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The Evans-Krylov theorem for
nonlocal fully nonlinear equations

By Luis Caffarelli and Luis Silvestre

Abstract

We prove a regularity result for solutions of a purely integro-differential

Bellman equation. This regularity is enough for the solutions to be under-

stood in the classical sense. If we let the order of the equation approach

two, we recover the theorem of Evans and Krylov about the regularity of

solutions to concave uniformly elliptic partial differential equations.

1. Introduction

In 1982, L. Evans and N. Krylov proved independently ([6] and [7]) the fol-

lowing celebrated interior regularity result for elliptic partial differential equa-

tions: If u is a bounded solution to F (D2u) in B1, where F is uniformly elliptic

and concave, then u ∈ C2,α(B1/2) for some α > 0. In this paper we prove a

nonlocal version of that theorem. We prove that solutions to concave integro-

differential equations of order σ have regularity Cσ+α for some α > 0. This is

enough regularity to consider the solutions to be classical.

The equations we study arise in stochastic control problems with jump

processes (see for example [9], [8]). In [9] a C2,α regularity of the solutions of

Bellman equations for Levy processes is obtained, but the equation is required

to have a uniformly elliptic second order part which is ultimately the source of

the regularity. In [1] a purely integro-differential Bellman equation is studied.

They only consider the case of the maximum of two linear operators. They

obtain solutions in the fractional Sobolev space Hσ/2 up to the boundary and

Hσ in the interior of the domain. As they point out in their paper, the solutions

to these equations are expected to be more regular in the interior of the domain.

In this paper we consider purely integro-differential equations and obtain

an interior regularity result. Since we do not require our equations to have a

second order part, our estimate comes only from the regularization effects of

the integrals.

The constants in our estimates do not blow up as σ → 2, so we can recover

the usual Evans-Krylov theorem as a limit case. It is interesting to follow what
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the ideas of the proofs become as σ → 2. Interestingly, the ideas we present

in this paper provide a different proof of the Evans-Krylov theorem for second

order elliptic equations.

We consider the equation

(1.1) Iu(x) := inf
a∈A

Lau(x) = inf
a∈A

∫
Rn

(u(x+y)+u(x−y)−2u(x))Ka(y) dy = 0.

As in [3], we will choose each linear operator La in some class L. Consequently,

the operator I will be elliptic with respect to L in the sense described in [5].

We describe below the appropriate classes of linear operators that we will

use in this paper.

We say that an operator L belongs to L0 if its corresponding kernel K

satisfies the uniform ellipticity assumption

(1.2) (2− σ)
λ

|y|n+σ
≤ K(y) ≤ (2− σ)

Λ

|y|n+σ
.

We will also assume that the kernels K in the class L0 are symmetric:

K(y) = K(−y). This assumption is somewhat implicit in the expression (1.1),

since all the kernels Ka can be symmetrized without altering the equation.

The ellipticity assumption (1.2) is the essential assumption that leads

to a local regularization. Our proofs, as usual, involve an improvement of

oscillation of the solution to the equation (or an operator applied to it) in a

decreasing sequence of balls around a point in the domain. Since the equations

are nonlocal, every argument in our proofs will have to take into account the

influence of the values of the solution at points outside those balls. We will

often need to say that the part of the integral in (1.1) outside a neighborhood

of the origin is a smooth enough function. That is why we define the following

classes of smooth kernels.

We say that L ∈ L1 if, in addition to (1.2) and symmetry, the kernel K is

C1 away from the origin and satisfies

|∇K(y)| ≤ C

|y|n+1+σ
.

Finally, we say L ∈ L2 if the kernel is C2 away from the origin and satisfies

(1.3) D2K(y) ≤ C

|y|n+2+σ
.

We consider the corresponding maximal operators

M+
0 u(x) = sup

L∈L0
Lu(x) = (2− σ)

∫
Rn

Λ(δu(x, y))+ − λ(δu(x, y))−

|y|n+σ
dy,

M+
1 u(x) = sup

L∈L1
Lu(x),

M+
2 u(x) = sup

L∈L2
Lu(x).
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Recall that we write δu(x, y) = (u(x+y)+u(x−y)−2u(x)) as in [3]. Nat-

urally we have the inequalities M+
0 u ≥ M+

1 u ≥ M+
2 u. The minimal operators

M− are defined likewise.

We do not know a closed form for M+
1 or M+

2 . Since L2 ⊂ L1 ⊂ L0, we

have the relations M+
2 u ≤ M+

1 u ≤ M+
0 u and M−2 u ≥ M−1 u ≥ M−0 u.

Our main result states that under the hypothesis that all operators La
belong to L2, the solutions are classical in the sense that there is enough

regularity so that all integrals are well defined and Hölder continuous.

Theorem 1.1. Assume every La in (1.1) belongs to the class L2. If u

is a bounded function in Rn such that Iu = 0 in B1, then u ∈ Cσ+α(B1/2).

Moreover,

(1.4) ‖u‖Cσ+α(B1/2) ≤ C ‖u‖L∞(Rn) .

The interested reader may verify, in following the arguments, that global

boundedness of u may be substituted by an appropriate moderated growth at

infinity (see remark at the end of this paper).

For values of σ less or equal to 1, this theorem does not provide any

improvement with respect to the C1,α estimates in [5]. Thus, for the purpose

of proving Theorem 1.1 we will assume σ to be strictly larger than 1 in this

paper. The result becomes most interesting when σ is close to 2 and σ+α > 2.

Note that the result of the theorem remains true if I is convex instead of

concave (a sup of linear operators instead of an inf). Indeed, we can transform

one situation in the other by considering the equation −I(−u) = 0.

In previous papers ([3] and [5]) we started developing the regularity theory

for nonlocal equations. In [3] we obtained a nonlocal version of Krylov-Safonov

theory with estimates that do not blow up as σ → 2. This allowed us to obtain

C1,α estimates for general fully nonlinear integro-differential equations that are

translation invariant. In [5], we extended those results to variable coefficient

equations using perturbative methods. In this paper we use the results in our

previous two papers extensively.

2. A regularization procedure

In this section we show a simple technique to approximate uniformly the

solutions to the integro-differential equation (1.1) by C2,α functions that solve

an approximate equation with the same structure. This procedure works exclu-

sively for integro-differential equations and cannot be done using only second

order equations. It makes it unnecessary to use sup- or inf- convolutions and

simplifies the technicalities of several proofs. Essentially the idea is that if we

prove an estimate assuming the solutions u is C2,α (but the estimate does not

depend on the C2,α norm), then we can pass to the limit using this approx-

imation technique to extend the estimate to all viscosity solutions. In this
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respect, the technicalities in the integro-differential setting simplify very much

compared to the second order counterpart.

Lemma 2.1. Let u be a continuous function in Rn solving (1.1) in B1

with every La belonging to the class L2 (resp. L1 or L0). There is a sequence

of regularized equations in the same class

Iεuε = inf
a
Lεau

ε = 0 in B1,

uε = u in Rn \B1

so that the solutions uε are C2,α in the interior of B1 for every ε > 0 and

limε→0 u
ε = u uniformly in B1.

Proof. Let η be a smooth function such that

0 ≤ η ≤ 1 in Rn,
η = 0 in Rn \B1,

η = 1 in B1/2

and let ηε(x) = η(x/ε).

Let us consider the following regularized kernels:

Kε
a(y) = ηε(y)λ

2− σ
|y|n+σ

+ (1− ηε(y))Ka(y).

Correspondingly, we define

Lεav =

∫
Rn
δv(x, y)Kε

a(y) dy,

Iεv = inf
a
Lεav.

Note that if La ∈ Li then also Lεa ∈ Li for i = 0, 1, 2.

Let uε be the solution of the following Dirichlet problem:

Iεuε = inf
a
Lεau

ε = 0 in B1,

uε = u in Rn \B1.

The solution uε to this problem is C2,α by Theorem 6.6 in [5].

It is clear that if v ∈ C2(x) and |v(y)−v(x)− (y−x) ·∇v(x)| ≤M |y−x|2
in B1, then

|Iεv(x)− Iv(x)| ≤ CMε2−σ

so ‖Iε − I‖ → 0 as ε→ 0 (recall σ < 2), where the norm ‖Iε − I‖ is computed

in the sense of Definition 2.2 in [5]. Then, by Lemma 4.9 in [5], uε converges

to u uniformly in B1 as ε→ 0. �

Remark 2.2. The concavity of I is not used in Lemma 2.1. The exact

same idea works for equations of the type

Iu(x) := sup
b

inf
a
Labu(x) = sup

b
inf
a

∫
Rn

(u(x+y)+u(x−y)−2u(x))Kab(y) dy = 0.
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3. Average of subsolutions is a subsolution

The main ingredient in the Evans-Krylov theorem is the fact that concav-

ity of the equation makes second order incremental quotients subsolutions of

the linearized equation. In order to prove that, one first observes that an av-

erage of solutions to a concave equation is a subsolution to the same equation.

In this section we prove that also in the nonlocal case the average of

subsolutions to a concave equation is a subsolution of the same equation. This

is a very straightforward computation if the solutions are classical. Making the

proof for viscosity solutions adds a technical difficulty. We can overcome that

difficulty by using the approximation technique of Section 2. As the referee

pointed out, it would be possible to prove the lemmas in this section directly

without using the approximation. On the other hand, we like to use the two

lemmas below as the first example on how the approximation can be useful.

Proposition 3.1. Let u and v be subsolutions of Iu = 0 and Iv = 0 in

a domain Ω, u, v continuous in Rn; then I(u+ v)/2 ≥ 0 in Ω.

Proof. If u, v ∈ C2 the proposition follows simply by the concavity of I.

So we used the regularization procedure described in Section 2.

Let Iεuε = 0 and Iεvε = 0 be the approximate equations of Lemma 2.1.

The functions uε and vε are C2 so all the integro-differential operators Lεau
ε

and Lεav
ε in the formula for Iε are well defined and continuous. We can make

a direct computation:

Iε(uε + vε)/2 = inf
a

Lεau
ε + Lεav

ε

2

≥ infa L
ε
au

ε + infa L
ε
av
ε

2
≥ 0 in Ω.

Since uε → u and vε → v uniformly in Ω and Iε → I, then I(u + v)/2 ≥ 0 in

Ω by Lemma 4.9 in [5]. �

The same idea shows that any average of solutions is a subsolution. In

particular we have the following proposition.

Proposition 3.2. Let u be a solution of Iu = 0 in B1 and η be a mollifier;

i.e.,

(1) η ≥ 0;

(2)
∫
η = 1;

(3) supp η ⊂ Bδ .

We have I(η ∗ u) ≥ 0 in B1−δ .
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4. The linear theory of integro-differential equations

In this section we present some regularity theorems for linear integro-

differential equations with constant coefficients. Naturally in this simple case,

we can easily obtain more powerful results than for the nonlinear case. The

results we present in this section are just the ones that we will need in the rest

of this paper.

Theorem 4.1. Let L be an integro-differential operator in the class L1

with σ ≥ σ0 > 1. Suppose that u is an integrable function in the weighted space

L1(Rn, 1
1+|y|n+σ ) that solves the equation Lu = 0 in B1, then u ∈ C2,α(B1/2),

and we have the estimates

‖u‖C2,α(B1/2) ≤ C ‖u‖L1(Rn, 1
1+|y|n+σ

) .

The value of the constant C and α depends on n, λ, Λ and σ0 but not on σ.

Proof. We will prove the a priori estimate. The regularity estimate for

a weak or viscosity solution follows by mollifying the solution or using the

regularization procedure of the previous section.

First we apply Theorem 2.8 in [5] to obtain that u ∈ C1,α(B3/4) and

obtain the estimate

||u||C1(B3/4) ≤ C ‖u‖L1(Rn, 1
1+|y|n+σ

) .

The idea is to apply the same C1,α estimate to every directional deriva-

tive ue. Since we do not have an L∞ estimate of ue outside of B3/4, we have

to use our usual integration by parts trick. We know that∫
Rn
ue(y)K(x+ y) dy = 0.

Let η be a smooth cutoff function such that

0 ≤ η ≤ 1 in Rn,
η = 0 outside B3/4,

η = 1 in B5/8.

We compute∣∣∣∣∫
Rn
ue(y)η(y)K(x+ y) dy

∣∣∣∣
=

∣∣∣∣∫
Rn
ue(y)(η(y)− 1)K(x+ y) dy

∣∣∣∣
=

∣∣∣∣∫
Rn
u(y)(ηe(y)K(x+ y) + (η(y)− 1)Ke(x+ y)) dy

∣∣∣∣
≤ C ‖u‖L1(Rn, 1

1+|y|n+σ
) .
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Thus we can apply Theorem 6.1 in [5] to the function ηue to conclude that

ue ∈ C1,α(B1/2)) for every direction e and thus u ∈ C2,α. (Note that we are

using σ > 1 here.) �

In order to have better interior regularity estimates than C2,α, we would

need to impose more regularity to the kernel K in L than C1 away from the

origin.

The next theorem says that in L2 all linear operators have a comparable

norm.

Theorem 4.2. Let L0 and L1 be two linear integro-differential operators

in the class L0. Suppose that L0u ∈ L2(Rn) then L1u ∈ L2(Rn).

Proof. Since we are dealing with L2 norms and translation invariant linear

operators, we will use the Fourier transform to prove this theorem.

Given a function u and y ∈ Rn, we haveÿ�δu(x, y) = (u(.+y)+u(.−y)−2u)̂ = (eiy·ξ+e−iy·ξ−2)û(ξ) = 2(cos(y·ξ)−1)û(ξ).

We use this identity to compute the symbol s(ξ) of an operator −L as a pseudo

differential operator

−”Lu(ξ) = −
Å∫

Rn
δu(x, y)K(y) dy

ã
(̂ξ)

=

Å∫
Rn

2(1− cos(y · ξ))K(y) dy

ã
û(ξ) =: s(ξ)û(ξ).

Note that for every ξ function (1 − cos(y · ξ)) is C2 and bounded, so the

integral in the right-hand side is well defined. Let us estimate it from above

and below.

For any R > 0,

s(ξ) =

∫
Rn

2(1− cos(y · ξ))K(y) dy

≤
∫
BR

2|y · ξ|2(2− σ)
Λ

|y|n+σ
dy +

∫
Rn\BR

2(2− σ)
Λ

|y|n+σ
dy

≤ C|ξ|2R2−σ + C
(2− σ)

σ
R−σ

so we obtain s(ξ) ≤ C|ξ|σ by choosing R = |ξ|−1.

On the other hand, note that (1−cos(y ·ξ)) is nonnegative and so is K(y).

Thus the integrand is nonnegative and we have

s(ξ) =

∫
Rn

2(1− cos(y · ξ))K(y) dy ≥
∫
B|ξ|−1/2

1

4
|y · ξ|2(2− σ)

λ

|y|n+σ
dy

≥ c|ξ|−σ.
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So the symbol s(ξ) is comparable to |ξ|−σ for any operator L in L0. Thus

by classical Fourier analysis, we have that L1L
−1
0 has a bounded symbol and

maps L2 functions into L2. �

The following theorem is a direct combination of Theorems 4.1 and 4.2.

Theorem 4.3. Let L be an integro-differential operator in the class L1

with σ ≥ σ0 > 1. Suppose u is a function in the weighted space L1(Rn, 1
1+|y|n+σ )

that solves the equation Lu = f in B1 for some f ∈ L2. Let L1 be an operator

in L0; then L1u ∈ L2(B1/2) and

‖L1u‖L2(B1/2) ≤ C
Å
‖u‖L1(Rn, 1

1+|y|n+σ
) + ‖f‖L2(B1)

ã
for some constant C depending on n, λ, Λ and σ0.

Proof. Consider the function v that solves

Lv = fχB1 in Rn.

From Theorem 4.2 we get that L1v ∈ L2(Rn). Theorem 4.2 can also be

applied to L2 = (−4)σ/2; thus v is in the homogeneous fractional Sobolev

space Ḣσ/2. By Sobolev embedding, v ∈ Lp(Rn) where p = 2n/(n − 2σ). In

particular, v ∈ L1(Rn, 1
1+|y|n+σ ).

Now we apply Theorem 4.1 to u − v ∈ L1(Rn, 1
1+|y|n+σ ) to conclude the

proof. �

Remark 4.4. The ellipticity constants λ and Λ of L0 and L1 do not need to

coincide. Indeed if each Li is elliptic with constants λi and Λi, then they would

both be elliptic with respect to the constants min(λ0, λ1) and max(Λ0,Λ1).

5. Subsolutions in L1 are bounded above

The theorem below is a weak version of the mean value theorem. Its proof

uses the same ideas as the proof of the Harnack inequality in [3]. We include

it here for completeness.

Theorem 5.1. Let u be a function such that u is continuous in B1 and

assume that ∫
Rn

|u(y)|
1 + |y|n+σ

dy ≤ C0,

M+
0 u ≥ −C0 in B1;

then

u(x) ≤ CC0 in B1/2

for every x ∈ B1/2, where C is a universal constant.
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Proof. Dividing u by C0, we can assume without loss of generality that

C0 = 1.

Let us consider the minimum value of t such that

u(x) ≤ ht(x) := t(1− |x|)−n for every x ∈ B1.

There must be an x0 ∈ B1 such that u(x0) = ht(x0); otherwise we could make

t smaller. Let d = (1− |x0|) be the distance from x0 to ∂B1.

For r = d/2, we want to estimate the portion of the ball Br(x0) covered

by {u < u(x0)/2} and by {u > u(x0)/2}. We will show that t cannot be too

large. In this way we obtain the result of the theorem, since the upper bound

t < C implies that u(x) < C(1− |x|)−n.

Let us first consider A := {u > u(x0)/2}. By assumption, we have u ∈
L1(B1); thus

|A ∩B1| ≤ C
∣∣∣∣∣ 2

u(x0)

∣∣∣∣∣
≤ Ct−1dn.

Whereas |Br| = Cdn, so if t is large, A can cover only a small portion of

Br(x0) at most

(5.1) |{u > u(x0)/2} ∩Br(x0)| ≤ Ct−1 |Br| .

In order to get a contradiction, we will show that |{u < u(x0)/2} ∩Br(x0)|
≤ (1− α)|Br| for a positive constant α independent of t.

We estimate |{u < u(x0)/2} ∩Bθr(x0)| for θ > 0 small. For every x ∈
Bθr(x0), we have u(x) ≤ ht(x) ≤ t(d − θd/2)−n ≤ u(x0)(1 − θ/2)−n, with

(1− θ/2)−n close to one.

Let us consider

v(x) = (1− θ/2)−nu(x0)− u(x)

so that v ≥ 0 in Bθr and also M−0 v ≤ 1 since M+
0 u ≥ −1. We would want to

apply Theorem 10.4 in [3] (the Lε estimate) to v. The only problem is that v

is not positive in the whole domain but only on Bθr. In order to apply such a

theorem, we have to consider w = v+ instead and estimate the change in the

right-hand side due to the truncation error.

We want to find an upper bound for M−0 w = M−0 v
+ instead of M−0 v. We

know that

M−0 v(x) = (2− σ)

∫
Rn

λδv(x, y)+ − Λδv(x, y)−

|y|n+σ
dy ≤ 1.
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Therefore, if x ∈ Bθr/2(x0),

M−0 w = (2− σ)

∫
Rn

λδw(x, y)+ − Λδw(x, y)−

|y|n+σ
dy(5.2)

≤ 1 + 2(2− σ)

∫
Rn∩{v(x+y)<0}

−Λ
v(x+ y)

|y|n+σ
dy

≤ 1 + 2(2− σ)

∫
Rn\Bθr/2

Λ
(u(x+ y)− (1− θ/2)−nu(x0))+

|y|n+σ
dy

≤ 1 + C(2− σ)(θr)−n−σ
∫
Rn

Λ
|u(y)|

1 + |y|n+σ
dy ≤ C(θr)−n−σ.

Now we can apply Theorem 10.4 from [3] to w inBθr/2(x0). Recall w(x0) =

((1− θ/2)−n − 1)u(x0), and we have∣∣∣∣ßu < u(x0)

2

™
∩B θr

4 (x0)

∣∣∣∣
= |{w > u(x0)((1− θ/2)−n − 1/2)} ∩Bθr/4(x0)|

≤ C(θr)n
(
((1− θ/2)−n− 1)u(x0) + C(θr)−n−σ(rθ)σ

)εÅ
u(x0)((1−θ/2)−n− 1

2
)

ã−ε
≤ C(θr)n

(
((1− θ/2)−n−1)ε + θ−nεt−ε

)
.

Now let us choose θ > 0 so that the first term is small:

C(θr)n((1− θ/2)−n − 1)ε ≤ 1

4

∣∣∣Bθr/2∣∣∣ .
Notice that the choice of θ is independent of t. For this fixed value of θ,

we observe that if t is large enough, we will also have

C(θr)nθ−nεt−ε ≤ 1

4

∣∣∣Bθr/2∣∣∣
and therefore

|{u < u(x0)/2} ∩Bθ/r4(x0)| ≤ 1

2

∣∣∣Bθr/4(x0)
∣∣∣

which implies that for t large,

|{u > u(x0)/2} ∩Bθr/4(x0)| ≥ c |Br| .

But this contradicts (5.1). Therefore t cannot be large. Rescaling back, we

obtain

u(x) ≤ CC0

for any x in B1/2. �
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6. Each Lau is bounded

The idea of this section is to show that averages of second order incremen-

tal quotients are subsolutions (of the maximal operator M+). In particular,

each va := Lau is a subsolution to

va ≥ 0 in B1,

M+va ≥ −C||u||L∞ in B1.

Then we would estimate the integral of va in B1/2 and use Theorem 5.1 to

prove that Lau is bounded.

Lemma 6.1. Assume u ∈ C2 and Iu = 0 in B1. Let K be a symmetric

kernel satisfying K(y) ≤ (2−σ)Λ|y|−n−σ (but not necessarily the bound below).

Then for every bump function b such that

0 ≤ b(x) ≤ 1 in Rn,
b(x) = b(−x) in Rn,
b(x) = 0 in Rn \B1/2,

we have

M+
2

Å∫
Rn
δu(x, y)K(y)b(y) dy

ã
≥ 0 in B1/2.

Proof. Let φk be the L1 function φk(y) = χRn\B1/k
(y)K(y)b(y). Since

u ∈ C2 and K is symmetric, we can approximate the value of the integral

uniformly by∫
Rn
δu(x, y)K(y)b(y) dy = lim

k→∞

∫
Rn
δu(x, y)φk(y) dy

= 2

Å
lim
k→∞

u ∗ φk − ‖φk‖L1 u

ã
.

Applying Proposition 3.1, we have

I

Ç
u ∗ φk
‖φk‖L1

å
≥ 0.

On the other hand, we know that Iu = 0; then by Lemma 5.8 in [3] and the

fact that M+ is homogeneous,

M+
2 (u ∗ φk − ‖φk‖L1 u) = ‖φk‖L1 M+

2

Ç
u ∗ φk
‖φk‖L1

− u
å
≥ 0.

Since we have M+
2 (u∗φk−‖φk‖L1 u) ≥ 0 for every k > 0, the result follows

by Lemma 4.3 in [5] by taking limit as k →∞. �

Lemma 6.2. Assume u ∈ C2 and Iu = 0 in B1. Then there is a universal

constant C such that for every operator L ∈ L2,

M+
2 (Lu) ≥ −C||u||L∞ in B1/2.
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Proof. As in the proof of Lemma 6.1, we let φk be the L1 function φk(y) =

χRn\B1/k
(y)K(y) and we approximate the value of the integral uniformly by

Lu(x) = lim
k→∞

∫
Rn
δu(x, y)φk(y) dy = 2 lim

k→∞
(u ∗ φk − u ‖φk‖L1

).

Let b be a smooth bump function such that

0 ≤ b(x) ≤ 1 in Rn,
b(x) = b(−x) in Rn,
b(x) = 0 in Rn \B1/2,

b(x) = 1 in B1/4.

As in the proof of Lemma 6.1,

I

Ç
u ∗ φk(x)b(x)

‖φk(x)b(x)‖L1

å
≥ 0.

Therefore M+
2 (u ∗ (φkb)− ‖φkb‖L1 u) ≥ 0.

On the other hand, we estimate I(u ∗ (φk(1− b))) in B1/2:

I(u ∗ (φk(1− b))) = inf
a

∫
Rn
La(u ∗ (φk(1− b))) dy

= inf
a

∫
Rn
u ∗ La(φk(1− b)) dy.

Since by (1.2), φk(1− b) ∈ L1 and by (1.3), D2φk(1− b) ∈ L1 uniformly in k,

then L(φk(1− b)) is bounded in L1 uniformly for all L ∈ L0. Therefore,

|I(u ∗ (φk(1− b)))| ≤ C ‖u‖L∞ .

Using Lemma 5.8 in [3] and the homogeneity of M+,

M+
2 (u ∗ φk − ‖φk‖L1 u)

≥ I (u ∗ φk)− ‖φk‖L1 Iu = I (u ∗ φk)
≥ I (u ∗ (φkb)) + I (u ∗ (φk(1− b))) by the concavity of I

≥ −C ‖u‖L∞ .

We finish the proof of the lemma by taking k →∞, using Lemma 4.3 in [5]. �

Lemma 6.3. Let u be a solution of (1.1) in B1. Assume La ∈ L2 for

every a. Then for every a, Lau ≤ C ‖u‖L∞ in B1/8 for some universal con-

stant C .

Proof. By Lemma 2.1, we can assume the function u is C2. Indeed, for

every ε > 0, we can approximate u with a C2 function uε that satisfies the

same kind of equation. If we can prove the estimate for uε with a universal

constant C that does not depend on ε, then we would prove it for u by passing
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to the limit as ε → 0. So we assume that u ∈ C2, and thus all the integrals

are well defined.

From Lemma 6.2, we know that for each La,

M+
2 (Lau) ≥ −C ‖u‖L∞ in B1/2.

We would want to apply Theorem 5.1 to Lau. For that we still need an

estimate at least in L1((1 + |y|)−n−σ). We can easily obtain an estimate in

L1(B1/2) using the fact that Lau ≥ 0 in B1 because of equation (1.1).

Let b be a smooth cutoff function such that 0 ≤ b ≤ 1 in Rn, b = 1 in B1/2

and b = 0 outside B1. We multiply Lau by b and integrate by parts:∫
Rn
Lau(x) b(x) dx =

∫
Rn
Lab(x) u(x) dx ≤ C ‖u‖L∞

for some universal constant C. Since Lau ≥ 0 in B1, then it is in L1(B1/2).

We would still need some control on the values of Lau away from B1/2 in

order to apply Theorem 5.1. We do not want to assume any regularity for u

outside B1, so our only choice is to cut off again.

Let c(x) := b(2x) and w(x) = c(x) Lau(x). We will estimate M+
2 w(x) for

x ∈ B1/4. For that, let us consider any operator L ∈ L2 and estimate

Lw(x) =

∫
Rn
δw(x, y)K(y) dy

=

∫
Rn
δLau(x, y)K(y) dy −

∫
Rn
δ(Lau(1− c))(x, y)K(y) dy

≥ L(Lau)− 2

∫
Rn
Lau(x+ y)(1− c(x+ y))K(y) dy

≥ L(Lau)− 2

∫
Rn
u(x+ y)La ((1− c(x+ .))K(.)) (y) dy

≥ L(Lau)− C ‖u‖L∞ .

For the last inequality, we used the fact that La ((1− c(x+ .))K) is in L1

uniformly for x ∈ B1/4. This follows from the estimates (1.2) and (1.3) of the

kernel K.

Taking supremum in a, we obtain

M+
2 w(x) ≥ M+

2 (Lau)− C ‖u‖L∞ ≥ −C ‖u‖L∞ .
Now we can apply Theorem 5.1 to w to obtain that w ≤ C ‖u‖L∞ in B1/8.

but w = Lau in B1/4, so we finish the proof. �

7. Extremal operators are bounded

In this section we prove Theorem 7.4. We will achieve this result by

showing that Lu(x) is bounded uniformly for all L ∈ L0. The ideas are very

similar to Section 6 but now we apply them to operators that are not a priori

bounded below, so we use the L2 estimates from Section 4 instead.
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Lemma 7.1. Assume u ∈ C2. Then for every symmetric kernel K satis-

fying K(y) ≤ (2− σ)Λ|y|−n−σ (but not necessarily the bound below) and every

smooth bump function b such that

0 ≤ b(x) ≤ 1 in Rn,
b(x) = b(−x) in Rn,
b(x) = 0 in Rn \B1/2,

b(x) = 1 in B1/4,

we have

M+
2

(
b(x)

∫
B1/2

δu(x, y)K(y) dy

)
≥ −C ‖u‖L∞ in B1/2.

Proof. Let us call

Ltu(x) =

∫
B1/2

δu(x, y)K(y) dy.

By Lemma 6.1, we have M+
2 (Ltu) ≥ 0. Let L be any operator in L2; thus we

estimate

L(bLtu)(x) =

∫
Rn
δ(Ltu)(x, y)K(y) dy −

∫
Rn
δ((1− b)Ltu)(x, y)K(y) dy

≥ −2

∫
Rn

(1− b(x+ y))Ltu(x+ y)K(y) dy

≥ −2

∫
Rn
u(x+ y)Lt((1− b(x+ ·))K)(y) dy

≥ −C ‖u‖L∞ ,

where we used that Lt((1− b(x+ ·))K) is bounded in L1 uniformly in x. This

is due to the fact that D2((1− b(x+ ·))K) ∈ L1(Rn) because of (1.3). �

Lemma 7.2. Let u be a solution of (1.1) in B1 with all operators La in

L2. There is a constant C such that for every operator L with a symmetric

kernel K satisfying K(y) ≤ (2 − σ)Λ|y|−n−σ (but not necessarily the bound

below), we have

|Lu(x)| ≤ C ‖u‖L∞ in B1/2.

Proof. As in the proof of Lemma 6.3, we can and will assume that u ∈ C2.

We will write the proof assuming that ‖u‖L∞(Rn) = 1. Moreover, we will prove

the estimate in B1/64 instead of B1/2. The general estimate follows directly by

scaling and a standard covering argument.

Let La be one of the operators used in the infimum in (1.1). We know

from Lemma 6.3 that La is bounded in B1/2 by a constant C. In particu-

lar, ‖Lau‖L2(B1/2) ≤ C. Note that ||u||L1(Rn,1/(1+|y|n+σ)) ≤ C ‖u‖L∞ . From
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Theorem 4.3, we have an L2 estimate for every L ∈ L0:

‖Lu‖L2(B1/4) ≤ C.

We split the integral of Lu into two domains

Lu(x) =

∫
B1/2

δu(x, y)K(y) dy +

∫
Rn\B1/2

δu(x, y)K(y) dy.

The second integral is clearly bounded since K(y) is a function in L1(Rn \
B1/2). Thus we still have an estimate in L2 for the first term:∥∥∥∥∥

∫
B1/2

δu(x, y)K(y) dy

∥∥∥∥∥
L2(B1/4)

≤ C.

On the other hand, from Lemma 6.1,

M+
2

(∫
B1/2

δu(x, y)K(y) dy

)
≥ 0.

For a bump function c(x) such that

supp c = B1/4,

c ≡ 1 in B1/8,

we define

w(x) := c(x)

∫
B1/2

δu(x, y)K(y) dy.

We know that w ∈ L2(Rn) and w = 0 outside B1/4. In particular w is

bounded in the weighted L1 space: L1((1+ |y|n+σ)−1) needed for Theorem 5.1.

From Lemma 7.1, we have M+
2 w ≥ −C in B1/16. Thus we can apply

Theorem 5.1 to w to obtain that w ≤ C in B1/32, which naturally implies

Lu ≤ C in B1/32.

We got the desired bound from above only. In order to get the corre-

sponding bound from below we must use equation (1.1) again.

Recall that Lau is bounded by Lemma 6.3, and the formulas of La and L

are given by

Lau(x) =

∫
δu(x, y)Ka(y) dy,

Lu(x) =

∫
δu(x, y)K(y) dy,

where Ka is bounded below by (2−σ)λ/|y|n+σ and both K and Ka are bounded

above by (2− σ)Λ/|y|n+σ.

Consider the kernel

Kd =
2

λ
Ka −

1

Λ
K
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and the corresponding linear operator Ld. The kernel Kd satisfies the ellipticity

conditions (2− σ)/|y|n+σ ≤ Kd ≤ (2− σ)(2Λ/λ− λ/Λ)/|y|n+σ, so Ld is in the

class L0 with ellipticity constants 1 and (2Λ/λ − λ/Λ). The same proof as

above tells us that Ldu ≤ C in B1/32. But then since La is bounded, we obtain

a bound below for L in B1/32:

Lu = 2
Λ

λ
La − ΛLd ≥ −C.

Thus, we have both bounds and we obtain |Lu| ≤ C in B1/32. �

Corollary 7.3. M+
0 u and M−0 u are bounded in B1/2.

Proof. Since M+
0 u = supL∈L0 Lu and for every L in L0 we have |Lu| ≤

C ‖u‖L∞ with C independent of the choice of L in L0, then also |M+
0 u| ≤

C ‖u‖L∞ with the same constant C. �

Now we are going to prove that all integrals in (1.1) are absolutely con-

vergent. This already implies that the solution is classical in some way.

Theorem 7.4. Assume every La in (1.1) belongs to the class L2. If u is

a bounded function in Rn such that Iu = 0 in B1 in the viscosity sense, then

we have the following estimate:∫
Rn
|δu(x, y)|(2− σ)

|y|n+σ
dy ≤ C ‖u‖L∞(Rn) in B1/2.

Proof. Applying Lemma 7.2 to L = −(−4)σ/2, we get

| − (−4)σ/2u(x)| =
∣∣∣∣∣cσ
∫
Rn
δu(x, y)

(2− σ)

|y|n+σ
dy

∣∣∣∣∣ ≤ C ‖u‖L∞(Rn) in B1/2.

On the other hand, applying Corollary 7.3 with any pair λ < Λ, we get

|M+
0 u(x)| =

∣∣∣∣∣
∫
Rn

(Λδu(x, y)+ − λδu(x, y)−)
(2− σ)

|y|n+σ
dy

∣∣∣∣∣
≤ C ‖u‖L∞(Rn) in B1/2.

Subtracting, we obtain

M+
0 u(x) + λ(−4)σ/2u(x) ≤ C ‖u‖L∞(Rn) ,

(Λ− λ)

∫
Rn
δu(x, y)+ (2− σ)

|y|n+σ
dy ≤ C ‖u‖L∞(Rn) .

On the other hand, by subtracting Λ(−4)σ/2u(x) − M+
0 u(x) we obtain

the bound

(Λ− λ)

∫
Rn
δu(x, y)−

(2− σ)

|y|n+σ
dy = Λ(−4)σ/2u(x)−M+

0 u(x) ≤ C ‖u‖L∞(Rn) .

Combining the two estimates above, we finish the proof. �
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8. Outline of the strategy: the second order case

Theorem 7.4 provides an estimate slightly stronger than u ∈ Cσ. In the

case σ → 2 it becomes an estimate of the C1,1 norm of u. Comparing with the

proof of Evans-Krylov theorem (as in [6], [7] or [2]), the underlying strategy of

the proof up to this point is essentially the same but adapted to the integro-

differential setting using the ideas in our previous papers [3] and [5].

The next step in the proof of our main result is to pass from this Cσ

estimate to a Cσ+α estimate. In the second order case it corresponds to the

a priori estimate ‖u‖C2,α(B1/2) ≤ C ‖u‖C1,1(B1). The presently known proofs

of this a priori estimate seem difficult to adapt to the nonlocal setting. Thus

we present a different strategy for the proof. The key tools that the proof is

based on are similar, but in our approach they are organized differently and

arguably more directly. We plan to publish a short note [4] focusing only on

this new proof for concave second order elliptic equations.

In order to better understand our proof in the next section, we first sketch

its adaptation to the second order case.

We consider a C2 solution of a fully nonlinear equation F (D2u) = 0 with

F concave and uniformly elliptic. We transform this into an integral equation

by pointing out that a linear equation can be written as an integral on the unit

sphere S1:

aij∂iju(x) =

∫
S1

∂σσu(x) w(σ) dσ

with the weight w(σ) = 1/(det{aij}aijσiσj), where {aij} = {aij}−1. If the

coefficients aij are uniformly elliptic, then w(σ) will be bounded away from

zero.

We recall that F being concave implies that pure second derivatives are

all subsolutions of the linearized operator. Therefore, for any fixed A ⊂ S1,

the following function is also a subsolution:

vA =

∫
A
∂σσu(x) dσ.

We also recall that for a (nonnecessarily concave) fully nonlinear equation

F (D2u) = sup
b

inf
a
Labu = 0,

a solution u satisfies (just because it is an inf sup) that for any two points x

and y in the domain, there exists an operator Lab for which

Labu(x)− Labu(y) ≥ 0.

In our approach, this means that there is a weight w(σ), bounded below and

above depending on the ellipticity constants, such that∫
S1

(∂σσu(x)− ∂σσu(y))w(σ) dσ ≥ 0.
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In particular, since there is another weight which gives the same inequality

exchanging x and y, we must have that the following quantities are comparable:∫
S1

(∂σσu(x)− ∂σσu(y))+ dσ ≈
∫
S1

(∂σσu(x)− ∂σσu(y))− dσ(8.1)

≈
∫
S1

|∂σσu(x)− ∂σσu(y)| dσ.

At this point we define

h(x, σ) = ∂σσu(x)− ∂σσu(0),

wA(x) =

∫
A
h(x, σ) dσ

for any set A ⊂ S1. We will use only the properties above to show that∫
S1

|h(x, σ)| dσ ≤ |x|α.

The C2,α estimate for u follows easily from this estimate.

By (8.1), we only need to prove that wA(x) ≤ C|x|α for every set A, since∫
S1

|h(x, σ)| dσ ≈
∫
S1

h(x, σ)+ dσ = sup
A
wA(x).

In fact, by renormalization we only need to prove the following lemma.

Lemma 8.1. Assume that for x in B1, for any set A ⊂ S1, wA(x) ≤ 1.

Then there is a universal constant θ > 0 such that

wA(x) ≤ 1− θ

for any A ⊂ S1 and x ∈ B1/2.

Sketch of the proof. Suppose that there exists an x ∈ B1/2, where wA >

1− θ for some set A ⊂ S1. We will arrive to a contradiction if θ is too small.

Since wA ≤ 1 in B1 and wA is a subsolution of the linearized equation,

we can apply Theorem 4.8(1) in [2] (the Lε estimate) to 1 − wA (this will

correspond to Theorem 10.4 in [3] in the nonlocal case). It follows that we can

make

Ω = {wA(x) ≥ 1− tθ}
cover almost all B1/4 if we choose t large (but independently of θ).

We will now obtain a contradiction by looking at wAc in B1/4.

For every x in Ω, the choice of the set A is almost maximal in the sense

that

1− tθ ≤ wA(x) ≤
∫
S1

h(x, σ)+ dσ ≤ 1.

On the other hand, since∫
S1

h(x, σ) dσ =

∫
S1

h(x, σ)+ dσ −
∫
S1

h(x, σ)− dσ = wA(x) + wAc(x),
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then also

0 ≤ wAc +

∫
S1

h(x, σ)− dσ ≤ tθ.

From (8.1), we know that the integrals of h+ and h− are comparable.

Thus in Ω, we have

wAc ≤ tθ − C
for a constant C depending on λ and Λ. If we choose θ small, that means

that wAc will be strictly negative in most of B1/4. But then applying Theorem

4.8(2) in [2] (which corresponds to Theorem 5.1 in the nonlocal case), we obtain

that wAc(0) ≤ −c for some universal constant c. This is a contradiction since

clearly wAc(0) = 0. �

In the integro-differential case, the proof will be slightly lengthier in part

because we have to keep track of the truncation error we make every time we

localize an integral. We cover the proof in detail in the next section.

9. Further regularity

This section is devoted to fill the gap between Theorem 7.4 and Theo-

rem 1.1.

From Theorem 7.4, we know that

(9.1)

∫
B1/2

|δu(x, y)| 2− σ
|y|n+σ

dy ≤ C ‖u‖L∞ in B1/4.

Our objective is to show that∫
B1/2

|δu(x, y)− δu(0, y)| 2− σ
|y|n+σ

dy ≤ C|x|α ‖u‖L∞

for some constant C and α > 0 and for every x ∈ B1/4. This estimate implies

the Hölder continuity of the fractional Laplacian (−4)σ/2 from which the Cσ+α

regularity of u follows.

We will consider all kernels K of the form

KA(y) =
(2− σ)

|y|n+σ
χA(y),

where χA(y) is the characteristic function of a set A, which is only require to

be symmetric: A = −A.

Let b be a bump function as in Lemma 7.1. For each set A, we write

wA(x) = b(x)

∫
B1/2

(δu(x, y)− δu(0, y))KA(y) dy.

We know that wA is uniformly bounded from Lemma 7.2. From Lemma 7.1,

we have

(9.2) M+
2 wA ≥ −C||u||L∞ in B1/4 uniformly in A.
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We define the following quantities:

P (x) := sup
A
wA(x) = b(x)

∫
B1/2

(δu(x, y)− δu(0, y))+ (2− σ)

|y|n+σ
dy,

N(x) := sup
A
−wA(x) = b(x)

∫
B1/2

(δu(x, y)− δu(0, y))−
(2− σ)

|y|n+σ
dy.

Note that P (x) is realized by the symmetric set A = {y : δu(x, y) >

δu(0, y)} and N(x) is realized by the complement of that set.

Lemma 9.1. Assume ||u||L∞ = 1. There is a constant C such that for

x ∈ B1/4,

λ

Λ
N(x)− C|x| ≤ P (x) ≤ Λ

λ
N(x) + C|x|.

Proof. For some x ∈ B1/4, let ux(z) := u(x + z). Since u solves equa-

tion (1.1) in a neighborhood of x, then both u and ux solve (1.1) in a neigh-

borhood of 0. Thus M+
2 (ux − u)(0) ≥ 0 and M−2 (ux − u)(0) ≤ 0.

For every kernel K in the family L2, we have

L(ux − u)(0) =

∫
Rn

(δu(x, y)− δu(0, y))K(y) dy

=

∫
B1/2

(δu(x, y)− δu(0, y))K(y) dy

+

∫
Rn\B1/2

(δu(x, y)− δu(0, y))K(y) dy.

Let us analyze the second term in the right-hand side:∫
Bc

1/2

(δu(x, y)− δu(0, y))K(y) dy

=

∫
Rn
δu(0, y)

(
K(y − x)χBc

1/2
(y − x) +K(y)χBc

1/2
(y − x)

)
dy

≤
∫
Rn\B1/2+|x|

|δu(0, y)| C

|y|n+σ+1
|x| dy + 8 ‖u‖L∞

∫
B1/2+|x|\B1/2

Λ(2− σ)

|y|n+σ
dy

≤ C|x|.

Therefore, for every kernel K in the family L2, we have∫
Rn

(δu(x, y)− δu(0, y))K(y) dy ≤
∫
B1/2

(δu(x, y)− δu(0, y))K(y) dy + C|x|.

Taking the supremum, we obtain

0 ≤ M+
2 (ux − u) ≤ sup

K

∫
B1/2

(δu(x, y)− δu(0, y))K(y) dy + C|x|.
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In particular, if we take the suppremum over all kernels K in L0 (a larger

family), we still have

sup
λ

(2−σ)
|y|n+σ

≤K≤Λ
(2−σ)
|y|n+σ

∫
B1/2

(δu(x, y)− δu(0, y))K(y) dy ≥ −C|x|,

which is the same as ΛP (x)− λN(x) ≥ −C|x|.
The same computation with M−2 (ux − u)(0) ≤ 0 provides the other in-

equality. �

It is important to notice the following relation:∫
B1/2

|δu(x, y)− δu(0, y)| 2− σ
|y|n+σ

dy = sup
A
wA − inf

A
wA

= P (x) +N(x).

The strategy for proving our regularity result will be to prove that

supx∈Br P (x) ≤ Crα. It is enough to prove it for |x| small enough; there-

fore we can consider a rescaled situation by taking w̄A(x) = 1
CwA(rx), where

C is the constant from (9.1) and r is small enough so that our estimates become

for every set A: |wA| ≤ 1 in Rn,(9.3)

for every set A: M+
2 wA ≥ −ε1 in B1,(9.4)

λ

Λ
N(x)− ε1|x|1−ε1 ≤ P (x) ≤ Λ

λ
N(x) + ε1|x|1−ε1(9.5)

for ε1 arbitrarily small.

Lemma 9.2. Assume σ ∈ (1, 2). Let P (x) be the function defined above.

There is a constant C and α > 0 such that

P (x) ≤ C|x|α||u||L∞ .

Proof. We assume ||u||L∞=1; otherwise we divide the equation by ||u||L∞ .

As mentioned above, after an appropriate scaling, we can assume that

(9.3), (9.4) and (9.5) hold with ε1 arbitrarily small. On the other hand, given

the construction in Lemma 2.1, we can assume u is C2 and thus wK , P and

N are continuous. We will obtain the a priori estimates independently of the

modulus of continuity of them, so the estimate holds when passing to the limit.

We will prove that there is r > 0 and θ > 0 such that

(9.6) sup
B
rk

|P | ≤ (1− θ)k = rαk where α =
log(1− θ)

log r
.

This is clear for k = 0. Let us prove it is true for all values of k by

induction. So let us assume it is true up to some value k.

Since (9.6) holds up to some value k, we have that

|wA(x)| ≤ (1− θ)−1|x|α for |x| > rk.
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Consider the following rescaled functions:‹wA(x) = (1− θ)−kwA(rkx),‹P (x) = (1− θ)−kP (rkx) = sup
A
‹wA(x),‹N(x) = (1− θ)−kN(rkx) = sup

A
−‹wA(x).

The function ‹P satisfies the relations‹P (x) ≤ 1 in B1,‹P (x) ≤ (1− θ)−1|x|α outside B1.

Moreover, from (9.5),

(9.7)
λ

Λ
‹N(x)− ε1 ≤ ‹P (x) ≤ Λ

λ
‹N(x) + ε1.

We want to show that if θ and r are chosen small enough, we will have ‹P ≤
(1− θ) in Br. The proof is by contradiction. We will arrive to a contradiction

if θ and r are small enough.

Let x0 be the point where the maximum of ‹P is achieved in Br for some

r ∈ (0, 1/2). We assume ‹P (x0) ≥ 1 − θ to get a contradiction. Let A be the

set such that ‹P (x0) = ‹wA(x0) ≥ 1− θ.
Let vA = (1− ‹wA)+. We know that infBr vA ≤ θ. Moreover,

M−2 vA ≤ M−2 (1− ‹wA) + M+
2 (1− ‹wA)−

≤ −M+
2 ‹wA + M+

2 (1− ‹wA)−

≤ C in B1/2

since M+
2 ‹wA ≥ −ε1 and (1− ‹wA)− ≤ ((1− θ)−1|x|α − 1)+.

By Theorem 10.4 in [3], for some p > 0 and r < 1/4, we have the estimate,

|{vA > tθ} ∩B2r(x0)| ≤ Crn(θ + Crσ)p(tθ)−p.

Let us choose r (depending on θ to be chosen later) so that Crσ < θ. Therefore,

we have

|{vA > tθ} ∩Br(x0)| ≤ Crnt−p = ct−p|Br|.

Thus, by choosing t large, we will be able to make the measure of the set

{vA > tθ} ∩Br a small factor of |B1| independently of θ. Note that vA > tθ is

equivalent to wA < 1− tθ.
Let G = {vA ≤ tθ} ∩ Br. We know that |G| ≥ (1− ct−p)|Br|. The set G

is also the set where ‹wA ≥ 1− tθ. On the other hand, since G ⊂ B1, ‹P ≤ 1 in

G, then ‹P − ‹wA ≤ tθ in G. This allows us to estimate the difference between

−N(x) and wAc in G, where Ac is the complement of the set A.
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Clearly ‹wA + ‹wAc = ‹P − ‹N ; then ‹N + ‹wAc = ‹P − ‹wA ≤ tθ in G. Since‹N(x) ≥ λ/Λ‹P (x)− ε1, we have that in G,‹wAc(x) ≤ −‹N(x) + tθ

≤ −λ
Λ

(1− tθ) + tθ + ε1

≤ − λ

2Λ
if θ and ε1 are small enough (depending on t).

Consequently, |{‹wAc ≤ − λ
2Λ} ∩Br| ≥ (1− ct−p)|Br|.

For some small κ > 0, we define vc(x) = (‹wAc(κrx) + λ
2Λ)+. We know

M+vc ≥ −ε1 in B2; thus we can apply Theorem 5.1 to vc(κrx) for some small

r > 0 and get

vc(0) ≤ Cε1 + C

∫
Rn

|vc(y)|
1 + |y|n+σ

dy

≤ Cε1 + C

∫
|y|≤κ−1

|vc(y)|
1 + |y|n+σ

dy + C

∫
|y|>κ−1

|vc(y)|
1 + |y|n+σ

dy.

Using that |{vc > 0} ∩Bκ−1 | < Ct−pκ−n,

≤ Cε1 + Cκ−nt−p + C

∫
|y|>κ−1

‹wAc(κry)+

1 + |y|n+σ
dy.

Since r < 1, we can bound the third term independently of r:

≤ Cε1 + Cκ−nt−p + C

∫
|y|>κ−1

2(κ|y|)α

1 + |y|n+σ
dy

≤ Cε1 + Cκ−nt−p + Cκσ.

Thus we can choose κ and ε1 so that Cε1 + Cκσ < λ/(8Λ) and then t such

that Cκ−nt−p < λ/(8Λ). Therefore, we get the following estimate:

vc(0) ≤ λ

4Λ
.

But this means that ‹wAc(0) ≤ − λ
4Λ which is a contradiction since ‹wAc(0) = 0.

The contradiction comes from saying that ‹P (x0) ≥ (1− θ) for some x0 in

Br. Thus ‹P < (1−θ) inBr. In the original scale, this means that P ≤ (1−θ)k+1

in Brk+1 , which finishes the inductive step and the proof. �

Using Lemma 9.2, we can finally prove Theorem 1.1.

Proof of Theorem 1.1. As it was mentioned before, the case σ ≤ 1 is al-

ready covered in [3], so we prove the case σ ∈ (1, 2) only.

Let us consider the fractional Laplacian of order σ,

−(−4)σ/2u(x) = cσ(2− σ)

∫
Rn
δu(x, y)

1

|y|n+σ
dy,
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where the constant cσ remains bounded below and above for σ ∈ (1, 2).

Let b be a bump function as in Lemma 7.1. For x ∈ B1/4 we have the

identity

(−4)σ/2u(0)− (−4)σ/2u(x)

= cσ

(
P (x)−N(x) +

∫
Rn\B1/2

(δu(x, y)− δu(0, y))
(2− σ)

|y|n+σ
dy

)
.

The third term is bounded by C||u||L∞ |x| and the first two by C ‖u‖L∞(Rn) |x|α.

Thus, for x ∈ B1/4,

|(−4)σ/2u(x)− (−4)σ/2u(0)| ≤ C ‖u‖L∞(Rn) |x|
α.

Therefore, by a standard translation of the estimate, we obtained that

(−4)σ/2u ∈ Cα(B1/2), with the estimate∥∥∥(−4)σ/2u
∥∥∥
Cα(B1/2)

≤ C ‖u‖L∞(Rn) .

But if (−4)σ/2u ∈ Cα, then u ∈ Cσ+α with the corresponding estimate from

a classical result (see for example [10]). So we finish the proof. �

Remark 9.3. We have not used the homogeneity of I essentially in any

proof in this paper. With the same arguments we can obtain the same regu-

larity result for equations of the form

inf
a∈A

(Lau(x)+ba) = inf
a∈A

Å∫
Rn

(u(x+ y) + u(x− y)− 2u(x))Ka(y) dy + ba

ã
= 0

for a bounded family of real numbers ba. This is the general form of a concave

uniformly elliptic nonlocal operator of order σ.

For the estimates, we would have to include the values of ba in the right-

hand side:

||u||Cσ+α(B1/2) ≤ C(‖u‖L∞ + sup
a
ba).

Remark 9.4. The assumption u ∈ L∞(Rn) is not sharp. It could easily be

replaced in all estimates by u ∈ L1(Rn, 1/(1 + |y|n+σ)). We kept the L∞ norm

for simplicity of the exposition.
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