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Arithmetic groups have rational
representation growth

By Nir Avni

Abstract

Let Γ be an arithmetic lattice in a semisimple algebraic group over a

number field. We show that if Γ has the congruence subgroup property,

then the number of n-dimensional irreducible representations of Γ grows

like nα, where α is a rational number.

1. Introduction

1.1. Representation zeta functions. This article is concerned with count-

ing the number of representations of arithmetic groups. Suppose that Γ is

a finitely generated group, and assume that Γ has finitely many irreducible

complex representation of any fixed dimension, up to equivalence. Denote

the number of irreducible complex representations of Γ of dimension n, up to

equivalence by rn(Γ). In [17], the sequence rn(Γ) is called the representation

growth sequence of Γ. If the sequence rn(Γ) is bounded by a polynomial in n,

then it is useful to consider the following generating function.

Definition 1.1. The representation zeta function of Γ is the following func-

tion of s ∈ C:

ζΓ(s) =
∞∑
n=1

rn(Γ)n−s =
∑

ρ∈Irr Γ

(dim ρ)−s,

where Irr Γ denotes the set of finite dimensional, complex, and irreducible

representations of Γ.

Note that if the sequence rn(Γ) grows polynomially, then the series above

converges in some half plane of the form {s | <(s) > α}. The infimum of

the set of α ∈ R such that the series in Definition 1.1 converges absolutely at

s = α, is called the abscissa of convergence of ζΓ(s) (or of Γ); we will denote

it by αΓ. The abscissa of converges is related to the rate of growth of the

sequence rn(Γ) by

αΓ = lim sup
N→∞

log(r1(Γ) + · · ·+ rN (Γ))

logN
.
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1.2. Arithmetic lattices. The groups which we consider in this paper are

arithmetic lattices in semisimple algebraic groups over fields of characteris-

tics 0. We remind the reader of the construction of such groups. Let K be a

finite extension of the field of rational numbers Q. Denote the ring of integers

of K by O. For a valuation v of K, we denote the completion of K with re-

spect to the valuation v by Kv, and we denote the valuation ring of Kv by Ov.

Suppose that Σ is a finite set of valuations of K, containing all infinite (i.e.,

archimedian) valuations. The ring of Σ-integers of K is the set

OΣ = {x ∈ K | (∀v 6∈ Σ) v(x) ≥ 0}.

Let G ⊂ GLNOΣ
be a linear algebraic group scheme over SpecOΣ

1 whose

generic fiber2 is semisimple, simply connected, and connected. Assume, more-

over, that for every non-archimedian valuation v ∈ Σ, the group G(Kv) is

noncompact. The group Γ = G(OΣ) is the arithmetic lattice. It is indeed a

lattice, i.e., a discrete subgroup of finite covolume, in the topological group∏
v∈ΣG(Kv).

Denote the profinite completion of Γ by Γ̂, and, similarly, let ÔΣ be the

profinite completion of the ring OΣ. By the Chinese remainder theorem, ÔΣ =∏
v 6∈Σ Ov. We say that Γ has the congruence subgroup property if the kernel of

the natural map

Γ̂ = ◊�G(OΣ) −→ G(ÔΣ) =
∏
v 6∈Σ

G(Ov)

is finite.

It is known that “most” irreducible lattices in Lie groups of rank ≥ 2 have

the congruence subgroup property, and a conjecture of Serre asserts that all of

them do. See [20] for a survey on the congruence subgroup property.

1.3. Main Theorem. In [17] it was proved that an arithmetic lattice in

characteristic 0 has the congruence subgroup property if and only if the se-

quence rn(Γ) grows polynomially. Equivalently, such a lattice, Γ, has the

congruence subgroup property if and only if the abscissa of convergence of Γ

is finite. The main result in this paper is the following:

1Put more simply, we are given a set of polynomials f1, . . . , fk in N2 variables, such that

the coefficients of the fj ’s are in OΣ, and such that for every ring R and homomorphism

ϕ : OΣ → R, the set of solutions of the system of equations (ϕf1)(x) = · · · = (ϕfk)(x) = 0

in RN
2

= MN (R) is a subgroup of GLN (R). We call this set of solutions the R points of G

and denote it by G(R).
2The generic fiber of G is the algebraic group G⊗SpecK, where K is the algebraic closure

of K.
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Theorem 1.2. Let Γ be an arithmetic lattice in characteristics 0 that

satisfies the congruence subgroup property. Then αΓ — the abscissa of conver-

gence of ζΓ(s) — is a rational number.

Remark 1.3. If Γ does not satisfy the congruence subgroup property, then

the sequence rn(Γ) grows super-polynomially by [17], and so the abscissa of

convergence of ζΓ(s) is ∞.

Unfortunately, the proof of this theorem does not give a hint about the

actual value of the abscissa of convergence of Γ, and, in fact, this value is

known only in some very special cases; see [14] and [1].

In the rest of this subsection we describe the method of proof of Theo-

rem 1.2. The proof follows a general strategy of Igusa and Denef; see also [22].

If Γ = G(OΣ) is an arithmetic lattice that has the congruence subgroup prop-

erty, then there is a finite index subgroup ∆ of Γ such that the representation

zeta function of ∆ has a Euler-like factorization

ζ∆(s) = ζ∞(s)×
∏
p

ζp(s),

where the product is over all primes of the ring OΣ, and the local zeta functions

ζ∞(s) and ζp(s) will be described in Section 2. This fact was established in

[14] and is a consequence of Margulis’ super-rigidity theorem. We shall show

that the abscissa of convergence is unchanged when passing to a finite-index

subgroup. Hence, it is enough to show that the abscissa of convergence of ∆ is

rational. The archimedian local zeta function ζ∞(s) was studied in [14], where

it was shown that it has a rational abscissa of convergence. In order to show

that the infinite product
∏

p ζp(s) has rational abscissa of convergence, we will

study the dependence of ζp(s) on the prime ideal p.

Let q = |OΣ/p|. In contrast to the case considered in [22], the local zeta

functions are not rational functions in q−s, but rather are of the form

(1.1)

N(p)∑
i=1

ni(p)−s · fi(p, q−s),

where fi(p, x) are rational functions in x (this is proved in [12]).

A sequence of numbers, k(p), indexed by the primes of OΣ, is called geo-

metric if there is a variety K , defined over OΣ, such that for every p, k(p)

is equal to the number of points of the variety K over the finite field OΣ/p

(this terminology is taken from [13]). A reasonable guess is that the numbers

N(p), ni(p), and the coefficients of the rational functions fi(p, x) that appear

in (1.1) are geometric. We make two changes in order to prove this. The first

is that we allow K to be a definable set, rather than a variety; the second

is that we replace ζp(s) by another sequence, ξp(s), such that the abscissae of



1012 NIR AVNI

convergence of
∏

p ζp(s) and
∏

p ξp(s) are equal, and then show that ξp(s) has

a geometric formula.

After showing the geometric nature of the “new” local zeta functions, we

use standard results in Algebraic Number Theory (the Lang-Weil estimates

and Chebotarev Density Theorem) to finish the proof of Theorem 1.2.

1.4. Organization of the paper. In Section 2 we set some notation and

review the Euler factorization of representation zeta functions of arithmetic

lattices. Section 3 is a collection of facts we need from representation theory,

algebraic geometry, and the theory of finite groups. In Section 4 we collect

necessary facts from the model theory of fields, pseudo-finite fields, and valued

fields. In Section 4 we also define the notion of V -function, which is our main

technical tool. In Section 5 we show that local zeta functions (or, rather,

approximations thereof) are integrals of the same V -function. In Section 6 we

show that any Euler product, such that the local factors are integrals of the

same V -function, has rational abscissa of convergence.

1.5. Acknowledgment. This work is a part of the author’s Ph.D. thesis,

supervised by Alex Lubotzky. It is a pleasure to thank Alex for introducing

the problem to me, for his advices when this work was done, and for his remarks

on previous versions of this paper. I have also learned much by talking about

this project with Andrei Jaikin, Fritz Grunewald, Michael Larsen, Chris Voll,

David Kazhdan, and Udi Hrushovski. I heartily thank them all. I thank Laszlo

Pyber for referring me to the the paper [10], and Peter Sarnak for referring me

to [21]. Finally, I thank the referee for pointing out many typos and making

many suggestions that improved the exposition in this paper.

1.6. Notation. For the reader’s convenience, here is a list of symbols that

are used throughout the article.

• Γ,∆: lattices.

• G,Gp, G1
p: a group scheme, the group G(Zp), the first congruence sub-

group of Gp (i.e., the kernel of the map G(Zp)→ G(Fp)).
• g, gp, g

1
p: the corresponding Lie algebras.

• IrrH, ζH(s): the set of complex, irreducible, and finite dimensional

representations of a group H, the representation zeta function of H

(see §1.1).

• Irr(H|ρ), ζH|ρ(s): the irreducible representations of H that lie over ρ,

the corresponding zeta function (see §3.1).

• Σ: a finite set of primes.

• Ad∗: coadjoint action.

• X ,Y : the definable sets parametrizing the representations of the first

congruence subgroup and of the leaves of the decomposition tree (see

§§5.1, 5.3).
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• (ζn(s)) ∼ (ξn(s)): equivalence for two sequences of Dirichlet series (see

§3.7).

• LRings,LV f , Tf , Tpf , THvf : The first order language of rings, the first or-

der language of valued rings, the theory of fields, the theory of pseudo-

finite fields, the theory of Henselian valued fields (see §§4.1, 4.4).

• val, ac: the function symbols for valuation and angular components

(see §4.4).

• AV ,AR,AO: the value field sort, the residue field sort, and the value

group sort for LV f (see §4.4).

• Mp: the model (Qp,Z,Fp) for THvf (see §4.4).

• fMp : the interpretation of the definable function f in the model Mp

(see §4.4).

• Grass,GrassU : the Grassmanian of subspaces of gln, the subset of

unipotent Lie algebras (see §5.3).

• Ψp,‹Ψp,Ξp, Ξ̃p,Φp,›Φp,Λp,Ωp: various orbit method functions (see §5.1).

• If X is a scheme, we denote the definable set associated to it by X,

and the base change of X to R by XR.

• If A is a locally compact abelian group, we denote by A∨ its Pontrjagin

dual.

2. Euler factorization

2.1. Notation. In order to remove a layer of unnecessary notational com-

plexity, we assume that the arithmetic lattice Γ is defined over Q. That is,

we assume that Γ = G(ZΣ) where Σ is a finite set of prime numbers and

G ⊂ (GLn)ZΣ
is a linear algebraic group scheme over SpecZΣ whose generic

fiber is semisimple, simply connected, and connected. The proof for general Γ

is completely analogous.

For every prime p not in Σ, we denote the group G(Zp) by Gp. The first

congruence subgroup of Gp — which we denote by G1
p — is the kernel of the

reduction modulo p homomorphism from Gp to G(Fp).
In the following, the word ‘representation’ will have several meanings. If

the group is discrete, we just mean a complex representation of finite dimen-

sion. For profinite groups, a representation should also be continuous (and

thus have finite image). If the group is algebraic (or, more generally, pro-

algebraic), a representation should be (finite dimensional and) rational. This

remark applies also to related notions, such as IrrH and ζH(s).

2.2. Euler factorization. In this subsection, we describe without proofs

the Euler factorization of ζΓ(s) and refer the reader to [14] for the details. If ∆

is a finitely generated group, we denote by “∆ the pro-finite completion of ∆.

For a discrete group ∆, the pro-algebraic completion of ∆ is defined to be a
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pro-algebraic group ∆a, together with a homomorphism π : ∆ → ∆a, such

that every finite dimensional representation of ∆ factors uniquely through ∆a.

The pro-algebraic completion is unique up to isomorphism, and, by definition,

it has the same representations as the group itself. Therefore ζ∆(s) = ζ∆a(s).

Note that in this equality, the left-hand side counts all representations of ∆,

whereas the right-hand side counts only rational representations of ∆a.

Suppose Γ = G(ZΣ) satisfies the congruence subgroup property. It was

shown in [14] that there is a finite index subgroup ∆ ⊂ Γ such that the pro-

algebraic completion of ∆ is the direct product of “∆ and G(C). Because of

the congruence subgroup property, and by making ∆ smaller if necessary, we

may assume that “∆ is a subgroup (of finite index) of
∏
p 6∈ΣG(Zp). We shall

see later (Corollary 3.4) that the abscissa of convergence of ∆ is equal to the

abscissa of convergence of Γ.

Denote the projection from “∆ to G(Zp) by πp. Since “∆ is of finite index

in
∏
p 6∈ΣG(Zp), there is a finite set of primes T , such that if p does not belong

to T , then πp(“∆) = G(Zp). We then have

(2.1) ζ∆(s) =
∏
p∈T

ζ
πp(∆̂)

(s) ·
∏
p 6∈T

ζGp(s) · ζG(C)(s).

We shall call the factor ζGp(s) (or ζπp(∆)(s)) the local zeta function at the

prime p, and call the factor ζG(C)(s) the local zeta function at infinity.

The abscissa of convergence for the local zeta function at infinity, ζG(C)(s),

was computed in [14]. If G has root system Φ and if we denote the rank of

Φ by r, and denote the number of positive roots of Φ (relative to some choice

of simple roots) by |Φ+|, then the abscissa of convergence of ζG(C)(s) is equal

to r
|Φ+| . In particular, the abscissa of convergence of the local zeta function at

infinity is rational.

In [12], the following theorem is proved.

Theorem 2.1. For every prime p there are

(1) a finite set Ip;

(2) polynomials fpi (x) ∈ Z[x] with nonnegative coefficients for i ∈ Ip;
(3) nonnegative integers ni, for i ∈ Ip, and nonnegative integers Ai,j , Bi,j

for i ∈ Ip and 1 ≤ j ≤ ni;
such that

ζGp(s) =
∑
i∈Ip

n−si
fpi (p−s)∏

j

(
1− p−Ai,js+Bi,j

) .
The same is true for every finite index subgroup of Gp.

In particular, the abscissa of convergence for every local zeta function is

rational. In order to prove that the abscissa of convergence of the ‘global’ zeta

function is rational, we shall need to understand the relation between the local
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zeta functions for different primes. Indeed, this paper is mainly an attempt to

give an approximate formula to the local zeta functions, which is uniform in

the prime p.

3. Algebraic preliminaries

3.1. Relative zeta functions. Let H be a group and let K be a subgroup

of H. If ρ is a representation of K, we denote its induction to H by IndHK ρ. If

χ is a representation of H, we denote its restriction to K by ResHK χ.

Definition 3.1. Let H be a group, let K be a normal subgroup of H, and

let τ be an irreducible representation of K. We denote by Irr(H|τ) the set of

irreducible representations ρ of H such that τ is a sub-representation of ResHK ρ

(or equivalently, such that ρ is a sub-representation of IndHK τ). Note that if

ρ ∈ Irr(H|τ), then dim τ divides dim ρ.

Let rn(H|τ) be the number of representations in Irr(H|τ) of dimension

n · dim τ . We define the relative zeta function as

ζH|τ (s) =
∑
n

rn(H|τ) · n−s =
∑

ρ∈Irr(H|τ)

Å
dim ρ

dim τ

ã−s
.

Lemma 3.2. Let H be a group and let K be a normal subgroup of H of

finite index. The group H acts on the set Irr(K) by conjugation. For every

τ ∈ Irr(K) we denote the stabilizer of τ under this action by StabH τ . Then

ζH(s) =
∑

τ∈Irr(K)

1

[H : StabH τ ]
(dim τ)−sζH|τ (s).

Proof. Let E be the set of pairs (τ, ρ) ∈ Irr(K)× Irr(H) such that τ is a

sub-representation of ResHK ρ. Then∑
(τ,ρ)∈E

1

[H : StabH τ ]
(dim ρ)−s =

∑
τ∈Irr(K)

1

[H : StabH τ ]
(dim τ)−sζH|τ (s).

On the other hand, for every ρ ∈ Irr(H), the set of τ ∈ Irr(K) such that τ is

a sub-representation of ResHK ρ is a single H orbit and so

∑
(τ,ρ)∈E

1

[H : StabH τ ]
(dim ρ)−s =

∑
ρ∈Irr(H)

(dim ρ)−s

Ñ ∑
τ |(τ,ρ)∈E

1

[H : StabH τ ]

é
=

∑
ρ∈Irr(H)

(dim ρ)−s. �

Lemma 3.3. Let K ⊂ H ⊂ L be groups. Assume that H is of finite index

in L and that K is normal in L. Let τ ∈ Irr(K). Then for each N ,

1

[L : H]

Ä
r1(H|τ) + · · ·+ rN/[L:H](H|τ)

ä
≤ r1(L|τ) + · · ·+ rN (L|τ)

≤ (r1(H|τ) + · · ·+ rN (H|τ)) [L : H],
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and for every s ∈ R, if one of ζH|τ (s) or ζL|τ (s) converges, then so does the

other, and

[L : H]−1−sζH|τ (s) ≤ ζL|τ (s) ≤ [L : H] · ζH|τ (s).

Proof. Consider the bipartite graph whose vertices are Irr(L|τ)t Irr(H|τ)

and there is an edge between ρ1 ∈ Irr(L|τ) and ρ2 ∈ Irr(H|τ) if ρ2 is a sub-

representation of ResLH ρ1. Note that

(1) every vertex has positive degree;

(2) the degree of every vertex is bounded by [L : H];

(3) if ρ1 ∈ Irr(L|τ) and ρ2 ∈ Irr(H|τ) are connected, then dim ρ1 ≤
dim ρ2 ≤ [L : H] · dim ρ1.

Let Irr(L|τ)N ⊂ Irr(L|τ) be the set of representations of dimension less than

or equal to N dim τ , and define similarly the set Irr(H|τ)N . The set Irr(L|τ)N
is contained in the set of neighbors of Irr(H|τ)N , so

| Irr(L|τ)N | ≤ | Irr(H|τ)N | · [L : H].

Similarly, the set Irr(H|τ)N/[L:H] is contained in the set of neighbors of

Irr(L|τ)N , so

| Irr(H|τ)N/[L:H]| ≤ | Irr(L|τ)N | · [L : H].

This proves the first two inequalities. Similar argument shows the other two.

�

Corollary 3.4 (see also [17, Cor. 2.3]). If H ⊂ L is a subgroup of finite

index, then the abscissae of convergence of ζH(s) and of ζL(s) are equal.

Proof. Take K to be the trivial group in Lemma 3.3. �

3.2. Lie algebras. There are several notions of Lie algebras, exponential

functions, and logarithmic functions for pro-p groups and for finite subgroups

of GLn(Fp). We shall give them all here in order to fix notations. We assume

in this section that G ⊂ GLnZΣ
is a group scheme over SpecZΣ. Recall that

we denote the group G(Zp) by Gp and denote its first congruence subgroup by

G1
p.

We start with the Lie algebra of G1
p. There are three definitions for the

Lie algebra g1
p of G1

p. Fortunately, they coincide for almost all primes.

Let g ⊂ MnZΣ
be the tangent space at the identity, relative to SpecZΣ.

For every p /∈ Σ, the set g(Zp) ⊂ Mn(Zp) is closed under addition and under

taking commutators. The algebraic Lie algebra of G1
p is the set

{A ∈ g(Zp) | A ≡ 0 (mod p)},

together with the addition and Lie brackets induced from Mn(Zp). Using the

embedding ofGp into GLn(Zp), the analytic Lie algebra is the set of all matrices
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of the form

log(I − g) = (I − g) +
(I − g)2

2
+

(I − g)3

3
+ · · · ,

where g ∈ G1
p. For the analytic Lie algebra, the Lie algebra operations, i.e.,

addition and Lie brackets, are the usual addition and commutator of matrices.

The last definition, due to Lazard (see [6, §4.5]) is that the Lie algebra, as

a set, is just G1
p, but the addition and brackets need to be redefined. As

stated before, those three definitions give isomorphic Lie algebras for almost

all primes. We denote the algebraic Lie algebra of the group G1
p by g1

p.

We shall use all three definitions. The algebraic definition implies that

there is formula φ(xi,j) in n2 variables, in the language of valued fields (see

§4), such that for every prime p and every A ∈Mn(Qp), we have A ∈ g1
p if and

only if φ(A) holds. This will enable us to connect the g1
p’s for different primes p.

The analytic definition is useful in order to treat other pro-p subgroups of Gp;

we shall promptly do this. The Lazard definition is used in [12], to which we

shall refer.

We fix n and let

U = {g ∈Mn(Zp) | lim
k→∞

(g − I)k = 0}

and
N = {A ∈Mn(Zp) | lim

k→∞
Ak = 0}

be the sets of pro-unipotent and pro-nilpotent elements respectively. For g ∈U ,

define log(g) as the series

log(g) = (g − I) +
(g − I)2

2
+

(g − I)3

3
+ · · · .

For A ∈ N , define exp(A) as the series

exp(A) = I +A+
A2

2!
+
A3

3!
+ · · · .

Lemma 3.5. If p > 2n, then the series defining log and exp converge, and

the functions log, exp are inverses. Moreover, if A,B ∈ N , and the reductions

mod p, A,B, are in a nilpotent Lie subalgebra of Mn(Fp), then the Campbell

Hausdorff formula holds :

log(exp(A) · exp(B))(3.1)

=
∞∑
m=1

(−1)m

m

∑
ri+si>0

(
∑m
i=1(ri + si))

−1

r1! · s1!× · · · × rm! · sm!
Rr1,s1,...,rm,sm(A,B),

where Rri,si(A,B) is defined by

Rr1,s1,...,rm,1(A,B) = (ad(A))r1(ad(B))s1 · · · (ad(A))rm(B),

Rr1,s1,...,1,0(A,B) = (ad(A))r1(ad(B))s1 · · · (ad(B))rm−1(A),

and Rri,si(A,B) = 0 otherwise.
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Proof. If A ∈ N , then An is divisible by p. Therefore for every N , AN is

divisible by pb
N
n
c. As the maximal power of p that divides N ! is bNp c+ bN

p2 c+

· · · < 2N
p , we get that if p > 2n, then the term AN

N ! is divisible by p
bN
n
c− 2N

p . We

get that vp
(
AN

N !

)
tends to infinity as N tends to infinity. Therefore, the series

defining exp is convergent. The same argument shows that the series defining

log is convergent.

Similarly, if A,B are contained in a nilpotent Lie subalgebra of gln(Fp),
then Rr1,s1,...,rm,sm(A,B) is divisible by

p
r1+s1+···+rm+sm

n ,

whereas the maximal power of p that divides r1!s1! . . . rm!sm! is less than

2(r1 + s1 + · · ·+ rm + sm)

p
.

So the right-hand side of (3.1) is convergent, and therefore is equal to the

left-hand side. �

Definition 3.6. Let R ⊂ Gp be a pro-p subgroup of Gp such that G1
p ⊂ R.

Since R (the reduction of R modulo p) is a p-subgroup of GLn(Fp), we know

that every element in R is unipotent. Hence R ⊂ U . We define the Lie algebra

of R to be the image of R under the map log and denote it by Lie(R).

Note that Lie(R) ⊂Mn(Fp) is a nilpotent Lie algebra.

There is yet another notion of Lie algebras, this time for subgroups of

GLn(Fp). It is taken from [18]. Assume p > 2n and let Υ ⊂ GLn(Fp). If γ ∈ Υ

is an element of order p, then (γ − I)n = 0. We define

log(γ) = (γ − I) +
(γ − I)2

2
+ · · ·+ (γ − I)n−1

n− 1
.

The Lie algebra of Υ is the set

Lie(Υ) = Fp − span{log(γ) | γ ∈ Υ, the order of γ is p}.

The set Lie(Υ) is shown in [18] to be closed under commutators.

3.3. Orbit method. Recall that for a locally compact abelian group A, the

Pontjagin dual of A — which we denote by A∨ — is the set of all continuous

homomorphisms from A to the circle group S1 = {z ∈ C | |z| = 1}.
Let R ⊂ Gp be a pro-p subgroup such that G1

p ⊂ R. Let r = Lie(R). The

group R acts on the (additive) group r by conjugation, and therefore acts on

the Ponrjagin dual r∨. We call this action the coadjoint action and denote it

by Ad∗. Concretely, it is given by

(Ad∗(g)θ)(X) = θ(Xg−1
) = θ(gXg−1).
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Theorem 3.7. Given G, there is an integer p0, such that if p > p0 is a

prime and if Q ⊂ R ⊂ Gp are pro-p subgroups of Gp with Lie algebras q ⊂ r

respectively, then the following hold.

(1) There is a bijection ΞR between Ad∗(R) orbits on r∨ and irreducible repre-

sentations of R. If θ ∈ r∨, we shall write ΞR(θ) instead of ΞR(Ad∗(R)θ).

(2) The character of ΞR(θ) is given by

χΞR(θ)(g) =
1

|Ad∗(R)θ|1/2
∑

φ∈Ad∗(R)θ

φ(log(g)).

(3) If θ ∈ r∨, then the dimension of ΞR(θ) is |Ad∗(R)θ|1/2.

(4) If θ ∈ r∨, and τ ∈ q∨, then ΞQ(τ) is a sub-representation of ResRS ΞR(θ) if

and only if there is g ∈ R such that τ = Ad∗(g)θ|q.

Proof. The proof of (1) and (2) is identical to the proof of Theorem 1.1 in

[8], using the fact that r is closed under addition and brackets and using the

Campbell Hausdorff formula. (3) follows from (2) by evaluating the character

at 1. (4): By (2), for every g ∈ Q the evaluation at g of the characters of

ΞQ(τ) and ResRQ ΞR(θ) are

χΞQ(τ)(g) =
1

|Ad∗(Q)τ |1/2
∑

φ∈Ad∗(Q)τ

φ(log(g))

and

χResRQ ΞR(θ) =
1

|Ad∗(R)θ|1/2
∑

ψ∈Ad∗(R)θ

ψ(log(g)).

The map exp : q→ Q is a measure preserving bijection and hence

(ΞQ(τ),ResRQ ΞR(θ)) =

∫
Q
χΞQ(τ)(g) · χResRQ ΞR(θ)(g)dg

=
1

|Ad∗(Q)τ |1/2
· 1

|Ad∗(R)θ|1/2
∑

φ∈Ad∗(Q)τ

∑
ψ∈Ad∗(R)θ

∫
q
φ(X) · ψ|q(X)dX.

Every φ and ψ|q in the above sum are one dimensional characters of q, and by

orthogonality of characters,∫
q
φ(X)ψ|q(X)dX =

®
1 if φ = ψ|q
0 if φ 6= ψ|q.

The claim follows immediately from this. �

3.4. Subgroups of GLn(Fp). We review some definitions from [18], and

advise the reader to have a copy in hand. We fix a prime number p and a

natural number p > n. Let Υ be a subgroup of GLn(Fp). We shall denote by

Υ+ the subgroup of Υ which is generated by the p-elements of Υ.
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If L ⊂ Mn(Fp) is a Lie subalgebra, we denote by expL the algebraic group

generated by the one parameter subgroups

t 7→ exp(tX)

for all nilpotent X ∈ L.

If Υ is a subgroup of GLn(Fp), we define‹Υ = exp(Lie(Υ)),

where Lie(Υ) was defined in Section 3.2.

For a subset S ⊂ Υ, we denote the subgroup generated by S by 〈S〉.
For an algebraic group G we denote Lie(G) as the Lie algebra of G. If G is

defined over Fp, then Lie(G) can be thought of as a subalgebra of gln(Fp). If

L ⊂ gln(Fp), we denote by expL the set of elements of the form expX for

X ∈ L a nilpotent element.

Proposition 3.8. For every n there is an N such that if L ⊂ gln(Fp) is

Lie algebra that is generated by nilpotents, then 〈expL〉 = (expL)N . Moreover,

there are elements X1, . . . , XN ∈ L ∩Nn(Fp) such that

〈expL〉 = 〈expX1〉 × · · · × 〈expXN 〉.

Proof. The claims in the proposition are trivial if p is bounded. For the

proof, we shall assume that p is large enough, and so we can use the results of

[18]. Also, the first statement clearly follows from the second, so we prove the

second claim.

Let R ⊂ L be the unipotent radical of L. We define algebraic groups

A = expL and B = expR .

The algebraic group B is normal in A, and therefore the group B(Fp) is normal

in A(Fp). We have an exact sequence

0→ B(Fp)→ A(Fp)→ (A/B)(Fp)→ H1(Fp, B).

Since B is unipotent, the Galois cohomology group, H1(Fp, B), vanishes, and

hence A(Fp)/B(Fp) = (A/B)(Fp). Since B(Fp) is a p-group, we get that

B(Fp) / A(Fp)+ and that A(Fp)+/B(Fp) = (A/B)(Fp)+.

The first part of Theorem A of [18] implies that Lie(A) = L and Lie(B)

= R. Hence Lie(A/B) = L/R. Since L is nilpotently generated, so is L/R.

Hence the Lie algebra L/R is semisimple (and not only reductive). In this

case, there are nilpotent elements X1, . . . , XM ∈ Lie(A/B) (where M depends

only on n) such that

(3.2) (A/B)(Fp)+ = 〈expX1〉 × · · · × 〈expXM 〉.
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By induction on the nilpotency class of R, there are nilpotent elements Y1, . . .

. . . , YK ∈ R such that

(3.3) B(Fp) = 〈expY1〉 × · · · × 〈expYK〉.

Choose Xi ∈ L such that Xi +R = Xi. From (3.2) and (3.3) we get that

A(Fp)+ = 〈expX1〉 × · · · × 〈expXM 〉 · 〈expY1〉 × · · · × 〈expYK〉.

It remains to show that A(Fp)+ = 〈expL〉. Clearly, if X ∈ L, then expX ∈
A(Fp), and so 〈expL〉 ⊂ A(Fp)+. For the converse, suppose that u ∈ A(Fp) is

an element of order p. Denoting X = log u, we get

X = log u ∈ 〈logA(Fp)〉
(1)
= Lie

(‡A(Fp)
)

(2)
= Lie(A) = Lie(expL)

(3)
= L,

where (1) follows from first part of Theorem B of [18], (2) follows from the

second part of the same theorem, and (3) follows from the first part of Theorem

A of [18].

Since A(Fp)+ is generated by the p-elements in A(Fp), we get that A(Fp)+

⊂ 〈expL〉. �

We have the following corollary, which will not be used in the rest of the

article; see also [10] for a very similar proof.

Corollary 3.9. For every n there is N such that for every prime p and

a group G ⊂ GLn(Fp), there are elements x1, . . . , xN ∈ G such that

G = 〈x1〉 × · · · × 〈xN 〉.

Proof. By Theorem B of [18], G+ = ‹G(Fp)+. Every nilpotent element in

Lie(‹G) is of the form log g, where g ∈ ‹G(Fp)+ = G+. Hence, by Proposition 3.8,

there are elements g1, . . . , xM ∈ G+ such that

G+ = 〈g1〉 × · · · × 〈gM 〉.

By Theorem C of [18], there is an abelian group H ⊂ G such that HG+ is

normal and of bounded index in G. Moreover, by the proof of the theorem,

there is a lifting of H ↪→ GLn(Fp) to H ↪→ GLn(Zp). Hence H is a finite abelian

subgroup of GLn(Qp) and hence is a product of at most n cyclic groups. It

follows that one can find h1, . . . , hn ∈ H such that

H = 〈h1〉 × · · · × 〈hn〉.

Finally, there are elements z1, . . . , zlog2[G:HG+] ∈ G such that

G/HG+ = 〈z1HG
+〉 × · · · × 〈zlog2[G:HG+]HG

+〉.

Putting it together,

G = 〈g1〉 × · · · × 〈gM 〉 · 〈h1〉 × · · · × 〈hn〉 · 〈z1〉 × · · · × 〈zlog2[G:HG+]〉. �
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3.5. Extensions of representations. In general, if S is a group, V / S is a

normal subgroup, and ρ is a representation of V , then the relative zeta func-

tion ζS|ρ(s) is different from the representation zeta function of the quotient,

ζS/V (s). There is, however, one important case in which they are equal.

Definition 3.10. Let S be a group and V / S be a normal subgroup. Let

ρ be a representation of H. We say that ρ is extendible to S if there is a

representation χ of S such that ResSV χ = ρ. The representation χ is called an

extension of ρ to S.

Suppose ρ ∈ IrrV is extendible to S, and let χ be an extension of ρ to S.

Every representation τ of S/V can be thought of as a representation of S by

composition with the quotient map S → S/V . We have a map

Irr(S/V ) −→ Irr(S|ρ),(3.4)

τ 7→ τ ⊗ χ.

Proposition 3.11 ([11, Th. 6.16]). If V / S, ρ ∈ IrrV , and χ ∈ IrrS is

an extension of ρ to V , then the map (3.4) is a bijection. Therefore ζV |ρ(s) =

ζS/V (s).

Extensions of representations are tightly connected to the second coho-

mology group of the quotient. The setting is as follows: We have a group S,

a normal subgroup V / S, and an irreducible representation ρ of V . By Clif-

ford’s theory, a necessary condition for the extendability of ρ is that S fixes

the representation ρ3. Assuming this, we construct an element in the second

cohomology group H2(S/V,C×).

Let M be a V -module that gives rise to the representation ρ. Choose a

transversal T to V inside S such that 1 ∈ T . For every t ∈ T , the V -modules

M and tM are isomorphic. We choose an isomorphism Pt : M → tM , and for

t = 1 we put P1 = Id. Every element of S can be written as tv, where t ∈ T
and v ∈ V . We define Ptv : M → tM as Ptv(m) = Pt(v ·m). It can be easily

checked that for any g1, g2 ∈ S, the operator

P−1
(g1g2) ◦ Pg1 ◦ Pg2 : M →M

is a morphism of V modules, and hence it is a multiplication by a scalar, which

we denote by α(g1, g2). Note that the value of α(g1, g2) depends only on the

cosets g1V, g2V . The function α is a 2-cocycle, and we denote its image in

the second cohomology of S/V by β. Although the cocycle α depends on the

choices of T and Pt, the cohomology class β does not. By [11, Th. 11.7], the

representation ρ is extendible to S if and only if β is trivial.

3That is, that for every g ∈ S, the representation ρg, defined by v 7→ ρ(g−1vg), is equiva-

lent to ρ.
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We will be interested in the case that V is a pro-p group. In this case, we

have:

Proposition 3.12. Let S be a profinite group, let V / S be a normal

pro-p subgroup of finite index, and let ρ be an irreducible representation of V .

If β ∈ H2(S/V,C×) is the cohomology class attached to S, V, ρ, then β is a

p-element in H2(S/V,C×).

Proof. Fix volume forms on the tM ’s. Let t1, t2 ∈ T and suppose v ∈ V
is such that t1t2v ∈ T . By taking determinants we get

α(t1, t2)dim(M) = det(Pt1) det(Pt2) det(Pt1t2v)
−1 det ρ(v)−1.

We can choose the Pt’s for t ∈ T to have determinant 1. Since ρ is an irreducible

representation of a pro-p group, dim(M) is a power of p and det ρ(v) is a pn-root

of unity for some n. Therefore α(t1, t2) is a pm-root of unity. It follows that

the order of β is a power of p. �

The cohomology groups of finite quasi-simple groups are well known; see,

for example, [4, Table 5]. In particular, we have:

Proposition 3.13. For every r ∈ N there is c(r) ∈ N such that if Θ is

a quasi-simple group of Lie rank r, then the order of the group H2(Θ,C×) is

less than c(r). The same is true for the first cohomology groups H1(Θ,C×).

We shall use Propositions 3.12 and 3.13 for extensions of p groups by

finite quasi-simple groups, where the rank of the finite quasi-simple group is

bounded, and p is large. In this case there are no p-elements in the second

cohomology group, and therefore the relative zeta function is equal to the

representation zeta function of the finite quasi-simple group.

3.6. Zeta functions of finite reductive groups. The representation zeta

functions of the finite simple groups of Lie type were studied in [16] using

the Deligne-Lusztig theory.

Let G be a connected, simply connected, and simple algebraic group de-

fined over Fp. Let T ⊂ G be a maximal torus defined over Fp. Choose a Borel

subgroup B ⊂ G, not necessarily defined over Fp, and let U be the unipotent

radical of B.

Let F : G→G be the Frobenius map. Recall that the Lang map L : G→G

is the map
g 7→ g−1 · F (G).

The group G(Fp) × T (Fp) acts on the variety L−1(U) by (g, t)(x) =

gxt−1. Therefore, for each i, the i-th étale cohomology with compact sup-

port, H i
c(L
−1;C)4, is a G(Fp)× T (Fp)-bimodule.

4To be more precise, for every prime ` 6= p, we have the cohomology groups Hi
c(L
−1;Q`).

But Q` is isomorphic to C.
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Definition 3.14. The Deligne-Lusztig induction of a character θ of T (Fp)
is the θ-isotypic component in the virtual5 module∑

(−1)iH i
c(L
−1(U);C).

This is a virtual representation of G(Fp); it is independent of the choice of B,

and we denote it by RGT θ.

Lemma 3.15. For fixed T and θ, all irreducible components of RGT θ have

the same central character.

Proof. For a variety V and f ∈ Aut(V ), let

L(g, V ) =
∑

(−1)i trace(f |H i
c(V ;C)).

By the definition, the character of RGT θ is

trace(RGT θ(g)) =
1

|T (Fp)|
∑

t∈T (Fp)

L((g, t), L−1(U)) · θ(t)−1.

If z ∈ Z(G(Fp)) and t ∈ T (Fp), then the order of (z, t) as an automorphism

of L−1(U) is prime to p. Therefore, by [5, Prop. 10.14], L((z, t), L−1(U)) =

L((1, 1), (L−1(U))(z,t)). If z 6= t, then L−1(U)(z,t) = ∅ and L((z, t), L−1(U)) = 0.

If z = t, then L−1(U)(z,t) = L−1(U). Therefore, we get

trace(RGT θ(z)) =
1

|T (Fp)|
L((1, 1), L−1(U)) · θ(z)−1.

Since

trace(RGT θ(1)) =
1

|T (Fp)|
L((1, 1), L−1(U)),

the lemma follows. �

The following is a slight generalization of [16, Th. 1.7], which we will need

in the following:

Lemma 3.16. Let G be a simple group scheme. There is a natural number

N such that for every 0 ≤ a < N , we have:

(1) The isomorphism type of the center of G(Fp) is the same, for almost

all primes congruent to a modulo N . Denote this group by Aa.

(2) For every ω ∈ A∨a , there are polynomials P1, . . . , PN , Q1, . . . , QN such

that for almost all primes p that are congruent to a modulo N , we have

ζG(Fp)|ω(s) =
∑

Pi(p) · (Qi(p))−s.

5Virtual means that we are taking formal linear combinations of representations. The

result lives in the K group of the category of representations.
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Proof. (1) is well known. Let G∗ be the dual algebraic group to G, as

defined in [5, Def. 13.10]. The representations of G(Fp) are partitioned into

Lusztig cells, E(G(Fp), (s)), indexed by semi-simple conjugacy classes (s) ⊂
G∗(Fp). Each cell consists of the irreducible components of the representation

RGT θ, where the pair (T, θ), consisting of a maximal torus T ⊂ G defined

over Fp and a character θ of T , is attached to the conjugacy class (s) by [5,

Prop. 13.13]. By [5, Th. 13.23 and Rem. 13.24], for every s, there is a bijection

ψs between E(G(Fp), (s)) and E(CG∗(Fp)(s), 1) such that

dim ρ =
|G(Fp)|p′

|CG∗(s)(Fp)|p′
dimψs(ρ),

where |X|p′ denotes the largest integer prime to p that divides |X|.
If s ∈ G∗(Fp) is semi-simple, then CG∗(s) is a reductive subgroup of G∗ of

maximal rank and CG∗(Fp)(s) = CG∗(s)(Fp). There are finitely many subgroup

schemes C1, . . . , CK ⊂ G∗ such that for any prime p and every semi-simple

s ∈ G∗(Fp), CG∗(s) is conjugate to one of the Ci’s. Moreover, for every i there

is a polynomial F 1
i (x) ∈ Q[x] such that for every p, we have

F 1
i (p) =

|G(Fp)|p′
|Ci(Fp)|p′

.

By looking at the table of unipotent characters, we see that there are

polynomials F 2
i,j(x) ∈ Q[x], such that for every p, the degrees of the unipotent

representations of Ci(Fp) are F 2
i,1(p), . . . , F 2

i,M (p).

Finally, by a similar argument to [16, Lemma 4.3], the number of conju-

gacy classes (s) ⊂ G∗(Fp) such that

(1) CG∗(s) is conjugate to Ci(Fp);
(2) θ|A = ω, where (T, θ) is the pair associated to (s);

is of the form F 3
i,ω,p(p), where F 3

i,ω,p(x) ∈ Q[x] depends only on i, ω, and the

residue class of p modulo some fixed integer N . We get that

ζG(Fp)|ω(s) =
K∑
i=1

F 3
i,ω,p(p) · F 1

i (p) ·
M∑
j=1

F 2
i,j(p)

−s. �

Proposition 3.17. Let G be a semisimple algebraic group scheme over

ZS . There is a natural number N , and for each 0 ≤ a < N , there are two

sequences of polynomials

P1(x), . . . , Pka , Q1(x), . . . , Qka(x) ∈ Q[x]

such that for every prime p, which is congruent to a modulo N and not in S,

we have

ζG(Fp)(s) =
ka∑
i=1

Pi(p) ·Qi(p)−s.
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Proof. Let G be a semisimple algebraic group scheme over S. There are

simple algebraic group schemes G1, . . . , Gn such that for every p, we have a

central extension

1→ Zp →
∏

Gi(Fp)→ G(Fp)→ 1.

Moreover, the isomorphism classes of Zp and of the centers of Gi(Fp) are con-

stant if we fix the residue class of p modulo some N . Fix such a residue class

and let Ω be the collection of tuples (ω1, . . . , ωn) such that

(1) ωi is a character of the center of Gi(Fp);
(2) ω1 × · · · × ωn is trivial on Zp.

We have that

ζG(Fp)(s) =
∑

(ω1,...,ωn)∈Ω

ζG1(Fp)|ω1
(s) · · · · · ζGn(Fp)|ωn(s).

By Lemma 3.16, the proposition is proved. �

3.7. Equivalence of Euler products.

Definition 3.18. Let (ζn(s))n and (ξn(s))n be two sequences of Dirichlet

series with nonnegative coefficients. We say that the sequences (ζn(s))n and

(ξn(s))n are equivalent, and we write (ζn(s))n ∼ (ξn(s))n, if there is a constant

C > 0 such that for every n and every s, which is greater than the abscissae

of convergence of all ξn(s), ζn(s),

C−1−sξn(s) ≤ ζn(s) ≤ C1+sξn(s).

Lemma 3.19. Suppose (ζn(s))n and (ξn(s))n are two sequences of Dirich-

let series with nonnegative coefficients and constant terms equal to zero, and

suppose that (ζn(s))n ∼ (ξn(s))n. Then the abscissae of convergence of the

products ∏
n

(1 + ζn(s)) and
∏
n

(1 + ξn(s))

are equal.

Proof. Suppose s is greater than the abscissa of convergence of
∏
n(1 +

ζn(s)). Then for every n, s is greater than the abscissa of convergence of

ζn, and the sum
∑
n ζn(s) converges. By the assumption, s is greater than

the abscissa of convergence of ξn for every n, and the sum
∑
ξn(s) converges.

Therefore, s is greater than the abscissa of convergence of
∏

(1 + ξn(s)). By

symmetry, the abscissae of convergence of
∏

(1 + ζn(s)) and
∏

(1 + ξn(s)) are

equal. �
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3.8. Resolution of singularities. In this section we remind the the reader

of the notions of resolution of singularities and reduction modulo p of a scheme

defined over the rationals.

We start with the notion of (embedded) resolution of singularities. We

shall work over the field Q of rational numbers. Given a polynomial P (x) ∈
Q[x1, . . . , xn], an embedded resolution of P (x) is a pair (YQ, h), where YQ is

a smooth subvariety of PkAnQ and h is the restriction of the natural projection

PkAnQ → AnQ to YQ, such that if we denote by D the subscheme defined by P (x),

then

(1) the restriction of h to YQ \ h−1(D) is an isomorphism onto AnQ \D;

(2) h−1(D) is a divisor with normal crossings.

By a well-known theorem of Hironaka, every polynomial (over a field of char-

acteristics 0) has a resolution of singularities.

The second notion we wish to remind the reader of is that of reduction

mod p of a variety. Let YQ ⊂ PkAnQ be a variety. Consider PkAnQ as an open subset

of PkAnZ . Define YZ to be the scheme theoretic closure of YQ inside PkAnZ . The

reduction mod p of YQ is the fiber product YZ ×Spec(Z) Spec(Fp).6

Definition 3.20. Let P (x) ∈ Q[x1, . . . , xn] be a polynomial. Let (YQ, h)

be a resolution of singularities of P (x). We denote the irreducible components

of (h−1(D))red as E1, . . . , Em. We say that (Y, h) has good reduction modulo

p if the following conditions hold.

(1) YFq is smooth;

(2) Ei are smooth, and ∪Ei has normal crossings;

(3) Ei and Ej do not have a common irreducible component if i 6= j.

It is easy to see that if (YQ, h) is a resolution of singularities, then this

resolution has a good reduction modulo almost all primes.

4. Definable families

4.1. Definable sets in Tf . We shall work with several different logical the-

ories (and languages). Recall that the language of rings, LRings, is the first

order language which has constant symbols 0,1, has only equality as a relation,

and has two function symbols: addition and multiplication. We let the theory

6A more elementary description, which is true for almost all primes is the following:

Suppose YQ is defined by the polynomial equations Q1(x) = · · · = Qm(x) = 0, where Qi(x)

are polynomials with rational coefficients. For almost all primes p, the denominators of the

coefficients of Qi(x) are not divisible by p and so we can consider the reduction Qi(x) of

Qi(x) mod p. Then YFp is the variety defined by the equations Q1(x) = · · · = Qm(x) = 0.
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Tf (the theory of fields) be the collection of all sentences in LRings that hold

for all fields.

It will also be useful to work over different bases. If R is an integral

domain, we denote by LRings(R) the language LRings together with constant

symbols for the elements of R. The theory Tf (R) consists of all sentences of

LRings(R) that hold for all fields containing R. In particular, it contains all

relations that hold between the elements of R.

By a Tf -definable set we shall mean a formula φ(x) in the language LRings

(here and in the following we shall use x to denote a tuple of variables of

unspecified length). Let X be a definable set that corresponds to the formula

φ(x). Given a model L of Tf (i.e., a field) we define the set of L-solutions of

X as

X(L) = φ(L) := {a ∈ Ln | φ(a)}.

Examples of definable sets are the affine space An defined by the formula

φ(x1, . . . , xn) := ‘0 = 0’ and the general linear group GLn defined by the

formula φ(xi,j) := ‘ det(xi,j) 6= 0’. More generally, suppose that X ⊂ AnZS is a

scheme over SpecZS given by the equations f1(x) = · · · = fm(x) = 0, where

fi(x) ∈ ZS [x]. The same equations give us an LRings(ZS)-definable set, which

we shall denote by X.

Suppose that U and V are Tf -definable sets given by formulas φ(x) and

ψ(x) respectively, in the same variables. We say that U and V are equal if

Tf contains the sentence (∀x)(φ(x) ↔ ψ(x)). It is possible for two nonequal

Tf -definable sets to have the same set of points in some model. However, if two

definable sets have the same set of points in every model, then they are equal

by the compactness theorem. Similarly, we say that U is contained in V if Tf
contains the sentence (∀x)(φ(x)→ ψ(x)). The definable sets V ∩U, V ∪U, V ×U
are associated with the formulas φ(x) ∧ ψ(x), φ(x) ∨ ψ(x) and φ(x) ∧ ψ(y)

respectively, where y is a tuple of variables disjoint from x. For the cartesian

product, we can omit the requirement that φ and ψ have the same number of

variables.

A Tf -definable function between the Tf -definable sets U and V is a Tf -

definable set W that is contained in U × V , such that Tf implies that W is a

graph of a function (note that this can be expressed in LRings). A Tf -definable

(linear) group is a Tf -definable subset G of GLn such that Tf implies the axioms

of a group for G.

Given a Tf -definable set X, the Zariski closure of X is defined in the

following way. We look at the ideal of all polynomials p(x) such that Tf
contains the sentence (∀x)(φ(x) → (p(x) = 0)). This ideal is generated by a

finite number of polynomials, say by pi(x). The Zariski closure of X is the

Tf -definable set given by the formula p1(x) = 0 ∧ · · · ∧ pN (x) = 0.
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Given a domain R, the notions of Tf (R)-definable sets, functions, and

groups are defined similarly. Every Tf -definable set is a Tf (R)-definable set,

but note that two nonequal Tf -definable sets can become equal as Tf (R)-

definable sets. For example, the formula φ(x) := ‘1+1 = 0’ defines a nonempty

Tf -definable set (since it has points over F2) but it becomes empty in Tf (F3).

We stress again that definable sets are not sets, but rather formulas. The

expression “x ∈ V ” is a synonym for the formula φ(x) whereas “a ∈ V (L)”

means that L is a model for our theory, that a is a tuple of elements of L, and

that φ(a) holds.

Of course, relative notions are very useful. We will only work over a

base which is an affine space, but the definitions can be given for general base

variety.

Definition 4.1. (1) A Tf -definable family over An is a Tf -definable

subset of An × Am for some m.

(2) A morphism between two definable families A,B over An is a definable

map φ : A→ B such that the diagram

A

  

φ // B

~~
An

is commutative.

(3) Suppose A ⊂ An × Am is a Tf -definable family defined by the formula

φ(x, y). Given a model L and a ∈ An(L), let K(a) ⊂ L be the sub-

ring generated by the coordinates of a. We define the fiber Aa as the

Tf (K(a))-definable set defined by the formula φ(a, y).

The fiber product of two definable families over An is again a definable

family over An. We denote it by ×An .

Definition 4.2. (1) A Tf -definable family of groups over An is a Tf -

definable subset G of An ×GLm such that Tf implies that every fiber

is a group.

(2) Given a Tf -definable family of groups G and a Tf -definable family

Ω over the same base, a definable family of actions is a morphism

G×AnΩ→ Ω such that for every model L and a ∈ An(L), the definable

map of the fibers is an action.

4.2. Pseudo-finite fields. Another theory we shall work with is the asymp-

totic theory of finite fields, which is also known as the theory of pseudofinite

fields of characteristics zero. The language for this theory is again LRings. The

theory of pseudofinite fields, Tpf , consists of all sentences of LRings that hold

for all finite fields, except for the fields of characteristics smaller than N for
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some N . For example, the sentence “There exists a unique field extension of

degree 2, up to isomorphism” can be expressed in the language of fields. Since

it is true for all finite fields, it belongs to Tpf .

Remark 4.3. The use of pseudo-finite fields is for notational simplicity

only. If the reader wishes, she can replace all absolute statements of the form

“(the first order sentence) X holds in the theory of pseudo-finite fields” by the

statement “If p is large enough, then X holds”.

Every finite subset of sentences in Tpf has a model, so by the compactness

theorem Tpf has a model. Note that if L is a model of Tpf , then the charac-

teristics of L is zero (since for every N , the theory Tpf contains the sentences

“The characteristics is different from N”).

The notions of Tpf -definable sets, functions etc. are defined similarly. Ev-

ery Tf -definable set is a Tpf -definable set. Note, however, that there might be

more functions between two definable sets (since the requirement that a set is

a graph of a function is stronger in Tf than in Tpf ).

We denote by N the set of nonnegative integers. The following theorem is

a strengthening of the Lang-Weil estimates (see, for example, [2, Th. 7.1] and

the references therein).

Theorem 4.4. Let φ(x, y) be a formula in LRings. Then there exists a

finite set D ⊂ N × Q>0 ∪ {(0, 0)}, formulas φ(d,µ)(y) for (d, µ) ∈ D, and a

constant c, such that the following hold.

(1) The sentence (∀y)
∨
D φ(d,µ)(y) holds in the theory of pseudofinite fields.

(2) If p is a prime number, a ∈ Fnp , and φ(d,µ)(a) holds, then

∣∣∣|{x ∈ Fmp |φ(x, a)}| − µpd
∣∣∣ < cpd−

1
2 .

If the Zariski closure of φ(x, a) is an irreducible variety and has dimension e,

then φ(e,µ)(a) holds for some µ.

Note that since (∀y)
∨
D φ(d,µ)(y) holds in Tpf , then if p is large enough,

then for every a ∈ Fnp there is a (d, µ) ∈ D such that φ(d,µ)(a) holds.

Definition 4.5. A theory T is called complete if for any sentence φ, either

φ ∈ T or ∼ φ ∈ T . A completion of a theory is a complete theory that

contains it.

By [2, Th. 6.14], the completions of Tpf are given by specifying which

integer polynomials are irreducible over the field (and taking all logical impli-

cations). This shows that the set of primes for which a single sentence holds

is regular in some way.
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Definition 4.6. Let P be the set of prime numbers. Given an integer poly-

nomial f(x) ∈ Z[x], let Pf be the set of primes p such that f(x) is irreducible

modulo p. A set in the Boolean algebra generated by Pf and the Boolean

algebra of finite and co-finite sets in P is called an Artin set. By the density

theorem of Chebotarev, every Artin set is either finite or has a positive analytic

density.

We claim that if φ is a sentence in the language of fields, then the set

of primes p for which φ holds in Fp is an Artin set. For suppose it is not.

Enumerate the set of integer polynomials f1, f2, . . . and for each i let Ii be

the sentence “fi is irreducible”. By our assumption, for every n, there are

Jn1 , . . . , J
n
n such that every Jni is either equal to Ii or to ∼ Ii and such that

both

Tpf ∪ {Jn1 ∧ · · · ∧ Jnn ∧ φ} and Tpf ∪ {Jn1 ∧ · · · ∧ Jnn∧ ∼ φ}
are satisfiable. A diagonalization argument shows that there is a choice J1,

J2, . . . , where each Jn is equal to either In or ∼ In, such that both Tpf ∪{Jn}n
∪{φ} and Tpf ∪{Jn}n∪{∼ φ} are both satisfiable. But this is a contradiction,

since Tpf ∪ {Jn}n is complete.

Corollary 4.7. Let φ(x, y) be a formula in LRings. Then there are:

(1) a constant c;

(2) a partition of the set of primes into finitely many Artin sets P1, . . . ,Pl;
(3) for each 1 ≤ i ≤ l, a finite set Di ⊂ N×Q>0 ∪ {(0, 0)};
(4) for each 1 ≤ i ≤ l, two functions, ei : Di → N and νi : Di → Q>0;

such that for every p ∈ Pi and every a ∈ Fnp , there is a (d, µ) ∈ Di such that∣∣∣|{x ∈ Fmq |φ(x, a)}| − µpd
∣∣∣ < cpd−

1
2 .

If we denote by N(d,µ) the number of the tuples a ∈ Fnp for which the inequality

above holds, then ∣∣∣N(d,µ) − νi(d, µ)pei(d,µ)
∣∣∣ < cpe(d,µ)− 1

2 .

Proof. Let c,D, and φ(d,µ) be as in Theorem 4.4. For each (d, µ) ∈ D apply

Theorem 4.4 to the formula φ(d,µ)(y). In this degenerate case, the theorem says

that there are sentences φ(d,µ,e,ν) such that if φ(d,µ,e,ν) holds, then the number

of points in φ(d,µ)(Fp) is νpe±C · pe−
1
2 . Let Σ be the set of primes p for which

one of the sentences ∨
φd,µ,e,ν (∀y)

∨
φ(d,µ)(y)

does not hold. Since these sentences hold in Tpf , we get that Σ is finite. By

the above, there is a partition of the primes into Artin sets Pi such that for

each i and (d, µ, e, ν), the sentence φ(d,µ,e,ν) holds for all {Fp | p ∈ Pi} or

for none. By further partitioning of the Pi, we can assume that for each i
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either Pi is infinite and Pi ∩ Σ = ∅, or Pi is a singleton. For each i such

that Pi ∩ Σ = ∅, set Di = {(µ, d) | (∃y)φ(d,µ)(y) and let (e(d, µ), ν(d, µ)) be

the unique (e, ν) such that φ(d,µ,e,ν) holds for all the primes in Pi. For Pi a

singleton, set Di = {(0, 1)}, e(0, 1) = ν(0, 1) = 1. It is clear that if c is large,

then the proposition holds. �

4.3. Definable families of groups.

Proposition 4.8. Let L ⊂ An ×Mn be a Tf -definable family of Lie al-

gebras. Then there is a definable family R ⊂ L such that for every model F of

Tf of high enough characteristics, and for every x ∈ An(F ), the fiber Rx is the

nilpotent radical of the Lie algebra Lx.

Proof. By the Jacobson-Morozov theorem, if F has characteristic 0 and

L ⊂ Mn(F ) is a Lie algebra, then an element x ∈ L is in the unipotent

radical of L if and only if for every y ∈ L , the element [x, y] is nilpotent. By

compactness, the same follows for if F is a field of high enough characteristics

(n is fixed here). �

For a root datum Φ, denote HΦ as the adjoint algebraic group attached

to Φ.

Lemma 4.9. Let G ⊂ Am ×GLn be a Tpf -definable family of semisimple

adjoint groups. Then there is a definable partition Am = X1 t · · · t Xk, and

for every i there are root data Φi,1, . . . ,Φi,j , such that for p large enough, and

for x ∈ Xi(Fp), the group Gx(Fp) is isomorphic to HΦi,1(Fp)× · · · ×HΦi,j (Fp).

Proof. We first assume that G is a family of simple adjoint groups. In

this case we need to show that for every root datum Φ, the set of x ∈ Am such

that Gx is isomorphic to HΦ, is a definable set. A priori, this condition is not

definable, as the isomorphism can be a polynomial map of very high degree.

Let LΦ be the Lie algebra attached to Φ. Define a family of Lie algebras

L ⊂ Am × gln as follows: For x ∈ Am, let Ux ⊂ Gx be the set of unipotent

elements. Define Lx to be the span of logUx.

It is known that Gx(Fp) is isomorphic to HΦ(Fp) if and only if Lx(Fp) is

isomorphic to LΦ. This, however, is a definable condition, since every mor-

phism between Lie algebras is linear.

The argument for products of simple groups is similar. �

Remark 4.10. This proof actually shows that every map between con-

nected semisimple algebraic groups G ⊂ GLn and H ⊂ GLm can be represented

by a polynomial whose degree is bounded as a function of m and n.

Proposition 4.11. Let X be a definable set in Tpf , and let S ⊂ X×GLn
be a family of definable groups in Tpf . Then there are:
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(1) a definable partition X = X1 t · · · tXm;

(2) for each i, a finite sequence of root data Φi
1, . . . ,Φ

i
ni ;

(3) definable families U ⊂ C ⊂ S of normal subgroups ;

(4) a constant c;

such that for every p large enough, for any i, and for any a ∈ Xi(Fp), the

following hold.

(1) Ua(Fp) is a unipotent group. Moreover, Ua(Fp) is the maximal normal

p-subgroup of Sa(Fp).
(2) Ca(Fp)/Ua(Fp) is isomorphic to HΦi1

(Fp)× · · · ×HΦini
(Fp).

(3) The group Sa(Fp)/Cx(Fp) is an extension of an abelian group, whose

order is prime to p, by a group of size less than c.

Proof. Let P ⊂ X ×GLn be the definable family

P = {(x, g) ∈ S | (g − 1)n = 0}.

Since on unipotent elements, the function log is a polynomial, the family

L = {(x,A) ∈ X × gln | A is in the span of logPx}

is a definable family. It is easy to see (see [18, Lemma 1.6]) that if p is large

enough, then for every x ∈ X(Fp), the set Lx(Fp) is a Lie algebra. By Propo-

sition 3.8, there is a family C ⊂ X ×GLn such that for every p large enough,

and every x ∈ X(Fp), the set Cx(Fp) is equal to the group generated by the

set expLx(Fp). By [18, Th. B], we have that Cx(Fp) ⊂ Sx(Fp) for all p large

enough, and hence C ⊂ S. Clearly, C is a family of normal subgroups of S. By

[18, Th. C], for every p large enough and every x ∈ X(Fp), there is a commu-

tative subgroup H ⊂ Sx(Fp) such that HCx(Fp) is normal in Sx(Fp) and its

index is less than a constant, which we denote by c. Moreover, by the same

theorem, the order of H is prime to p. Claim (3) follows from this.

By Proposition 4.8, there is a definable family of Lie subalgebras Lu ⊂ L
such that for every x ∈ X, the Lie subalgebra Lux is the unipotent radical

of Lx. By Proposition 3.8, there is a definable family U ⊂ C such that for

every p large enough and every x ∈ X(K), the set Ux(Fp) is the subgroup

generated by the set expLux(Fp). Clearly, Ux(Fp) is a unipotent normal p-sub-

group of Cx(Fp). Since Ux(Fp) is characteristic in Cx(Fp) and since, if p is large

enough, the order of Sx(Fp)/Cx(Fp) is not divisible by p, we get that Ux(Fp)
is a normal p-subgroup of Sx(Fp). This finishes the proof of claim (1), except

for the maximality.

For every p large enough and for every x ∈ X(Fp), the Lie algebra

Lx(Fp)/Lux(Fp) is reductive. Since it is generated by nilpotents, it is, in fact,

semisimple. Theorem B of [18] shows that Cx(Fp)/Ux(Fp) is equal to H(Fp)+ =

[H(Fp), H(Fp)], where H is a semisimple algebraic group with Lie algebra

Lx(Fp)/Lux(Fp). By Lemma 4.9 we get a definable partition X = Xit· · ·tXm
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and root data Φi
j such that for every p large enough and every x ∈ Xi(Fp), the

group Cx(Fp)/Ux(Fp) is isomorphic to

HΦi1
(Fp)× · · · ×HΦini

(Fp).

Claim (2) follows. Also, it follows that Cx(Fp)/Ux(Fp) does not have any

normal p groups, and hence the maximality claim in (1) follows. �

4.4. Henselian valued fields. We will also work in the theory of valued

Henselian fields. The language for this theory is the language LV f of valued

fields, which we proceed to define. In LV f one can quantify over three kinds

of variables (which are called sorts): one is the valued fields sort, one is the

residue field sort, and one is the value group sort. The language has constants

0, 1 (which are valued field sort), 0̄, 1̄ (which are residue field sort), and 0̃ (which

is value group sort). The relations are equality and <̃, but we can only equate

expressions of the same sort (so 0 = 0̄ is not a legitimate expression), and

only <̃-compare expressions which are in the value group sort. The functions

symbols are two sets of addition and multiplication (for the value field and

residue field sorts), addition (for the value group sort), and two additional

function symbols: a function val (called valuation) from the valued field sort

to the value group and a function ac (called angular component) from the value

field sort to the residue field sort. Here again, there are definable sets, functions

etc. An example of a definable set is O, which is defined by the formula φ(x) :=

‘ val(x) ≥ 0’, where x is a variable of valued field sort. Since in LV f there is

more than one sort, there might be confusion regarding the variables of the

definable sets. We resolve this confusion by adding the subscripts V,R,O for

valued field, residue field, and value group respectively. So, for example, AnV is

the affine space whose coordinates are valued field sort and (GLn)R is the set

of invertible n× n matrices whose entries are from the residue field.

The theory THvf of Henselian valued fields, whose valuation group is ele-

mentary equivalent to Z, consists of the following axioms:

• the axioms of fields for the valued field sort and for the residue field

sort;

• the axioms of non-archimedian valuation;

• all sentences that hold for Z for the value group sort;

• the sentences (∀x, y 6= 0) ac(xy) = ac(x) · ac(y), (∀x, y 6= 0)(val(x) <

val(y)→ ac(x+ y) = ac(x), and (∀x, y 6= 0)(val(x) = val(y) ∧ ac(x) 6=
− ac(y))→ ac(x+ y) = ac(x) + ac(y);

• sentences stating that the field is Henselian.

We shall be mainly interested in the models Mp of THvf , which interpret

AV as Qp, interpret AR as Fp, interpret AO as Z, interpret val(x) as the p-adic
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valuation of x, and interpret ac(x) as the first nonzero coefficient in the p-adic

expansion of x.

Let THvf,0 be the theory THvf together with the axioms that claim that

the characteristic of the residue field is equal to zero. While no Mp is a model

for THvf,0, it follows from the compactness theorem that every sentence that

holds in THvf,0 is also true in all but finitely many of the Mp’s.

Theorem 4.12 (Elimination of quantifiers in Henselian fields; see [19,

Th. 4.1]). Let φ(x, y, z) be a formula in the language LV f where the variable x

is of the valued field sort, the variable y is of residue field sort, and the variable

z is of value group sort. Then there is a partition of AnF into finitely many

constructible sets Cj ; and for each j there are polynomials P j1 (x), . . . , P jn(x)

that do not vanish on Cj , formulas ψj1(x, y) in the language of rings, and

formulas ψj2(x, y) in the language of ordered groups, such that THvf,0 implies

that φ(x, y, z) is equivalent to the formula∨
j

Ä
x ∈ Cj ∧ ψj1(ac(P j1 (x) · · ·P jn(x)), y) ∧ ψj2(val(P j1 (x) · · ·P jn(x)), z)

ä
.

Theorem 4.13 (Elimination of quantifiers in the theory of Z ; see [19,

Lemma 5.5]). Let A be a definable set in the language of ordered groups. Then

the theory of Z implies that A is equal to a Boolean combination of definable

sets defined by formulas of the form

φ(x) ≥ 0 ∧ (∃y ∈ Γ)ψ(x) = n · y,

where φ(x), ψ(x) are linear functionals with integer coefficients and n ∈ N.

The following is an easy corollary of Theorem 4.13.

Lemma 4.14. Every definable function f : AnO → AO is piecewise linear.

In other words, there is a partition of AnO to definable sets AnO = X1t· · ·tXm,

there are linear functionals ϕ1, . . . , ϕm with rational coefficients, and there are

definable elements γ1, . . . , γm ∈ AO such that THvf implies the sentence

(∀x ∈ AnO) (x ∈ Xi → f(x) = ϕi(x) + γi) .

Proposition 4.15. A definable function q : AnV → A1
O is (in THvf,0, and,

a posteriori, in Mp for p large enough) piecewise of the form 1
nval

(
f(x)
g(x)

)
, where

f and g are polynomials.

Proof. Let q : AnV → A1
O be a definable function. By Theorem 4.12, the

graph of q, which is a subset of AnV × A1
O, is defined by a formula of the type∨

φi(val(P1(x)), . . . , val(Pr(x)), γ) ∧ ψi(ac(P1(x)), . . . , ac(Pr(x)))

∧ (Qi1(x) · · · = Qit(x) = 0) ∧ (Qit+1(x) 6= 0),
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where Pi(x) and Qij(x) are polynomials, φ(y1, . . . , yr, z) is a formula in the

language of ordered groups, and ψ(x1, . . . , xr) is a formula in the language

of fields. Decompose the domain of q according to the conditions Qij(x) = 0

and ψi(ac(Pj(x))). Let A be one of the pieces. On A, the graph of q is given

by a formula φ(val(Pj(x)), γ). Again, by Theorem 4.12, val(A) is a subset B

in AnO which is definable in the language of ordered groups. Therefore the

formula φ(y1, . . . , yr, z) defines a graph of a function from B to A1
O. Since by

Lemma 4.14 every such function is piecewise linear, we get that after a further

division of the domain, q is of the form required. �

Proposition 4.16. Let A ⊂ AnV × AmR be a definable family. Then there

is a definable set B ⊂ Al+mR and a definable function f : AnV → AlR such that

A = {(x, y) ∈ AnV × AmR | (f(x), y) ∈ B}

in THvf,0, and, a posteriori, in all but finitely many of the models Mp. We say

that A is the pullback of B via f .

Proof. By elimination of quantifiers we can assume that A is defined by

a formula φ(x, y) (x is a valued field sort and y is a residue field sort) that is

the conjunction of conditions of the form

(1) ψ(val(P1(x)), . . . , val(Pn(x))), where Pi are polynomials and ψ is a for-

mula in the language of ordered group;

(2) ξ(ac(Q1(x)), . . . , ac(Qm(x)), y), where Qi are polynomials and ξ is a

formula in the language of fields.

Decompose AnV according to condition (1). Denote the resulting pieces by Xi,

where i ∈ I. For every i there is a formula ξi such that the restriction of A

over Xi is the pullback of the definable set ξi via the map (ac(q1), . . . , ac(qm)).

Define a map Ψ : AnV → Am+|I|
R by Ψ(x)i = ac(qi(x)) for i ≤ m, Ψ(x)j = 1 if

j > m and x ∈ Xj−m, and Ψ(x)j = 0 if j > m and x 6∈ Xj−m. Let Ω ⊂ Am+|I|
R

be the definable set that is the conjugation of the conditions

zj+m = 1→ ξj(z1, . . . , zm)

for j = 1, . . . , |I|. It is now clear that A is the pullback of Ω via the map Ψ. �

Proposition 4.17. (1) Given a polynomial P (x) ∈ Q≥0[x] such that

limx→∞ P (x) = ∞, there is a definable set Y in the language of rings

and a constant c such that for all primes p,

1− c · p−
1
2 <
|Y (Fp)|
P (p)

< 1 + c · p−
1
2 .

(2) Let X ⊂ AnV be a definable set, and let A be a definable family over X .

Then there is a definable function ψ : X → AO, a definable family B
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over X , and a constant c, such that for all primes p and x ∈ X(Mp),

either Ax(Mp) is empty, or

1− c · p−
1
2 < pψ(x) · |Bx(Mp)| · |Ax(Mp)| < 1 + c · p−

1
2 .

Proof. (1) Suppose that the leading coefficient of P (x) is a
bx

k where a, b, k

are positive integers. Let φ : C1 → C2 be a Galois cover defined over Q
of irreducible curves with Galois group Z/b. For almost all primes p, the

reduction modulo p of φ is also a Galois cover with the same Galois group. Let

D be the definable set defined by the formula

x ∈ C2 ∧ (∃y ∈ C1)(x = φ(y)).

Then by Weil’s theorem there is a constant K such that

1−K · p−
1
2 <

∣∣∣∣∣ |D(Fp)|
1
bp

∣∣∣∣∣ < 1 +K · p−
1
2 .

To get the claim of the lemma, take P be the definable set

(D t · · · tD︸ ︷︷ ︸
a

)× Ak−1.

(2) By Proposition 4.16 and Theorem 4.4 there is a constant K and a

partition of X into definable sets Xi, and for each Xi there is di ∈ N and

ci ∈ Q>0, such that if x ∈ Xi(Mp), then∣∣∣|Ax(Mp)| − cipdi
∣∣∣ < K · pdi−

1
2 .

Using the construction from (1), one can find definable sets Bi such that for

all p,

1−K · p−
1
2 <

∣∣∣∣∣ |Bi(Fp)|ci · p

∣∣∣∣∣ < 1 +K · p−
1
2 .

Denote by B the definable family that is equal to Bi over Xi, and denote by

ψi : X → A1
O the definable function that equals di−1 on Xi. Then B, ψ satisfy

the requirements of the lemma. �

4.5. V -functions. Definable elements in A1
O give us a collection of (ra-

tional) numbers, indexed by the prime numbers. Given a definable element

γ ∈ A1
O and a prime p, we consider the number γp = pγ

Mp
, where γMp ∈ Z is

the interpretation of γ in the model Mp. More generally, definable functions

from AnV to A1
O give us a collection of rational-valued functions. Namely, if

f : AnV → A1
O is a definable function and p is a prime number, we consider the

function fp : Qn
p → Q given by x 7→ pf

Mp (x), where fMp is the interpretation of

f in the model Mp.

Another source of numbers in THvf is definable sets in AmR . Given a

definable set X ⊂ AmR and a prime p, we consider the number Xp = |X(Mp)|
(sinceX(Mp) ⊂ AmR (Mp) = Fmp , the setX(Mp) is indeed finite). As above, from
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a definable set Y ⊂ AnV × AmR we get a collection of integer-valued functions,

indexed by the prime numbers. The next definition is a generalization of these

two constructions.

Definition 4.18. Let X ⊂ AnV be a definable set.

(1) A V -function with domain X is a tuple of the form F = (Xi, φi,Vi)i∈I ,
where I is a finite set and

(a) Xi ⊂ AnV are definable sets that form a partition of X,

(b) φi : AnV → A1
O are definable maps, and

(c) Vi ⊂ AnV × AniR are definable sets.

(2) Given a V -function F with domain X and a prime number p, we define a

function Fp : X(Mp)× C→ C by

Fp(x, s) =
∑
i∈I

1Xi(Mp)(x)p−sφi(x) · |Vi(Mp)x|−s.

(3) A V -function with domain X is called bounded if there exists a definable

element γ ∈ AO such that for all i, the following sentences hold.

(a) ∀x ∈ Xi (φi(x) > γ);

(b) ∀(x1, . . . , xn) ∈ Xi ((val(x1) < γ ∨ · · · ∨ val(xn) < γ) −→ (Vi)x = ∅).

Remark 4.19. (1) By changing Xi, every sequence of functions of the

more general form

(x, s) 7→
∑
i∈I

1Xi(Mp)(x)p−sφi(x)+ψi(x) · |Vi(Mp)x|−s · |Wi(Mp)x|,

where Xi ⊂ AnV are definable sets, φi, ψi : Xi → A1
O are definable maps,

and Vi,Wi ⊂ AnV × AmR are definable families, actually comes from a

V -function.

(2) If F1 and F2 are V -functions, then there are V -functions G+ and G×
such that for every p,

(G+)p = (F1)p + (F2)p and (G×)p = (F1)p · (F2)p.

We shall write F1 + F2, respectively F1 · F2, instead of G+, respec-

tively G×.

Example 4.20. Fix integers A and B. Let O× ⊂ A1
V be the definable set

given by the formula ‘x 6= 0 ∧ val(x) ≥ 0’, let φ : O× → A1
O be the function

φ(x) = A val(x), and ψ : O× → A1
O be the function ψ(x) = (B + 1) val(x). By

the previous remark we get a V -function F such that

Fp(x, s) =

®
pn(As+B+1) val(x) = n ≥ 0

0 else
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and so ∫
Fp(x, s)dx =

p− 1

p

∞∑
n=0

pAs+B =
p− 1

p

1

1− pAs+B
.

5. Uniformity of the local factors I

Our goal in this section is to prove:

Theorem 5.1. Let Σ be a finite set of primes, and let G be a linear alge-

braic group scheme over SpecZΣ such that the generic fiber of G is semisimple,

simply connected, and connected. There is a definable set X ⊂ AnF and a V -

function F with domain X , such that the sequence of functions ζG(Zp)(s) − 1

is equivalent to the sequence of functions

ξp(s) =

∫
X(Mp)

Fp(x, s)dλ(x),

where dλ is the restriction of the Haar measure of Qn
p to X(Mp).

By Theorem 2.1, Proposition 4.17, and Example 4.20, it is enough to

show that there is a prime p0 and a V -function F such that the sequence

(ζG(Zp)(s)− 1)p>p0 is equivalent to the sequence (ξp(s))p>p0 considered in the

theorem. Therefore, in this section we will assume that p is large enough.

5.1. Representations of the first congruence subgroup. Let G be as in The-

orem 5.1. The corresponding THvf -definable group will be denoted by G. The

definable subset GO is defined by

g = (gi,j) ∈ GO ⇐⇒ g ∈ G ∧ val(gi,j) ≥ 0.

For all p 6∈ Σ we have that GO(Mp) = G(Zp), a group which was denoted

by Gp.

Let g ⊂ (Mn)F be the definable set such that, for almost all p’s, g(Mp) is

the Lie algebra gp of Gp; see Section 3.2 for the construction. The definable

set

g1 = {A ∈ g | val(Ai,j) > 0}

satisfies that g1(Mp) is the Lie algebra g1
p ofG1

p — the first congruence subgroup

of Gp — for almost all p’s.

Assume that p is large. The orbit method (Theorem 3.7) gives us a map

Ξp from (g1
p)
∨ onto Irr(G1

p) such that Ξp(θ) = Ξp(θ
′) if and only if there is a

g ∈ G1
p such that Ad∗(g)θ = θ′.

Recall that O ⊂ A1
V is the definable set attached to the formula ‘val(x)

≥ 0’. Let X be the following definable set:

X = {A ∈ gF | max{val(Ai,j)} = 0} × O \ {0}.
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Consider the function x 7→ exp(2πix) defined on Z[1
p ]. It has a unique extension

to a continuous character of Qp, which we also denote by exp(2πix). Let 〈 , 〉
be the bilinear form

〈A,B〉 = trace(A ·B)

on the space of matrices.

For every prime p, the map Φp : X (Mp)→ (g1
p)
∨ given by

Φp((A, z))(B) = exp

Å
2πi

z
〈A,B〉

ã
is a surjection. Let Ψp be the composition of Ξp and Φp. We have the following:

Theorem 5.2 ([12, Th. 4.6]). There are definable functions φ1, φ2 : X →
A1
O such that for all primes p and for all (A, z) ∈X (Mp),

dim Ψp(A, z) = pφ1(A,z) and λ(Ψ−1
p (Ψp(A, z))) = pφ2(A,z).

5.2. Decomposition trees. We describe our method for extending repre-

sentations from the first congruence subgroup, G1
p, to the whole group, Gp.

Let ρ be an irreducible representation of G1
p. Recall that Irr(Gp|ρ) is the set

of irreducible representations of Gp, whose restrictions to G1
p contain ρ as a

component. We wish to compute the relative zeta function

ζGp|ρ(s) =
∑

τ∈Irr(Gp|ρ)

Å
dim τ

dim ρ

ã−s
.

Consider the stabilizer G1
p ⊂ S ⊂ Gp of the representation ρ. Let V be

the maximal normal pro-p subgroup of S.

Lemma 5.3. Let K ⊂ V ⊂ S ⊂ H be an increasing chain of groups, and

let ρ be an irreducible representation of K . Assume that K is normal in H ,

that V is normal in S, that S is the stabilizer of ρ in H , and that K is of

finite index in H . For a representation τ of V , denote the orbit of τ under the

action of S by τS . Then

ζH|ρ(s) =
∑

τ∈Irr(V |ρ)

[H : S]−s

|τS |

Å
dim τ

dim ρ

ã−s
ζS|τ (s).

Proof. Let χ ∈ Irr(S|ρ). The irreducible components of the restriction

ResSK χ form one S-orbit, since χ is irreducible and K is normal in S. Since this

restriction contains ρ as an irreducible component, we deduce that ResSK χ =

ResVK ◦ResSV χ is a multiple of ρ. Therefore, every irreducible component of

ResSV χ is in Irr(V |ρ).

Let τ ∈ Irr(V |ρ). The irreducible components of ResSV IndSV τ are just τS .

Therefore, if τ1, τ2 are two representations in Irr(V |ρ), which are in the same
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S-orbit, then Irr(S|τ1) = Irr(S|τ2), whereas if τ1 and τ2 are not in the same

orbit, then Irr(S|τ1) and Irr(V |τ2) are disjoint.

Let τ1, . . . , τm be representatives for the S-orbits in Irr(V |ρ). Using the

remark in the previous paragraph, we compute

ζS|ρ(s) =
∑

χ∈Irr(S|ρ)

Å
dimχ

dim ρ

ã−s
=

m∑
i=1

∑
χ∈Irr(S|τi)

Å
dimχ

dim ρ

ã−s
=

∑
τ∈Irr(V |ρ)

1

|τS |

Å
dim τ

dim ρ

ã−s ∑
χ∈Irr(S|τ)

Å
dimχ

dim τ

ã−s
=

∑
τ∈Irr(V |ρ)

1

|τS |

Å
dim τ

dim ρ

ã−s
ζS|τ (s).

Since for every representation χ ∈ Irr(S|ρ), the induction IndHS χ is irreducible,

and since all the irreducible representations of H, lying over ρ, are obtained in

this way, we get that

ζH|ρ(s) = ζS|ρ(s) · [H : S]−s. �

Lemma 5.3 reduces the computation of ζGp|ρ(s) to the computation of

Irr(V |ρ), and, for each τ ∈ Irr(V |ρ), a computation of ζS|τ (s).

Let Irr(V |ρ) = {ρ1, . . . , ρn}. For each ρi, let Si be the stabilizer of ρi in

S, let Vi be the maximal normal pro-p subgroup of Si, and let ρi,1, . . . , ρi,ni
be the irreducible characters of Vi lying over ρi. The following diagram is a

summary of the notation so far:

(Gp, G
1
p, ρ)

''ww
(S, V, ρ1)

''ww

· · · (S, V, ρn)

(S1, V1, ρ1,1) · · · (S1, V1, ρ1,ni) · · · .

We may continue in the same fashion, constructing a deeper and deeper trees.

We reach a leaf of the tree whenever Si1···k is the stabilizer of ρi1···ik+1
and

Si1···ik/Vi1···ik has no nontrivial normal p-subgroups.

We call the resulting tree, whose vertices are labeled by triples (Si1···ik ,

Vi1···ik , ρi1···ik+1
), the decomposition tree of ρ. The relative representation zeta

function ζGp|ρ(s) can be easily computed from the decomposition tree, and the

relative representation zeta functions of the leaves. The following lemma shows

that the zeta functions of the leaves are simple.
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Lemma 5.4. For every n, there is a constant c, that depends only on n,

such that if p is a prime number, which is large enough with respect to n, then

the following is true: Let S ⊂ GLn(Zp) be a group, let V be a normal pro-p

subgroup of S that contains the first congruence subgroup G1
p, and let ρ be a

representation of V . Assume that S stabilizes ρ, and assume that S/V has no

nontrivial normal p-subgroups. Then

(1) the group (S/V )+ is a perfect extension of a direct product of finite

simple groups of Lie type;

(2) c−1−s · ζS|ρ(s) ≤ [S : S+] · ζ(S/V )+(s) ≤ c1+s · ζS|ρ(s).
In the middle term, ζ(S/V )+(s) is the (nonrelative) representation zeta function

of the group (S/V )+ and S+ is the closed subgroup of S that is generated by

the pro-p elements of S.

Proof. Denote the quotient S/G1
p by Γ. By a theorem of Larsen and Pink

(Theorem 0.2 of [15]), there are normal subgroups Γ3 ⊂ Γ2 ⊂ Γ1 ⊂ Γ such that

(1) Γ3 is a p-group;

(2) Γ2/Γ3 is central in Γ1/Γ3
7, and its order is prime to p;

(3) Γ1/Γ2 is a product of simple finite groups of Lie type;

(4) the index of Γ1 in Γ is bounded by a function of n only.

Let Γ̃i be the subgroups of S such that Γ̃i/G
1
p = Γi.

By our assumptions, S/V has no nontrivial normal p-subgroups. There-

fore, Γ̃3 = V .

If p is large enough, then every p-element in Γ has to be contained in Γ1.

Therefore Γ+ ⊂ Γ1. We clearly have that Γ+/(Γ2 ∩Γ+) ⊂ Γ1/Γ2. Since Γ1/Γ2

is generated by its elements of order p, and since every such element can be

lifted to an element of Γ1, we get that, in fact, Γ+/(Γ2 ∩Γ+) = Γ1/Γ2. We get

a central extension

0→ Γ2/Γ3 → Γ+ · Γ2/Γ3 → Γ+ · Γ2/Γ2 = Γ+/(Γ+ ∩ Γ2) = Γ1/Γ2 → 0.

This extension splits as a direct product Γ+ · Γ2/Γ3 = P × A, where P is

a perfect extension and A is abelian. Since the group P is a perfect central

extension of a product of finite simple groups of Lie type, and since each finite

simple group is generated by its elements of order p, we get that P is generated

by its elements of order p. Therefore we get that Γ+/Γ3 ⊂ P . Since the group

A is contained in Γ2/Γ3 and the order of Γ2/Γ3 is prime to p, we get that

Γ+/Γ3 = P .

7This claim is not a part of the statement of Theorem 0.2 of [15]. However, Γ1, Γ2, and

Γ3 are constructed as the intersection of Γ with a connected algebraic group, its radical, and

its unipotent radical respectively.
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We consider first the extensions of ρ to S+ · Γ̃2. These extensions are

governed by a certain element β in the second cohomology H2(S+ · Γ̃2/V,C×),

as described in Section 3.5. By Proposition 3.12 this element has order p. By

Proposition 3.13 the sizes of the first and second cohomology groups of finite

simple groups are bounded independently of p. By Künneth formula for the

cohomology of products, the sizes of H1(Γ1/Γ2,C×) and H2(Γ1/Γ2,C×), and

hence of H1(P,C×) and H2(P,C×), are bounded independently of p. Since A

is an abelian group and its size is prime to p, the sizes of the first and second

cohomology groups of A are also prime to p. By Künneth formula again, we

get that the size of the second cohomology group H2(Γ+ ·Γ2/Γ3,C×) is prime

to p and hence contains no elements of order p. Therefore, the representation ρ

extends to a representation of S+·Γ̃2. By Proposition 3.11, every representation

in Irr(S+|ρ) is of the form χ0 ⊗ θ, where χ0 is a fixed extension and θ is a

character of S+ · Γ̃2/V = P ×A. We conclude that

ζ
S+·‹Γ2|ρ

(s) = ζP×A(s) = ζ(S/V )+(s) · |A|.

Since S+ · Γ̃2 = Γ̃1 has a bounded index in S, we conclude from Lemma 3.3

that there is a constant c1 such that

c−1−s
1 · ζS|ρ(s) ≤ ζS+·‹Γ2|ρ

(s) ≤ c1+s
1 · ζS|ρ(s).

Finally, since

|A|
[S : S+]

=
[Γ+ · Γ2/Γ3 : P ]

[S : S+]
=

[Γ1 : Γ+]

[Γ : Γ+]
= [Γ : Γ1]−1

is bounded as a function of n, we get the conclusion of the theorem. �

The computation of ζGp|ρ is thus reduced to the computation of the de-

composition tree of ρ. In the next section we shall show how to construct the

decomposition trees for families — both for varying the representation ρ and

for varying the prime p as well.

5.3. The family of decomposition trees. Let Grass be the Grassmanian of

subspaces of gR, considered as a THvf -definable set (see §4.1). We have the

tautological bundle ‡Grass ⊂ Grass×gR consisting of pairs (v,A) such that

A belongs to the subspace v of g. We consider ‡Grass also as a definable

set. The condition that v ∈ Grass is closed under Lie brackets, is a definable

condition; so is the condition that v ∈ Grass is a nilpotent Lie subalgebra of

gR. We denote the definable subset of Grass that consists of the nilpotent Lie

subalgebras of g by GrassU . For every prime p, if v ∈ GrassU (Mp), then the

set

L(v) = {A ∈ gp | ac(A) ∈ v}



1044 NIR AVNI

is a pro-nilpotent Lie subalgebra of gp. If p is large enough, then exp(L(v)) is

a pro-p subgroup of Gp and the Orbit Method (Theorem 3.7) holds for it.

Let X be the definable set defined in 5.1. Recall that for every p large

enough we have constructed a map

Φp : X (Mp)→ (g1
p)
∨.

We wish to extend this map to larger subalgebras of gp. If v ∈ GrassU , we

denote by vT the set of elements in gR whose transpose is contained in v. Given

a prime p, an element x = (A, z) ∈ X (Mp), a nilpotent Lie subalgebra v ∈
GrassU (Mp), and an element θ ∈ vT , we define a linear character ›Φp(x, v, θ) ∈
L(v)∨ by ›Φp(x, v, θ)(B) = exp

Å
2πi

z
〈A,B〉

ã
· exp

Å
2πi

p
〈θ, ac(B)〉

ã
for every B ∈ L(v).

Let Y ⊂X ×GrassU ×g be the definable set consisting of triples (x, v, θ)

such that θ ∈ vT . We denote by Ξ̃p the Orbit Method map from L(v)∨ to

Irr(exp(L(v))), and denote by ›Ψp the composition of ›Φp and Ξ̃p. We get a

diagram

(5.1)

Y (Mp)
Φ̃p //

��

⊔
v∈GrassU (Mp) L(v)∨

Ξ̃p//

��

⊔
v∈GrassU (Mp) Irr(exp(L(v)))

��
X (Mp)

Φp // (g1
p)
∨ Ξp // Irr(G1

p),

where the leftmost vertical arrow is the projection to the first coordinate and

the other two vertical arrows are the restriction maps. It is easy to see that

this diagram commutes.

Definition 5.5. Let GO be the definable set

g = (gi,j) ∈ GO ⇐⇒ g ∈ G ∧ val(gi,j) ≥ 0.

We have that GO(Mp) = Gp.

Definition 5.6. We define actions of GO on X and Y in the following

way.

(1) If g ∈ GO and x = (A, z) ∈X , we define

g · (A, z) = (g−1Ag, z).

(2) Let g ∈ GO and y = (x, v, θ) ∈ Y . Let w ∈ GrassU be the subspace

Ad(ac(g))v. There is a unique τ ∈ (Ad(ac(g))v)T such that for every

A ∈ v,
〈A, θ〉 = 〈ac(g)−1A ac(g), τ〉.

We define g · (x, v, θ) = (g · x,w, τ).
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For every prime p, the group Gp acts on each vertex of Diagram (5.1):

on the vertices of the left column Gp = GO(Mp) acts via Definition 5.6, on

the vertices of the middle column Gp acts by the coadjoint action, and on the

vertices of the right column Gp acts by conjugation.

Lemma 5.7. All arrows in Diagram (5.1) intertwine the different actions

of Gp.

Proof. For Φp, ‹Φp, and the leftmost and middle vertical arrows, this is a

simple computation. For Ξp, Ξ̃p, and the rightmost vertical arrow, this follows

from Theorem 3.7. �

Lemma 5.8. There is a definable family N ⊂ GrassU ×G such that for

every v ∈ GrassU , the fiber Nv is the normalizer of the subgroup exp(L(v))

in G.

Lemma 5.9. (1) There is a definable set Schar ⊂ Y ×GO such that for

every p and every y ∈ Y (Mp), we have that Schar
y (Mp) is the stabilizer

in NGp(L(v)) of the linear character ›Φp(y) of L(v).

(2) There is a definable set Srep ⊂ Y ×GO such that for every p and every

y ∈ Y (Mp), we have that Srep
y (Mp) is the stabilizer in NGp(exp(L(v)))

of the representation ›Ψp(y) of exp(L(v)).

Theorem 5.10. Let N be the set of nilpotent matrices in g. There is a

natural number N and a sequence of definable families Ti ⊂X ×(GrassU ×N)i,

for i = 1, . . . , N , such that if we denote the natural projection from Ti+1 to Ti
by πi, then :

(1) T1 = X × {0} × {0};
(2) for every prime p, every (x, v1, θ1, . . . , vi, θi) ∈ Ti(Mp), and every j≤ i,

we have θj ∈ vTj ;

(3) for every prime p and every (x, v1, θ1, . . . , vi, θi) ∈ Ti(Mp), the fiber

π−1
i (x, v1, θ1, . . . , vi, θi) consists of the tuples (x, v1, θ1, . . . , vi, θi, v, θ)

such that exp(L(v)) is the maximal normal p subgroup of the group

StabN(v1)∩···∩N(vi)
›Ψp(vi, θi), and ›Φp(v, θ) is an extension of ›Φp(vi, θi);

(4) for every prime p and every (x, v1, θ1, . . . , vN , θN ) ∈ TN (Mp), the max-

imal normal pro-p subgroup of the group StabN(v1)∩···∩N(vN )
›Ψp(vN , θN )

is exp(L(vN ));

(5) there is a definable partition of TN into finitely many pieces such that

the semisimple hull of the stabilizer is constant along each piece.

Proof. We construct Ti by induction. The set T1 is defined by the first

requirement. Suppose we have constructed Ti. By Lemma 5.9, there is a

definable family S ⊂ Ti × GO such that for every prime p and every t =
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(x, v1, θ1, . . . , vi, θi)∈Ti(Mp), the set St(Mp)⊂Gp is the stabilizer of›Ψp(x, vi, θi)

in the intersectionNGp(exp(L(v1)))∩. . . NGp(exp(L(vi))). By Proposition 4.11,

there is a definable sub-family U ⊂ S such that for every p and t ∈ Ti(Mp), the

fiber Ut(Mp) is the maximal normal pro-p subgroup of St(Mp). Hence we have a

definable family T ′i ⊂ Ti×Grass such that for every p and t as above, (T ′i )t(Mp)

is the required unipotent radical. It is easy to see that defining Ti+1 as consist-

ing of the tuples (x, v1, θ1, . . . , vi, θi, v, θ) such that (x, v1, θ1, . . . , vi, θi, v) ∈ T ′i
and θ ∈ vT , results in a definable family satisfying the second and third re-

quirements.

Finally, for every i, either dim(vi) < dim(vi+1), or the unipotent radical

of the stabilizer is equal to exp(L(vi)). Therefore the map Ti+1 → Ti is an

isomorphism for i > N := dim(G).

The last claim follows from Proposition 4.11. �

Lemma 5.11. There is a definable partition of Y into sets Y0, . . . ,YN
such that if (x, v, θ) ∈ Yi; then

|Ad(L(v))(›Φp(x, v, θ))|
|Ad(G1

p)Φp(x)|
= p2i

and therefore

dim›Ψp(x, v, θ)

dim Ψp(x)
= pi.

Proof. The family of stabilizers of ›Φp(x, v, θ) is definable, and therefore

its reduction modulo p is also definable. By Theorem 4.4, the dimension of the

fibers are definable. This gives the first identity.

The second identity follows from the first. �

5.4. Proof of Theorem 5.1. We assume first that p is large enough. By

Lemma 5.9 there is a definable family Srep ⊂ Y × GO such that for every

y = (x, v, θ) ∈ Y (Mp), the fiber Srep
y is the stabilizer in NGp(L(v)) of the

representation ›Ψp(x, v, θ) ∈ Irr(exp(L(v))). By the same lemma, there is a

definable family Schar ⊂ Y ×GV such that for every prime p and y = (x, v, θ) ∈
Y (Mp), the set Schar

y (Mp) is the stabilizer in NGp(exp(L(v))) of the character›Φp(x, v, θ) ∈ L(v)∨.

Definition 5.12. Let Ti be the decomposition tree constructed in Theo-

rem 5.10. For every k, if p is a prime, ` = (x, v1, θ1, . . . , vk, θk) ∈ Tk(Mp), and

0 < j ≤ k, we denote

Srep
0 (`) = Gp; Schar

0 (`) = Gp; Ψ0(`) = Ψp(x);

Srep
j (`) = Srep

(x,vj ,θj)
(Mp); Schar

j (`) = Schar
(x,vj ,θj)

(Mp); Ψj(`) = ›Ψp(x, vj , θj),
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and define

Wj(`) =
∣∣∣Äexp(L(vj)) ∩ Schar

j−1 (`)
ä

(x, v1, θ1, . . . , vj , θj)
∣∣∣

and

Rk(`) =
[Gp : Srep

k−1(`)]−s∏
i≤k−1[Srep

i (`) : Schar
i (`) · exp(L(vi))] ·Wi(`)

·
Ç

dim Ψk−1(`)

dim Ψ0(`)

å−s
.

Lemma 5.13. Let Ti be the decomposition tree constructed in Theorem 5.10.

For every prime p, every x ∈X (Mp), and every k ≤ N ,

ζGp|Ψp(x)(s) =
∑

`∈(Tk+1)x(Mp)

Rk(`) · ζSrep
k

(`)|Ψk(`)(s).

Proof. Fix p and x ∈ X . We prove the lemma by induction on k. The

case k = 0 is trivial.

Suppose we know the claim for k − 1. Let ` ∈ (Tk)x(Mp). The rep-

resentation Ψk−1(`) is a representation of exp(L(vk−1)), and its stabilizer in

Srep
k−1(`) is just Srep

k (`). The maximal normal pro-p subgroup of Srep
k (`) is, by

the construction, exp(L(vk)). From Lemma 5.3, we have that∑
`∈(Tk)x(Mp)

Rk−1(`)ζSrep
k−1

(`)|Ψk−1(`)(s)

=
∑

`∈(Tk)x(Mp)

Rk−1(`)
∑

τ∈Irr(exp(vk)|Ψk−1(`))

[Srep
k−1(`) : Srep

k (`)]−s

|τS
rep
k

(`)|

·
Ç

dim τ

dim Ψk−1(`)

å−s
· ζSrep

k
(`)|τ (s).

For every ` ∈ Tk(Mp), the map Ψk : (Tk+1)`(Mp)→ Irr(exp(L(vk))|Ψk−1(`)) is

onto. Hence, by Lemma 5.14,

=
∑

`∈(Tk)x(Mp)

∑
f∈(Tk+1)`(Mp)

Rk−1(`)

·
[Srep
k−1(`) : Srep

k (`)]−s

|Ψk(f)
Srep
k

(`)| · |Ψ−1
k (Ψk(f)) ∩ (Tk+1)`(Mp)|

Ç
dim Ψk(f)

dim Ψk−1(`)

å−s
· ζSrep

k
(`)|Ψk(f)(s).

By definition, Srep
k (`) = Srep

k (f). By Theorem 3.7, |Ψ−1
k (Ψk(f)) ∩ (Tk+1)`(Mp)|

is equal to the size of the orbit of f under exp(L(vk)) ∩ Schar
k−1 (`), which is just

Wk(f). Finally, the stabilizer of Ψk(f) in Srep
k (`) is equal to Schar

k (`)·exp(L(vk)),

and therefore |Ψk(f)
Srep
k

(`)| = [Srep
k (`) : Schar

k · exp(L(vk))]. Finally, since

Rk(f) =
[Srep
k−1(f) : Srep

k (f)]−s

[Srep
k−1(`) : Schar

k−1 (`) · exp(L(vk))] ·Wk(f)
·
Ç

dim Ψk(f)

dim Ψk−1(f)

å−s
,

the inductive claim follows. �
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By Proposition 4.16 and Lemma 4.9 there is a definable partition of TN
into sets T 1

N , . . . , T MN , and for each part there is a root datum Di such that for

each prime p and for each ` ∈ T iN (Mp), the group (Srep
(x,vN ,θN )(`))

+/ exp(L(vN ))

is isomorphic to HDi(Fp). By Lemma 5.4 we get that there is a constant c such

that

c−1 · ζSrep
N (`)|ΨN (`)(s) < ζHD(Fp)(s)[S

rep
N (`) : (Srep

N (`))+] < c · ζSrep
N (`)|ΨN (`)(s).

By Proposition 4.17 there is a V -function G with domain TN and a constant c

such that for every p and every ` ∈ TN (Mp),

c−1GMp(`) < [Srep
N (`) : (Srep

N (`))+] < cGMp(`).

Together with Proposition 3.17 and Proposition 4.17, we get that there is a

V -function FD on TN such that for all p’s large enough,

(5.2) ζSrep
N (`)|ΨN (`)(s) ∼ F

Mp

D (s).

By Lemmas 3.2 and 5.14 we get that

ζGp(s) =
∑

ρ∈Irr(G1
p)

1

[Gp : StabGp ρ]
(dim ρ)−s · ζGp|ρ(s)

=

∫
x∈X

1

λ(Ψ−1
p (Ψp(x)))

· 1

[Gp : StabGp Ψp(x)]
(dim Ψp(x))−s · ζGp|Ψp(x)(s)dx,

and by Lemma 5.13 and Theorem 5.2,

=

∫
x∈X

pφ1(x)+sφ2(x) · 1

[Gp : StabGp Ψp(x)]
·

∑
`∈(TN+1)x(Mp)

R(`) · ζSrep
N (`)|ΨN (`)(s)

=

∫
`∈TN+1(Mp)

pφ1(π(`))+sφ2(π(`)) · 1

[Gp : StabGp Ψp(x)]
·R(`) · ζSrep

N (`)|ΨN (`)(s).

There is a V -function Fstab with domain TN and a constant c such that

for all primes p and all ` = (x, v, θ) ∈ TN+1(Mp),

(5.3) c−1FMp

stab(`) <
1

[Gp : StabGp Ψp(x)]
=

[StabGp Ψp(x) : G1
p]

[Gp : G1
p]

< cFMp

stab(`).

Similarly, using Proposition 4.17, there is a V -function FR with domain

TN+1 such that for all p and ` ∈ TN+1(Mp),

(5.4) c−1FMp

R (`) < R(`) < cFMp

R (`).

By (5.2), (5.3), and (5.4), we get that

ζGp(s) ∼
∫
`∈TN+1(Mp)

pφ1(π(`))+sφ2(π(`)) · FMp

Stab(`) · FMp

R (`) · FMp

D (`),

which proves Theorem 5.1.
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Lemma 5.14. (1) Let A,B be finite sets, let φ : A → B be an onto

function, and let f : B → C be any function. Denote the composition

of f and φ by g. Then∑
b∈B

f(b) =
∑
a∈A

1

|φ−1(φ(a))|
g(a).

(2) Let (A,µ) be a probability space, let B be a countable set, let φ : A→ B

be a measurable function, and let f : B → C be any bounded function.

Denote the composition of f and φ by g. Then∑
b∈B

f(b) =

∫
a∈A

1

µ(φ−1(φ(a)))
g(a)da.

6. Uniformity of the local factors II

6.1. Motivic integration.

Definition 6.1. An R-function is a pair (V,W ) of definable sets in the

language of rings such that W ⊂ V × An. If f = (V,W ) is a function of type

(B) and p is a prime, we set

fp(s) =
∑

a∈V (Fp)

|Wa(Fp)|−s.

Theorem 6.2. Let F be a bounded V -function with domain X . Then

there are integer constants Ai, Bi, and R-functions fi, such that for all but

finitely many primes p,∫
X(Mp)

Fp(x, s)dx =
∑
i

(fi)p(s) ·
∏
j

pAjs+Bj

1− pAjs+Bj
.

Proof. It is enough to prove the theorem for V -functions that consist of

only one triple (X, f,V), where X ⊂ {(x1, . . . , xn) ∈ AnV | val(xi) ≥ 0} is a

definable set, f : X → AO is a definable function such that f(x) ≥ 0, and

V ⊂ AnV × AmR is a definable set. By 4.12, 4.15, and 4.16 we can assume

that there are integral polynomials P1(x), . . . , Pr(x), Q1(x), Q2(x), a formula

ϕ(ω1, . . . , ωr) in the language of fields, a formula ψ(γ1, . . . γr) in the language

of ordered groups, a formula ξ(x1, . . . , xr, ω1, . . . , ωm) in the language of fields,

and an integer e such that

(1) X is the set defined by the formula

ϕ(ac(P1(x)), . . . , ac(Pr(x))) ∧ ψ(val(P1(x)), . . . , val(Pr(x)));

(2) f(x) = 1
e (val(Q1(x))− val(Q2(x)));

(3) V is the set defined by the formula

ξ(ac(P1(x)), . . . , ac(Pr(x)), ω1, . . . , ωm).
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Let (YQ, hQ) be a resolution of singularities (see §3.8) for the polynomial∏
i Pi(x) · Q1(x) · Q2(x). Note that YQ has dimension n. We denote the irre-

ducible components of h−1(D) by Ei, and denote the closure of YQ inside PmAnZ
by YZ. For any i, denote the multiplicity of (Ei)red inside h−1(D) by Ni, and

denote the multiplicity of (Ei)red inside the divisor h∗(dx1∧· · ·∧dxn) by νi−1.

Let Σ be the finite set of primes p such that (YQ, hQ) does not have a

good reduction modulo p. For every p 6∈ Σ and for every closed point a of YFp
(which we identify with the subscheme of YZ lying above Spec(Fp)) there is

a natural number d, an open neighborhood U , regular functions u, y1, . . . , yn,

and natural numbers N1, . . . , Nd, such that

(1) yi form a system of parameters for YZ in U ;

(2) yi is a local equation for one of the divisors Eni in U for i ≤ d;

(3) u is invertible in U ;

(4) (
∏
Pi ·Q1 ·Q2) ◦ h = uyN1

1 · · · y
Nd
d ;

(5) U is irreducible and smooth.

By (1), (4), and (5), there are natural numbers Ni,j ,Mk,j , i = 1, . . . , r , j =

1, . . . , d and k = 1, 2 and regular functions ui, vk that are invertible on U such

that

Pi ◦ h = ui
∏

y
Ni,j
j

and

Qk ◦ h = vk
∏

y
Mk,j

j .

By compactness, there are finite number of such neighborhoods that cover

YZΣ
= YZ × SpecZΣ

8. Denote them by U1, . . . , Ul. Let U ′i = Ui \ ∪j<iUj . We

consider U ′j as definable sets.

Let p be a prime that is not contained in Σ, and fix i ∈ {1, . . . , l}. For

every a ∈ U ′i(Fp) and for every z ∈ Y (Qp) such that ac(z) = a, we have

Pi ◦ h(z) = ui(z)
∏

y
Ni,j
j (z)

and similarly

Qk ◦ h(z) = vk(z)
∏

y
Mk,j

j (z).

The functions ui are regular and nonvanishing. For almost all primes p we

have that val
(
dui
dzj

)
≥ 0. Therefore the angular component of ui(z) depends

only on the reduction of z: ac(ui(z)) = ui(ac(z)). It follows that h−1(X) can

be decomposed into definable sets defined by formulas of the form

ϕ′(ac(z), ac(yi(z))) ∧ ψ(val(yi(z))),

8YZΣ is the part of YZ that lies over the primes not in Σ.
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where ϕ′ is a formula in the language of fields and ψ is a formula in the language

of ordered groups. Also, we have that in each piece,

f ◦ h(z) =
1

e

∑
(M1,i −M2,i) val(yi(z))

and

|h∗(dx1 ∧ · · · ∧ dxn)| =
∏
|yi|νi−1|dy1 ∧ · · · ∧ dyn|.

For a set X, let 1X be the characteristic function of X. Similarly, for a formula

η(t), let 1η be the characteristic function of the set {t | η(t)}. By the chain

rule, we have∫
Qnp

1X(x)p−sf(x)|V(Fp)x|−s

=

∫
z∈Y (Qp)

1h−1(X)(z)p
−sf◦h(z)|V(Fp)h(z)|−s|h∗(dx1 ∧ · · · ∧ dxn)|.

Decomposing the domain of integration according to the angular component

of z, the integral is equal to∑
i

∑
a∈U ′i(Fp)

∫
z∈Y (Qp)∧ac(z)=a

1φ(a,ac(yi(−))(z)

·1ψ(val(yi(−)))(z)p
∑

(− s
e

(M1,i−M2,i)+νi−1) val(yi(z))|V(Fp)h(z)|−s.

For every a, The map (yi) : {z ∈ Y (Qp) | ac(z) = a} → (pZp)n is a measure

preserving bijection. Therefore the above sum equals

(6.1)
∑
i

1

p2n

Ö ∑
(a,b)∈Vi(Fp)

|Wi(Fp)(a,b)|
−s

èÑ∑
γ∈C

p−s(n·γ)+(m·γ)

é
.

Where V ⊂ U ′i × AnR is defined by the formula

(x, y) ∈ V ⇐⇒ x ∈ U ′i ∧ φ(x, y),

W ⊂ V × AmR is defined by the formula

(x, y, z) ∈W ⇐⇒ (x, y) ∈ U ′i ∧ ξ(u(x) ·
∏

y
Ni,j
j , z),

C ⊂ AnO is defined by the formula

γ ∈ C ⇐⇒ ψ(γ) ∧
∧
γi > 0,

and the functionals n,m are defined by

ni = (M1,i −M2,i)/e, mi = νi − 1.

For every i, the first sum in (6.1) is an R-function, which we shall denote

by gi. By elimination of quantifiers for the value group (Theorem 4.13), C can

be decomposed into sets defined by conditions of the form

φ(x) ≥ 0 ∧ ψ(x) is divisible by N,
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where φ(x), ψ(x) are affine functionals. After a further decomposition, we can

assume each of these sets to be intersection of a cone and a coset of NZn for

some fixed N . It is well known that it is possible to further divide these sets

and get that each set is of the form

{n1v1 + · · ·+ nkvk | n1, . . . , nk ∈ N}

for some vectors v1, . . . , vk (this fact is used in the desingularization theorem

for Toric varieties; see [7, §2.6]). On each cone we have to sum a geometric

series, so the sum is of the form∏
j

pAjs+Bj

1− pAjs+Bj
,

and so for every p 6∈ Σ,∫
X(Mp)

Fp(x, s)dx =
∑
i

(gi)p(s)
∏
j

pAi,js+Bi,j

1− pAi,js+Bi,j
.

If p ∈ Σ, we can resolve the singularities of
∏
i Pi(x) · Q1(x) · Q2(x) in

Qp[x]. By similar arguments to the above, we get that there are integers

ni,mi, Ci,j , Di,j such that∫
X(Mp)

Fp(x, s)dx =
∑
i

ni(mi)
−s∏

j

pCi,js+Di,j

1− pCi,js+Di,j
.

Arguing as in the proof of Theorem 5.1, we can find R-functions fi and

integers Ai,j , Bi,j such that for all p,∫
X(Mp)

Fp(x, s)dx =
∑
i

(fi)p(s)
∏
j

pAi,js+Bi,j

1− pAi,js+Bi,j
. �

Remark 6.3. Instead of using resolution of singularities, it is possible to

prove Theorem 6.2 using the methods of [3] or [9].

6.2. Proof of Theorem 1.2.

Theorem 6.4. There is a partition of the set of primes into finitely many

Artin sets, and for each Artin set the following is true: There is a finite set

I , and for each i ∈ I there are nonnegative integers, di and ei, and two finite

sequences of nonnegative integers, Ai,j and Bi,j , such that the sequence of the

functions ζGp(s)− 1 is equivalent to the sequence of the functions

s 7→
∑
i∈I

pdi−eis ·
∏
j

p−Ai,js+Bi,j

1− p−Ai,js+Bi,j
.

Moreover, ei +
∑
j Ai,j > 0 for every i.
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Proof. By Theorems 5.1 and 6.2, there is a V -function F and R-functions

fj such that

(6.2) ζGp(s)− 1 ∼
∫
X(Mp)

Fp(x, s)dx =
∑
j

(fj)p(s) ·
∏
k

pAj,ks+Bj,k

1− pAj,ks+Bj,k
.

Let f = (V,W ) be an R-function. By Corollary 4.7, there is a constant

c, a partition of the primes into Artin sets Pi, and for each i a finite set

Di ⊂ N×Q>0, such that for all p ∈ Pi and a ∈ V (Fp),

(6.3)
∣∣∣|Wa(Fp)| − µpd

∣∣∣ < cpd−
1
2

for some (d, µ) ∈ Di. Moreover, if we denote by Ld,µ,p the set of elements a in

V (Fp) such that (6.3) holds, then

||Ld,µ,p| − νpe| < cpe−
1
2

for some e = e(d, µ) ∈ N and ν = ν(e, µ) ∈ Q>0.

For every p ∈ Pi,

fp(s) =
∑

a∈V (Fp)

|Wa(Fp)|−s =
∑

(d,µ)∈Di

∑
a∈L(d,µ,p)

|Wa(Fp)|−s

∼
∑

(d,µ)∈Di

ν(d, µ) · pe(d,µ) ·
Ä
µ · pd

ä−s ∼ ∑
(d,µ)∈Di

pe(d,µ)−ds

which together with (6.2) implies the theorem. �

We can finally prove Theorem 1.2.

Proof of Theorem 1.2. Recall from Section 2 that there is a finite index

subgroup ∆ ⊂ Γ, such that the pro-algebraic completion of ∆ has finite index

in the group ∏
p 6∈Σ

G(Zp)×G(C).

By Corollary 3.4, it suffices to prove that the abscissa of convergence of

the Dirichlet series ∏
p 6∈Σ

ζGp(s) · ζG(C)(s)

is rational.

By Theorem 6.4, there is a partition of the set of primes into finitely many

Artin sets A1, . . . ,An, and for each Ai there are constants di, ei, Ai,j , Bi,j , such

that for p ∈ Ai,

ζGp(s)− 1 ∼
∑
i∈I

pdi−eis ·
∏
j

p−Ai,js+Bi,j

1− p−Ai,js+Bi,j
.
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Since the abscissa of convergence of a product of two Dirichlet series is

the maximum of the abscissae of convergence of the two series, it is enough to

show that the abscissae of convergence of

(1) ζG(C)(s), and

(2)
∏
p∈Ai ζGp(s) for i = 1, . . . , n

are rational. As noted in Section 2, the abscissa of convergence of ζG(C)(s)

is rational. By Theorem 2.1, the abscissa of convergence of each ζGp(s) is

rational. Thus, if Ai is finite, then the abscissa of convergence of
∏
p∈Ai ζGp(s)

is rational. We can assume that Ai is infinite and hence has positive analytic

density. By Lemma 3.19, it is enough to show that the abscissa of convergence

of the product

(6.4)
∏
p∈A

Ñ
1 + pd−es ·

∏
j

p−Ajs+Bj

1− p−Ajs+Bj

é
is rational for all subsets A of primes with positive density and nonnegative

integers d, e, Aj , Bj . We shall show that the abscissa of convergence of this

product is

max

®∑
j Bj + di + 1

ei +
∑
j Aj

,
Bj
Aj

´
.

Every factor in the product has a pole at s =
Bj
Aj

, so the abscissa of

convergence is greater than the maximum of those expressions. If

s > max

®
Bj
Aj

´
,

then there is a constant D > 0 such that for all p ∈ A, 1 − p−Ajs+Bj > D.

Therefore

p
(∑

j
−Aj−ei

)
s+
∑

j
Bj+dj < pdip−sei ·

∏
j

p−Ajs+Bj

1− p−Ajs+Bj

<
1

Dm
p
(∑

j
−Aj−ei

)
s+
∑

j
Bj+dj ,

and we see that if Ñ∑
j

−Aj − ei

é
s+

∑
j

Bj + dj < −1,

then the product (6.4) is greater than the product
∏
p∈A(1+ 1

p) which diverges,

since A has positive analytic density.
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Similarly, by comparing the product to the (convergent) product
∏
p∈A

·(1 + 1
p1+ε ), we see that if

s >

∑
j Bj + di + 1

ei +
∑
j Aj

,

then the product (6.4) converges. �
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