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The single ring theorem

By Alice Guionnet, Manjunath Krishnapur, and Ofer Zeitouni

Abstract

We study the empirical measure LAn of the eigenvalues of nonnormal

square matrices of the form An = UnTnVn with Un, Vn independent Haar

distributed on the unitary group and Tn real diagonal. We show that

when the empirical measure of the eigenvalues of Tn converges, and Tn
satisfies some technical conditions, LAn converges towards a rotationally

invariant measure µ on the complex plane whose support is a single ring.

In particular, we provide a complete proof of the Feinberg-Zee single ring

theorem [6]. We also consider the case where Un, Vn are independently

Haar distributed on the orthogonal group.

1. The problem

Horn [16] asked the question of how to describe the eigenvalues of a square

matrix with prescribed singular values. If A is a n × n matrix with singular

values s1 ≥ · · · ≥ sn ≥ 0 and eigenvalues λ1, . . . , λn in decreasing order of

absolute values, then the inequalities

k∏
j=1

|λj | ≤
k∏
j=1

sj , if k < n and
n∏
j=1

|λj | =
n∏
j=1

sj

hold as shown by Weyl [29]. Horn [16] established that these were all the

relationships between singular values and eigenvalues.

In this paper we study the natural probabilistic version of this problem

and show that for “typical matrices”, the singular values almost determine the

eigenvalues. To frame the problem precisely, fix s1 ≥ · · · ≥ sn ≥ 0 and consider

n× n matrices having these singular values. They are of the form A = PTQ,

where T is diagonal with entries sj on the diagonal, and P,Q are arbitrary

unitary matrices.

We make A into a random matrix by choosing P and Q independently

from the Haar measure on U(n), the unitary group of n × n matrices, and
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independent of T . Let λ1, . . . , λn be the (random) eigenvalues of A. The

following natural questions arise.

1. Are there deterministic or random sets {sj}, for which one can find the

exact distribution of {λj}?
2. Let LS = 1

n

∑n
j=1 δsj and LΛ = 1

n

∑n
j=1 δλj denote the empirical mea-

sures of S = {sj} and Λ = {λj}. Suppose Sn are sets of size n such

that LSn converges weakly to a probability measure θ supported on R+.

Then, does LΛ converge to a deterministic measure µ on the complex

plane? If so, how is the measure µ determined by θ?

3. For finite n, for fixed S, is LΛ concentrated in the space of probability

measures on the plane?

In this paper, we concentrate on the second question and answer it in the affir-

mative, albeit with some restrictions. In this context, we note that Fyodorov

and Wei [28, Th. 2.1] gave a formula for the mean eigenvalues density of A,

yet in terms of a large sum which does not offer an easy handle on asymptotic

properties (see also [7] for the case where T is a projection). The authors of

[28] explicitly state the second question as an open problem.

Of course, questions 1–3 above are not new, and have been studied in

various formulations. We now describe a partial and necessarily brief history

of what is known concerning questions 1 and 2; partial results concerning

question 3 will be discussed elsewhere.

The most famous case of a positive answer to question 1 is the Ginibre

ensemble, see [8], and its asymmetric variant, see [18]. (There are some pitfalls

in the standard derivation of Ginibre’s result. We refer to [17] for a discussion.)

Another situation is the truncation of random unitary matrices, described

in [30].

Concerning question 2, the convergence of the empirical measure of eigen-

values in the Ginibre ensemble (and other ensembles related to question 1) is

easy to deduce from the explicit formula for the joint distribution of eigen-

values. Generalizations of this convergence in the absence of such explicit

formula, for matrices with iid entries, is covered under Girko’s circular law,

which is described in [9]; the circular law was proved under some conditions

in [2] and finally, in full generality, in [10] and [24]. Such matrices, however,

do not possess the invariance properties discussed in connection with ques-

tion 2. The single ring theorem of Feinberg and Zee [6] is, to our knowledge,

the first example where a partial answer to this question is offered. (Various

issues of convergence are glossed over in [6] and, as it turns out, require a

significant effort to overcome.) As we will see in Section 3, the asymptotics

of the spectral measure appearing in question 2 are described by the Brown

measure of R-diagonal operators. (The Brown measure is a continuous ana-

logue of the spectral distribution of nonnormal operators, introduced in [4].)
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R-diagonal operators were introduced by Nica and Speicher [19] in the context

of free probability; they represent the weak*-limit (or more precisely, the limit

in ∗-moments) of operators of the form UT with U unitary with size going to

infinity and T diagonal, and were intensively studied in the last decade within

the theory of free probability, in particular in connection with the problem of

classifying invariant subspaces [13], [14].

2. Limiting spectral density of a nonnormal matrix

Throughout, for a probability measure µ supported on R or on C, we write

Gµ for its Stieltjes transform; that is,

Gµ(z) =

∫
µ(dx)

z − x
.

Gµ is analytic off the support of µ. We let Hn denote the Haar measure on

the n-dimensional unitary group U(n). Let {Pn, Qn}n≥1 denote a sequence of

independent, Hn-distributed matrices. Let Tn denote a sequence of diagonal

matrices, independent of (Pn, Qn), with real positive entries Sn = {s(n)
i } on

the diagonal, and introduce the empirical measure of the symmetrized version

of Tn as

LSn =
1

2n

n∑
i=1

[δ
s
(n)
i

+ δ−s(n)i

] .

We write GTn for GLSn . For a measure µ supported on R+, we write µ̃ for its

symmetrized version, that is, for any 0 < a < b <∞,

µ̃([−a,−b]) = µ̃([a, b]) =
1

2
µ([a, b]) .

Let An = PnTnQn, let Λn = {λ(n)
i } denote the set of eigenvalues of An,

and set

LAn =
1

n

n∑
i=1

δ
λ
(n)
i

.

We refer to LAn as the empirical spectral distribution (ESD) of An. (Note

that the law of LAn does not change if one considers PnTn instead of PnTnQn,

since if PnTnQnw = λw for some (w, λ), then with Pn = QnPn and v = Qnw,

it holds that PnTnv = λv, and Pn is again Haar distributed.) Finally, for any

matrix A, we set ‖A‖ to denote the `2 operator-norm of A, that is, its largest

singular value.

To state our results, we recall the notion of free convolution of proba-

bility measures on R, introduced by Voiculescu. For a compactly supported

probability measure on µ, define the formal power series

Gµ(z) =
∑
n≥0

∫
xndµ(x)z−(n+1),
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and let Kµ(z) denote its inverse in a neighborhood of infinity, satisfying

Gµ(Kµ(z)) = z.

The R-transform of µ is the function Rµ(z) = Kµ(z) − 1/z. The moments

of µ (and therefore µ itself, since it is compactly supported) can be recovered

from the knowledge of Kµ, and therefore from Rµ, by a formal inversion of

power series. For a pair of compactly supported probability measures µ1, µ2,

introduce the free convolution µ1�µ2 as the (compactly supported) probability

measure whose R-transform is Rµ1(z) + Rµ2(z). (That this defines indeed a

probability measure needs a proof; see [1, §5.3] for details and background.)

For a ∈ R+, introduce the symmetric Bernoulli measure λa = 1
2(δa + δ−a)

with atoms at {−a, a}. All our main results, Theorem 3 and Propositions 4

and 6, will be derived from the following technical result.

Theorem 1. Assume {LTn}n converges weakly to a probability measure

Θ compactly supported on R+. Assume further

1. There exists a constant M > 0 so that

(1) lim
n→∞

P (‖Tn‖ > M) = 0 .

2. There exist a sequence of events {Gn} with P (Gcn) → 0 and constants

δ, δ′ > 0 so that for Lebesgue almost any z ∈ C, with σzn the minimal

singular value of zI −An,

(2) E(1Gn1{σzn<n−δ}(log σzn)2) < δ′ .

3. There exist constants κ, κ1 > 0 such that

(3) |=GTn(z)| ≤ κ1 on {z : =(z) > n−κ} .

Then the following hold.

a. LAn converges in probability to a limiting probability measure µA.

b. The measure µA possesses a radially-symmetric density ρA with respect

to the Lebesgue measure on C, satisfying ρA(z) = 1
2π∆z(

∫
log |x|dνz(x)),

where ∆z denotes the Laplacian with respect to the variable z and νz :=

Θ̃ � λ|z| .

c. The support of µA is a single ring : there exist constants 0 ≤ a < b <∞
so that

suppµA = {reiθ : a ≤ r ≤ b} .
Further, a = 0 if and only if

∫
x−2dΘ(x) =∞.

See Remark 7 for an explicit characterization of the free convolution ap-

pearing in Theorem 1, and [1, Chap. 5] for general background. A different

characterization of ρA, borrowed from [12] and instrumental in the proof of

part (c) of Theorem 1, is provided in Remark 8 in Section 3.1.
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Remark 2. We do not believe that the conditions in Theorem 1 are sharp.

In particular, we do not know whether Condition (3), which prevents the ex-

istence of an atom in the support of Θ̃, can be dispensed with; the example

Tn = I shows that it is certainly not necessary.

Theorem 1 is generalized to the case where Pn, Qn follow the Haar measure

on the orthogonal group in Theorem 18. Note that, since for Lebesgue almost

every x ∈ R, the imaginary part of the Stieltjes transform of an absolutely

continuous probability measure converges, as z → x, towards the density of

this measure at x, (3) is verified as soon as Θ̃ has a bounded continuous density.

As a corollary of Theorem 1, we prove the Feinberg-Zee “single ring the-

orem.”

Theorem 3. Let V denote a polynomial with positive leading coefficient.

Let the n-by-n complex matrix Xn be distributed according to the law

1

Zn
exp(−n trV (XX∗))dX ,

where Zn is a normalization constant and dX the Lebesgue measure on n-by-

n complex matrices. Let LXn be the ESD of Xn. Then {LXn}n satisfies the

conclusions of Theorem 1 with Θ the unique minimizer of the functional

J (µ) :=

∫
V (x2)dµ(x)−

∫∫
log |x2 − y2|dµ(x)dµ(x)

on the set of probability measures on R+.

Theorem 3 will follow by checking that the assumptions of Theorem 1 are

satisfied for the spectral decomposition Xn = PnTnQn; see Section 6.

The second hypothesis in Theorem 1 may seem difficult to verify in general;

we show in Proposition 4 that adding a small Gaussian matrix guarantees it.

Proposition 4. Let (Tn)n≥0 be a sequence of matrices satisfying the as-

sumptions of Theorem 1 except for (2) and assume that ‖T−1
n ‖ is uniformly

bounded. Let Nn be a n × n matrix with independent (complex) Gaussian

entries of zero mean and covariance equal to the identity. Let Un, Vn follow

the Haar measure on unitary n× n matrices, independently of Tn, Nn. Then,

the empirical measure of the eigenvalues of Yn := UnTnVn + n−γNn converges

weakly in probability to µA as in Theorem 1 for any γ ∈ (1
2 ,∞).

In a general framework, P. Śniady [23, Th. 7] has shown that there exists a

sequence εn going to zero at infinity so that the spectral measure of UnTnVn +

εnn
−1/2Nn converges to µA. The above proposition thus insures that this

is true for any polynomially decaying sequence εn. Note that in the earlier

unpublished notes [11], U. Haagerup proved a similar regularization of the

Brown measure by Cauchy-type matrices instead of Gaussian ones.
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Example 5. An example of a sequence (Tn)n≥0 satisfying the hypotheses of

Proposition 4 is given as follows: take Tn = diag(sn1 , . . . , s
n
n) with sni ∈ [δ,M ],

for 0 < δ < M <∞ independent of n, so that

• LTn converges weakly towards a probability measure µ on [δ,M ] which

is absolutely continuous with respect to the Lebesgue measure;

• there exist κ > 0 and C finite so that for all E ∈ [δ,M ], all δ ≥ n−κ,

]{i : |sni − E| ≤ δ} ≤ Cδn .

A rather straightforward generalization of Theorem 1 concerns the limiting

spectral measure of Pn+Bn, where Pn isHn distributed and the sequence of n×
n matrices Bn converges in ∗-moments to an operator b in a noncommutative

probability space (A, τ). (The latter means that for all polynomials P in two

noncommutative variables limn→∞
1
n tr(P (Bn, B

∗
n)) = τ(P (b, b∗)), which is the

case if e.g. Bn is self-adjoint, with spectral measure converging to a probability

measure Θ, which is the law of a self-adjoint operator b.) In particular, for any

w ∈ C, the spectral measure of Tn(w) = |wI −Bn| =
√

(wI −Bn)(wI −Bn)∗

converges to the law Θw of |wI−b|. By Voiculescu’s theorem [26, Th. 3.8], if the

operator norm of Bn is uniformly bounded, then the couple (Bn, Pn) converges

in ∗-moments towards (b, u), a pair of operators living in a noncommutative

probability space (A, τ) which are free, u being unitary. The Brown measure

µb+u is studied in [3, §4].

Proposition 6. Assume that Tn(0) satisfies (1) and that there exists a

set Ω ⊂ C with full Lebesgue measure so that for all w ∈ Ω, Tn(w) satisfies (3).

Let Nn be an n×n matrix with independent (complex) Gaussian entries of zero

mean and covariance equal identity. Then, for any γ > 1
2 , the spectral measure

of Bn+n−γNn+Pn converges in probability to the Brown measure µb+u of b+u.

An example of a sequence of matrices Bn which satisfy the hypotheses

of Proposition 6 is given by the diagonal matrices Bn = diag(sn1 , . . . , s
n
n) with

entries sni satisfying the hypotheses of Example 5. This is easily verified from

the fact that the eigenvalues of Dn(w) are given by (|w − sn1 |, . . . , |w − snn|).
2.1. Background and description of the proof. The main difficulty in study-

ing the ESD LAn is that An is not a normal matrix; that is, AnA
∗
n 6= A∗nAn,

almost surely. For normal matrices, the limit of ESDs can be found by the

method of moments or by the method of Stieltjes’ transforms. For nonnormal

matrices, the only known method of proof is more indirect and follows an idea

of Girko [9] that we describe now (the details are a little different from what

is presented in Girko [9] or Bai [2]).

From Green’s formula, for any polynomial P (z) =
∏n
j=1(z − λj), we have

1

2π

∫
∆ψ(z) log |P (z)|dm(z) =

n∑
j=1

ψ(λj), for any ψ ∈ C2
c (C) ,
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where m(·) denotes the Lebesgue measure on C. Applied to the characteristic

polynomial of An, this gives∫
ψ(z)dLAn(z) =

1

2πn

∫
C

∆ψ(z) log | det(zI −An)|dm(z)

=
1

4πn

∫
C

∆ψ(z) log det(zI −An)(zI −An)∗dm(z) .

It will be convenient for us to introduce the 2n× 2n matrix

(4) Hz
n :=

[
0 zI −An

(zI −An)∗ 0

]
.

It may be checked easily that eigenvalues of Hz
n are the positive and negative

of the singular values of zI − An. Therefore, if we let νzn denote the ESD of

Hz
n, ∫

1

y − x
dνzn(x) =

1

2n
tr((y −Hz

n)−1);

then

1

n
log det(zI −An)(zI −An)∗ =

1

n
log det |Hz

n| = 2

∫
R

log |x|dνzn(x) .

Thus we arrive at the formula

(5)

∫
ψ(z)dLAn(z) =

1

2π

∫
C

∆ψ(z)

∫
R

log |x|dνzn(x)dm(z) .

This is Girko’s formula in a different form and its utility lies in the following

attack on finding the limit of LAn .

1. Show that for (Lebesgue almost) every z ∈ C, the measures νzn converge

weakly in probability to a measure νz as n → ∞, and identify the

limit. Since Hz
n are Hermitian matrices, there is hope of doing this by

Hermitian techniques.

2. Justify that
∫

log |x|dνzn(x)→
∫

log |x|dνz(x) for (almost) every z. But

for the fact that “log” is not a bounded function, this would have fol-

lowed from the weak convergence of νzn to νz. As it stands, this is the

hardest technical part of the proof.

3. A standard uniform integrability argument is then used in order to con-

vert the convergence for (almost) every z of νzn to a convergence of in-

tegrals over z. Indeed, setting h(z) :=
∫

log |x|dνz(x), we will get from

(5) that

(6)

∫
ψ(z)dLAn(z)→ 1

2π

∫
C

∆ψ(z) h(z)dm(z) .



1196 A. GUIONNET, M. KRISHNAPUR, and O. ZEITOUNI

4. Show that h is smooth enough so that one can integrate the previous

equation by parts to get

(7)

∫
ψ(z)dLAn(z)→ 1

2π

∫
C

ψ(z) ∆h(z)dm(z) ,

which identifies ∆h(z)/2π as the density (with respect to Lebesgue mea-

sure) of the limit of LAn .

5. Identify the function h sufficiently precisely to be able to deduce prop-

erties of ∆h(z). In particular, show the single ring phenomenon, which

states that the support of the limiting spectral measure is a single an-

nulus (the surprising part being that it cannot consist of several disjoint

annuli).

Girko’s equation (5) and these five steps give a general recipe for finding limit-

ing spectral measures of nonnormal random matrices. Whether one can over-

come the technical difficulties depends on the model of random matrix one

chooses. For the model of random matrices with i.i.d. entries having zero

mean and finite variance, this has been achieved in stages by Bai [2], Götze

and Tikhomirov [10], Pan and Zhou [20] and Tao and Vu [24]. While we borrow

extensively from that sequence, a major difficulty in the problem considered

here is that there is no independence between entries of the matrix An. Instead,

we will rely on properties of the Haar measure, and in particular on consider-

ations borrowed from free probability and the so called Schwinger-Dyson (or

master-loop) equations. Such equations were already the key to obtaining fine

estimates on the Stieltjes transform of Gaussian generalized band matrices in

[15]. In [5], they were used to study the asymptotics of matrix models on

the unitary group. Our approach combines ideas of [15] to estimate Stieltjes

transforms and the necessary adaptations to unitary matrices as developed in

[5]. The main observation is that one can reduce attention to the study of the

ESD of matrices of the form (T + U)(T + U)∗ where T is real diagonal and U

is Haar distributed. In the limit (i.e., when T and U are replaced by operators

in a C∗-algebra that are freely independent, with T bounded and self-adjoint

and U unitary), the limit ESD has been identified by Haagerup and Larsen

[12]. The Schwinger-Dyson equations give both a characterization of the limit

and, more important to us, a finite approximation that can be used to estimate

the discrepancy between the pre-limit ESD and its limit. These estimates play

a crucial role in integrating the singularity of the log in Step 2 above, but

only once an a priori (polynomial) estimate on the minimal singular value has

been obtained. The latter is deduced from assumption 2. In the context of

the Feinberg-Zee single ring theorem, the latter assumption holds due to an

adaptation of the analysis of [22].
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Notation. We describe our convention concerning constants. Throughout,

by the word constant we mean quantities that are independent of n (or of the

complex variables z, z1). Generic constants denoted by the letters C,c or R,

have values that may change from line to line, and they may depend on other

parameters. Constants denoted by Ci, K, κ and κ′ are fixed and do not change

from line to line.

3. An auxiliary problem: evaluation of νz and convergence rates

Recall from the proof sketch described above that we are interested in

evaluating the limit νz of the ESD Lzn of the matrix Hz
n; see (4). Note that Lzn

is also the ESD of the matrix H̃z
n given by

H̃z
n :=

[
0 Qn
P ∗n 0

]
Hz
n

[
0 Pn
Q∗n 0

]
(8)

=

[
0 |z|W z

n − Tn
(|z|W z

n − Tn)∗ 0

]
,

where W z
n = zQnPn/|z| is unitary and Hn distributed. Throughout, we will

write ρ = |z|. We also will assume in this section that the sequence Tn is

deterministic. We are thus led to the study of the ESD for a sequence of

matrices of the form

(9) Yn =

(
0 Bn
B∗n 0

)
where Bn = ρUn + Tn, Tn is a real, diagonal matrix of uniformly bounded

norm, and Un a Hn unitary matrix. Because ‖Tn‖ is uniformly bounded, it

will be enough to consider ρ, throughout, uniformly bounded.

We denote

(10) Un =

(
0 Un
0 0

)
, U∗n =

(
0 0

U∗n 0

)
, Tn =

(
0 Tn
Tn 0

)
.

3.1. Limit equations. We begin by deriving the limiting Schwinger-Dyson

equations for the ESD of Yn. Throughout this subsection, we consider a

noncommutative probability space (A, ∗, µ) on which a variable U lives and

where µ is a tracial state satisfying the relations µ((UU∗−1)2) = 0, µ(Ua) = 0

for a ∈ Z \ {0}. In the sequel, 1 will denote the identity in A. We refer to

[1, §5.2] for definitions.

Let T be a self-adjoint (bounded) element in A, with T freely indepen-

dent of U . Recall the noncommutative derivative ∂, defined on elements of

C〈T,U, U∗〉 as satisfying the Leibniz rules

∂(PQ) = ∂P × (1⊗Q) + (P ⊗ 1)× ∂Q ,(11)

∂U = U ⊗ 1, ∂U∗ = −1⊗ U∗, ∂T = 0⊗ 0 .
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(Here, ⊗ denotes the tensor product and we write (A ⊗ B) × (C ⊗ D) =

(AC)⊗ (BD).) Now, ∂ is defined so that for any B ∈ A satisfying B∗ = −B,

any P ∈ C〈U,U∗, T 〉,

(12) P (UeεB, e−εBU∗, T ) = P (U,U∗, T ) + ε∂P (U,U∗, T )]B + o(ε) ,

where we used the notation A⊗B]C = ACB.

By the invariance of µ under unitary conjugation, see [27, Prop. 5.17] or

[1, (5.4.31)], we have the Schwinger-Dyson equation

(13) µ⊗ µ(∂P ) = 0 .

We continue to use the notation Y, U,U∗ and T in a way similar to (9)

and (10). So, we let Y = ρ(U + U∗) + T with

(14) U =

(
0 U

0 0

)
, U∗ =

(
0 0

U∗ 0

)
, T =

(
0 T

T 0

)
.

We extend µ to the algebra generated by U,U∗ and T by putting for any

A,B,C,D ∈ A,

µ

((
A B

C D

))
:=

1

2
µ(A) +

1

2
µ(D) .

Observe that this extension is still tracial.

The noncommutative derivative ∂ in (12) extends naturally to the algebra

generated by the matrix-valued U,U∗,T, using the Leibniz rule (11) together

with the relations

(15) ∂U = U⊗ p , ∂U∗ = −p⊗U∗ , ∂T = 0⊗ 0 ,

where we denoted p = ( 0 0
0 1 ). In the sequel we will apply ∂ to analytic func-

tions of U + U∗ and T such as products of Stieltjes functionals of the form

(z − bU− bU∗ − aT)−1 with z ∈ C\R and a, b ∈ R. Such an extension is

straightforward; ∂ continues to satisfy the Leibniz rule and, by the resolvent

identity

∂ (z − bU− bU∗ − aT)−1

= b (z − bU− bU∗ − aT)−1 (U⊗ p− p⊗U∗) (z − bU− bU∗ − aT)−1 ,

where A(B⊗C)D = (AB)⊗ (CD). Further, (13) extends also in this context.

Introduce the notation, for z1, z2 ∈ C+,

G(z1, z2) = µ
(
(z1 −Y)−1(z2 −T)−1

)
,(16)

GU (z1, z2) = µ
(
U(z1 −Y)−1(z2 −T)−1

)
,

GU (z1) = µ
(
U(z1 −Y)−1

)
,

GU∗(z1, z2) = µ
(
U∗(z1 −Y)−1(z2 −T)−1

)
,
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GT (z1, z2) = µ
(
T(z1 −Y)−1(z2 −T)−1

)
,

G(z1) = µ
(
(z1 −Y)−1

)
,

GT (z2) = µ
(
(z2 −T)−1

)
.

We apply the derivative ∂ to the analytic function P = (z1−Y)−1(z2−T)−1U ,

while noticing that, by (11) and (15),

(17) ∂P = P ⊗ p+ ρ(z1 −Y)−1U⊗ pP − ρ(z1 −Y)−1p⊗U∗P.

Applying (13), with µ(P ) = GU (z1, z2) and µ(p) = 1/2, we find

(18)
1

2
GU (z1, z2) = ρµ

(
(z1 −Y)−1p

)
µ(U∗P )− ρµ

(
(z1 −Y)−1U

)
µ(pP ) .

Note that Pp = P and thus µ(pP ) = µ(P ). Further, for any smooth function

Q, µ(U∗QU) equals µ((1− p)Q) due to the traciality of µ and UU∗ = 1− p.
By symmetry (note that (1−p)(z1−Y)−1(z2−T)−1 and p(z1−Y)−1(z2−T)−1

are given by the same formula up to replacing (U,U∗) by (U∗,U), which has

the same law) we get µ(U∗P ) equals

(19) µ((1−p)(z1−Y)−1(z2−T)−1) =
1

2
µ((z1−Y)−1(z2−T)−1) =

1

2
G(z1, z2) .

The first equality holds without the last factor (z2−T)−1, thus implying that

µ((z1 −Y)−1p) = µ((z1 −Y)−1)/2 = G(z1)/2 and so we get from (18) that

(20)
1

2
GU (z1, z2) =

ρ

4
G(z1, z2)G(z1)− ρGU (z1, z2)GU (z1) .

Noticing that GU (z1) is the limit of z2GU (z1, z2) as z2 → ∞, we find by (20)

that
1

2
GU (z1) = −ρGU (z1)2 +

ρ

4
G(z1)2 ,

and therefore, as GU (z1) goes to zero as z1 →∞,

(21) GU (z1) =
1

2ρ

(
−1

2
+

√
1

4
+ ρ2G(z1)2

)
=

1

4ρ

(
−1 +

√
1 + 4ρ2G(z1)2

)
.

Here, the choice of the branch of the square root is determined by the expansion

of GU (z) at infinity and the fact that both G(z) and GU (z) are analytic in C+.

This equation is then true for all z1 ∈ C+.

Moreover, by (20) and (21), we get

(22) GU (z1, z2) =
ρ

2

G(z1, z2)G(z1)

1 + 2ρGU (z1)
=

ρG(z1, z2)G(z1)

1 +
√

1 + 4ρ2G(z1)2
.

(Again, here and in the rest of this subsection, the proper branch of the square

root is determined by analyticity.) Let Rρ denote the R-transform of the
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Bernoulli law λρ := (δ−ρ + δ+ρ)/2; that is,

Rρ(z) =

√
1 + 4ρ2z2 − 1

2ρz
=

2zρ√
1 + 4ρ2z2 + 1

;

see [1, Def. 5.3.22 and Ex. 5.3.27], so that we have

(23) GU (z1, z2) =
1

2
G(z1, z2)Rρ(G(z1)) .

Repeating the computation with GU∗ , we have GU∗ = GU . Algebraic manip-

ulations yield

GT (z1, z2) = z2G(z1, z2)−G(z1) ,(24)

2ρGU (z1, z2) +GT (z1, z2) = z1G(z1, z2)−GT (z2) .(25)

Therefore, we get by substituting (23) and (24) into (25) that

(26) ρG(z1, z2)Rρ(G(z1)) + z2G(z1, z2)−G(z1) = z1G(z1, z2)−GT (z2) ,

which in turns gives, for any z1, z2 ∈ C+,

(27) G(z1, z2) (ρRρ(G(z1)) + z2 − z1) = G(z1)−GT (z2) .

Thus,

(28) GT (z2) = G(z1) when z2 = z1 − ρRρ(G(z1)) .

The choice of z2 as in (28) is allowed for any z1 ∈ C+ because G : C+→ C−
and we can see that R : C−→ C−. Thus =(z2) ≥ =(z1) > 0, implying that

such z2 belong to the domain of GT .

The relation (28) is the Schwinger-Dyson equation in our setup. This

gives an implicit equation for G(·) in terms of GT (·). Further, for z with large

modulus, G(z) is small and thus z 7→ z − ρRρ(G(z)) possesses a nonvanishing

derivative, and further, is close to z. Because GT is analytic in the upper half-

plane and its derivative behaves like 1/z2 at infinity, it follows by the implicit

function theorem that (28) uniquely determines G(·) in a neighborhood of

∞. By analyticity, it thus fixes G(·) in the upper half-plane (and in fact,

everywhere except in a compact subset of R), and thus determines uniquely

the law of Y.

Remark 7. Let µT denote the spectral measure of T , that is
∫
fdµT =

µ(f(T )) for any f ∈ Cb(R). We emphasize that GT is not the Stieltjes trans-

form of µT ; rather, it is the Stieltjes transform of the symmetrized version of

the law of T , that is of the probability measure µ̃T . With this convention, (28)

is equivalent to the statement that the law of Y, denoted µY , equals the free

convolution of µ̃T and λρ, i.e., µY = µ̃T � λρ.
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Remark 8. We provide, following [12], an alternative characterization of

µA and its support. We first introduce some terminology from [12]. Con-

sider a tracial noncommutative W ∗-probability space (M, τ). Let u be Haar-

distributed and let h be a self-adjoint element having law Θ and that is ∗-free

from u. Let ν̃z denote the law of |zI − uh|. The Brown measure for uh is

defined as
1

2π
∆z

∫
log |x|dν̃z(x) ;

cf. [12, p. 333]. Recall that Θ({0}) = 0 by Assumption 3. By [12, Prop. 3.5]

and Remark 7 above, ν̃z = νz, and therefore, µA in the statement of Theorem 1

is the Brown measure for uh. By [12, Th. 4.4 and Cor. 4.5], the Brown measure

µA is radially symmetric and possesses a density ρA that can be described as

follows. Let Θ]2 denote the push forward of Θ by the map z 7→ z2; i.e., Θ]2 is

the weak limit of {LT 2
n
}. Let S denote the S-transform of Θ]2 (see [12, §2] for

the definition of the S-transform of a probability measure on R and its relation

to the R-transform). Define F (t) = 1/
√
S(t− 1) on D = (0, 1]. Then, F maps

D to the interval

(a, b] =

(
1

(
∫
x−2dΘ(x))1/2

,

(∫
x2dΘ(x)

)1/2
]
,

and has an analytic continuation to a neighborhood of D, and F ′ > 0 on D.

Further, with µA as above, ρA(reiθ) = ρA(r) and it holds that

(29) ρA(r) =

{
1

2πrF ′(F−1(r))
, r ∈ (a, b] ,

0 , otherwise.

Finally, ρA has an analytic continuation to a neighborhood of (a, b], and µA is

a probability measure; see [12, p. 333].

In the next section, we will need the following estimate.

Lemma 9. If |=GT (·)| ≤ κ1 on {z : =(z) ≥ ε} then |=G(·)| ≤ κ1 on

{z : =(z) ≥ ε}.

Proof. Recall that if z ∈ C+, then G(z) ∈ C− and also Rρ(G(z)) ∈ C−
because Rρ maps C− into C− (regardless of the branch of the square root taken

at each point). Thus, y = z−R(G(z)) has =(y) ≥ =(z). Therefore, if =(z) ≥ ε
then |=G(z)| = |=GT (y)| ≤ κ1. �

3.2. Finite n equations and convergence. We next turn to the evaluation

of the law of Yn. We assume throughout that the sequence Tn is uniformly

bounded by some constant M , that LTn → µT weakly in probability, and

further that (3) is satisfied. All constants in this section are independent of ρ,

but depend implicitly on M , the uniform bound on ‖Tn‖ and on ρ.
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Recall first that by invariance of the Haar measure under unitary con-

jugation (see [1, (5.4.29)]), with P ∈ C〈T,U, U∗〉 (or a product of Stieltjes

functionals), it holds that

(30) E

[
1

2n
tr⊗ 1

2n
tr(∂P (Tn,Un,U

∗
n))

]
= 0 .

This key equality can be proved by noticing that for any n× n matrix B such

that B∗ = −B, for any (k, `) ∈ [1, n], if we let Un(t) = Une
tB and construct

Un(t) and Un
∗(t) with this unitary matrix, then

(31) 0 = ∂tE[(P (Tn,Un(t),U∗n(t)))k,`] = E[(∂P (Tn,Un,U
∗
n)]B)k,`]

with B =
(

0 0
0 B

)
. Letting ∆(k, `) be the n × n matrix so that ∆(k, `)i,j =

1i=k1j=`, we can choose in the last equality B = ∆(k, `) − ∆(`, k) or B =

i (∆(k, `) + ∆(`, k)). Summing the two resulting equalities and then summing

over k and ` yields (30).

We denote by Gn the quantities as defined in (16), but with E[ 1
2n tr]

replacing µ and the superscript or subscript n attached to all variables, so that

for instance

Gn(z) = E

[
1

2n
tr((z −Yn)−1)

]
.

We get by taking P = (z1 −Yn)−1(z2 −Tn)−1Un that

(32)
1

2
GnU (z1, z2) = −ρGnU (z1, z2)GnU (z1) +

ρ

4
Gn(z1, z2)Gn(z1) +O(n, z1, z2) ,

with

O(n, z1, z2) = E

[(
1

2n
tr−E[

1

2n
tr]

)
⊗
(

1

2n
tr−E

[
1

2n
tr

])
∂(z1 −Yn)−1(z2 −Tn)−1Un

]
.

Further, by the standard concentration inequality for Hn, see [1, Cor. 4.4.30],

for any smooth function P : U(n)→ C,

(33) E

[∣∣∣∣ 1

2n
tr(P )− E

[
1

2n
tr

]
(P )

∣∣∣∣2
]
≤ 1

n2
‖P‖2L ,

with ‖P‖L the Lipschitz constant of P given by

‖P‖L = ‖DP‖∞

if D is the cyclic derivative given by D = m ◦ ∂ with m(A ⊗ B) = BA and if

‖DP‖∞ denotes the operator norm. (The appearance of the cyclic derivative

in the evaluation of the Lipschitz constant can be seen by approximating P by



THE SINGLE RING THEOREM 1203

polynomials.) Applying (33) to each term of ∂P (recall formula (17)), we get

that for =(z1),=(z2) > 0, and with a ∧ b = min(a, b),

|O(n, z1, z2)| ≤ Cρ2

n2|=(z2)|=(z1)2(=(z1) ∧ 1)
.

(The inequality uses the fact that for any Hermitian matrix, ‖(z −H)−1‖∞ ≤
1/|=(z)|.) Multiplying by z2 and taking the limit as z2 → ∞ we deduce from

(32) that

(34) ρ(Gn(z1))2 = 2GnU (z1)(1 + 2ρGnU (z1))−O1(n, z1) ,

where

O1(n, z1) = 4E

[(
1

2n
tr−E

[
1

2n
tr

])
⊗
(

1

2n
tr−E

[
1

2n
tr

])
∂(z1 −Yn)−1Un

]
=O

(
ρ2

n2=(z1)2(=(z1) ∧ 1)

)
.

In particular,

(35) GnU (z1) =
1

4ρ

(
−1 +

√
1 + 4ρ2Gn(z1)2 + 4O1(n, z1)

)
,

with again the choice of the square root determined by analyticity and behavior

at infinity.

Recalling that (24) and (25) remain true when we add the subscript n and

combining these with (32), we get

(36)

Gn(z1, z2)

(
ρ2Gn(z1)

(1 + 2ρGnU (z1))
+ z2 − z1

)
= Gn(z1)−GTn(z2) + Õ(n, z1, z2) ,

with

Õ(n, z1, z2) =
2O(n, z1, z2)

(1 + 2ρGnU (z1))
.

Hence, if we define

(37) z2 = ψn(z1) := z1 −
ρ2Gn(z1)

(1 + 2ρGnU (z1))
,

then

Gn(z1) = GTn(z2)− Õ(n, z1, z2) ,

and therefore

(38) Gn(z1) = GTn(ψn(z1))− Õ(n, z1, ψn(z1)) .

Equation (38) holds at least when =(z2) > 0 for z2 as in (37). In particular,

for =(z1) large (say larger than some M), it holds that Gn(z1) and GnU (z1) are

small, implying that z2 is well defined with =(z2) > 0. Assume LTn converges

towards LT so that GTn converges to GT on C+. Then, the limit points of the

sequence of uniformly continuous functions (Gn(z), GnU (z)) on {z : =(z) ≥M}
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satisfy (21) and (28) and therefore equal (G(z), GU (z)) on {z : =(z) ≥ M}
by uniqueness of the solutions to these equations. Hence, taking n→∞ then

implies that Gn → G in a neighborhood in the upper half-plane close to ∞.

Since Gn and G are Stieltjes transforms of probability measures, we have now

shown the following (see Remark 7).

Lemma 10. Assume LTn converges weakly in probability to a compactly

supported probability measure µT . Then, LYn converges weakly, in probability,

to µY = µ̃T � λρ. In particular, if LTn converges weakly in probability to a

probability measure Θ, then for any z ∈ C, νzn converges weakly in probability

to Θ̃ � λ|z|.

(Recall that Θ̃ is the symmetrized version of Θ.)

Lemma 10 completes the proof of Step 1 in our program. To be able to

complete Step 2, we need to obtain quantitative information from the (finite

n) Schwinger-Dyson equations (38): our goal is to show that the left side

remains bounded in a domain of the form {z ∈ C+ : =(z) > n−c} for some

c > 0. Toward this end, we will show that in such a region, ψn is analytic,

=ψn(z) > (=(z)/2) ∧ C for some positive constant C and Õ(n, z1, ψn(z1)) is

analytic and bounded there. This will imply that (38) extends by analyticity

to this region, and our assumption on the boundedness of GTn will lead to the

conclusion.

As a preliminary step, note that Gn(·) and GnU (·) are analytic in C+. We

have the following.

Lemma 11. There exist constants C1, C2 such that for all z ∈ C+ with

=(z) > C1n
−1/3 and all n large, it holds that

(39) |1 + 2ρGnU (z)| > C2ρ[=(z)3 ∧ 1] .

Proof. Since GnU (z) is asymptotic to 1/z2 at infinity, we may and will

restrict attention to some fixed ball BR ⊂ C, whose interior contains the

support of Yn (this is possible by (1)). But

=(Gn(z)) = −=(z)

∫
dµYn(x)

(<(z)− x)2 + =(z)2
,

and therefore, as (<(z)− x)2 + =(z)2 ≤ 4R2 for all z, x ∈ B(0, R),

(40) |Gn(z)| ≥ |=(Gn(z))| ≥ |=(z)|
4R2

.

Moreover, since |GnU (z)| ≤ 1/|=(z)|, we deduce from (34) that for some con-

stant c independent of n and all n large,

|Gn(z)|2 ≤
2|1 + 2ρGnU (z)|

ρ|=(z)|
+

cρ

n2=(z)2(=(z) ∧ 1)
.
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Combining this estimate and (40), we get that

(41)
2|1 + 2ρGnU (z)|

ρ|=(z)|
≥ |=(z)|2

16R4
− cρ

n2=(z)2(=(z) ∧ 1)
≥ |=(z)|2

32R4
,

as soon as =(z) > C1n
−1/3 for an appropriate C1, and |z| < R. The conclusion

follows. �

As a consequence of Lemma 11 and the analyticity of Gn and GnU in C+,

we conclude that ψn is analytic in {z : =(z) > C1n
−1/3}, for all n large.

Our next goal is to check the analyticity of z → Õ(n, z, ψn(z)) for z ∈ C+

with imaginary part bounded away from 0 by a polynomially decaying (in n)

factor. Toward this end, we now verify that ψn(z) ∈ C+ for z up to a small

distance from the real axis.

Lemma 12. There exists a constant C3 such that if =(z) > C3n
−1/4, then

=(ψn(z)) ≥ =(z)/2.

Proof. Again, because both Gn(z) and GnU (z1) tend to 0 at infinity, we

may and will restrict attention to =(z) ≤ R for some fixed R. We divide the

proof into two cases, as follows. Let en = n−1/2, and set ∆n = {z ∈ C+ :

|ρGn(z) + i/2| ≥ en}.
Then, for any z ∈ ∆n, and whatever choice of branch of the square root

made in (35), if e
−1/2
n O1(n, z) is small enough (smaller than en/2 is fine), then

that choice can be extended to include a neighborhood of the point w = Gn(z)

such that with this choice, the function rρ(w) = 1
4ρ(−1 +

√
1 + 4ρ2w2) is

Lipschitz in the sense that

(42) |GnU (z)− r(Gn(z))| ≤ Ce−
1
2

n O1(n, z)/ρ .

On the other hand, again from (34),∣∣∣∣ ρGn(z)

1 + 2ρGnU (z)
−

2GnU (z)

Gn(z)

∣∣∣∣ ≤ C |O1(n, z)|
|Gn(z)(1 + 2ρGnU (z))|

.

Combining the last display with the relation Rρ(θ) = 2rρ(θ)/θ, (42) and (40),

one obtains that for z ∈ ∆n,∣∣∣∣ ρGn(z)

1 + 2ρGnU (z)
− ρRρ(Gn(z))

∣∣∣∣ ≤ ∣∣∣∣2r(Gn(z))

Gn(z)
−

2GnU (z)

Gn(z)

∣∣∣∣
+

∣∣∣∣ ρGn(z)

1 + 2ρGnU (z)
−

2GnU (z)

Gn(z)

∣∣∣∣
≤ C |O1(n, z)|

ρe
1
2
n |Gn(z)|

+ C
|O1(n, z)|

|Gn(z)(1 + 2ρGnU (z))|

≤ C |O1(n, z)|
ρe

1/2
n |=(z)|

+ C
|O1(n, z)|
ρ=(z)4
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≤ Cρ

n2|=(z)|4

(
1

e
1/2
n

+
1

|=(z)|3

)

≤ Cρ

n2|=(z)|4

(
n1/4 +

1

|=(z)|3

)
.

Since the above right-hand side is smaller than =(z)/2 for =(z) > n−1/4, we

conclude that for z ∈ ∆n ∩ {=(z) > n−1/4},

(43) =
(

ρGn(z)

1 + 2ρGnU (z)

)
≤ 1

2
=(z)

as, regardless of the branch taken in the definition of Rρ(·), =Rρ(Gn(z)) ≤ 0.

On the other hand, when z ∈ C+ \ ∆n and =(z) > n−1/4, then we have

from (35) that for all n large,

|ρGnU (z) + 1/4| ≤ 1

2

√
en + |O1(n, z)| ≤ 1

8
.

Thus, under these conditions,

=
(

ρGn(z)

1 + 2ρGnU (z)

)
= =

(
2ρGn(z)

1 + 4(ρGnU (z) + 1/4)

)
≤ 2ρ=(Gn(z)) + 16ρ|Gn(z)||ρGnU (z) + 1/4| ,

where we used that for |a| ≤ 1/2, we have |a/(1 − a)| ≤ 2|a|. Consequently,

since ρGn(z) is uniformly bounded on C+ \ ∆n and =(Gn(z)) < 0 there, we

get

=
(

ρGn(z)

1 + 2ρGnU (z)

)
≤ C

√
en + |O1(n, z)| ≤ Cn−1/4 .

We thus conclude from the last display and (43) the existence of a constant C3

such that if =(z) > C3n
−1/4, then

=(ψn(z)) = =(z)−=
(

ρGn(z)

1 + 2ρGnU (z)

)
≥ =(z)/2 ,

as claimed. �

From Lemma 12 we thus conclude the analyticity of z → Õ(n, z, ψn(z)) in

{z : =(z) ≥ C3n
−1/4}, and thus, due to (37) and (38), ρGn(z)/(1+2ρGnU (z)) is

also analytic there (compare with Lemma 11). In particular, the equality (38)

extends by analyticity to this region.

We have made all preparatory steps in order to state the main result of

this subsection.

Lemma 13. There exist positive finite constants C6, C7, C8 such that, for

n > C6 and all z ∈ En := {z : =(z) > n−C7},

(44) |=Gn(z)| ≤ C8 .
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Moreover, the constants C6, C7, C8 can be chosen uniformly on ρ ≤ R for any

finite R.

Proof. This is immediate from Lemmas 11 and 12, the definition of ψn,

the assumption (3) on GTn , and the equality (38). �

4. Tail estimates for νzn

For R > 0, let BR = {z ∈ C : |z| ∈ [0, R]}. Our goal in this short section

is to prove the following proposition.

Proposition 14. (i) Under the assumptions of Theorem 1, for Lebesgue

almost every z ∈ C,

(45) lim
ε↓0

lim sup
n→∞

E[1Gn

∫ ε

0
log |x|dνzn(x)] = 0 .

Consequently, for any Lebesgue z ∈ C,

(46)

∫
log |x|dνzn(x)→

∫
log |x|dνz(x) ,

in probability.

(ii) Fix R > 0. For any smooth compactly supported deterministic function

ϕ on BR,

(47)

∫
ϕ(z)

∫
log |x|dνzn(x)dm(z)→

∫
ϕ(z)

∫
log |x|dνz(x)dm(z) ,

in probability.

Before giving the proof of Proposition 14, we recall the following elemen-

tary lemma.

Lemma 15. Let µ be a probability measure on R. For any real y > 0, it

holds that

(48) µ((−y, y)) ≤ 2y|=G(iy)| .

Proof. We have

−=(G(iy)) =

∫
y

y2 + x2
µ(dx) ≥

∫ y

−y

y

y2 + x2
µ(dx) ≥ 1

2y
µ((−y, y)) ,

from which (48) follows. �

We can now provide the

Proof of Proposition 14. (i) Assume z ∈ BR for some R > 0. By (2), we

can replace the lower limit of integration in (45) with n−δ. Let Gzn denote the

Stieltjes transform of E[νzn]. By Lemma 13 and Lemma 9, there exist positive

constants c1 = c1(R), c2 = c2(R) such that whenever =(u) > n−c1 , it holds

that |=Gzn(u)| < c2. We may assume that c1 < δ.
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Since Gzn is the Stieltjes transform of E[νzn], by Lemma 15, we have for

any y > 0 that

E[νzn((−y, y))] ≤ E[νzn((−y ∨ n−c1 , y ∨ n−c1))] ≤ 2c2y ∨ n−c1 .

Thus, we get that for any z ∈ BR and with α ∈ [1, 2],

E

[∫ ε

n−δ
(| log x|)αdνzn(x)

]
≤ E

[∫ n−c1

n−δ
(| log x|)αdνzn(x) +

∫ ε

n−c1
(| log x|)αdνzn(x)

]
≤ (δ log n)αE[νzn((−n−c1 , n−c1))]

+
J∑
j=0

E[νzn((−2(j+1)n−c1 , 2(j+1)n−c1))](log(2jn−c1))α ,

where 2J−1n−c1 < ε ≤ 2Jn−c1 . Note that by Lemma 15 and the estimate on

Gzn, for j ≥ 0,

E[νzn((−2jn−c1 , 2jn−c1))] ≤ 2j+1c2n
−c1 .

We conclude that

(49) E

[∫ ε

n−δ
| log x|αdνzn(x)

]
≤ Cε| log(ε)|α ,

where the constant C = C(R). To obtain the estimate (45), we will consider

α = 1 and argue as follows. Due to (2), for α < 2 we have

E

[
1Gn

∫ n−δ

0
| log x|αdνzn(x)

]
≤ E[1Gnν

z
n([−n−δ, n−δ])1{σzn<n−δ}| log σzn|α]

≤ E
[(
νzn([−n−δ, n−δ])

) 2
2−α
] 2−α

2

E[1Gn1{σzn<n−δ}| log σzn|2]
α
2

by Hölder’s inequality. The first factor goes to zero because

E

[(
νzn([−n−δ, n−δ])

) 2
2−α
]
≤ E

[
νzn([−n−δ, n−δ])

]
≤ 2c2n

−c1 .

By (2), the second factor is bounded by (δ′)α/2. We thus get (45) from (49). By

Chebyshev’s inequality, the convergence in expectation implies the convergence

in probability and therefore for any δ, δ′ > 0 there exists ε > 0 small enough

so that

lim
n→∞

P

(∫ ε

0
| log x|dνzn(x) > δ

)
< δ′.
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On the other hand,
∫∞
ε log |x|dνzn(x) converges to

∫∞
ε log |x|dνz(x) by the weak

convergence of νzn to νz in probability for any ε > 0, and
∫ ε

0 log |x|dνz(x)

converges to 0 as ε → 0 since νz has a bounded density by Lemma 9. Hence,

we get (46).

(ii) Define the functions f in : BR → R, i = 1, 2, by

f1
n(z) = 1Gn1‖Tn‖≤M

∫ n−δ

0
log(x)dνzn(x) ,

f2
n(z) = 1Gn1‖Tn‖≤M

∫ ∞
n−δ

log(x)dνzn(x) ,

and set fn(z) = f1
n(z)+f2

n(z). Because νzn is supported in BR+M on ‖Tn‖ ≤M
for all z ∈ BR, fn is bounded above by log(R + M). By (49), E[|f2

n(·)|2 is

bounded, uniformly in z ∈ BR. On the other hand, by (2), again uniformly in

z ∈ BR, E(f1
n(z)2) < δ′, and therefore

E

∫
B̃R

(f1
n(z))2dm(z) <∞ .

Thus, E
∫
B̃R
|fn(z)|2dm(z) < ∞, and in particular, the sequence of random

variables ∫
B̃R

∣∣∣1Gn1‖Tn‖≤M ∫ log xdνzn(x)
∣∣∣2dm(z)

is bounded in probability. This uniform integrability and the weak convergence

(46) are enough to conclude the proof by using dominated convergence (see [25,

Lemma 3.1] for a similar argument). �

5. Proof of Theorem 1

It clearly suffices to prove the theorem for deterministic diagonal matrices

Tn. (If Tn is random, use the independence of (Un, Vn) from Tn to apply the

deterministic version, after restricting attention to matrices Tn belonging to a

set whose probability approaches 1.) By Proposition 14 (see (47)), we have,

with h(z) :=
∫

log |x|dνz(x), that for any R and any smooth function ψ on B̃R,∫
ψ(z)dLAn(z)→ 1

2π

∫
C

∆ψ(z) h(z)dm(z) ,

in probability. Since the sequence LAn is tight, it thus follows that it converges,

in the sense of distribution, to the measure

µA :=
1

2π
∆zh(z) .

From Remark 8 (based on [12, Cor. 4.5]), we have that µA is a probability mea-

sure that possesses a radially symmetric density ρA satisfying the properties

stated in parts b and c of the theorem. �
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6. Proof of Theorem 3

We let Xn be as in the statement of the corollary and write Xn = PnTnQn
with Pn, Qn unitary and Tn diagonal with entries equal to the singular val-

ues {σni } of Xn. Obviously, {Pn, Qn}n≥1 is a sequence of independent, Hn-

distributed matrices. The joint distribution of the entries of Tn possesses a

density on Rn+ which is given by the expression

Z̃n
∏
i<j

|σ2
i − σ2

j |2e−n
∑n
i=1 V (σ2

i )
∏
i

σidσi ,

where Z̃n is a normalization factor; see e.g. [1, Prop. 4.1.3]. Therefore, the

squares of the singular values possess the joint density

Ẑn
∏
i<j

|xi − xj |2e−n
∑n
i=1 V (xi)

∏
i

dxi

on Rn+. In particular, it falls within the framework treated in [21]. By part

(i) of Theorem 2.1 there, positive constants M,C11 exist such that P (σ1 >

M − 1) ≤ e−C11n , and thus point 1 of the assumptions of Theorem 1 holds.

By equations [21, (2.26) and (2.27)] and Chebycheff’s inequality, we get that

for z with =(z) > n−κ
′

where κ < (1− κ′)/2,

P

(
|GTn(z)−G

Θ̃
(z)| ≥ 1

2=(z)nκ

)
≤ C|=(z)|−1n2κ−1 log n .

As the derivative of GTn −GΘ̃
is bounded by a constant multiple of 1/|=(z)|2,

a covering argument and summation show that for κ′ < 1/2,

P

 sup
z:|z|≤M
=(z)≥n−κ′

|GTn(z)−G
Θ̃

(z)| ≥ 1

=(z)nκ

 ≤Mn4κ+2κ′−1 log n,

which goes to zero for κ ∈ (0, (1− 2κ′)/4). Together with [21, eq. (2.32)], this

proves point 3 of the assumptions. Thus, it remains only to check point 2 of

the assumptions. Toward this end, define Gn = {σn1 < M + 1} and note that

we may and will restrict attention to |z| < M +2 when checking (2). We begin

with the following proposition, due to [22].

Proposition 16. Let A be an arbitrary n-by-n matrix, and let A = A+

σN where N is a matrix with independent (complex) Gaussian entries of zero

mean and unit variances. Let σn(A) denote the minimal singular value of A.

Then, there exists a constant C12 independent of A, σ or n such that

(50) P (σn(A) < x) ≤ C12n
(x
σ

)2
.
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The proof of Proposition 16 is identical to [22, Th. 3.3], with the required

adaptation in moving from real to complex entries. (Specifically, in the right

side of the display in [22, Lemma A.2], ε
√

2/π/σ is replaced by its square.)

We omit further details.

On the event Gn, all entries of the matrix Xn are bounded by a constant

multiple of
√
n. Let Nn be a Gaussian matrix as in Proposition 16. With

α > 2 a constant to be determined below, set

G′n = {all entries of n−α/2Nn are bounded by 1} .

Note that because α ≥ 2, on G′n, we have that σ1(n−αNn) ≤ 1. Define An =

zI −Xn, Ãn = An + n−αNn1G′n and An = An + n−αNn. Then, by (50), with

σn(An) denoting the minimal singular value of An, we have

(51) P (σn(An) < x;Gn) ≤ C12x
2n1+2α .

If the estimate (51) concerned An instead of An, it would have been straight-

forward to check that point 2 of the assumptions of Theorem 1 holds (with

an appropriately chosen δ, which would depend on α). Our goal is thus to

replace, in (51), An by An, at the expense of not too severe degradation in the

right side. This will be achieved in two steps: first, we will replace An by Ãn,

and then we will construct on the same probability space the matrix Xn and

a matrix Yn so that Yn is distributed like Xn + n−αNn1G′n but P (Yn 6= Xn) is

small.

Turning to the construction, observe first that from (51),

(52)

P (σn(Ãn) < x;Gn) ≤ C12x
2n1+2α + P ((G′n)c) ≤ C12[x2n1+2α + n2e−n

α/2] .

Let X
(α)
n = Xn + n−αNn1G′n . Let {θi} and {µi} denote the eigenvalues of

Wn = XnX
∗
n and ofW

(α)
n = (X

(α)
n )(X

(α)
n )∗, respectively, arranged in decreasing

order. Note that the density of Xn is of the form

Z−1
n e−n tr(V (xx∗))dx ,

where the variable x = {xi,j}1≤i,j≤n is matrix valued and dx =
∏

1≤i,j≤n dxi,j ,

while that of X
(α)
n is of the form

Z−1
n EN

[
e
−n tr(V ((x+1G′n

n−αNn)(x+1G′n
n−αNn)∗))

]
dx ,

where EN denotes expectation with respect to the law of Nn, and Zn is the

same in both expressions. Note that σ1(X
(α)
n ) ∈ [σ1(Xn) − 1, σ1(Xn) + 1].

Because V (·) is locally Lipschitz, we have that if either σ1(Xn) ≤ M + 1 or
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σ1(X
(α)
n ) ≤M + 1, then there exists a constant C13 independent of α so that

|tr(V (Wn)− V (W (α)
n ))| ≤

n∑
i=1

|V (θi)− V (µi)| ≤ C13

n∑
i=1

|θi − µi|

≤C13n
1/2

(
n∑
i=1

|θi − µi|2
) 1

2

≤C13n
1/2
(

tr((Wn −W (α)
n )2)

) 1
2
,

where the Cauchy-Schwarz inequality was used in the third inequality and the

Hoffman-Wielandt inequality in the next (see e.g. [1, Lemma 2.1.19]). On the

event Gn, all entries of Wn −Wα
n are bounded by n(3−α)/2. Therefore,

(53) |tr(V (Wn)− V (W (α)
n ))| ≤ n(C14−α)/2 ,

where the constant C14 does not depend on α. In particular, if α > (C14+1)∨2,

we obtain that on Gn, the ratio of the functions fn = e−n tr(V (Wn)) and gn =

e−n tr(V (W
(α)
n )) is bounded e.g. by 1 + n(C14+1−α)/2; in particular,

P (σ1(X(α)
n ) < M)≤ (1 + n(C14+1−α)/2)P (σ1(Xn) < M)

≤ (1 + n(C14+1−α)/2)2P (σ1(X(α)
n ) < M) .

Therefore, the variational distance between the law of Xn conditioned on

σ1(Xn) < M and that of X
(α)
n conditioned on σ1(X

(α)
n ) < M , is bounded

by

4n(C14+1−α)/2 .

It follows that one can construct a matrix Yn of law identical to the law of

X
(α)
n conditioned on σ1(Xα

n ) < M , together with Xn, on the same probability

space so that

P (Xn 6= Yn;Gn) ≤ 4n(C14+1−α)/2 ≤ nC15−α/2 .

Combining this with (52), we thus deduce that

P (σn(An) < x;Gn) ≤ C12x
2n1+2α + nC16−α/2 ≤ nC17x2/5 ,

where α was chosen as function of x. This yields immediately point 2 of the

assumptions of Theorem 1, if δ > 5C17/2.

We have checked now that in the setup of Theorem 3, all the assumptions

of Theorem 1 hold. Applying now the latter theorem, we complete the proof

of Theorem 3. �

Remark 17. The proof of Theorem 3 carries over to more general situa-

tions. Indeed, V does not need to be a polynomial; it is enough that its growth

at infinity is polynomial and that it is locally Lipschitz, so that the results of

[21] still apply. We omit further details.
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7. Proof of Proposition 4

We take Tn satisfying the assumptions of Proposition 4 and consider Yn =

UnTnVn + n−γNn, with matrix of singular values T̃n. Note that Yn = ŨnT̃nṼn
with Ũn, Ṽn following the Haar measure. We first show that T̃n also satisfies

the assumptions of Theorem 1 when γ > 1
2 , except for the second one. Since

the singular values of Nn follow the joint density of Theorem 3 with V (x) =
1
2x

2, it follows from the previous section that P (‖n−
1
2Nn‖ > M) ≤ e−C11n

and therefore ‖T̃n‖ ≤ ‖Tn‖ + n−γ+ 1
2 ‖n−

1
2Nn‖ is bounded with overwhelming

probability. Moreover, since T̃n = |Tn+n−γU∗nNnV
∗
n |, on the event ‖Nn/

√
n‖ ≤

M we have∣∣∣GTn(z)−G
T̃n

(z)
∣∣∣ ≤ E[‖T̃n − Tn‖1‖Nn/√n‖≤M ]

|=(z)|2
≤ C(‖T−1

n ‖, ‖Tn‖)
|=(z)|2

n
1
2
−γ

with C(‖T−1
n ‖, ‖Tn‖) a finite constant depending only on ‖T−1

n ‖, ‖Tn‖ which

we assumed bounded. (In deriving the last estimate, we used that ‖(I+B)1/2−
I‖ ≤ ‖B‖ when ‖B‖ < 1/2.) As a consequence, the third condition is satisfied

since ∣∣∣GΘ̃
(z)−G

T̃n
(z)
∣∣∣ ≤ C(‖T−1

n ‖, ‖Tn‖)
|=(z)|2

n
1
2
−γ +

K

nκ|=(z)|
≤ K ′

nγ′ |=(z)|

with γ′ = min{κ, 1
2(γ − 1

2)} and =(z) ≥ n−max{ 1
2

(γ− 1
2

),κ′}. Hence, the results

of Lemma 13 hold and we need only check, as in Proposition 14, that with νzn
the empirical measure of the singular values of zI − Yn,

In := E[1Gn

∫ n−δ

0
log |x|dνzn(x)]

vanishes as n goes to infinity for some δ > 0 and some set Gn with overwhelming

probability. But An = zI − Yn = zI − UnTnVn + n−γÑn with Ñn a Gaussian

matrix, and therefore we can use Proposition 16 to obtain (50) with σ = n−γ ,

and the desired estimate on In. �

Proof of Example 5. The only point to check is (3). This follows because

if z = E + iη and |η| ≥ n−κ, then

|=GTn(z)| = 1

n

n∑
i=1

η

η2 + |E − si|2

≤
∑
k≥0

2η

η22k
1

n
]{i : (2k − 1)η2 ≤ |sni − E|2 ≤ 2k+1η2}

≤ C
∑
k≥0

2η2

η22k
2
k+1
2 <∞ . �
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8. Extension to orthogonal conjugation

In this section, we generalize Theorem 1 to the case where we conjugate

Tn by orthogonal matrices instead of unitary matrices.

Theorem 18. Let Tn be a sequence of diagonal matrices satisfying the

assumptions of Theorem 1. Let On, Õn be two n × n independent matrices

which follow the Haar measure on the orthogonal group and set An = OnTnÕn.

Then, LAn converges in probability to the probability measure µA described in

Theorem 1.

Proof. To prove the theorem, it is enough, following Section 5, to prove the

analogue of Lemma 13 which in turn is based on the approximate Schwinger-

Dyson equation (36) which is itself a consequence of equation (30) and con-

centration inequalities. To prove the analogue of (30) when Un follows the

Haar measure on the orthogonal group, observe that (31) remains true with

Bt = −B which only leaves the choice B = ∆(k, `)−∆(`, k) possible. However,

taking this choice and summing over k, `, yields, if we denote m̃(A⊗B) = ABt,

E

[
1

2n
tr⊗ 1

2n
tr(∂P (Tn,Un,U

∗
n))

]
=

1

2n
E

[
1

2n
tr((m̃ ◦ ∂P )(Tn,Un,U

∗
n))

]
.

The right-hand side is small as m̃ ◦ ∂P is uniformly bounded. In fact, taking

P = (z1−Yn)−1(z2−Tn)−1Un, we find that m̃ ◦ ∂P is uniformly bounded by

2/(|=(z2)|(|=(z1)| ∧ 1)2) and therefore (32) holds once we add to O(n, z1, z2)

the above right-hand side which is at most of order 1/n|=(z2)|(|=(z1)| ∧ 1)2.

Since our arguments did not require a very fine control on the error term, we

see that this change will not affect them. Since concentration inequalities also

hold under the Haar measure on the orthogonal group, see [1, Th. 4.27] and

[1, Cor. 4.4.28], the proof of Theorem 1 can be adapted to this set-up. �

9. Proof of Proposition 6

We use again Green’s formula, and writing B̂n = Bn + n−γNn we have∫
ψ(z)dLB̂n+Pn

(z)

=
1

4πn

∫
C

∆ψ(z) log det(zI − B̂n − Pn)(zI − B̂n − Pn)∗dm(z)

=
1

4πn

∫
C

∆ψ(z) log det(|zI − B̂n| − PnU)(|zI − B̂n| − PnU)∗dm(z),

where we used the polar decomposition of zIn − B̂n to write zI − B̂n = |zI −
B̂n|U∗ with U a unitary matrix. Since PnU has the same law as Pn, we are

back at the same setting as in the proof of Theorem 1, with |zI− B̂n| replacing

Tn. It is then straightforward to check that the same arguments work under
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our present hypotheses; the symmetrized empirical measure νzn of the singular

values of Tn(z) +Pn converges to Θ̃z �λ1 by Lemma 10, which guarantees the

convergence of ∫ +∞

ε
log |x|dνzn(x),

whereas our hypotheses allow us to bound uniformly the Stieltjes transform

of νnz on {z1 : =(z1) ≥ n−C7} as in Lemma 13, hence providing control of the

integral on the interval [n−C7 , ε]. The control of the integral for x < n−C7 uses

a regularization by the Gaussian matrix n−γNn as in Proposition 4 . �

Acknowledgments. We thank Greg Anderson for many fruitful and en-

couraging discussions. We thank Yan Fyodorov for pointing out the paper [16]

and Philippe Biane for suggesting that our technique could be applied to the

examples in [3]. We thank the referee for a careful reading of the manuscript.

References

[1] G. W. Anderson, A. Guionnet, and O. Zeitouni, An Introduction to Random

Matrices, Cambridge Stud. Adv. Math. 118, Cambridge Univ. Press, Cambridge,

2010. MR 2760897. Zbl 1184.15023.

[2] Z. D. Bai, Circular law, Ann. Probab. 25 (1997), 494–529. MR 1428519.

Zbl 0871.62018. http://dx.doi.org/10.1214/aop/1024404298.

[3] P. Biane and F. Lehner, Computation of some examples of Brown’s spectral

measure in free probability, Colloq. Math. 90 (2001), 181–211. MR 1876844.

Zbl 0988.22004. http://dx.doi.org/10.4064/cm90-2-3.

[4] L. G. Brown, Lidskiuı’s theorem in the type II case, in Geometric Methods in

Operator Algebras (Kyoto, 1983), Pitman Res. Notes Math. Ser. 123, Longman

Sci. Tech., Harlow, 1986, pp. 1–35. MR 0866489. Zbl 0646.46058.

[5] B. Collins, A. Guionnet, and E. Maurel-Segala, Asymptotics of unitary

and orthogonal matrix integrals, Adv. Math. 222 (2009), 172–215. MR 2531371.

Zbl 1184.15024. http://dx.doi.org/10.1016/j.aim.2009.03.019.

[6] J. Feinberg and A. Zee, Non-Gaussian non-Hermitian random matrix the-

ory: phase transition and addition formalism, Nuclear Phys. B 501 (1997), 643–

669. MR 1477381. Zbl 0933.82024. http://dx.doi.org/10.1016/S0550-3213(97)

00419-7.

[7] Y. V. Fyodorov and H. J. Sommers, Spectra of random contractions and

scattering theory for discrete-time systems, JETP Lett. 72 (2000), 422–426.

[8] J. Ginibre, Statistical ensembles of complex, quaternion, and real matrices,

J. Mathematical Phys. 6 (1965), 440–449. MR 0173726. Zbl 0127.39304. http:

//dx.doi.org/10.1063/1.1704292.

[9] V. L. Girko, The circular law, Teor. Veroyatnost. i Primenen. 29 (1984), 669–

679. MR 0773436. Zbl 0565.60034.

http://www.ams.org/mathscinet-getitem?mr=2760897
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1184.15023
http://www.ams.org/mathscinet-getitem?mr=1428519
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0871.62018
http://dx.doi.org/10.1214/aop/1024404298
http://www.ams.org/mathscinet-getitem?mr=1876844
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0988.22004
http://dx.doi.org/10.4064/cm90-2-3
http://www.ams.org/mathscinet-getitem?mr=0866489
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0646.46058
http://www.ams.org/mathscinet-getitem?mr=2531371
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1184.15024
http://dx.doi.org/10.1016/j.aim.2009.03.019
http://www.ams.org/mathscinet-getitem?mr=1477381
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0933.82024
http://dx.doi.org/10.1016/S0550-3213(97)00419-7
http://dx.doi.org/10.1016/S0550-3213(97)00419-7
http://www.ams.org/mathscinet-getitem?mr=0173726
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0127.39304
http://dx.doi.org/10.1063/1.1704292
http://dx.doi.org/10.1063/1.1704292
http://www.ams.org/mathscinet-getitem?mr=0773436
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0565.60034


1216 A. GUIONNET, M. KRISHNAPUR, and O. ZEITOUNI

[10] F. Götze and A. Tikhomirov, The circular law for random matrices, Ann.

Probab. 38 (2010), 1444–1491. MR 2663633. Zbl 1203.60010. http://dx.doi.org/

10.1214/09-AOP522.

[11] U. Haagerup, Spectral decomposition of all operators in a II1 factor, which is

embeddable in Rω, 2001, preprint.

[12] U. Haagerup and F. Larsen, Brown’s spectral distribution measure for R-

diagonal elements in finite von Neumann algebras, J. Funct. Anal. 176 (2000),

331–367. MR 1784419. Zbl 0984.46042. http://dx.doi.org/10.1006/jfan.2000.

3610.

[13] U. Haagerup and H. Schultz, Brown measures of unbounded operators af-

filiated with a finite von Neumann algebra, Math. Scand. 100 (2007), 209–263.

MR 2339369. Zbl 1168.46039. Available at http://www.mscand.dk/article.php?

id=3017.

[14] , Invariant subspaces for operators in a general II1-factor, Publ. Math.

Inst. Hautes Études Sci. (2009), 19–111. MR 2511586. Zbl 1178.46058. http:

//dx.doi.org/10.1007/s10240-009-0018-7.

[15] U. Haagerup and S. Thorbjørnsen, A new application of random matrices:

Ext(C∗
red(F2)) is not a group, Ann. of Math. 162 (2005), 711–775. MR 2183281.

http://dx.doi.org/10.4007/annals.2005.162.711.

[16] A. Horn, On the eigenvalues of a matrix with prescribed singular values, Proc.

Amer. Math. Soc. 5 (1954), 4–7. MR 0061573. Zbl 0055.00908. http://dx.doi.

org/10.2307/2032094.

[17] J. B. Hough, M. Krishnapur, Y. Peres, and B. Virág, Zeros of Gaussian

Analytic Functions and Determinantal Point Processes, Univ. Lecture Ser. 51,

Amer. Math. Soc., Providence, RI, 2009. MR 2552864. Zbl 1190.60038.

[18] N. Lehmann and H.-J. Sommers, Eigenvalue statistics of random real matrices,

Phys. Rev. Lett. 67 (1991), 941–944. MR 1121461. Zbl 0990.82528. http://dx.

doi.org/10.1103/PhysRevLett.67.941.

[19] A. Nica and R. Speicher, R-diagonal pairs—a common approach to Haar uni-

taries and circular elements, in Free Probability Theory (Waterloo, ON, 1995),

Fields Inst. Commun. 12, Amer. Math. Soc., Providence, RI, 1997, pp. 149–188.

MR 1426839. Zbl 0889.46053.

[20] G. Pan and W. Zhou, Circular law, extreme singular values and potential theory,

J. Multivariate Anal. 101 (2010), 645–656. MR 2575411. Zbl 1203.60011. http:

//dx.doi.org/10.1016/j.jmva.2009.08.005.

[21] L. Pastur and M. Shcherbina, Bulk universality and related properties of

Hermitian matrix models, J. Stat. Phys. 130 (2008), 205–250. MR 2375744.

Zbl 1136.15015. http://dx.doi.org/10.1007/s10955-007-9434-6.

[22] A. Sankar, D. A. Spielman, and S.-H. Teng, Smoothed analysis of the con-

dition numbers and growth factors of matrices, SIAM J. Matrix Anal. Appl.

28 (2006), 446–476. MR 2255338. Zbl 1179.65033. http://dx.doi.org/10.1137/

S0895479803436202.

http://www.ams.org/mathscinet-getitem?mr=2663633
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1203.60010
http://dx.doi.org/10.1214/09-AOP522
http://dx.doi.org/10.1214/09-AOP522
http://www.ams.org/mathscinet-getitem?mr=1784419
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0984.46042
http://dx.doi.org/10.1006/jfan.2000.3610
http://dx.doi.org/10.1006/jfan.2000.3610
http://www.ams.org/mathscinet-getitem?mr=2339369
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1168.46039
http://www.mscand.dk/article.php?id=3017
http://www.mscand.dk/article.php?id=3017
http://www.ams.org/mathscinet-getitem?mr=2511586
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1178.46058
http://dx.doi.org/10.1007/s10240-009-0018-7
http://dx.doi.org/10.1007/s10240-009-0018-7
http://www.ams.org/mathscinet-getitem?mr=2183281
http://dx.doi.org/10.4007/annals.2005.162.711
http://www.ams.org/mathscinet-getitem?mr=0061573
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0055.00908
http://dx.doi.org/10.2307/2032094
http://dx.doi.org/10.2307/2032094
http://www.ams.org/mathscinet-getitem?mr=2552864
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1190.60038
http://www.ams.org/mathscinet-getitem?mr=1121461
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0990.82528
http://dx.doi.org/10.1103/PhysRevLett.67.941
http://dx.doi.org/10.1103/PhysRevLett.67.941
http://www.ams.org/mathscinet-getitem?mr=1426839
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0889.46053
http://www.ams.org/mathscinet-getitem?mr=2575411
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1203.60011
http://dx.doi.org/10.1016/j.jmva.2009.08.005
http://dx.doi.org/10.1016/j.jmva.2009.08.005
http://www.ams.org/mathscinet-getitem?mr=2375744
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1136.15015
http://dx.doi.org/10.1007/s10955-007-9434-6
http://www.ams.org/mathscinet-getitem?mr=2255338
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1179.65033
http://dx.doi.org/10.1137/S0895479803436202
http://dx.doi.org/10.1137/S0895479803436202


THE SINGLE RING THEOREM 1217
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