O(r=2) and O(r=3). Precisely, let us consider the norms

9lloo, = [I(1 +1¥) gHLOO(F), lgllpy = Slelfr) (1 + T(y)y) HgHLP(FOB(y,l))'
y

Let us fix numbers M > 0, p > 9 and assume that h satisfies
(3.9) 1Allx == [[Pllco,1 + | Prhlloc,2 + | DEAllps < M.

In order to find the desired expression for the Laplacian in coordinates (3.6),
we do so first in coordinates (3.4) for a« = 1. Let us consider the smooth map

(3.10) (,2) ET xR — x=X(y,2) =y + 2v(y) € R.

As we will justify below (Remark 8.1), there is a number § > 0 such that the
map X is one-to-one inside the open set

(3.11) O={(y,z) eT xR| |z] <d(r(y) +1)}.

It follows that X is actually a diffeomorphism onto its image, N' = X (O).
The Euclidean Laplacian A, can be computed by a well-known formula
(see for instance [31]) in terms of the coordinates (y,z) € O as

(312) Ay =0, + AFz - HFz (y)az? xr = X(y7 Z)? (y7 Z) € (97
where I', is the manifold

L.={y+zv(y)| yel}

By identification, the operator Ar, is understood to act on functions of the
variable y, and Hrp_(y) is the mean curvature of I', measured at y + zv(y).
To make expression (3.12) more explicit, we consider local coordinates around
each point of I'.



1496 MANUEL DEL PINO, MICHAL KOWALCZYK, and JUNCHENG WEI

Let p € T be a point such that r(p) = R. Then a neighborhood of p in
I" can be locally represented in coordinates as the graph of a smooth function
defined on its tangent space T),I'. Let us fix an orthonormal basis IIy, ..., IIg
of T,I'. Then there is a neighborhood U of 0 in R® and a transformation of the
form

8
(3.13) yEUCR = Yy(y) =p+ Y yilli + Gyly)v(p)
i=1
onto a neighborhood of p in I'. Here Gy, is a smooth function with DyG,(0)=0.
As we will prove in Section 8.1, the fact that curvatures at y € I' are of order
O(r(y)~1) (as follows from a result by L. Simon [34]) yields:

PROPOSITION 3.1. There exists a number 0y > 0 independent of p € T’
such that U can be taken to be the ball B(0,00R) whenever R = r(p) > 1.
Moreover, the following estimates hold:

|yl
DGyl < C%, 1DYGy(y)] <

The explicit dependence on p will be dropped below for notational simplic-
ity. Let us denote by g;; the metric on I' expressed in these local coordinates,

namely

m>2 forall |yl <6R.

Rmfl’

(3.14) gij = (0iYp, 0;Yp) = dij + 0iGp(y) 9;Gp(y)-
Then, by Propoisition 3.1,
gij = 0ij + O(ly’R™?), DJ'gi; = O(R™™ ).

The Laplace-Beltrami operator on I' is represented in coordinates y € U as

1 -
(3.15) Ar = g0V detge” 95) = als ()9 + V(7).

where
1

Vdet g

We should point out that here as well as throughout the remainder of this paper

ay(y) == g9 = 8 + O(yPR™), W(y) = ———0;(/det gg) = O(ly| R2).

we use Einstein summation convention for repeated indices. Let us observe in
addition that for y = Y, (y) we have that

1
v(y) = v(p) — 0;Gp(y) IL);
(y) FanYe (y)P( (p) (v) IL)
hence
(3.16) Dyv=0(R™"), Djv=O0(R7?).
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3.1. Coordinates in RY near I' and the Fuclidean Laplacian. From esti-
mate (3.16) it can be proven that, normal rays emanating from two points
y1,y2, of I' for which r(y1),7(y2) > R, cannot intersect before a distance of
order R from I', which justifies the definiteness of the coordinates (y,z) in
(3.11) (see Remark 8.1).

Local coordinates y = Y,(y), y € U C R®, as in (3.13) induce natural local
coordinates in I';, Y},(y) + zv(y). The metric g;;(2) on I', can be computed:

(3.17) gij(z) = (9;Y, 8JY> + 2((0;Y, ajl/> + <an, o)) + 22 (O, 8jl/> ,
and hence for r = r(y), and g;; as in (3.14),
gij(2) = gij T2 O(lylr)+220(r™?), Dy gij(2) = Dy gij+2O(r~)+220(r7?).

Thus,

(3.18) Ar, = deig(z)@'(\/ det g(2) g7(2) 9;) = aij(y, 2)0 + bi(y, )9,

where a;;, b; are smooth functions which can be expanded as
(3.19) aij(y, 2) = ad(y) + zal;(v,2), bi(y,2) =b(y) + z (b} (y) + 2bi(y, 2))

b} (y,@)

with
ali(y,2) =0(r™%), bi(y)=0("?), bi(y,z)=0(r"") forall [y|<1.

Let us consider the remaining term in the expression (3.12). We have the
validity of the formula

8 00 8
k; - .
(3.20) H(y,z):= Hr.(y) = Z 1_722 = ZZJ 1Hj(y)7 Hj(y) = Z kzj'a
i=1 i j=1 i=1
where k; = k;i(y), i = 1,...,8 are the principal curvatures of I at y, namely

the eigenvalues of the second fundamental form Ar(y), which correspond to
the eigenvalues of D?G(O) for y = p in the local coordinates (3.13). Since I' is
a minimal surface, we have that H; = 0. We will denote |Ar(y)|? := Ha(y).
We write, for later reference, for m > 2,

(3:21) H(y,2) = zHa(y) + 2°Hs(y) + ... + 2" *Hy1(y) + 2" Hu(y, 2),
where, since k; = O(r~!), we have

Hj(y) = O(r™), Hip(y,2) = O(r™™).

Thus in local coordinates (y, z), y = Y,(y), we have the validity of the
expression

(3.22) Ay = 0. + aij(y, 2) 0y + bily, 2) 0 — H(y, 2) 9z,

with the coefficients described above.



1498 MANUEL DEL PINO, MICHAL KOWALCZYK, and JUNCHENG WEI

We can use the above formula to derive an expression for the Laplacian
near ', by simple dilation as follows: We consider now the coordinates near I'y:
(3.23)

P = Xa(y.2) =y + (o), (1,2) € Ou={y € Ta, 2 < (r(oy) + 1))

If p e Ty and po := ap € I', then the local coordinates y = Y, (y) defined
in (3.13) inherit corresponding coordinates in an a~!-neighborhood of p by
setting, with some 6 > 0 (depending in T),

_ 0
(3.24) y=Yaly) :=a Y, (ay), lyl< -

Let us consider a function u(x) defined near I'y. Then letting v(y,z) =
u(Xa(y, 2)), and defining u(x) =: @(ax) we find
Agula=x,(y.2) = 0°D50(F)|3=X (ay.a2)
= a? (9z: + aij(§, 2) 0ij + bi(§, 2) 0; — H(, ) 9)
xv(a” 'y, a7'2) |(7,5)=(ay,az)>
which means precisely that for the coordinates (3.23) we have
(3.25) Ay = 0. + aij(ay, az) 0 + abi(ay, az) 0; — aH (o, az) 0.

Let us fix now a smooth, small function h defined on I' as in (3.9) and
consider coordinates (3.23) defined near 'y, as

(3.26) x = Xp(y,t) =y + (t+ h(ay)) v(ay),
(y,t) € Op = {y €Ty, |2+ h(ay)| < g(r(ay) + 1)}
If v(y,t) = u(Xp(y,t)) = 0(y, t + h(ay)), then
Al y=x, (yt) = Datlz=X, (y,t4+h(ay))
= (0.2 + aij(ay, az) 05 + abi(ay, az) 0; — aH (o, az) 0,)

x [0(y, 2 = hay)l (y,2)=(y.t+-h(ay))

where by slight abuse of notation we are denoting by h(ay) the function h o
Y (ay). Carrying out the differentiations and using the symmetry of a;j, we
arrive at the following expression for the Laplacian in coordinates (3.26)

(3.27) JAVRE (1 + a2aijaih8jh)att + a;; aij — 2aaij81h8jt + ab; 0;
— (a*(aijOi;h + bO;h) + aH)) O,
where all coefficients are evaluated at ay or (ay, a(t + h(ay)).
We observe that for y =Y}, o(y), we have that (with some 6 > 0 small)

0

(3.28) Ar = a?j(ay)&j + oab?(ay)@i, ’y‘ < a

[e3
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Therefore if we write
(3.29) Ay =0u+ Ap, + B,
then, with the notation (3.19), the operator B acting on functions of (y,t) €
O c Ty x R is given by
(3.30) B= 042aijaihajh Oy + a(t + h)( ailj @'j + ab}ai)
— 2aaij8ih8jt — (a2(a,-j8ijh + blalh) + aH)) 0.

3.2. Error of approrimation. Let us take as a first approximation to a
solution of the Allen-Cahn equation simply the function ug(z) := w(t). We set

S(u) = Au+ f(u).
Since w”(t) + f(w(t)) = 0, we find that
S(uo) = a®ay;d:hdihw"(t) — (0*(ai;0ih + bidsh) + oH ) w'(t).
We expand H (ay, a(t + h)) according to (3.21) as
H = a(t + h)|Ar(ay)* + ?(t + h)*Hz(ay) + o’ (t + h)* Ha(ay, a(t + b)),
and we also expand
a;j0ijh + bi0;h = Arh(ay) + a(t + h)(aj;0;;h + bj Oih).

Next we improve the approximation by eliminating the only term of size
order o in the error, namely —a?|Ap(ay)|?*tw’(t). Let us consider the differ-
ential equation

Yo (1) + £ (w(t)ho(t) = tw'(t),
which has a unique bounded solution with 1y(0) = 0, given explicitly by the
formula

t s
bo(t) = ! (t) / w (£)2 / sw!(s)2ds.
0 —o0
Observe that this function is well defined and it is bounded since [*7_ sw’(s)%ds
=0 and w'(t) ~ el as t — 400, any 0 < v/2. We consider as a second

approximation
(3.31) up = up + b1,  é1(y,t) := a?|Ar(ay) 2o (t).
Let us observe that
S(uo+¢) = S(uo)+Asp+f (u0)p+No(¢), No(¢) = f(uo+¢)—f(uo)—f"(uo)¢-
We have that
A1 + f'(uo)pr = o Aay)Ptw'.

Hence we get that the largest term in the error is cancelled. Indeed, we have

S(u1) = S(ug) + | Ar (o) Ptw’ + [Az — O)dr + No(¢1).
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Let us write Ha(ay) = |Ar(ay)|?. We compute

(3.32) S’(ul) = —QQ[AFh + |AF|2h + Oé(t + h)2H3 + a2(t + h)3ﬁ4]w’

+ aQaijaihajh w” 4 Oég(t + h)(a%jaijh + b%(‘)ih)w’

— [0H + a*(a;j0ih + bi0;h) | Hz v

+ 054((612‘3'8@']'[{2 + biang)i/Jo — 2oz4a,-j8ih6jH2w6

+ a’ayd;hd;h Hayy + No(a® Hatho),
where all coefficients are evaluated at ay or (ay, a(t + h(ay)). Roughly speak-
ing, the largest terms remaining in the above expression (recalling assumption
(3.9)) are of size O(a’r;3(y)e ). We introduce next a suitable norm to
account for this type of decay. This norm will be used throughout the paper
in the functional analytic set up.

For numbers 0 < ¢ < v/2, p > 9, v > 0, and a function g defined on
T'q xR, let us write

(3.33) l9lp.v.o ;:( t)Squ Re"'t‘hﬁ(y) 91l e (B((y,0),1)-
y,t)el o X

Then, for instance,

(3.34) [[(Arh)(ay)w'(t)

_8 1—8
p3o < CSUIF) IDER| 1o (Baymy @ P < CMar ».
ye

In all we get, assuming for instance that S(u;) is extended as zero outside Oy,
3-8
(3.35) 1S(u)llpse < CMa™ ».

3.3. Global first approximation. The function u; built above is sufficient
for our purposes as an approximation of the solution near I', but it is only
defined in a neighborhood of it. Let us consider the function H defined in
R\ T, as

1, if xg > Fo(2'),
(3.36) H(z) = if 2y > Fala’)
-1, if xg < F, ().

The global approximation we will use consists simply of interpolating u; with
H outside of a large, expanding neighborhood of I',, using a cut-off function
of [t].

We recall that the set Oy, in I'y, x R was defined as (see (3.26)):

330 Ov= {0 ETa xR It hlan)] < 20+ ),

where § is small positive number. We will denote Ny = X,(Op). The fact
that Oy, is actually expanding with r, along I', makes it possible to choose
the cut-off in such a way that the error created has both smallness in o and
fast decay in 7.
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Let n(s) be a smooth cut-off function with n(s) =1 for s < 1 and n(s) =0
for s > 2. Let us introduce the cut-off functions (,,, m =1,2,...,

) n(lt+ h(ay) —%(1+ra(y))—m), if z € N,
(339 i) = {0, 2 if © & Ns.

Then we let our global approximation w(z) be simply defined as

(3.39) w o= Gup + (1 — G)H,

where H is given by (3.36) and u;(z) is just understood to be H(x) outside Ns.
The global error of approximation becomes

(3.40) Sw) = Aw+f(w) = GS(w) +E,

where

E =2V(Vur + AG(ur — H) + f(¢sur + (1 — CG)H) ) — Cs.f (ur).

The new error terms created are of exponentially small size and have fast decay
with r,. In fact, we have
|E| < Cemalltra),

Remark 3.1. Tracking back the way w was built we see that it has the
required symmetry near Iy, namely w(Qy, —t) = —w(y,t), which is as well
respected by the cut-off functions. Using relation (3.8) we conclude that, glob-
ally in R?, w(Qr) = —w(x). Since the orthogonal transformations P,Q in
the definition of Q in (3.2) are arbitrary, we get that w = w(u,v,z9) with
w(v,u, —x9) = —w(u,v,z9). It follows that exactly the same symmetry is
obeyed by the error S(w).

4. The proof of Theorem 1
We look for a solution u of the Allen-Cahn equation (3.1) in the form
U=w+ep,

where w is the global approximation defined in (3.39) and ¢ is in some suitable
sense small, with the additional symmetry requirement

(4.1) ©(Qz) = —p(x) forall zeR,

so that (3.3) holds.
Thus we need to solve the following problem

(4.2) Ap + f'(w)p = —S(w) — N(p),
where
N(p) = f(u+p) = f(w) = f(w)e.
The procedure of construction of a solution is made up of several steps which
we explain next, postponing the proof of major facts for later sections.
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4.1. Reduction by a gluing procedure. Here we perform a procedure that
reduces (4.2) to a similar problem on entire I'y, X R, which in O}, coincides with
the expression of (4.2) in (y,t) coordinates, except for the addition of a very
small nonlocal, nonlinear operator.

Let us consider the cut-off functions (,, introduced in (3.38). We look for
a solution ¢(x) of problem (4.2) of the following form:

(4.3) o(z) = G(2)o(y, 1) + ¥ (x),

where ¢ is defined in entire I'y, x R, 9(z) is defined in RY and (a(x)¢(y, t) is
understood to be zero outside Ns. We see that (2(Qz) = (2(x). Thanks to
relation (3.8), ¢ will satisfy (4.1) if we require

(4.4) #(Qy,—t) = —¢p(y,t) forall (y,t) el xR,
(4.5) Y(Qx) = —p(z) forall zeRY.

We compute, using that (3¢1 = (y,
(4.6)

SW+¢) = Ap+ f'(w)e + N(p) + S(w)

G [A¢+ f'(ur)d + G(f (ur) = f' (1) + QN + ¢) + S(w1)]
+ A+ [(1 = ¢o) f'(ua) + G f' (D]

+ (1= Q)S(wW) + (1= )N+ (20) +2VGV + A

We recall that f/(£1) = —2.
Thus, we will construct a solution ¢ = (2¢ + ¢ to problem (4.2) if we
require that the pair (¢, 1)) satisfies the following coupled system:

WD) A+ )+ QU () + 20+ N +6)+ S(ur) = 0
for 1] < - (1-+7a(y) +3,

(4.8) AP +[(1=C1)f (ur) = 2G]Y + (1 = G)S(w) + (1 = Q)N (¢ + G2¢)
+2V Ve + ¢AC =0 in RY.

We will first extend equation (4.7) to entire Iy, x R in the following manner.
Let us set

(4.9) B(¢) := Ca[Ay — O — Ar,]¢p = GuB(6),

where A, is expressed in (y,t) coordinates using expression (3.27) with B
described in (3.30), and B(¢) is understood to be zero for (y,t) outside the
support of (4. Similarly, we extend the local expression (3.32) for the error of
approximation S(up) in (y,t) coordinates, to entire I',, x R as

S(u1) = ¢S (u),

with this expression understood to be zero outside the support of (4.
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Thus we consider the extension of equation (4.7) given by

(4.10) 9y + Ar,é + B(¢) + f'(w(t))d
= —S(u1) = {[f'(w1) — f'(w)] + (' (u1) + 2)9p} — QN (¥ + ¢)

in I'y, x R.
Consistently with estimate (3.35) for the error, we consider the norm
| - llp,o, defined in (3.33) and consider for a function ¢(y,t) the norm

(4.11) 16l12p.00 = I1D*¢llp.o + [ Dlloc.o + [ Blloc,c-

To solve the resulting system (4.7)—(4.8), we first solve equation (4.8) for
1 with a given ¢, which is a small function in the above norm. For a function
¥(x) defined in R?, we define

(4.12) I

pyx = Sup (1 + r(am))waHLp(B(x,l))a 7“((13/,1'9) - ‘Z‘,‘

z€R?
Noting that the potential [(1 — ¢1)f"(u1) — 2¢1] is strictly negative, so that
the linear operator in (4.8) is qualitatively like A — 2 and using contraction
mapping principle, a solution ¢y = ¥(¢) is found according to the following
lemma, whose detailed proof we carry out in Section 5.

LEMMA 4.1. Let p > 0. Given ¢ satisfying the symmetry (4.4) and
@ll2,p,3,0 < 1, for all sufficiently small o, there exists a unique solution ) =
U(p) of problem (4.8) such that

(4.13) 12,034 = 1D

Besides, U satisfies the symmetry (4.5) and the Lipschitz condition

o8

p3+px T H¢HOO,3+H,* < Ce a.

_gas
(4.14) [(p1) — U(P2)l|l2,p34px < Ce o [|p1 — ¢
Thus if we replace ¥ = ¥(¢) in the first equation (4.7) by setting

(4.15) N(g) := B(d) +[f'(w1) = f'()]o+ G (f' (u1) +2)¥($) + LN (¥ ($) + ),

then our problem is reduced to finding a solution ¢ to the following nonlinear,

2,p,3,0:

nonlocal problem in 'y, x R:
(4.16) dup+ Ar, ¢+ f(w)p = —S(u1) —N(¢) in Ty X R.

Examining the terms in (4.15), we notice that if ¢ satisfies the symmetry (4.4)
then so do N(¢) and S(u1). Thus we will solve the original problem (1.1) if we
find a solution to problem (4.16). We will be able to do this for a certain spe-
cific choice of the parameter function h on which all elements in the right-hand
side of (4.16) depend.
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4.2. Aninfinite dimensional Lyapunov-Schmidt reduction. In order to find
a solution to (4.16), we follow an infinite dimensional Lyapunov-Schmidt re-
duction procedure: we consider first the projected problem

(4.17)  Oud+ Ar, ¢+ f'(w)p = —S(u1) —N(¢) + c(y)uw'(t) inTq xR,
/ Sy, 1) w (£)dt =0 for all y € Ty,
R

where

(4.18) oly) = — /R S (ur) + N(&)] (1) dt.

= 7J‘R w/2
The correction ¢(y) w'(t) to the right-hand side provides unique solvability for

any choice of the parameter h satisfying (3.9) in the sense of the following
result, whose proof will be given in Section 6.1.

PROPOSITION 4.1. Assume p > 9, 0 < 0 < /2. There exists a K > 0
such that for any sufficiently small o and any h satisfying (3.9), problem (4.17)
has a unique solution ¢ = ®(h) that satisfies the symmetry (4.4) and such that

3-8 5—8
(4.19) [9ll2p3,0 < Ko™ 7, [N(@)|ps0 < Ka™ 7.

Proposition 4.1 reduces the problem of finding a solution to problem (4.16)
to that of finding a function h satisfying the constraint (3.9) such that ¢(y) =0
with ¢ given by (4.18) for ¢ = ®(h), in other words such that

(4.20) /]R 15(u1) + N(@(R)] (y, ) w'()dt = 0 forall y € Ta.

4.3. Solving the reduced problem. We concentrate next in expressing the
reduced problem (4.20) in a convenient form. We begin by computing an
expansion of the quantity [g S(u)w'(t) dt making use of the expression (3.32)
for S(up). Let us decompose, using also expansion (3.21) for H,

—a28(uy) = [Arh + |Ar|?h + ot* Hs3|w' + Ey(y,t) + Fa(y,t),
where
Ey(y,t) = 2ahHztw' — ab; (ay,0)0;htw’ — a?jaih(‘?jh w”
+ o [Hyt*w' + Hytap — Hy " (w)g — (a3 0 Ho + b0, Ha)tbo]
and
(4.21)
Es(y,t) = [ah?® Hs + o2 ((t + h)® — 3 Hy + 3 (t + h) Hs]w'
—a(t+h) [al-ljﬁih@jh w” + azljc'?ijhw’]
—ad;ih[(t+ h)b} (ay, a(t +h)) — tb}(ay, 0)]w’
+ [0*hHy + o (t + h)*Hz + a*(a;;0;5h + b;0;h)] Ha ¥
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+ 2a2aij8ih3jH2¢6 — 043<t + h)((ailjain2 + bzlazH2)¢0
— a?a;;0;hdhHay — o~ [ No(a® Hatho) — " (w)(a® Hatho)?].

We recall that evaluation of the coefficients is made in local coordinates at y
or (ay, ot + h(ay)).

The logic of this decomposition is that terms in F; decay at most like
O(r;*) but the functions of ¢ involved in them are all odd, while those in Es
decay like O(r;°), according to assumption (3.9) in h and the estimates we
have obtained in the coefficients. We have

[ Bty eyt =o,
R

while there is a constant C, possibly depending on the number M in constraint
(3.9) such that for all h satisfying those relations, we have

(4.22) |Ex(y,t)] < C(L+7r3)7" o] (1+73) DRh(ay) |+ o?] .

Thus, setting ¢; = [ wdt, co = I 2w dt, we find
(4.23)

—a”? /]R S(ur) (y, 1) w'(t) dt = e1[Arh+|Ar[*h)(ay) +caa Ha(ay) — Ga[h] (ay),
where, we recall, Hy = >°%_; k?, and

(4.24) Gi[h](ay) == /R((4 — D[(Arh + |Ap|?h + at?Hs) w' + Ey(y, t)]w’ dt

—I-/ CaBo(y, t)w' dt.
R
Let us observe that
(1= Ga)(Jw'| + |w"]) < Cem a7

hence the contribution of the first integral above is exponentially small in «
and in r,. Using (4.22) we get

(4.25) 1Gi[A] llps < Co.

Now let us consider the operator
(4.26) Galh](ay) = o~ / N(D(h)) w'dt.
R

More generally, it will be convenient to consider a function 1 (y,t) defined in
'y x R and the function g defined on I' by the relation

o(y) = /R Yoy, £ wldt.
Then

[lswracm <oy ot [

|k|>1 @

[ worda, o).
1A Jjt—k|<1
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If A= B(y,1) NT, then o~ 1A can be covered by O(a~%) balls of radius 1 in
I'y,. Thus

[ ] wordar,m) < e g,
a~ A Jjt—k|<1

and hence

(4.27) lg

_8
pv = su%) A +r@)") 9l By < Ca? [Ypvo-
e

Now, examining the expression (4.15) for the operator N and using the
bound (4.19) for ®(h) we have that

IN(2(h) [lp5.0 < Ca;

hence for Gy defined above, we get

[G2()llpsr < Ca®
uniformly in A satisfying (3.9). In summary, the reduced equation (4.20) reads
(4.28)  Jr[hl(y) = Arh(y) + |Ar(y)Ph(y) = caHs(y) + Ghl(y), yeT,
where

c=—cfer, Gl =~ (Gi[h] + Ga[h)).
The operator G satisfies

(4.29) I1GIR] [lps < Ca®

for all h satistying (3.9). Moreover, we observe that if p(y, t) satisfies p(Qy, —t)
= —p(y,t), then

| p@unu/ @ = ~ [ powo,
R R

since w’ is an even function. Since p = S(up) + N(®(h)) satisfies this require-
ment, we conclude that so does the operator G[h] and it is hence consistent to
look for a solution h in this class of symmetries.

It seems natural to attempt to solve problem (4.28) for functions h, with
|h]|l« < Mo (see (3.9)) by a fixed point argument that involves an inverse for
the Jacobi operator Jr. Thus we consider the linear problem

(4.30) Arh+|Ar(y)*h=9g, yeT.

We stress here the fact that functions h and ¢ belong to the admissible class
of symmetries. The solvability theory for (4.30) needs to consider separately
the case g = caHs(y), which has a decay of order O(r~3) and an additional
vanishing property, and the case of a g with decay O(r=3). We prove the
following proposition in Section 7.
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PROPOSITION 4.2. The following statements hold:

(a) If g(y) = cH3(y), then problem (4.30) has a solution hg with ||ho|l« <
+00.

(b) Given g with ||g|lp5 < 400, there exists a unique solution h := T (g)
to problem (4.30) with ||h|l. < 4+00. Moreover, for a certain C' > 0,
12l < Cliglip.s-

Writing h := ahg + hi, the equation becomes, in terms of hq,
(4.31) Arhy + ‘Ar(y)Phl = g[ho + hl], yel.

Finally, we solve problem (4.31) by an application of contraction mapping
principle. We write it in the form

(4.32) hi = T(G(ho+h1)) = M(h1), |hi]ls < a5,

Bound (4.29) and the proposition above implies that the M applies the
region ||hylls« < a5 into itself if o is sufficiently small. Not only this, we will
prove in Section 6.2:

LEMMA 4.2.
_16
(4.33) IG(h1) = G(h2)lps < Ca' ™7 [|hy — holl

for all hy, he, satisfying (3.9).

Hence M is also a contraction mapping. The existence of a unique solution
of (4.32) follows. It is simply enough to choose the number M in (3.9) such
that M > ||hol|«.

Remark 4.1. We emphasize that, as we will see in Section 7, equation (4.30)
can actually be solved with right-hand sides g = O(r=47#) for h = O(r=27#),
whenever 0 < p < 1, but we do not expect in general the existence of a
solution h = O(r~!) when g = O(r~3). However assuming additionally that
g has the form g = g(#)7r~3 where 7 > 1 we can establish statement (a) of
Proposition 4.2. We will prove that Hz = Y%, kf’ is of the required form
except for a term which decays fast in r. Individually, the principal curvatures
k; do not have this vanishing property but their mutual cancelations gives it
for the average of their cubic powers. To track this property it is necessary to
compare curvatures at a point of I' with those at its closest neighbor in Iy,
and the suitably defined closeness for large r of the Jacobi operator on I' to
that on I'g. We discuss these issues in Section 8.2 and Section 8.3, using as
the basis the result of Theorem 2, whose self-contained proof we postpone to
the last part of the paper.
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4.4. Conclusion. Let us summarize the results of our considerations so far.
Given the solution to the nonlinear projected problem ¢ and the corresponding
solution A, to the reduced problem found above we have found U, such that

Ua = + Q20 + (o)

and
AU, + (1 -UHUy=0 inR,

The function U, is a bounded function which obeys the symmetry of the min-
imal graph I'y:

(4.34) Ua(u,v,x9) = =Uqy(v, u, —x9),

from which it follows in particular U, (0) = 0. We show next that U, is in fact
monotone in the xg-direction. Let us observe that the function ¢, := 0;,U, is
a solution of the linear equation

A¢a + f/(Ua)lba = 0.

We claim that the construction yields the following: given M > 0, at
points within distance at most M from I', we have 1, > 0 whenever « is
sufficiently small. Indeed,

Oé2

2
DpoUn () = Opgw(t) + O(l +T%> = W' ()0t + O(l +r§)‘

The coordinates z and (y,t) are related by x = y + (t + h(ay))v(ay); hence
€9 = Oyoy + Ozytv + a|Drh(ay)0z,ylv + a(t + h) [Drv 04y y].

If |t| < M, then we deduce that 0.,y is uniformly bounded, and also

Ot +ol-2 ! +of -2 )>_°©
= =
TN+ 2) T A VP 14+712) = 1472

by an estimate in [34]; see (8.33) below. This shows our claim.

Taking M sufficiently large (but independent of ) we can achieve f/(U,)
> —3/2 outside of Ny := {|t| < M}. We claim that we cannot have that
1o < 0 in NF;. Indeed, a nonpositive local minimum of 1, is discarded by
maximum principle. If there was a sequence of points z,, € R?, such that

() = inf Yo <0,

|zy,| = oo, and at the same time dist (z,,I'y) > M, for a large M, the usual
compactness argument applied to the sequence ¥, (z) = ¥ (z + x,) would give
us a nontrivial bounded solution of

A —c(x)yp =0 inR ¢(0)>1,
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with a negative minimum at the origin, hence a contradiction. We conclude
that ¥, > 0 in entire R? and the proof of the theorem is concluded, except for
the steps postponed. We shall devote the rest of this paper to their proofs.

5. The proof of Lemma 4.1

Here we prove Lemma 4.1, which reduces the system (4.7)—(4.8) to solving
the nonlocal equation (4.16). Let us consider equation (4.8):
(5.1)
AY=Wo ()4 (1=(2) S (W) +(1=C)N (Y +20) +2VVo+¢AG =0 in RY,

where

Wal(z) = [(1 = ¢1) (=f'(w)) +2¢1],
and we assume that ¢ satisfies the symmetry (4.4) with ||¢|]2,3 < 1. Let us
observe that W, (Qx) = Wy(x) for all z and hence that the function —i(Qx)

solves (5.1) if ¢(x) does.
Let us consider first the linear problem

(5.2) Aty — Wo(x)p +g(z) =0 in RO,

We observe that globally we have 2 — 7 < W, (z) < 2 + 7 for arbitrarily small
T>0.
We recall that for 1 < p < +o00, we defined

19llpw := sup (1 +7(a2))”||gll Lo By, 7(2',20) = [2].
T€R?

LEMMA 5.1. Gwen p > 9, v > 0, there is a C > 0 such that for all
sufficiently small o and any g with ||g||py« < +00, there exists a unique v
solution to problem (5.2) with ||1||cov« < +00. This solution satisfies

(5:3) 1D

pw T 1Yo < Cligllps-
Proof. We claim that the a priori estimate
(5.4) [¥lloows < Clig

holds for solutions ¢ with ||¢)||cc,,,« < 400 to problem (5.2) with ||g||p,« < +00
provided that « is small enough. This and local elliptic estimates in turn imply

‘p7y?*

the validity of (5.3). To prove the claim, let us assume the opposite, namely
the existence a,, — 0, and solutions ), to equation (5.2) with |9y ||eo,v« = 1,
|gnllp,v,« — 0. Let us consider a point x, with

(14 7r(anzn)) Yn(Tn) >

N~
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and define
Un(z) = (1 + r(an (T, + x)))V@Z}n(:Un +z),
Gn(@) = (14 r(an(@n + ) gn(wn + ),

Wh(z) = Wa, (20 + ).

Then, we check that the equation satisfied by {/;n has the form
A = Wa(@)thn + 0(1) Vi + 0(1)¢hn = G-

Additionally, we know that Jn is uniformly bounded; hence elliptic estimates
imply L°°-bounds for the gradient and the existence of a subsequence uniformly
convergent over compact subsets of R? to a bounded solution 1; # 0 to an
equation of the form

AY — W, (x)p=0 inR,

where 0 < a < Wy(z) < b. But maximum principle makes this situation
impossible, hence estimate (5.4) holds.

Now, for existence, let us consider g with ||g||.« < 400 and a collection
of approximations g, to g with [|gn|lecs« < +00, gn — ¢ in LY (R?) and
[ gn

s < Clgllpy,«. The problem
Aty — Wy (z)tpn = g, in R?

can be solved since this equation has a positive supersolution of the form
C(1+r(ax))™, provided that « is sufficiently small, independently of n. Let
us call v, the solution thus found, which satisfies |¢]loop« < +00. The
a priori estimate shows that

HDan’pM* + HwnHoo,u* < CHQ

Passing to the limit in the topology of uniform convergence over compacts,
we find a subsequence which converges to a solution 1 to problem (5.2), with
1¥||oo,p,x < +00. The proof is complete. O

Next, we conclude the proof of Lemma 4.1. Let us call ¢ := ©(g) the
solution of problem (5.2) predicted by Lemma 5.1. Let us write problem (5.1)
as a fixed point problem in the space X of VVlif -functions v with ||¢[|2,p,34 % <
+00,

(5:5) ¥ =0O(g1 + K(¥)),
where
g1 =(1-0)SW) +2VaVe+ oAG, K(¥)=(1-CG)N@ +9).
Let us consider a function ¢ defined in I', x R such that ||¢[/2p,c < 1. Let

pyVyx-

us observe that derivatives of the function (; are supported inside the set of
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points x with
(5.6)

v =yt h(ay) viay), S+ ra(y) —5 <[+ h(ay) < S(14ra(y) +5

a
Note that if = satisfies (5.6), then
are(y) < r(azx) <bry(y), el < e 5ae0Ta(®)
for some positive numbers a,b. Setting ¢’ = §J, we have that for any p > 0,
1291V + 6ACG | < Ce™o (1+1(az)) || 8ll2.pue-
We also have that ||S(w)||p3,0 < Coag_%; hence
11~ )S@)lps e < Ce (14 r(az) >

and therefore
_é
pa+n < Ce e

g1
Let us consider the set

_
A= {1/) €X | ||7/}||27p73+u,* < Ae a}

for a large number A > 0. Since
| K1) = K(¢2) | < C(1—G1) sup [t1 + (1 = )2 + Cagpl |91 — Wl
te(0,
we find that

| K1) = K () loosin < Ce™5 [t = [oosin

6/

while ||[K(0)[|oo,« < Ce™ a. It follows that the right-hand side of equation
(5.5) defines a contraction mapping of A, and hence a unique solution 1) =
U(¢) € A exists, provided that the number A in the definition of A is taken
sufficiently large and ||¢[/2p 3, < 1. In addition, it is direct to check the
Lipschitz dependence of ¥ as stated in (4.14) on [|¢||2,p3,, < 1. Since, as we

have mentioned, —(Qx) satisfies the same equation, the symmetry assertion
follows from uniqueness. The proof is concluded. O

6. The proofs of Proposition 4.1 and Lemma 4.2

To solve problem (4.17), we derive first a solvability theory for the follow-
ing linear problem:

(6.1) 0o+ Ar,¢+f (w)p = gy, t) + c(y)w'(t) inTa xR,

tw'dt
/R¢(y,t) wW(t)dt=0 forall yeTl,, cfy)= —W.
R

We have the following result.
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PROPOSITION 6.1. Given p > 9 and 0 < o < /2, there exists a constant
C > 0 such that for all sufficiently small o > 0, the following holds: given g
with ||g|lp.3,0 < 400, problem (6.1) has a unique solution ¢ with ||¢|lec 3.0 <
+o00, which in addition satisfies

(6.2) &

We will carry out the proof of Proposition 4.1 assuming for the moment

2030 < Cllgllps.o

the validity of the above result.

6.1. Proof of Proposition 4.1. Let ¢ = T(g) be the linear operator de-
fined as the solution of (6.1) in Proposition 6.1. Then problem (4.17) can be
reformulated as the fixed point problem

(6.3) 6 = T(=S(w) —N(3)), [@llapso < Ka® >,

We claim that there is a positive constant C, possibly dependent of M in (3.9),
such that for all small o and any ¢1, ¢2, with

_8
HgﬁlHQ,p,&a < Ka3 P,

we have
(6.4) [N(¢1) = N(¢2)llps.0 < Callgr — all2ps0-
To prove this, we decompose the operator N as
(6.5) _
N(@) := B(#) + [f'(u1) = f(w)]o+ G (f'(u1) +2)¥(¢) + GN (¥ () + o) -

Ny (o) Na(¢) N3(¢)
Let us start with IV;. This is a second order linear operator with coefficients
of order a which decay at least like O(r; ). We recall that B = (4B, where in
local coordinates, B is given in (3.30). It is direct to see that

(6.6) N1 (D)llps.0 < Calldllapso

For instance, a computation similar to that in (3.34) yields that for p > 9, we
have

_8 _8
l0®(a;j05;10):6 5.0 < Ca® 7| DER|3p [ Dolloose < Ca (@]l

8
Now, let us assume that ||¢1]2p3.0, |[@2]]2,p,3,0 < Ko’ 5. Using Lemma 4.1,

we immediately obtain
)
(6.7) [N2(p1) — N2(@2)llps,0 < Ce 7a|ld1 — P2llp30
and
)
(6.8) [[N3(¢1)—N3(P2)|lp.6.0 < C ([[P1]l00,3,0H|P2]l00,3.0+€ ) |d1—d2]l00,3,0-

From (6.6), (6.7) and (6.8), inequality (6.4) follows. The proof of the claim is
concluded.
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To conclude the existence part of Proposition 4.1 we use the contraction
mapping principle to deal with problem (6.3). First, using formula (3.32)

~ 8
we have that [ S(u1)llpse < Co 7. Let Bo = {0 | [¢ll2pses < Ko 5}

where K is a constant to be chosen. Second, we observe that for small «,

and all ¢ € B, we have |[N(¢)|p40 < Ca® 7. Then, from (6.4) we see that
if K is fixed large enough independently of «, then the right-hand side of
equation (5.5) defines a contraction mapping of B,, into itself. The contraction
mapping principle implies the existence of a unique ¢ as stated. Finally, since
the function —¢(Qy, —t) satisfies the same equation, the symmetry assertion
follows from uniqueness. O

6.2. Lipschitz dependence on h: The proof of Lemma 4.2. We claim first
that the solution ¢ = ®(h) in Proposition 4.1 has a Lipschitz dependence on
h satisfying (3.9) in the sense that

_8
2p30 < Ko 7 |[hy — hol|s.

(6.9) [ (1) — @(h2)

This is a consequence of various straightforward considerations of the Lipschitz
character in h of the operator in the right-hand side of equation (4.17) for the
norm || ||, defined in (3.9). Let us recall expression (3.29) for the operator B,
and consider as an example, two terms that depend linearly on h:

A(hl, ¢) =« a,?j 8jh18¢t¢.
Then

|A(h1, 9)| < Caldjhi] [0t

Hence

[A(h1, @)l < Call(l+73) ihlloo [0itd lpue < Calllha]li @]z p w0
Similarly, for A(¢, h1) = a®Arh; 01¢, we have

|A(¢, )| < Ca’lArhi(ay)| (1+7a)" e [@ll2,pp0-

Hence s

l0?Arhy 86 lppize < Car[ha]li||@ll2pw.o-
We should take into account that some terms involve nonlinear, however mild
dependence, in h. We recall for instance that a%j = ailj(ozy,a(t + ho + h1)).
Examining the rest of the terms involved we find that the whole operator
N produces a dependence on h; which is Lipschitz with small constant, and
gaining decay in rq,

(6.10) (1, @) = N(h2, @) lpo+10 < Ca®[lhr = halls [Dll2p0-
Now, in the error term R = —S(u;), we have that

_8
(6.11) IR(h1) = R(ha)llp3,0 < Ca® 7 ||y = hal..
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To see this, again we check term by term expansion (4.21). For instance we
have
02 al; ;ho0shi| < Ca® (1+714) 2 el ||hy.
so that
lo? af; Oiho O |lpso < C o [|hylls,

and the remaining terms are checked similarly. We observe that the factor a2_%
in (6.9) is due to the term a?Arhjw’ in the expression for S(uy). Combining
estimates (6.10), (6.11) and the fixed point characterization (5.5), we obtain
the desired Lipschitz dependence (6.9) of ®.

In particular, if we set ¢1 = ®(h1), ¢2 = P(ha), we get, after invoking
estimates (6.10) and (6.4),

(6.12)  [IN(h1, ¢1) — N(h2, ¢2)
< N(R1, 1) = N(h1, $2)llp5.0 + [N(R1, d2) — N(ha, 2)llp5.0
< Calér = ¢2llapse + Ca®llhr — holls |92]l2p3,0
< C(*7 + % 9)||hy — holls.

Now we recall that G = G 4+ Go, with the latter operators defined in (4.24)
and (4.26). We have

Go(h) = Galha) = @~ [ (N(@(hn)) = N(@ () (o~ 'y, 0) ' ds

p;5,0

so that using relation (4.27) we get
_ 16
1G2(71) = Ga(ha)llps < C '~ [[hy = hal..

The operator G; in (4.24) is analyzed in similar way, taking into account that
the estimates in (6.11) involve terms carrying one more power of a and O(r~?)
as decay in r. We again get

_16
1G1(h1) = Gr(h2)llps < Ca' ™7 by = ha .
This concludes the proof. O

6.3. Proof of Proposition 6.1. At the core of the proof of the stated a priori
estimates is the fact that the one-variable solution w of (1.1) is nondegenerate
in L>°(R?) in the sense that the linearized operator

L($) = Ayd + Oud + f'(w(t))¢,  (v.t) €R” =R* xR
satisfies the following:
LEMMA 6.1. Let ¢ be a bounded, smooth solution of the problem
(6.13) L(¢)=0 inRSxR.
Then ¢(y,t) = Cw'(t) for some C € R.
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Proof. We begin by reviewing some known facts about the one-dimensional
operator Lo(¢)) = ¢” + f'(w)i. Assuming that ¢(t) and its derivative decay
sufficiently fast as |t| — 400 and defining ¥ (t) = w'(t)p(t), we get that

LI = rwan = [ Loyt = [l ar

therefore this quadratic form is positive unless 1) is a constant multiple of w’.
Using this and a standard compactness argument, we get that there is a con-
stant v > 0 such that whenever [p 1w’ = 0 with ¢» € H'(R), we have that

(6.14) L = pwpye = o (0 + ) de

Now, let ¢ be a bounded solution of equation (7.3). We claim that ¢ has
exponential decay in ¢, uniform in y. Let us consider a small number o > 0 so
that for a certain top > 0 and all |[t| > to, we have that

f(w) < —202.

Let us consider for € > 0 the function

ge(t,y) = e7oUi=M0) 4 ¢ icosh(ayi).
i=1
Then for [t| > tg, we get that
L(ge) <0 if [t| > to.
As a conclusion, using maximum principle, we get
9] < Plloo 9o if [t] > to,

and letting € — 0, we then get

6y, )] < Clldlloe™ " if [t] > to.

Let us observe the following fact. The function

7 _ ! w/(t)
.= 6.0) = ( (60 00)
also satisfies L(qg) = 0 and, in addition,
(6.15) / w'(t) p(y,t)dt =0 for all ye RS
R

In view of the above discussion, it turns out that the function

o(y) = /Rcz?(y,t) dt
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is well defined. In fact, so are its first and second derivatives by elliptic reg-
ularity of ¢, and differentiation under the integral sign is thus justified. Now
let us observe that

D) =2 [ A,0-ddt+2 [ 9,9

and hence
616) 0= [ (1(3)-9)

1 - - -

= o8y [1940Pdz [ (94 = £/(w)?) d.
2 R R
Let us observe that because of relations (6.15) and (6.14), we have
LU = w)d*) dt > .

It then follows that

1
§Ay<ﬂ —vp = 0.

Since ¢ is bounded, from maximum principle we find that ¢ must be identically
equal to zero. But this means

(6.17) o(w.0) = ([ w(©)9lu.) dc)

Then the bounded function

w'(t)

Jr w'?’

satisfies the equation
(6.18) Ayg=0 inR"

Liouville’s theorem implies that g = constant and relation (6.17) yields ¢(y, t)
= Cw/(t) for some C. This concludes the proof. O

6.4. A priori estimates. We shall consider problem (6.1) in a slightly more
general form, also in a domain finite in y-direction. For a large number R > 0
let us set

T :={yeTa| r(ay) <R}
and consider the variation of problem (6.1) given by
(6:19)  Gud+Ar,d+ f(w®)e = g(yt) +ely)w'(t) inTq xR,
¢=0 ondl'k xR,

/ é(y,t)w'(t)dt =0 forall ye Ff,
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where we allow R = 4+o00 and

c(y)/Rw'th: —/Rg(y,t) w' dt.

We begin by proving a priori estimates.

LEMMA 6.2. Let us assume that 0 < o < /2 and v > 0. Then there exists
a constant C' > 0 such that for all small o and all large R, and every solution
¢ to problem (6.19) with ||¢||cop,e < +00 and right-hand side g satisfying
l9llpv,e < 400, we have

(6.20) 1D @llpr + 1 D8llo 0 + [ Bllocr < Cllgl

Proof. For the purpose of establishing the a priori estimate (6.19), it
clearly suffices to consider the case ¢(y) = 0. By local elliptic estimates, it
is enough to show that

(6.21) [@llocve < Cllgllp,vo-

Let us assume by contradiction that (6.21) does not hold. Then we have the
existence of sequences @ = o, = 0, R = R,, — 00, g5, with [|gn|lpv.c = 0, ¢n
with ||¢n/cop,c = 1 such that

(6.22) Ot + Ar, o + [ (w(t))pp = gn  in TH xR,
¢n=0 on I xR,

/ by, t)w'(t)dt =0 for all yeTE

p,v,,0

Then we can find points (py,t,) € I'? x R such that

N

(6.23) e~ l(1+ 1 (anpn))” |n(Pns tn)| >

Let us consider the local coordinates for I, around p,,, defined by (3.24):

_ 0
1/pnyO‘n (Y) = anlyanpn (QHY)’ |y’ < ;’

n
where Y),(y) is given by (3.13). We observe that, read in these coordinates,
on(y,t) satisfies |¢,(0,t,)] > v > 0.
We consider different possibilities. Let us assume first that

To(pn) + [tn] = O(1) as n — oc.

We recall that the Laplace-Beltrami operator of I'y,, written in local coordi-
nates has the form

Ar,, = agj(any)@j + anbg(any)ﬁj,
where, uniformly on |y| < fa~!, we have

Y (any) = 8+ o(1), ) =0(1) asa— 0.
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Then
0
agj(anY)aijﬁbn + a"bg(anY)aj¢n + Oon + f'(w(t))pn = gn(y, 1), |yl < o

Since ¢y, is bounded, and g, — 0 in L (RY), we obtain local uniform W?2?-

bound. Hence we may assume, passing to a subsequence, that ¢, converges
uniformly in compact subsets of R? to a function ¢(y,t) that satisfies

ARS(Z) + 8tt¢ + f’(w(t))gi) =0.

Thus ¢ is nonzero and bounded. But Lemma 6.1 implies that, necessarily,
¢(y,t) = Cw'(t). On the other hand, we have

0:/R¢n(y,t) o/ (1) dt—>/Rq§(y,t)w'(t) dt  asn — oo,

Hence, necessarily ¢ = 0. But we have |¢,,(0,t,)| > v > 0, and since ¢,, and
r(anyn) were bounded, the local uniform convergence implies ¢ # 0. We have
reached a contradiction.

If ro(pn) = O(1) but t, is unbounded, say, t, — 400, the situation is
similar. The difference is that we now define

an(% t) = ea(tn+t)¢n(Y7 tn + t)7 gn(Ya t) = ea(tn+t)gn(Y> tn + t)'

Then ¢, is uniformly bounded, and g, — 0 in L? (R?). Now ¢, satisfies

loc
a?j(any)aija)n + attggn + O‘nbj(anY)ajggn - 200%571 + (f,(w(t + tn) + 0-2)¢~)n :gn'
Passing to the limit we obtain

(6.24) Agsd + Od — 20010 — (2—0%)p=0 in R,

where <z~5 # 0. But since by assumption 2 — 02 > 0, the maximum principle
implies that (Z) = 0. We obtain a contradiction.

Let us consider the case r(app,) — +00 but r(a,p,) < Ry,. Assume first
that the sequence t,, is bounded and set

On(y,1) = (1 + r(any))” ¢n(y,1).

Direct differentiation yields

05(ra" dn) = 13" (956 + O(arM)g]
0i(ra" dn) = 13" [ 050+ Olar ) dip + O(aPr*)¢] ,

and the equation satisfied by qgn therefore has the form

Aydn + Ortdn + 0(1)ijdn + 0(1) o + 0(1) b + f'(w(t)) b = Gn,
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where ¢, is bounded, g, — 0 in L{’OC(RE’). From elliptic estimates, we also get

uniform bounds for [|d;¢n||ee and [|0;;én|p.0.0- In the limit, we obtain a ¢ # 0
bounded solution of

(6.25) Ayd+0ud+ [w(®)d =0, [ dy.0yw't)dt = 0.

a situation which is discarded in the same way as before if ¢ is defined in RY.

Now, if ¢, is still bounded but r(a,y,) — Ry, = O(1), then passing to the
limit we find the limit equation (6.25) satisfied in a half-space, which after a
rotation in the y-plane can be assumed to be
H={(y,t) eR® xR / yg < 0},

with ¢(7,0,¢) =0 forall §y=(y,...,y7) €R’, teR.

By Schwarz’s reflection, the odd extension of 6, which is defined for yg > 0, by
o(7,ys,t) = —p(y, —ys, t), satisfies the same equation, and thus the problem
reduces to one of the previous cases again yielding a contradiction.

Let us now assume that r(a,p,) — +o00 and [t,| = +oo. If ¢, = +00, we
define

én(% t) = (L +r(any))” ettt Gn(y,tn +1).

In this case we end up in the limit with a QB # 0 bounded and satisfying the
equation

Ayd+0ud — 200 — (2—0%) =0,

either in the entire space or in a half-space under zero boundary condition.
This implies again ¢ = 0, and a contradiction has been reached. All cases have
been discarded, and the proof is concluded. O

6.5. Existence: Conclusion of the proof of Proposition 6.1. Let us now
prove existence. We assume first that g has compact support in I', x R:

(6.26) O+ Ar,d + f'(w(t)d = g(y,t) +c(y)w'(t) in TF xR,
¢=0 ondl'% xR,

/ d(y,t)w'(t)dt =0 forall ye FaR,
where we allow R = 400 and
c(y)/ w'dt = —/ g(y,t)w' dt.
R R
Problem (6.26) has a weak formulation which is as follows. Let

H={$ecHTExR)| / Sy, ) w'(t)dt =0 forall yeTE}
R
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H is a closed subspace of H}(I'?® x R), hence a Hilbert space when endowed
with its natural norm:

9l = [ [ (00 + 19,0 = F'(w(®) 6*) vk, dt.
Function ¢ is then a weak solution of problem (6.26) if ¢ € H and satisfies

a(6,0) = | (00000 + Vr,0- Vv = f/(w(t) 9) dVk, dt

[e3

:_/ g dVe, dt forall o e H.
TEXR

Indeed, decomposing a general smooth compactly supported test function in
the form
U(y,t) = a(y)w'(t) +¥(y,1), € H,

we obtain, after an integration by parts and using the orthogonality constraint
in ¢, that equation (6.26) is satisfied in the usual weak sense. Moreover,
standard elliptic estimates yield that a weak solution of problem (6.26) is also
classical provided that g is regular enough.

Let us observe that because of the orthogonality condition defining H, we
have

y Yrdvr, dt < a(y,v) forall € H.
R

IEx
Hence the bilinear form a is coercive in H, and existence of a unique weak so-
lution follows from Riesz’s theorem. If g is regular and compactly supported, ¢
is also regular. Local elliptic regularity implies in particular that ¢ is bounded.
Indeed for some ¢y > 0, the equation satisfied by ¢ is

(6.27) A¢+ f'(w(t)) ¢ = cy)w'(t), |t| >to, yeT,

and c(y) is bounded. Then, enlarging ¢, if necessary, we see that for o < v/2,
the function v(y,t) := Ce M 4+ el is a positive supersolution of equation
(6.27) for a large enough choice of C' and arbitrary € > 0. Hence |¢| < Ce M,
from maximum principle. Since T'¥ is bounded, we conclude that |¢|p.0 <
+00. From Lemma 6.2, we obtain that if R is large enough, then

(6.28) 1D ¢llpr + 1 D9l co,0 + [ llocr < Cllg

Now let us consider problem (6.26) for R = +oo, allowed above, and for

|p7l/70"

llglp,v,c < 400. Then solving the equation for finite R and suitable compactly
supported gr, we generate a sequence of approximations ¢ which is uniformly
controlled in R by the above estimate. If gr is chosen so that g — ¢ in
L (Ta xR) and ||gr|lpv.e < C|lgllpy,0, we obtain that ¢p is locally uniformly
bounded, and by extracting a subsequence, it converges uniformly locally over
compacts to a solution ¢ to the full problem which respects the estimate (6.2).

This concludes the proof of existence, and hence that of the proposition. [
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6.6. An equation on I'n. With arguments similar to those above, we an-
alyze the following equation that will be relevant in the study of the Jacobi
operator in Section 7:

(6.29) Ar,h—h=g¢g inT,.
We prove:

COROLLARY 6.1. Letp > 8, v > 0. Then there exists C' > 0 such that for
all sufficiently small a and any g € LY (Ty) with

loc

sup (L +ra@)lgllre By, 1)nra) < +00,
yel o

there exists a unique solution h of problem (6.29) with ||(1 + 75)h|lcc < +00.
This solution satisfies

IDF, Allpr + 1 Do hlloo, + 1o < [lgllpo-

Proof. With the notation used above, we consider the approximate prob-
lem

(6.30) Ar,h—h=g inTE h=0 onal'%

where we allow R = +o0o. Exactly the same arguments used in the proof of
Lemma 6.2 lead to the existence of a constant C' > 0 such that for all small
« and all large R, such that for any solution h with |[(1 4 r%)h||s < +00, we
have the a priori estimate

Surg(l + 10D A LoBarm) + 11 +76)Drhlle + (1 +78) Al
yers

< C sup (1 + 759l e (By1)nrE)-
yel'}
This estimate and the Fredholm alternative yields the existence of a unique
solution hp of (6.30). Letting R — +oo possibly passing to a subsequence, we
obtain the existence of a solution as predicted. O

7. Solvability theory for the Jacobi operator:
Proof of Proposition 4.2

In this section we consider the linear problem
(7.1) Jrlh] = Arh+|Ar(y)*h =gly) inT

and derive estimates and existence results that lead to the proof of Proposi-
tion 4.2. For this, the main tool we use is the method of barriers. This is
suitable for the operator Jr since it has a positive, bounded element in its

kernel. In fact Z = \/ﬁ satisfies Jr[Z] = 0.
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7.1. The approximate Jacobi operator. The surfaces I' and 'y are uni-
formly close for r large. Let p € T' with 7(p) > 1 and let v(p) be the unit
normal to I' at p. Let m(p) € I'g be a point such that for some ¢, € R, we have

(7.2) 7(p) =p+ tpr(p).

As we will see below, the point m(p) exists and is unique when r(p) > 1, and
the map p — m(p) is smooth.

Computations on I'g can be made in very explicit terms since Fj is explicit.
Hence it is important to relate them with analogous computations carried
out on I', at least for r large. This leads us to considering the approzrimate
Jacobi operator Jr,, corresponding to first variation of mean curvature (or
second variation of area) at I'g, measured along normal perturbations. This
corresponds to the operator acting on functions h : I'g — R given by
(7.3)

TIrolhl(y) == H'(F)[¢)(z), ¢(2') =1+ [VFo(a)Ph(y), vy = (2, Fo(a’)).

The expression for Jr, is similar to that in (4.28) for Jr, but it involves

a correction that gives account of the fact that I'g is not a minimal surface,
while very close to being so. In fact we have

(7.4) Tro[h] := Argh + |Ary(y)[*h + O(r~*)DE b + O(r—*)Dr,h 4 O(r~%)h.

This expression follows from a standard calculation which we carry out in
coordinates adapted to the graph in the appendix.

For large r, Jr is “close to” the approzimate Jacobi operator Jr, in the
sense of the following result, whose proof we carry out in Section 8.3.

LEMMA 7.1. Assume that h and hg are smooth functions defined respec-
tively on I' and U'g for r large, and related through the formula
ho(m(y)) = h(y), yeT, r(y)>ro.
There exists a 0 > 0 such that
(7.5)
Tr[h)(y) = [Trolhol +O(r=277) D ho + O(r~*=7) Dryho + O(r=*=7)ho] (7 (y))-
7.2. Supersolutions for the approximate Jacobi operator. We look for pos-

itive supersolutions of Jr, far away from the origin, or in other words for
positive functions h which satisfy a differential inequality of the form

(7.6) —Jro[h] 2 gly) inT, 7r(y) > ro,

for a class of right-hand sides that are decaying in r = r(y) and additionally
satisfy either

(7.7) 8(y) =
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or

(7.8) gy) =

where (7, ) are the polar coordinates in R® introduced in Section 2 and function
: 12

g satisfies Lemma 2.1, and p € (0,1),7 € (3, 5).
We want to establish the following key result.

LEMMA 7.2. For a function g as in (7.7) with 0 < u < 1, there exists a
positive supersolution h of (7.2) such that

er TR < h(y) < Cr=27F  r>r.

Proof. We recall that Jr,[h] = H'(Fy)[y/1+ |VFp|?h] and that in polar
coordinates we can write (see (2.7))

(7.9) H'(Fo)[¢] := L := Lo+ Ly,
with
(7.10) Lo(¢) = m{@f wrde)g + (109" Wy )

— 3(g9" 1 )p — (g9’ Wr'ep), |,

and
(7.11) Li(e) = W{(T—l dibg)e + (i), }.
(7.12) @(r,0) = sin” 20

(=4 + 992 +9”)2
We can expand

w(0,7) = wo(0) + r~*wy(r,6),

where
. 3 2 . 3 2
Bo(0) = S0 gy = 32O 03 099y),
(992 + g'*)2 2(9g%+g7)2
We set
1
L - - 2 ~ 3 5 12 ~ o
o() r7sin3(26){(99 wor’dg)e + (r°g"” woy)

—3(gg' wor'o,)e — 3(gg’ Wor' o), |-
Let us compute this last operator for a function of the form

o(r,0) = 7q(6).
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We obtain
77 sin®(20) Lo(rPq(6))
= 340 [9(g> @od)! — 38(gg'ado)’ + To(B + 4)(Bg"*q — 399'd)] -

. . o g 8 8
It is clear, by direct substitution, that Lo(Fy®) = Lo(r®g3) = 0. Hence ¢ = g3
annihilates the operator on the right-hand side. As a consequence, the operator

]
takes a divergence form with h = ¢~ 3¢, namely

B+4 {wog% (g_gq)/}, .

7 sin®(20) Lo(rPq(0)) = 93P g5
We want to find a positive function ¢ such that the following equation holds:

~Lotae) =920 e (5.7),

or equivalently,
g ., 8
- [Ufog% (g‘W)’] = g5 sin®(26).

Then we can solve explicitly for ¢ by direct integration, getting

0 ds % B+4 / i
9:§9< _ T3 (s ) sin®(2s ds),
0)=g50) ([ S [T i)

or equivalently

ds

(7.13) q(6) m

I
)

0
©) [ 9"+
I
X /2 gT_T(T/)SiIlg(ZT/)dT/, RS (z,z) ,
s 4’2
provided of course that the choices of 7 and § make this formula well defined.
We will analyze this formula in the two cases of interest.
Let us consider the case 7 =0, 8 = —u, 0 < p < 1, corresponding to the
right-hand side of (7.7). Then

_n o 5 3 ds
a®) =978 0) [ 909" + 9" 7~
z sin”(2s)
% B4, . 3 ’ l m™m
x/s g3 3(s)sin’(2s )ds, 06(1,5}.

Since ¢'(%§) > 0, ¢ is well defined, positive and smooth in (%, %]. More than
this: for instance expanding g(#) = g1z +g3z3+--- forz = 0— 1> and similarly
with the other functions involved in the formula, we realize that ¢ in reality

extends smoothly up to 6 = 7 in the form

Q(Q)IQO+(]21?2+Q4334+~-,
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and we have go = ¢(§) > 0, ¢'(§) = 0. Hence if we extend ¢ by even reflection
around §: q(0) = q(5 — 0) if 6 € (0, 7], then the symmetric, positive func-
tion ¢ := q(8)r—* satisfies —Lo(¢o) = 9r~47# in R8. Since ¢ is smooth, we
also find that the remaining terms in the expansion of H'(Fy)[¢o] contribute
quantities of size O(r~87#). Thus

) 1
~H'(Fy)lo] >

or equivalently

1 .
—jro [ho] > TAT“ n Fo, r>Tro, qb(] =:4/1+ |VF0|2h0,

which is what we were looking for since hg = O(r—27#). O
In the case of g given by (7.8), we consider the problem in the sector

(7.14) Loy = {yemee (Zg)}

g(0)"

r3

(715) — \71"0 [h] > in gy, ’I“(y) >10.

We prove:

LEMMA 7.3. If% <7< %, then there exists a supersolution h of (7.15),
smooth and positive in oy with h =0 on 0l'g+ and

h(y) <Cr~t, yeToy, >0

Proof. We consider now the case g = 1, % <7< %, in formula (7.13),
corresponding to the case (7.8). Now we get
ds
sin3(2s)

1 0 2 3
(T16)  a0) =93 ). [ gFH0g+ %)}

X /2 gT’g(s’) sin®(2s')ds’, 6 ¢ (E, z) .
s 472
Here ¢ is smooth up to § = § with ¢/(§) = 0 and it extends continuously to
s s

0 = T with ¢(%) = 0. Again setting v = 6 — 7,
™

expanded near 7 as

we see that now h becomes

q(0) = 27 (q0 + goa® + qua* +---), g0 >0,
Here we have used that fact that % <T< % In particular,
(717) ¢"(0) = —7(1 = T)qo2" 2+ O(x") = —cg(0)" 2+ 0(g(0)"), ¢>0.

By direct substitution, we see that for large r,

—EO(TQ(H)) = 99(72)7— + O(Q(G)TT_7)7
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while for § — 7 < 1, we have, using (7.11) and (7.17),

—Li(rq(0)) = cg™ 2 T+ O(g" I + O(g"r™"), >0,

and in general —L1(rq(0)) = O(g"2r™7)

see that for all sufficiently large r,

. Combining the above estimates, we

~Era0)) > 2O

and the desired conclusion follows with h = ——4@__ — o(r=1). O

RV ].~HVF0|2

Remark 7.1. The result of Lemma 7.3 is of course true if 7 > % The

supersolution found will then be near § = T of the order O(g(6)7r~!) for any
7 < 2. On the other hand, if we choose directly 7 > 2 in formula (7.16),

this boundary behavior gets refined to 0(9(9)% log g(0)r~—1) if 7 = % and to

O(g(@)grfl) if 7 > 2. In all cases these supersolutions are not smooth up

=1

7.3. Proof of Proposition 4.2(b). This result is just a special case of the
following:

PROPOSITION 7.1. Let 4 < v < 5. There exists a positive constant C > 0
such that if g satisfies ||g||p,, < +o00, then there is a unique solution of the
equation

(7.18) Jrlhl=g inT
such that ||h|lec,y—2 < +00. This solution satisfies

IDEA|

s + [ Drhflsoy—1 + Ihllsop—2 < Cllg

p,V— — b,

For the proof, we first show the existence of the supersolution in Lemma 7.2
for I'g replaced with I'.

LEMMA 7.4. For 0 < u < 1, there exists a positive supersolution h of

1
ritu

(7.19) — Jrlh] > inT, r(y) > ro,

such that
h(y) < Cr 27k, 7>,
Proof. Let hg be the supersolution built in Lemma 7.2 for

1

(7.20) — Jrolho] = —;

in FOa r(y) > T,
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and consider the function h defined on I as h(y) = 2ho(7(y)). Then according
to Lemma 7.1, we have that

2

() + 0O (7(y)),

Jr(h)(y) > "ty

where
O(y) = O(r~*77)Df ho + O(r~>"7)Dryho + O(r~*~7)hy.
Using the explicit form of hg in the proof of the previous lemma, we compute
directly that
O(y) = 0(r~777H).
Finally, since 7(p) is uniformly close to p, we have that r(7(y)) = r(y) + O(1),
and thus we find that for all large g,

1

inI', r(y)>ro.
The proof is concluded. O
A second element needed is a regularity estimate for equation (7.30).

LEMMA 7.5. Let p > 8, v > 2. Then there exists a C > 0 such that if
lglloo,s + [|2]|oo,y—2 < +00 and h solves (7.30), then

(7.21) ||Dlgh|’p,y—%+HDFh||oo,zxfl < C(Ihllooy—2 + llglloow)-

Proof. Without loss of generality, we may assume that ||h]/oc.—2 + ||g]|co.v
< 1. We use the local coordinates (3.13). Then, around a point p with r(p) =
R, for any sufficiently large R, the equation reads on B(0,20R) for a small,
fixed 8 > 0 as

aj; (y)ijh + b (y)0ih = —|Ar(y)[*h + g(y) in B(0,20R).

Consider the scalings

h(y) = R""*h(Ry), &(y) = R"g(Ry).
Then |Ar(Ry)|?|h| + |g| < C in B(0,26), and

ajy(Ry)diih + b)(Ry)dih =g in B(0,26), §:= |Ar(Ry)l*h +g,

where a;; = §;; + O(6). By interior elliptic regularity we find that

10:h]| Lo (50.0)) + 10557 ]| Lo(B0.0)) < C
and, in particular, [9;(0)| = R*~!|9;h(p)| < C so that

|Drh(p)| < CR'™,

/ R"P=%|9;;h[P(Ry) R® dy = R""~® /
B(0,9)

03h[P(y) dy < C.
B(0,0R)
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Hence
L8
r(p)”~ | Drh(p)| +r(p)”» | DR Lo (Bp1)nr) < C

provided that r(p) is large enough. On a bounded region, the correspond-
ing estimate follows from interior elliptic estimates, and hence estimate (7.21)
follows. O

Proof of Proposition 7.1. We begin by proving existence assuming that
llglloo,y < +00. Let us consider the approximate problems

(7.22) Jolh] =g(y) nTNB(O,R), h=0 ondNBO,R))

where we allow R = 400.
We claim the existence of a C' > 0 uniform in R and g such that the
a priort estimate

(7-23) ||h||oo,u—2 < C”gHoo,z/

holds. Let us assume the opposite, namely the existence of sequences R =
R, — 400, h = h,, and g = g, such that (7.30) holds, but ||hn|lec,,—2 = 1,
|gnlloo,y — 0.

Passing to a subsequence, we may assume that h,, — h locally uniformly
in I', where h satisfies the homogeneous equation Jr[h| = 0 and ||hl/sc,,—2 < 1.
We claim that h = 0. To prove this, we let Z = ——— and observe that

VIHVEF?

Jr[Z] = 0. Since h = o(r~2) as r — 400, it follows that given £ > 0, we have
that |h(y)| < eZ whenever r(y) is large enough. It follows from the maximum

principle that
€

lh(y)| < \/ﬁ

and hence that h = 0, as claimed.

Now, from Lemma 7.4, we know that there is a positive supersolution A of
—~Jrlh] > r7¥ for r > rq such that h>Cr?~". We also have that |g,| < p,r?™
with p, — 0. Furthermore,

inI

~Jr[Eh, —0(1)h] <0 in {ro<r < R,}NT,

and +h, — o(1)h < 0 on the boundary of this set, where we are using that
hyn — 0 locally uniformly. From maximum principle, we conclude that for all
large n, |hn| < o(1)h and thus [|hy||so—2 — 0, a contradiction that proves the
validity of the a priori estimate (6.2).

Now, as for existence of a solution to (7.18) for a given g, we use the
a priori estimate found. The approximate problem is indeed uniquely solvable
when R < +oo, thanks to the a priori estimate and Fredholm alternative.
Possibly passing to a subsequence, we get that hr converges locally uniformly
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to a solution h of the equation. The limiting function clearly satisfies the
estimate (6.2). Now, Lemma 7.5 yields the stronger estimate

(7.24) HD%th,V_g + 1 Drhllooy—1 + Ihllcop—2 < Cllgllooy

for any p > 8

Let us assume now that we only have ||g||,, < +o0o. We find a solution
to equation (7.18) by reducing the problem to one in which g is replaced by
a g with ||g]|ec,, < +00. We do this using the result of Corollary 6.1. Let us
consider the equation

~Ary+A*p =g inT,

where A > 0 is a small number, to be chosen. The transformation v (y) :=
1(A\y) makes this equation is equivalent to

—Ap, ¥+ ¢ = Ng(\y) inTy.

From the result of Corollary 6.1 with X replacing «, we find a sufficiently small
A for which this problem has a unique solution respecting the corresponding
decay estimate for the right-hand side. In terms of v the estimate achieved
reads

IDE¢llpo + [ Dr9 oo + ¥l < O llgllp-

We denote 9 := 1(g). Then writing in equation (4.24) h = ¢)(g)+ h; we obtain
the following equation for h;:

(7.25) Arhi + |Ar(y)[*h1 = gly) inT,

where

g = \9(g) — [Ar(v)]*¢(g)-
Clearly ||glloo,y < Clgl|p,n- But we know by the previous step that there exists
a unique solution hy to (7.25), which satisfies

||D%h1Hp,u_g + [[Drhsllsop—1 + [hllocp—2 < Cl8lloc,ws
and the result follows. U
7.4. Proof of Proposition 4.2(a).

LEMMA 7.6. The results of Lemma 7.5 and Proposition 7.1 remain un-
changed when I" is replaced by Iy for the problem

Jrolhl =g inTy.

Proof. The proof of the analog of Lemma 7.5 is identical, taking into
account suitable local coordinates y = Yy(y) for I'g, for instance for large r
one can use those introduced in (8.28) below that lead to exactly the same
asymptotic properties for the Laplace Beltrami operator. The proof of the
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corresponding result to Proposition 7.1 is also the same, on the basis of the
supersolution found on I'g and the fact that jpo[\/%] =0. O
1+|VF0|2

Our next task is to solve the problem
(7.26) Jrolh] =g in T,

where we assume now that g decays only at rate O(r~3) but it is symmetric
in the sense that

g(Qy) = —g(Qy) forall yeTly

and for all Q of the form (3.2). In particular, g = g(r,0).

We look for a solution to (7.26) that shares the same symmetries. Thus
it suffices to solve the problem in I'gy with h symmetric and vanishing at its
boundary, namely

(7.27) Jrolhl =g inToy, h=0 ondloy,

since then the odd extension of h = h(r,#) through § = 7 will satisfy (7.26).

We require in addition that in polar coordinates, the function g is dominated
in the following way:

(7.28) lg(y)] < in Toy.

We prove:

LEMMA 7.7. Let p > 8 and assume that g satisfies (7.28). Then there
exists a solution h to problem (7.27) such that

(7.29) HD%Oth,g_g + 1Drohllco.2 + [[Alloo, < +o00.

Proof. Let us consider the supersolution hg for (7.27) defined by r > 7

given by Lemma 7.3. (We fix an arbitrary exponent 7 € (3,%)). Let n(r)

be a smooth cut-off function such that n(r) = 1 for » < 79 and 7(r) = 0 for
r > rg+ 1. We consider the function, defined in entire I'g; as

hi=n+ (1 —n)ho.
Then
—Jrolh] = =(1 = 1) Jro ol + 80 > (1 = n)g" (0)r ™ + &
> ¢(1=n)g"(0)(1 +7)~* + go,

where gg is compactly supported and ¢ > 0 is a constant depending in 79. Let
ho be the unique solution of

—Tro[h2) = |8o| +sng()™(1 + 1) 72,
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given by Lemma 7.6, which is positive in I'g; and symmetric. Then if hz :=
h1 4+ ho, we get

—Troha] > <g(8)7(1 + 1) 7> > Csg(B) (1 +7) 2,

and hence hg is a positive supersolution of the problem (7.27)-(7.28).
Since Jr, satisfies maximum principle, we have that the approximation
scheme

(7.30)  JIrlhr]l =gly) inToy NB(0,R), h=0 ond(ITos+NB(0,R))

is such that its unique solution satisfies |hr| < Chs. Standard diagonal argu-
ment gives a subsequence of hr which converges locally uniformly to a smooth
solution h of

(7.31) Jrolhl =g inTop, h=0 ondloy,

with the property that ||h|le,1 < C. Observe that we also have ||g|«,3 < C.
From Lemma 7.6, we then get that for any p > 8,

(7.32) 1DEAll, 55 + [ Drohllsc + [Alleon < €,
as desired. O

To conclude with the proof of the proposition, we need to consider the
equation

8
(7.33) Jr[h] = Ha(y) :== > _ki(y) inT.
i=1
A main fact we need is the following lemma, whose proof is postponed to
Section 8.4.

LEMMA 7.8. Let k) (y) denote the principal curvatures at a point y € To
(see (7.15) for the definition of T'oy). Then we have that for all large enough

r(y),

=3 () 5
(7.34) Y khy)| <C 3 +0(r™) on Ty,
=1
8 8
(7.35) Yo Ey) = kip(n(y)) + O(™).
=1 =1

Let us conclude the proof of the proposition. From Lemma 7.7 and using
an odd extension by reflection, we see that there exists a solution hg of

8
Jr, [ho] = Z k;?(] in I,
=1
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satisfying the appropriate estimates. Let hi(y) = ho(n(y)) for r(y) > ro,
and extended smoothly in an arbitrary way to all of I'. Then according to
Lemma 7.1, we find that for large r,

8
(7.36)  Jrlhl(y) = kio(m(y)) + [O(T_Q_U)D%Oho +O0(r™77) Dryho
i=1

+ 00 )ho| (n(y)) i T.
To solve problem (7.33) we set h = hy + he and then get the equation for ho,
Jrlhe] =O(y) inT,
where, using relation (7.35) and Lemma 7.6, we get
1©]p,5 < +00.

Then we choose hy to be unique solution to that problem given by Propo-
sition 7.1. The function h built this way satisfies the requirements of the
proposition. O

8. Local coordinates on I':

The effect of curvature and closeness to Iy

8.1. The proof of Proposition 3.1. Let py = (zg, F(x9)) with |z¢| = R.
Then there is a function G(y) such that, for some p,a > 0,

I'N B,(po) = po +{(y,G(y)) Iyl < a},

where y = (y1,...,ys) are the Euclidean coordinates on T},,I". More precisely,
F(z) and G(y) are linked through the following relation:
i i)
1 = 11 .
(8 ) {F(w)} {F(l‘o)} + y+G(y)V(p0)
Here
8
Hy = ZYsz y€e RS)
j=1
where {IIy,Ily,...,IIg} is a choice of an orthonormal basis for the tangent
space to the minimal graph at the point py = (2o, F(x0)), and
1 VF(x
\/1+‘VF($0)‘2 -
so that
1
G(y) = (F(x) = F(x0) — VF(x0) - (¥ — x0))-

1+ |VF(z)]?

The implicit function theorem implies that G and z, given in equation (8.1),
are smooth functions of y, at least while |y| < a for a sufficiently small number
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a > 0. Clearly when pq is restricted to some fixed compact set, then there
exists a 6 > 0 such that

CL:H(l—i—R), R:‘xo‘

To show a similar bound for all py € I', we will assume |zg| = R > 1. The
bound we are seeking amounts to estimating (from below) the largest a so that
sup [D,G(y)| < +oc.

lyl<a
Here and below, by Dy, D}Z,, etc. we will denote the derivatives with respect to
the local variable y. Let v(z) denote unit normal at the point z = (y, G(y))
(with some abuse of notation v(pg) = v(0)). Let us set

.y
j=
|yl

and consider the following curve on the minimal surface:
r(r) = (ry, G(ry)), 0<r<lyl
Then
Orv(y(r)) = Ar(v(r)[(y, DyG(ry) - 3)],
where Ar is the second fundamental form on I' and DyG(ry) = DyG(y) |y=ry -
Thus .
IVUNTD-—VKD\SoigzIAFVKS»LA (14 [DyG(sy)|) ds.

We will now make use of Simon’s estimate ([34, Th. 4, p. 673 and Rem. 2,

p. 674]) which yields
c
sup |4r(1(5)| < %,
0<s<r

since we can assume that |y| < OR, with some small § > 0. In addition, we
have that

DyG(ry)|
V() = v(O)] = T T
hence

Let us write € = % and

P(r) = /0 (1+ |DyG(s5)|) ds.

The above inequality reads

or
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so that for all sufficiently small (relative to the size of €) » > 0, we have that
1—(1—ey(r)?® < 2er.
Since ¥ (0) = 0, it follows that
(1-2er)2 < (1 eg(r));

hence

1 ! lﬁew(r)gl—(l—%r)%,

1+ [DyG(ry)
which implies
_1
[DyG(y)] < (1 —=2¢efy[)72 =1 < 8elyl,
provided that ely| < %. Hence we have established that there are positive
numbers 6, ¢, independent of R such that

c
(8.2) |DyG(y)| < §|y| for all |y| < 6R.

In particular, we obtain a uniform bound on DyG(y) for |y| < R, while at the
same time

(8.3) V(3. G) - v(O)] < Zly| forall [y] <OR.

This guarantees the fact that our minimal surface indeed defines a graph over
the tangent plane at pg, at least for |y| < §R. The quantities z(y) and G(y)
linked by equation (8.1) are thus well defined, provided that |y| < #R. The
implicit function theorem yields, in addition, their differentiability. We have

(5.0 Do | =TT DG

and, in particular, |Dyxz(y)| is uniformly bounded in |y| < #R. The above
relation also tells us that

(8.5) Dya(y)| < IDPGy), m>2, |yl <6R

Let us estimate now the derivatives of G. Since G(y) represents a minimal
graph, we have that

v,G

VIt [V,

Let us consider now the change of variable

(8.6) H[G] = Vy - < > =0 in B(0,6R) C RS,

Gly) = 1G(RY)

and observe that G is bounded and satisfies

(8.7) H[G) =V, - (%) =0 in B(0,6).



DE GIORGI’S CONJECTURE IN DIMENSION N > 9 1535

In fact from (8.2), we have
IG(y)| < C forall |y|<;

hence, potentially reducing 6, from standard estimates for the minimal surface
equation (see for instance [18]) we find

(8.8) ID,G(y)| < C forall [y| <8,

with a similar estimate for D?é, and in general the same bound for D;,”a,
m > 2 in this region. As a conclusion, using also (8.5) we obtain

m m C
(8.9) D (y)| + | Dy G(y)| < T for all |y| <OR
for m = 2,3,.... This estimate and (8.2) provide in particular the result of
the lemma. O

Remark 8.1. From the above considerations it follows that the local coor-
dinates near I' in (3.11) are well defined. Indeed this is the case as long as the
function x — (y, z) is invertible. We claim that this holds, and consequently
that the Fermi coordinates are well defined if

(8.10) 2] < 6] Ar(y)|~,

whenever r(y), the distance from the origin of the projection of y € I' onto
RS, is large enough, and € is chosen to be a small number. We argue by
contradiction; i.e., we assume that x — (y,z) is not one-to-one. Because of
the symmetry of the surface I, it is enough to consider the situation in which,
for certain x = (2, x9) such that 2’ € T, we have the existence of two different
points y1,y2 € I' N T such that

(8.11) r=vy+z2v(y;), i=1,2,

with z satisfying (8.10). We may assume that |r(y;)| = R; is large. Then it
follows that

(8.12) [y1 = wel < Izllv(y1) — v(y2)| < 0] Ar(y:)| "
In the portion of I" where (8.12) holds, we in fact have
(8.13) ly1 = w2l < [2llv(y1) — v(y2)]

<OAr(y)™t  sup |Ar(y)llyn — vl

ly1—y|<O|Ar (y1)|
Ri+1
<Co — Y2l
< 7 ly1 — ya|

We get a contradiction if we take 6 > 0 to be sufficiently small, and thus the
claim follows.
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Z9

RB

Figure 2. Local configuration of the two surfaces I' and T'.

8.2. Comparing G and Gy. We want to estimate with higher accuracy
derivatives of G, in their relation with the approximate minimal graph I'g,
xg = Fy(x). We shall establish next that in the situation considered above we
also have that I'g can be represented as the graph of a function Gy(y) over the
tangent plane to I' at the point pg, at least in a ball on that plane of radius
OR for a sufficiently small, fixed § > 0 and for all large R. Below we let n and
v denote respective normal vectors to I'g and I', with the convention n-v > 0.
For convenience the situation is presented schematically in Figure 2.

To prove the above claim we will show that for fixed, sufficiently small 6,
we have the estimate

(8.14) In(q) —v(po)| < CO for all ¢ e TyN B(po,HR).
Since by Theorem 2
F(z) - Fo(@) = O(al ™), some o € (0,1),

we have that the points pg = (xg, F'(x0)) and qo = (zo, Fo(zo)) satisfy

C
(8.15) [P0 = qol < -

Let T),,I', Ty, I'o, be the corresponding tangent hyperplanes, namely
Tyl = {2z €R? | (z — po) - ¥(po) = 0},
TpTo={z € R?| (z = qo) - n(qo) = 0}.
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We assume that v(po) - n(qo) > 0. We claim that there is a number M > 0
such that for all large R,
oM

(8.16) lv(po) — n(qo)| < R

Let us assume the opposite and let us consider a point z € T,,,I'g with
0
OR > |Z - q()‘ > 5R,

with 6 > 0 as in (8.2). Let us write cosa = v(po) - n(qo) with 0 < a < 7.
Then, using (8.15) we get

. | o,
(8.17) dist (= Ty T) > [o — polsina > (SR~ R~ ) [w(po) — nlao)| > Me.

Now let g € I'g be the point whose projection onto 7,,I'g is z. Point g is unique
by the analog of (8.3) for the surface I'g. Let us write ¢ = (Z, Fy(%)). Notice
that |Z| ~ R. We will also set p = (&, F(Z)) € T'. Since the second fundamental
form of the surface I'g satisfies an estimate similar to the one for I', we may
assume, reducing 6 if necessary, that

dist (g, Ty, I'o) < cb.
Now, estimate (8.2) implies that
dist (p, Tp,I') < c#.

If M is fixed so that M@ is sufficiently large, the above two relations and
(8.15) are not compatible with (8.17). Indeed, we get

M0 < dist (2, Ty, T) < dist (5, @) + dist (5, T, To) + dist (, Ty To)
< ¢ + dist (p, q)
C
< ﬁ + 09;
hence (8.16) holds. Moreover, using estimate (8.3) and the analogous estimate
for the variation of n, we have the validity of the estimate

In(q) —n(qo)|+|v(p)—v(po)|<CO for all pel'NB(po,0R),qcToNB(qo,0R).

Furthermore, we observe that the analog of estimate (8.3) implies that in the
set I'o N B(qo, OR), the distance between I'g and its tangent plane at gy varies
by no more than c¢f. From this and (8.15), (8.16), the desired conclusion (8.14)
immediately follows (taking € smaller if necessary). Hence the function Go(y)
is well defined for |y| < 0R.

Let us observe that Fy and Gy are linked through the following relation:

(8.18) L%(m)} _ {ngo)} 10y + Go(y)v(po).
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By the implicit function theorem,  and Gg(y) define differentiable functions
of y for |y| < OR. We shall establish derivative estimates for Gy similar to
those found for G. We claim that

m z, m C
(8.19) |Dy"Z(y)| + | Dy Go(y)] < Tl for all |y| <OR,
for m = 1,2,.... Differentiation of relation (8.18) yields
9z | _
(8.20) {DFO(QE)@-%} =1I; + 0;Gov(po).

Let ¢ = (Z, Fp(z)) and

1 DFy(#)
V1+|VE(@))2 L —
From (8.20) and the fact that n(q) - v(pg) > ¢ > 0, we then get
0;Go(y)| < C|IL; - n(q)| < C.
Using again relation (8.20), we also get
|0;2(y)| < C.
Let us differentiate again. Now we get
i ], 0
DFy(%)0;,% D?Fy(%)[0;7, 0,7
Again, taking the dot product against v(pg), we get
|D*Fy(2)]
1+ |VFy(z)[?

(8.21) = 9jkGov(po).

105kGo(y)| < C

C
<7)
R

and thus
oy <
il T —.
Iterating this argument, using that
|ID™Fy(2)] < CR*™, m=1,2,...

the desired result (8.19) follows.
Let us write

G(y) = Go(y) +h(y).
We will estimate first the size of h(y) in the ball |y| < #R. We claim that we
have

(8.22) lh(y)| < CR™'° forall l|y|<#6R.

The first observation we make is that when y = 0, we have

C

(8.23) B(O)] = [Go(0)] = g
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To show this let  be such that

{FOZ)} N {Fzgo)} + Go(0)v(po),

and let § be such that

T i) ~ ~
| = + Iy + G(y)v .
Comparing these two expressions and using |F'(Z) — Fy(Z)| ~ R™7, we see that
|| ~ R~7; hence, by (8.2), we get that |G(§)| ~ R~172°. Now multiplying the
above relations by v(pg) and subtracting them, we infer (8.23) since by [34,
Th. 4, p. 673 and Th. 5, p. 680], we have that

1

1vo(po) <<
9\Po)| — S =
1+ |DF(py)2 ~ R

To prove (8.22), now we let p; = (21, F(z1)) € ' N B(pg, OR) so that

p1=po + Iy + G(y)v(po), |yl <OR.

Then |G(y) — Go(y)| corresponds to the length of the segment in the direction
v(po) starting at p;, which ends on the surface I'g. Let py = (1, Fo(z1)). Then

Ip1 — p2| < CR™°.

Let us consider the tangent plane T),,I'g to I'g at pa, with normal v(ps). Then,
[N B(pa, CR™7) lies within a distance O(R™177) from T,,T; more precisely,

To N B(p2, CR™%) C Cr,
where Cg is the cylinder
Cr= {2+ sv(pa) | 2 € Tp,T0, |2 —pa| <CR°, |s| <CR 7}

Using (8.23) we may assume that p; € Cg. In particular, the line starting from
p1 with direction v(p;) intersects I'g inside this cylinder. Since v(p1) - v(p2) >
¢ > 0, the length of this segment is of the same order as the height of the
cylinder, and we then get

|G(y) — Go(y)| < CR™7;

hence (8.22) holds.
Next we shall improve the previous estimate. We claim that we have

C

(8.24) |D§nh(}’)| < R+t

in |y| <R

form=20,1,2,.... Let us set

1

Gly) = £G(Ry), Goly) = £Go(Ry), (y) = b(Ry).
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We compute (for brevity dropping the subscript in the derivatives)

o~ —~ —~ 2~ 2 2l
1+ |VGRHG = aG - ZEIVEVE]

1+ |VG)?
Now,
D2G[VG,VG]  D*n[VG,V(] N D2Gy[VG, VG
1+|VG2  1+]|VG]2 1+ |VG)?
and

D2Gy[VG,VG] DGy [VGy, VG N D2G [2V Gy + Vh, Vh]

1+|VG|? 1+|VG|? 1+|VG|?
Furthermore,
D2Gy [VGy,VGo]  D*Gy[VGy, VG
1+ |VG|? 1+ |VGo|?

_ D?Gy[VGy,VGo] (2VGo + Vh) - Vi
(14 |VGo)(1+|VGP) ‘

Collecting terms we see that h satisfies the equation

. D?h[VG,VG N

an- PRIVG VG Gl B0 i B(0,6),
1+ |VG?

where o
~ D = —
B = AG, — DG lNGO NG [T o6 (G,

14 |VGo|?
and

_ D%Gy [V Gy, VGo] (2VGy + Vh) N D2Gy 2V Gy + V]
(14 |VGo|2)(1 + [VG|?) 1+|VG|? '

Notice that N
VG| <O, |ay)| < CR™77 inly| <.
Also by (9.36) it follows that the mean curvature of I'g decays like R~°. From

D2Gy [VGo, VG
Cvar )

= R\/1+ |VGo|*H|Go](Ry)
= R\/1+|VGo(Ry)|>H[F](#(Ry))
(in the notation of (8.18)), we then find
|E(y)| = O(R™),

B(5)] = R (a60 -

and, as a conclusion, reducing 6 if needed,
c

IDyh(y)| < s

in |y| <9,
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so that for h, accordingly we get
c

in |y| < 0R.

On the other hand, using (8.19) we have for instance that
Dy H(Go)(y) = DaH[F) (#(y)) Dyi(y) = O(R°);

hence

|DyE(y)| = O(R™).
More generally, since

Dy H[Fp)(x) = O(|z[7>™™),
we get
_ -4

Dy E(y) = O(R™).

Thus, estimates (8.19), (8.9) and standard higher regularity elliptic estimates

yield
_c

DRG] < e

in |y| < 0R.

Hence

DPn(y)| < in |y| < 0R

C
Rm+1+a
for m > 1.

8.3. Approzimating T' by Ty and their Jacobi operators:
Proof of Lemma 7.1. The surfaces I' and 'y are uniformly close for r large.
Let p € I with r(p) > 1. Let us consider the point 7(p) € I'g defined in (7.2).
Using local coordinates (8.18) around p, we have

7(p) = p+ Go(0)v(p).

Here of course the function Gy depends on p. From this it follows that m(p)
exists and is unique when r(p) > 1. As we will see below, the map p — 7 (p)
is smooth.

We recall that the Jacobi operators associated to I' and I'g, respectively,
are

Jrlh] = Arh+ |Ar*h, v [h] = H'(Fo)[\/1 + [V F|?,

where we recall that from (7.4), Jr, is the sum of Ar, + |Ar,|> perturbed by
a second order operator with very rapidly decaying coefficients.

Let us consider two smooth functions h and hg defined on I' and I'g for r
large, and related through the formula

ho(m(y)) =h(y), yel, r(y)>ro.
Then, to prove Lemma 7.1 we have to establish the relation

(8.25)
Tr[P)(y) = [Tro[ho] + O(r~2=7) D ho + O(r~>=7) Dryho + O (r~*=7) hol (m(y))-
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8.3.1. Projection map w(p) and its derivatives. We show next that this
map is smooth and estimate its derivatives. In local coordinates y we have
that in a neighborhood of y = 0,

(8.26)

8 8
©(y) =p+ D yilli + Gy)(0) + (Go(0) + t)u(y) =p + Y Filli + Go(3)v(0)
i=1 i=1
for certain scalar function ¢(y) and vector function y(y). Here and in what
follows, with some abuse of notation, we write f(y) to mean f(Y(y)). Thus
we should have ¢(0) = 0, y(0) = 0. Local existence and smoothness of these
functions can be found by the implicit function theorem. Indeed (8.26) is
equivalent to the system

[ y1 — 1 + (Go(0) + t)uv(y) - II;

A(y,ﬂ,t) = =0.
ys — ¥8 + (Go(0) + t)v(y) - Ils
G(y) + (Go(0) +¢

Note that A(0,0,0) = 0 and that

Idgs + Go(0)D;G(0) 0

Dy,tA(07070) = DyGO(O) 1

} = IdRQ + 0(7"7270)

is invertible; hence the existence of the smooth functions y(y) and t(y) as
required follows. Moreover, implicit differentiation yields

Dyt(0) = [Dy +A(0,0,0)]~*Gp(0) = O(r~279),
while
Dy§(0) = Idgs + O(r~27°).

Iterating the implicit differentiation, using that one negative power of r is
gained in successive differentiations of the coefficients G(y) and v(y), we find
that

mz m _ —m—1—0o
DP§(0), DI't(0) = O(r ), m>2.

8.3.2. Comparing Ar and Ar,. Given a smooth function f(y) defined on
I" for all large r, it is natural to associate to it the function fy defined on I’y
for large r by the formula

(8.27) fo(m(y)) = f(y)-

The question is now how to compare the quantities [Ar f](y) and [Ar, fo](7(y)).
Given a point p on I, the corresponding local coordinates y are good, both for
parametrizing locally T near p and T’y near m(p) respectively by

(8.28) Y(y)=p+wlli+G(y)v(p) and Yo(y)=p+ylli + Go(y)v(p).
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The observation is that, by definition, 7(Y (y)) = Yo(3(y)) and thus the relation

(
(foom)(Y(y)) = f(Y(y)) means fo(Yo(y(y))) = f(Y(y)). In other words, with
the usual abuse of notation,

fo(3(y)) = f(v),

and the question is to compare Arf(y) and (Ar,fo)(F(y)) where these two
operators are expressed in the local coordinates y.
Let us recall that the metric tensor g on I' near p satisfies the estimate

(829) gij = 6i; + %:G(y)9;G(y) = i + O(lyl’r™), |yl <6r, r=r(p),

where d; = 0y,. Similar estimates hold for the metric tensor go on the surface
I'g expressed in the same local coordinates. In fact we have

(8.30) 80,15 = (0iY0,0;Y0) = 6ij + 0;Go(y)9;Go(y)
= gij — 0:G(y)0;jh(y) — 0;G(y)9:h(y) + 9ih(y)0;h(y)
=gij + y|Oo(r—*7).

Hence if we write

Ar = a)i(y)0i; + b)(y)0i,  Ar, = ag;(y)0i; + b (v)0%,
then we now find for |y| < 1,

Ar = [ag;(y) + O(r>")|0y + [0 (y) + O(>77)]0.
We compute
0i(fo0F) = (Okf0°F) 0Tk, 0i5(fooF) = (OkifooF) OiFk 0551+ Ok fooF) 0i;F k-
We recall that we found at y = 0

Ok = ik + O(r~>77),  Bijyy, = O(r—>79),
and hence
Ar(fo 0 3)(0) = Ary fo(0) + O(r>77)(8i;f0)(0) + O(r~=7)(9;£0)(0),

so that
(8.31)
Arf(p) = Ar, fo (n(p)) + O(r=*7) [DE, fol (w(p)) + O(r~>~7) [Dr, fo] (x(p))-
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8.3.3. Comparing curvatures: Conclusion of proof of Lemma 7.1. Let us
consider the second fundamental form on I'; Ap, and the second fundamental
form on I'g, Ar,. We observe that for a given point p € I', we get that
in the local coordinates y (3.13), the matrix representing Ar(p) in the basis
I, ..., Ig of T, is A = —D2G(0) since DyG(0) = 0.

We consider next I'g described by the coordinates Yj(y) near the point
q = 7(p). The tangent space T,y ['g is spanned by the vectors

Il := I1; + 9;Go(0)vp = I1; + O(r~277),

and the the normal vector to I'g at the point p + Iy + G(y)vy is given by

n(y) = L (~0;Go(y)1L; + o).

V1+IVGo(y)P

We have that
8
8]71(0) = Zaijﬂi
i=1

for certain numbers a;;. By definition, the matrix of the second fundamental
form of Ap,(p) with respect to the basis II; corresponds to the 8 x 8 matrix
A() = [aij]. NOW,

1 9;:Go(0)9:Go (0
ajn(o) == aijGO((])Hj* J 0( ) . 0( g(*aijGo(O)Hj+yo);
1+ [VGo(0)]2 (1+|VGo(0)[2)2
hence
9n(0) = —3;Go(O)I; + O(r~*~%) = =9;Go(O)IL; + O(r~*7),

and therefore
ai; = —9;;Go(0) + O(r=377) = —8;;G(0) + O(r—37°).
In summary, the matrix representing Ar,(mw(p)) is
Ay =—D;G(0) + O(r—37°).

The eigenvalues of this symmetric matrix, which are of order O(r~1!), differ

at most O(r=379) from those of A = —DB%G(O). As a conclusion, we get in
particular that
(8.32) [ Ar(p)* = |Ary (n(p))]* + O(r~*77).

Let us consider now the operators Jr and Jr,. According to relations
(8.31) and (3.33), and using formula (7.4), we find that if ho(7(y)) = h(y),
y € I, then

Trlh)(y) = [Trolhol + O(r=77) D ho + O(r~>=7) Dryho +O(r~*=%)ho] (n(y)),
and the proof of the Lemma 7.1 is thus concluded. U
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Remark 8.2. The estimates obtained for the second fundamental form of
I" in comparison to that in I'g makes it simple to see that for some a > 0

1 a~!
< <

2T I IVE@)R T

for all r(p) sufficiently large, which is a special case of the estimate in [34,
Th. 5, p. 679].

| o

(8.33)

8.4. The proof of Lemma 7.8.

8.4.1. Proof of estimate (7.35). Denoting by k; and k;p the principal cur-
vatures respectively on I' and I'g we get, according to the considerations above
on the second fundamental forms,

8 8

8
S k) = Do + O )P (x(p) = Y ko) +0),
=1

=1 =1
and thus estimate (7.35) in Lemma 7.8 holds.

8.4.2. Proof of estimate (7.34). To prove (7.34) on I'y, we compute ex-
plicitly its second fundamental form. The surface I'g given by the graph of
Fy = Fy(u,v) can be parametrized by the map

w,0,0,v) € Ry x Ry x 8% x 83— (ult,vv, Fy(u,v)).
+ X Ry

Let us consider an arbitrary point p € T'g, p = (ui,vv, Fy(u,v)) and local
parametrizations of S3 given by u = u(t), v = v(s), t, s € R3, with

U.(O) = ﬁa V(O) = ‘A’a 8t1u(0) = Ti, aSZV(O) = 0,

where 7;, 0; i = 1,2, 3 are the vectors of an orthonormal basis, respectively of
TuS? and T S2. Then we have

T,T = span {(@0,0, Fo,.), (0, ¥, Fo, ), (uri, 0,0), (0,v0,,0),i = 1,2, 3}
= Spa‘n{€17627 fzvguz - 17273})

and
(FOUﬁv FOv‘Alv _1>

v 1+ ‘VF()’Q

n(p) =

A direct computation yields

. F()uu _ FOvu
oz 1= y Ty 2 =
1+ |V 1+ |[VF|?
FOuv FOvv
Ny €1 = —F/—/————=, Ny €2 =

V14 |VF|? 1+ [VE[2

Ny-fi=0=ny g, M- fi=0=mn,"g.
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Likewise, we get

ng, = (FOUT’iaOvO) e = (O)FOUUiao) .
7 - 77 Si - 77
V14 |VE|? 1+ |[VE|?
hence
F
nti-ﬂ:&, M, * €1 = Mg, * €2 =N, * G5 =N, * [, = 0,
V1+ | VF?
vFp,
Ur

i 9= T nti'61:nti'eQZnti'fj:nti'gkzoa
V1+|VF?

i=1,2,3, ki
The matrix of the second fundamental form Ar,(p) relative to the basis of
Ty,
Tplo = span{er, €2, f1, f2, f3, 91, 92, 93}
is by definition the 8 x 8 matrix A = (a;;) such that

5 8
ny = aier + azea + Y ayifj + Y aijgi—s,
=3 =6
5 8
ny = agier + agez + Y agifi+ ¥ asjgis,
=3 =6
5 8
N, = agyitel + agyinez + Y agyijifi + Y a21ijgi-s, i = 1,2,3,
J=3 Jj=6
5 8
Ny, = A5441€1 + A5442€2 + Z as4qjfj + Z as4ijgj—s, © =1,2,3.
j=3 j=6

Using the above computations, we readily get that A is a block matrix of the

form
A O 0
A=10 Ay 0],
{0 0 AgJ
where
A — 1 { Fouu Fouv } { 1 —i—Foi 1 +F0uF0v }1
' \/1+‘VF0’2 Fovu  Foww L+ FouFoy 1+F012; ’
and
1 00 1 0 0
Agz%{o 1 O-I A _FO“[O 1 O-I
uy/1+ |[VFy|? [O 0 1J vy/ 1+ |[VEp|? {0 0 1J
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The principal curvatures are the eigenvalues k;o of the matrix A. Thus we find
kio = A1, koo = A2,
FOu

e = M1,
uy/1+ |VFp|?

FOU

— Y = U2,
vy/1 4+ |VF0|2

where \;, i = 1,2 are the eigenvalues of the 2 x 2 block A;. Expressing 1, ps,
in polar coordinates,

k3o = kao = kso =

koo = k70 = kgo =

FOu 1 / .
p = = (3g(0) cosf — ¢'(0) sin0),
u\/1+ |V Fyl? r\/992+g’2
FOU 1 . /
p = = (39(0) sin® + ¢'(8) cos 9);
v\/1+|VF0|2 r\/992+g’2
hence
R
13+ py =

3
2

R := [(39(0) cos — ¢'(0) sin6)* + (39(0) sin 6 + ¢'(6)° cos 0)°] .
Now, since g(#) vanishes at § with ¢'(F) > 0, we get
R = 0(9(0)) + ¢'(6)"(cos 0 — sin®0) = O(g(6)),
and therefore

8
> _kio = O(g(0)r™?).
i=3

It remains to estimate k3, + k3.

We know that, globally, all principal curvatures are O(r~!). Let us con-
sider the case 6 € (Z,3Z). Since second derivatives of F' in (u,v) are of order
O(r), we then get that

A = 00— =4+ 9¢% cos? 0 + ¢'* sin? 0 r~* — 3g'gsinf cos b -
e r~* —3¢'gsinf cos =4 4+ 9¢2sin? 0 + ¢'* cos® 6
2 .2 2 2 ot -1
— O 9¢g COS/ 9'—i—g sin“ 6 ; Z.’)g2g sm@/(Q:os 92 —|—O(r_9).
—3g’'gsinf cosf 9g-sin“ 0 + ¢'“ cos” 6

The latter inverse is uniformly bounded in the region considered. As a con-
clusion we get that the eigenvalues of this matrix are of size at most O(r~?)
T, while for 0 away from 7 the eigenvalues are of the size O(r—1).
Globally we then get

near 6 =

8
> ko =0(9(0)r—) +0(r™°),
i=1

and the proof is concluded. O
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9. Asymptotic behavior of the BDG graph:
Proofs of Lemma 2.1 and Theorem 2

9.1. FEquation for g: Proof of Lemma 2.1. We want to solve the problem

21 sin°(260) sin®(260)gp T
oy A (swew) o (xmy
V992 + g2 VI9:+93 ), 42

with the boundary conditions

o2 (D)0 wlg)-n

Let us observe that if g(6) is a solution of (9.1), then so is Cg(f) for any
constant C. The following lemma proves the existence of solutions to (9.1).

LEMMA 9.1. Problem (9.1) has a solution such that
(9.3) g(0) >0, gae(0) <0, go(0) >0,
and the last inequality is strict for 6 € [§,5).

Proof. If g is a solution to (9.1), then the function

w4020

P(0) =
satisfies the following equation:
(9.4) 9¢" + (9 + 9?)[21 + 6 cot(260)2)] = 0.

Our strategy is to solve (9.4) first and then find the function g. To this end
we will look for a solution of (9.4) in the interval I = (7/4,7/2) with

(9.5) W(r/2) = 0.

In order to define the function g we also need 1 to be defined and positive in
the whole interval (%, 3] and limg =+ Y(0) = +o0. Let (0*,%], T < 0%, be the

maximal interval for which the solution of (9.4) exists.
We set 11 () = —11tan(260). Then we have

9, + (9+¥3)[21 + 6cot(20)v4] < 0, 96(4 2}

() =0-0(5). 4 (5)-men-v(3)
Substituting 1_ () = —2tan(26) for ¢ in (9.4), we get
(9.6) 9"+ (9 +2)[21 + 6cot(20)y_] > 0.
We have ¢(7/2) = ¢_(w/2) = 0 and, from (9.4),
Y (r)2) = —21 < —4 =9 (n/2).
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From this we get that the maximal solution of (9.4) satisfies
(9.7)

Yy (0) = —11tan(20) > ¥(0) > _(0) = —2tan(20) >0, 60 € (0*,7/2)
and that 6* = 7. Let us now define

/2

(9:8) 90) =exp{ ~ [ vy dt},

where 1) is the unique solution of (9.4)—(9.5). Clearly we have gy(7/2) = 0 and
from (9.7) it follows that g(7/4) = 0. Thus g defined in (9.8) is a solution of
(9.1)-(9.2).

We have gg > 0 in (7, §), since gg = gtp. To show that go(7) > 0 we will

improve the upper bound on . Let us define
Y = —2tan(20) + 1), where 1) = A( - tan(29))n,
and % <n <1, A>1, are to be chosen. Direct calculation gives
9] + (94 1h?)[21 + 61h1 cot(260)] = 99’ cos®(26) + 45 cos?(26)
+ 61 cot(20)[4 4 5 cos?(26)] + 364 sin(20)(— cos(26))
+ 992 cos?(260) + 69° cot(26) [4sin(26) (— cos(26)) + 1 cos®(26)].

Using the definition of v, after some calculation, we find that the last expression

is negative for § € (7, §) when

0 > —18An + 45(— tan(26))1 7" cos?(26) — 6A[4 + 5 cos?(260)] + 36 A sin?(26)
— 15A%(— tan(260))"" cos?(26) — 6A3(— tan(26))' 7 sin(26) (— cos(26)),

which can be achieved if % < n < 1 and A is chosen sufficiently large. Since
n < 1, it follows that

T
f) < 0), 0 (—,—);
v0) <), oe (5.7
hence, for certain constant C' > 0,
9.9) —Ccos(20) < g(0) < — cos(20), 0 € E g} .
In fact the inequalities in (9.3) are strict for 6 € (7, 5). It follows in addition
that

0(8) > C'sin(20), 0 e [5, q .
4° 2
This shows, in particular, that gg > 0 in [}, §). The remaining estimate for

gge follows from the second order equation for g. O
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Given function g as above let us define
_ 39
We see from Lemma 9.1 that ¢ satisfies

(9.11) ¢ + 7+ 6cot(20) tang = 0, qb(%) = g, gb(g) =0.

We need the following lemma.

(9.10) cos ¢ = sin g =

LEMMA 9.2. It holds that

0129 o(T)=-3 &(F)= 72, d®) >3 foroc(T.7).

Proof. To prove the first identity we observe that tan ¢ = %w, which after
differentiation yields

(9.13) ¢ = %1// cos? ¢ = —é[21 + 6cot(20)1)] > -3

since () > —2tan(260). Now considering (9.11) we see that when 6 — 7/47,
we can have ¢/(w/47) = =3 or ¢/ (7 /41) = —4. From (9.13) we get the required
formula.
The second identity follows from simple analysis near 6 = 7.
To prove the last estimate, we suppose that there exists a point 6, € (§, )
such that ¢/(61) = —3. We claim that ¢”(61) < 0. This gives a contradiction.
(We may take 61 to be the point closest to 5. Then necessarily ¢"(61) > 0.)

In fact, from (9.11), we deduce that
2sin(26;) cos ¢ + 3 cos(26)sin ¢ = 0,

which is equivalent to

(9.14) 5sin(2601 + ¢) = sin(20; — ¢).
Note that 20 — ¢ € (0, 7) and hence 0 < 20 — ¢ < 20+ ¢ < . Now we compute
6 ( . 1.
1 _ v 2% — = 4 /)
¢ (61) sin? 61 cos? ¢ sin 2¢ g o o1

6
= 20y 002 & sin(260; — ¢) cos(26) cos ¢ < 0,

which completes the proof. U

9.2. A new system of coordinates. One of the key results of our paper
is a refinement of the results in [5] which amounts to finding more precise
information about the asymptotic behavior of the minimal graph of Bombieri,
De Giorgi and Giusti. This is the purpose of introducing function Fp. It is
easy to see that far enough from the origin Fj is a subsolution of the mean
curvature equation and therefore, at least away from the origin, the BDG
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minimal should lie above the graph of Fy. Finding a supersolution which
asymptotically behaves like Fj is, however, a different story. We observe that
the supersolution found in [5] asymptotically resembles something like ~ M3
with M > 1 and therefore lies above a multiple of Fy. On the other hand our
approach requires a more accurate estimate F' ~ Fy away from the origin.

For this reason we next introduce new coordinates (s,t) in the sector T'
which depend on the function Fy = r3g(f). These coordinates, which are
given explicitly in (9.17)—(9.18), correspond to “geographical” orthogonal co-
ordinates for the graph of Fy. The coordinate ¢ is simply its height and s mea-
sures a weighted length along the level sets. The weight takes into account the
actual higher dimensional character of the coordinate s (its two-dimensional
analog would simply be arclength on the level curves of Fpy). Expressing the
mean curvature operator in these coordinates leads to formula (9.24). Its main
feature is that the degeneracy of the mean curvature operator for a function
close to Fy is removed. This expression is a useful tool for separating terms of
the mean curvature operator with distinct features when we examine suitable
candidates for a supersolution of the minimal surface equation.

LEMMA 9.3. There exists a diffeomorphism ® : Q — T, where Q =
{(t,s) | t > 0,s > 0} such that ®(t,s) = u(t,s) = (u(t, s),v(t, s)) and u
satisfies the coupled system of differential equations

Ou VF, ou 1 VF{

1 kN G e
(9.15) ot T NERE 0s  (wB VR

where we denote
VF = (F,,F,), VF'=(F, —F).
Moreover, ® maps (t = 0,s) onto the line u=v and (t,s = 0) onto (v = 0,v).
Proof. Introducing polar coordinates
u=rcosf, v=rsiné,

and using (9.15), we find

or _ For _ 3g
ot — |[VFo[* T r2(992+g5)
(9.16) 00 _ For _ 7 ,
ot — |[VFy|? — 7“3(992—1—93)
or _ 8Fpg _ 890
9s 77 sin®(20)[V Fy| 76 sin3(260)1/99%+g32
90 _ —8Fp, - _ 249
9s 77 sin®(20)|V Fo 77 sin®(20)/992+92

Using the formal relations

tr to| |1+ rs| |1 O
s, Sg| |6; 05| |0 1|’
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we arrive in particular at the equations for s:

8965y

395, + 9—959 =0,
r
24gsy

rOsin®260,/9g% + g7 r7sin®260,/9¢2 + g2 N

or

=1,

which are satisfied by the function

(9.17)

(9.18)

Using the properties of the function g, we can directly check that function given
by formulas (9.17)—(9.18) is a diffeomorphism with the required properties.
For future reference let us keep in mind that setting sin¢, cos¢ as in

formula 9.10, we simply find

9s _ _ 3r7 sin® 26g
99 84/992+92
9s _ 6 sin3 20gy )
I 8\/99%+g7

~ r"sin®(260)ge

s — - Smv)90
564/992 + g7

because of the equation satisfied by g. Similarly, for ¢, we obtain the solution

t=13g(6).

or - r .9 89_ 1 .
(9.19) 55 = 75 5in b, 55— 11s sin(2¢),
and

or a0 1
(920) E = § COS2 d), &ZQ Sll’l(2¢).

Our next goal is to express the mean curvature operator in terms of the
variables (¢, s). Denoting by u’

tion is transformed to

1
——_—V,

From Lemma 9.3 we find

(9.21)  (uw)™?

1
9.22 = ———
( ) <ut7ut> |VF0’27
hence we compute
—P
9.23 detu’ = ,
(9-23) |V Ep|

the matrix (u, us), the minimal surface equa-

(uv)3Vdet w'u'”
V1+|VF|?

(

(u’u'T)_lvtsF) = 0.

1
<ut7us> — 07 <u87u8> - (U?))G =P
2
(u’u’T)_1 = VE 0 )
0 p*2
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Then equation (9.21) becomes

Fo|oyF —204F
(9.24) |V EFy|o VEIOE + |V Ep|0s i =0
1+ |VF]? |\VFo|\/1+ |VF|?

Let us observe that

VF0> VE, < VFoi> VFOL
VF = (VF, VF,
< IVFo|/ [V \VEo|/ |VFo|
VE;-
= FVFy+p ', —2.
t 0 1Y |VFO|

From this we have

14 |[VFP? =1+ |VFR|? (FE + vF ’2)

1 p2F?
= VR =3 + F7 > ).
Af (fehe 5+ femf)
Denoting by Q(V;F) the function
-2 2
p °F
ViF)= —— + F2 4+ ——5
we see the mean curvature equation is equivalent to
|V Ep|
HF|=——"—G[F] =0,
where
1
(9.25) G[F] = Q(VisF)Fyu — iatQ(vt,sF)Ft
-2 —2
p °Fj 1 p “Fs
VisEF)Os | === | — =0sQ(VisF) ———5.

Now we derive the mean curvature operator for functions of the form
F=Fy+ Ap(t,s) =t + Ap(t, s),

where A is a real number. Our goal is to write the resulting equation in the
form of a polynomial in A. In general we assume that for r > 1,

—1
lpsp™ | _ o(1).

9.26

We compute

Vi \ VF VE;\ VE;-
VF = VEF Vo, ———

°+< # |VF0> V) < P VR VR
1

_ VF,
= VF() + (,OtVF() + 1% 1g05 ‘VF?()’ .
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Then we have

2 2 2 p 292
1+ |VF2=1+|VE [(1+Acpt) + A IVFoP}

= VA (1+ ops + 2400 + ARy ),

IVF |2
where we denote

p 23
V>

R =} +
It is convenient to introduce

R= (1 b —— 4+ 240 + A2R1)

1
[VE|?
With this notation, we have

(9.27) |VFo| *R*?H[F) + Ay

= {AR@E@— ;(1+Aat@)3tR+ARas(pzasw) lA,o 63908 R}

[V Fp|? [V Fp|?
1 1
= —JAIVE T+ A[[VE| e - SaIVE 0
20, _
2y 1 s 2
+0, (WF S CR T R (e ST

+ A2 Drpd} e — atRl+2atgoa(|vﬁsf) (T;%f)aicp}

+ A3 [Rlaf(p - §8t<p8tR1 1 R0, ( IVI%S!?) (T:ﬁ%‘f)aszzl].

In the sequel we will refer to the consecutive term in (9.27) as the A%, A!, A?
and A? terms respectively. For future reference we observe that the A° term
can be written as

1 _ - -
(9.28) — SOV E| 2 = [VR[ TN (1+ [VFy ") P H Fy)

and the A! term can be written as
(9.29)

[] = |VEy| "' Lo[¢]

3 L Laa (PTP0spy 1 p P00 )
~ SHIVR| 0 + V| 0s )—5( )OIV R,

IV 2 |V Fp?
where
) dp P05
. Lolp] = [V ; '
(9.30) ol = [V o![at(,vpop) +0 (]VF()I?)}
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9.3. Proof of Theorem 2. Taking the existence result in [5] as the point of
departure, we find the asymptotic behavior of the minimal graph by proving
Theorem 2. Our approach, which is based on a comparison principle, relies
on a refinement of the supersolution/subsolution in [5]. We need the following
comparison principle.

LEMMA 9.4. Let Q be a smooth and open bounded domain. If F and F»
satisfies

(931) H[Fl] S H[FQ] m Q, F1 Z F2 on 8(2,
then
(9.32) F1>F inQ.

Proof. The proof is simple since
82
H[F]| — H[F] = ii—(F — F
[F1] — H[FY] Eij:ajaxixj( )

where the matrix (a;;) is uniformly elliptic in Q. By the usual maximum
principle, we obtain the desired result. O

Let us observe that from (9.9), we have

(9.33) min (_COS’(%)> >1, fe (E E).

9(0) 472
Thus for Fy = r3g(0), it holds that
(9.34) Fo=1r%g(0) < (v —u?)(v? + uz)%.

We will now construct a subsolution to the mean curvature equation.

LEMMA 9.5. Let H[F] denote the mean curvature operator. We have

(9.35) H[Fy] > 0.
It holds as well that
(9.36) H[Fp) = O(r™).

Proof. Since H[F] and G[F] (defined in (9.25)) differ only by a nonnega-
tive factor, it suffices to show that

(9.37) G[Fp] > 0.
In fact, let F' = Fy =t. We then have

GIFR] = ~ 50V F)

1 1
_ _§at(—|VFO‘2),
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where
r 1 B r2 cos® ¢
IVE2  r4(9g2% + g2) 92 -
By formula (9.20), we have
r? cos? r? 2tr; cos? .
(9.38) —@(Tqb) = o5 {2 cos? ¢ — Zricos” ¢ +tg'0, sm(2¢)}
B 212 cos? ¢

= — P cos? ¢ + E sin? p(¢’ + 3)}

9¢3 3 3

>0,

where we have used the fact that ¢'(f) > —3. Estimate (9.36) follows easily
from the expansions; see also (2.7). This ends the proof. O

By the standard theory of the mean curvature equation for each fixed
R > 0, there exists a unique solution to the following problem:

1 ( (uwv)3VF
(uv)? V1+|VF)?
where ' = BRpNT, T = {u,v > 0,u < v}. Let us denote the solution to
(9.39) by Fp.

Using (9.34), the comparison principle and the supersolution found in [5],

(9.39) ) =0 inl'g, F=F, on 'y,

(9-40) Fp < Fip < H(<v2 —u?)+ (v —u?)(u? +0?) 2 (14 A cos<ze>|>H>),

where
t 00 dt 4
H(t) = / e B/ w,
(t) ) P < | (2 (1 + (20320
A > 1 is a positive fixed number, a = %, and A, B are sufficiently large positive

constants. This inequality, combined with standard elliptic estimates, implies
that as R — 400, Fr — F which is a solution to the mean curvature equation
H[F] =0 with

040 Fo < F < W (0= 02) 4 (02 = )+ 02200+ 6 cos20)) ) ).
Next we need the following key lemma.

LEMMA 9.6. There exists og € (0,1) such that for each o € (0,00), there
erists ag > 1 such that for each sufficiently large A > 1, we have

AF,
(9.42) H {Fo + UO} <0 forr > ap.
T

Moreover, under the same assumptions for each sufficiently large A > 1, we
have

A
(9.43) H {FO + ra} <0 forr > agA¥e .
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Proof. We will consider (9.42) first. We will use formula (9.27) to write
H[Fy+ %] multiplied by a nonnegative factor as a polynomial in A. Explicit
computation (9.27) yields

AF, . . _
vpuﬁﬁﬂﬂ{ﬂy+Uo}zzﬂr+AH1+fFHg+fPH&
T
where
(9.44)
2 cos® ¢ [2 1
mpqur%LHV%r%WHwM:C%%£ﬂ§w§¢+§mﬁmw+m,
—T0o cos? ¢ cos? ¢
Hi=——"— 2¢' — o) sin® ).
1 o0 (74 (2¢" — o) sin” §) + e O(r™)
Below we will show in addition that
2
(9.45) E&::(ﬁia¢cxr—“)g(x
2
H3=(€;¢00f%)§0

We assume for the moment the validity of these estimates. Let us observe that
the first term in (9.44) is bounded by
r2cost ¢ cos® ¢
S C1 .
t3 trd

Estimate (9.46) follows from (9.44) and the fact that ¢(7w/4) = 7/2, ¢'((7/4)T)
= -3, ¢"((w/4)") = 0. Summarizing, we have

(9.46) Hy < ¢y

AR, .
@M)mﬂ+7ﬁ5HﬁAm

—7Ao cos? ¢
< 7
9tre

cos® ¢

—4+0
tro ofr )

(7T+ (2¢' — o) sin? o) +
<0.

To prove (9.43) we use a similar argument. Writing H[Fp+ %] as a polynomial
in A, we get that the A° term is equal to Hp in (9.44) and

—T7ocos® ¢ ) _
(948) H1 = W(?‘F(Q@,—O')SIHZ ¢)+ T6+UO(T 1).
The other terms satisfy
1
Hy = T6+UO(T_3_U)7 (A? term),
1
Hs = T6+UO(7“_6_2‘7), (A3 term).

Since Hy = O(r~7), the lemma follows by combing the above estimates.
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It remains to establish inequalities (9.45). We will collect first some terms
appearing in the expansion formula (9.27). We have ¢(t,s) = tr~7 and

1 o otsin? ¢
4 = — 1 _ 2 s = - ——
(9.49) Op= (1 —gcos"9), Osp o
Dp = Co 2 2¢ — 3+ 2¢ sin’
0= 50 cos” ¢[o cos” ¢ ¢ sin” @],
osin® ¢ 2¢' cos’p o cos®
Opsp = — 1 - :
s Tros ( * 3 3 )
We also have
-2 2
P Ys 7so cos” ¢
9.50 = _
( ) ’VFOP 9tro '
-2 2 .2
p “ps\ _ Tocos” o sin“¢
S(|VF0]2> T o {1 7 (2 _U)}’
p2p? B o2 sin? ¢ cos® ¢
|VE|2 Or2o ’
-2 2 2 302 2
p vl 20°sin”“ ¢cos* ¢, /
S(IVFoP) =~ arErs (O 6 cos(29),
—2 9 2 102 2
PPy 207 sin” ¢ cos” ¢ /
M) = 2 oo i)
Using formula (9.27), we get
(9.51)
1./ p2p2 p 205 p2ps
Hy=—> 2 ) + 20100, - 5,
2 26t(|VF0‘2> + 2040 (IVFoP) <]VF0\2)at @
-2 2 -2 2 -2 2 -2
PP \a2, L P s 2 (P ¥ P "ps
Hs = - = A
o= (omp)?e 3200 (ggp) + (007 + (grp) 12 (ap)
-2 -2 2,2
_ Pes  LipT s P
3t@ats@(|VF0’2> 2<|VF0|2)88(IVF0|2)

From (9.49)—(9.51), by direct calculation we get
o2 sin? ¢ cos? ¢
27tr2o
20 cos? :
- 7;;;SQJ¢(3 — o cos® §)[7 + (20 — o) sin® ¢
o cos? ¢psin? ¢
27tr2e
o cos® ¢ r .9 2 N 2
= W[_6(7 + 2¢ sin“ @) + (3 4+ 2cos” ¢¢ ) sin” ¢ + O(0)]
o cos® ¢

= S 42+ sin? ¢(—12¢ + 3 + 2¢' cos® ¢) + O(c)] < 0

(9.52) Hy= [0 cos? ¢ — cos(2¢)¢ ]

B3—-0 cos? ¢ + 2 cos? gbgbl)
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and
(9.53)  H3= W[O cos® ¢ — 3 cos 20]¢
a JSi?jzad) (9 — 60 cos® ¢+ o? cos® §) (7 + (2 — o) sin” )
W(a sin ¢ + cos(2¢)¢ )
‘W(g — 0 cos? ¢)(3 — o cos® ¢ + 2 cos? ¢¢/)
- 02;(:;@5 [Sim2 (34208’ ) — 3(T+ (26 — o) sin” ¢)
—osin® COS(2¢)¢/ + 0(02 cos” M
= (;(;Zﬁ [—21 cos? ¢ — (6 — o) sin? ¢(¢p + 3)

+(2 — 20) cos® psin® p¢ + O(0? cos® gb)] <0

when o > 0 is sufficiently small. From this we get (9.42). The proof of (9.43)
is similar. O

Now we can prove Theorem 2. In fact, from (9.40), we have
AR,
(9.54) FOSFRgFO—i——O for r = ag
7'0'

if we choose A > 1 such that

H (ao(— cos(20)) + ay*(— cos(260)) (1 + A(| cos(20))* 1))
(af + Aag=")g(0)

(9.55) max <1

)

which is possible since supy |C(;Si(92)9)| < 400 (this follows from (9.9) and the fact

that go(%) > 0). Note that (9.55) holds for any A large.
By the comparison principle in the domain I'r \ By, (noting that the

function Fy+ % is a super-solution for r > ag by Lemma 9.6 and the function
Fj is a sub-solution by Lemma 9.5), we deduce that

AF,
(9.56) Fy < Fr < Fy+ TUO in T'g \ Ba,
and hence
(9.57) Fy < Fr < Fy+ Ar*=° inTg\ By,

for A large.
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Let A > 1 be a constant to be chosen later and let us consider the region
1
TrN{r > Ry}, where Ry = apA3+s. From (9.57), we then have

. A
(9.58) Fy<FR<Fy+ AR < Fy+ 7 for r = Ry
if we choose
. A A o
(9.59) A< o = o = ag AT,

B R(?)’ aj As+e
By the comparison principle applied now in ' N {r > Ry}, using Lemma 9.6,
we then obtain

A
(9.60) Fo<Fr<Fy+—, forr>Ry= aoAi“l“’-
T

The assertion of the theorem follows now by combing (9.56) and (9.60) and
letting R — oo. (]

9.4. A refinement of the asymptotic behavior of F. While Theorem 2 is
enough for our purposes, we establish next a result that estimates accurately
the BDG graph near 9T, which is interesting in its own right.

THEOREM 3. There exists oo € (0,1) such that for each o € (0, 09), there
exists ag > 1 such that for each sufficiently large A > 1, we have
Atanh(For—1)

(9.61) H|Fy+ - <0 forr > agATHe.
T

As a consequence there are constants C, Ry, such that the solution to the mean
curvature equation described in Theorem 2 satisfies

Ctanh(Fyr—1)
7/-0'

(962) Fo<F<Fy+ forr > Ry.

Proof. Let us prove (9.61) first. We will denote
A
F=F+—o(s), ¢(ts)=tanh(t/r).
r

Note that the A” and A! terms in (9.27) are
(9.63)

1
2

1 A A 1
Mivmp) * et 50 (wrp)te
p‘2¢s> A ( 1 ) P 2ps

1
A1 0, 20—
* (+yvpo|2) (\VF0|2 2 S\ VR VR

= VR HFy] + AV R~ |V Fol0 (rooerg ) + [Vl ( p%ps )

VE[2 [VE 2
3., 1 1 sy, 1 L)oo
-4l (wrp) % - wrp® (erp) * 2 (FRp) FR R
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By (9.46), we have

cos? ¢ cos ¢
T Sa—7
tr r

(9.64) Hy = |VF|'H[F)] < e

Now we will deal with the first A' term in (9.63). This term is given explicitly
n (9.29). We recall here that in (9.30) we have defined the following operator:

-2
z P "Ps
(9.65) Lo[p] := |VF0|(9t<|VF |2> + ’VF0|85<IVFO|2>.

We will prove the following lemma.

LEMMA 9.7. There exists o9 > 0 such that for each o € (0,0¢), there
exist ag > 0 and cg > 0 such that

(9.66) Lo[r~7 tanh(t/r)] < ——— mm{l t/r}, > ao.
Proof. Let us denote

B(n) = tanh(n), n = ; Bi(n) = B(n) — %B’n

and

(9.67) ©=PBmnr°, o> 0.

Then we compute

hence

7288

where ¢; > 0. From now on, by ¢; > 0 we will denote generic positive constants.
We obtain

-2
P
(9.68) 8S<|VF0|285¢>

—6—0 in2 in2
cior 2sin“ ¢ [ —o , nsin“ ¢ ,
9% + g2 {51{ T (2 +¢>} 7

On the other hand, we have

8tg0:—

and

O 1— 2
|V]t.'7f|2 = 9(;;)5 (JS{ 3 (i)cos ¢+< €8 gb)ﬁ/}
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hence
(9.69)

1 B 2r1=%cos? ¢ 1177 sin%(2¢)¢’ cos® ¢
@<WHM@@‘{‘ T TE }(“‘3 )5

r=?cos? ¢ [—c (BY 9 cos? ¢\ cos? ¢

e [ (5) e (-559) 7 0-5)

cos ¢
+o<r&w>.

The first term in (9.69) is negative. The second term can be estimated as

/

follows:
r=7cos?¢[—c (BY 9 cos’¢p. cos® ¢
< 7.60% ?(5) COSQ¢+§5”}

Combining (9.68) and (9.70), we have
~ c 2 sin? —0 o sin?
9.71)  Lolyg] < Tﬁg{—a& {1+ ¢<+¢,ﬂ 4 osin’o g

7 2 7
/
—o(f 2 2 Cos ¢
+ {3<77> COS ¢+ gﬁ +O(m>
Denoting the term in brackets above by a we can estimate as follows:

ol

_ . 2 [
a < 6"(04772 sin® ¢ + 3) —cs50 |8 —cslB'n| — 7

Given small g > 0, let 179 > 0 be such that

6 !/
( > €0, 1 = 1N0;
n
hence for n > ng, we have

(9.72) a < —cgego  for o € (0,1/2).
On the other hand, when 0 < 7 < 1, then

B —cs|B'n| —cr

. 1 2
(9.73) a< —0977(7172 + 3) — c1007 < —cn’),
where o € (0,00) with op > 0 small. Finally let us consider the last term in
(9.71). When n < 1, then

cos ¢ c121M
,r.6+o — T.8+o"

while when 1 < 7, then
cos ¢ 1
rbto — pb+o :
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Summarizing the above and (9.71)—(9.73), we have that for each o € (0, 0y),
where o is small, there exists r¢g > 0, cg, such that

~ C13 C14 .
(9.74) Lolp] < —<r4 e r6+‘7> min{1, 7}
co .
< ~ T min{l,n}, r>ro. U
Continuing the proof of Theorem 3 we notice that
3 1 c15co8¢ _ cismin{n, 1}
(9.75) - 2at<]VF0|2>8t(p < 8o = r8to
since cos ¢ < %, and
(9.76) Lo (200} < 95 gy
| VREC\IVRE) = e M
1 1\ p2ps |81 (n)] min{n, 1}
(977) _2as(’vF0|2> |VF0‘2 < a7 r10+o < ar pl0+o  °

We analyze the A% term and A3 terms in the expansion of
H[Fy + Ar~%tanh(t/r)].
A typical term in (9.27) is

1 p2F? o2 sin? ¢ cos? ¢ 9 "o
(9.78) _28t<]VF0\2> = _ 513,20 [—0 cos® ¢ — 3 + cos(2¢)¢ | 5]
o2 sin? ¢ cos? ¢ / cos® ¢
il s ) 1—
01312 515177( 3 )

= sin® pmin{n, 1}0(r~""27).

Other A? terms are estimated in a similar way. Direct calculation shows that
the A3 term satisfies

(9.79) Hsz = sin? ¢ min{n, 1}O(r~8739).

In conclusion, we have

(9.80)

_ C1 C()A 618A2 019A3 .
H[Fy + Ar~7 tanh(Fp/r)] < i + e + 7480 min{1,n}

if we choose ag large and r > aoAH%. This proves (9.61).
Now we will show (9.62). From (9.57), we have

(9.81) Fy < Fp < Fy+ AFyr=7 for r > ay

for some A > 1.
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Let us consider the region
E
S:=Bpn{v>upn{r> Ry o< 2 <1},
r

where Ry = aoAl%v, and A is to be chosen. From (9.57), in ¥ we have

(9.82)  Fy< Fp < Fo+ AFyRy° < Fy + Atanh}(zfoRol) for r = Ry
if we choose 0
(9.83) A< A—tanh(Fofal) = A7/0+9) gt sup tanhn'
Ry FyR, i<t M
Consider now the boundary {£2 = 1}. By (9.60),
(9.84)
Fo<Fr< Fo—i—ij4 taih(l)
< Fo—l-AtanfiE)/T) for r > Ry > ao(tanh(l)A)ﬁ and Fy/r =1
if we choose (cf. (9.59))
(9.85) A < ay®(tanh(1)A)5%s .

Choosing A larger if necessary, we can assume that in addition to (9.83), also
(9.85) is satisfied. By the comparison principle applied to X, we then obtain

A tanh(F
| Atanh(Fy/r)

(9.86) Fy < Fr < Fy - for r > Ryp.

Passing to the limit R — oo we then get

(9.87) FOSFSFO—&—W for r > Ry

in X. Combining this with the statement of Theorem 2 to estimate F' for
r > Ry in the complement of 3, we complete the proof. O

10. Appendix: The proof of formula (7.4)

In this appendix we carry out the main computation leading to formula
(7.4) for the approximate Jacobi operator

Tro[h] := H (Fo)[\/1 + |V Fy|2h).

Following the notation in Section 9.2, the minimal surface equation H[F]
= 0 becomes
(10.1)

VF,
H[F] := |VF0|8,5( VE|

V1+|VF?

8tF) +|VF0|8S<

P 85F>
IV Fol/1+ [VF[2
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It is easy to see that
(10.2)

H'[Fy)(6) = \VForat( VE|

-2
P
a¢>+ VF, as< as¢>.
(1+|VEF )32 ™ IV IV Fp|\/1+ [V Fy|?

Let us now set
¢ =1+/1+4 |VEp|?h.

Then after some simple computations, we obtain

5 (e ) = T Tom g Vi
+ |VF0|3t((1_1_‘|VVF2,(|)|2)23t|VFO|)h
and
)
IVF085<|VFO \/’m asqb) = 05(p~20sh)
- TR R VAl o
+ ‘VFolﬁs(lﬁ;FOP85|VFo\>h.
Note that
(10.3)
(1+|IVVI;O(’J|2)2@|VFO| =007 R i SRR OVRI=067).

The operator in terms of i then becomes

Jry[h] - = H'[Fo)(\/1 + [VEo|2h) = 02h + 8,(p~20,h)

1 . 1
h (|VF0|83 (‘\vm) IV Rl (p-20, (‘ww))

+ O(r~Y92h| + rT|0sh| + r3)p Lh| + r75|R|).

The desired expression (7.4) is then deduced from the following two identities:
Aryh = 02h + 95(p~205h)

and

2 _ N 1 —2 . 1
an = (1VRle? (o) + 1900 (< o))

which follow from standard computations. We omit the details.
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