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A height gap theorem for finite subsets
of GLd(Q) and nonamenable subgroups

By Emmanuel Breuillard

Abstract

We introduce a conjugation invariant normalized height ĥ(F ) on finite

subsets of matrices F in GLd(Q) and describe its properties. In particular,

we prove an analogue of the Lehmer problem for this height by showing

that ĥ(F ) > ε whenever F generates a nonvirtually solvable subgroup of

GLd(Q), where ε = ε(d) > 0 is an absolute constant. This can be seen

as a global adelic analog of the classical Margulis Lemma from hyperbolic

geometry. As an application we prove a uniform version of the classical

Burnside-Schur theorem on torsion linear groups. In a companion paper

we will apply these results to prove a strong uniform version of the Tits

alternative.
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1. Introduction

According to the Lehmer conjecture, the absolute Weil height times the

degree of an algebraic number x ∈ Q which is not a root of unity ought

to be bounded below by an absolute constant. Various generalizations and

extensions of this problem have been recently studied by a variety of authors,

in particular in the setting of abelian varieties (e.g. [36], [44]) and also in

connection with the dynamics of iterated polynomial maps (e.g. [22], [18], [4],

[30]). In the present paper, we will introduce yet another height function ĥ(F )

which is well suited to the study of the geometric and arithmetic behavior of

power sets Fn = F · · ·F for n ∈ N, where F is a finite subset of GLd(Q).
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We will investigate its properties, in particular describe when it might become

small and then prove a statement analogous to the Lehmer conjecture in this

setting. In fact, we will prove that if G is the Zariski closure of the subgroup

generated by F , then ĥ(F ) is always bounded away from zero by a positive

constant ε = ε(d) > 0 unless the connected component of the identity G0 is

solvable. While if G0 is solvable, proving a lower bound on ĥ(F ) boils down to

the original Lehmer conjecture. Before we explain our motivations for studying

this object, and present the main results of the paper, let us first define it.

Definitions. Let d ≥ 1 be an integer, Q be the field of algebraic numbers,

and K ≤ Q a number field. We let VK be the set of equivalence classes of

absolute values on K and nv = [Kv : Qp] the degree of the completion Kv of K

over the closure Qp of Q in Kv. We normalize the absolute value | · |v on Kv so

that its restriction to Qp is the standard absolute value, i.e., |p|v = 1
p . To any

finite subset F of square matrices in Md(K) we associate the following height

(1) h(F ) =
1

[K : Q]

∑
v∈VK

nv log+ ||F ||v,

where log+ = max{0, log} and ||F ||v = max{||f ||v, f ∈ F}. Here ||f ||v is the

operator norm on Md(Kv) associated to the standard norm on Kd
v . We define

the standard norm for x ∈ Kd
v to be the sup norm ||x||v = max1≤i≤d |xi|v if v is

ultrametric and the Euclidean norm ||x||v =
»∑d

i=1 |xi|2v otherwise. If d = 1,

then this notion coincides with the (absolute, logarithmic) Weil height of an

algebraic number (see e.g. [7]).

We can now define the normalized height ĥ(F ) as

ĥ(F ) = lim
n→+∞

1

n
h(Fn).

This limit exists by subadditivity. Unlike h(F ), ĥ(F ) is independent of the

choice of basis of Kd
v used to define the norms ||x||v.

Another way to describe ĥ(F ) is in terms of spectral radius (see §2.2

below); for instance if F = {A} is a singleton, then ĥ(F ) = h([1, λ1, . . . , λd]),

where (λ1, . . . , λd) are the eigenvalues of A and h([1, λ1, . . . , λd]) the standard

Weil height of the point [1, λ1, . . . , λd] in the projective space Pd(Q) as defined

in [7, §1.5.]. This connection was first described by V. Talamanca in [37],

where a closely related definition of the height and normalized height of a

single matrix is given (see Remark 2.20 below).

The normalized height is an invariant of the diagonal action by conjugation

of GLd on GLkd, where k = Card(F ), and it is a measure of the combined

spectral radius of F (i.e., the rate of exponential growth of ||Fn||v) at all

places v, where v varies among all possible equivalence classes of nontrivial

absolute values on the number field generated by the matrix coefficients of F .
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Basic properties and height gap. Here are a few sample properties which

are satisfied by the normalized height. We have: ĥ(Fn) = n·ĥ(F ) for n ∈ N. A

finite set F satisfies ĥ(F ) = 0 if and only if F generates a quasi-unipotent sub-

group, i.e., a group all of whose elements have only roots of unity as eigenvalues

(Proposition 3.2). Moreover, the following holds:

Proposition 1.1. There is a constant C = C(d) > 0 such that if F

is a finite subset of GLd(Q) generating a subgroup whose Zariski closure is

semisimple, then

ĥ(F ) ≤ inf
g∈GLd(Q)

h(gFg−1) ≤ C · ĥ(F ).

In other words, F can always be conjugated back in a good position where

its height is comparable to its normalized height. Also ĥ has the Northcott

property (cf. [7]) in the sense that a subset of GLd(Q) whose cardinality and

normalized height are bounded, which generates a subgroup with semisimple

Zariski closure, and which has all its matrix coefficients of bounded degree over

Q, must belong to a bounded finite family of conjugacy classes of such sets.

The main result of this paper establishes the existence of a uniform gap

for the normalized height of subsets F generating a nonamenable subgroup of

GLd(Q). We have:

Theorem 1.2. There is a constant ε = ε(d) > 0 such that if F is a

finite subset of GLd(Q) generating a nonamenable subgroup that acts strongly

irreducibly, then ĥ(F ) > ε.

The constant ε(d) can be made explicit in principle, although we make no

attempt here to give a lower bound (see Remark 2.5).

Recall that, as follows for instance from the Tits alternative ([39]), amen-

able subgroups of GLd(Q) are precisely the virtually solvable subgroups, i.e.,

those subgroups which contain a solvable subgroup of finite index.

Note that if d = 1, then ĥ coincides with the classical Weil height of a

nonzero algebraic number. Of course GL1(Q) is solvable (it is a torus), and no

uniform lower bound on the height can exist there. However, the Lehmer con-

jecture states that one ought to have h(x) ≥ c
deg(x) for some absolute constant

c > 0 whenever x is not a root of unity. We refer the reader to [34] for a recent

survey on this conjecture (see also [7]) and to [2], [1] and for recent progress.

Theorem 1.2 can thus be seen as a positive solution to a Lehmer type problem

in semisimple algebraic groups as opposed to tori.

As it turns out, for each integer k ≥ 2, the set of k-tuples F in GLd(Q)

which generate a virtually solvable subgroup forms a closed algebraic subvariety

of GLd(Q)k. Therefore Theorem 1.2 implies that the set of points with small

normalized height in GLd(Q)k is not Zariski-dense. This is reminiscent of the



1060 EMMANUEL BREUILLARD

Bogomolov conjecture proved by Ullmo and Zhang (see [40], [44], [36]), which

asserts that, given an abelian variety, the set of points with small Néron-Tate

height on an algebraic subvariety which is not a finite union of torsion cosets

of abelian subvarieties is not Zariski-dense. In fact the toric version of the

Bogomolov conjecture, proved by Zhang in [43], will be a key ingredient of the

proof of Theorem 1.2.

Remark 1.3. A competing definition of the normalized height ĥ(F ) con-

sists in replacing log+ by log in (1). The two definitions coincide if F ⊂ SLd,

but may differ otherwise. However the difference is minor and we found it

more convenient to work with log+, because all terms are then nonnegative,

although many results, such as Theorem 1.2, also hold for this other definition

of the height (see the discussion in Remark 3.8).

Motivation and consequences. In [10] we established a connection between

the Lehmer conjecture and the uniform exponential growth problem for linear

solvable groups. More precisely, we showed that proving uniform exponential

growth over all solvable subgroups of GL2(C), that is showing the existence of

an absolute constant c > 0 such that limn→+∞ |Fn|
1
n > c whenever F generates

a solvable nonvirtually nilpotent subgroup of GL2(C) would imply the Lehmer

conjecture.

We have not settled the issue of whether or whether not the Lehmer con-

jecture is in fact equivalent to the uniform exponential growth of solvable sub-

groups of GL2(C). However in our companion paper [11], we make use of Theo-

rem 1.2 (height gap theorem) and Proposition 1.1 above to establish the follow-

ing strengthening of the classical Tits alternative, which among other things

implies the existence of a constant c = c(d) > 0 such that limn→+∞ |Fn|
1
n > c

whenever F generates a nonvirtually solvable subgroup of GLd(C).

Theorem 1.4 (Uniform Tits alternative, [11]). There is N = N(d) ∈ N,

such that if K is a field and F a finite symmetric subset of GLd(K) contain-

ing 1 which generates a nonvirtually solvable subgroup, then FN contains two

elements a, b which generate a non-abelian free subgroup.

In the same vein, but in a more straightforward way, one obtains the

following corollary, which answers a question from [5] and is a strengthening of

a well-known theorem of Burnside and Schur (see [19]) asserting that finitely

generated linear torsion groups are finite.

Corollary 1.5 (Effective Schur). There is an integer N = N(d) ∈ N
such that if K is a field and F is a finite subset of GLd(K) which generates an

infinite subgroup, then (F ∪ F−1)N contains an element of infinite order.
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The positive characteristic case of the above corollary is easy to prove,

while the characteristic zero case relies on our Theorem 1.2.

The interpretation of ĥ(F ) in terms of spectral radius allows us to derive

the following:

Corollary 1.6. There are constants N1 = N1(d) ∈ N, C = C(d) ∈ N
such that if F is any finite subset of GLd(Q) containing 1, there is some a ∈
FN1 and some eigenvalue λ of a such that h(λ) ≥ 1

|F |C · ĥ(F ).

Corollary 1.7. There are constants N1 = N1(d) ∈ N, ε = ε(d) > 0

such that if F is any finite subset of GLd(Q) containing 1 and generating a

nonvirtually solvable subgroup, then we may find a ∈ FN1 and an eigenvalue λ

of a such that h(λ) > ε, for some fixed ε = ε(d) > 0.

This follows easily from Corollary 1.6, Theorem 1.2 and the following fact

that we prove along the way to the proof of Theorem 1.2 (see Proposition 4.1):

Proposition 1.8. Let G be a connected semisimple algebraic group over

an algebraically closed field of characteristic 0. There is a constant c=c(d)∈N,

where d = dimG, such that the following holds. Let F be a finite subset of G
containing 1 and generating a Zariski-dense subgroup. Then F c(d) contains two

elements a and b which generate a Zariski dense subgroup of G.

N.B. This proposition also holds in positive characteristic, but the proof,

given in our companion paper [11], is more involved. See Remark 3.7 for more

on positive characteristic.

Corollaries 1.6 and 1.7 allow us to construct a short (positive) word w with

letters in F which has an eigenvalue of large height. The length of the word

is bounded by an absolute constant N1 = N1(d). This type of result is crucial

in order to build the so-called proximal elements which are needed in various

situations, in particular in the applications to the Tits alternative given in [11].

In the same vein we have:

Corollary 1.9. There is a constant N2 = N2(d) ∈ N, such that if F is

a finite subset of GLd(C) containing 1 which generates a nonvirtually solvable

subgroup, then there is a matrix w ∈ FN2 with an eigenvalue λ such that : either

there exists an ultrametric absolute value | · |v on Q(λ) such that |λ|v > 1, or

there is a field homomorphism σ : Q(λ) ↪→ C such that |σ(λ)| ≥ 2.

In particular, if O is the ring of all algebraic integers, then there is an

integer N1 = N1(d) ∈ N such that if F is a finite set of SLd(O) containing 1,

either F generates a virtually solvable subgroup, or there is an Archimedean

absolute value v on Q extending the canonical absolute value on Q and a matrix

f ∈ FN1 with at least one eigenvalue of v-absolute value ≥ 2. Observe that this



1062 EMMANUEL BREUILLARD

fails for arbitrary finite subsets of SLd(Q). For instance, SL3(Q) ∩ SO(3,R) is

dense in SO(3,R) and contains a finitely generated dense subgroup.

Geometric interpretation and the Margulis Lemma. Theorem 1.2 also

has the following geometric interpretation. Recall that the classical Margulis

Lemma (see [38]) asserts that if S = Hn is the hyperbolic n-space, or more

generally any real symmetric space of noncompact type endowed with its Rie-

mannian metric d, then there is a positive constant ε = ε(S) > 0 such that

the following holds: suppose F is a finite set of isometries of S such that

maxf∈F d(f · x, x) < ε for some point x ∈ S and suppose F lies in a discrete

subgroup of isometries of S; then F generates a virtually nilpotent subgroup.

This lemma has several important consequences for the geometry and topology

of hyperbolic manifolds and locally symmetric spaces, such as the structure of

cusps and the thick-thin decomposition ([38]), or lower bounds for the covol-

ume of lattices in semisimple Lie groups (see [41], [26], [23]).

What happens if one removes the discreteness assumption on the group

generated by F and assumes instead that F consists of elements which are

rational over some number field K? Of course the Margulis Lemma no longer

holds as such, in particular because ε(S) tends to 0 as dimS tends to infinity.

However Theorem 1.2 gives a kind of substitute. As will be shown below (see

§2.2) the normalized height ĥ(F ) is always bounded above by the quantity

e(F ), which we call minimal height, and which encodes, as a weighted sum

over all places v ∈ VK , the minimal displacement of F on each symmetric

space or Bruhat-Tits building Xv associated to SLd(Kv). In particular the

height gap ĥ(F ) > ε obtained in Theorem 1.2 implies that there always is a

natural space Xv (symmetric space or Bruhat-Tits building of SLd) where F

acts with a large displacement. More precisely:

Corollary 1.10. Let d ∈ N and for a local field k let us denote by Xk

the symmetric space or Bruhat-Tits building of PGLd(k). We let d(·, ·) be a

left invariant Riemannian metric on XC. There is a constant ε = ε(d) > 0

with the following property. Let K be a number field and F a finite subset

of SLd(K) which generates a nonvirtually solvable subgroup Γ, then either for

some finite place v of K , the subgroup Γ acts (simplicially) without global fixed

point on the Bruhat-Tits building XKv , or for some embedding σ : K ↪→ C

inf
x∈XC

max
f∈F

d(σ(f) · x, x) > ε.

The crucial point here of course is that ε is independent of the number

field K. Thus Theorem 1.2 can be seen as a uniform Margulis Lemma for all

S-arithmetic lattices of a given Lie type. For example, it is uniform over all

SL2(OK) where K can vary among all number fields, even though those groups

can be lattices of arbitrarily large rank.
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Outline of the proof of Theorem 1.2. The first part of the proof consists

in reducing to the situation when F is a 2-element set F = {A,B}, where

A and B are two regular semisimple elements in an absolutely almost simple

algebraic group G of adjoint type and F generates a Zariski-dense subgroup

of G. It is not hard to see that the existence of a gap for ĥ(F ) when computed

in the adjoint representation of G implies the existence of a gap for ĥ(F )

when computed in any finite dimensional linear representation of G. We thus

reduce to the adjoint representation of G. The reduction from an arbitrary

finite set F to a 2-element set makes use of a lemma due to Eskin-Mozes-Oh

[21] (“escaping subvarieties” Lemma 4.2), which, given any nontrivial algebraic

relation between pairs {x, y} of elements in G, produces two short words in

{x, y} which no longer satisfy this relation. This lemma is also used later on

and is an essential tool here.

As we mentioned above, one may interpret ĥ(F ) in terms of the combined

minimal displacement e(F ) of F on all symmetric spaces and Bruhat-Tits

buildings that arise through the various completions of the number field. The

quantity e(F ) is defined as the weighted sum of the logarithm of the minimal

norms Ev(F ) = inf{||gFg−1||v, g ∈ GLd(Kv)}. Crucial to this correspondence

is a spectral radius formula for sets of matrices (Lemma 2.1 below), which com-

pares the minimal displacement of F (or equivalently Ev(F )) with the minimal

displacement of each individual matrix in the power set F d
2

(or equivalently

its maximal eigenvalue). As a consequence, ĥ(F ) is small if and only if e(F ) is

small.

In the second part of the proof, we fix a place v and work in G(Kv).

Given A,B in G(Kv), with A in a maximal torus T of G(Kv), we obtain local

estimates for the minimal displacement of the action of B restricted to the

maximal flat associated to T. These estimates are obtained via the Iwasawa

decomposition working our way through all positive roots of A starting from

the maximal one. At the end we get an upper bound for inftv∈T ||tvBt−1
v ||v,

which involves Ev(F ) on the one hand and the gap |1− α(A)|v between the

roots of α(A) and 1 on the other hand.

In the last part of the proof, we put all our local estimates together and

make crucial use of the product formula, so as to obtain an upper bound for

the weighted sum of all inftv∈T log ||tvBt−1
v ||v in terms of e(F ) and the average

of the log |1 − α(A)|v over all Archimedean places v, for each root α. When

e(F ) is small this upper bound becomes also small. Indeed, since the height of

each α(A) is small, we can invoke Bilu’s equidistribution theorem: the Galois

conjugates of α(A) equidistribute on the unit circle ([6]). Hence the average

of the log |1− α(A)|v’s gives a negligible contribution.

Finally, considering a suitably chosen regular map f on G which is invari-

ant under conjugation by the elements of T (a suitable matrix coefficient of B
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will do), we use the above upper bound to show that the height of f(B) as

well as f(Bi) for larger and larger i ∈ N, becomes small when e(F ) is small.

However, by a theorem of Zhang [43] on small points of algebraic tori, this

must force a nontrivial algebraic relation between the f(Bi)’s. Finally the

Eskin-Mozes-Oh lemma quoted above provides the desired contradiction, as

we may have chosen F = {A,B} to avoid this relation to begin with.

The reader can also consult [12], where we gave the full details of the proof

in the special case of GL2.

Outline of the paper. Section 2 is devoted to the definition of the normal-

ized and minimal heights and the derivation of their most basic properties. The

main results of this section are the spectral radius formula for several matrices

(Lemma 2.1 below) and Proposition 2.9, which gives a lower bound on the

displacement of the power set Fn. These facts will enable us to compare the

normalized height with the minimal height and to reinterpret the normalized

height in terms of adelic displacement.

In Section 3, we state our main results in full detail. Their proof occupies

the remainder of the paper. Section 4 gives the main reduction step from an

arbitrary subset of GLd(Q) to a subset consisting of two elements F = {A,B}
which generates a Zariski-dense subgroup of a simple algebraic group G. We

also prove there the comparison statement between different linear representa-

tions (Proposition 3.3). The geometric interpretation in terms of displacement

is also made precise at the end of Section 4.

In Section 5, we pick a Chevalley basis for the adjoint representation of

G and we prove local estimates whose aim is to obtain good upper bounds for

the size of the matrix coefficients of a conjugate of F = {A,B} which almost

realizes the infimum Ev(F ) = infg∈GLd(Kv) ||gFg
−1||v in terms of Ev(F ) and

the simple roots α(A). These local bounds are then used and put together in

Section 6 in order to get a global bound on the height of matrix coefficients of

A and B (Proposition 6.1).

Section 7 is devoted to completing the proofs of the results stated in

Section 3. In particular, we make use of the global bound proved in Section 6

to prove Theorem 1.2 (height gap) and the local estimates of Section 5 are

used again to give a proof of Proposition 1.1 (good position). Finally we also

derive the corollaries stated in this introduction.

2. Minimal height and displacement

2.1. Local notions of minimal norm, spectral radius and minimal displace-

ment. Let k be a local field of characteristic 0. Let ‖·‖k be the standard norm

on kd, that is the canonical Euclidean (resp. Hermitian) norm if k = R (resp. C)

and the sup norm (‖x‖k = maxi |xi|k) if k is non-Archimedean. We will also de-

note by ‖·‖k the operator norm induced on the space of d by d matrices Md(k)
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by the standard norm ‖·‖k on kd. Let Q be a bounded subset of matrices in

Md(k). We set
‖Q‖k = sup

g∈Q
‖g‖k

and call it the norm of Q. Let k be an algebraic closure of k. It is well known

(see Lang’s Algebra [28, XII.2, Prop. 2.5. ]) that the absolute value on k

extends to a unique absolute value on k; hence the norm ‖·‖k also extends in

a natural way to k
d

and to Md(k). This allows us to define the minimal norm

of a bounded subset Q of Md(k) as

Ek(Q) = inf
x∈GLd(k)

∥∥∥xQx−1
∥∥∥
k
.

We will also need to consider the maximal eigenvalue of Q, namely

Λk(Q) = max{|λ|k, λ ∈ spec(q), q ∈ Q},
where spec(q) denotes the set of eigenvalues (the spectrum) of q in k. We also

set Qn = Q × · · · × Q to be the set of all products of n elements from Q.

Finally, we introduce the spectral radius of Q; that is,

Rk(Q) = lim
n→+∞

‖Qn‖
1
n
k ,

in which the limit exists (and coincides with infn∈N ‖Qn‖
1
n
k ) because the se-

quence {‖Qn‖k}n is sub-multiplicative.

These quantities are related to one another. The key property concerning

them is given in the following result, which, together with its corollary below

(Propositon 2.7), we call “spectral radius formula for several matrices” because

of its parallel with the classical spectral radius formula relating the asymptotics

of the powers of a matrix with its maximal eigenvalue:

Lemma 2.1 (Spectral radius formula for Q). Let Q be a bounded subset

of Md(k).

(a) If k is non-Archimedean, then there is an integer q ∈ [1, d2] such that

Λk(Q
q) = Ek(Q)q.

(b) If k is Archimedean, then there is a constant c = c(d) ∈ (0, 1) indepen-

dent of Q and an integer q ∈ [1, d2] such that Λk(Q
q) ≥ cq · Ek(Q)q.

N.B. In the work of Eskin-Mozes-Oh [21] a result of a similar nature ap-

pears between the lines inside their argument (when they consider almost alge-

bras). A weaker version of this lemma (essentially part (b)) was already used

in [14]. The equality in part (a) is new and will be crucial in our arguments.

Proof. Let K be a field. We make use of two well-known theorems. The

first is a theorem of Wedderburn (see Curtis-Reiner [19, 27.27]) that if an

algebra A over K has a linear basis over K consisting of nilpotent elements,

then Am = 0 for some integer m. The second is a theorem of Engel (see



1066 EMMANUEL BREUILLARD

Jacobson [25]) that if A is a subset of Md(K) such that Am = 0 for some

integer m, then A can be simultaneously conjugated in GLd(K) inside Nd(K),

the subalgebra of upper triangular matrices with zeroes on and below the

diagonal. Combined together, these facts yield:

Lemma 2.2. Let K be a field. If Q is any subset of Md(K) such that

Qq contains only nilpotent matrices for every q, 1 ≤ q ≤ d2, then there is

g ∈ GLd(K) such that gQg−1 ⊂ Nd(K).

Proof. Since dimKMd(K) ≤ d2, theK-algebra generated byQ has a linear

basis made of elements in ∪1≤q≤d2Q
q. By Wedderburn and Engel, the result

follows. �

We first quickly prove (b). We argue by contradiction. There is a sequence

Qn with Ek(Qn) = 1 while max1≤q≤d2 Λk(Q
q
n)

1
q tends to 0. Up to conjugating

by some gn ∈ GLd(C), we may assume that ||Qn||C ≤ 1 + 1
n , and passing

to a Hausdorff limit, we obtain a compact set Q with EC(Q) = ||Q||C = 1,

while max1≤q≤d2 Λk(Q
q)

1
q = 0. But this is a contradiction with Lemma 2.2 as

EC(C) = 0 for any bounded subset C of Nd(C). This proves (b).

In order to prove (a) we first show:

Lemma 2.3 (Small eigenvalues implies large fixed point set). Let d ∈ N.

There exists an integer N = N(d) ∈ N with the following property. Let k

be a non-Archimedean local field with absolute value | · |k and Ok its ring of

integers. Let Q be a subset of Md(Ok) such that for each integer q ∈ [1, d2]

every element of Qq has all its eigenvalues of absolute value at most |π|Nk ,
where π is a uniformizer for Ok. Then there is g ∈ GLd(k) such that gQg−1

belongs to πMd(Ok).

Proof. We argue by contradiction. This means that we have a sequence

of local fields kn and subsets Qn in Md(Okn) such that ||gQng−1||kn ≥ 1 for all

g ∈ GLd(kn) and all eigenvalues of Qqn have absolute value at most |πn|nkn . Let

us consider a nonprincipal ultrafilter U on N and form the ultraproduct ring

A =
∏
U Okn . First let us decide that we have chosen the absolute value | · |n

on kn in such a way that |πn|n = 1
2 for every n, where πn is a fixed uniformizer

in Okn . For every xn ∈ Okn the quantity |xn|n may only take values among

2−(N∪{∞}). It follows that for every x ∈ A represented by (xn)n∈N, the quantity

|x| := limU |xn|n, which is well defined, may only take values in 2−(N∪{∞}).

Moreover, the defining properties of the absolute values | · |n are inherited by

| · |; that is, |xy| = |x| · |y| and |x + y| ≤ max{|x|, |y|}, except that there

may be nonzero elements x ∈ A with |x| = 0. We will quotient these elements

out. Let I = {x ∈ A, |x| = 0}. Then I is clearly a prime ideal of A. We

can now set O = A/I, which is a domain on which our absolute value | · |
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descends to a well-defined absolute value, which we still denote by | · |. On

O the absolute value | · | takes values in 2−(N∪{∞}) and satisfies the standard

axioms (|xy| = |x| · |y| ; |x + y| ≤ max{|x|, |y|}; |x| = 0 if and only if x = 0)

which make O a discrete valuation ring (see [3, Chapter 9]) with uniformizer

π equal to the class of (πn)n∈N in A/I. Let K be the field of fractions of O. It

is a field with a non-Archimedean absolute value and O = {x ∈ K, |x| ≤ 1}.
Let Q be the class of (Qn)n∈N in Md(O). Then Qq is the class of (Qqn)n∈N for

each q. But by assumption |a|n ≤ 1
2n for every nondominant coefficient a of

the characteristic polynomial of any matrix in Qqn. It follows that Qq is made

of nilpotent matrices for each q, 1 ≤ q ≤ d2. We may thus apply Lemma 2.2 to

Q in Md(K). There is a matrix g ∈ GLd(K) such that gQg−1 ⊂ Nd(K). Write

g = π−Lg where g ∈Md(O). There is ĝ ∈Md(O) such that gĝ = det g which is

the transpose of the matrix of minors. We thus have gQĝ ⊂ Nd(O). This means

that there is a function f(n) going to +∞ with n such that gnQnĝn ⊂ Nd(Okn)

mod π
f(n)
n for most n’s (i.e., for a set of n’s belonging to U). In particular

for every M ∈ N, for most n’s one may find a matrix hn ∈ GLd(kn) such

that hngnQnĝnh
−1
n ⊂ πM+1

n Md(Okn) (e.g. take hn diagonal with coefficients

π
−i(M+1)
n , i = 1, . . . , d). Finally note that det g ∈ O\{0} so that if (gn)n is a

representative of g in Md(A), there is M ∈ N such that | det gn|n ≥ 2−M for

most n ∈ N. Hence hngnQng
−1
n h−1

n ⊂ πnMd(Okn) for most n’s, which is the

desired contradiction. �

We can now prove (a). Let π be a uniformizer for k and let δ ≥ 0 be

such that max1≤q≤d2 Λk(Q
q)

1
q = |π|δkEk(Q). Assume by contradiction that

δ > 0. Let m ≥ N(d)/δ. Let k1 = k(π1) where πm1 = π and Fk1(Q) =

minx∈GLd(k1)

∥∥xQx−1
∥∥
k1
. Up to conjugating by x ∈ GLd(k1), we may assume

that Fk1(Q) = ||Q||k1 ≥ Ek(Q). Let Q0 = Q
q0

for some q0 ∈ k1 such that

|q0|k1 = ||Q||k1 . Then

max
1≤q≤d2

Λk(Q
q
0)

1
q ≤ |π1|δmk1 ≤ |π1|N(d)

k1

while Fk1(Q0) = 1. But this obviously contradicts Lemma 2.3. This ends the

proof of (a). �

Remark 2.4. In the proof we just gave of item (a) in Lemma 2.1, we used

an ultralimit argument in order to establish Lemma 2.3. Passing to ultralimits

allowed us to obtain a set Q made of genuinely nilpotent (instead of almost

nilpotent) matrices in the ultraproduct field K and to thereby be able to

apply the theorems of Wedderburn and Engel in the field K (i.e., Lemma 2.2).

Without such a limiting object at our disposal, we would have had to work

much harder and prove an epsilon version of the theorems of Wedderburn and

Engel, where nilpotency is replaced by ε-nilpotency (see Remark 2.5 below).
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Of course the use of ultralimits has the drawback that the constant N(d) we

get in Lemma 2.3 is noneffective. However this noneffectiveness has no effect

for our purposes (and no effect on the effectivity of the height gap ε(d) from

Theorem 1.2) because only the equality obtained in Lemma 2.1(a) (and not

the constant N(d) of Lemma 2.3) will be used later. See [12] for an alternative

argument for 2-by-2 matrices.

Remark 2.5. The proof of item (b) in Lemma 2.1 was by contradiction

and gave no indication about how large c is. This is, in fact, the only place

in this paper (and hence in the determination of the height gap ε(d) from

Theorem 1.2) where we have a constant which is not explicitable in principle.

However we can give another proof of (b) which is constructive and gives a

lower bound of order exp(−dd2) for c(d). We do not include this proof here

because it is much lengthier and requires us to prove an approximate version of

the theorems of Wedderburn and Engel valid for a set of matrices Q such that

each Qq is made of ε-nilpotent matrices (i.e., matrices all of whose eigenvalues

have modulus ≤ ε). Details can be found in [13].

Remark 2.6. Although we will not need this in the sequel, we observe in

passing and also to justify the title of Lemma 2.3 that it has the following

geometric interpretation in terms of the Bruhat-Tits building BT (GLd, k) of

GLd(k). Let S be a bounded subset of GLd(k). If every element of Sq, q ∈ [1, d2],

fixes pointwise a ball of radius n in BT (GLd, k) for the combinatorial distance,

then there is a common ball of radius Ωd(n) which is fixed pointwise by all

elements in S. This statement does not follow directly from Lemmas 2.2 and 2.3,

but from a simple modification of these lemmas, where one considers the k-

algebra generated by the Sq − Id, q ∈ [1, d2] in Md(k) in place of the one

generated by the Qq as in the proof of Lemma 2.3.

With the spectral radius formula at our disposal, that is Lemma 2.1, we

can now understand the relationships between the various quantities at hand,

i.e., the minimal norm, spectral radius and maximal eigenvalue.

Proposition 2.7. Let Q be a bounded subset of Md(k). We have

(i) Λk(Q) ≤ Rk(Q) ≤ Ek(Q) ≤ ‖Q‖k , and Rk(gQg
−1) = Rk(Q) for any

g ∈ GLd(k);

(ii) Λk(Q
n) ≥ Λk(Q)n, Ek(Q

n) ≤ Ek(Q)n and Rk(Q
n) = Rk(Q)n for all

n ∈ N;

(iii) Rk(Q) = limn→+∞Ek(Q
n)

1
n = infn∈NEk(Q

n)
1
n ;

(iv) Rk(Q) = supn∈N Λk(Q
n)

1
n ;

(v) if k is non-Archimedean, Rk(Q) = Ek(Q);

(vi) if k is Archimedean, c · Ek(Q) ≤ Rk(Q) ≤ Ek(Q), where c is the

constant from Lemma 2.1(b).
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Proof. Items (i) and (ii) are clear from the definitions. Let us first show

(iii). We have Ek(Q
n) ≤ ||Qn||k for every n ∈ N; hence lim supEk(Q

n)
1
n ≤

Rk(Q). On the other hand, Rk(Q) = Rk(gQg
−1) ≤ ||gQg−1||k for every

g ∈ GLd(k). Hence Rk(Q) ≤ Ek(Q) and for every n ∈ N, Rk(Q)n = Rk(Q
n) ≤

Ek(Q
n), thus Rk(Q) ≤ lim inf Ek(Q

n)
1
n . So we have shown that limEk(Q

n)
1
n

exists and equals Rk(Q). Furthermore, for every n, p ∈ N, Ek(Q
np)

1
np ≤

Ek(Q
p)

1
p . Letting n tend to +∞, we obtain Rk(Q) ≤ Ek(Q

p)
1
p . Hence

Rk(Q) = infn∈NEk(Q
n)

1
n .

Now consider (iv). It is clear that as Λk(Q
n) ≤ Rk(Qn) = Rk(Q)n, we have

sup Λk(Q
n)

1
n ≤ Rk(Q). On the other hand, given n ∈ N, there is 0 ≤ q ≤ d2

from Lemma 2.1, such that Λk(Q
qn)

1
qn ≥ c

1
n · Ek(Qn)

1
n (where c = 1 if k is

non-Archimedean) which forces sup Λk(Q
n)

1
n ≥ lim supEk(Q

n)
1
n = Rk(Q).

Now (v). From (iii) and (iv), for any q ∈ N, we clearly have Λk(Q
q)

1
q ≤

Rk(Q) ≤ Ek(Q). If k is non-Archimedean, then this fact combined with

Lemma 2.1(a) shows the desired identity. If k is Archimedean, then it gives

Λk(Q
q) ≤ Rk(Q)q, which when combined with Lemma 2.1(b) gives c ·Ek(Q) ≤

Rk(Q). �

Remark 2.8. It can be shown that Rk(Q) coincides with the infimum of

||Q|| over all possible operator norms || · || not necessarily assumed to be op-

erators norms of Euclidean or `∞ norms (see [13]). Observe, however, that

when k = R or C, then we may have Rk(Q) < Ek(Q). For instance, consider

Q = {1, T, S} ⊂ SL2(Z), where T and S are the matrices corresponding to

the standard generators of PGL2(Z), i.e., T = ( 1 1
0 1 ) acts by translation by 1

and S =
(

0 1
−1 0

)
by inversion around the circle of radius 1 in the upper half-

plane. Then it is easy to compute Ek(Q) =
√

2 = ||tQt−1||k where t is the

diagonal matrix t = diag( 1
4
√

2
,4
√

2). On the other hand, one can check that

||tQ2t−1||k < 2, and thus Rk(Q) ≤ Ek(Q2)
1
2 < Ek(Q).

Note that if Q belongs to SLd(k), then Ek(Q) ≥ Rk(Q) ≥ Λk(Q) ≥ 1.

The following proposition explains what happens if these quantities are close

or equal to 1.

Proposition 2.9 (Growth of displacement). Suppose k is Archimedean

(i.e., k = R or C). Then for every n ∈ N and every bounded subset Q of

SLd(k) containing 1, we have

(2) Ek(Q
n) ≥ Ek(Q)

√
n
4d

and

(3) logRk(Q) ≥ c1 · logEk(Q) ·min{1, logEk(Q)},
where c1 = c1(d) > 0 is a positive constant.
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Proof. We will use nonpositive curvature of the symmetric space Xk as-

sociated to SLd(k). Let d(·, ·) be the left invariant Riemmanian metric on

Xk normalized in such a way that d(ax0, x0)2 =
∑
i(log |ai|)2, if x0 ∈ Xk is

the base point corresponding to SOd(R) (resp. SUd(C)) and a is a diagonal

matrix in SLd(k). We set Lk(Q) = infx∈Xk maxq∈Q d(q · x, x). Observe that

Lk (Q) ∈ [1,
√
d] logEk(Q) (see also Lemma 4.14 below).

Let `n := Lk(Q
n) and let rn be the infimum over x ∈ Xk of the smallest

radius of a closed ball containing Qnx. Note first that rn ≤ `n ≤ 2rn. Indeed if

`n < t, then there is x ∈ Xk such that d(qx, x) < t for all q ∈ Qn, i.e., Qnx lies

in the ball of radius t centered at x, so rn ≤ t and thus rn ≤ `n. Similarly if

rn < t, then there is x ∈ Xk such that Qnx is contained in a ball of radius t. In

particular, d (y, z) ≤ 2t for all y, z ∈ Qnx and thus d(qx, x) ≤ 2t for all q ∈ Qn,
i.e., `n ≤ 2t, so `n ≤ 2rn.

We now prove (2). Fix ε > 0 and let x, y ∈ Xk be such that Qn+1x is

contained in a ball of radius rn+1 + ε around y. Let q ∈ Q be arbitrary. Since

Q contains 1, we have Qnx ⊂ Qn+1x, and qQnx lies in the two balls of radius

rn+1 + ε centered around qy and around y. By the CAT(0) inequality for the

median, the intersection of the two balls is contained in the ball B of radius

t :=
»

(rn+1 + ε)2 − d(qy, y)2/4 centered around the midpoint m between y

and qy. Translating by q−1, we get that Qnx lies in the ball of radius t centered

at q−1m. In particular rn ≤ t. This means d(qy, y)2 ≤ 4((rn+1 +ε)2−r2
n). Since

q ∈ Q and ε > 0 were arbitrary, we obtain `21 ≤ 4(r2
n+1 − r2

n). Summing over

n, we get n`21 ≤ 4r2
n ≤ 4`2n, hence (2).

For (3), note that for every n, by Lemma 2.1 there is q ≤ d2 such that

Λk(Q
qn)

1
q ≥ cEk(Q

n) ≥ cEk(Q)
√

n
4d , and hence Rk(Q) ≥ c

1
nEk(Q)

√
1

4dn . Op-

timizing in n we obtain a constant c1 = c1(d) for which (3) holds. �

Remark 2.10. The above inequality (2) is interesting only when Ek(Q) is

small. Indeed, a better estimate holds if Ek(Q) > 1
c , where c is the constant

c ∈ (0, 1) obtained in Lemma 2.1(b)

Ek(Q
n) ≥ max

q∈[1,d2]
Λk(Q

nq)
1
q ≥ max

q∈[1,d2]
Λk(Q

q)
n
q ≥ (cEk(Q))n.

Remark 2.11. Observe that if Q ⊂ SLd(k), then adding the identity to Q

does not modify our quantities. Namely, Q1 = Q∪{Id}, then Ek(Q1) = Ek(Q),

Λk(Q1) = Λk(Q) and also Rk(Q1) = Rk(Q). For the last identity, note that for

all n ∈ N, there is m ≤ n such that Λk(Q
n
1 ) = Λk(Q

m) ≤ Rk(Q)m ≤ Rk(Q)n,

since Rk(Q) ≥ 1, hence taking the supremum over n, Rk(Q1) ≤ Rk(Q), while

the converse inequality is clear.

2.2. Height, normalized height and minimal height. Let p be a prime num-

ber (abusing notation, we allow p = ∞). Fix an algebraic closure Qp of the

field of p-adic numbers Qp (if p = ∞, set Qp = R). We take the standard
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normalization of the absolute value on Qp (i.e., |p|p = 1
p), while | · |∞ is the

standard absolute value on R. It admits a unique extension to Qp, which we

again denote by | · |p. Let Q be the field of all algebraic numbers over Q and

K a number field. Let VK be the set of equivalence classes of valuations on K.

For v ∈ VK let Kv be the corresponding completion. For each v ∈ VK , Kv is

a finite extension of Qp for some prime p. We normalize the absolute value

on Kv to be the unique one which extends the standard abolute value on Qp.

Namely, |x|v = |NKv |Qp(x)|
1
nv
p , where nv = [Kv : Qp]. Equivalently, Kv has nv

different embeddings in Qp, and each of them gives rise to the same absolute

value on Kv. We identify Kv, the algebraic closure of Kv with Qp. Let Vf be

the set of finite places and V∞ the set of infinite places.

Let d ∈ N be an integer d ≥ 2. For v ∈ VK , in order not to surcharge

notation, we will use the subscript v instead of Kv in the quantities Ev(F ) =

EKv(F ), Λv(F ) = ΛKv(F ), etc.

Recall that if x ∈ K, then its height is by definition (see e.g. [7]) the

following quantity:

h(x) =
1

[K : Q]

∑
v∈VK

nv log+ |x|v.

It is well defined (i.e., independent of the choice of K 3 x). We will make

constant use of the following basic inequalities valid for every algebraic numbers

x and y: h(xy) ≤ h(x) + h(y) and h(x+ y) ≤ h(x) + h(y) + log 2.

Let us similarly define the height of a matrix f ∈Md(K) by

h(f) =
1

[K : Q]

∑
v∈VK

nv log+ ||f ||v,

where ||f ||v is the operator norm of f. We set the height of a finite set F of

matrices in Md(K) to be

(4) h(F ) =
1

[K : Q]

∑
v∈VK

nv log+ ||F ||v,

where nv = [Kv : Qv] and where ||F ||v = maxf∈F ||f ||v. We also define the

minimal height of F as

(5) e(F ) =
1

[K : Q]

∑
v∈VK

nv log+Ev(F )

and the normalized height of F as

(6) ĥ(F ) =
1

[K : Q]

∑
v∈VK

nv log+Rv(F ).

For any height h (i.e., h, e or ĥ), we also set h = h∞ + hf , where h∞ is the

infinite part of h (i.e., the part of the sum over the infinite places of K) and hf
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is the finite part of h (i.e., the part of the sum over the finite places of K). Note

that these heights are well defined independently of the number field K such

that F ⊆ Md(K). We also set hv(F ) = log+ ||F ||v (resp. ev(F ) = log+Ev(F ),

etc.) so that h = 1
[K:Q]

∑
v∈VK nvhv, etc.

Remark 2.12. If we choose another basis of Qd
, then the new height

hnew(F ) differs only from the original height by a bounded additive error.

Indeed there are only finitely many places where the new standard norm may

differ from the original one. On the other hand, ĥ(F ) is independent of the

choice of basis.

The above terminology is justified by the following facts:

Proposition 2.13. For any finite set F in Md(Q), we have:

(a) ĥ(F ) = limn→+∞
1
nh(Fn) = infn∈N

1
nh(Fn);

(b) ef (F ) = ĥf (F ) and e(F )+log c ≤ ĥ(F ) ≤ e(F ), where c is the constant

in Lemma 2.1(b);

(c) ĥ(Fn) = n · ĥ(F ) and ĥ(F ∪ {Id}) = ĥ(F );

(d) ĥ(xFx−1) = ĥ(F ) if x ∈ GLd(Q).

Proof. Since F is finite, there are only finitely many places v such that

||F ||v > 1. For each such place, 1
n log+ ||Fn||v → log+Rv(F ); hence 1

nh(Fn)→
ĥ(F ). By Proposition 2.7(vii) we have Ev(F ) = Rv(F ) if v ∈ Vf ; hence ef (F ) =

ĥf (F ), while c · Ev(F ) ≤ Rv(F ) ≤ Ev(F ) if v ∈ V∞, thus e∞(F ) + log c ≤
ĥ∞(F ) ≤ e∞(F ). Finally, by Proposition 2.7(ii), Rv(F

n) = Rv(F )n for every

n ∈ N and every place v. Hence ĥ(Fn) = n · ĥ(F ). �

We also record the following simple observation.

Proposition 2.14. (a) e(xFx−1) = e(F ) for all F finite in Md(Q)

and x ∈ GLd(Q);

(b) e(Fn) ≤ n · e(F );

(c) If λ is an eigenvalue of an element of F, then h(λ) ≤ ĥ(F ) ≤ e(F );

(d) If F ⊂ GLd(Q), then e(F ∪F−1) ≤ (d|F |+d−1)·e(F ) and e(F ∪{1}) =

e(F ). If F is a subset of SLd(Q), then e(F ∪ F−1) ≤ (d− 1) · e(F ).

Proof. The first three items are clear. For the last, observe that ||x−1||v =
1

| det(x)|v ||x||
d−1
v for any x ∈ GLd(Kv) as can be seen by expressing those norms

in terms of the KAK decomposition of x. Hence ||(F ∪ F−1)||v ≤ ||F ||d−1
v ·

max{ 1
|det(x)|v , x ∈ F ∪ {1}} and Ev(F ∪ F−1) ≤ Ev(F )d−1 ·max{ 1

| det(x)|v , x ∈
F ∪{1}}. So e(F ∪F−1) ≤ (d− 1)e(F ) +

∑
x∈F h(det(x)−1) i.e., e(F ∪F−1) ≤

(d|F |+ d− 1) · e(F ). �

We can also compare e(F ) and ĥ(F ) when ĥ(F ) is small.
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Proposition 2.15. For every ε > 0 there is δ = δ(d, ε) > 0 such that

if F is a finite subset of SLd(Q) containing 1 with ĥ(F ) < δ, then e(F ) < ε.

Moreover, ĥ(F ) = 0 if and only if e(F ) = 0.

This follows immediately from Proposition 2.13(b) and the following propo-

sition.

Proposition 2.16. Let c1 be the constant from Proposition 2.9; then

ĥ∞(F ) ≥ c1

4
· e∞(F ) ·min{1, e∞(F )}

for any finite subset F of SLd(Q) containing 1.

Proof. From Proposition 2.9, ĥv(F ) ≥ c1 · ev(F ) ·min{1, ev(F )} for every

v ∈ V∞. We may write e∞(F ) = αe+(F )+(1−α)e−(F ) where e+ is the average

of the ev greater than 1 and e− the average of the ev smaller than 1 (i.e.,

e+∑
v∈V∞,ev>1 nv =

∑
v∈V∞,ev>1 nvev and similarly for e−). Applying Cauchy-

Schwarz, we have ĥ∞(F ) ≥ c1 · (αe+ + (1 − α)(e−)2). If αe+(F ) ≥ 1
2e∞(F ),

then ĥ∞(F ) ≥ c1
2 e∞(F ), and otherwise (1 − α)e− ≥ e∞

2 , hence ĥ∞(F ) ≥
c1(1− α)(e−)2 ≥ c1

4 e
2
∞. At any case ĥ∞(F ) ≥ c1

4 · e∞(F ) ·min{1, e∞(F )}. �

In order to use the previous proposition inside GLd, we shall need the

following:

Proposition 2.17. For every finite set F in GLd(Q), then

(i) ĥ(Ad(F )) ≤ d(|F |+ 1) · ĥ(F ),

(ii) e(Ad(F )) ≤ d(|F |+ 1) · e(F ) and

(iii) e(F ) ≤ e(Ad(F )) + |F | · ĥ(F ).

Proof. By Lemma 2.18 below, log ||Ad(x)||v≤d log+ ||x||v+log+ |detx−1|v
for every place v and x ∈ Fn. Thus

log ||Ad(Fn)||v ≤ d log+ ||Fn||v + nmax
f∈F

log+ |det f−1|v.

Letting n go to infinity, we get

logRv(Ad(F )) ≤ d log+Rv(F ) + max
f∈F

log+ | det f−1|v.

Summing over the places we obtain ĥ(Ad(F )) ≤ dĥ(F ) +
∑
f∈F h(det f−1) ≤

d(1 + |F |) · ĥ(F ), where the last inequality follows from Proposition 2.14(c).

The other two inequalities are proven in a similar way. �

We used:

Lemma 2.18. For every local field k and every x ∈ GLd(k), 1

| det(x)|1/d
k

||x||k

≤ ‖Ad(x)‖k ≤
1

|det(x)|k ‖x‖
d
k , where Ad(x) ∈ GL(Md,d(k)).
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Proof. By the Cartan decomposition, we may assume that x is diagonal

x = diag(a1, . . . , ad) with |a1| ≥ · · · ≥ |ad|. Then ‖x‖k = |a1|k and ‖Ad(x)‖k =
|a1|k
|ad|k . On the other hand, | det(x)| = |a1 · · · ad| hence |a1|k

| det(x)|1/d
k

≤ |a1|k/|ad|k ≤
|a1|dk
| det(x)|k . We are done. �

Corollary 2.19. Let F be a finite subset of GLd(Q). Then ĥ(F ) = 0 if

and only if e(F ) = 0.

Proof. By Proposition 2.17, if ĥ(F ) = 0, then ĥ(Ad(F )) = 0. Since the

elements of Ad(F ) have determinant 1, we may apply Proposition 2.15 and

obtain e(Ad(F ))=0. By the last inequality in Proposition 2.17, we get e(F )=0.

The converse is clear from Proposition 2.13(b). �

Remark 2.20. In [37] a variant of our height function ĥ is studied in the

case when F is a single matrix. Namely setting h0(g) := 1
[K:Q]

∑
v∈VKnv log ||g||v

for g ∈Md(Q), then it is shown in [37] among other things that if g ∈ GLd(Q),

then h0(g) = sup
x∈Qd\{0}(h0(gx)− h0(x)) and that

lim
n→+∞

1

n
h0(gn) =

1

[K : Q]

∑
v∈VK

nv log Λv(g).

The results of this section can be seen as a generalization of [37] to sets F with

more than one matrix.

3. Statement of the results

We state here our results. The main theorem is the following:

Theorem 3.1 (Height gap). There exists a positive constant ε = ε(d) > 0

with the following property. Let F be a finite subset of GLd(Q) generating a

nonvirtually solvable subgroup. Then ĥ(F ) ≥ ε.

It is easy to characterize sets of zero normalized height.

Proposition 3.2 (Height zero points). If F is a finite subset of GLd(Q),

then ĥ(F ) = 0 if and only if the group generated by F is virtually unipotent.

Proof. If ĥ(F ) = 0, then e(F ) = 0 by Corollary 2.19. Now by Proposi-

tion 2.14, e(F ∪ F−1) = 0; hence ĥ((F ∪ F−1)n) = nĥ(F ∪ F−1) = 0 for each

n ∈ N. Thus every element from the group 〈F 〉 generated by F has only roots

of unity as eigenvalues. However, according to Theorem 6.11 in [31], 〈F 〉 has

a finite index subgroup Γ0 for which no element has a nontrivial root of unity

as eigenvalue. Therefore every element in Γ0 must be unipotent, i.e., Γ0 is

unipotent. Conversely, if 〈F 〉 is virtually unipotent, then every element in 〈F 〉
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has its eigenvalues among the roots of unity. In particular, as follows from

Proposition 2.7(iv), Rv(F ) = 1 for every place v. Hence ĥ(F ) = 0. �

The above results dealt with small values of the normalized height. The

following proposition says in substance that, provided 〈F 〉 has semisimple

Zariski closure, the normalized height is attained up to a constant by the

height of some suitable conjugate of F. We have

Proposition 3.3 (Comparison between h and ĥ). If G is a semisimple

algebraic group over Q and (ρ, V ) is a finite-dimensional linear representation

of G, then there is C ≥ 1 and there is a choice of a basis on V with associ-

ated height function h on End(V ), such that if F is any finite subset of G(Q)

generating a Zariski-dense subgroup of G, we have

ĥ(ρ(F )) ≤ e(ρ(F )) ≤ h(ρ(gFg−1)) ≤ C · ĥ(ρ(F ))

for some g ∈ G(Q).

Recall from Remark 2.12 that if we change the basis of V , then the asso-

ciated height differs from the original one only by an additive constant. This

proposition subsumes Proposition 1.1 from the introduction. It is important

for the applications as it allows us to conjugate F back in the “right position”.

Observe that by definition e(F ) is equal to the infimum of h(gFg−1) when

g = (gv)v∈VK is allowed to vary among the full group of adèles GLd(A). This

proposition shows that this infimum is attained up to a multiplicative constant

on principal adèles, i.e., on GLd(Q). The condition that the Zariski closure of

the group generated by F should be semisimple is important, as easy examples

show that the result of the proposition can fail if for instance F normalizes a

unipotent subgroup.

The normalized height ĥ was defined for an arbitrary finite subset of

GLd(Q). If G is an arbitrary semisimple group, then one can define the

normalized height for G as the one you obtain after taking some absolutely

irreducible representation of G which is nontrivial on each factor of G. The

following proposition shows that up to constants, this height is independent of

the choice of the representation.

Proposition 3.4 (Invariance under change of representation). Let G be

a semisimple algebraic group over Q and (ρi, Vi) for i = 1, 2 be two finite-

dimensional linear representations of G which are nontrivial on each simple

factor of G. Let hi be a height function on End(Vi) defined as above by the

choice of a basis in each Vi. Then there are constants C12, C
′
12 ≥ 1 such that

for any finite subset F of G(Q), we have

1

C12
· h2(ρ2(F ))− C ′12 ≤ h1(ρ1(F )) ≤ C12 · h2(ρ2(F )) + C ′12.
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In particular,
1

C12
· ĥ2(ρ2(F )) ≤ ĥ1(ρ1(F )) ≤ C12 · ĥ2(ρ2(F )).

Moreover, the constant C12 depends only on ρ1 and ρ2, and is independent of

the choice of basis used to define h1 and h2.

Finally, we record the following consequences.

Corollary 3.5. There are constants ε = ε(d), κ = κ(d) ∈ N and C =

C(d) ∈ N such that if F is any finite subset of GLd(Q) containing 1, there is

some a ∈ F κ and some eigenvalue λ of a such that

h(λ) ≥ 1

|F |C
· ĥ(F ).

As a corollary of this and the height gap theorem we obtain an effective

version of Schur’s classical result on torsion linear groups (see [33]).

Corollary 3.6 (Effective Schur: no large torsion balls). There is an

integer N2 = N2(d) ∈ N such that if K is a field and if F is a finite subset

of GLd(K) containing 1, then either it generates a finite subgroup, or (F ∪
F−1)N2(d) contains an element of infinite order. Furthermore, if F generates a

nonvirtually nilpotent subgroup, then we can find the element of infinite order

already in FN2(d).

The following example gives a situation showing that without the as-

sumption on F in the last sentence of this corollary, the conclusion may fail.

Consider the subgroup of GL2(C) consisting of affine transformations of the

complex line. Then, for arbitrary N ∈ N one may find a finite (nonsymmetric!)

set F containing the identity such that the group generated by F is infinite

and virtually abelian, while FN consists solely of elements of finite order. For

instance, take F = {id, aω, taωt−1} where aω = ( ω 0
0 1 ) is multiplication by ω (a

root of 1 of order N + 1) and t = ( 1 1
0 1 ) is translation by 1. Then the commu-

tator [aω, taωt
−1] is 6= 1 if N ≥ 0 and unipotent so of infinite order, while FN

is made of homotheties of ratio ωk with 1 ≤ k ≤ N (i.e., elements of the formÄ
ωk ∗
0 1

ä
), which are all torsion elements.

Remark 3.7. In the entire paper we work over Q. However a fair amount

of what we do remains valid over global fields of positive characteristic, i.e.,

over the algebraic closure of Fp(t). In particular, the definition of the heights

makes sense, except that all places are non-Archimedean. Also all properties

of Section 2 hold in positive characteristic as well, and they even become

simpler since all places are non-Archimedean and can thus be treated on an

equal footing, and e(F ) = ĥ(F ) always. Proposition 3.4 remains true for

irreducible representations of G. Moreover the additive constant disappears.

Also Proposition 3.3 remains true for irreducible representations. The same is
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true for Corollary 3.5. This is key for the applications to the Tits alternative in

positive characteristic proved in [11]. The proof of these propositions is word-

by-word the same as in the Q case, except for the proof of Proposition 3.3

which needs some mild modification if the characteristic is 2 or 3 or if G is

of type A (see Remark 7.3). Theorem 3.1 however has no direct analog in

positive characteristic (nor does Zhang’s Theorem 7.1): for a counterexample

take Fn to be the two-element set in SL2 consisting of an upper triangular and

a lower triangular unipotent matrix with coefficient t
1
n ; then Fn generates a

Zariski-dense subgroup, but ĥ(Fn)→ 0. Nevertheless this is not a problem for

the applications to the Tits alternative, since all places being non-Archimedean

in positive characteristic, only the positivity of ĥ matters there. See [11] for

more on positive characteristic.

Remark 3.8. Another possible definition of our height functions h, ĥ and

e consists in replacing the log+ by log in (4), (5) and (6). This new definition

(let us denote it by h0 and ĥ0) is more adapted to PGLd while ours is more

adapted to SLd, but the differences are minor. First of all, it is clear that the

two notions coincide if F ⊂ SLd, because each norm ||F ||v is then greater or

equal to 1. Moreover, h0(F ) ≥ 0 for all F (from the product formula applied to

any eigenvalue of an element of F, say). Also h0(λF ) = h0(F ) for all λ ∈ Q×,

and h(F ) = h0(ρ(F )) where ρ is the obvious embedding of GLd inside GLd+1

in the upper-left corner. Of course ĥ0(F ) ≤ ĥ(F ).

Moreover, Theorem 3.1 also holds for ĥ0. This follows easily from Corol-

lary 1.7. Indeed, let F ′ = {f/(det f)1/d, f ∈ F}; then 〈F ′〉 is virtually solvable

if and only if 〈F 〉 is. By Corollary 1.7 there is g ∈ F ′N1(d) and an eigenvalue

λ of g such that h(λ) > ε = ε(d) > 0. But h(λ) ≤ ĥ0({g}), because g ∈ SLd,

and there is µ ∈ Q× such that µg ∈ FN1(d). So h(λ) ≤ ĥ0({g}) = ĥ0({µg}) ≤
N1(d)ĥ0(F ). Hence the result.

4. Preliminary reductions

The main goal of this section is to establish Proposition 4.11 below, which

reduces the proof of Theorem 3.1 to the case when F = {a, b} is a finite

set of two regular semisimple elements generating a Zariski dense subgroup

inside G(Q), where G is a Zariski-connected absolutely simple algebraic group

of adjoint type defined over Q, and where the underlying vector space is the

Lie algebra g of G on which G acts via the adjoint representation, so that

G ⊂ SL(g).

4.1. Escape and reduction to a 2-element set. In this section, we prove

Proposition 1.8 from the introduction in the slightly stronger form given below

in Proposition 4.1. The key ingredient there is a lemma due to Eskin-Mozes-Oh

about escaping from algebraic subvarieties in bounded time.
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First we recall some terminology. Let G be a connected semisimple al-

gebraic group over Q. A semisimple group element a ∈ G(Q) is said to be

regular if ker(Ad(a)− 1) has the minimal possible dimension (namely equal to

the absolute rank of G). For A1 ∈ N, we will say that a ∈ G(Q) is A1-regular

if ker(Ad(a) − ω) has minimal possible dimension for every root of unity ω

of order at most A1 (namely dimension 0 if ω 6= 1 and the absolute rank if

ω = 1). It is clear that the subset of A1-regular elements of G is a nonempty

Zariski open subset of G consisting of semisimple elements.

If Z is a proper Zariski closed subset of G invariant under conjugation by a

maximal torus T, then we let “Z be the Zariski-closure of {(gag−1, gbg−1) ∈ G2

with g ∈ G, a ∈ T and b ∈ Z, or a ∈ Z and b ∈ T}. It is a proper algebraic

subset of G×G of dimension at most 2 dimG− 1.

Proposition 4.1. Let G be a connected semisimple algebraic subgroup of

GLd(Q) with maximal torus T . Let Z be a proper Zariski closed subset of G in-

variant under conjugation by T . Then there is an integer c = c(G, Z) > 0 such

that if F is a finite subset of G(Q) generating a Zariski-dense subgroup in G,

then (F ∪{1})c(d) contains two elements a and b which are regular semisimple,

generate a Zariski dense subgroup of G, and satisfy (a, b) /∈ “Z. For any given

integer A1 ∈ N, by allowing c to depend also on A1, i.e., c = c(G, Z,A1) > 0,

we may further assume that a and b are A1-regular.

The key ingredient in this proposition is the following lemma. For an

algebraic variety X we will denote by m(X) the sum of the degree and the

dimension of each of its irreducible components.

Lemma 4.2 (Eskin-Mozes-Oh escape lemma [21, Lemma 3.2]). Given an

integer m ≥ 1 there is N = N(m) such that for any field K , any integer d ≥ 1,

any K–algebraic subvariety X in GLd(K) with m(X) ≤ m and any subset

F ⊂ GLd(K) which contains the identity and generates a subgroup which is

not contained in X(K), we have FN * X(K).

This result is a consequence of the following generalized version of Be-

zout’s theorem about the intersection of finitely many algebraic subvarieties

(see Zannier’s appendix in [32]).

Theorem 4.3 (Generalized Bezout theorem). Let K be a field, and let

Y1, . . . , Yp be pure dimensional algebraic subvarieties of Kn. Denote by W1, . . .

. . . ,Wq the irreducible components of Y1 ∩ · · · ∩ Yp. Then
∑q
i=1 deg(Wi) ≤∏p

j=1 deg(Yj).

In order to apply the escape lemma to the proof of Proposition 4.1, we

need:
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Proposition 4.4. Let G be a connected semisimple algebraic group over C.

There is a proper algebraic subvariety X of G×G such that any pair (x, y) /∈ X
is made of regular semisimple elements which generate a Zariski-dense sub-

group of G.

Proof. Recall the well-known:

Lemma 4.5. The set U of regular semisimple elements of G is a nonempty

Zariski-open subset of G.

Proof. The set U coincides with the set of g ∈ G such that ker(Ad(g)− 1)

is of minimal dimension. This is clearly a Zariski-open condition. �

We will make use of Jordan’s theorem on finite subgroups of GLd(C) (see

[19]). Recall that according to this theorem, there is a constant C = C(d) ∈ N,
such that if Γ is a finite subgroup of GLd(C), then Γ contains a abelian subgroup

A with [Γ : A] ≤ C(d). As the kernel of the adjoint representation coincides

with the center of G, it follows that the same bound apply for all finite sub-

groups of G(C) as long as dim(G) ≤ d. Let V (G) be the proper Zariski-closed

subset of G×G consisting of all couples (x, y) such that [xC!, yC!] = 1. By Jor-

dan’s theorem, if (x, y) /∈ V, then the subgroup generated by x and y infinite.

Let (Gi)1≤i≤k be the C-simple factors of G, together with their factor maps

πi : G→ Gi. For convenience, let us denote G0 = G. Let Xi, for 0 ≤ i ≤ k,

be the subset of G×G consisting of couples (x, y) such that the C-subalgebra

of End(gi) generated by Ad(πi(x)), and Ad(πi(y)) is of strictly smaller dimen-

sion than the subalgebra generated by the full of Ad(Gi), where gi is the Lie

algebra of Gi. This is a Zariski-closed subset of G×G. According to [9, VIII.2,

Ex. 8], each gi is generated by two elements. If follows that Xi is a proper

closed subvariety. Also let Vi be the set of couples (x, y) ∈ G×G such that

(πi(x), πi(y)) ∈ V (Gi), where V (Gi) is the proper closed subset defined above.

Finally, let X be the proper closed subvariety X = U c ∪⋃iXi ∪
⋃
i Vi. Let

us verify that X satisfies the conclusion of the proposition. Suppose (x, y) /∈ X.
Then (x, y) ∈ U and x,y are regular semisimple. Let H be the Zariski closure

of the group generated by x and y. Let hi be the Lie algebra of πi(H), which

is a Lie subalgebra of gi. As hi is invariant under Ad(πi(x)) and Ad(πi(y)),

it must be invariant Ad(Gi), by the assumption that (x, y) /∈ Xi. Therefore

hi is an ideal of gi. As gi is a simple Lie algebra, either hi = {0} or hi = gi.

In the former case, this means that πi(H) is finite. However, by assumption

(πi(x), πi(y)) /∈ V (Gi), this means that the group generated by πi(x) and πi(y)

is infinite. So πi(H) is not finite, hi = gi and πi(H) = Gi.

On the other hand, since (x, y) /∈ X0, the same argument shows that the

Lie algebra of H itself is an ideal in g. Hence H◦ is a normal subgroup of G,

hence is the product of the simple factors of G contained in it. The fact that

πi(H) = Gi for each i forces H = G. �
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Proof of Proposition 4.1. This is immediate by the combination of Propo-

sition 4.4 and Lemma 4.2 applied to F × F in G×G. �

4.2. Reduction to semisimple G. This section is devoted to the proof of

Proposition 4.6. In order to prove Theorem 3.1, it is enough to prove

the following assertion. There is ε = ε(d) > 0 such that : If G ⊆ SLd is a

semisimple algebraic group over Q acting irreductibly on Qd
and F = {Id, a, b}

is a subset of G generating a Zariski-dense subgroup, then e(F ) > ε(d).

The proof of this will rest mainly on the following proposition.

Proposition 4.7. There are constants C = C(d) > 0 and m = m(d) ∈ N
such that if F is a finite subset of GLd(Q) containing 1 and generating a

nonvirtually solvable subgroup, there exists a subset F1 ⊂ Fm, a connected

semisimple algebraic group H together with a faithful irreducible representation

(ρ0, V0) of H with dimV0 ≤ d and a homomorphism π : Γ0 → H(Q), where Γ0

contains F1 and has index at most m in Γ = 〈F 〉, such that π(Γ0) is Zariski

dense in H and
e(ρ0 ◦ π(F1)) ≤ C(d) · e(F ).

The proof of this proposition will occupy the rest of this subsection. At

the end we derive Proposition 4.6 from it.

We first analyse the local behavior at each place. Let K be a number

field and (ei)1≤i≤d be the canonical basis of V = Kd. Let V =
⊕

1≤i≤m Vi
be a direct sum decomposition adapted to this basis, i.e., there are indices

j1 < · · · < jm such that Vi = span{eji , . . . , eji+1−1}. Let P be the group

of block upper-triangular matrices determined by the corresponding flag, i.e.,

the parabolic subgroup of GLd fixing the flag. Let ρ : P → GLd be the

natural homomorphism that sends a matrix A = (aij)ij ∈ P to the matrix

ρ(A) = (a′ij)ij with a′ij = aij , if ei and ej belong to the same Vk and a′ij = 0

otherwise.

Lemma 4.8. Let v ∈ VK be a place of K. Let F be a finite subset of

GLd(K) ∩ P. Then
Ev(ρ(F )) = Ev(F ).

Proof. One needs first to observe that if || · || is any standard norm (i.e.,

a Euclidean norm associated to some basis of kd when k is archimedian, a

sup-norm associated to some Ok lattice in kd, say R, when k is ultrametric),

then ‖ρ(x)‖v ≤ ‖x‖v for every x ∈ P. This fact easily follows after we check

that there is a direct sum decomposition of Kd
v as

⊕
1≤i≤mWi where the Wi’s

are orthogonal (Archimedean case) or give rise to a direct factor decomposition

R =
⊕

1≤i≤m(Wi∩R) (ultrametric case) and for which x remains block upper-

triangular in any basis adapted to this decomposition. From this we get the
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first half of the claimed relation, i.e., Ev(ρ(F )) ≤ infg∈GLd(Qv)

∥∥gρ(F )g−1
∥∥ ≤

infg∈GLd(Qv)

∥∥gFg−1
∥∥
v = Ev(F ).

The second half follows from the remark that ρ(F ) can be approximated

uniformly by the δFδ−1’s for some suitably chosen δ ∈ ∆(Qv), where ∆ is the

group of block scalar matrices associated with the Vi’s. Indeed we get

Ev(F ) = inf
g∈GLd(Qv)

∥∥∥gFg−1
∥∥∥
v

= inf
g∈GLd(Qv)

inf
δ∈∆(Qv)

∥∥∥gδFδ−1g−1
∥∥∥
v

≤ inf
g∈GLd(Qv)

∥∥∥gρ(F )g−1
∥∥∥
v

= Ev(ρ(F )). �

This lemma gives that if Qd
=
⊕

1≤i≤m Vi is a direct sum decomposition

associated to a composition series for G, then e(ρ(F )) = e(F ). Moreover 〈F 〉
is virtually solvable if and only if ρ(〈F 〉) is virtually solvable and if and only if

each ρi(〈F 〉) is virtually solvable, where ρi is the induced action on Vi. Hence

there must be one ρi0 for which ρi0(〈F 〉) is not virtually solvable. Note that

e(ρi0(F )) ≤ e(F ).

Let H0 be the Zariski closure of ρi0(F ) in GL(Vi0). Note at this point that

if we knew that H0 was connected semisimple, we would be done.

Clearly, the connected component H◦0 is a reductive group, since a non-

trivial unipotent radical would have a nontrivial pointwise fixed subspace: this

subspace would then be globally invariant under H0 and contradict the irre-

ducibility of the action on Vi0 .

Let W1 be a H◦0-irreducible subspace of minimal dimension in Vi0 . As H◦0
is normal in H0, and H0 acts irreducibly on Vi0 , we have a direct sum decompo-

sition Vi0 =
⊕

1≤j≤qWj into H◦0-irreducible subspaces where H0/H◦0 permutes

transitively the Wj ’s. Since H0 is not virtually solvable, H◦0 is not solvable;

thus its image into GL(W1) (say, all Wj are isomorphic representations of H◦0)

is not solvable. Observe that, since H◦0 is reductive and acts irreducibly on W1,

its center must act by homotheties (by Schur’s lemma), hence the semisimple

part, say S, of H◦0 also acts irreducibly.

Let H1 be the stabilizer of W1 in H0. Then [H0 : H1] ≤ q ≤ d. We now

use:

Lemma 4.9. Suppose L is a linear algebraic group with L◦ reductive. Let

S be the semisimple part of L◦ (S = [L◦,L◦]) and Z be the centralizer of S in L.

Then [L : ZS] ≤ c(d), where c(d) is a constant depending only on d = dim(L).

Proof. The group S is normal in L; let σ : L→ Aut(S) be the map given

by conjugation. It induces σ : L→ Out(S). But Out(S) is a finite group whose

order depends only on the Dynkin diagram of S; hence it is bounded in terms

of d only (see [8, 14.9]). Let K be the kernel of σ. Then [L : K] ≤ c(d) by the

latter remark. On the other hand, by definition of K, K = ZS. �
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We apply this lemma to L = H1. Since S acts irreducibly on W1, Z must

act by homotheties (Schur’s lemma). Set H2 = ZS. We have H◦0 ⊂ H2 and

[H0 : H2] ≤ dc(d). Also [Γ : Γ0] ≤ d where Γ0 = Γ ∩ H2 is Zariski dense

in H2. By the (well-known) Lemma 4.10 below, we may find a finite set F0

in (F ∪ {1})2dc(d)−1 containing 1 such that 〈F0〉 = Γ0. Moreover e(F0) ≤
e(F 2dc(d)−1) ≤ (2dc(d)− 1)e(F ).

Lemma 4.10. Let F be a finite subset of a group Γ containing 1. Assume

that the elements of F (together with their inverses) generate Γ. Let Γ0 be a

subgroup of index k in Γ. Then F 2k−1 contains a generating set of Γ0.

Proof. It is clear that F k−1 contains a set of representatives for each left

coset in Γ/Γ0, say {s1, . . . , sk}. Similarly, (F−1)k−1 contains a set of represen-

tatives of the left cosets, say {u1, . . . , uk}. Consider all elements of Γ0 of the

form sifu
−1
j for i, j ∈ [1, k] and f ∈ F. They all belong to F 2k−1. It is straight-

forward to verify that, together with their inverses, they generate Γ0. �

In order to get rid of Z, we now consider the action of H2 by conjugation

on End(W1). The action factors through S, hence the image is a connected

semisimple algebraic subgroup of GL(End(W1)), say H3. Moreover, we can

bound the new height in terms of the old one by making use of Proposition 2.17

above. In particular, if F1 is any subset of H2(Q), then e(Ad(F1))≤d(|F1|+ 1)

· e(F1).

By Proposition 4.1 above (or Proposition 1.8 from the introduction), we

may find a pair a, b in F
c2(d)
0 (for some constant c2(d)) which generates modulo

Z a Zariski dense subgroup of H3. Let F1 = {1, a, b}. Then e(Ad(F1)) ≤
4d · e(F1) ≤ 4d · c2(d) · e(F0) and e(Ad(F1)) ≤ Od(1) · e(F ) where Od(1) =

8d2c(d)c2(d).

Now the group 〈Ad(F1)〉 is Zariski dense in H3, and we may apply verbatim

the beginning of the proof to this group, to conclude that for some irreducible

subrepresentation of H3 on End(W1), say (ρ,W ) we have e(ρ(Ad(F1))) ≤
e(Ad(F1)) ≤ Od(1) · e(F ). Set H to be the image of H3 in GL(W ). Clearly

Γ0 acts on W with Zariski closure H. Thus the proof of Proposition 4.7 is

complete.

Proof of Proposition 4.6. In the setting of Theorem 3.1 we first reduce

to proving a gap for e(F ) instead of ĥ(F ). This can indeed be achieved

since, with the notation of the last section, ĥ(F ) = 1
Cd
ĥ(FCd) ≥ 1

Cd
ĥ(F1)

with Cd = 2dc(d)c2(d). Moreover, Proposition 2.17 also yields ĥ(Ad(F1)) ≤
d(|F1| + 1) · ĥ(F1) ≤ Od(1)ĥ(F ). But Ad(F1) lies in matrices with determi-

nant 1, and generates a nonvirtually solvable subgroup; hence Proposition 2.15

shows that ĥ(Ad(F1)) is bounded away from 0 if and only if e(Ad(F1)) is. But
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e(ρ(Ad(F1))) ≤ e(Ad(F1)) and ρ(Ad(F1)) generates a Zariski dense subgroup

of the semisimple algebraic group H. Applying Proposition 1.8 we are done. �

4.3. Comparison of heights under different representations. In this section

we prove Proposition 3.4 and we conclude the reduction step of Theorem 3.1

by proving Proposition 4.11 below.

First let us recall some facts about representations of Chevalley groups.

Let G be a semisimple algebraic group over Q. The group G is a Chevalley

group and comes with an associated Z structure. For general background

on Chevalley groups we refer the reader to Steinberg [35] and to Bourbaki

[9, Ch. 8]. We let gZ be a Chevalley order corresponding to G on the Lie

algebra g of G and a the associated Cartan subalgebra in g. Also let (Y1, . . . , Yd)

be a Chevalley basis of gZ so that the Yi’s for i ∈ [|Φ+| + 1, |Φ+| + r] span

the admissible lattice gZ ∩ a of a (here Φ+ is the set of positive roots and

r the absolute rank of G). We denote by T the maximal split torus of G
corresponding to a and by τ the Cartan involution.

Given a local field k, we define the “Killing norm” || · ||Kill,k on gk to be

the one given by the Killing form Bg when k is Archimedean (i.e., ||X||Kill,k =

−Bg(X
τ , X)) and the one arising from the lattice gZ ⊗ Ok = gOk when k is

ultrametric (i.e., ||X||Kill,k = maxi |xi|k if X =
∑
xiYi). This allows us to

define what we will call the “Killing height” hKill(F ) for F ⊆ G(Q) by the

usual formula (4) where we use the Killing norm at each place.

We denote by K0 the stabilizer of || · ||Kill,k. It is a maximal compact sub-

group of G(k). It is also a good maximal compact subgroup in the sense of [16,

3.3], that is K0 contains a copy of the Weyl group, so that NK0(T (k))T (k) =

NG(k)(T (k)).

Let V, ρV be a finite-dimensional linear representation of G which is non-

trivial on each factor of G. By Steinberg [35, §2, Cor. 1], there exists an integer

lattice, say VZ, of V which is invariant under G(Z) and which is spanned by a

basis (Y1, . . . , YD) made of weight vectors for the action of T . When k is ultra-

metric VOk = VZ⊗Ok defines the following norm on Vk = VZ⊗k. We denote it

by ||X||ρV ,k := maxi |xi|k if X =
∑D
i=1 xiYi ∈ Vk. When k is Archimedean, then

there exists a hermitian scalar product on Vk which is invariant under K0 and

for which G(k) is stable under taking the adjoint (see [29]). We denote again

by || · ||ρV ,k the corresponding hermitian norm. Together these norms define a

height function hρV on finite subsets of End(V ) defined as in (4). When V, ρV
is the adjoint representation, the just defined norms and height coincide with

the Killing norms and height.

Proof of Proposition 3.4. By complete reducibility (true in characteristic

zero, in positive characteristic one has to assume irreducibility to begin with),

we may assume that both representations are irreducible, with highest weight
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χ1 and χ2 respectively. Let W be the Weyl group of G. If g ∈ T, then

||ρi(g)||ρi,k = maxw∈W |χi(w(g))|k . Since the root lattice is of finite index in

the weight lattice, there exists n0 = n0(G) ∈ N such that n0χi is a linear

combination
∑
α∈Π n

(i)
α α with nonnegative integer coefficients of the simple

roots α ∈ Π of G. Since the inverse of the Cartan matrix of an irreducible

root system has no zero entry (see [9]), and since each ρi is nontrivial on each

nontrivial factor of G, the coefficients nα are nonzero. It follows that

||ρ1(g)||n0
ρ1,k
≤ max

α∈Π
max
w∈W

|α(w(g))|Mk ≤ max
w∈W

|χ2(w(g))|Mn0
k

≤ ||ρ2(g)||Mn0
ρ2,k

,

where M = maxi=1,2,α∈Π n
(i)
α . Now the Cartan decomposition implies that the

above inequality holds for every g ∈ G(k). It follows that hρ1 ≤Mhρ2 . Finally,

if we considered instead the norm built from the basis (Y1, . . . , YD) of Vi over

Z defined above, then it would differ from || · ||ρ1,k only at infinite places by

a fixed multiplicative constant, say Ci. Let hi be the associated height. Then

|hρi −hi| ≤ Ci. Therefore h1 ≤Mh2 +C1 +MC2. Together with Remark 2.12

this ends the proof of Proposition 3.4. �

We can now conclude this section of preliminary reductions by proving:

Proposition 4.11. In Theorem 3.1, we may assume that F = {Id, a, b}
is a subset of G(Q), where G is a Zariski-connected absolutely simple algebraic

group of adjoint type defined over Q, viewed via the adjoint representation as

an algebraic subgroup of SL(g), where g is the Lie algebra of G.

Proof. According to Proposition 4.6, when proving Theorem 3.1, we may

assume that F generates a Zariski-dense subgroup of a semisimple algebraic

group G acting irreducibly on Qd
. By Proposition 3.4, the normalized heights

of this representation of G and of the adjoint representation of G are com-

parable. Hence proving the gap for the first amounts to proving the gap for

the second. We may thus assume that G = Ad(G) is acting via the adjoint

representation on its Lie algebra g. It remains to verify that we can reduce to

a simple factor of G. Recall that G is the direct product of its simple factors.

As the representation space g splits into the G-invariant subspaces correspond-

ing to the simple ideals (gi)i of g, and as h(Ad(F )) ≥ h(Ad(F )|gi) for each i,

it is enough to prove the theorem for one of the simple factors. Finally by

Proposition 1.8, we may assume that F has three elements {Id, a, b}. �

4.4. Geometric interpretation and displacement on symmetric spaces and

Bruhat-Tits buildings. In this final section of preliminary reductions, we give a

geometric interpretation of the minimal norm Ev(F ) and prove Lemma 4.15,

which will be key in the proof of the main theorem. We keep the notation

of the previous section. Here again G is a Chevalley group and k is a local
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field. We set BT (G, k) to be the Bruhat-Tits building (resp. the symmetric

space if k is Archimedean) associated to G(k) as defined in [16]. We fix V, ρV a

finite dimensional linear representation of G which is nontrivial on each factor

of G as in Section 4.3 above. We let x0 be the base point of BT (SLV , k)

corresponding to the stabilizer of the norm || · ||ρV ,k defined in Section 4.3. The

maximal compact subgroup K0 of G(k) defined in Section 4.3 coincides with

the stabilizer of || · ||ρV ,k inside G(k).

Let ` be a finite extension of k. On BT (G, `) we define the distance d to be

the standard left invariant distance on BT (G, `) with the following normaliza-

tion: if a ∈ A, then d(a·x0, x0) =
»∑d

i=1(log |ai|k)2, where log is the logarithm

in base |π−1
` |k, with π` a uniformizer for O` when k is non-Archimedean, and

the standard logarithm if k is Archimedean. With this normalization, the dis-

tance between adjacent vertices on BT (G, `) is of order 1 and independent of

` (when k is non-Archimedean).

Proposition 4.12 below, which was communicated to us by P. E. Caprace

[17], shows that the symmetric space or building BT (G, k) ' G(k)/K0 embeds

isometrically in BT (SLV , k) as a closed and convex subspace via the orbit map

G(k)/K0 → BT (SLV , k), gK0 7→ g. The short proof given below makes use

of the general theory of CAT(0) spaces (examples of which are the symmetric

spaces and buildings BT (SLV , k) considered here). We refer the reader to the

book by Bridson and Haefliger [15] for background on CAT(0) spaces. In par-

ticular, the notion of a semisimple isometry of a CAT(0) space is defined in

[15, II.6.].

Proposition 4.12. As above let k be a local field and G a semisimple

k-split linear algebraic group, with Cartan decomposition G(k) = K0T (k)K0.

Assume that G(k) acts properly by isometries on a complete CAT(0) space X

in such a way that semisimple elements of G(k) act by semisimple isometries.

Assume that K0 fixes a point p in X which belongs to a flat P stabilized by

T (k). Then the map gK0 7→ g · p induces (up to renormalizing the metric

on X) a G(k)-equivariant isometric embedding f from BT (G, k) to X .

Proof. Let G = G(k), T = T (k) and P0 the T -invariant flat in BT (G, k)

containing the base point p0 associated to K0. According to the Flat Torus

Theorem (see [15, II.7.]), there is a unique minimal T -invariant flat containing

p and its dimension is dimT = r = rk(G). We may thus assume that P is

this minimal flat. However, the normalizer NG(T ) permutes the T -invariant

flats and NG(T ) is generated by T and by NG(T )∩K0. It follows that NG(T )

stabilizes P . Hence g ·p0 7→ g ·p induces an NG(T )-equivariant map f between

P0 and P .

Note first that it is enough to show that f is a homothety from P0 to P .

Indeed up to renormalizing the metric in X, we may then assume that f is an
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isometry from P0 to P, i.e., d(a · p, p) = d(a · p0, p0). But then for any g, h ∈ G,

d(f(g ·p0), f(h·p0)) = d(h−1g ·p, p) = d(a·p, p) = d(g ·p0, h·p0) if h−1g = k1ak2

is a Cartan decomposition of h−1g.

The fact that f : P0 → P is a homothety follows from the rigidity of

Euclidean Coxeter group actions. Indeed NG(T ) contains the affine Weyl group

as a co-compact subgroup which acts co-compactly by isometries on both P0

and P. But any such action is isometric to the standard Coxeter representation

(cf. [9]). �

Remark 4.13. This proposition is a special case of a theorem of Landvogt

about functoriality properties of Bruhat-Tits buildings (see [27]) in the non-

Archimedean case and a theorem of Karpelevich and Mostow (see [29]) in the

form given by Eberlein in [20, 2.6.] in the Archimedean case.

The relation between the operator norm on SL(Vk) and the displacement

on BT (SLV , k) in given by the following well-known:

Lemma 4.14. For any f, g ∈ SL(Vk) and x = g−1 · x0 ∈ BT (SLV , k),

letting log be the logarithm in base |π−1
k |k, we have

log
∥∥∥gfg−1

∥∥∥
ρV ,k
≤ d(f · x, x) ≤

√
dimV · log

∥∥∥gfg−1
∥∥∥
ρV ,k

.

Proof. Since d(·, ·) is left invariant, we may assume that g = 1. Then we

may write f = k1ak2 the Cartan decomposition for f . Since the norm is fixed

by K0 we can assume that f = a. Then the estimate is obvious from the

normalization we chose for d(·, ·) above. �

A consequence of this lemma is that the logarithm of the minimal norm of a

finite set F is comparable to the minimal displacement of F on BT (SLV , k). As

in [14], 5.4.1., we will use a projection argument and the fact that BT (SLV , k)

is a CAT(0) space in order to show that the minimal displacement of F is

attained on BT (G, k). More precisely:

Lemma 4.15. For every finite set F ∈ G(k), we have

Ek(ρV (F )) ≤ inf
g∈G(k)

∥∥∥ρV (gFg−1)
∥∥∥
ρV ,k
≤ Ek(ρV (F ))

√
dimV .

Proof. The left side of the inequalities is obvious from the definition of

Ek(ρV (F )). For any ε > 0, one can find a finite extension ` of k such that

infg∈G(Qv)

∥∥ρV (gFg−1)
∥∥
ρV ,k
≤ infg∈G(`)

∥∥ρV (gFg−1)
∥∥
ρV ,k

+ ε. By Lemma 4.14,

inf
g∈G(`)

log
∥∥∥ρV (gFg−1)

∥∥∥
ρV ,k
≤ inf

g∈G(`)
max
f∈F

d(fgx0, gx0)(7)

≤ inf
x∈BT (G,`)

max
f∈F

d(fx, x) + c,
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where the log is in base |π−1
` |k and c is the maximal distance from any point

in BT (G, `) to the nearest point in the orbit G(`) · x0. Note that this constant

c is independent of the choice of `. Since BT (SLV , `) is a CAT(0) metric space

and BT (G, `) a closed convex subset, for every x ∈ BT (SLV , `), one can define

the projection p(x) of x on BT (G, `) to be the (unique) point that realizes

the distance from x to BT (G, `). The projection map is 1-Lipschitz; hence

d(fx, x) ≥ d(fp(x), p(x)) for any x ∈ BT (SLV , `). Therefore,

(8) inf
x∈BT (G,`)

max
f∈F

d(fx, x) = inf
x∈BT (SLV ,`)

max
f∈F

d(fx, x).

Combining (7) with (8) and Lemma 4.14, we get

inf
g∈G(k)

∥∥∥ρV (gFg−1)
∥∥∥
ρV ,k
≤ (|π−1

` |k)
c inf
g∈SLV (`)

∥∥∥gρV (F )g−1
∥∥∥√dimV

ρV ,k
+ ε.

But ` can be taken arbitrarily large, so that |π−1
` |k can be taken arbitrarily

close to 1, and since c was independent of ` and ε was arbitrary, we finally get

the right-hand side of the desired inequality. �

5. Local estimates on Chevalley groups

In this section, we work locally in a fixed local field, and prove several

crucial estimates relating the minimal norm Ek(F ) and the matrix coefficients

of the elements of F in the adjoint representation. In the next section, we will

gather this local information at each place and put it together to obtain global

bounds.

5.1. Notation. Recall our notation. The group G is an absolutely simple

algebraic group of adjoint type defined over Q, viewed via the adjoint repre-

sentation as an algebraic subgroup of GL(g), where g is the Lie algebra of G.

We let L be a number field over which G splits. The set F = {Id, a, b} consists

of the identity and two semisimple regular elements of G(Q) which generate a

Zariski-dense subgroup of G.

Let T be the unique maximal torus of G containing a. Let Φ = Φ(G, T )

be the set of roots of G with respect to T. Let r be the absolute rank of G. Let

us also choose a Borel subgroup B of G containing T, thus defining the set of

positive roots Φ+ and a base Π for Φ. For α ∈ Φ, let gα be the root subspace

corresponding to α and t = g0 be the Lie algebra of T, so that we have the

direct sum decomposition

(9) g = t⊕
⊕
α∈Φ

gα.

Let (α1, . . . , αr) be an enumeration of the base associated to the choice

of B. The chosen enumeration of the elements of the base induces a total

order on the set of roots, namely two roots α =
∑
niαi and β =

∑
miαi
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satisfy α ≥ β if and only if (n1, . . . , nr) ≥ (m1, . . . ,mr) for the canonical

lexicographical order on r-tuples. We may label the roots in decreasing order,

so that α1 > · · · > α|Φ+| > 0 > α|Φ+|+r+1 > · · · > α|Φ|+r is the full list of

all roots. Note that d = dim g = |Φ|+ r and that α|Φ+|+r+i = −α|Φ+|+1−i for

1 ≤ i ≤ |Φ+|. Also set α0 = 0 and αi = 0 if i ∈ Ir = [|Φ+| + 1, |Φ+| + r].

Finally, for any root α, let iα be the index such that αiα = α.

For every α ∈ Φ+ ∪ {0}, let uα be the subspace of g generated by the gβ’s

for all roots β > α.

Lemma 5.1. For each α ∈ Φ+, uα is an ideal in b = t ⊕ ⊕α∈Φ+ gα.

Moreover the sequence of uα’s for α ∈ Φ+ is a decreasing (with α) sequence of

nontrivial ideals in b starting with u0 =
⊕
α∈Φ+ gα, each one being of codimen-

sion 1 inside the previous one.

Proof. We have uα =
⊕

β>α gβ. Moreover [gγ , gβ] ≤ gγ+β and γ + β > α

for any γ ∈ Φ+ ∪ {0}, and so clearly [b, uα] ≤ uα. The second assertion follows

from the fact that each gα, α ∈ Φ, has dimension 1. �

We also denote by Uα the unipotent algebraic subgroup of G whose Lie

algebra is uα, and by U0 the maximal unipotent subgroup, whose Lie algebra

is u0. Furthermore, for each α ∈ Φ, we denote by eα : Ga → G the morphism

of algebraic groups corresponding to Xα ∈ gα, i.e., eα(t) = exp(tXα). Recall

that Uα =
∏
β>α eβ(Ga), so any element in Uα can be written as a product of

eβ(tβ)’s for β > α.

Recall that since g is a simple Lie algebra, it has a Chevalley basis (canon-

ical up to automorphisms of g) {Hα, α ∈ Π} ∪ {Xα, α ∈ Φ} with Hα ∈ t and

Xα ∈ gα. Let (ωα)α∈Π be the basis of t which is dual to Π. Equivalently

β(ωα) = δαβ. Then {ωα, α ∈ Π} ∪ {Xα, α ∈ Φ} is also a basis of g and defines

a Z-structure gZ on g with [gZ, gZ] ⊂ gZ (see [35]). Hence for any field k,

we can define gk = gZ ⊗Z k. If K is a number field and v a place of K with

corresponding embedding σv : K → Kv where Kv is the associated completion

of K, then we will use the notation gv to mean gKv .

Since the definition of e(F ) does not depend on the choice of the basis of

g used to define the standard norm appearing in the quantities Ev(F ), we may

as well fix the basis of g to be the basis {ωα, α ∈ Π} ∪ {Xα, α ∈ Φ}, which we

denote (Y1, . . . , Yd) with Yi = Xαi ∈ gαi if i /∈ Ir = [|Φ+| + 1, |Φ+| + r] and

Yi ∈ {ωα, α ∈ Π} if i ∈ Ir.
Let B(X,Y ) be the Killing form on g. We have B(Yi, Yj) ∈ Z for all i, j.

The Chevalley involution is the linear map τ : g → g by Y τ
i = −Yi for i ∈ Ir

and and Xτ
α = −X−α for each α ∈ Φ. Then τ is an automorphism of g which

perserves gZ. We set φ(X,Y ) = −B(Xτ , Y ).

We now describe how to choose the norm ‖·‖v on gv. First consider the

case when v is Archimedean, i.e., Qv = C. We set 〈X,Y 〉v = φ(X,Y ), and
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thus get a positive definite scalar product on gv and a norm ‖·‖v on gv. Let

Kv = {g ∈ G(C), gτ = g}, where we denoted again by τ the automorphism

of G(C) induced by the Chevalley involution τ. Then Kv is a maximal com-

pact subgroup of G(C) and this group coincides with the stabilizer of 〈·, ·〉v in

G(C), which in turn coincides with {g ∈ G(C), ‖Ad(g)‖v = 1} where the norm

is the operator norm associated to 〈·, ·〉v. Note that (Y1, . . . , Yd) however is

not orthogonal with respect to 〈·, ·〉v but the decomposition (9) is orthogonal.

Finally observe that according to the Iwasawa decomposition we may write

G(C) = KvU0(C)T (C).

Suppose now that v is non-Archimedean. We let ‖·‖v be the norm induced

on gv by the basis (Y1, . . . , Yd), i.e., ‖∑ yiYi‖v = max1≤i≤d |yi|v. Then we set

Kv to be the stabilizer in G(Qv) of gOv = gZ ⊗Z Ov, where Ov is the ring of

integers in Qv. In this situation, the Iwasawa decomposition (see [24]) reads

G(Qv) = KvU0(Qv)T (Qv). Recall (see [35, §1, Lemma 6]) that for any n ∈ N
and any α ∈ Φ, ad(Xα)n

n! fixes gZ. Hence
∥∥∥ad(Xα)n

n!

∥∥∥
v
≤ 1.

Let cv = supα∈Φ
‖ad(Xα)‖v
‖Xα‖v

if v is Archimedean and set cv = 0 if v is

non-Archimedean. Then, for any place v and x ∈ Qv, the following holds:

‖Ad(eα(x))‖v =

∥∥∥∥∥1 + ad(xXα) +
ad(xXα)2

2!
+ · · ·+ ad(xXα)d

d!

∥∥∥∥∥
v

(10)

≤ ecv ·max{1, ‖xXα‖v}
d

for every α ∈ Φ, where d = dim g.

Finally we observe that we have:

Lemma 5.2. Suppose v is non-Archimedean. Then, for each root α ∈ Φ,

the norm |α|v := supY ∈tv\{0}
|α(Y )|v
‖Y ‖v

satisfies |α|v = 1.

Proof. First, note that it obviously holds when α ∈ Π, because α(ωβ) =

δαβ. As every α ∈ Φ is a linear combination with integer coefficients of elements

from Π, we must have |α|v ≤ 1. To show the opposite inequality, observe that

gcd(α(ωβ), β ∈ Π) = 1. Indeed, suppose there were a prime number p such

that p divides gcd(α(ωβ), β ∈ Π). Then α = pα0 with α0 =
∑r
i=1 niαi for some

ni ∈ Z and Π = {α1, . . . , αr}. But since Φ is reduced, α belongs to some base

of the root system say α = α′1, . . . , α
′
r ([9, VI.1.5]). Since each αi is a linear

combination with integer coefficients of some α′i ’s, we get that α0 ∈ Zα, a

contradiction. �

Note that when v is Archimedean, then |α|v is independent of v (it is the

norm of α with respect to the canonical scalar product induced on the real

vector space spanned by the root system). We denote it by |α|∞.
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5.2. Some local estimates. We work locally, fixing the place v. The aim of

this subsection is to record two estimates, namely Propositions (5.5) and (5.6)

below.

Let now (ei)1≤i≤d be an orthonormal basis for gC such that for each 1 ≤
i ≤ d, ei ∈ gαi . Note that if b ∈ Ad(B(C)), then the matrix of b is upper-

triangular in the basis (ei)i.

Lemma 5.3. Let V be a complex vector space of dimension n endowed

with a hermitian scalar product 〈·, ·〉 . Let (ei)1≤i≤n be an orthonormal basis of

V and assume that b ∈ SL(V ) has an upper-triangular matrix in this basis.

Then ∑
i<j

|〈bei, ej〉|2 ≤ n ·
Ä
‖b‖2 − 1

ä
.

Proof. Let λ1 ≥ · · · ≥ λn ≥ 0 be the eigenvalues of b∗b. According to

Cartan’s KAK decomposition, we have ‖b‖2 = λ1. We have

tr(b∗b) =
∑

λi ≤ n · λ1 = n · ‖b‖2 .

On the other hand,

tr(b∗b) =
∑
i,j

|〈bei, ej〉|2 =
∑
i<j

|〈bei, ej〉|2 +
∑

1≤i≤n
|µi|2,

where µ1, . . . , µn are the eigenvalues of b. But 1
n

∑
1≤i≤n |µi|2 ≥ (

∏ |µi|) 2
n = 1

since det(b) = 1. Hence

n · ‖b‖2 ≥ tr(b∗b) ≥
∑
i<j

|〈bei, ej〉|2 + n. �

Lemma 5.4. Let v be any place. Let α ∈ Φ+, a ∈ T (Qv) regular, vα ∈
Uα(Qv) and nα = eα(x) for some x ∈ Qv and let b = Ad(nαavαn

−1
α ). Then if

v is Archimedean,

(11) ‖xXα‖v ≤

»
d · (‖b‖2v − 1)

|1− α(a)|v|α|v
while if v is non-Archimedean,

(12) ‖xXα‖v ≤
‖b‖v

|1− α(a)|v|α|v
,

where |α|v is the norm of α viewed as linear form on tv as in Lemma 5.2.

Proof. First observe that if m ∈ Uα and Y ∈ tv, then Ad(m)Y ∈ Y + uα,

while if m = eα(x) for some x, then Ad(m)Y = Y +x[Xα, Y ] = Y −α(Y )xXα.

Let Y ∈ tv be arbitrary. We have nαavαn
−1
α = aa−1nαan

−1
α nαvαn

−1
α = a ·

eα((α(a−1)− 1)x) · n′′ where n′′ ∈ Uα. We then compute:

(13) bY ∈ Y + x(1− α(a))α(Y )Xα + uα.



A HEIGHT GAP THEOREM FOR FINITE SUBSETS OF GLd(Q) 1091

Suppose first that v is Archimedean:

〈bY,Xα〉v = x(1− α(a))α(Y ) ‖Xα‖2v .

On the other hand, Y =
∑
yiei for some yi ∈ Qv all zero except if i ∈ Ir =

[|Φ+|+ 1, |Φ+|+ r] (recall that we defined the vectors ei’s in Lemma 5.3 to be

any orthonormal basis for gC such that for each 1 ≤ i ≤ d, ei ∈ gαi). Using

Cauchy-Schwarz, we get:

|〈bY,Xα〉v| ≤ ‖Xα‖v ‖Y ‖v
√∑
i∈Ir
|〈bei, eiα〉v|

2.

But b is upper-triangular in the basis (ei)i because nαavαn
−1
α belongs to the

Borel subgroup B(Qv). We are in a position to apply Lemma 5.3, which yields

|(1− α(a))α(Y )|v · ‖xXα‖v · ‖Xα‖v ≤ ‖Xα‖v · ‖Y ‖v ·
√
d · (‖b‖2v − 1).

As this is true for all Y ∈ t, we indeed obtain (11).

Now assume v is non-Archimedean. Then (13) shows that

‖x(1− α(a))α(Y )Xα‖v ≤ ‖b‖v ||Y ||v,

which is what we wanted. �

Proposition 5.5. There are explicitly computable positive constants

(Ci)1≤i≤3 depending only on d = dim g and p = |Φ+| such that for any

a ∈ T (Qv) regular and u ∈ U0(Qv), we have

(14) ‖Ad(u)‖v ≤ C3 ·
∥∥∥Ad(uau−1)

∥∥∥C1

v
·
( p∏
i=1

max{1, Li}
)C2

,

where Li = (|1− αi(a)|v · |αi|v)−1. Moreover, if v is non-Archimedean, then

(14) holds with C3 = 1.

Proof. Recall that we may write u = eαp(xp) · · · eα1(x1), where p = |Φ+|
and xi ∈ Qv for each i. We want to apply Lemma 5.4 recursively starting with

α = αp and going up to α1. For each α ∈ Φ+ let uα = eαiα−1(xiα−1) · · · eα1(x1)

and nα = eα(xα). For each i ∈ [1, p] we have uαi+1au
−1
αi+1

= nαuαau
−1
α n−1

α =

nαavαn
−1
α , where α = αi vα = a−1uαau

−1
α ∈ Uα.

We set bp+1 = Ad(uau−1) and bi = Ad(uαiau
−1
αi ). Lemma 5.4 gives for

each i ∈ [1, p],

‖xαiXαi‖v ≤ fv · Li · ‖bi+1‖v ,

where fv =
√
d if v is Archimedean, and fv = 1 otherwise. Since bi+1 =

Ad(nαi)biAd(n−1
αi ), we have

‖bi‖v ≤ ‖bi+1‖v · e
2cv ·max{1, ‖xαiXαi‖v}

2d,
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where we have used (10). Hence combining the last two lines, we get

(15) ‖bi‖v ≤ µi · ‖bi+1‖2d+1
v ,

where µi = e2cvf2d
v max{1, Li}2d.

On the other hand, ‖Ad(u)‖v ≤
∏
α∈Φ+ ‖Ad(eα(xα))‖v, and using (10)

again we obtain

‖Ad(u)‖v ≤ e
pcv ·

Ñ ∏
α∈Φ+

max{1, ‖xαXα‖v}

éd

≤ epcv · fdpv ·
( p∏
i=1

max{1, Li}
)d
·

Ñ
p+1∏
i=2

‖bi‖v

éd

.

It remains to estimate the last term in the right-hand side. Recursively from

(15), we get

p+1∏
i=2

‖bi‖v ≤ ‖b‖
∑p−1

k=0
(2d+1)k

v ·
p∏
i=2

p∏
k=i

µ
(2d+1)k−i

k .

Hence we do indeed obtain a bound of the desired form. �

The above proposition is useful to bound ‖Ad(u)‖v when
∥∥Ad(uau−1)

∥∥
v

may be large. We now need an estimate (only when v is Archimedean) when

this norm is small. Let Li be defined as in the previous statement.

Proposition 5.6. Suppose v is Archimedean. Then there are positive

constants (Di)1≤i≤3 depending only on d = dim g and p = |Φ+|, such that for

any u ∈ U0(Qv) and a ∈ T (Qv) regular with log
∥∥Ad(uau−1)

∥∥
v ≤ 1, we have

log ‖Ad(u)‖v ≤ D3 · LD2
v ·

(
log

∥∥∥Ad(uau−1)
∥∥∥
v

)D1

,

where Lv =
∏p
i=1 max{1, Li(a)v}.

Proof. In this proof, by a constant we mean a positive number that de-

pends only on d and p. Observe that there exists ε1 > 0 such that
√
x2 − 1 ≤

2
√

log x as soon as x ≥ 1 and log x ≤ ε1. We keep the notation of the proof of

the previous proposition. Applying Lemma 5.4, we thus obtain that as soon

as `i+1 ≤ ε1

‖xαiXαi‖v ≤ 2
√
d · Li ·

»
`i+1,

where we set `i=log ‖bi‖v for each i ∈ [1, p], and `=`p+1 = log
∥∥Ad(uau−1)

∥∥
v .

We may choose a smaller ε1 so that

‖Ad(eα(x))‖v ≤ 1 + 2cv ‖xXα‖v
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for each α ∈ Φ+ as soon as |x|v ≤ ε1, as we see from (10). Hence if
√
`i+1 ≤

ε1
2
√
d·L· , then

‖bi‖v ≤ ‖bi+1‖v ·
(
1 + 4

√
d · Li ·

»
`i+1

)2

or

`i≤ `i+1 + 8
√
d · Li ·

»
`i+1

≤C · L ·
»
`i+1

for some constant C. Applying this recursively, we see that, as soon as L is

bigger than some constant, if ` ≤ ε2
p+1

1

L3p+1 then, for each i ∈ [1, p], `i ≤
ε2
p+1

1

L3p+1 and

`i ≤ C ′ · L2 · `
1

2p+1−i

for each i ∈ [1, p] and some constant C ′. On the other hand, ‖Ad(u)‖v ≤∏
α∈Φ+ ‖Ad(eα(xα))‖v ≤

∏
α∈Φ+ ecv‖xαXα‖v and

log ‖Ad(u)‖v ≤ cv ·
p∑
i=1

‖xαiXαi‖v ≤ C
′′ · L ·

√ ∑
2≤i≤p+1

`i

≤C ′′′ · L2 · `
1

2p+1 .

On the other hand, the cruder bound obtained in Proposition 5.5 shows that

without a condition on `,

log ‖Ad(u)‖v ≤ logC3 + C1 · `+ C2 · logL;

hence

log ‖Ad(u)‖v ≤ C0 · L
for some constant C0 if ` ≤ 1 and L larger than some constant. Take D1 =

1
2p+1 , D2 ≥ 1 +

Ä
3
2

äp+1
and D3 ≥ max{C0

ε1
, C ′′′}. Then if ` ≥ ε2

p+1

1

L3p+1 , we have

D3 ·LD2 · `
1

2p+1 ≥ D3 ·L · ε1 ≥ C0 ·L. Therefore, as soon as ` ≤ 1 and L larger

than some constant say C4, we have

log ‖Ad(u)‖v ≤ D3 · LD2 · `D1 .

Hence up to changing D3 into D3C
D2
4 if necessary, we obtain the desired result.

�

6. Global bounds on arithmetic heights

In this section we gather together all the local data obtained in the previ-

ous section and sum it up to obtain a global bound (see Proposition 6.1 below)

on the height of the matrix coefficients of the finite set F.

Recall our set of notation from the last section (see §5.1). G is a Chevalley

group of adjoint type and T a maximal torus. We had fixed a total order

on the set of all roots induced by an ordering of the simple roots; that is,
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Φ = {α1, . . . , α|Φ+|, α|Φ+|+r+1, . . . , αd}, where r is the rank of g = Lie(G) and

Ir = [|Φ+|, |Φ+|+ r]. The Lie algebra g has a basis (Y1, . . . , Yd) obtained from

a Chevalley basis of g, with Yi = Xαi if i /∈ Ir and Yi ∈ {ωα, α ∈ Π} if i ∈ Ir.
Also gZ denotes the integer lattice generated by the basis (Y1, . . . , Yd). Recall

further that for X,Y ∈ g we had set φ(X,Y ) = −B(Xτ , Y ) where B is the

Killing form and τ the Chevalley involution. Note that (9) is an orthogonal

decomposition for the symmetric bilinear form φ.

We will consider the elements A = Ad(a) and B = Ad(b) from F =

{Id, a, b} ⊂ G(Q) with a ∈ T as matrices in the basis (Y1, . . . , Yd). Then A is

diagonal and B = (bij)ij ∈ SLd(Q). Consider the regular function on G given

by f(g) = gdd in this basis. The root α (d) is the smallest root in the above

ordering. It coincides with the opposite of the highest root of Φ in the sense

of [9, VI.1.8.]. Observe the following:

– for every t ∈ T , we have f(tgt−1) = f(g);

– for every t ∈ T , f(t) = αd(t), hence f is not constant;

– φ(Ad(g)Yd, Yd) = f(g)φ(Yd, Yd);

– for every place v we have |f(g)|v ≤ ||Ad(g)||v.
Recall that we consider G as a subgroup of SL(g) and thus define the

heights e and ĥ of finite subsets of G(Q) with respect to the adjoint represen-

tation. The goal of this section is to prove:

Proposition 6.1. For every n ∈ N and any α > 0 there is η > 0 and

A1 > 0 such that if F = {Id, a, b} is a subset of G(Q) with a ∈ T (Q) such that

e(F ) < η and deg(αi(a)) > A1 for each positive root αi, then we have for every

i ∈ N, 1 ≤ i ≤ n,

h(f(bi)) < α,

where f is the function defined above.

This proposition is central to the proof of the main theorem of this paper,

that is Theorem 3.1. How to proceed from it to a complete proof of Theorem 3.1

will be explained in the next section. For the moment, let us just say that

given the assumptions of Theorem 3.1, if ĥ(F ) is small, then by escape from

subvarieties (see Proposition 4.1) one may find many pairs {a, b} in a bounded

power of F that satisfy the requirements of the above proposition, indeed one

may find such {a, b} outside every given subvariety of G×G. Applying Zhang’s

theorem (see [43] and Theorem 7.1 below), we will see however that the height

bounds imposed upon the f(bi)’s by the above proposition will force {a, b}
to belong to a proper algebraic variety of G, thus contradicting the choice of

{a, b}.
We now begin the proof of the above proposition. It will make use of the

local estimates obtained in the previous section as well as Bilu’s equidistri-

bution theorem (see below). The proof will occupy the next two subsections.
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First, we collect the local estimates and see what bounds they give us. Then

we use Bilu’s theorem to show that the remainder terms give only a small

contribution to the height.

6.1. Preliminary upper bounds. Recall that the (Ci)1≤i≤3’s and (Di)1≤i≤3’s

are the constants obtained in Propositions 5.5 and 5.6. For A ≥ 1 and x ∈ Q
we set

(16) hA∞(x) :=
1

[K : Q]

∑
v∈V∞,|x|v≥A

nv · log+ |x|v,

where the sum is limited to those v ∈ V∞ such that |x|v ≥ A. Recall that for

x ∈ Q, hf (x) denotes the finite part of the Weil height, namely the sum over

the non Archimedean places. In this section, we prove the following:

Proposition 6.2. There are positive constants A0, C4 and D4, such that

for every ε ∈ (0, 1) and A > A0, for every j ∈ N, and for every choice of two

regular semisimple elements a, b ∈ G(Q) with a ∈ T (Q), we have the following

bound :
(17)
h(f(bj))

j
≤ C4

logA

ε
e({a, b}) +D4A

D2εD1 + C4

∑
1≤i≤p

Ä
hf (δ−1

i ) + hA∞(δ−1
i )
ä
,

where δi = 1− αi(a) for each positive root αi ∈ Φ+ and p = |Φ+|.

As before, we set F = {a, b}. For each place v let sv > log(EAd
v (F )) be

some real number. According to Lemma 4.15, there exists gv ∈ G(Qv) such

that
∥∥Ad(gvFg

−1
v )

∥∥
v ≤ esv . Since by the Iwasawa decomposition we have

G(Qv) = KvU0(Qv)T (Qv), and Kv stabilizes the norm, we may assume that

gv ∈ U0(Qv)T (Qv), i.e., gv = uv · tv. Since t commutes with a we get∥∥∥Ad(uvau
−1
v )
∥∥∥
v
≤ esv ,∥∥∥Ad(uvb

tvu−1
v )
∥∥∥
v
≤ esv ,

where btv = tvbt
−1
v . Recall that d = dimG.

According to Proposition 5.5, we have∥∥∥Ad(btv)
∥∥∥
v
≤ esv · ‖Ad(uv)‖dv(18)

≤ esv · Cd3 ·
∥∥∥Ad(uvau

−1
v )
∥∥∥dC1

v
·
( p∏
i=1

max{1, Li(a)v}
)dC2

≤Cd3 ·
( p∏
i=1

max{1, Li(a)v}
)dC2

· esv(1+dC1)

with C3 = 1 if v is non-Archimedean. Let Lv =
∏p
i=1 max{1, Li(a)v}. We get

(19) log
∥∥∥Ad(btv)

∥∥∥
v
≤ d logC3 + dC2 · logLv + (1 + dC1) · sv.
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Now assume v is Archimedean. According to Proposition 5.6 we have constants

Di > 0 such that if sv ≤ 1, then

log
∥∥∥Ad(btv)

∥∥∥
v
≤ sv + d log ‖Ad(uv)‖v ≤ sv + dD3L

D2
v · sD1

v(20)

≤D′4LD2
v · sD1

v ,

where D′4 = dD3 + 1 and where we have chosen D1 ≤ 1 as we may so that

sv ≤ sD1
v . Since |f(bj)|v ≤

∥∥Ad(btv)
∥∥j
v for each j ∈ [1, n] and v, we have

h(f(bj))

j
≤ 1

[K : Q]

∑
v∈VK

nv · log
∥∥∥Ad(btv)

∥∥∥
v
.

In order to prove Proposition 6.2, we will decompose this sum into four parts.

Let κ = mini |αi|∞ (see Lemma 5.2 and the remark following it for the defi-

nition of |αi|∞). We split the set of places v into four parts: v ∈ V∞, sv ≤ ε

and Lv ≥ A/κ (this gives H+
≤ ), v ∈ V∞, sv ≤ ε and Lv < A/κ (this gives H−≤ ),

v ∈ V∞ and sv > ε (this gives H≥) and finally v ∈ Vf (this gives Hf ). So

h(f(bj))

j
≤ H−≤ +H+

≤ +H≥ +Hf .

Making use of the bound (19) for H+
≤ , H≥ and Hf and the bound (20) for H−≤

respectively, we obtain the following estimates as soon as A is large enough

(logA > logA0 := 1 + dC1 + d logC3 + log |κ|, we also set C4 = 4dC2):

Hf ≤ (1 + dC1)
1

[K : Q]

∑
v∈Vf

nv · sv + (dC2)
1

[K : Q]

∑
v∈Vf

nv · logLv,

H≥ ≤
Å
d logC3

ε
+ (1 + dC1)

ã
· 1

[K : Q]

∑
v∈V∞,sv>ε

nv · sv

+
C4

4

1

[K : Q]

∑
v∈V∞,sv>ε

nv · logLv

≤ C4 logA

ε
· 1

[K : Q]

∑
v∈V∞,sv>ε

nv · sv

+
C4

4

1

[K : Q]

∑
v∈V∞,sv>ε,Lv≥A/κ

nv · logLv,

H+
≤ ≤ (2dC2) · 1

[K : Q]

∑
v∈V∞,sv≤ε,Lv≥A/κ

nv · logLv,

H−≤ ≤
1

[K : Q]

∑
v∈V∞,sv≤ε,Lv<A/κ

nv ·D′4LD2
v · sD1

v

≤ 2
D′4
κD2

AD2εD1 ≤ D4A
D2εD1

for D4 = 2
D′4
κD2

, since nv ≤ 2 for v ∈ V∞.
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Note that e(F ) = 1
[K:Q]

∑
v∈VK nv · sv, so the above bounds give

h(f(bj))

j
≤ C4

logA

ε
e(F )(21)

+
C4

2

1

[K : Q]

Ñ ∑
v∈V∞,Lv≥A/κ

nv · logLv +
∑
v∈Vf

nv · logLv

é
+D4A

D2εD1 .

On the other hand, logLv ≤
∑

1≤i≤p log+ Li(a)v where Li(a)v = |δ−1
i |v/|αi|v

and δi = 1− αi(a).

Clearly if Li(a)v ≥ A/κ ≥ κ−2, then |δ−1
i |v ≥ A and Li(a)v ≤ |δ−1

i |2v . We

get ∑
v∈V∞,Lv≥A/κ

nv · logLv ≤
∑

1≤i≤p

∑
v∈V∞,Li(a)≥A/κ

nv · log+ Li(a)v(22)

≤ 2 ·
∑

1≤i≤p

∑
v∈V∞,|δi|v≤A−1

nv · log+ |δ−1
i |v.

Now note that for v ∈ Vf we have |αi|v = 1 according to Lemma 5.2. It follows

that

(23)
∑
v∈Vf

nv · log+ Li(a)v =
∑
v∈Vf

nv · log+ |δ−1
i |v = [K : Q] · hf (δ−1

i ).

Hence combining (21) with (22), (23) we obtain (17) and this ends the proof

of Proposition 6.2.

6.2. Bilu’s equidistribution theorem. We are now going to apply Bilu’s

equidistribution theorem to show that the last term in estimate (17) becomes

very small when both A is large and e(F ) is small.

Theorem 6.3 (Bilu’s equidistribution of small points [6]). Suppose that

(λn)n≥1 is a sequence of algebraic numbers (i.e., in Q) such that h(λn) → 0

and deg(λn) → +∞ as n → +∞. Let O(λn) be the Galois orbit of λn. Then

we have the following weak-∗ convergence of probability measures on C:

(24)
1

#O(λn)

∑
x∈O(λn)

δx →
n→+∞

dθ,

where dθ is the normalized Lebesgue measure on the unit circle {z ∈ C, |z| = 1}.

Let us first draw two consequences of this equidistribution statement.

Lemma 6.4. For every α > 0 there is A1 > 0, η1 > 0 and ε1 > 0 with the

following property. If λ ∈ Q is such that h(λ) ≤ η1 and deg(λ) > A1, then

(25) h
ε−1
1∞

Å
1

1− λ

ã
≤ α,
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where h
ε−1
1∞ was defined in (16).

Proof. We have

h∞

Å
1

1− λ

ã
≤ h
Å

1

1− λ

ã
= h(1−λ) ≤ hf (λ)+h∞(1−λ) ≤ h(λ)+h∞(1−λ).

Hence

1

deg(λ)

∑
x∈O(λ)

log
1

|1− x|
= h∞

Å
1

1− λ

ã
− h∞(1− λ) ≤ h(λ)

and

(26)

h
ε−1
1∞

Å
1

1− λ

ã
=

1

deg(λ)

∑
|1−x|≤ε1

log
1

|1− x|
≤ h(λ) +

1

deg(λ)

∑
|1−x|>ε1

log |1− x|.

Consider the function fε1(z) = 1|z−1|>ε1 log |1− z|. It is locally bounded on C.

By Theorem 6.3, for every ε1 > 0, there must exists η1 > 0 and A1 > 0 such

that, if h(λ) ≤ η1, and d = deg(λ) > A1, then∣∣∣∣∣ 1

deg(λ)

∑
x

fε1(x)−
∫ 1

0
fε1(e2πiθ)dθ

∣∣∣∣∣ ≤ α

3
.

On the other hand, we verify that
∫ 1

0 log |1−e2πiθ|dθ = 0. Hence we can choose

ε1 > 0 small enough so that
∣∣∣∫ 1

0 fε1(e2πiθ)dθ
∣∣∣ ≤ α

3 . Combining these inequalities

with (26) and choosing η1 ≤ α
3 , we get (25). �

Lemma 6.5. For every α > 0 there exists η > 0 and A1 > 0 such that for

any λ ∈ Q, if h(λ) ≤ η and d = deg(λ) > A1, then∣∣∣∣∣∣ 1

deg(λ)

∑
v∈V∞

nv · log |1− λ|v

∣∣∣∣∣∣ ≤ α.
Proof. The previous lemma shows that the convergence (24) not only holds

for compactly supported functions on C, but also for functions with logarithmic

singularities at 1. In particular it holds for the function f(z) = log |1−z|, which

is exactly what we need, since we check easily that
∫ 1

0 f(e2πiθ)dθ = 0. �

As a consequence we obtain:

Lemma 6.6. For every α > 0 there exists η0 > 0 and A1 > 0 such that

for any λ ∈ Q, if h(λ) ≤ η0 and d = deg(λ) > A1, then

hf

Å
1

1− λ

ã
≤ 2α.
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Proof. We apply the product formula to δ = 1− λ, which takes the form

h(δ) = h(δ−1); hence

hf (δ−1) = h∞(δ)− h∞(δ−1) + hf (δ).

But hf (δ) = hf (1− λ) ≤ hf (λ) ≤ η0 and h∞(δ)− h∞(δ−1) = 1
[K:Q]

∑
v∈V∞ nv ·

log |δ|v, which is bounded by α according to Lemma 6.5. We are done. �

The outcome of all this is that each of the terms hf (δ−1
i )+hA∞(δ−1

i ) in (17)

becomes small as soon as e(F ) (hence h(αi(a))) becomes small and A becomes

large.

6.3. Proof of Proposition 6.1. Let n ∈ N and α > 0 be arbitrary. Let

j ∈ [1, n] an integer and F = {a, b} ⊂ G(Q) with a ∈ T (Q). Then for any ε > 0

and A > 0 large enough we obtained the upper bound (17) above. On the other

hand we had h(αi(a)) ≤ e(F ) for each positive root αi and δi = 1−αi(a). Let

ε1, A1 and η0 be the quantities obtained in the previous section in Lemmas 6.4

and 6.6. Choose A so that A−1 < ε1 and A ≥ A0 and consider (17). Assume

that for each i ∈ {1, . . . , p} deg(αi(a)) > A1. Then Lemmas 6.4 and 6.6 will

hold with λ = αi(a) as soon as e(F ) < η0. Hence for each i = 1, . . . , p∣∣∣hf (δ−1
i ) + hA∞(δ−1

i )
∣∣∣ ≤ 2α

and
h(f(bj))

j
≤ C4 logA

ε
e({a, b}) +D4A

D2εD1 + 2p(4dC2)α.

Now choose ε > 0 so that 2D4A
D2εD1 < α. Then choose η > 0 so that

C4
logA
ε η < α and η < η0. From (17), we then obtain that if e(F ) < η and

j ∈ N, then
1

j
h(f(bj)) ≤ (2 + p(4dC2))α.

Since α was arbitrary we obtain the desired bound.

7. Proof of the statements of Section 3

7.1. Proof of Theorem 3.1. Before beginning the proof of Theorem 3.1,

we recall Zhang’s theorem on small points of algebraic tori. Let Gm be the

multiplicative group and n ∈ N. On the Q-points of the torus Gn
m we define a

notion of height in the following natural way. If x = (x1, . . . , xn) ∈ Gn
m then

h(x) := h(x1)+ · · ·+h(xn) where h(xi) is the standard logarithmic Weil height

we have been using so far.

Theorem 7.1 (Zhang [43]). Let V be a proper closed algebraic subvariety

of Gn
m defined over Q. Then there is ε > 0 such that the Zariski closure Vε of

the set {x ∈ V , h(x) < ε} consists of a finite union of torsion coset tori, i.e.,
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subsets of the forms ζH , where ζ = (ζ1, . . . , ζn) is a torsion point and H is a

subtorus of Gn
m.

We will need the following lemma, where G is a semisimple algebraic group

over an algebraically closed field, T is a maximal torus together with a choice

of simple roots Π, and f is the regular function defined at the beginning of the

last section.

Lemma 7.2. For every k ∈ N, the regular functions f1, . . . , fk defined on

G by fi(g) = f(gi) are multiplicatively independent. Namely, if for each i, ni
and mi are nonnegative integers and the fi’s satisfy an equation of the form∏k

1 f
ni
i =

∏k
1 f

mi
i , then ni = mi for each i.

Proof. To prove this lemma it is enough to show that for each i one can find

a group element g ∈ G such that fi(g) = 0 while all other fj(g)’s are nonzero.

Let H be the copy of PGL2 corresponding to the roots α = αd and −α = α1

with Lie algebra h generated by Xα, X−α and Hα. Clearly it is enough to prove

the lemma for the restriction of f to H. Therefore, without loss of generality,

we may assume that G = PGL2; hence f(g) = a2 if g =
(
a b
c d

)
∈ PGL2. Let

for instance Dλ =
Ä
λ 0
0 λ−1

ä
∈ PGL2 and P = ( 1 1

1 2 ) . Set gλ = PDλP
−1. Then

compute f(gλ) = 2λ − λ−1 and fi(gλ) = f(gλi). Hence fi(gλ) = 0 if and only

if 2λ2i = 1. These conditions are mutually exclusive for distinct values of i. So

we are done. �

We now conclude this subsection with the proof of Theorem 3.1. According

to the reductions made in Section 4 we may assume that F ⊂ G(Q) where G
is a connected absolutely almost simple algebraic group G of adjoint type

(viewed as embedded in GL(g) via the adjoint representation) and that the

group 〈F 〉 is Zariski dense in G. Let T be a maximal torus in G and Φ be

the corresponding set of roots with set of simple roots Π and let α1 = −αd
be the highest root. The function f ∈ Q[G] was defined at the beginning

of Section 6 by f(g) = gdd where {gij}1≤i,j≤d is the matrix of Ad(g) in the

Chevalley basis (Y1, . . . , Yd). Let fi(g) = f(gi) and let Ω be the Zariski open

subset of G defined by {g, fi(g) 6= 0 for each i ≤ d + 1}. Let f be the

regular map f(g) := (f1(g), . . . , fd+1(g)) : Ω → Gd+1
m . Since d = dimG, Im f

is not Zariski dense in Gd+1
m . Let V be its Zariski closure. According to the

above theorem of Zhang, there is µ > 0 such that the Zariski closure Vµ of

{x = (x1, . . . , xd+1) ∈ V such that h(x) < µ} is a finite union of torsion

coset tori. On the other hand, Lemma 7.2 and the Zariski connectedness of

G shows that V cannot be equal to a finite union of torsion coset tori. Hence

Vµ is a proper Zariski closed subset of V . Let Zµ = Ωc ∪ f−1{Vµ}. Then Zµ
is a proper Zariski-closed subset of G. Note that since f is invariant under

conjugation by T, Zµ also is invariant under conjugation by T. Let “Zµ the
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Zariski closure of the set {(gag−1, gbg−1) ∈ G2 with g ∈ G, a ∈ T and b ∈ Zµ,
or a ∈ Zµ and b ∈ T} in G×G. It is a proper Zariski closed subset, since

dim “Z ≤ 2 dimG − 1. Take n = d + 1 and α = µ/n in Proposition 6.1, which

gives us an A1 > 0 and an η > 0. According to Proposition 4.1 there is a

number c = c(G, Zµ, A1) > 0 such that F c contains two elements a and b

which are A1-regular semisimple elements, generate a Zariski-dense subgroup

of G and satisfy (a, b) /∈ “Zµ. Now let ε = η/c and assume that e(F ) < ε. Then

e({a, b}) < η. For some g ∈ G(Q), gag−1 ∈ T , and since e(·) is invariant

under conjugation by elements from G(Q), we have e({gag−1, gbg−1}) < η.

We can now apply Proposition 6.1 to see that we must have h(f(gbg−1)) < µ,

therefore gbg−1 ∈ Zµ and hence (gag−1, gbg−1) ∈ “Zµ. which gives the desired

contradiction. Hence e(F ) > ε and we are done.

7.2. Proof of Proposition 3.3.

Reduction to the adjoint representation. We first reduce to proving the

statement of Proposition 3.3 for the adjoint representation and the “Killing

height” hKill. Changing G into its image in SL(V ) via ρ, we may assume that ρ

is nontrivial on each simple factor of G. Let Ad, g be the adjoint representation

of G and let hKill be the “Killing height” introduced in Section 4.3. According

to Proposition 3.4 and its proof there exists a constant Cρ ≥ 1 and a basis

of V giving rise to an associated height function h on End(V ), such that 1
Cρ
·

hKill(F ) − C ′ρ ≤ h(ρ(F )) ≤ Cρ · hKill(F ) + C ′ρ for all F (as mentioned in

§4.3, hKill and the height associated to a Chevalley basis of g only differ by an

additive constant). Granting the conclusion of Proposition 3.3 for the adjoint

representation, we obtain g ∈ G(Q) such that h(ρ(gFg−1)) ≤ CC2
ρ · ĥ(ρ(F )) +

C ′ρ. But by the main Theorem 3.1, since F generates a nonvirtually solvable

group, we have C ′ρ ≤ CK · ĥ(ρ(F )) and CC2
ρ ≤ CK for some K = K(d) ∈

N independent of F. Hence h(ρ(gFg−1)) ≤ 2CK · ĥ(ρ(F )). The remaining

inequalities are clear or follow from the basic properties of heights explained

in Section 2.

Proof of Proposition 3.3 for the adjoint representation. We therefore as-

sume that ρ = Ad and h = hKill, while G is semisimple of adjoint type and

〈F 〉 is Zariski dense in G. Again let T be a maximal torus in G and pick a

corresponding basis of gZ made of weight vectors say (Y1, . . . , Yd) as in Sec-

tion 5. Since G is of adjoint type, it is a direct product of its simple factors.

Looking at the projection of F to each simple factors, it is straightforward to

verify that, when proving Proposition 3.3, we can reduce to the case when G
is absolutely simple. So we assume G absolutely simple.

Clearly, if we prove the statement for a bounded power of F instead, then

this will prove the statement for F . Hence making use of escape (i.e., applying
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Proposition 4.1), and after possibly conjugating F by an element of G(Q),

we may assume that F contains two elements a, b which generate a subgroup

acting irreducibly on g and such that a is a regular semisimple element in T

and b is generic with respect to T, i.e., such that the matrix coefficient Bij of

Ad(b) in the basis (Y1, . . . , Yd) is nonzero for any indices i, j. We thus write

F = {a, b, b1, . . . , bM}.
Let S ⊂ [1, d] be the set of indices corresponding to the simple roots. So

|S| = rk(G). Let Ir ⊂ [1, d] be the set of indices corresponding to the Yi’s

that belong to t = Lie(T ). For each j ∈ S, let us choose some ij ∈ Ir. We

have BijjBjij 6= 0. Then one can choose a unique point t ∈ T (Q) such that

αj(t)
2 =

Bijj

Bjij
for each j ∈ S. As we may, we change F into tF t−1. Then

Bijj = Bjij for every j ∈ S. Moreover we know from (18) that for any place v

and any real number sv > EAd
v (F ), there exists tv ∈ T (Qv) such that

∥∥∥Ad(btv)
∥∥∥
v
≤ Cdv ·

( p∏
k=1

max{1, Lk(a)v}
)dC2

· esv(1+dC1),

where C1, C2, C∞ are positive constants independent of v and Cv = 1 if v is

non-Archimedean, while Cv = C∞ if v is Archimedean. Since every matrix

coefficient of Ad(btv) is bounded by
∥∥Ad(btv)

∥∥
v if v is non-Archimedean and

by a constant multiple of this norm if v is Archimedean, up to enlarging C∞
if necessary, we get that the same bound holds for all matrix coefficients of

Ad(btv), i.e.,

(27)

log+ |αiαj−1(tv)Bij |v ≤ d logCv + dC2

p∑
k=1

log+ Lk(a)v + (1 + dC1)sv =: rv(a).

Specializing this for Bij = Bji when j ∈ S and i = ij and adding, we obtain

2 log+ |Bij |v = log+ |BijBji|v ≤ 2rv(a).

On the other hand,

1

[K : Q]

∑
v∈VK

nv · rv(a) ≤ d logC∞(28)

+ dC2

p∑
k=1

Å
h(δ−1

k ) + log+ 1

κ

ã
+ (1 + dC1)e(F )

≤ C ′∞ + (1 + dC1 + dpC2)e(F ),

where C ′∞ is another positive constant, δk = 1 − αk(a) for k ∈ S, κ =

mink∈S |αk|∞ as in Section 6.1 above, and where we have used h(δ−1
k ) =

h(δk) ≤ h(αk(a)) + log 2 ≤ e(F ) + log 2. Hence for j ∈ S and i = ij ,

(29) h(Bij) ≤ C ′∞ + (1 + dC1 + dpC2)e(F ).
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On the other hand, since i ∈ Ir αi = 1 and (27) gives

log+ |αj±1(tv)Bij |v ≤ rv(a),

log+ |αj±1(tv)|v ≤ rv(a) + log+

∣∣∣∣∣ 1

Bij

∣∣∣∣∣
v

.

Taking the weighted sum over all places, we get

h(αj(tv)v), h(αj
−1(tv)v) ≤ h

Ç
1

Bij

å
+

1

[K : Q]

∑
v∈VK

nv · rv(a)

which, as h(B−1
ij ) = h(Bij), gives from (28) and (29)

(30) h(αj(tv)v), h(αj
−1(tv)v) ≤ 2C ′∞ + 2(1 + dC1 + dpC2)e(F ).

Now let α be an arbitrary root, i.e., α =
∏
j∈S αj

nj for some integers nj ∈ Z.

Since there are only finitely many possibilities for the nj ’s given G, there is a

bound, say N, for the possible sums
∑ |nj |. Hence (30) gives

h(α(tv)v) ≤ 2NC ′∞ + 2N(1 + dC1 + dpC2)e(F )

for every root α. Finally, if i and j are arbitrary indices this time, from (27)

and (28) we get

h(Bij)≤
1

[K : Q]

∑
v∈VK

nv · rv(a) + h(αi
−1(tv)v) + h(αj(tv)v)

≤ (4N + 1)C ′∞ + (4N + 1)(1 + dC1 + dpC2)e(F ).

Since Aij = 0 for i 6= j while h(Aii) ≤ e(F ) by Proposition 2.14(c), we finally

get hKill(A) + hKill(B) ≤ Od(1) · (∑ij h(Aij) + h(Bij)) ≤ C + C · e(F ).

Now recall that a and b were chosen so that they generate a subgroup

which acts irreducibly on g(Q). By Burnside’s theorem, this means that Ad(a)

and Ad(b) generate End(g) as an associative Q-algebra. In particular, one can

find d2 elements, say u1, . . . , ud2 , in {Id,Ad(a),Ad(b)}d2 which form a basis of

End(g) over Q. Clearly hKill(ui) ≤ d2(C + Ce(F )) for each i = 1, . . . , d2. Let

Eij be the elementary matrices associated to our basis (Y1, . . . , Yd) of g. We

may write ui as a linear combination
∑
U

(i)
kl Ekl with U

(i)
kl ∈ Q. By definition

of the height h = hKill on End(g), it differs from the height associated to the

basis (Y1, . . . , Yd) only by an additive constant C∞ due to the fact that the Yi’s

are not necessarily orthogonal at infinite places. Thus each height h(U
(i)
kl ) is at

most h(ui) +C∞. In particular, the height of the determinant of (u1, . . . , ud2)

in the basis of the Eij is bounded in terms of the h(ui) hence in terms of e(F )

only. As a result, if we write each Eij as a linear combination
∑
x

(ij)
k uk with

x
(ij)
k ∈ Q, then the height h(x

(ij)
k ) is bounded in terms of e(F ) (and d) only,

i.e., ≤ C ′′∞+Od(1) ·e(F ) for some other constant C ′′∞ > 0 depending on d only.
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Let c be any element of F = {a, b, b1, . . . , bM}. Then we may write C =

Ad(c) =
∑
CijEij and Cij = (EjiC)jj =

∑
x

(ij)
k (ukC)jj . Now observe that we

may apply (18) to the two matrices {Ad(a), ukC} and get as in (27) for each

place v and all j = 1, . . . , d,

log+ |(ukC)jj |v ≤ d logCv + dC2

p∑
k=1

log+ Lk(a)v + (1 + dC1)sv = rv(a).

We may now estimate log+ ||F ||v. First if v is non-Archimedean, one gets

log+ ||F ||v ≤ log+ maxk,j,c |(ukC)jj |v + log+ maxk,i,j |x
(ij)
k |v and

log+ ||F ||v ≤ rv(a) +
∑
k,i,j

log+ |x(ij)
k |v,

while if v is Archimedean, we get the same estimate plus an additive error.

Summing over the places as in (29) we have

hKill(F ) ≤ C ′′∞ +
∑
k,i,j

h(x
(ij)
k ) +

1

[K : Q]

∑
v∈VK

nvrv(a),

and thus hKill(F ) ≤ Od(1)(1 + e(F )). Using Theorem 3.1, this upper bound

can be replaced by hKill(F ) ≤ Od(1) · e(F ), and Proposition 3.3 is proved. �

Remark 7.3. In positive characteristic p with p not 2 nor 3 and G not of

type An, the adjoint representation is irreducible and the above proof continues

to hold verbatim without having to appeal to Theorem 3.1 at the end because

no additive constant appears in the upper bound (since all places are non-

Archimedean). In the cases where the adjoint representation is not irreducible,

one can modify the above proof to make it work for every irreducible rational

representation instead of Ad. One has to take a set of linearly independent

weights χj in place of the simple roots in order to define the conjugating

element t ∈ T , and then modify (18) accordingly. Details are left to the

reader.

Proof of Proposition 1.1 from the introduction. Let G be the Zariski clo-

sure of F in GLd. Since we are in characteristic 0, G is completely reducible

when acting on Qd
. Since there are only finitely many isomorphism classes of

semisimple algebraic subgroups of GLd and finitely many isomorphism classes

of irreducible representations of G of dimension at most d, we may consider the

maximum of all constants C ≥ 1 appearing in Proposition 3.3 for the various

semisimple groups G and representations that can arise. Thus Proposition 3.3

gives a basis of V with height h0 and g0 ∈ G(Q) such that h0(g0Fg
−1
0 ) ≤

Cĥ0(F ). But there is g ∈ GLd(Q) such that h(·) = h0(g · g−1) and ĥ = ĥ0, so

we are done. �
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7.3. Proof of Corollaries 3.5 and 1.7. First we assume that F generates a

nonvirtually solvable group. From Lemma 2.1, we have for any set F containing

1,
∑
a∈F d2 e({a}) ≥ e(F )− | log c|. In particular,

(31) max{e({a}), a ∈ Fnd2} ≥ 1

|F |nd2
(nĥ(F )− | log c|)

for every n ∈ N. Now by Theorem 3.1, we have ĥ(F ) > ε = ε(d) > 0. Hence

for some n0 = n0(d) ∈ N,

max{e({a}), a ∈ Fn0} ≥ d

|F |n0
· ĥ(F ).

On the other hand, we clearly have e({a}) ≤∑h(λ) where the sum is over the

d eigenvalues of a. Hence the assertion of Corollary 3.5.

Now assume that F generates a virtually solvable subgroup. It is well

known (see [42, 3.6 and 10.10]) that there is an integer n0 = n0(d) ∈ N such that

any virtually solvable subgroup of GLd(C) contains a subgroup of index at most

n0 which can be conjugated inside the upper-triangular matrices. Applying

Lemma 4.10 (and its proof), we may find F1 ⊂ F 2n0−1 such that Fn ∩ B ⊂
(F1 ∪ F−1

1 )2n for all n, where B = Td(C) is the subgroup of upper-triangular

matrices. But Fn = ∪(Fn ∩ f−1
i B) for at most n0 elements fi in Fn0 . Hence

Fn ⊂ ∪f−1
i (Fn+n0 ∩ B) and Rv(F ) ≤ lim inf ||Fn ∩ B||1/n ≤ Rv(F1 ∪ F−1

1 )2.

However, since F1 ⊂ B, it is straightforward to observe that Rv(F1 ∪ F−1
1 ) =

Λv(F1 ∪ F−1
1 ). Summing over all places, we obtain ĥ(F ) ≤ 2

∑
a∈F1

e({a}) +

e({a−1}) ≤ 2|F |2n0 max{∑h(λ)+h(λ−1), λ eigenvalue of a ∈ F1}. Since h(λ) =

h(λ−1), we get the desired result.

Now we turn to Corollary 1.7. By the remark above on the bound n0

of the index of a triangular subgroup in any virtually solvable subgroup, it

is easy to see that the set of pairs (A,B) in GLd × GLd that generate a vir-

tually solvable subgroup is a closed subvariety. Since every connected simple

algebraic group can be topologically generated (for the Zariski topology) by

two elements (see Proposition 1.8), we can apply the escape from subvarieties

lemma (Lemma 4.2) and conclude that there is a pair {A,B} in F c(d) which

generates a nonvirtually solvable subgroup of 〈F 〉 . Then apply Corollary 3.5

to {Id, A,B}.

7.4. Proof of Corollaries 3.6, 1.9 and 1.10.

Proof of Corollary 3.6. Let k be the algebraic closure of K and Γ the

subgroup generated by F . First assume that Γ ≤ GL(W ) acts absolutely irre-

ducibly on W = kd. According to Burnside’s theorem the k-subalgebra gener-

ated by the elements of Γ is the full algebra Endk(W ). Since D = dim Endk(W )

= (dimW )2 ≤ d2, there exists a linear basis, say w1, . . . , wD of Endk(W ) in

F d
2

(start with w1 = 1, then multiply by the elements of F one after the
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other). Since {x 7→ tr(zx)}z∈Endk(W ) account for all linear forms on Endk(W ),

the linear forms x 7→ tr(wix) must be linearly independent, and the matrix

{tr(wiwj)}1≤i,j≤D is invertible. Let L be the field generated by the eigenval-

ues of all elements of F 2d2+1. Note that L contains tr(wiwj) and tr(fwiwj)

for f ∈ F and all i, j. We claim that Γ ≤ ⊕
1≤i≤D

Lwi ≤ Endk(W ). Indeed

for each i, and each f ∈ F, write fwi =
∑
aijwj for some aij ∈ k. Then

as {tr(wiwj)}1≤i,j≤D is invertible, the aij must belong to L. Since w1 = 1,

we see that positive words in F lie all in
⊕

1≤i≤D
Lwi. On the other hand, the

Cayley-Hamilton theorem implies that f−1 ∈ L[f ]. Finally Γ ≤ ⊕
1≤i≤D

Lwi as

claimed. The left regular representation of Γ on
⊕

1≤i≤D
Lwi gives us a faithful

representation of Γ in GLD(L). If F 2d2+1 consists only of torsion elements, the

field L, is generated over its prime field by finitely many roots of unity. If

char(K) > 0, then this already implies that L is finite and thus that Γ is finite,

a contradiction. If char(K) = 0, then L belongs to Q and we are thus reduced

to the case when Γ lies in GLD(Q). Then, by the combination of Corollary 3.5

with Theorem 3.1 we are done unless Γ is virtually solvable.

If Γ does not act irreducibly of kd, let {0} ≤ V1 ≤ · · · ≤ Vk = kd be a

composition series for Γ and let W = Vi0/Vi0+1 be an (irreducible) composition

factor. If char(K) > 0, by the above, the image of Γ is GL(W ) is finite. It

follows that Γ is virtually unipotent and hence finite, because finitely generated

unipotent subgroups in positive characteristic are finite.

If char(K) = 0, then the image of Γ on each composition factor is virtually

solvable, and hence Γ itself is virtually solvable. Recall that there is an integer

n0 = n0(d) ∈ N such that any virtually solvable subgroup of GLd(C) contains

a subgroup of index at most n0 which can be conjugated inside the upper-

triangular matrices (see [42, 3.6 and 10.10]). Applying Lemma 4.10, we may

assume without loss of generality that F is made of upper-triangular matrices.

Then for every a, b ∈ F , the commutator [a, b] is a unipotent matrix in SLd(C),

hence is either trivial or of infinite order. If one of them has infinite order, we

are done. Otherwise this means that the matrices in F commute. But a finitely

generated abelian group generated by torsion elements is finite. We are done.

The argument above works verbatim without the need to take inverses

until the point in the last paragraph when F is assumed to consist of upper-

triangular matrices. Note that if the elements of F are torsion, then their

eigenvalues are roots of unity, hence the group generated by F is virtually

nilpotent. This completes the proof of the corollary. �

Proof of Corollary 1.9 from the introduction. If γ has a transcendental

eigenvalue for some γ ∈ F 2d2+1, then the second alternative obviously holds. If



A HEIGHT GAP THEOREM FOR FINITE SUBSETS OF GLd(Q) 1107

no γ ∈ F 2d2+1 has a transcendental eigenvalue, then the argument given in the

proof of Corollary 3.6 shows that Γ has a faithful representation in GLd2(Q).

So we are reduced to this situation and the claim is clear by Corollary 1.9. �

Proof of Corollary 1.10 from the introduction. If F fixes a point in the

Bruhat-Tits building Xk of SLd over a p-adic field k, then F fixes a vertex of

Xk (it fixes the vertices of the smallest simplex containing the fixed point). But

vertices ofXk are permuted transitively by the action of GLd(k). If follows from

Lemma 4.14 that Ek(F ) = 1. Hence if F fixes a point on each Xk for k non-

Archimedean, then ef (F ) = 0. Hence by Theorem 3.1 we must have e∞(F ) > ε.

Thus there exists an embedding σ of K in C such that logEC(σ(F )) > ε. Then

by Lemma 4.14, every point of XC must be moved by at least ε by some element

of F . �
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Math. 127 (1997), 337–347. MR 1427622. Zbl 0991.11035. http://dx.doi.org/

10.1007/s002220050123.

http://www.ams.org/mathscinet-getitem?mr=2084613
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1076.53040
http://dx.doi.org/10.1215/S0012-7094-04-12432-7
http://dx.doi.org/10.1215/S0012-7094-04-12432-7
http://www.ams.org/mathscinet-getitem?mr=0185016
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0228.20015
http://www.numdam.org/item?id=PMIHES_1965__25__5_0
http://www.ams.org/mathscinet-getitem?mr=0143793
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0121.27504
http://www.ams.org/mathscinet-getitem?mr=0223487
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0241.22024
http://www.ams.org/mathscinet-getitem?mr=1739403
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0937.20026
http://dx.doi.org/10.1515/crll.2000.006
http://dx.doi.org/10.1515/crll.2000.006
http://www.ams.org/mathscinet-getitem?mr=1878556
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0984.00001
http://www.ams.org/mathscinet-getitem?mr=0069830
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0065.01404
http://dx.doi.org/10.2307/2007099
http://www.ams.org/mathscinet-getitem?mr=2166086
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1101.11020
http://dx.doi.org/10.1007/0-8176-4417-2_10
http://dx.doi.org/10.1007/0-8176-4417-2_10
http://www.ams.org/mathscinet-getitem?mr=0507234
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0254.22005
http://www.ams.org/mathscinet-getitem?mr=1770638
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0956.12001
http://dx.doi.org/10.1017/CBO9780511542916
http://dx.doi.org/10.1017/CBO9780511542916
http://www.emis.de/cgi-bin/JFM-item?42.0155.01
http://www.ams.org/mathscinet-getitem?mr=2428530
http://dx.doi.org/10.1017/CBO9780511721274.021
http://dx.doi.org/10.1017/CBO9780511721274.021
http://www.ams.org/mathscinet-getitem?mr=0466335
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1196.22001
http://www.ams.org/mathscinet-getitem?mr=1427622
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0991.11035
http://dx.doi.org/10.1007/s002220050123
http://dx.doi.org/10.1007/s002220050123


1110 EMMANUEL BREUILLARD

[37] V. Talamanca, A Gelfand-Beurling type formula for heights on endomorphism

rings, J. Number Theory 83 (2000), 91–105. MR 1767654. Zbl 0965.16018. http:

//dx.doi.org/10.1006/jnth.1999.2506.

[38] W. P. Thurston, Three-Dimensional Geometry and Topology. Vol. 1, Princeton

Math. Ser. 35, Princeton Univ. Press, Princeton, NJ, 1997, edited by Silvio Levy.

MR 1435975. Zbl 0873.57001.

[39] J. Tits, Free subgroups in linear groups, J. Algebra 20 (1972), 250–270.

MR 0286898. Zbl 0236.20032. http://dx.doi.org/10.1016/0021-8693(72)90058-0.

[40] E. Ullmo, Positivité et discrétion des points algébriques des courbes, Ann. of
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Université Paris Sud, Orsay, France

E-mail : emmanuel.breuillard@math.u-psud.fr

http://www.ams.org/mathscinet-getitem?mr=1767654
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0965.16018
http://dx.doi.org/10.1006/jnth.1999.2506
http://dx.doi.org/10.1006/jnth.1999.2506
http://www.ams.org/mathscinet-getitem?mr=1435975
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0873.57001
http://www.ams.org/mathscinet-getitem?mr=0286898
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0236.20032
http://dx.doi.org/10.1016/0021-8693(72)90058-0
http://www.ams.org/mathscinet-getitem?mr=1609514
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0934.14013
http://dx.doi.org/10.2307/120987
http://dx.doi.org/10.2307/120987
http://www.ams.org/mathscinet-getitem?mr=0414787
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0232.22018
http://www.ams.org/mathscinet-getitem?mr=0335656
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0261.20038
http://www.ams.org/mathscinet-getitem?mr=1311351
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0861.14019
http://www.ams.org/mathscinet-getitem?mr=1609518
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0991.11034
http://dx.doi.org/10.2307/120986
http://dx.doi.org/10.2307/120986
mailto:emmanuel.breuillard@math.u-psud.fr

	1. Introduction
	2. Minimal height and displacement
	3. Statement of the results
	4. Preliminary reductions
	5. Local estimates on Chevalley groups
	6. Global bounds on arithmetic heights
	7. Proof of the statements of Section 3
	References

