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Representation theoretic patterns in three
dimensional Cryo-Electron Microscopy I:
The intrinsic reconstitution algorithm

By Ronny Hadani and Amit Singer

Abstract

In this paper, we reveal the formal algebraic structure underlying the in-

trinsic reconstitution algorithm, introduced by Singer and Shkolnisky in [9],

for determining three dimensional macromolecular structures from images

obtained by an electron microscope. Inspecting this algebraic structure, we

obtain a conceptual explanation for the admissibility (correctness) of the

algorithm and a proof of its numerical stability. In addition, we explain

how the various numerical observations reported in that work follow from

basic representation theoretic principles.

0. Introduction

The goal in cryo-EM is to determine three dimensional macromolecular

structures from noisy projection images taken at unknown random orientations

by an electron microscope, i.e., a random Computational Tomography (CT).

Determining three dimensional macromolecular structures for large biological

molecules remains vitally important, as witnessed, for example, by the 2003

Chemistry Nobel Prize, co-awarded to R. MacKinnon for resolving the three di-

mensional structure of the Shaker K+ channel protein [2], [7], and by the 2009

Chemistry Nobel Prize, awarded to V. Ramakrishnan, T. Steitz and A. Yonath

for studies of the structure and function of the ribosome. The standard pro-

cedure for structure determination of large molecules is X-ray crystallography.

The challenge in this method is often more in the crystallization itself than in

the interpretation of the X-ray results, since many large proteins have so far

withstood all attempts to crystallize them.

Cryo-EM is an alternative approach to X-ray crystallography. In this ap-

proach a sample of identical macromolecules are rapidly immobilized in thin

layer of vitreous ice. The cryo-EM imaging process produces a large collection

of tomographic projections, corresponding to different and unknown orienta-

tions of the various molecules in the solution. The intensity of the pixels in a

projection image are correlated with the integrals along lines which are parallel

to the viewing direction (see Figure 1). The goal is to reconstruct the three
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dimensional structure of the molecule from such unlabeled projection images.

The principal difficulty is that the highly intense electron beam destroys the

molecules and it is therefore impractical to take projection images of the same

molecule at known different directions as in the case of classical CT. In other

words, a single molecule can be imaged only once, rendering an extremely low

signal-to-noise ratio (SNR), mostly due to shot noise induced by the maximal

allowed electron dose.

Projection

Molecule

Electron

source

g ∈ SO(3)

Figure 1. Schematic drawing of the imaging process: every pro-

jection image corresponds to some unknown spatial orientation

of the molecule.

Three dimensional reconstruction from Cryo-EM images is of particular

interest because it promises to be an entirely general technique that does not

require crystallization or other special preparation stages; it is beginning to

reach sufficient resolution to allow the trace of polypeptide chains and the

identification of residues in protein molecules [5], [6], [13].

Over the years, several methods have been proposed for three dimensional

reconstruction from cryo-EM images. Present methods are based on the “An-

gular Reconstitution” algorithm of Van Heel [12], also developed independently

by Vainshtein and Goncharov [3]. However, these methods fail in many sit-

uations of practical interest when the molecules are too small, the cryo-EM

images are too noisy or at resolutions where the signal-to-noise ratio becomes

too small.
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0.1. Mathematical model. Instead of thinking of a multitude of molecules

immobilized in different orientations and observed by a microscope held in a

fixed position, it is more convenient to think of a single molecule, observed

by an electron microscope from different viewing directions. Under this con-

vention, the physics of cryo-EM is modeled as follows. Let (V, r) be a three

dimensional Euclidean vector space over R, where r : V × V → R is the

Euclidean inner product.

• The molecule is modeled by a real valued function φ : V → R, which

describes the electric potential due to the charge density in the mole-

cule.

• The viewing direction of the electron microscope is modeled by a point

x on the unit sphere X = S (V ).

• The projection image obtained by the microscope, when observing the

molecule from a viewing direction x is a real valued function Rx on

the orthogonal plane Px = x⊥, given by the X-ray projection of the

potential φ along the viewing direction,

Rx (v) = Xrayx (φ) (v) =

∫
Lx

φ (v + l) dl

for every v ∈ Px, where Lx is the line passing through x and dl is the

Euclidean measure on Lx.

The data collected from the experiment is a set of projection images {Rx :

Px → R, x ∈ XN}, where XN ⊂ X is a subset consisting of N points. A

standard assumption is that the points x ∈ XN are distributed independently

and uniformly at random on the unit sphere X. This corresponds to the

empirical assumption that the orientations of the molecules in the solution are

uniformly distributed. In addition, we assume that the function φ is generic

in the sense that each projection image is associated with a unique viewing

direction. In particular, this assumption implies that the molecule admits no

nontrivial symmetry.

It is important to emphasize that the viewing direction associated with

every projection image is not known; thus, the vector space Px is only given as

an abstract vector space, and the main problem of cryo-EM is to reconstruct the

orthogonal embedding ix : Px ↪→ V associated with every label x ∈ XN . We

will refer to this problem as the cryo-EM reconstruction problem and note that,

granting its solution, the potential function φ can be computed (approximately)

using the inverse X-ray transform.

0.2. Main results. In [9], a novel algorithm for solving the cryo-EM re-

construction problem for the case the potential φ is generic was presented;

in this paper it is referred to as the intrinsic reconstitution algorithm. It has
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the appealing property of exhibiting remarkable numerical stability to noise.

Although the admissibility (correctness) and the numerical stability of this

algorithm were verified in a large number of numerical simulations, a formal

justification was still missing.

In this paper, we reveal the formal algebraic structure underlying the

intrinsic reconstitution algorithm. Inspecting this structure, we obtain a con-

ceptual explanation for the admissibility (correctness) of the algorithm and a

proof of its numerical stability. The analysis relies on studying the spectrum

of a certain operator C, of geometric origin, referred to as the common lines

operator. Specifically,

• admissibility amounts to the existence of a canonical isometry between

the Euclidean vector space V and the eigenspace of C associated with

the maximal eigenvalue;

• numerical stability amounts to the existence of a spectral gap that sep-

arates the maximal eigenvalue of C from the rest of the spectrum.

In this regard, the main technical result of this paper is a complete description

of the spectrum of the common lines operator in terms of representation theory

of the orthogonal group. In the course of our presentation, we explain how the

various numerical observations reported in [9] follow from basic representation

theoretic principles, thus putting that work on firm mathematical grounds.

Finally, we note that the algebraic constructions presented in this paper

were further developed in [4] and [10], as part of a novel algorithm for class

averaging, which is another difficult fundamental problem in cryo-EM. We

hope that further elaboration will also enable us to generalize the intrinsic

reconstitution algorithm to the case of nongeneric potentials, such as the ones

that are associated with symmetric molecules. This important development

will be studied in a future publication.

The remainder of the introduction is devoted to a detailed description of

the intrinsic reconstitution algorithm and to the explanation of the main ideas

and results of this paper.

0.3. The Fourier slicing property and the common lines datum. The first

step of the algorithm is to extract from the projection images a linear algebra

datum that captures a basic relation in three dimensional Euclidean geometry,

referred to as the common lines datum. The extraction uses a basic property

of the Fourier transform, called the Fourier slicing property (see [8]), asserting

that

(0.1) ⁄�Xrayx (φ) = φ̂|Px
for every x ∈ X, where the operation ‘(−) on the left-hand side denotes the

Euclidean Fourier transform on the plane Px and the operation ‘(−) on the

right-hand side denotes the Euclidean Fourier transform on V . Equation (0.1)
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is equivalent to the well-known fact that the Fourier transform interchanges

restriction with integration.

The key observation, first made by Klug (see [1]), is that (0.1) implies,

for every pair of distinct points x, y ∈ XN , that the functions “Rx and “Ry must

agree on the line of intersection (common line); that is“Rx|Px ∩ Py = “Ry|Px ∩ Py.

This means that for a generic function φ, one can compute from the functions“Rx and “Ry the linear map CN (x, y) : Py → Px, that identifies the line of in-

tersection between the two planes (at least to some approximation). Formally,

this map is given by the composition of Cx,y ◦ Cty,x, where Cx,y and Cy,x are

the tautological embeddings

Cx,y : Px ∩ Py ↪→ Px,

Cy,x : Px ∩ Py ↪→ Py.

In the case the point x = y, one defines the common line map CN (x, y) to be

the zero mapping.

0.4. The intrinsic reconstitution algorithm. The algorithm accepts, as an

input, the common lines datum {CN (x, y) : (x, y) ∈ XN ×XN} and computes,

as an output, the orthogonal embedding ix : Px → V associated with every

label x ∈ XN , up to some unique global orthogonal transformation of V . In

more precise terms, the output is a set of orthogonal embeddings ϕx : Px → V ,

x ∈ XN such that ϕx = g ◦ ιx for every x ∈ XN , where g is an element of the

full orthogonal group1 O (V ) which does not depend on the label x.

The crucial step is to construct an intrinsic model of the three dimensional

Euclidean vector space V , expressed solely in terms of the common lines datum.

The algorithm proceeds in four steps.

(1) Ambient vector space. Consider the 2N dimensional Euclidean vector

space

HN =
⊕
x∈XN

Px,

where vectors s ∈ HN are N -tuples indexed by elements of XN : s =

(s (x))x∈XN
, with each s (x) ∈ Px. The Euclidean structure on HN is

induced from the one on each of its component.

(2) Common lines operator. Consider the linear operator CN : HN → HN ,

given by

CN (s) (x) =
1

N

∑
y∈XN

CN (x, y) s (y) .

1As a consequence, the left/right-handedness of the molecule is not retrieved by the

algorithm.
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The operator CN is symmetric since CN (x, y) = CN (y, x)t for every

x, y ∈ XN .

(3) Intrinsic vector space. Compute the vector space VN ⊂ HN , given by2

VN =
⊕
λ>1/3

HN (λ) ,

where HN (λ) denotes the eigenspace of CN associated with the eigen-

value λ. The vector space VN admits a Euclidean structure, induced

from that of HN .
(4) Intrinsic maps. For every label x ∈ XN , compute the map

ϕx =
»

2/3 · prtx : Px → VN ,

where prx : VN → Px is the restriction to VN of the orthogonal pro-

jection from HN onto its x-th component.

Theorem 1. For sufficiently large N , we have

dimVN = 3.

To conclude, the output of the algorithm is a pair consisting of a three

dimensional Euclidean vector space VN and a linear map ϕx : Px → VN ,

associated with every label x ∈ XN . The fact that this data establishes a

solution to the cryo-EM reconstruction problem is the content of the following

theorem.

Theorem 2. There exists an (approximate) isometry τN : V ≈ VN which

satisfies the following property :

τN ◦ ix = ϕx

for every x ∈ XN .

Remark 1. Theorem 2 implies that the vector space V equipped with the

tautological embeddings {ix : Px → V, x ∈ XN} is isomorphic, as a Euclidean

vector space, to the intrinsic vector space VN equipped with the mappings

{ϕx : Px → VN , x ∈ XN}. Hence, the latter set determines the former up-

to a unique global orthogonal transformation of V . The precise statement of

Theorem 2 is given in Theorem 6, which appears in the body of the paper.

0.5. Continuous limit. The proofs of Theorems 1 and 2 are based on con-

sidering the “continuous limit” of the algorithm, by taking the number of

projection images N →∞. In the limit,

• the finite configuration space XN converges to the unit sphere X;

2The condition λ > 1/3 in the definition of VN will be clarified when we discuss the

spectral gap property in the next subsection.
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• the ambient Euclidean vector space HN converges to an infinite dimen-

sional Euclidean vector space H;

• the common lines operator CN : HN → HN converges to a symmetric

integral operator C : H → H; .

• the intrinsic model VN converges to the eigenspace of C, associated

with the maximal eigenvalue.

The vector space H consists of smooth global sections of the vector bundle

H→ X, whose fiber at a point x ∈ X is the plane Px = x⊥, with the Euclidean

structure given by

(s1, s2) =

∫
x∈X

r (s1 (x) , s2 (x)) dx,

where dx is the Haar measure on the unit sphere. The integral operator C :

H → H is given by

C (s) (x) =

∫
y∈X

C (x, y) s (y) dy,

where C (x, y) : y⊥ → x⊥ is the common line map associated to the pair of

points x, y ∈ X. In addition, the vector space H carries an action of the

orthogonal group O (V ), preserving the Euclidean structure, and the operator

C commutes with the group action. Consequently, the spectrum of C can

be interpreted in terms of the representation theory of the orthogonal group.

Based on this interpretation, we derive the first main result of this paper.

Theorem 3. The operator C admits a kernel and a discrete nonzero real

spectrum λn ∈ R, n ∈ N, such that

λn =
(−1)n−1

n (n+ 1)
.

Moreover, dimH (λn) = 2n+ 1.

An immediate implication of Theorem 3 is that the maximal eigenvalue

of C is λmax = 1/2, its multiplicity is equal 3 and there exists a spectral gap

of λ1 − λ3 = 5/12, which separates it from the rest of the spectrum. Let us

define, for every point x ∈ X, the map

ϕx =
»

2/3 · (evx|V)t : Px → V,
where evx : H → Px is the evaluation morphism at the point x. The second

main result of this paper is:

Theorem 4. There exists a canonical isomorphism of Euclidean vector

spaces τ : V → V, satisfying
τ ◦ ix = ϕx

for every x ∈ X .

Theorems 1 and 2 follow from Theorem 4.
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We end the introduction with the following concluding remark.

Remark 2. The computation of the set of orthogonal embeddings {ix :

Px → V, x ∈ XN} is a nonlinear/nonconvex computational problem because

of the orthogonality constraint. Interestingly, the construction of the intrinsic

model reduces this problem to a problem in linear algebra, namely, to the

computation of the maximal eigenspace of the common lines operator. This

computation is numerically stable to noise because of the spectral gap property

of the continuous common lines operator in conjunction with an argument from

random matrix theory (see [9]). Other existing reconstruction methods, like the

angular reconstitution method (see [12] and [3]), do not enjoy this important

stability property.

0.6. Structure of the paper. The remainder of this paper consists of three

sections.
• In Section 1, we begin by introducing the basic analytic set-up which

underlies cryo-EM. Then we proceed to formulate the main results of

this paper which are: a complete description of the spectral properties

of the common lines operator C (Theorem 5) and the admissibility of

the intrinsic reconstitution algorithm (Theorem 6).
• In Section 2, we prove Theorem 5; in particular, we develop all the

representation theoretic machinery which is needed for the proof.
• Finally, in Appendix A, we give the proofs of all technical statements

that appeared in the previous sections.
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1. Preliminaries and main results

1.1. Set up. Let O (V ) = O (V, r) denote the group of orthogonal trans-

formations with respect to the inner product r. Let SO (V ) ⊂ O (V ) denote

the subgroup of orthogonal transformations that have determinant one; let

ω ∈ O (V ) denote the element

ω =

Ñ
−1 0 0
0 −1 0
0 0 −1

é
.



REPRESENTATION THEORETIC PATTERNS 1227

Let S (V ) denote the unit sphere in V , that is, S (V ) = {v ∈ V : r (v, v) = 1}.
Finally, we require the following definition.

Definition 1. A pair of points x, y ∈ S (V ) are said to be in generic position

if x 6= ±y.

1.2. The vector bundle of planes. Let H→ S(V ) be the real vector bundle

with fibers H|x = x⊥ and letH =Γ (S (V ) ,H) denote the space of smooth global

sections. The vector bundle H admits a fiberwise Euclidean structure induced

from the one on V , which in turns yields a (pre) Euclidean structure on H
(here, the prefix “pre” just means that H is not complete). In general, in this

paper we will not distinguish between a Euclidean/Hermitian vector space and

its completion and the correct choice between the two will be clear from the

context.

In addition, H admits a natural O (V )-equivariant structure which induces

an action of every element g ∈ O (V ) on the space of global sections H, sending

a section s ∈ H to a section g · s, given by

(1.1) (g · s) (x) = gs
Ä
g−1x

ä
for every x ∈ S(V ). The element g on the right-hand side of (1.1) is considered

as an invertible linear map from
(
g−1x

)⊥
to x⊥. This equivariant structure

defines a representation of O (V ) on H, preserving the Euclidean structure.

1.3. The common lines operator. We proceed to define an integral opera-

tor C : H → H, referred to as the common lines operator. The definition uses

the fact that every pair of distinct planes in a three dimensional real vector

space must intersect at a line. In more precise terms, for every pair of points

x, y ∈ S (V ) in generic position, there are two tautological embeddings of the

intersection line x⊥ ∩ y⊥ between the corresponding orthogonal planes

Cx,y : x⊥ ∩ y⊥ ↪→ x⊥,

Cy,x : x⊥ ∩ y⊥ ↪→ y⊥.

We use these embeddings to define a rank one linear map C (x, y) : y⊥ → x⊥,

given by the composition

C (x, y) = Cx,y ◦ Cty,x.

The collection {C (x, y) : x, y ∈ X in generic position} defines a distribution

section of H�H∗, smooth on the complement of the union of the diagonal and

the anti-diagonal, thus establishing a kernel of an integral operator C : H → H,

given by

C (s) (x) =

∫
y∈S(V )

C (x, y) s (y) dy

for every s ∈ H, where dy is the normalized Haar measure on the sphere. The

common lines operator satisfies the following properties.
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(1) It is symmetric; namely, C = Ct.

(2) It commutes with the O (V )-action; namely, C (g · s) = g · C (s) for

every s ∈ H and g ∈ O (V ).

The first property follows from the fact that C (x, y) = C (y, x)t for every

x, y ∈ S (V ) in generic position. The second property follows from the fact

that

(1.2) C (gx, gy) = g ◦ C (x, y) ◦ g−1

for every x, y ∈ S (V ) in generic position and every element g ∈ O (V ). In the

right-hand side of (1.2) we consider the element g as an invertible linear map

from x⊥ to (gx)⊥ and the element g−1 as an invertible linear map from (gy)⊥

to y⊥.

1.4. Intrinsic model. Our goal is to describe a Euclidean vector space V,

which is defined solely in terms of the common lines operator and the Euclidean

structure on H, and is canonically isomorphic to the Euclidean vector space V .

The vector space V is referred to as the intrinsic model of V . As a preliminary

step, we provide a complete description of the spectrum of the common lines

operator.

Theorem 5. The operator C admits a kernel and a discrete nonzero real

spectrum λn ∈ R, n ∈ N, such that

λn =
(−1)n−1

n (n+ 1)
.

Moreover, dimH (λn) = 2n+ 1.

For a proof, see Section 2.

We define the intrinsic model to be the eigenspace of C, associated with

the maximal eigenvalue; that is,

V = H (λmax) .

There are two immediate implications of Theorem 5. The first implication is

that vector space V is three dimensional. The second implication is that there

exists a spectral gap of λ1 − λ3 = 5/12 that separates the maximal eigenvalue

λmax from the rest of the spectrum.

Let τ : V → H be the map sending a vector v ∈ V to the section τ (v) ∈ H,

given by

τ (v) (x) =
»

3/2 · prx (v) ,

where prx is the orthogonal projection onto the plane x⊥. The first claim is,

that the image of the map τ coincides with the subspace V ⊂ H, and, moreover,

that the map τ induces an isometry onto its image.
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In addition, let us define the morphism

ϕx =
»

2/3 · (evx|V)t : x⊥ → V

for every x ∈ S (V ), where evx : H → x⊥ is the evaluation morphism at the

point x ∈ S (V ). The second claim is that the morphism τ satisfies

τ ◦ ix = ϕx

for every x ∈ S (V ). These two claims in conjunction establish the content of

the following theorem.

Theorem 6. The morphism τ maps V isometrically onto V. Moreover,

τ ◦ ix = ϕx

for every x ∈ S (V ).

For a proof, see Appendix A. The proof is based on interpreting the

spectrum of the common lines operator in terms of the representation theory

of the orthogonal group acting on the vector space H. The proof uses the

results and terminology of Section 2.

2. Spectral analysis of the common lines operator

This section constitutes the main technical part of the paper. Our goal

in this section is to interpret the spectrum of the common lines operator in

terms of the representation theory of the orthogonal group O (V ) acting on the

vector space H. As a consequence, we obtain a proof of Theorem 5.

2.1. Set-up. It will be convenient to extend the set-up a bit.

2.1.1. Auxiliary vector bundles and their complexifications. In addition to

the vector bundle of planes H, we introduce two auxiliary vector bundles on

the unit sphere S (V ): the vector bundle of normal lines N→ S(V ), with fibers

N|x = Rx and the trivial vector bundle VS(V ) with fiber at each point equal

to V . We denote the vector space of smooth global sections of N by N and

that of VS(V ) by V, noting that V = F ⊗ V , where F = C∞ (S (V ) ,R). In

addition, we have

V = H⊕N .

Both vector bundles are equipped with a fiberwise Euclidean structure which

is induced from the one on V ; consequently, the spaces of global sections carry

a Euclidean inner product. In addition, all the vector bundles are equipped

with a natural O (V )-equivariant structure, compatible with the Euclidean

structure and consequently the spaces of global sections carry an action of

the group O (V ), preserving the Euclidean structure. It is convenient to split

the action of the full orthogonal group to an action of the special orthogonal
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group SO (V ), supplemented with a commuting action of the special element

ω ∈ O (V ).

We also consider the complexified vector bundles CH,CN and CVS(V ) as

well as their corresponding vector spaces of smooth global sections CH,CN
and CV. These vector bundled are equipped with a fiberwise Hermitian inner

product induced from the Hermitian product h on CV , given by

h (u, v) = r (u, v) ,

where (−) : CV → CV is complex conjugation. Consequently, the vector

spaces of smooth global sections are a (pre) Hermitian vector spaces carrying

a unitary representation of the group O (V ).

2.1.2. The operator of orthographic lines. We define an integral operator

O : H → H, referred to as the operator of orthographic lines. This operator

captures another basic relation in three dimensional Euclidean geometry which

stands in duality with the common line relation.

The orthographic lines operator is defined by the following kernel. For

every pair of points x, y ∈ S (V ) in generic position, let us consider the corre-

sponding unit vectors

ox,y =
prx (y)

‖prx (y)‖
∈ x⊥,

oy,x =
pry (x)∥∥∥pry (x)

∥∥∥ ∈ y⊥.

The vector ox,y is the normalized projection of the vector y on the plane x⊥

and similarly the vector oy,x is the normalized projection of the vector x on

the plane y⊥. We define a rank one operator O (x, y) : y⊥ → x⊥ by

O (x, y) (v) = r (oy,x, v) ox,y

for every v ∈ y⊥. The collection {O (x, y) : x, y ∈ X in generic position}
defines a distribution section of H � H∗ that is smooth on the complement of

the union of the diagonal and the anti-diagonal that, in turn, yields an integral

operator O : H → H. In addition,

• the orthographic lines operator is symmetric, since O (x, y) = O (y, x)t

for every x, y ∈ X in generic position;

• the orthographic lines operator commutes with the O (V )-action, since

O (gx, gy) = g ◦O (x, y)◦g−1 for every x, y ∈ X in generic position and

g ∈ O (V ).

Finally, it is not difficult to verify that, for any pair of points x, y ∈ S (V )

in generic position, the orthographic lines Rox,y ⊂ x⊥ and Roy,x ⊂ y⊥ are

orthogonal to the common line x⊥ ∩ y⊥ and the linear map O (x, y) satisfy
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O (x,−y) = O (−x, y) = −1 · O (x, y). The latter property implies that the

orthographic line map O (x, y) depends on the choice of the unit vectors x, y,

in contrast to the common line map C (x, y) which depends only on the planes

x⊥, y⊥.

2.1.3. The operator of parallel translation. We define the integral operator

T = C −O : H → H, referred to as the operator of parallel translations.

It is not difficult to verify that the kernel T (x, y) : y⊥ → x⊥ for every

pair of points x, y ∈ S (V ) in generic position is an orthogonal linear map

that coincides with parallel translation along the unique geodesic (large circle)

connecting the point y with the point x.

The parallel transport operator is symmetric and commutes with the

O (V )-action, since both the common lines operator and the orthographic lines

operator satisfy these properties.

The strategy that we are going to follow is to study the spectral properties

of the operator T , from which, as it turns out, the spectral properties of the

operators C and O can be derived.

2.2. Isotypic decompositions. The spaces H,V,N and F carry an action

of the group SO (V ), preserving the Euclidean structure. As such, they admit

isotypic decomposition3

H=
∞⊕
n=0

Hn, N=
∞⊕
n=0

Nn,

V =
∞⊕
n=0

Vn, F=
∞⊕
n=0

Fn,

where we use the subscript n to denote the isotypic component associated with

the unique irreducible representation of SO (V ) of dimension 2n+ 1. In addi-

tion, the element ω ∈ O (V ) acts on all these vector spaces, thus decomposing

them into direct sum of two components

H=H+ ⊕H−, N = N+ ⊕N−,
Vn =V+ ⊕ V−, F = F+ ⊕F−,

where we use the superscript + to denote the component on which ω acts

as Id and the superscript − to denote the component on which ω acts as

−Id. We will refer to the + component as the symmetric component and to

the − component as the anti-symmetric component. The following theorem

summarizes the properties of these decompositions.

3We remind the reader that an isotypic component is a representation which is a direct

sum of copies a single irreducible representation.
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Theorem 7. The following properties hold.

(1) Each isotypic component Fn is an irreducible representation. More-

over, Fn = F+
n when n is even and Fn = F−n when n is odd.

(2) Each isotypic component Nn is an irreducible representation. More-

over, Nn = N+
n when n is even and Nn = N−n when n is odd.

(3) The isotypic component H0 = 0 and each isotypic component Hn, n ≥ 1

decomposes under ω into a direct sum of two irreducible representations

H+
n ⊕H−n .

(4) The isotypic component V0 is equal to the symmetric trivial represen-

tation 1+ and each isotypic component Vn, n ≥ 1 decomposes under ω

into a direct sum of three irreducible representations H+
n ⊕ H−n ⊕ N ?

n

where

? =

®
+ n even

− n odd.

For a proof, see Appendix A.

Since the operators C,O and T commute with the O (V )-action, they

preserve all the above decompositions.

Proposition 1. The following properties hold.

• The operator T acts as scalar operator on Hn; moreover, T |Hn = λnId

where λn 6= 0.

• The isotypic component H+
n ⊂ kerC ; moreover, C|H−n = λnId.

• The isotypic component H−n ⊂ kerO; moreover, O|H+
n = −λnId.

For a proof, see Appendix A.

The rest of this section is devoted to the computation of the eigenvalues

λn, n ≥ 1.

2.3. Computation of the eigenvalues. Fix a point x ∈ S (V ). Let Tx =

{g ∈ SO (V ) : gx = x} be the subgroup of rotations around x. Choose an sl2
triple (H,E, F ) ∈ CLie (SO (V )) associated with Tx.

2.3.1. Spherical decomposition. For each n ≥ 1, the complexified (Hilbert)

space CHn admits an isotypic decomposition into weight spaces with respect

to the action of the elements H

CHn =
n⊕

m=−n
CHmn ,

where H acts on CHmn by 2mId. Since CHn = CH+
n ⊕ CH−n , each weight

space CHmn is two-dimensional. Given a section un ∈ CHn, by Proposition 1,

Tun = λnun. If, in addition, un (x) 6= 0, then the eigenvalue λn can be

computed from the equation

(2.1) λn · h (un (x) , un (x)) = h (un (x) , Tun (x)) .
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Let us fix a unit vector l0 ∈ x⊥ and consider an infinitesimal generator Al0 ∈
Lie (Tl0), satisfying the property that the exponential mapping exp : [0, 2π)→
Tl0 , exp (θ) = eθAl0 is a diffeomorphism. The following proposition establishes

an integral formula for the right-hand side of equation (2.1) expressed in terms

of the exponential mapping exp : [0, 2π)→ Tl0 .

Proposition 2. Assume un ∈ CH1
n; then

(2.2) λn · h (un (x) , un (x)) =

π∫
0

µ (θ)h
Ä
un (x) , e−θAl0un

Ä
eθAl0x

ää
dθ,

where µ (θ) = sin (θ) /2.

For a proof, see Appendix A.

2.3.2. Construction of a “good” section. Our strategy is to construct a

section un ∈ CH1
n, satisfying un (x) 6= 0, and then, to use equation (2.2) in

order to compute the eigenvalue λn. To this end, we choose a highest weight

vector ψn ∈ CFn (i.e., Hψn = 2nψn) for every n ≥ 0 and a highest weight

vector v1 ∈ CV (Hv1 = 2v1). Consequently, the section ψn−1 ⊗ v1 is a highest

weight vector in CVn for every n ≥ 1.

We construct the section un in two steps. In the first step, we apply the

lowering operator F and consider the section ũn = Fn−1
(
ψn−1 ⊗ v1

)
∈ CV1n.

In the second step, we project ũn onto CHn, by taking

un (y) = pryũn (y)

for every y ∈ S (V ), where pry is the orthogonal projection operator on Cy⊥.

Proposition 3. The section un is symmetric or anti-symmetric depend-

ing on the parity of n as follows :

un ∈ CH+,1
n when n is even, un ∈ CH−,1n when n is odd.

For a proof, see Appendix A.

Let us denote by Pn−1 the weight zero spherical function Fn−1ψn−1 ∈
F0
n−1. The following proposition gives an explicit expression of ũn in terms of

the function Pn−1 and the vector v1.

Proposition 4. The section ũn can be written as

(2.3) ũn = Pn−1 ⊗ v1 +
1

n
EPn−1 ⊗ Fv1 +

1

2n (n+ 1)
E2Pn−1 ⊗ F 2v1.

For a proof, see Appendix A.

We are now ready to finish the computation of the eigenvalue. Using

equation (2.2), we can write

λn · h (un (x) , un (x)) =

π∫
0

µ (θ)h
Ä
eθAl0un (x) , ũn

Ä
eθAl0x

ää
dθ.
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Considering formula (2.3), it is evident that the functions EPn−1 and E2Pn−1
must vanish at x ∈ S (V ) since these are functions of weight different from zero

with respect to the action of Tx. Hence

un (x) = ũn (x) = Pn−1 (x) v1 ∈ Cx⊥,1.

For k = 0, 1, 2, let us define the integrals

Ikn =
1

h (un (x) , un (x))

π∫
0

µ (θ)h
Ä
eθAl0un (x) , EkPn−1

Ä
eθAl0x

ä
F kv1

ä
dθ

=
1

Pn−1 (x)h (v1, v1)

π∫
0

µ (θ)EkPn−1
Ä
eθAl0x

ä
h
Ä
eθAl0v1, F

kv1
ä
dθ.

The eigenvalue λn can be expressed as

(2.4) λn = I0n +
1

n
I1n +

1

2n (n+ 1)
I2n.

Theorem 8 (Main technical statement). For k = 0, 1, 2, the integrals Ikn
are equal to

I0n =


1 n = 1

1/6 n = 2

0 n ≥ 3

,

I1n =


0 n = 1

−2/3 n = 2

0 n ≥ 3

,

I2n =


0 n = 1

0 n = 2

2 (−1)n−1 n ≥ 3

.

For a proof, see Section 2.4.

Using Theorem 8 and equation (2.4) we obtain the desired formula

λn =
(−1)n−1

n (n+ 1)
,

which proves Theorem 5.

2.4. Proof of Theorem 8.

2.4.1. Set-up. Let (e1, e2, e3) be an orthonormal basis of V . Think of the

basis vector e3 as playing the role of the fixed unit vector x ∈ S (V ), and of

the basis vector e2 as playing the role of the vector l0 ∈ S
Ä
x⊥
ä
. It is possible
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to choose elements Aei ∈ Lie (Tei), i = 1, 2, 3, that satisfy the relations

[Ae3 , Ae1 ] =Ae2 ,

[Ae3 , Ae2 ] =−Ae1 ,
[Ae1 , Ae2 ] =Ae3 ,

and, in addition, satisfy
î
Aei , Aej

ó
= Aeiej for every 1 ≤ i, j ≤ 3. We consider

the following sl2 triple (H,E, F ) associated with Te3 :

H =−2iAe3 ,

E = iAe2 −Ae1 ,
F =Ae1 + iAe2 .

We introduce spherical coordinates f : (0, 2π) × (0, π) → S (V ) given by

f (ϕ, θ) = gϕ · (cos (θ) e3 + sin (θ) e1), where

gϕ =

Ö
cos (ϕ) − sin (ϕ) 0

sin (ϕ) cos (ϕ) 0

0 0 1

è
.

In the coordinates (ϕ, θ), the operators H,E, F are given by the following

formulas:

H = 2i∂ϕ,

E = −e−iϕ (i∂θ + cot (θ) ∂ϕ) ,

F = −eiϕ (i∂θ − cot (θ) ∂ϕ) .

2.4.2. Highest weight vector in V . The vector v1 = −e1 + ie2 is a highest

weight vector in V , and we note that ‖v1‖2 = 2. For k = 0, 1, 2, let us denote

by jk (θ) the function
¨
eθAe2v1, F

kv1
∂
. Explicit calculation shows that

j0 (θ) = cos (θ) + 1,

j1 (θ) = 2i sin (θ) ,

j2 (θ) = 2 cos (θ)− 2.

2.4.3. Spherical function in Fn. For every n ≥ 0, let Pn ∈ F0
n denote the

unique weight zero spherical function, satisfying the normalization condition

Pn (e3) = 1. Define the generating function

G (ϕ, θ, t) =
∞∑
n=0

Pn (ϕ, θ) tn.

The generating function G admits an explicit formula.

Theorem 9 ([11]).

(2.5) G (ϕ, θ, t) =
Ä
1− 2t cos (θ) + t2

ä−1/2
.
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Remark 3. Note that G (0, 0, t) = (1− t)−1 =
∞∑
n=0

tn which is compatible

with the normalization condition Pn (0, 0) = 1.

Applying the raising operator E, we obtain the generating functions

EG (ϕ, θ, t) =
∞∑
n=0

EPn (ϕ, θ) tn,

E2G (ϕ, θ, t) =
∞∑
n=0

E2Pn (ϕ, θ) tn.

Granting formula (2.5), explicit calculation gives

EG (ϕ, θ, t) = ie−iϕt sin (θ)
Ä
1− 2t cos (θ) + t2

ä−3/2
,

E2G (ϕ, θ, t) =−3e−2iϕt2 sin2 (θ)
Ä
1− 2t cos (θ) + t2

ä−5/2
.

2.4.4. Putting everything together. In terms of our choice of the highest

weight vector v1 and the spherical functions Pn, n ≥ 0, the integrals Ikn, k =

0, 1, 2, can be written in the spherical coordinates (ϕ, θ) as

Ikn =
1

Pn−1 (x)h (v1, v1)

π∫
0

µ (θ)EkPn−1 (0, θ) jk (θ) dθ

=
1

2

π∫
0

µ (θ)EkPn−1 (0, θ) jk (θ) dθ.

For k = 0, 1, 2, define the generating functions

Ik (t) =
∞∑
n=0

Ikn+1t
n.

Each Ik (t) can be expressed as the integral

Ik (t) =
1

2

π∫
0

µ (θ)EkG (0, θ, t) jk (θ) dθ.

Explicit calculation of the integrals Ik (t) shows that

I0 (t) =
1

2

Å
1 +

1

3
t

ã
,

I1 (t) =
1

2

Å
−4

3
t

ã
,

I2 (t) =
1

2

Ä
4 (1 + t)−1 − 4t− 4

ä
= 2

∞∑
n=2

(−1)n tn.
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From the above formulas, using equation (2.4), we obtain

λn =
(−1)n−1

n (n+ 1)

for every n ≥ 1. This concludes the proof of Theorem 8.

Appendix A. Proofs

A.1. Proof of Theorem 6. Since τ is a morphism of O (V ) representations,

it maps V isometrically onto H−1 — the unique anti-symmetric copy (ω acts by

−1) of the three dimensional representation of SO (V ), which, by Proposition 1,

coincides with V = H (λmax). Evidently, τ is an isometry, up to a scalar; hence,

it is sufficient to show that Tr
(
τ ◦ τ t

)
= 3. We let α : V → H denote the

morphism defined by

α (v) (x) = prx (v)

for every v ∈ V and x ∈ S (V ). Note that τ =
»

3/2 · α. We have

Tr
Ä
τ ◦ τ t

ä
=

3

2
· Tr
Ä
α ◦ αt

ä
=

3

2

∫
x∈S(V )

Tr
Ä
itx ◦ ix

ä
dx

=
3

2

∫
x∈S(V )

2dx = 3.

Finally, the relation τ ◦ ix = ϕx follows from

(evx|V) ◦ α = prx

for every x ∈ X. This concludes the proof of the theorem.

A.2. Proof of Theorem 7. Property 1 is the classical result of spherical

harmonics on the two dimensional sphere; see, e.g., [11]. We just note that the

representation Fn consists of the restriction to S (V ) of harmonic polynomials

of degree n, which implies that Fn = F+
n when n is even and Fn = F−n when

n is odd.

Property 2 follows from Property 1 since N can be trivialized using the

O (V )-invariant section s ∈ N , defined by s (y) = y for every y ∈ S (V ).

We now prove Properties 3 and 4 simultaneously.

Since V = F ⊗V as a representation of O (V ), we can express the isotypic

components of V in terms of the isotypic components of F as follows.

• For n = 0, F0 ⊗ V = V −.

• For n ≥ 1, Fn ⊗ V = (Fn ⊗ V )?n−1 ⊕ (Fn ⊗ V )?n ⊕ (Fn ⊗ V )?n+1, where

? =

®
+ n odd

− n even.
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The decomposition of Fn ⊗ V as a representation of SO (V ) is computed

using the branching rules of a tensor product, and the action of ω ∈ O (V ) is

derived from the facts that V = V − and Property 1.

This implies that the isotypic components of V are:

• for n = 0, Vn = 1+;

• for odd n ≥ 1, Vn = (Fn−1 ⊗ V )−n ⊕ (Fn ⊗ V )+n ⊕ (Fn+1 ⊗ V )−n ;

• for even n ≥ 1, Vn = (Fn−1 ⊗ V )+n ⊕ (Fn ⊗ V )−n ⊕ (Fn+1 ⊗ V )+n .

Combining this with Property 2 and the fact that V = H⊕N yields Prop-

erties 3 and 4.

This concludes the proof of the theorem.

A.3. Proof of Proposition 1. Fix n ≥ 1. Denote H = Hn and H± = H±n .

The statement that H+ ⊂ kerC follows from C (x,−y) = C (−x, y) =

C (x, y) in conjunction with the fact that a section s ∈ H+ satisfies s (−x) =

− (ω · s) (x) = −s (x). Similarly, the statement that H− ⊂ kerO follows from

O (x,−y) = O (−x, y) = −O (x, y) in conjunction with the fact that a section

s ∈ H− satisfies s (−x) = − (ω · s) (x) = s (x).

Since, by definition, T = C − O, this implies that C|H− = T|H− and

−O|H+ = T |H+. Since T commutes with the action of SO (V ) and H± are

irreducible representations,

T |H± = λ±Id.

We are left to show that λ+ = λ−. The argument proceeds as follows.

Let us denote by evx : CH → Cx⊥ the evaluation map at the point x. Since

x is fixed by the group Tx, this implies that evx is a morphism of repre-

sentations of Tx. Moreover, evx induces an isomorphism of weight spaces

evx : CH±,1 '−→ Cx⊥,1. Fix sections u± ∈ CH±,1 normalized to be of norm 1.

Applying Formula (2.2)), we can write

λ±h
Ä
evxu

±, evxu
±
ä

=

π∫
0

µ (θ)h
Ä
evxu

±, evx
Ä
eθAl0u±

ää
dθ(A.1)

= h
Ä
evxu

±, evx
Ä
π± (µ)un

ää
,

where π± : Tx → U (CH±) are the group actions restricted to the subgroup Tx
and µ is the function on Tx corresponding to µ via the isomorphism eθAl0 .

Equation (A.1) implies that λ± = 〈u±, π± (µ)u±〉CH± . This implies that

λ± are characterized solely in terms of the irreducible representation π± :

SO (V )→ U (CH±), which, in turns, implies that λ+ = λ−.

This concludes the proof of the proposition.

A.4. Proof of Proposition 2. Let f : Tx × (0, π)→ S (V ) be the spherical

coordinates on S (V ) given by f (g, θ) = geθAl0x. In these coordinates, the
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normalized Haar measure on S (V ) is given by dg � µ (θ) dθ, where dg is the

normalized Haar measure on Tx and µ (θ) = sin (θ) /2.

The section un∈ CH1
n is a character vector with respect to the group

Tx. Let us denote this character by χ : Tx → S1 and note that we have

g · un = χ (g)un for every g ∈ Tx. Now, compute

λnh (un (x) , un (x)) = h (un (x) , Tun (x))

=

∫
y∈S(V )

h (un (x) , T (x, y)un (y)) dy

=

∫
Tx

dg

π∫
0

µ (θ)h
Ä
un (x) , T

Ä
x, geθAl0x

ä
un
Ä
geθAl0x

ää
dθ

=

∫
Tx

dg

π∫
0

µ (θ)h
Ä
un (x) , gT

Ä
x, eθAl0x

ä
g−1un

Ä
geθAl0x

ää
dθ

=

∫
Tx

dg

π∫
0

µ (θ)h
Ä
g−1un (x) , T

Ä
x, eθAl0x

ä
g−1un

Ä
geθAl0x

ää
dθ

=

∫
Tx

dg

π∫
0

µ (θ)h
Ä
un (x) , T

Ä
x, eθAl0x

ä
un
Ä
eθAl0x

ää
dθ

=

π∫
0

µ (θ)h
Ä
un (x) , e−θAl0un

Ä
eθAl0x

ää
dθ,

where Step 4 uses that T commutes with the action of SO (V ), which is equiva-

lent to the property that T (gx, gy) = g◦T (x, y)◦g−1 for every x, y ∈ S (V ) and

g ∈ SO (V ). In particular, this implies that T
Ä
x, geθAl0x

ä
= T

Ä
gx, geθAl0x

ä
=

g ◦ T
Ä
x, eθAl0x

ä
◦ g−1. Step 7 in the derivation uses that T

Ä
x, eθAl0x

ä
is the

operator of parallel translation along the big circle connecting the point eθAl0x

with the point x.

This concludes the proof of the proposition.

A.5. Proof of Proposition 4. First we note the following simple fact: the

operator EF : CVn → CVn preserves the weight spaces CV ln. Moreover, since

CVn is a representation of highest weight 2n with respect to the sl2 triple

(H,E, F ), we have

(A.2) EF |CV ln = (n+ l) (n− l + 1) Id,

for l = −n, . . . , n. Now, calculate

ũn = Fn−1
(
ψn−1 ⊗ v1

)
=

n−1∑
i=0

Ç
n− 1

i

å
Fn−1−i ⊗ F i

(
ψn−1 ⊗ v1

)
.
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Since CV is a representation of highest weight 2 with respect to the sl2 triple

(H,E, F ), all tensors of the form (−) ⊗ F kv1, for k ≥ 3, vanish. This implies

that the above sum is equal to

Fn−1ψn−1⊗ v1 + (n− 1)Fn−2ψn−1⊗Fv1 +
(n− 1) (n− 2)

2
Fn−3ψn−1⊗F 2v1.

Recall that Pn−1 = Fn−1ψn−1. Explicit calculation, using formula (A.2), shows

that

Fn−1ψn−1 =
1

n (n− 1)
EPn−1,

Fn−3ψn−1 =
1

(n− 2) (n− 1)n (n+ 1)
E2Pn−1.

Combining all the above yields the desired formula for ũn.

This concludes the proof of the proposition.

A.6. Proof of Proposition 3. The statement follows directly from the facts

that V = V − which implies that ω
Ä
F kv1

ä
= −F kv1 and that Pn−1 ∈ F?

n−1,

where

? =

®
+ n odd

− n even.

This concludes the proof of the proposition.
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