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Abstract

In this paper, we identify the Ad-equivariant twisted K-theory of a

compact Lie group G with the “Verlinde group” of isomorphism classes

of admissible representations of its loop groups. Our identification pre-

serves natural module structures over the representation ring R(G) and a

natural duality pairing. Two earlier papers in the series covered founda-

tions of twisted equivariant K-theory, introduced distinguished families of

Dirac operators and discussed the special case of connected groups with

free π1. Here, we recall the earlier material as needed to make the paper

self-contained. Going further, we discuss the relation to semi-infinite co-

homology, the fusion product of conformal field theory, the rôle of energy

and a topological Peter-Weyl theorem.

Introduction

Let G be a compact Lie group and LG the space of smooth maps S1→G,

the loop group of G. The latter has a distinguished class of irreducible pro-

jective unitary representations, the integrable lowest-weight representations.

They are rigid; in fact, if we fix the central extension LGτ of LG there is a

finite number of isomorphism classes. Our main theorem identifies the free

abelian group Rτ (LG) they generate with a twisted version of the equivari-

ant topological K-theory group KG(G), where G acts on itself by conjugation.

The twisting is constructed from the central extension of the loop group. Our

identification is geometric: given the loop group representation we construct a

canonical family of Fredholm operators (essentially, infinite dimensional Dirac

operators) which represents the corresponding K-theory class.

The abelian group Rτ (LG), especially when enhanced to a ring as de-

scribed below, appears in diverse geometric contexts. For example, this ring

encodes information about the moduli space of flat G-bundles over a closed

Riemann surface. When G is the unitary group, it also encodes the quantum

cohomology of the Grassmannian. This ring appears in quantum field theory

in the 2-dimensional conformal Wess-Zumino-Witten model, as well as in the

3-dimensional topological Chern-Simons theory. In this series of papers we

bring topological K-theory into this context in a novel way.
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The first paper [FHTa] develops some foundations for twisted K-theory,

including the equivariant case. The treatment there covers more general group-

oids which are locally quotients of a nice topological space by a compact Lie

group. (While the quotient of G under its own conjugation action is globally of

this form, the generalization beyond global quotients is used here in §11.) The

computation of twisted KG(G) for G connected with torsionfree fundamental

group is also included. The second paper in the series [FHTb] studies central

extensions of LG (and twisted loop groups) which are equivariant for circle

rotation; the distinguished class of projective unitary representations in that

case have positive energy. The Dirac construction is carried out in that context

and the main theorem proved for the same class of compact Lie groups. In the

present paper we take up arbitrary compact Lie groups. We also relax the con-

straints on the twisting, assuming only its regularity. After proving the most

general form of our theorem, we take up several variations and complements.

Here we revisit, via twisted K-theory, some constructions on representations

that were hitherto assumed to rely on the algebraic geometry of loop groups.

Let BG be the classifying space of G. A class in H4(BG;Z), called a

level, transgresses to a central extension of LG (and its twisted forms if G is

not connected) as well as to a twisting of KG(G). In this case twisted KG(G)

has a ring structure, with multiplication the Pontrjagin product (described

in [FHTa]) and also a trace making it a Frobenius ring. In [FHT10] we give

a direct construction in twisted K-theory of a 2-dimensional topological field

theory which realizes this Frobenius ring. One input to that work is proved here

in Section 13, a “topological Peter-Weyl theorem” which equates the bilinear

form of the topological field theory with the duality pairing between irreducible

representations at opposite levels. This can be further extended to an index

theorem for generalised flag varieties of loop groups, in which twisted K-theory

provides the topological side. We refer to [FHT08, §8] for a verification of this

result in the special case of connected groups with free π1, and to [Tel04]

for further developments concerning higher twistings of K-theory. There is

in the transgressed case also a ring structure on Rτ (BG), the fusion product,

and Rτ (LG) is called the Verlinde ring. We do not consider the general fusion

product here, but only the R(G)-module structure, which is defined even in the

nontransgressed case. In Section 12 we show that the R(G)-module structures

on Rτ (LG) and twisted equivariant K-theory agree. In Section 11 we again

take up central extensions equivariant under loop rotation, which leads us to

the K-theory of a stack which is not a global quotient. We identify the image

of a loop group representation under this map with the Kac numerator of its

character. Finally, in Section 14 we discuss the Dirac family construction in

the context of the ∂̄ operator and semi-infinite cohomology. Restriction to and
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induction from the maximal torus recover in twisted K-theory the semi-infinite

restriction and induction on representations due to Fĕıgin and Frenkel [FF90].

The paper is organised as follows. Part I states the main theorems and

describes the requisite technical specifications. Two examples are discussed in

Part II: the first relates our theorem in the case of a torus to the classical

spectral flow of a family of Dirac operators, while the second recalls the Dirac

family associated to a compact group [FHTb], whose loop group analogue is the

“non-abelian spectral flow” implementing our isomorphism. Part III computes

the twisted K-theory Kτ
G(G) topologically, by reduction to the maximal torus

and its normaliser in G. Part IV reviews the theory of loop groups and their

lowest-weight representations; the classification of irreducibles in Section 10

reproduces the basis for Kτ
G(G) constructed in Part III. The Dirac family

in Part V assigns a twisted K-class to any (admissible) representation of the

loop group, and this is shown to recover the isomorphism already established

by our classification. Part VI gives the topological interpretation of some

known constructions on loop group representations as discussed in the previous

paragraph. Appendix A reviews the diagram automorphisms of simple Lie

algebras and relates our definitions and notation to those in Kac’s monograph

[Kac90].
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Groups

G, G1 Compact Lie group and its identity component

T , N Maximal torus and its normaliser in G

W , W1 Weyl groups N/T , N ∩G1/T of G and G1

G(f), N(f) Centralisers in G and N of the class of f in π0G §6
g, t, gC, tC Lie algebras and their complexifications

n ⊂ gC Sub-algebra spanned by the positive root vectors

〈 | 〉, {ξa} Basic inner product on g (when semi-simple);

orthonormal basis §4
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ρ, θ ∈ t∗ Half-sum of positive roots, highest root §4
h∨ (for simple g) Dual Coxeter number 〈ρ|θ〉+ 1 §4
ε; g, t Diagram automorphism of g;

ε-invariant sub-algebras of g, t §7
W ; T Weyl group of g; torus exp(t) §7
ρ, θ ∈ t∗ Half-sum of positive roots in g, highest g-weight of g/g §9
R, R∨ Root and co-root lattices

Λ, Λ; Λτ Weight lattices of T and T ; lattice of τ -affine weights

Loop Groups

LG, LfG Smooth loop group and f -twisted loop group §I
LGτ Central extension by T with cocycle τ

Lg, Lfg Smooth loop Lie algebras

L′g, L′G Laurent polynomial Lie algebra, loop group §§8, 16

N e
aff = ΓfN Group of (possibly f -twisted) geodesic loops

in N §6
W e

aff extended affine Weyl group N e
aff/T

Waff(g, f) f -twisted affine Weyl group of g §§10.4, A.4

a, a (simple g) Alcove of dominant ξ ∈ t, t

with θ(ξ) ≤ 1, resp. θ(ξ) ≤ 1/r §8.3, §9.4

τ · a∗ ⊂ t Product of the centre of g and the [τ ]-scaled

alcoves on simple factors §10

Twistings

τ ; [τ ] (graded) 2-cocycle on LG;

level in H1
G(G;Z/2)×H3

G(G;Z) §2.1

κτ Linear map H1(T )→ H2(BT ) given by

contraction with [τ ] §6
σ, σ LG-cocycle of the Spin modules for Lg, Lfg §1.6

σ(t), σ(t) W -cocycle for the spinors on t and t §6
τ ′, τ ′′ Twisting for the W e

aff -action on Λτ ;

shifted twisting τ ′ − σ(t) §6
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Part I. Statements

Throughout the paper, cohomology andK-theory have integer coefficients,

if no others are specified. K-theory has compact supports. For proper actions

of noncompact groups, or for stacks in general, compactness of supports refers

to the quotient space. For a twisting τ on X, the twisted K-theory will be de-

noted Kτ (X). This is a Z/2-graded group, whose two components are denoted

Kτ+0(X),Kτ+1(X). For a central extension Gτ of G, the Grothendieck group

of τ -projective representations is denoted by Rτ (G); it is a module over the

representation ring R(G). Note that, when τ is graded, this module can have

an odd component Rτ+1; cf. Section 1.3. Equivariant K-theory is used in the

sense of Atiyah and Segal, and not defined from the Borel construction. For

background on K-theory of the stacks used here, see the Appendix to [FHTa].

1. Main theorems

1.1. Simply connected case. The single most important special case of

our result concerns a simple, simply connected compact Lie group G. Central

extensions of its smooth loop group LG by the circle group T are then classified
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by their level, the Chern class c1 ∈ H2(LG) = Z of the underlying circle bundle.

All these extensions are equivariant under loop rotation. Among the projective

representations of LG with fixed level k are the positive energy ones: they

are those which admit an intertwining action of the group of loop rotations,

with spectrum bounded below. Working up to infinitesimal equivalence, as

is customary with noncompact groups, these representations are semi-simple,

with finitely many irreducibles, all of which are unitarisable [PS86]. The free

abelian group on the irreducible isomorphism classes is the Verlinde ring of

G at level k; the multiplication is the fusion of Conformal Field Theory. We

denote this ring by Rk(LG), by analogy with the representation ring R(G)

of G.

Theorem 1. Let G be a simply connected compact Lie group, h∨ its dual

Coxeter number, k ∈ Z. If k+h∨ > 0, the Verlinde ring Rk(LG) is isomorphic

to the twisted K-theory Kτ+dimG
G (G).

Here, G acts on itself by conjugation, and τ is a twisting for the G-equi-

variant K-theory of G whose class [τ ] ∈ H3
G(G) ∼= Z equals k + h∨. Because

H2
G(G) = 0, the K-groups are canonically determined by the twisting class

alone. (In general, H2 acts by automorphisms on the twisted K-groups.) It

is part of our statement that the K-groups are torsion-free, and supported

in degree dimG (mod 2). The ring structure on K-theory is the convolution

(Pontryagin) product. The isomorphism is established by realising both sides

as quotient rings of R(G), via holomorphic induction on the loop group side,

and via the Thom push-forward from the identity in G, on the K-theory side.

1.2. General groups. The isomorphism between the two sides, and the

relation between level and twisting, cannot be described so concisely for general

compact Lie groups. The complicating factors are: the presence of torsion in

the group H3 of twisting classes, an additional type of twistings classified by

H1
G(G;Z/2), related to gradings of the loop group, and finally, the fact that the

two sides need not be quotients of R(G). A simple statement can still be given

when G is connected and π1(G) is free, as in [FHT08, §6], precisely because

both sides can be realised as quotients of R(G). A construction of the map

via a correspondence induced by conjugacy classes was indicated in [Fre02]; we

spell it out in Section 6.11 here. Ignoring the difficulties for a moment, there

still arises a natural isomorphism between the twisted equivariant K-groups

of G and those of the category of positive energy representations at a shifted

level, provided that:

(i) we use Z/2-graded representations;

(ii) we choose a central extension of LG which is equivariant under loop

rotation;

(iii) the cocycle of the extension satisfies a positivity condition.
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The energy operator cannot be defined without (ii), and without (iii), repre-

sentations of positive energy do not exist. While (iii) is merely a question of

choosing signs correctly, there are topological obstructions to equivariance in

(ii) when G is not semi-simple (the absence of symmetry in the level; §15). The

problem here is caused by tori, whose loop groups, ironically, have a straight-

forward representation theory.

This formulation is unsatisfactory in several respects. The loop group side

involves the energy, which has no counterpart in KG(G). Instead, a rotation-

equivariant enhancement of the latter will give a better match. There is also the

positivity restriction, whereas the topological side is well-behaved for regular

twistings (§2). There is, finally, the unexplained “dual Coxeter” shift.

We now formulate the most canonical statement. This need not be the

most comprehensible one (see Theorems 3 and 5 instead). However, it has

the virtue of explaining the shift between level and twisting as the projective

cocycle of the positive energy spinors on LG. Gradings in (i), even when

not originally present in the twisting τ , are imposed upon us by the spinors,

whenever the Ad-representation of G does not spin.

1.3. Untwisted loop groups.1 Let G be any compact Lie group and LGτ a

smooth T-central extension of its loop group. We allow LG to carry a grading,

or a homomorphism to Z/2; this is classified by an element of H1
G(G1;Z/2) and

is notationally incorporated into τ . An Ad-invariant L2 norm on Lg defines the

graded Clifford algebra Cliff(Lg∗), generated by odd elements ψ(µ), µ ∈ Lg∗,
with relations ψ(µ)2 = ‖µ‖2. (For a more canonical construction, the Clifford

algebra should be based on the space of half-forms on the circle, which carry

a natural bilinear form.)

A τ -representation of LG is a graded representation of the graded group

LGτ , on which the central circle acts by the natural character. We are in-

terested in complex, graded τ -representations of the crossed product LG n
Cliff(Lg∗), with respect to the co-adjoint action. Graded modules for Cliff(Lg∗)

can be viewed as b-projective representations of the odd vector space ψ(Lg∗),

where b is the L2 inner product, so we are considering (τ, b)-representations of

the graded super-group

LGs := LGn ψ(Lg∗).

Subject to a regularity restriction on τ , an admissibility condition on represen-

tations will ensure their complete reducibility (§2).

A super-symmetry of a graded representation is an odd automorphism

squaring to 1. Let Rτ+0(LGs) be the free Z-module of graded admissible

1The term twisting for loop groups (§1.5) and for K-theory refers to entirely different

things, but both uses are well-entrenched.
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representations, modulo the super-symmetric ones, and Rτ+1(LGs) that of

representations with a super-symmetry, modulo those carrying a second super-

symmetry anti-commuting with the first. These should be regarded as the

LGs-equivariant Kτ -groups of a point. The reader should note that defining

K-theory for graded algebras is a more delicate matter in general [Bla86]; the

shortcut above, also used in [FHT08, §4], relies on the semi-simplicity of the

relevant categories of modules.

Since Kτ
G(G) is a KG(G)-module, it carries, in particular, an action of

the representation ring R(G). Fusion with G-representations defines an R(G)-

module structure on Rτ (LGs); the definition is somewhat involved, and we

must postpone it until Section 16. Here is our main result.

Theorem 2. Let G be a connected compact Lie group. For a regular

twisting τ , there is a natural isomorphism Rτ (LGs)
∼−→ Kτ

G(G) of (graded)

R(G)-modules, wherein K-classes arise by coupling the Dirac operator family

of Part V to admissible LGs-modules.

1.4. Remark. For twistings that are transgressed from BG in a suitable

sense [FHT10], both sides carry isomorphic Frobenius ring structures. The

portion of the structure that is guaranteed to exist for any regular twisting is

the R(G)-module structure, discussed in Section 16, as well as a duality pairing

on representations; a geometric construction of its K-theoretic counterpart is

given in Section 17.

1.5. Twisted loop groups. When G is disconnected, there are twisted coun-

terparts of these notions. For any f ∈ G, the twisted loop group LfG of smooth

maps γ : R→ G satisfying γ(t+ 2π) = fγ(t)f−1 depends, up to isomorphism,

only on the conjugacy class in π0G of the component fG1 of f . Let [fG1] ⊂ G
denote the union of conjugates of fG1; the topological side of the theorem is

Kτ
G ([fG1]), while the representation side involves the admissible representa-

tions of LfG n ψ(Lfg
∗). Theorem 2 applies to this setting as well. Note, in

passing, that the Frobenius ring structure (for transgressed twistings) involves

the direct sum ⊕
f
Kτ
G ([fG1])

ranging over all conjugacy classes in π0G, and not the individual components.

1.6. Removing the spinors. A lowest-weight spin module S for Cliff(Lg∗)

(see §2.9) carries an intertwining projective action of the loop group LG. De-

noting by σ (σ, in the f -twisted case) the projective cocycle of this action and

by d the dimension of the centraliser Gf , a Morita isomorphism

(1.7) Rτ (LfGs) ∼= Rτ−σ−d(LfG)

results from the fact that an admissible, graded τ -module of LfGnCliff(Lfg
∗)

has the form H ⊗ S, for a suitable (τ − σ)-representation H of LfG, unique
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up to canonical isomorphism. Note, in particular, the dimension shift by d,

from the parity of the Clifford algebra. We obtain the following reformulation

of Theorem 2.

Theorem 3. Let G be a compact Lie group, f ∈ G. For a regular twist-

ing τ , there is a natural isomorphism Rτ−σ−d(LfG)
∼−→ Kτ

G ([fG1]).

The loop group may well acquire a grading from the spinor twist σ, even

if none was present in τ ; if so, Rτ−σ(LfG) is built from graded representations,

as in Section 1.3.

1.8. Classifying representations. Part of the proof of these theorems re-

quires the computation of both sides of the isomorphism. More precisely, we

compute the twisted K-theory by reduction to the torus and the Weyl group,

and produce an answer which agrees with the classification of admissible repre-

sentations in terms of their lowest weights. In fact, twisted K-theory allows for

an attractive formulation of the lowest-weight classification for disconnected

(loop) groups, as follows.

Choose a maximal torus T ⊂ G which, along with a dominant chamber,

is stable under f -conjugation. (Such tori always exists; see Proposition 7.2.)

Recall that the extended affine Weyl group W e
aff(f) for LfG is π0 of LfN , the

group of f -twisted free loops in the normaliser N of T . We will drop the ref-

erence to f , when the context makes it clear. Let T ⊂ T denote the subtorus

centralised by f , and Λτ the set of its τ -affine weights. The conjugation action

of LfN on T descends to an action of W e
aff on Λτ , which preserves the subset

Λτreg of regular weights (those not fixed by any affine reflection). A tautological

twisting τ ′ is defined for this action, because every weight defines a T-central

extension of its centraliser in W e
aff (see §10.4 for details). Finally, after projec-

tion to the finite Weyl group W = N/T , W e
aff also acts on the Lie algebra t

of T .

Theorem 4. The category of graded, admissible τ -representations of LfG

nCliff(Lfg
∗) is equivalent to that of τ ′-twisted W e

aff nCliff(t)-modules on Λτreg.

It follows that the corresponding K-groups agree. In Section 10, we reduce

Theorem 4 to the well-known cases of simply connected compact groups and

tori.

Computing both sides is a poor explanation for a natural isomorphism,

and we improve upon this in Part V by describing the natural map from rep-

resentations to K-classes using families of Dirac operators. The construction

bypasses Theorem 4 and ties in beautifully with Kirillov’s orbit method, re-

covering the co-adjoint orbit and line bundle that correspond to an irreducible

representation. Another offshoot of this construction emerges in relation with

the semi-infinite cohomology of Fĕıgin and Frenkel [FF90], for which we give a
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topological model (Theorem 14.11): for integrable representations, the Euler

characteristic of semi-infinite Ln-cohomology becomes the restriction from G

to T , on the K-theory side. While this can also be checked by computing both

sides, our Dirac family gives a more natural proof, providing the same rigid

model for both.

1.9. Loop rotation. Assume now that the extension LGτ carries a lifting

of the loop rotation action on LG. It is useful to allow fractional lifts, that is,

actions on LGτ of a finite cover T of the loop rotation circle; such a lift always

exists when G is semi-simple (Remark 15.3). If so, admissible τ -representations

carry an intertwining, semi-simple action of this new T. Schur’s lemma implies

that the action is unique, up to overall shift, on any irreducible representation.

A further positivity condition (§15.5) on τ ensures that the spectrum of this

action is bounded below, and its real infinitesimal generator is then called the

energy.

In this favourable situation, we can incorporate the loop rotation into our

results. The requisite object on the topological side is the quotient stack of the

space A of g-valued smooth connections on the circle by the semi-direct product

TnLG, the loop group acting by gauge transformations and T by loop rotation.

This is an example of a proper quotient stack which is locally a quotient of

a manifold by a compact Lie group, but not globally so [FHTa, App.]. We

denote the twisted K-theory of this stack by Kτ
T(GG). This notation, while

abusive, emphasises that the T-action makes it into an R(T)-module; its fibre

over 1 ∈ T is defined as the quotient by the augmentation ideal of R(T).

Theorem 5. If the regular twisting τ is rotation-equivariant, then Kτ
T(GG)

is isomorphic to the Rτ -group of graded, admissible, representations of TnLGs
(cf. §1.3). It is a free module over R(T), and its fibre over 1 is isomorphic to

Kτ
G(G).

The formulation, while a bit awkward, has the virtue of being canonical:

there is no natural isomorphism of Kτ
T(GG) with Kτ

G(G)⊗R(T). (In fact, the

action of T on the stack GG is not homotopy-trivial.) A noteworthy comple-

ment to Theorem 5 is that Kτ
T(GG) contains the Kac numerator formula for

LGτ -representations (see §15.6). It would be helpful to understand this as a

twisted Chern character, just as the the Kac numerator at q = 1 was discovered

to describe the Chern character for Kτ
G(G) [FHT08].

2. Technical definitions

In this section, we describe our regularity conditions on the central ex-

tension LGτ and define the class of admissible representations. There is a

topological and an analytical component to regularity.
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2.1. Topological regularity. The central extension LGτ has a characteristic

class [τ ] ∈ H3
G(G1), the level.2 It is an equivariant version of the Dixmier-

Douady invariant of a gerbe and arises from the connecting arrow in the

exponential sequence for group cohomology with smooth circle coefficients,

H2
LG(T)→ H3

LG(Z): the last group is purely topological and equals H3(BLG)
∼= H3

G(G1). When g is semi-simple, the smooth-cochain group cohomology

H2
LG(R) vanishes [PS86, XIV], and [τ ] then determines the central extension

LGτ , up to isomorphism. In any case, restricting to a maximal torus T ⊂ G

and writing H2
T for H2(BT ), we obtain a class in

H3
T (T ) = H1(T )⊗H2

T ⊕H3(T ).

For classes arising from central extensions, it turns out that the H3(T ) com-

ponent vanishes. In view of the isomorphism H1(T ) ∼= H2
T , we make the

following:

2.2. Definition. We call τ topologically regular if and only if [τ ] defines a

nonsingular bilinear form on H1(T ).

For a twisted loop group LfG, topological regularity is detected instead

by the f -invariant sub-torus T ⊂ T in an f -stable maximal torus T as in

Section 1.8. Restricting [τ ] there leads to a bilinear form on H1(T ), and regu-

larity refers to the latter. In the next section, we will see how the bilinear form

captures the commutation in LT τ of the constant loops T with the group of

components π1T .

2.3. Analytic regularity. This condition, which holds in the standard ex-

amples and is automatic in the semi-simple case, concerns the centre z ⊂ g

and ensures that the topologically invisible summand Lz/z does not affect the

classification of representations of LGτ . Split Lz into the constants z and

their L2-complement V and observe that LG is the semi-direct product of the

normal subgroup exp(V ) by the subgroup Γ of loops γ ∈ LG whose velocity

dγ · γ−1 has constant z-component. Observe that the action of Γ on V factors

through the finite group π0G. An averaging argument shows that invariant

central extensions of exp(V ) have a preferred continuation to π0G n exp(V ),

and therefore also to LG.

2.4. Definition. τ is analytically regular if and only if it is the sum of

an extension of Γ and a Heisenberg extension of exp(V ), and, moreover, the

Heisenberg cocycle ω : Λ2V → iR has the form ω(ξ, η) = b(Sξ, η), for some

skew-adjoint Fredholm operator iS on V .

2For graded central extensions, [τ ] has an additional component in H1
G(G;Z/2), but this

plays no role in the regularity conditions.
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The standard example3 has S = id/dt, an unbounded operator, so we

should really ask that S/(1 +
√
S∗S) is Fredholm. We need to tame ω by this

Fredholm property for the Dirac constructions in Part V. For twisted loop

groups, the analytic constraints refer to Lf z
¿
zf .

2.5. Linear splittings. Restricted to any simple summand s ⊂ g, every

extension class is a multiple of the basic one in Section 8.1 and is detected by

the level [τ ]. However, the cocycle ω : Λ2Ls→ iR depends on a linear splitting

of the extension

(2.6) 0→ iR→ Lsτ → Ls→ 0.

For the unique s-invariant splitting, S is a multiple of id/dt. Varying the

splitting by a representable linear map Ls → iR, that is, one of the form

η 7→ ω(ξ, η) (with a fixed ξ ∈ Ls) changes S by an inner derivation. Preferred

splittings for the twisted loop groups also exist and are discussed in Section 9.

Hence, subject to topological regularity, and using the preferred splittings, the

second part of Condition 2.4 holds for the entire Lie algebra. We assume now

that a splitting verifying this has been chosen.

2.7. Remark. (i) S must vanish on z, because the latter exponentiates to a

torus, over which any T-extension is trivial. The Heisenberg condition allows

kerS ∩Lz to be no larger than z. Combining this with the discussion of simple

summands shows that, for regular τ , kerS is the Lie algebra of a full-rank

compact subgroup of LG. This is the constant copy of G, for the standard

splitting of the untwisted loop group.

(ii) To justify our first analytic constraint in 2.4, notice that rotation-

equivariance (§1.9) forces S to commutes with d/dt, and Γ with V . However,

the constraint needed for our classification of admissible representations can be

weakened: namely, conjugation by Γ should implement a representable change

in any splitting of (2.6) over V . Indeed, if Adγ changes the splitting by η 7→
ω(ξ, η) for some (γ-dependent) ξ ∈ V , then the alternate copy of Γ in LfG,

which replaces γ by e−ξγ, decomposes the latter as a semi-direct product of

exp(V )τ by a central extension of the new Γ. The new Γ-extension may differ

from the original, but it has the same topological level.

2.8. Lowest-weight representations. The semi-positive spectral projection

of S is an ω-isotropic sub-algebra P ⊂ LgC; we call it the positive polarisation.

The strictly positive part U ⊂ P is a Lie ideal, and kerS ⊗ C is isomorphic

to P/U. A linear splitting in Section 2.5 restricts to a Lie algebra splitting

3This is the only possibility for Diff(S1)-equivariant extensions [PS86, VIII].
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over P. A lowest-weight τ -representation of Lg is one generated by an irre-

ducible module of kerS, which is killed by the lifted copy of U in (2.6).

The lowest-weight condition depends on S and on the splitting of (2.6)

over the centre z. However, if we insist on integrability of the representation

to the identity component of the loop group (see §8.5), lowest-weight modules

are irreducible, unitarisable, and their Hilbert space completions are unchanged

under a representable variation of that splitting.

2.9. Admissible representations of loop groups. A projective representa-

tion of LG is called admissible if it decomposes as a finite-multiplicity sum

of Hilbert space completed lowest-weight representations of the Lie algebra.

Assuming topological regularity, any integrable lowest-weight representation

of Lg exponentiates to an action of the identity component of LG on the

Hilbert space completion. This induces an admissible representation of the

full loop group. Moreover, at fixed level, there are finitely many irreducibles,

up to isomorphism (see §10), and all of them appear as direct summands in

representations induced from lowest-weight irreducible representations of the

identity component.

There is a similar notion of lowest-weight and admissibility for Cliff(Lg∗)-

modules, using the same polarisation. (Note that U is b-isotropic.) As in the

finite-dimensional case, there are one or two isomorphism classes of lowest-

weight representations, according to whether dim g is even or odd, and they

are irreducible. The numbers are switched if we ask for graded representations;

any of the graded irreducibles is called a spin module. The K-theory of graded,

admissible Cliff(Lg∗)-modules (as in §1.3) is Z, in degrees dimG (mod 2). The

two spin modules, in the even case, differ by parity-reversal, and represent

opposite generators of K0. In the odd case, two opposite generators come

from the two choices of a super-symmetry on the irreducible spin module.

2.10. Remark. The algebraic approach to representations starts from the

Laurent polynomial loop algebra L′g and the finite-multiplicity sums of in-

tegrable lowest-weight modules of L′g n Cliff(L′g∗). These are the Harish-

Chandra modules underlying our admissible representations. However, as our

Dirac construction of K-classes involves the smooth loop group and its unitary

representations, we must work analytically.

Part II. Two examples

We recall from [FHTb] two examples relevant to the construction of the

Dirac operator families in Part IV, which relate representations to K-theory

classes. The first concerns the group LT of loops in a torus; the second is a

finite-dimensional Dirac family, which leads to an interpretation of our theorem

as an infinite-dimensional Thom isomorphism.
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3. Spectral flow over a torus

3.1. The circle [APS75]. Let D/ := d/dθ be the one-dimensional Dirac

operator on the complex Hilbert space L := L2(S1;C), acting as in on the

Fourier mode einθ. For any ξ ∈ R, the modified operator D/ξ := D/ + iξ has the

same eigenvectors, but with shifted spectrum i(n+ ξ). Let M : L→ L be the

operator of multiplication by eiθ. The relation M−1D/ξM = D/ξ+1 shows that

the family D/ξ, parametrised by ξ ∈ R, descends to a family of operators on the

Hilbert bundle R×Z L over R/Z (where we let M generate the Z-action on L).

Following the spectral decomposition of D/ξ as ξ varies, we find that one

eigenvector crosses over from the negative to the positive imaginary spectrum

as ξ crosses an integer value. Thus, the dimension of the positive spectral

projection, although infinite, changes by 1 as we travel once around the circle

R/Z. This property of the family D/ξ is invariant under continuous deforma-

tions and captures the following topological invariant. Recall [AS69] that the

interesting component of the space Fredsa of skew-adjoint Fredholm operators

on L has the homotopy type of the small unitary group U(∞); in particu-

lar, π1Fredsa = Z. (The other two components, of essentially positive and

essentially negative Fredholm operators, are contractible.) Weak contractibil-

ity of the big unitary group allows us to trivialise our Hilbert bundle on R/Z,

uniquely up to homotopy; so our family defines a map from the circle to Fredsa,

up to homotopy. This map detects a generator of π1Fredsa.

3.2. Generalisation to a torus. A metric on the Lie algebra t of a torus T

defines the Clifford algebra Cliff(t∗), generated by the dual t∗ of t. Denote by

ψ(µ) the Clifford action of µ ∈ t∗ on a complex, graded, irreducible spin module

S(t) = S+(t)⊕ S−(t) [ABS64]. Let L± = L2(T )⊗ S±(t); choose dual bases in

t, t∗; and denote by D/ the Dirac operator
∑
a ∂/∂θ

a ⊗ ψa on L := L+ ⊕ L−.

Consider the family of operators parametrised by µ ∈ t∗,

D/µ = D/ + iψ(µ) : L+ → L−.

Let Π = (2π)−1 log 1 be the integer lattice in t, isomorphic to π1T . For a weight

λ ∈ Π∗ := Hom(Π;Z), let Mλ : L→ L be the operator of multiplication by the

associated character eiλ : t 7→ tiλ. The relation M−λ ◦D/µ ◦Mλ = D/µ+λ shows

that D/µ descends to a family of fibre-wise operators on the Hilbert bundle

t∗ ×Π∗ L over the dual torus T ∗ := t∗/Π∗. Here, Π∗ acts on t∗ by translation

and on L via the M . As before, contractibility of the unitary group leads to

a continuous family of Fredholm operators over T ∗. When ` := dim t is odd,

we choose a self-adjoint volume form $ ∈ Cliff1(t∗). This commutes with all

the ψ• and converts D/µ to a skew-adjoint family $ · D/µ of operators acting

on L+. Thus, in every case, we obtain a class in K`(T ∗). This represents the

K-theoretic volume form; more precisely, it is a Fredholm model for the Thom

push-forward of the identity in T ∗.
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3.3. Representations and twisted K-classes. Relating this construction to

our concerns requires a bit more structure, in the form of a linear map τ :

Π → Π∗ (not related to the metric). A central extension Γτ of the product

Γ := Π× T by the circle group T is defined by the commutation rule

(3.4) ptp−1 = t · tiτ(p) p ∈ Π, t ∈ T and tiτ(p) ∈ T.
The group Γτ has a unitary representation on L2(T ), with T acting by trans-

lation and Π by the Mτ(p)’s. If τ has full rank, L2(T ) splits into a finite,

multiplicity-one sum of irreducible τΓ-representations F[λ], each of them com-

prising the weight spaces of T in a fixed residue class [λ] ∈ Π∗/τ(Π). Moreover,

these are all the unitary τ -irreducibles of Γ, up to isomorphism. (This will be

shown in §10.)

Now, τ also induces a map T → T ∗, whereunder the pull-back of L splits,

according to the splitting of L2(T ) into the F[λ]. Each component carries the

lifted Dirac family D/ξ := D/ + iψ(τ(ξ)), descending to a spectral flow family

over T . Except at the single value exp(τ−1[−λ]) ∈ T of the parameter, D/• is

invertible on the fibres F[λ] ⊗ S.

All families F[λ] ⊗ S have the same image in K`(T ), but this redundancy

is resolved by remembering the T -action, as follows. Instead of viewing the

D/• as families over T , we interpret them as τΓ-equivariant Fredholm families

parametrised by t. Now, t is a principal Π-bundle over the torus T , equivariant

for the trivial action of T on both, and the central extension τΓ defines a twist-

ing for the T -equivariant K-theory of T ; see [FHTa, §2]. Classes in Kτ+0
T (T )

are described by Γ-equivariant families of Fredholm operators, parametrised by

t, on τ -projective unitary representations of Γ; twisted K1-classes are repre-

sented by skew-adjoint families. Thus, our families D/ξ : F[λ]⊗S+ → F[λ]⊗S−

(respectively $ ·D/ξ on F[λ]⊗S+ in odd dimensions) give classes in Kτ+`
T (T ). A

special case of our main theorem asserts that, when τ is regular, these classes

form a Z-basis of the twisted K-groups in dimension ` (mod 2), while the other

K-groups vanish.

3.5. Remark. The inverse map from Kτ+`
T (T ) to representations of Γτ

ought to be an “integration over t” map from Kτ+`
Γ (t) to Rτ+0(Γ). This is con-

sistent with our interpretation of our main theorem as an infinite-dimensional

Thom isomorphism, on the space of connections over the circle (Part V). How-

ever, we only know how to define Rτ (Γ) in terms of C∗-algebras, so we cannot

offer an a priori topological definition of this map.

3.6. Direct image interpretation. Here, we give a topological meaning for

the family (D/•,L); this will be used in Section 17. We claim that it represents

the image of the unit class [1] under the Gysin morphism of representable

stacks p : T → T ×BT ,

p∗ : K0(T )→ Kτ−`
T (T ).
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To define p∗, we must trivialise the lifted twisting p∗τ . Recall that the twisting

τ for the (trivial) T -action on T is the groupoid defined from the action of Γτ

on t. The matching model for p∗τ on T = t/Π comes from the restricted

extension Πτ , and this is trivialised by its construction (3.4). The class [1]

then corresponds to the trivial line bundle on t with trivial Π-action.

We now give an equivalent, but more concrete model for p∗. Replace

K∗(T ) by K∗T (T × T ), where T translates the second factor; the projection P

to the first factor replaces p. If we represent T by the Γ-action groupoid on

t × T , where Π and T act by translation on t, resp. T , then the twisting P ∗τ

is represented by the action of Γτ on t× T .

Call O(τ) the trivial line bundle on t×T , but with the translation action of

T and with Π-action via the operators Mτ(•). The two assemble to a τ -action

of Γ, so O(τ) gives a class in Kτ+0
T (T × T ). We claim that this is the image of

[1] under the trivialisation of p∗τ . Indeed, our model for p∗τ as the action of

Πτ on t maps to the model for P ∗τ by inclusion at t × {1}; thereunder, O(τ)

restricts to the trivial bundle with trivial Π-action.

The Gysin image P∗[1] is now represented by any Γτ -invariant family of

Dirac operators on the fibres of P , and (D/•,L) is an example of this.

3.7. Relation to the loop group LT . Decompose LT as Γ× exp(V ), where

V = Lt	 t. Central extensions of exp(V ) by the circle group T are classified by

skew 2-forms ω on V . We choose a regular such form, in the sense of Section 2.4,

together with a positive isotropic subspace U ⊂ VC. There exists then, up to

isomorphism, a unique irreducible, unitary projective Fock representation F

of exp(V ) which contains a vector annihilated by U. The sum of Γτ and our

extension of exp(V ) is a T-central extension LT τ of LT , whose irreducible

admissible representations are isomorphic to the F[λ] ⊗ F. Our construction

assigns to each of these a class in Kτ+`
T (T ).

We will extend this construction, and the resulting correspondence be-

tween LG-representations and twisted K classes, to arbitrary compact groups

G. Observe, by factoring out the space of based, contractible loops, that

Γτ -equivariant objects over t are in natural correspondence to LT τ -equivariant

ones over the space A of t-valued connection forms on the circle, for the gauge

action; and it is in this form that our construction of the Dirac spectral flow

generalises. The explicit removal of the Fock factor F has no counterpart for

non-abelian groups, and the same effect is achieved instead by coupling the

Dirac operator to the spinors on Lt/t.

4. A finite-dimensional Dirac family

We now recall from [FHTb] the finite-dimensional version of our con-

struction of twisted K-classes from loop group representations (Part V). For
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simplicity, we take G to be simple and simply connected. Choosing a dom-

inant Weyl chamber in t defines the nilpotent algebra n spanned by positive

root vectors, the highest root θ and the Weyl vector ρ, the half-sum of the

positive roots. Roots and weights live in t∗, a weight λ defines the character

eiλ : T → T, sending e ξ ∈ T to eiλ(ξ).

The basic invariant bilinear form 〈 | 〉 on g is normalised so that the long

roots have square-length 2. Define the structure constants f cab by [ξa, ξb] =

f cabξc, in an orthonormal basis {ξa} of g with respect to this bilinear form.4

Note that fabcf
c
ad = 2h∨δbd, where h∨ = 〈ρ|θ〉+ 1 is the dual Coxeter number.

Let Cliff(g∗) be the Clifford algebra generated by elements ψa dual to the basis

ξa, satisfying ψaψb+ψbψa = 2δab, and let S = S+⊕S− be a graded, irreducible

complex module for it. This is unique up to isomorphism and (if dim g is even)

up to parity switch. There is a unique action of g on S compatible with the

adjoint action on Cliff(g∗); the action of ξa can be expressed in terms of Clifford

generators as

σa = −1

4
fabc · ψbψc.

It follows from the Weyl character formula that S is a sum of 2ddim t/2e copies

of the irreducible representation V−ρ of g of lowest weight (−ρ). The lowest-

weight space is a graded Cliff(t∗)-module; for dimensional reasons, it is irre-

ducible.

4.1. The Dirac operator. Having trivialised the Clifford and Spinor bun-

dles over G by left translation, consider the following operator on spinors,

called by Kostant [Kos99] the “cubic Dirac operator”:

(4.2) D/ = Ra ⊗ ψa +
1

3
σa · ψa = Ra ⊗ ψa −

1

12
fabcψ

aψbψc,

where Ra denotes the right translation action of ξa on functions. Let also

Ta = Ra + σa be the total right translation action of ξa on smooth spinors.

4.3. Proposition.
î
D/, ψb

ó
= 2Tb; [D/, Tb] = 0.

Proof. The second identity expresses the right-invariance of the operator,

while the first one follows by direct computation:î
D/, ψb

ó
= Ra ⊗

î
ψa, ψb

ó
+
σa
3

î
ψa, ψb

ó
− 1

3

î
σa, ψ

b
ó
· ψa

= 2Rb +
2

3
σb −

1

3
f bca · ψcψa

= 2(Rb + σb). �

4We use the Einstein summation convention, but will also use the metric to raise or lower

indexes as necessary when no conflict arises.
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4.4. The Laplacian. The Peter-Weyl theorem decomposes L2(G; S) as⊕
λ V
∗
−λ ⊗ V−λ ⊗ S, where the sum ranges over the dominant weights λ of g.

Left translation acts on the left, Ra on the middle and σa on the right factor.

Hence, D/ acts on the two right factors alone. As a consequence of (4.3), the

Dirac Laplacian D/
2

commutes with the operators T• and ψ•. As these generate

V−λ⊗S from its −(λ+ρ)-weight space, D/
2

is determined from its action there.

To understand this action, rewrite D/ in a root basis of gC,

(4.5) D/ = Rj ⊗ψj +
1

3
σjψ

j +Rα⊗ψ−α +R−α⊗ψα +
1

3

Ä
σαψ

−α + σ−αψ
α
ä
,

where the j’s label a basis of t and α ranges over the positive roots. The

commutation relation [σ−α, ψ
α] = ψ(−2iρ), where summation over α has been

implied, converts (4.5) to

D/ = Rj⊗ψj +
1

3
σjψ

j− 2i

3
ψ(ρ)+Rα⊗ψ−α+R−α⊗ψα+

1

3

Ä
σαψ

−α + ψασ−α
ä
,

and the vanishing of all α-terms on the lowest-weight space leads to the fol-

lowing

4.6. Proposition. (i) D/ = −iψ(λ + ρ) on the −(λ + ρ)-weight space of

V−λ ⊗ S.

(ii) D/
2

= −(λ+ ρ)2 on V−λ ⊗ S.

4.7. The Dirac family. Consider now the family D/µ := D/ + iψ(µ), para-

metrised by µ ∈ g∗. Conjugation by a suitable group element brings µ into the

dominant chamber of t∗. From Proposition 4.6, we obtain the following rela-

tions, where 〈T |µ〉 represents the contraction of µ with T ∈ g∗ ⊗End (V ⊗ S),

in the basic bilinear form (the calculation is left to the reader).

4.8. Corollary. (i) D/µ = iψ(µ − λ − ρ) on the lowest-weight space of

V−λ ⊗ S.

(ii) D/
2
µ = −(λ+ ρ− µ)2 + 2i〈T |µ〉 − 2〈λ+ ρ|µ〉.

4.9. The kernel. Because i〈T |µ〉 ≤ 〈λ + ρ|µ〉, with equality only on the

−(λ + ρ)-weight space, D/µ is invertible on V−λ ⊗ S, except when µ is in the

co-adjoint orbit O of (λ + ρ). In that case, the kernel at µ ∈ g∗ is that very

weight space, with respect to the Cartan sub-algebra tµ and dominant chamber

defined by the regular element µ. This is the lowest-weight line of V−λ tensored

with the lowest-weight space of S and is an irreducible module for the Clifford

algebra generated by the normal space t∗µ to O at µ. More precisely, the kernels

over O assemble to the normal spinor bundle to O ⊂ g∗, twisted by the natural

line bundle O(−λ − ρ). Finally, at a nearby point µ + ν, with ν ∈ t∗µ, D/µ+ν

acts on ker(D/µ) as iψ(ν).

4.10. Topological interpretation. The family of operators D/µ on V−λ⊗S is

a compactly supported K-cocycle on g∗, equivariant for the co-adjoint action
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of G. As before, when dim g is odd, we use the volume form $ to produce the

skew-adjoint family $D/µ, which represents a class in K1
G. Our computation

of the kernel identifies these classes with the Thom classes of O ⊂ g∗, with

coefficients in the natural line bundle O(−λ − ρ). Sending V−λ to this class

defines a linear map

(4.11) R(G)→ Kdim g
G (g∗).

There is another way to identify this map. Deform D/µ to iψ(µ) via the

(compactly supported Fredholm) family ε · D/ + iψ(µ). At ε = 0 we obtain

the standard Thom class of the origin in g∗, coupled to V−λ. Therefore, our

construction is an alternative rigid implementation of the Thom isomorphism

K0
G(0)

∼−→ Kdim g
G (g∗).

The inverse isomorphism is the push-forward from g∗ to a point. In view

of our discussion, this expresses V−λ as the Dirac index of O(−λ − ρ) over

O, leading to (the Dirac index version of) the Borel-Weil-Bott theorem. The

affine analogue of the Thom isomorphism (4.11) is Theorem 3, equating the

module of admissible projective representations with a twisted KG(G).

4.12. Application to Dirac induction. For later use, we record here the

following proposition; when combined with the Thom isomorphisms and the

resulting twists, it gives the correct version of Dirac induction for any compact

Lie group G (not necessarily connected). Let N ⊂ G be the normaliser of the

maximal torus T ⊂ G1. We have a restriction map KG(g∗)→ KN (t∗) and an

“induction” KN (t∗)→ KG(g∗), which is the Thom push-forward from t∗ to g∗,

followed by Dirac induction from N to G.

4.13. Proposition. Let G be any compact Lie group. The composition

KG(g∗)→ KN (t∗)→ KG(g∗) is the identity.

Proof. Express the middle term as KG(G×N t∗), with the left action of G

on the induced space. The map from G×N t∗ to g∗ sends (g, µ) to gµg−1. Since

N meets every component of G (Proposition 7.2), this map is a diffeomorphism

over regular points. Every class in KG(g∗) is the Thom push-forward of a class

[V ] ∈ KG(0). Deforming this to D/ + iψ(µ) leads to a class supported on a

regular orbit; a fortiori, our composition is the identity on such classes, and

hence on the entire K-group. �

Part III. Computation of twisted KG(G)

In this chapter, we compute the twisted K-theory Kτ
G(G) by topological

methods, for arbitrary compact Lie groups G and regular twistings τ . A key

step is the reduction to the maximal torus, Proposition 7.8. Our answer takes

the form of a twisted K-theory of the set of regular affine weights at level τ ,
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equivariant under the extended affine Weyl group (§§6.3, 6.4). This action has

finite quotient and finite stabilisers, and the Kτ -theory is a free abelian group

of finite rank. For foundational questions on twisted K-theory, we refer to

[FHTa] and the references therein.

5. A “Mackey decomposition” lemma

The key step in our computation of KG(G) is a construction generalising

Example 1.13 in [FHTa] and Lemma 2.14 in [FHT08]. It is a topological form

of the Mackey decomposition of irreducible representations of a group, when

restricted to a normal subgroup; this analogy will become precise and essential

in Section 10.6.

5.1. Construction. Let H be a compact group acting on a compact Haus-

dorff space X, τ a twisting for H-equivariant K-theory, and M ⊆ H a normal

subgroup acting trivially on X. We make the simplifying assumption that the

H-action has contractible local slices: that is, each x ∈ X has a closed H-

neighbourhood of the form H ×Hx Sx, with a slice Sx which is equivariantly

contractible under the action of the stabiliser Hx. The following data can then

be extracted from this:

(i) an H-equivariant family, parametrised by X, of T-central extensions

M τ of M ;

(ii) an H/M -equivariant covering space p : Y → X, whose fibres label the

isomorphism classes of irreducible, τ -projective representations of M ;

(iii) an H-equivariant, tautological projective bundle PR→ Y , whose fibre

PRy at y ∈ Y is the projectivised τ -representation of M labelled by y;

(iv) a class [R] ∈ KPR
H (Y ), represented by R;

(v) a twisting τ ′ for the H/M -equivariant K-theory of Y , and an isomor-

phism of H-equivariant twistings τ ′ ∼= p∗τ − PR.

Items (iii) and (v) are only defined up to canonical isomorphism. Note that, if

M τ is abelian, as will be the case in our application, then PR = Y , which can

be taken to represent the zero twisting. However, [R] is not the identity class

[1], because of the nontrivial M -action on the fibres Ry.

5.2. Lemma (Key Lemma). The twisted K-theories Kτ ′

H/M (Y ) and Kτ
H(X)

are naturally isomorphic.

Proof. We claim that the following composition is an isomorphism:

(5.3) Kτ ′

H/M (Y ) −→ Kτ ′
H (Y ) ∼= Kp∗τ−PR

H (Y )
⊗[R]−−−→ Kp∗τ

H (Y )
p!−−→ Kτ

H(X).

By the usual Mayer-Vietoris argument (for closed coverings), it suffices to

prove this H-locally on the base X. Our slice assumption reduces us to the

case when X is a point x and H = Hx.



LOOP GROUPS AND TWISTED K-THEORY III 967

Having a statement about groups alone, it is more convenient to use the

model of twistings as (graded) central extensions by T and K-classes as twisted

virtual representations. Decompose a τ -representation V of H under M τ and

distribute the isotypical components into a τ -twisted, H-equivariant vector

bundle over the set Yx of irreducible τ -representations of M . (H permutes

Yx through its conjugation action on M .) This bundle necessarily has the

form R ⊗ W , where R is the tautological bundle from before, and W is a

τ ′ = (τ − PR)-twisted H/M -bundle over Y . In the opposite direction, the

direct sum V of components W ⊗R, for a τ−PR-twisted H/M -bundle W over

Yx, carries a τ -twisted action of H. The assignments V 7→W and W 7→ V are

mutually inverse, and the second assignment is our composition (5.3). �

5.4. Remark. (i) The local statement in the proof is a weaker form of a

result (Theorem 10.7 below) that we shall use in the classification of loop group

representations.

(ii) The inverse map to (5.3) lifts a class from Kτ+∗
H (X) to Kp∗τ+∗

H (Y ),

tensors the lift with the dual class [R∨] ∈ K−PRH (Y ) and then extracts the

M -invariant part. However, the last step requires a bit of care when using

projective bundles, as it involves the Morita isomorphism relating two different

projective bundle representatives for the same twisting.

6. Computation when the identity component is a torus

We return to the case when τ is a G-twisting of G. To ensure consistency

of notation when the identity component G1 is a torus T , we write N for G

and W for π0N . Denoting, for any f ∈ N , by N(f) the stabiliser in N of

the component fT , we can decompose Kτ
N (N) as a sum over representatives

f ∈ N of the conjugacy classes in W :

(6.1) Kτ
N (N) ∼=

⊕
f
Kτ
N(f) (fT ) .

6.2. The identity component. With H = N and M = X = T in Con-

struction 5.1, Lemma 5.2 gives an isomorphism Kτ
N (T ) ∼= Kτ ′

W (Y ). It is easy

to describe the bundle p : Y → T . A twisting class [τ ] ∈ H3
N (T ) restricts to

H3
T (T ), hence to H1(T ) ⊗ H2

T , and contraction with the first factor gives a

map κτ : H1(T )→ H2
T . This gives a translation action of Π := π1T on the set

Λτ of τ -affine weights of T , and Y is the associated bundle t ×Π Λτ . If κτ is

injective, as per our regularity condition 2.2, then Y is a union of copies of t,

labelled by Λτ /κτ (Π), and integration along t gives an isomorphism

Kτ
N (T ) ∼= Kτ ′

W (Y )
∼−→ K

τ ′−σ(t)−dimT
W (Λτ /κτ (Π)) ,

where the down-shift σ(t) in the twisting is defined by a W -equivariant Thom

class of t, represented by a choice of spinors S(t) with projective W -action.
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6.3. Affine Weyl action. We reformulate this construction by observing

that the level [τ ] ∈ H3
N (T ) has a leading term in H1

W (T ;H2
T ), with respect to

the Hochschild-Serre spectral sequence

Ep,q2 = Hp
W (T ;Hq

T )⇒ Hp+q
N (T ).

This term captures the W -action on the covering Y of T , but, more impor-

tantly, defines an affine action on Λτ of the extended affine Weyl group W nΠ,

extending the action of Π. This action defines a groupoid with finite quotient

and finite stabilisers. Comparing orbits and stabilisers gives an equivalence of

categories of equivariant bundles and hence an isomorphism

Kτ
N (T ) ∼= K

τ ′−σ(t)−dimT
W (Λτ /κτ (Π))

∼−→ K
τ ′−σ(t)−dimT
WnΠ (Λτ ) .

6.4. A general component. Let now T f be the T -centraliser of f ∈ N and

T its identity component. Then, fT is a homogeneous space, with discrete

isotropy, for the combined action of N(f) /T by conjugation and of t := tf by

translation. We obtain an N(f) n t-equivariant isomorphism of the form

(6.5) fT ∼= [(N(f) /T ) n t]/W e
aff(f) ,

where the stabiliser W e
aff(f) of f is expressed, by projection to N(f)/T , as a

group extension

(6.6) 1→ Π→W e
aff(f)→ W̃ f → 1,

where Π := π1T and W̃ f := [N(f)/T ]f is in turn an extension of W f (the

W -centraliser of the component fT ) by the finite group [T/T ]f :

1→ [T/T ]f → W̃ f →W f → 1.

Exactness on the right follows from the vanishing of H1
〈f〉(T/T ); that, in turn,

follows from the absence of f -invariants in π1(T/T ).

With X = fT , H = N(f) and M = T in Construction 5.1, an N(f)-

equivariant twisting τ defines a covering space Y → fT , with fibres the sets

Λτ of τ -affine weights of T . Via (6.5), this cover is associated to an affine action

of W e
aff on Λτ , which is classified by the leading component of [τ ] ∈ H3

N(f)(fT )

in

(6.7) H1
N(f)/T (fT ;H2

T ) = H1
W e

aff
(H2

T ).

6.8. Theorem. (i) We have a natural isomorphism

Kτ
N(f) (fT ) = Kτ ′

W e
aff

(Λτ × t) .

(ii) If τ is regular, this is also K
τ ′−σ(t)−dim t
W e

aff
(Λτ ), and is free, of finite

rank over Z.
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Proof. The first isomorphism is Lemma 5.2. Provided that all stabilisers

of W e
aff on Λτ are finite, the second isomorphism follows from (i) by integration

along t, and σ(t) is the twisting of the equivariant Thom class.

Now, Π ⊂ W e
aff has finite index, and acts on Λτ by translation, via the

linear map κτ : Π → Λ, defined by restricting [τ ] to H3
T (T ). Topological

regularity of τ implies finiteness of the quotient Λτ/W e
aff and of all stabilisers.

�

6.9. Remark. The action of N(f) n t on fT leads to the presentation

fT ∼= N(f) n t/N e
aff ,

where the stabiliser N e
aff of f is an extension 1 → T → N e

aff → W e
aff → 1.

We already encountered the group N e
aff , in the guise of Γ, when N was a

torus. Without Lemma 5.2, the isomorphism (6.5) identifies Kτ
N(f)(fT ) with

Kτ
Ne

aff
(t). The right-hand side has a sensible topological interpretation as the

K-theory of the associated quotient stack [FHTa]. It is tempting to integrate

along t and land in the N e
aff -equivariant twisted K-theory of a point. However,

no topological definition of K-theory that we know allows this operation (cf.

Remark 3.5); this could perhaps be done by C∗-algebra methods.

6.10. Loop group interpretation. The isomorphism (6.5) identifies W e
aff

with π1 of the homotopy quotient of fT by N(f). This quotient turns out

to be homotopy equivalent to the classifying space BLfN . We can reveal

this equivalence by using the gauge action of LfN on connections on a fixed

principal N -bundle over the circle, with topological type classified by the com-

ponent [fT ] of the holonomy. Fixing the fibre over a base-point, the space of

holonomies becomes fT , while the residual symmetry group is N(f). Finally,

the space of connections is contractible.

Thus, W e
aff = π0LfN . Now, each component of LfN contains loops of

minimal length, and so the subgroup ΓfN ⊂ LfN of f -twisted geodesic loops

is an extension of W e
aff by T , just like N e

aff . In fact, ΓfN is isomorphic to

N e
aff : to equate them, re-interpret the presentation of fT in Remark 6.9 as

the quotient of N(f) × t, the set of flat bundles based at one point and with

constant connection form, under the gauge action of ΓfN .

The action of W e
aff on Λτ and its twisting τ ′ also have a loop group de-

scription. The connection picture gives an equivalence between the quotient

stacks fT/N(f) (by conjugation) and t/N e
aff (via W e

aff). Our twistings come

from T-central extensions (N e
aff)τ of N e

aff . The action of W e
aff on Λτ is then

induced by the conjugation action of (N e
aff)τ on T . The subgroup of (N e

aff)τλ
stabilising a weight λ ∈ Λτ is an extension of (W e

aff)λ by T τ . Pushing this

out by the affine weight λ gives a T-central extension of (W e
aff)λ, and these

extensions assemble to the twisting τ ′.
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6.11. Induction from conjugacy classes. The following result, together

with Theorem 7.8 in the next section, is the basis for our original construc-

tion [Fre02] of twisted K-classes. For each element of the natural basis of

Theorem 6.8(ii), it selects a distinguished N(f)-conjugacy class in fT , up to

an overall ambiguity coming from the Lie algebra of the centre of the group

(see Remark 6.13). We shall revisit this when discussing the Dirac families in

Part V.

6.12. Proposition. If τ is regular, Kτ
N (N) is spanned by classes sup-

ported on single conjugacy classes.

Proof. Let us focus on the conjugation action of N(f) on fT . An affine

action of W e
aff on t is inherited from the conjugationntranslation action of the

ambient group (N(f)/T ) n t. There is also a W e
aff -action on the affine copy

Λτ ⊗R of t∗, defined from the earlier action on Λτ . Such actions are classified

respectively by the groups

H1
W e

aff
(t) ∼= Hom‹W f (Π, t) and H1

W e
aff

(t∗) ∼= Hom‹W f (Π, t∗)

(W̃ f acts by conjugation). The first class is given by the natural map Π→ t;

the second, by the map κτ ⊗R. Hence, the two actions of W e
aff are isomorphic

by some translate κτν : t→ t∗ of the R-linearised map κτ ⊗ R.

A class in K
τ ′−σ(t)
W e

aff
(Λτ ) can now be pushed forward to Kτ ′

W e
aff

(Λτ × t) by

using the graph of the inverse map (κτν)−1. Under Theorem 6.8(i), its image

in Kτ
N(f)(fT ) is supported on a single conjugacy class, whenever the original

lived on a single W e
aff -orbit. �

6.13. Remark. (i) κτν descends to a W f -affine isogeny ιτ : fT → Λτ ⊗ T.

The quotient spaces fT/W̃ f and fT/N(f) are isomorphic: this is because fT

covers fT/T and W̃ f surjects onto W f (§6.4). The conjugacy classes appearing

in Proposition 6.12 lie in the fibre of ι over the base-point Λτ of the second

torus. Specifically, a class in the (twisted) KW e
aff

(Λτ ) supported on a W e
aff -

orbit Ω corresponds to one in Kτ
N(f)(fT ) with support at the single W̃ f -orbit

f · exp
(
(κτν)−1Ω

)
.

(ii) An ambiguity in the construction results from our freedom in identify-

ing t and t∗ as W f -affine spaces, as we are free to translate by the W f -invariant

part of t.

7. General compact groups

For any compact Lie group G, we will describe Kτ
G(G) in terms of the

maximal torus T of G and its normaliser N . We must first recall some facts

about disconnected groups; readers focusing on the connected case may skip

ahead to Section 7.7. We keep the notations of Section 6.
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7.1. Diagram automorphisms. Choose a set of simple root vectors in gC,

satisfying, along with their conjugates and the simple co-roots, the standard

sl2 relations.

7.2. Proposition. Every outer automorphism of g has a distinguished

implementation called a diagram automorphism, which preserves t and its dom-

inant chamber and permutes the simple root vectors.

Proof. The variety of Cartan sub-algebras in g has the rational cohomol-

ogy of a point, so any automorphism of g fixes a Cartan sub-algebra, by the

Lefschetz theorem. Composing with a suitable inner automorphism ensures

that we preserve t and the dominant chamber. Conjugating by T provides the

freedom needed to permute the simple root vectors without scaling. �

7.3. Corollary. Viewed as an extension of π0G by the identity compo-

nent G1, the group G has a reduction to an extension by the centre of G1.

Proof. The subgroup of G-elements whose Ad-action on g is a diagram

automorphisms meets every component of G, and meets G1 in its centre. This

is our reduction. �

7.4. Conjugacy classes in G. The push-out of the extension in Corollary 7.3

to the maximal torus T is called a quasi-torus QT ⊂ G; it meets every com-

ponent of G in a translate of T . QT depends on T and a choice of dominant

chamber. Choose f ∈ QT ; its Ad-action on the dominant chamber must fix

some interior points, so t = tf contains g-regular elements. The identity com-

ponent T of the invariant subgroup T f is then a maximal torus of the centraliser

Gf of f .

Call W = N/T , W1 = (N ∩ G1)/T the Weyl groups of G and G1; we

have W = π0G nW1, by 7.3. Call [f ] the image of f in the quotient fT/T

by T -conjugation. Conjugation by N(f), the subgroup of N preserving the

component fT , descends to an action of the group W f = π0N(f) on fT/T .

Let W := W f ∩W1, and W̃ its extension by [T/T ]f restricted from the group

W̃ f of (6.6).

7.5. Lemma. (i) The space of conjugacy classes fG1/G1 is (fT/T ) /W .

(ii) The Weyl group of Gf1 is an extension by π0T
f of the W -stabiliser of [f ].

Proof. Part (i) reformulates [Seg68, Prop. 1.6]: indeed, fT/T is the quo-

tient of fT under conjugation by [T/T ]f , whence it follows that (fT/T ) /W
∼= fT/W̃ . That is the description in [BtD95].

The normaliser of T in Gf1 is N ∩ Gf1 , by regularity, and exactness of

1→ T f → N ∩Gf1 →W implies (ii). �

7.6. Remark. Translation by f identifies fT/T with the co-invariant torus

Tf (quotient of T by the sub-torus {xfx−1f−1 |x ∈ T}). The W -action on
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fT/T is affine with respect to the quotient W -action on Tf . However, the two

W -actions agree when f is a diagram automorphism ε: W is indeed isomorphic

to the Weyl group of gε (Appendix A).

7.7. The Weyl map ω. Decompose Kτ
G(G) =

⊕
f K

τ
G(f) (fG1) over a col-

lection of representatives f ∈ QT of the conjugacy classes in π0; G(f) denotes

the stabiliser of the component fG1. The G(f)-equivariant map

ω : G(f)×N(f) fT → fG1, g × ft 7→ g · ft · g−1

induces two morphisms in twisted K-theory, restriction ω∗ and induction ω∗:

Kτ
N(f) (fT ) ∼= Kτ

G(f)

Ä
G(f)×N(f) fT

ä ω∗−→←−
ω∗

Kτ
G(f) (fG1) .

The names will be justified in Section 14.

7.8. Theorem. The composition ω∗ ◦ ω∗ is the identity.

Consequently, Kτ
G(f)(fG1) is a summand in Kτ

N(f)(fT ), split as an R(G)-

module. Before proving the theorem, let us identify this summand.

7.9. Affine-regular weights. Recall that regular conjugacy classes in fG1

are those with minimal stabiliser dimension. Any fT -representative then has

infinitesimal stabiliser t (because t does contain g-regular elements, as noted

in §7.4). Call a weight in Λτ affine-regular if it corresponds to a regular

conjugacy class in fT , under the isomorphism κτν : t → t∗ from the proof of

Proposition 6.12. While there is an ambiguity in defining κτν , it is subsumed

by translation by the W -invariant part of t, which lies in the centre of g (see

§A.1); thus it does not affect regularity. Clearly, affine regularity is preserved

by the group W e
aff defined in the previous section.

7.10. Theorem. Kτ
G(f)(fG1) is the summand in Kτ

N(f)(fT ) correspond-

ing to the regular weights :

Kτ
G(f)(fG1) = K

τ ′−σ(t)−dimT f

W e
aff

Ä
Λτreg

ä
.

With respect to Proposition 6.12, we are keeping the K-theory classes induced

from regular conjugacy classes in G.

7.11. Remark. W e
aff is called the f -twisted, extended affine Weyl group of

G. It contains the f -twisted affine Weyl group Waff(g, f) which is generated

by affine reflections in t. Regular weights are those not fixed by any affine

reflection; see Sections 10.4 and A.9.

Proof of Proposition 7.8. The quotient spaces fT /N(f) and fG1 /G(f)

are isomorphic under ω (Lemma 7.5). We shall show that ω∗◦ω∗ is the identity

on small neighbourhoods of conjugacy classes: a Mayer-Vietoris argument then
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implies that the map is a global isomorphism. However, Kτ
N(f)(fT ) is spanned

by classes induced from single orbits (Proposition 6.12). Their ω∗-images are

fixed by ω∗ ◦ ω∗, so the theorem follows.

We need a local model for the Weyl map. We work near f , which was

arbitrary in QT . Because T contains regular elements, Nf := N ∩ Gf is the

normaliser of T in Gf . Now, the translate f · exp(gf ) is a local slice for G1-

conjugation near f , while f · exp(t) is one for T -conjugation in QT . Therefore,

a local, Gf -equivariant model for ω is the Dirac induction map of Section 4.12,

(7.12) Gf ×Nf t→ gf ,

and our claim reduces to Proposition 4.13. �

Proof of Theorem 7.10. We use the construction in Proposition 6.12 of

K-classes from single conjugacy classes. Let f ∈ QT and observe, from fT ∼=
f · t/Π and Lemma 7.5, that the Weyl group of Gf is identified with the

stabiliser in W e
aff of the associated weight. Singular weights are then fixed by

the Weyl reflection in some sl2 centralising f , and their K-classes are killed by

the local induction (7.12): indeed, that map factors through the (vanishing)

Dirac index of the trivial line bundle over the relevant P1. Near a regular f ,

on the other hand, the local model for ω is an isomorphism, so regular weights

contribute nonzero generators in Kτ
G(G). �

Part IV. Loop groups and admissible representations

In this chapter, we summarise some basic facts about loop groups, twisted

loop groups and their Lie algebras, and describe the classification of admissible

representations in terms of the action on affine regular weights of the extended

affine Weyl group. The key result, Theorem 10.2, combines the theorem of the

lowest weight with Mackey’s irreducibility criterion; while it is certainly known

in principle, it does not seem to appear in the literature in this form. (See,

however, [TL99] for some of the simple Lie groups.)

We need to distinguish between representations of the polynomial loop

algebras and their Hilbert space completions, and we convene to mark uncom-

pleted spaces by a prime.

8. Refresher on affine algebras

8.1. Affine algebras. We use the notation of Section 4; in particular, g is

now simple. The Fourier polynomial loop algebra L′gC has the Fourier basis

ξa(m) = zmξa. Its basic central extension L̃′g := iRK ⊕L′g, with central gen-

erator K, is defined by the 2-cocycle sending ξ∧η ∈ Λ2L′g to K ·Resz=0〈dξ|η〉.
The affine Lie algebra L̂′g = L̃′g⊕ iRE arises by adjoining a new element iE,

where the energy E satisfies [E,K] = 0 and [E, ξ(n)] = nξ(n), for any ξ ∈ g.
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Unlike L̃′g, L̂′g carries an ad-invariant bilinear form, extending the basic one

on g:

(8.2) 〈k1K+ξ1 +e1E | k2K+ξ2 +e2E〉 7→
1

2π

∫ 2π

0
〈ξ1(t)|ξ2(t)〉dt+k1e2 +k2e1.

8.3. Lowest-weight modules. A projective representation of L′g has level

k if it extends to a strict representation of L̃′g in which K acts as the scalar k.

This means that we can choose the action Ra(m) of ξa(m) so that

[Ra(m), Rb(n)] = f cabRc(m+ n) + kmδabδm,−n.

Call h := iRK⊕t⊕iRE a Cartan sub-algebra of L̂′g, and let N :=
⊕

n>0 z
ngC⊕

n ⊂ L′gC. A lowest-weight vector in an L̂′g-module H′ is an h-eigenvector killed

by the complex conjugate Lie algebra N. Call H′ a lowest-weight module, with

lowest weight (k,−λ,m), if it is generated by a lowest-weight vector v of that

(K, t, E)-weight. The factorisation U(L̂′g) = U(N)⊗U(h)⊗U(N) shows that

H′ is generated by N from v. Defining the positive alcove a ⊂ t as the subset

of dominant elements ξ satisfying θ(ξ) ≤ 1, we have the following:

8.4. Proposition. In a (k,−λ,m)-lowest-weight representation, the weight

(k, ω, n) of any other h-eigenvector satisfies n−m ∈ Z and (ω + λ) (ξ)+n > m,

for all ξ inside a.

Proof. All weights of N verify these conditions, with λ,m = 0. �

8.5. Integrable modules. A lowest-weight module is integrable if the action

exponentiates to the associated simply connected loop group. We are dealing

with infinite-dimensional spaces, so a precise definition is a bit delicate, but

there are some easy equivalent Lie algebra criteria: for instance, it suffices that

the action should exponentiate on all root sl2-subgroups, [Kac90, III], [PS86,

VII]. Integrable representations are unitarisable, completely reducible, and the

irreducible ones are parametrised by their lowest weights (k,−λ,m), in which

k must be a nonnegative integer and λ a dominant weight of T satisfying

〈λ|θ〉 ≤ k (in the basic inner product). These weights correspond to points the

scaled alcove k · a.

8.6. Spinors. The complex Clifford algebra Cliff(L′g∗) is generated by the

odd elements {ψa(m)} dual to {ξa(m)}, satisfying

ψa(m)ψb(n) + ψb(n)ψa(m) = 2δabδm−n.

Choose an irreducible, Z/2-graded, positive energy module S′ of Cliff(L′g∗).

As a vector space, this can be identified with the graded tensor product S(0)⊗
Λ• (zgC[z]), for an irreducible, graded spin module S(0) of Cliff(g∗). S′ carries

a hermitian metric, in which ψa(n)∗ = ψa(−n); so ψ(µ) is self-adjoint for

µ ∈ L′g∗. There are obvious actions of g and E on S′, intertwining with
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Cliff(L′g∗). The lowest E-eigenvalue is 0, achieved on S(0)⊗ 1. Setting

(8.7) K 7→ h∨, ξa(m) 7→ σa(m) := −1

4

∑
p+q=m

fabc ψ
b(p)ψc(q)

extends them to an action of L̂′g, with intertwining relation
î
σa(m), ψb(n)

ó
=

f bcaψ
c(m + n). One derives (8.7) by considering the adjoint embedding of L′g

in the orthogonal Lie algebra sores(Lg), “restricted” as in [PS86] with respect

to the splitting L′gC = zgC[z] ⊕ gC[z−1]. Formula (8.7) is then the quadratic

expression of the spin representation of sores in terms of Clifford generators

[KS87].

The following key result follows from the Kac character formula. It is part

of affine algebra lore, but see [FHTb] for a proof.

8.8. Proposition. As a representation of L̂′g, S′ is a sum of copies of the

integrable irreducible representation of level h∨ and lowest weight (−ρ). The

lowest-weight space, which is isomorphic to the multiplicity space, is also the

g-lowest-weight space in S(0), and is a graded, irreducible Cliff(t∗)-module.

9. Twisted affine algebras

The loop algebras Lg have twisted versions, which are realised as the

infinitesimal automorphisms of nontrivial principal bundles over the circle with

disconnected structure groups. These twisted loop algebras are also closely

related to the outer automorphisms of g, and also to the twisted simple affine

algebras in [Kac90, Tables Aff 2,3]: each entry in those tables is the universal

central extension of a twisted loop algebra, plus the outer derivation E.

9.1. Galois covering model. The algebra Lεg of loops in g twisted by an

automorphism ε depends, up to isomorphism, only on the conjugacy class of

ε in the outer automorphism group of g. Thanks to Proposition 7.2, we may

as well assume that ε is a diagram automorphism. When g is simple, ε must

have order 1, 2 or 3; in general, we insist that the order r should be finite. This

leads to an attractive algebraic model for Lεg as the invariant part of a copy

of Lg, based on the r-fold cover
r
√
S1 of the unit circle S1, under the Galois

automorphism which rotates the cover by 2π/r and applies ε point-wise. To

find the geometric meaning of this construction, let G1 be the simply connected

group with Lie algebra g and G = Z/rnεG1. The quotient of the trivial bundle
r
√
S1×G under the action of Z/r which rotates the circle and left-translates the

fibres G is a principal G-bundle P over S1, and its Lie algebra of infinitesimal

gauge transformations is Lεg.

9.2. Standard form. Let g be simple, for the rest of this section. The

(smooth) twisted affine algebra L̂εg is the invariant part of L̂g, in our Galois

construction above. Its structure is described in [Kac90, VI, VIII]. Inherited
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from the ambient L̂g is a linear decomposition L̂εg = iRK ⊕ Lg ⊕ iRE. We

now rescale K and E to r×, resp. 1/r× their original values. Then, E is the

natural generator for the rotation of the unit (downstairs) circle, while the

bilinear form (8.2) is still ad-invariant. Using the standard connection ∇0 on

P , descended from the trivial connection on
r
√
S1, the 2-cocycle of the central

extension L̃εg := iRK ⊕ Lεg is again expressed as an integral over the unit

circle, and the Lie bracket takes the following form:

(9.3) [ξ, η] (t) = [ξ(t), η(t)] +
K

2πi

∮
〈∇0ξ|η〉.

9.4. Lowest-weight modules. The rôles of t, h and N are taken over by

their Galois invariants within the ambient L′g; we denote them by underlines.

The structure of weights and roots parallel the untwisted case, and the details

are summarised in Appendix A. Note, however, that Corollary 9.9 below will

imposes a small distinction for the weight lattice for twisted SU(2` + 1); see

(A.10).

The underlined Doppelgängers for ρ, θ and a require a comment: ρ has

the obvious meaning, the half-sum of positive roots for g := gε, but θ, which

cuts out the positive alcove a from the dominant chamber of t by the relation

θ(ξ) ≤ 1/r, is not the highest root of g, but rather the highest weight of g/g.

(When r = 2, g/g is an irreducible g-representation; when r = 3, it is the sum

of two isomorphic ones.) Therewith, the analogue of Proposition 8.4 holds

true.

A geometric sense in which a plays the rôle of a is the following. Let A de-

note the space of smooth connections on the bundle P ; the quotients A /LεG1

(acting by gauge transformations) and εG1 /G1 (acting by conjugation) are

isomorphic by the holonomy map. The classification A.7 of twisted conjugacy

classes ensures the following:

9.5. Proposition. Every smooth connection on P is a smooth gauge

transform of ∇0 + ξdt, for a unique ξ ∈ a. That is, a is a global slice for

LεG: a ∼= A /LεG . �

In a level k representation of L̂′εg, K acts as the scalar k. A lowest-weight

vector is an h-eigenvector killed by the complex conjugate of N, and a lowest-

weight module is one generated by a lowest-weight vector. We call such a mod-

ule integrable if the action of all the root sl2 sub-algebras of L̂′εg is integrable

to the corresponding SL2 group; in that case, the module is unitarisable, and

the Lie algebra action exponentiates to one of L̂εG on the Hilbert space com-

pletion. Integrable representations are semi-simple, and the irreducible ones

are parametrised by their level k and their lowest weight (k,−λ), in which λ

is dominant and satisfies θ · λ ≤ k/r.
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9.6. The Clifford algebra. A basis for L̂′εgC suited to calculations arises

from a complex orthonormal ε-eigen-basis {ξa} of gC, chosen so that the in-

dexing set carries an involution a↔ ā with ξā = −ξ∗a; this involution is trivial

on the ε = ±1 eigenspaces, but interchanges the two complex eigenspaces when

r = 3. If ε(a) ∈ Z/r corresponds to the ε-eigenvalue of ξa, then {ξa(m)} forms

a basis of g, as m+ε(a)/r ranges over Z. Raising and lowering indexes involves

a bar; for instance, the relations in the complex Clifford algebra of L′εg
∗ areî

ψa(m), ψb(n)
ó

= 2δab · δm−n.

A positive energy, graded spin module S′ can be identified, as a vector

space, with S(0) ⊗ Λ• (N), for a graded spin module S(0) of Cliff(g∗). As in

(8.7), the obvious actions of g and E extend to a lowest-weight representation

of L̂′εg, with a bar in the raised index a, but, remarkably enough, with the

same h∨, independently of ε. As in Proposition 8.8, the representation can be

identified by using the Kac character formula; its lowest-weight space is the

lowest g-weight space in S(0), has pure weight (−ρ) and is a graded irreducible

Cliff(t∗)-module.

9.7. The loop group. The extensions in Section 8.1 and (9.3) are so nor-

malised as to generate all central extensions of LG by the circle group T. Call

LεG1 the twisted loop group of G1.

9.8. Proposition. L̃εg is the Lie algebra of a basic central extension L̃εG

of LεG: the central circle is parametrised by
{
zK
∣∣∣ |z| = 1

}
, and its Chern class

generates H2 (LεG1;Z) = Z.

Proof. The untwisted case is handled in [PS86], so we focus on r > 1.

Being the space of sections of a G1-bundle over S1, LεG1 is connected and

simply connected. Further, π2LεG1 = H1
(
S1;π3G1

)
= Z, and Hurewicz

gives us H2(LεG1;Z) = Z. Since π2LG1 = H1(
r
√
S1;π3G1), the restriction

H2(LG1) → H2(LεG1) has index r. Our extension of LεG1 will be the r-th

root of the restriction of L̃G1, the basic extension of the ambient, untwisted

loop group. Having fixed the cocycle (9.3), the obstructions to existence and

uniqueness of this root are topological, living in H2 and H1 of LεG1 with

Z/r-coefficients, respectively; and they vanish as seen. Finally, we have a

semi-direct decomposition LεG ∼= Z/r n LεG1, and the ε-action on LεG1 pre-

serves the cocycle (9.3), so it lifts to an automorphism action on the cen-

tral extension (again, by vanishing of the topological obstructions). We let

L̃εG = Z/r nε LεG1. �

9.9. Corollary. The basic extension L̃εG restricts trivially to the con-

stant subgroup Gε1, except when G1 = SU(2` + 1) and r = 2, in which case

Gε1 = SO(2`+ 1), and we obtain the Spinc-extension.
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Proof. The flag variety LεG1/G
ε
1 is simply connected, with no H3. (This

follows, for instance, from its Bruhat stratification by even-dimensional cells.)

The Leray sequence for the fibre bundle LεG1�LεG1/G
ε
1 shows thatH2(LεG1)

surjects ontoH2(Gε1). However, Gε1 is simply connected, save in the cases listed,

whence the result. �

10. Representations of LfG

We now classify the admissible representations of the twisted loop groups

LfG at levels τ − σ for which τ is regular, in terms of the affine Weyl action

on regular weights.

10.1. Notational refresher. Let f be an element of the quasi-torus QT and

call LfG is the f -twisted smooth loop group of G, introduced in Section 1.5, τ a

regular central extension, and σ the extension defined by the spin module S of

Lfg
∗ (§1.6). Gradings are incorporated into our twistings. The extended affine

Weyl group W e
aff = π0LfN acts on Λτ by conjugating the central extension

of T . (To simplify notation, we have dropped the reference to f from the

notation of W e
aff .) The action has finite quotients and finite stabilizers, when

τ is regular. A tautological twisting τ ′ is defined for this action, wherein

each τ -affine weight defines a T-central extension of its stabiliser in W e
aff , as in

Section 6.10.

We now restate Theorem 4 without Clifford algebras. This is the famous

lowest-weight classification of integrable representations of affine Lie algebras,

now enhanced to track the action of the components of LfG.

10.2. Theorem. (i) The category of admissible representations of LfG of

level τ−σ is equivalent to that of finite-dimensional, W e
aff-equivariant, τ ′−σ(t)-

twisted vector bundles over Λτreg.

(ii) The K∗-groups of graded admissible representations are naturally iso-

morphic to the twisted equivariant K-theories K
τ ′−σ(t)+∗
W e

aff
(Λτreg). (There can be

both a K0 and a K1 when LfG is disconnected.)

Briefly, the equivalence in part (i) arises as follows. A regular weight µ

defines a polarisation of Lfg, which selects, for each admissible representation

H, a lowest-weight space in H ⊗ S with respect to LfG n Cliff(Lfg
∗). The

(−µ)-eigen-component under T of this lowest-weight space is a Cliff(t)-module,

and factoring out the spinors on t gives the fibre of our vector bundle at µ ∈ Λτ .

The reader may wish to consult the simple Example 10.9 at the end of this

section, where G = N .

The inverse equivalence arises morally from Dirac induction. Each µ ∈
Λτreg determines a regular co-adjoint orbit Oµ ⊂ Lf (g∗)τ , over which a twisted

representation of the W e
aff -stabiliser defines a (τ − σ(t))-twisted, LfG-equi-

variant vector bundle. If it could be defined independently, the Dirac index
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of this bundle along Oµ, coupled to the highest-weight spinors, would be the

desired representation of LfG. The level (τ − σ) arises from the shift by the

level σ(t)− σ of the highest-weight spinors on Lfg/t.

Dirac induction in infinite dimensions is only a heuristic notion; it can be

implemented in this case by the Borel-Weil construction, as a space of holo-

morphic sections [PS86]. A cohomology vanishing result of Kumar [Kum87]

and Mathieu [Mat88], matching Bott’s enhancement of the Borel-Weil the-

orem, justifies the index interpretation. We will review this construction in

Section 16, where it is needed, but we will make no use of it this section.

Proving Theorem 10.2 requires some preparation. Split g into its centre z

and derived sub-algebra g′.

10.3. Proposition. Lfg
′ splits canonically into a sum of simple, possibly

twisted loop algebras. Central extensions of Lfg are sums of extensions of Lf z

and of the simple summands.

Proof. In the decomposition of g′ into simple ideals, f -conjugation per-

mutes isomorphic factors. To a cycle C of length `(C) in this permutation,

we assign one copy of the underlying simple summand g(C) and the auto-

morphism ε(C) := Ad(f)`. This is a diagram automorphism of g(C), whose

fixed-point sub-algebra is isomorphic to that of Ad(f) on the summand g(C)⊕`

in g′. Then, Lfg
′ is isomorphic to the sum of loop algebras Lε(C)g(C), with the

loops parametrised by the `(C)-fold cover of the unit circle. The splitting arises

from the eigenspace decomposition of Ad(f) on g(C)⊕`. As the summands are

simple ideals, uniqueness is clear. Finally, the splitting of the extension follows

from the absence of one-dimensional characters of the simple summands. �

10.4. More on W e
aff . The proposition splits t into z := zf and the sum of

the Cartan sub-algebras t(C). Call τ · a ∈ t the product of z and the positive

alcoves (§§8.3, 9.2) in the t(C), scaled by the simple components of the level

[τ ], and let τ · a∗ be its counterpart in t∗ in the basic inner product on g′. Re-

flection about the walls of τ ·a∗ generate a normal subgroup Waff(g, f) ⊂W e
aff ,

under whose action the transforms of the alcove are distinct and tessellate t∗

(Proposition A.5). The two groups agree when G is simply connected, but in

general we have an exact sequence

(10.5) 1→Waff(g, f)→W e
aff → π := π0LfG→ 1;

note that the sequence is split by the inclusion of π in W e
aff as the stabiliser

of τ · a.

Regular are those weights not lying on any alcove wall. The alcoves cor-

respond to positive root systems on Lfg which are conjugate to the standard

one (§9.4), the simple roots being the outward normals to the walls. The posi-

tive root spaces span a polarisation of Lfg
′; the various polarisations, plus the
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original one on Lf z, are conjugate under ΓfN ⊂ LfG, so they define the same

class of admissible representations.

10.6. Mackey decomposition in K-theory. Let H be a group, M a nor-

mal subgroup, υ a central extension of H. Conjugation leads to an action of

H/M on isomorphism classes of υ-representations of M . Let Y be a family of

isomorphism classes, satisfying the conditions

(i) Y is stable under H/M ;

(ii) Every point in Y has finite stabiliser in H/M ;

(iii) The M -automorphisms of any representation in Y are scalars.

There is a tautological projective vector bundle PR over Y , whose fibre PRy
at y ∈ Y is the projective space on a representation of isomorphism type y.

Its uniqueness up to canonical isomorphism, and hence H-equivariance, follow

from condition (iii). The bundle defines a T-central extension of the action

groupoid of Hυ on Y . This central extension is split over Mυ, so dividing

out by the latter gives a central extension, or twisting, υ′ for the H/M -action

on Y .

Call an H-representation Y -admissible if its restriction to M is a finite-

multiplicity sum of terms of type in Y , with only finitely many H/M -orbit

types. For instance, this includes all induced representations IndKM (Ry). The

same construction as in Lemma 5.2 establishes the following:

10.7. Proposition. The category of Y -admissible representations of H

is equivalent to that of υ′-twisted, H/M -equivariant vector bundles over Y ,

supported on finitely many orbits. �

In this equivalence, a M -representation H is sent to the bundle whose fibre

at y is HomM (Ry,H). Conversely, to a bundle over Y we associate its space

of sections. The relation to Construction 5.1 can be made explicit by choosing

a representation H of Hυ containing all elements of Y . The projective bundle

PHomM (R; H) over Y gives a model for the twisting υ′ of the H/M -action.

Proof of Theorem 10.2. The unitary lowest-weight representations of the

Lie algebra correspond to the admissible ones of the simply connected cover of

the identity component (LfG)1. For the simple summands, integrable repre-

sentations are classified by lowest-weights [Kac90]. Analytic regularity of τ on

the centre Lf z ∼= z⊕Lf z
¿
z means that the second summand has a unique irre-

ducible lowest-weight representation. Unitary irreducibles of z are labelled by

the points of the τ -affine dual space. Descent of representations to (LfG)1 is

controlled by an integrality constraint imposed by T : parametrising the admis-

sible irreducibles of (LfG)1 by their lowest weights (−λ), the shifted weights

(λ+ ρ) range over Λτreg+ := Λτreg ∩ τ · a∗.
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As W e
aff(g, f) acts freely on Λτreg, and the orbits are in bijection with the

points in Λτreg+, we get an identification

(10.8) K
τ ′−σ(t)
W e

aff
(Λτreg) = Kτ ′−σ(t)

π (Λτreg+),

with the group π defined in (10.5) above. We apply Proposition 10.7 to the

groups H = LfG, M = (LfG)1, υ = τ − σ, Y = Λτreg+. The actions of

π described in Sections 10.1 and 10.7 do match, because the (sign-reversed)

lowest weight (σ, ρ) of S is π-invariant. To conclude the proof, it remains to

identify the π-twistings υ′ and τ ′ − σ(t).

The subgroup of N e
aff lying over π preserves the lowest-weight space in any

υ-representation H of LfG, and so the projective action of π on the resulting

lowest-weight bundle over Y represents υ′. Similarly, a model for τ ′ arises

from the action of π on the lowest-weight space in H⊗S, distributed over the

(sign-reversed) eigenvalues in Λτreg+. The second bundle differs from the first

by a factor of S(t), and this represents the twisting σ(t). �

10.9. Example: G = N . Let V := Lf t 	 t and LfN ∼= N e
aff n exp(V ), as

in Section 2.3. Regularity of τ confines us to sums of Heisenberg extensions

of V and topologically regular extensions ΓfN
τ . The lowest-weight module F

of exp(V ) carries a (projective) intertwining action of π0N
e
aff . An admissible

representation H of LfN factors then as F ⊗ HomV (F; H), where the second

factor is (the `2 completion of) a weight module of N e
aff , which means that it

is T -semi-simple, of finite type. Our classification now becomes the following,

more precise

10.10. Proposition. Global sections give an equivalence from the cate-

gory of W e
aff-equivariant, τ ′-twisted vector bundles on Λτ with that of weight

τ -modules of N e
aff .

It is understood here that T τ acts with weight λ on the fibre at λ ∈ Λτ .

The proposition follows directly from Proposition 10.7. Weight modules split

into irreducibles, which are induced from stabilisers of single weights.

Part V. From representations to K-theory

To an admissible representation H of LG at fixed level τ − σ, we assign a

family of Fredholm operators parametrised by an affine copy of Lg∗, equivariant

for the affine action of the loop group LG at the shifted level τ , defined in

Section 12. This construction will be extended to all twisted loop groups LfG.

The underlying space of the family is H ⊗ S, and the operator family is the

analogue of the one studied in Section 4, but based on the Dirac-Ramond

operator. We recall this operator in Section 11, and reproduce the calculation

[Lan01], [Tau89] of its Laplacian, which we extend to twisted algebras. Our
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family defines an LG-equivariant twisted K-theory class over Lg∗, which we

identify, when H is irreducible, with the Thom push-forward of the natural line

bundle on a single, integral co-adjoint orbit. The passage from a representation

to an orbit and an equivariant line bundle is an inverse of Kirillov’s quantisation

of co-adjoint orbits. Finally, the affine copy of Lg∗ carrying our family can be

identified with the space of g-connections over the circle with the gauge action,

leading to an interpretation of our family as a cocycle for Kτ
G(G).

11. The affine Dirac operator and its square

Let g be simple and let H′ be a lowest-weight module for L̂′g, with lowest

weight (k,−λ, 0). Consider the following formally skew-adjoint operator on

H′ ⊗ S′:

(11.1) D/ = D/0 := Ra(m)⊗ ψa(−m) +
1

3
· σa(m)ψa(−m).

This is known to physicists as the Dirac-Ramond operator [Mic04]; in the math-

ematical literature, it may have been first considered by Taubes [Tau89], and

was more recently studied in detail by Landweber [Lan01], based on Kostant’s

compact group analogue. Denote by Ta(m) the total action Ra(m) + σa(m) of

ξa(m) on H′ ⊗ S′, and let k∨ := k + h∨.

11.2. Proposition.
î
D/, ψb(n)

ó
= 2Tb(n), [D/, Tb(n)] = −nk∨ · ψb(n).

We will postpone the proof for a moment and explore the consequences.

Clearly, the commutation action of the Dirac Laplacian D/
2

on the T• and the ψ

agrees with that of −2k∨E. Normalise the total energy operator E on H′⊗S′

to make it vanish on its lowest eigenspace H(0) ⊗ S(0). This last space is D/-

invariant, and the only terms in (11.1) to survive on it are those with m = 0.

These sum to the Dirac operator for g, acting on its representation H(0). As

we saw in Section 4, the latter squares to −(λ+ρ)2. Since H′⊗S′ is generated

by the actions of the T• and the ψ on H(0) ⊗ S(0), the following formula for

the Dirac Laplacian results:

(11.3) D/
2

= −2k∨E − (λ+ ρ)2 .

In particular, D/ is invertible, with discrete, finite multiplicity spectrum.

11.4. Remark. Because the σ are expressible in terms of the ψ, the Dirac

operator (11.1) is expressible in terms of the operators T• and ψ alone. Define

the level k∨ universal enveloping algebra of L′g, Uk∨(L′g) := U(L̃′g)/(K−k∨).

Then, D/ is an odd element in a certain completion of the “semi-direct ten-

sor product” of Cliff(L′g∗) by Uk∨(L′g), acting on Cliff via ad. (The most

natural completion is that containing infinite sums of normal-ordered mono-

mials, of bounded degree and energy; this acts on all lowest-weight modules of

L′gn ψ(L′g∗).) The first equation in Proposition 11.2 determines D/ uniquely,

because no odd elements of the completed algebra commute with all the ψ.
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However, a definite lifting T• of Lg into Uk∨(Lg) has been chosen at this point.

This choice will show up more clearly in the next section, where we consider

the family of D/’s parametrised by all possible linear splittings of the central

extension L̃g (cf. also §13.3).

Proof of Proposition 11.2. The first identity follows by adding the two

lines below (in which summation over m ∈ Z is implied, in addition to the

Einstein convention):î
Ra(m)⊗ ψa(−m), ψb(−n)

ó
= 2Rb(−n),î

σa(m)ψa(−m), ψb(−n)
ó

= 2σb(−n) + f bacψ
c(m− n)ψa(−m) = 6σb(−n).

The second identity in Proposition 11.2 follows from the first. Indeed:

[[D/, Tb(n)] , ψc(p)] = [D/, [Tb(n), ψc(p)]]− [Tb(n), [D/, ψc(p)]]

= f cdb
î
D/, ψd(p+ n)

ó
− 2 [Tb(n), Tc(p)]

= 2f cdbTd(p+ n)− 2fdbcTd(p+ n)− 2nk∨ · δbcδn+p

=−2nk∨ · δbcδn+p

=−nk∨
î
ψb(n), ψc(p)

ó
,

whence we conclude that the odd operator [D/, Tb(n)] + nk∨ψb(n) commutes

with all the ψ; hence it is zero, as explained in Remark 11.4. �

11.5. The twisted-affine case. With the same notation and the same def-

inition (11.1) of D/, we have

(11.6)
î
D/, ψb(n)

ó
= 2Tb̄(n), [D/, Tb(n)] = −nk∨ · ψb̄(n),

and we obtain, as before, the formula for the Dirac Laplacian:

(11.7) D/
2
0 = −2k∨E − (λ+ ρ)2.

11.8. The affine Dirac operator. The relation between the finite and affine

Dirac Laplacians, Proposition 4.6 and equation (11.3), becomes more trans-

parent if we use spinors on the full Kac-Moody algebra. Let L̂g∗ = iRK∗ ⊕
Lg∗ ⊕ iRδ, where K∗ (which is denoted Λ in [Kac90]) is dual to K and δ to

E. Identifying it with L̂g by the bilinear form (8.2), the co-adjoint action of

ξ̂ = (k, ξ, e) on L̂g∗ becomes

K∗ 7→ i dξ/dt = − [E, ξ] , δ 7→ 0,(11.9)

µ ∈ Lg∗ 7→ ad∨ξ(t)µ(t) + e · µ′(t) + iδ ·
∮
µξ′dt.

The Spin module for Cliff(L̂g∗) is Ŝ = S⊕ ψK∗ · S. The corresponding Dirac

operator, “D/ := D/ + Eψδ +KψK
∗
,
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commutes with the (new) total action T• of L̂g and satisfies the simpler formula“D/2 = − (λ+ ρ)2, whose verification we leave to the reader.

12. The Dirac family on a simple affine algebra

Assume now the representation H′ of L̂′g to be integrable; it is then

unitarisable, and its Hilbert space completion H carries an action of the smooth

loop group LG. Furthermore, we must have k∨ > 0.

12.1. The level hyperplanes. The co-adjoint action (11.9) preserves the

fixed-level hyperplanes ik∨K∗ + L̃g∗ ⊂ L̂g∗. Ignoring δ leads to the affine

action at level k∨ on Lg∗. The correspondence

ik∨K∗ + µ ↔ d/dt+ µ/k∨

identifies this action with the gauge action on the space A of g-valued connec-

tions on the circle.

12.2. Proposition. The assignment µ 7→ D/µ := D/ + iψ(µ), from Lg∗ to

End(H′ ⊗ S′), intertwines the affine action of L̂g at level k∨ with the commu-

tator action.

Proof.
î
T (ξ),D/µ

ó
=k∨ψ ([E, ξ]) + i [σ(ξ), ψ(µ)]=iψ

Ä
−k∨dξ/dt+ ad∨ξ (µ)

ä
,

as desired. �

12.3. The Laplacian. Proposition 11.2 and equation (11.3) give

D/
2
µ = D/

2
+ i [D/, ψ(µ)]− ψ(µ)2(12.4)

= −2k∨E − (λ+ ρ)2 + 2i〈T |µ〉 − µ2

= −2
(
k∨E − i〈T |µ〉+ 〈λ+ ρ |µ〉

)
− (λ+ ρ− µ)2.

When µ ∈ t∗, we can view this formula as a generalisation of (11.3), as follows.

The first term in (12.4) is −2k∨Eµ, with a modified energy operator

Eµ = E − i〈T |µ/k∨〉+ 〈λ+ ρ |µ/k∨〉.

This is associated to the connection d/dt + µ/k∨ in the same way that E is

associated to the trivial connection: they intertwine correctly with the action

of Lg. Furthermore, Eµ is additively normalised so as to vanish on the −(λ+ρ)-

weight space within H(0) ⊗ S(0). As we are about to see, when µ/k∨ ∈ a∗,

that weight space is the lowest eigenspace for the Dirac Laplacian on H⊗ S.

12.5. The Dirac kernels. To study a general D/µ, we conjugate by a suit-

able loop group element to bring µ into k∨a∗. As D/µ now commutes with

t and E, we can evaluate (12.4) on a weight space of type (ω, n), where

T (µ) = i 〈ω|µ〉, and obtain

(12.6) D/
2
µ = −2

(
k∨n+ 〈ω + λ+ ρ|µ〉

)
− (λ+ ρ− µ)2.
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Now, a weight of H⊗S splits as (ω, n) = (ω1, n2) + (ω2, n2), into weights of H

and S. Proposition 8.4 asserts that (ωi + λ) · µ+ k∨ni ≥ 0,with equality only

if µ/k∨ is on the boundary of a∗, or else if ω = −(λ+ ρ) and n = 0. But then,

(12.6) can only vanish if, additionally, µ = λ+ρ. Since that lies in the interior

of k∨a∗, we obtain the following.

12.7. Theorem. The kernel of D/µ is nil, unless µ is in the affine co-

adjoint orbit of (λ+ ρ) at level k∨. If so, the conjugation mapping µ to λ+ ρ

identifies ker D/µ with the −(λ+ ρ)-weight space in H(0)⊗ S(0).

The last space is the product of the lowest-weight space Cv of H(0) with

that of S(0); this last weight space is a graded, irreducible Cliff(t)-module. As

in finite dimensions, the more canonical statement is that the kernels of the

D/µ on the “critical” co-adjoint orbit O of λ+ ρ in ik∨K∗ + Lg∗ assemble to a

vector bundle isomorphic to S(N)(−λ− ρ), the normal spinor bundle twisted

by the natural line bundle on O. This vector bundle has a natural continuation

to a neighbourhood of O, as the lowest eigen-bundle of D/µ. We can describe

the action of D/µ there, when µ moves a bit off O.

12.8. Theorem. Let µ ∈ O, ν ∈ Nµ a normal vector to O at µ in A. The

Dirac operator D/µ+ν preserves ker(D/µ) and acts on it as Clifford multiplication

by iψ(ν). �

12.9. Twisted K-theory class. Proposition 12.2 shows that our construc-

tions are preserved by the action of LG, so the Fredholm bundle
Ä
H⊗ S,D/µ

ä
over Lg∗ defines a twisted, LG-equivariant K-theory class supported on O.

Formula (12.6) bounds the complementary spectrum of D/µ away from zero, so

the embedding of the lowest eigen-bundle induces an equivalence of twisted,

LG-equivariantK-theory classes in some neighbourhood of O. Proposition 12.8

identifies the K-class with the Thom push-forward of the line bundle O(−λ−ρ),

from O to Lg∗. Finally, identifying the level k∨ hyperplane in L̃g with A as

in Section 12.1 and using the holonomy map from A to G interprets our Dirac

family as a class in Kτ
G(G), in degree dim g (mod 2).

12.10. Twisted affine algebras. The results extend verbatim to twisted

affine algebras, if we use the presentation Lεg of Section 9. Let Aε be the space

of smooth connections on the G-bundle of type ε and recall the distinguished

connection ∇0 of Section 9.2.

12.11. Proposition. (i) Sending µ ∈ Lεg∗ to the connection ∇0 + µ/k∨

gives an identification of the affine hyperplane ik∨K∗ + Lεg
∗ ⊂ L̂εg with Aε,

which is equivariant for the action of Lεg.

(ii) The assignment µ 7→ D/ + iψ(µ) intertwines the affine co-adjoint and

commutator actions.
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(iii) Formula (12.4) for D/
2
µ, and its consequences Theorems 12.7 and 12.8,

carry over, with ρ replaced by ρ.

13. Arbitrary compact groups

We now extend the construction of the Dirac family, and the resulting map

from representations to twisted K-classes, to the space AP of connections on a

principal bundle P over the circle, with arbitrary compact structure group G.

The Lie algebra LP g of the loop group LPG of gauge transformations splits

into a sum of abelian and simple loop algebras, and the central extension

preserves the splitting (Proposition 10.3). We will now discuss the remaining

case of abelian Lie algebras, and assemble the Dirac families for the individual

summands. To pass from Lie algebras to their groups, and thereby complete

the proof of Theorem 3, merely requires us to ensure the equivariance of Dirac

families under the nontrivial components of LPG.

13.1. The abelian case. Assume, as in Definition 2.4, that the the central

extension L̃z takes the form [ξ, η] = b(Sξ, η) ·K, for the L2 pairing in an inner

product on the abelian Lie algebra z. Letting L̂z := iRK ⊕ Lz ⊕ iRS, the

discussion of the Dirac family in Sections 11 and 12 carries over, with a = z,

Lz acting trivially on the spin module S, and ρ and h∨ null. For instance,

D/ := Ra ⊗ ψa, summing over a basis of Lz, and relations (11.2) and (11.6) are

clear in Uk(Lz)⊗ Cliff (Remark 11.4).

An admissible irreducible representation of L̂z has the form F⊗ C−λ, for

the Fock representation F of L̂z/z and a τ -affine weight λ of z, and we obtain

D/
2

= −2S − λ2, D/
2
µ = −2S − (λ− µ)2.

The kernel can be identified as before: it is supported on the affine subspace

iK∗ + λ + (Lz∗ 	 z∗) of L̃z∗. This is a single co-adjoint orbit of the identity

component of LZ, and the family represents the Thom push-forward of the

LZ-equivariant line bundle O(−λ), from that orbit to the ambient space.

13.2. Spectral flow over Z . The positive polarisation U ⊂ LzC 	 zC of

Section 2.8 leads to vector space identifications S′ ∼= S(0) ⊗ Λ•(U) and F′ ∼=
Sym(U). Decomposing D/µ = D/

z
µ + D/

Lz/z
into zero-modes and U-modes, we

recognise in the first term is the Dirac family of Section 3, lifted to z∗ and

restricted to the single summand C−λ ⊂ F[−λ]; whereas D/
Lz/z

= ∂+∂∗, for the

Koszul differential

∂ : Symp(U)⊗ Λq(U)→ Symp+1(U)⊗ Λq−1(U).

Thus, D/µ is quasi-isomorphic to the finite-dimensional family (C−λ,D/z
µ) over

z∗. The induced LZ-module will have the form F′ ⊗ F[−λ], and dropping the

factor Λ•(U) ⊗ F′, which is equivalent to C, recovers our spectral flow family

of Section 3.3.
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13.3. Characterisation of D/µ. Proposition 12.2 ensures the equivariance

of our Dirac family under the connected part of the loop group. When G

is not simply connected, we must extend this to the other components; in

particular, this is needed for tori. This extension is accomplished by an intrinsic

characterisation of D/µ. We first restate the Dirac commutator relations without

coordinates:î
D/µ, ψ(ν)

ó
= 2〈T | ν〉+ 2i〈µ | ν〉

î
D/µ, T (ξ)

ó
= ψ

Ä
ad∨ξ (k∨K∗ − iµ)

ä
,

where the bracket in the first equation is contraction in the bilinear form

(8.2). Observe now that the right-hand side of first formula expresses the

total action of ν on H ⊗ S, in the lifting of LP g to L̃P g defined by the line

through (ik∨K∗ + µ) in L̃P g
∗. In the second formula, we have used the co-

adjoint action of Section 11.8. As explained in Remark 11.4, the first relation

uniquely determines D/µ, and we conclude

13.4. Proposition. The assignment µ 7→ D/µ is equivariant under all

compatible automorphisms of LP g, H and S which preserve the bilinear form

on LP g. �

13.5. Coupling to representations. The Dirac family D/µ lives naturally on

an affine copy of LP g
∗, namely the hyperplane over i ∈ iR in the projection

(LP g
∗)τ → iR, dual to the central extension (2.6). We transport it to AP by

identifying the two as LPG-affine spaces. For the simple factors, this identifica-

tion is described in Section 12; but on the abelian part, there is an ambiguity:

we can translate by the Lie algebra of the centre of LPG. Under the holonomy

map from connections to conjugacy classes, this ambiguity matches the one

encountered in Remark 6.13(ii), where we identified τ · a∗ with the space of

holonomies. Note, however, that the regularity and singularity of the affine

weights matches the one of the underlying (twisted) conjugacy classes in G,

irrespective of the chosen identification.

Coupling D/µ to graded, admissible representations results in twisted K-

classes on AP , equivariant under LPG. This is also an Ad-equivariant twisted

K-classes over G, supported on the components which carry the holonomies

of P .

13.6. Proposition. The Dirac family map, from admissible representa-

tions to K-classes, induced an isomorphism Rτ−σ−d(LfG)
∼−→ Kτ

G ([fG1]), as

in Theorem 3.

Proof. This follows by comparing the Dirac kernels to the classification

of irreducibles by their lowest-weight spaces in Section 10, and again with the

basis of Kτ
G(G) described in Proposition 6.12. �



988 D. S. FREED, M. J. HOPKINS, and C. TELEMAN

Part VI. Variations and complements

In this chapter we exploit the correspondence between representations

and K-classes to produce analogues of known representation-theoretic con-

structions in purely topological terms.

14. Semi-infinite cohomology

In this section, we give alternative formulae 14.3 and 14.10 for the Dirac

operator D/. With the Lie algebra cohomology results of Bott [Bot57] and

Kostant [Kos99] and with Garland’s loop group analogues [GL76], the new for-

mulae explain the magical appearance of the kernel on the correct orbit. The

relative Dirac operators of [Kos00] and [Lan01] allow us to interpret the mor-

phisms ω∗ and ω∗ of Section 7 in terms of well-known constructions for affine

algebras, namely semi-infinite cohomology and semi-infinite induction [FF90].

We work here with polynomial loop algebras and lowest-weight modules;

for simplicity, we omit f -twist, underlines and the primes from the notation.

We shall also use ad∨ to denote the co-adjoint action of a Lie algebra on its

dual, reserving the “∗” for hermitian adjoints.

14.1. Lie algebra cohomology. The triangular decomposition LgC = N ⊕
tC ⊕ N factors the spin module as S = S(t∗) ⊗ Λ•N

∗
. The action of N on a

lowest-weight module H leads to a Chevalley differential on the Lie algebra

cohomology complex

∂̄ : H⊗ ΛkN
∗ → H⊗ Λk+1N

∗
,(14.2)

∂̄ = R−α ⊗ ψα +
1

2
IdH ⊗ ψα · ad∨−α,

where we have used a root basis of N and its dual basis ψα of Clifford gener-

ators, acting here by exterior multiplication. Let ∂̄∗ be the hermitian adjoint

of ∂̄, and denote by D/
t
−ρ the t-Dirac operator with coefficients in the represen-

tation H⊗ Λ•N
∗ ⊗ C−ρ of T .

14.3. Proposition. D/ = ∂̄ + ∂̄∗ + D/
t
−ρ; moreover, D/

t
−ρ commutes with

∂̄ + ∂̄∗.

Proof. Commutation is obvious. It is also clear that the R-terms on the

two sides agree; so, it remains to compare the Dirac (σψ)/3-term in (11.1) with

ψ · ad∨/2 + (ψ · ad∨)∗/2, plus the ad-term in D/
t
. Now, all three terms have

cubic expressions in the Clifford generators, and we will check their agreement.

We have
1

2
ψα · ad∨−α =

1

4

∑
α,β>0
γ<0

fαβγψ
αψβψγ ,

1

2

(
ψα · ad∨−α

)∗
=

1

4

∑
α,β>0
γ<0

f̄αβγψ
−γψ−βψ−α.
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Disregarding the order of the generators, their difference contains precisely the

terms in σψ/3 involving two positive roots and a negative one, respectively two

negative roots and a positive one; whereas the ad-term in D/
t

similarly collects

the σψ/3-terms involving exactly one t∗-element. Clearly, this accounts for all

terms in σψ/3. We have thus shown that the symbols of these operators agree

in (a completion of) Λ3(Lg∗).

The difference between the two must then be a linear ψ-term. However,

both operators commute with the maximal torus T and with the energy E; so

the difference is ψ(µ), for some µ ∈ t∗C. A quick computation gives, for ν ∈ t∗,[
∂̄, ψ(ν)

]
=
[
∂̄∗, ψ(ν)

]
= 0,î

D/
t
−ρ, ψ(ν)

ó
= 2T (ν) = [D/, ψ(ν)] ;

so [ψ(µ), ψ(ν)] = 0 for all ν, and it follows that µ = 0, as desired. �

14.4. The Dirac kernels. Proposition 14.3 gives a new explanation for the

location of ker D/µ. If H is irreducible with lowest weight (−λ), Garland’s result

[GL76] shows that on H⊗ ΛqN
∗ ⊗ S(t∗)

(14.5) ker
(
∂̄ + ∂̄∗

) ∼= Hq
Ä
N; H

ä
⊗ S(t∗) =

⊕
`(w)=q

Cw(−λ−ρ)+ρ ⊗ S(t∗),

embedded in the Lie algebra complex as harmonic co-cycles; the sum ranges

over the elements of length q in the affine Weyl group of g. If µ ∈ t∗, then

D/
t
µ−ρ = D/

t
−ρ + iψ(µ) commutes with

(
∂̄ + ∂̄∗

)
, so ker D/µ is also the kernel of

D/
t
µ−ρ on the space in (14.5). Clearly, the latter is nonzero precisely when µ

is one of the w(λ + ρ); otherwise, it follows that the highest eigenvalue of D/
2
µ

is the negative squared distance to the nearest such point, in agreement with

Section 12.3.

14.6. Semi-infinite cohomology. A similar construction applies to a de-

composition of a rather different kind. Splitting LgC = Ln⊕ LtC ⊕ Ln̄ gives a

factorisation

S(Lg∗) = S(Lt∗)⊗ Λ∞/2+•(Ln∗),

where the “semi-infinite” right-most factor is the exterior algebra on the non-

negative Fourier modes in n∗ and the duals of the negative ones, the latter car-

rying degree (−1) [FGZ86, FF90]. The analogue of formula (14.2) defines a dif-

ferential ∂ for semi-infinite Lie algebra cohomology, acting on H⊗Λ∞/2 (Ln∗).

With the same H, the semi-infinite cohomology can be expressed as a sum of

positive energy Fock spaces F⊗Cµ for Lt /t , on which T acts with weight µ:

(14.7) H∞/2+q (Ln; H) =
⊕

`(w)=q

F⊗ Cw(−λ−ρ)+ρ.
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Because the splitting of LgC is LT -equivariant, LT acts on Λ∞/2 (Ln∗); it

commutes with ∂, so acts on the cohomology; but the nontrivial components

shift the degree. Passing to Euler characteristics, we can collect terms into

the irreducible representations F ⊗ F[µ] of LT described in Section 3, and we

obtain a sum over the finite Weyl group

(14.8)
∑

q
(−1)qH∞/2+q (Ln; H) =

∑
w∈W

ε(w) · F⊗ F[w(−λ−ρ)+ρ].

In the f -twisted case, the Weyl group is replaced by the extension W̃ f of (6.6),

and the F[µ] are the irreducible τ -modules of Π× T .

14.9. Relative Dirac operator. Define D/
Lg/Lt

:= ∂ + ∂∗; its index is given

by (14.8).

14.10. Proposition. D/ = D/
Lt

+D/
Lg/Lt

, and all three operators commute.

The proof is very similar to the one of Proposition 14.3; see [Lan01] for

more help. Similarly, we have D/
Lg
µ = D/

Lt
µ + D/

Lg/Lt
, and the three operators

commute when µ ∈ Lt∗. As in Section 14.4, it follows that the restriction to

Lt∗ of our Dirac family on H ⊗ S is stably equivalent to D/
Lt
µ , acting on the

alternating sum of spaces in (14.8). Comparing this with the construction 6.12

of K-classes from conjugacy classes and with the local model of the Weyl map

(§7.7), we obtain the following:

14.11. Theorem. Under the Dirac family construction, the map from

Rτ−σ(LG) to Rτ (LT ) defined by the semi-infinite Ln-Euler characteristic cor-

responds to the Weyl restriction ω∗ : Kτ
G(G)→ Kτ

T (T ).

14.12. Remark. (i) In the twisted case, this applies to the restriction ω∗ :

Kτ
G(f)(fG1)→ Kτ

T (fT ).

(ii) We have used LT for simplicity, but the result applies to LN , which

preserves the relative Dirac D/
Lg/Lt

(though not the semi-infinite differential ∂).

We can then detect the restriction to Kτ
N(f)(fT ).

15. Loop rotation, energy and the Kac numerator

In this section, we study a rotation-equivariant version of Kτ
G(G) and

relate it to the positive energy representations of the loop groups. The reader

may also consult [FHTb] for more discussion of the circle-rotation action, in

this setting.

15.1. Conditions for rotation-equivariance. The admissible loop group rep-

resentations of greatest interest admit a circle action intertwining with the loop

rotations (§1.9). This will be the case if and only if the following two conditions

are met:

(i) The loop rotation action lifts to the central extension LGτ .
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(ii) The polarisation used in defining admissibility is rotation-invariant (§2.9).

A lifting in (i) defines a semi-direct product T n LGτ . Subject to condition

(ii), the Borel-Weil construction of admissible representations [PS86] shows

that they all carry actions of the identity component of this product, and

the T-action is determined up to an overall shift on each irreducible. The

rotation action can be extended to the entire loop group as in the discussion

of Section 10, leading to the same classification of irreducibles, but with the

extra choice of normalisation for the circle action.

With respect to condition (i), it is convenient to allow fractional circle

actions: that is, we allow the circle of loop rotations to be replaced by some

finite cover. A lifting of the rotation action to LGτ refines the level [τ ] to a class

in H3 (B(T n LG)). The obstruction to such a refinement is the differential

δ2 : H3
G(G1) → H2(BT) ⊗ H2

G(G1) in the Leray sequence for the projection

to BT. All torsion obstructions are removed when T is replaced by a suitable

finite cover. Rationally, H∗G(G1) is the invariant part of H∗T (T ) under the Weyl

group W of G, and for the torus we have the following.

15.2. Lemma. A class in H3(T × BT ) lifts to a rotation-equivariant one

iff its component in H1(T )⊗H2
T is symmetric.

Proof. The differential δ2 vanishes on the H∗(T ) factor, and is determined

its effect on H2
T : this is mapped isomorphically onto H2(BT) ⊗ H1(T ). On

H3(T × BT ), the differential becomes the anti-symmetrisation map H1(T ) ⊗
H2
T → H2(BT)⊗H2(T ) ∼= Λ2H1(T ). �

15.3. Remark. For semi-simple G, symmetry is ensured by Weyl invari-

ance.

Adding loop rotations to the landscape leads to the quotient stack of the

space A of smooth connections by the action of TnLG. This is a smooth stack,

with compact quotient and proper stabiliser, but unlike the quotient stack GG
of G by its own Ad-action, it cannot be presented as a quotient of a manifold

by a compact group. The K-theory of such stacks was discussed in [FHTa].

Let Λ̂τ = Λτ ⊕ Zδ be the level τ slice of the affine weight lattice (§A.9).

15.4. Proposition. We have isomorphisms Rτ−σ(TnLG) ∼= K
τ ′−σ(t)
W e

aff
(Λ̂τ )

∼= Kτ+dim g
T (GG), obtained by tracking the loop rotation in Theorem 7.10 and

in the Dirac family.

The middle group is a free RT-module, with the generator acting on Λ̂τ

by δ-translation. Killing the augmentation ideal forgets the circle action in

the outer groups and δ in the middle group, and recovers the isomorphisms in

Theorems 3 and 4.
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Proof. The argument is a repetition of 5.2, 6.8 and 7.10, with the extra

T-action. The main difference is that we are now dealing with the K-theories

of some smooth, proper stacks, which are no longer global quotients, but only

locally so. However, the proofs of 5.2 and 7.10 proceed via the same local step,

which continues to apply, globalised using the Mayer-Vietoris principle. �

15.5. Positive energy. The natural choices for the Fredholm operator S

defining the Lie algebra cocycle in Definition 2.4 are positive multiples of the

derivative −id/dt; the polarisation P is then the semi-positive Fourier part

of LgC. With those choices, lowest-weight modules of Lg carry a bounded-

below energy operator E, unique up to additive normalisation, generating the

intertwining loop rotation action. If the restriction to H1(T ) ⊗ H2
T of [τ ] is

symmetric, loop rotations lift fractionally to LGτ ; and, if that same bilinear

form is positive, E is bounded below on admissible τ -representations of the

group.

This generalises easily to the twisted loop groups LPG of gauge transfor-

mations of a principal bundle P over S1. The diffeomorphisms of the bundle

P which cover the loop rotation form an extension of the rotation group T by

LPG; this group replaces TnLG from the trivial bundle case. (The extension

is not too serious, any connection on P whose holonomy has finite order gives

a fractional splitting.) The topological constraint for rotation-equivariance of

a extension τ is now the symmetry of the map κτ in Section 6.4.

15.6. The Kac numerator. For the remainder of this section, we make the

simplifying assumption that G is connected, with π1G free. Positive energy

representations of LG are then determined by their restriction to the subgroup

T ×G of circle rotations and constant loops; moreover, loop rotations extend

to a trace-class action of the semi-group {q ∈ C×||q| < 1}. If H is irreducible

with lowest-weight (−λ), the value of its character at q ∈ C and g ∈ G is given

by the Kac formula [Kac90]

(15.7) Tr
Ä
qEg|H

ä
=

∑
µ ε(µ) · q‖µ‖2/2 · Tr (g|Vρ−µ)

∆(g; q)
,

where µ ranges over the dominant regular affine Weyl transforms of (λ+ ρ) at

level [τ ], ε(µ) is the signature of the transforming affine Weyl element, Vµ the

G-representation with lowest weight µ, ‖µ‖2 := 〈(κτ )−1(µ)|µ〉 defined by the

level [τ ], and the Kac denominator for (Lg, g)

∆(g; q) =
∏
n>0

det (1− qn · ad(g))

independent of λ and τ , representing the (super)character of the spinors on

Lg/g. We shall now see how (15.7) is detected by our KT-group.
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Inclusion of the identity e ↪→ G defines a Gysin map

Ind : Rτ−σ(g)(T×G)→ Kτ+dimG
T (GG),

with τ on the left denoting the restricted twisting and σ(g) the Thom twist

of the adjoint representation. Dualising over RT, while using the bases of

irreducible representations to identify Kτ
T(GG) with its RT-dual, leads to an

RT-module map

Ind∗ : Kτ+dimG
T (GG)→ HomZ

Ä
Rτ−σ(g)(G);R(T)

ä
;

the right-hand side is the R(T)-module of formal sums of (twisted) G-irre-

ducibles with Laurent polynomial coefficients. The choice of basis gives an

indeterminacy by an overall power of q for each irreducible, which must be

adjusted to give an exact match in the following theorem. Let [H] be the

Kτ
T(GG)-class corresponding to H.

15.8. Theorem. Ind∗[H] is the Kac numerator in (15.7).

Proof. The theorem is a consequence of two facts. First is the relation

(15.9) q‖λ+ρ‖2/2 · Ind (V−λ) = ε(µ) · q‖µ‖2/2 · Ind (Vρ−µ) ,

holding for any µ in the affine Weyl orbit of (λ + ρ). Second is the fact that,

with our simplifying assumption that G is connected with free π1, the twisted

K-class Ind(V−λ) corresponds to an irreducible representation of LGτ . (There

are no affine Weyl stabilisers of regular weights.)

We can check (15.9) by restriction to the maximal torus T . The Weyl

denominator is the Euler class of the inclusion T ⊂ G; multiplying by it while

using the Weyl character formula converts the Kac numerator for (Lg, g) to

that of (Lt, t), and we are reduced to verifying the theorem for the torus (with

ε(µ) = 1 and without ρ-shifts, as the affine Weyl group is now the lattice π1T ).

The stack A/TnLT of T -valued connections on the circle, modulo gauge

transformations and circle rotations, is equivalent to the classifying stack of

a bundle of groups over the quotient space T , with fibre T × T . The bundle

of groups is described by its holonomy around loops γ ∈ π1T , given by the

automorphism

T× T 3 (q, t) 7→ (q, tqγ).

The holonomy on the associated bundle R of representation rings is qmtiλ 7→
qm+〈λ|γ〉tiλ, for any m ∈ Z and integral weight λ : π1T → Z.

The twisting τ defines a bundle Rτ of free rank one modules over R. (With

respect to Construction 5.1, Rτ is the free Z-module over the fibres of Y .) The

holonomy describing Rτ must differ from that of R by multiplication by a unit

qφ(λ,γ) · tiκτ (γ). (The correct exponent κτ (γ) of t is detected by restricting to
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the known case q = 1.) We claim that the only option, up to automorphism,

is φ(λ, γ) = 〈κτ (γ)|γ〉/2, resulting in the holonomy

qm+‖λ‖2/2tiλ 7→ qm+‖λ+κτ (γ)‖2/2 · ti(λ+κτ (γ)).

Travelling now around γ shows that inductions from the characters q‖λ‖
2/2tiλ

and from q‖λ+κτ (γ)‖2/2 · ti(λ+κτ (γ)) of T × T lead to the same twisted K-class,

proving (15.9) and hence our theorem.

To check the claim, note the two relations

φ(λ+ µ, γ) = φ(µ, γ),

φ(λ, γ + γ′) = φ(λ, γ) + φ(λ, γ′) + 〈κτ (γ)|γ′〉.

The first is seen by computing the holonomy of ti(λ+µ) = tiλtiµ in two different

ways (using the module structure of Rτ ), and the second from the homomor-

phism condition. These imply that φ(λ, γ) = 〈κτ (γ)|γ〉/2, modulo a linear

γ-term; but the latter can be absorbed by a shift tiλ 7→ ti(λ+ν) in T -characters,

representing an automorphism of Rτ . �

15.10. Remark. This discussion can be generalised to twisted loop groups

and their disconnected versions. In that case, however, to determine a repre-

sentation uniquely, we must restrict it to a larger subgroup of the loop group,

one which meets at least every torsion component in a translate of the maxi-

mal torus. We then expect to find an extension of the Kac character, which is

due to Wendt [Wen04].

16. Fusion with G-representations

For positive energy representations, the fusion product of conformal field

theory defines an operation ∗ : R(G)⊗Rτ (LG)→ Rτ (LG). We will now recall

its construction and prove its agreement with the topologically defined R(G)-

action on Kτ
G(G) by tensor product. For notational clarity, we only write out

the argument for the untwisted loop groups, the twisted result following by

judicious insertion of underlines and f -subscripts.

16.1. Example: G1 is a torus. Recall from Section 2.3 that, when G = N ,

LN ∼= ΓN n exp(Lt	 t), where ΓN = N e
aff is the subgroup of geodesic loops.

Evaluating geodesic loops at a point x in the circle gives a homomorphism

Ex : ΓN → N . If V is a finite-dimensional N -representation, the pull-back

E∗xV is an admissible LN -representation, if we make the exp-factor act trivially,

and fusing with V is simply tensoring with E∗xV .

Note that Ex is not the “evaluation at x” homomorphism on the whole of

LN ; indeed, the latter would not lead to admissible representations. Because of

this, for non-abelian G1, we need the more complicated definition that follows,

essentially moving the base-point x inside the disk.
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16.2. Segal ’s holomorphic induction. Let now G be any compact group, τ

a regular twisting, H be a positive energy admissible τ -representation of LG,

and V a G-representation whose ρ-shifted highest weights lie in the alcove τ ·a∗
(§10.4). Such G-modules will be called small. Let also A be a complex annulus,

with an interior base-point x. The obvious group O(A;GC) of holomorphic

maps with smooth boundary values acts on H, by restriction to the inner

boundary, on V by evaluation at x, and maps into a copy of LGC by restriction

to the outer boundary. G. Segal defines the fusion of H with V along A as the

holomorphic induction

(16.3) H ∗ Vx := IndLGC
O(A;GC) (H⊗ Vx) ,

by which we mean the space of right O(A;GC)-invariant holomorphic maps

from LGC to H ⊗ V . Conjecturally, this is a completion of an admissible

representation.

The known rigorous implementations of this construction are algebraic.

The direct product “H of energy eigenspaces in H is a representation of the

Laurent polynomial loop group L′GC := GC[z, z−1]. After evaluation at z = x,

L′GC also acts on V . The completion of L′GC at z = ∞ is the group of

formal Laurent loops GC((w)) (w = z−1). Its algebraic, positive energy (τ−σ)-

modules are completely reducible, and the irreducibles are precisely the direct

sums H′ of energy eigenspaces in irreducible admissible representations H of

LG.5 Constructing the induced representation now from algebraic functions,

the following important lemma permits the subsequent definition.

16.4. Lemma. Ind
GC((w))
L′GC

Ä“H⊗ V ä is a finitely reducible, positive-energy

representation of GC((w)).

16.5. Definition. The fusion product H ∗ Vx is Ind
GC((w))
L′GC

Ä“H⊗ V ä.
Using brackets to denote the associated K-classes and ⊗ for the action of

R(G) on Kτ
G(G), the fusion is identified by the following

16.6. Theorem. In Kτ
G(G) with its topological R(G)-action, [H ∗ Vx] =

[H]⊗ [V ].

The proofs of the two results above requires some preliminary construc-

tions.

16.7. Borel-Weil construction. We need to review the construction of H

by algebraic induction from a Borel-like subgroup, the Iwahori subgroup, but

minding the group π0LG of components. To see the problem, recall that every

5Experts will know that, when G is not semi-simple, these algebraic loop groups are highly

nonreduced group (ind)-schemes, and their formal part must be included in the discussion.
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representation of a connected compact Lie group is holomorphically induced

from a Borel subgroup B. However, this fails for disconnected groups, where

induction from the quasi-Borel subgroup QT · B is required instead. (QT is

the quasi-torus of §7.) This is neatly accomplished by using an old idea of

Beilinson and Bernstein.

The quasi-Iwahori subgroup QI ⊂ L′GC is the normaliser of N; it meets

every component of L′GC in a translate of the standard Iwahori subgroup. We

can factor QI = QL n exp(N), with a subgroup QL ⊂ (N e
aff)C which plays the

rôle of a complexified quasi-torus for the loop group. In fact, QL = QI∩(N e
aff)C.

There is a Cartesian square

QL −→ (N e
aff)C

↓ ↓
π0LG −→ W e

aff ,

where the bottom horizontal arrow is the splitting of (10.5) defined by the

positive alcove.

Over the full flag variety X ′ := L′GC/QI , there is an algebraic vector

bundle U, whose fibre at a coset γQI is the space H′/NγH′ of co-invariants

in H′, with respect to the conjugated nilpotent Nγ := γNγ−1. (This fibre is

isomorphic to the lowest-weight space for the opposite polarisation.) Then, “H
is the space of algebraic sections of U over X ′. A result of Kumar [Kum87]

ensures the vanishing of higher cohomologies of this bundle.

16.8. Remark. (i) QI acts (projectively) on the space U := H′/NH′, which

defines a projective L′GC-vector bundle over X ′; “unprojectivising” this bundle

at level τ − σ results in U.

(ii) The same prescription defines U over the “thicker” flag variety X :=

GC((w))/QI , and its sections there lead to the “thin” version H′ of the same

representation.

16.9. Derived induction. The fibre of U at 1 is a representation of QI
which factors through QL, and whose highest weights are in Λτreg+, as discussed

in Section 10. We now study the “derived induction” RInd from QL-modules

to LG-modules, by which we mean the Euler characteristic over X of a vector

bundle associated to a general (τ −σ)-module of QL. Following the discussion

in Section 10 again,
τ−σR(QL) ∼= τ ′−σ(t)Kπ(Λτ ),

with the action and twistings defined there (see (10.5) for π). We claim that

RInd is the result of the direct image map, followed by restriction to the regular

part:

(16.10) τ ′−σ(t)Kπ(Λτ )→ τ ′−σ(t)KW e
aff

(Λτ )→ τ ′−σ(t)KW e
aff

(Λτreg).
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From Section 10 and the vanishing of higher cohomology, this is known for

weights in Λτreg+. Because W e
aff
∼= π n W e

aff(g) and τ · a∗ is a fundamental

domain for W e
aff(g), it suffices to show that RInd is anti-symmetric under this

last group and that weights on the walls of τ · a∗ induce 0. Both statements

follow from Bott’s reflection argument [Bot57] applied to the simple affine

reflections.

Proof of Lemma 16.4. QI acts on on V by evaluation at z = x; calling Vx
the associated vector bundle over X, transitivity of induction shows that

Ind
GC((w))
L′GC

Ä“H⊗ V ä ∼= Γ (X;U⊗ Vx) .

and the lemma now follows from Theorem 4 of [Tel98]. �

Proof of Theorem 16.6. Theorem 4 of [Tel98] also ensures the vanishing

of higher cohomologies when V is small. We will identify H ∗ Vx by deforming

Vx. Scaling x 7→ 0 deforms the action of QI on Vx into the representation V0,

pulled back from the quotient map QI → QL. More precisely, any point-wise

evaluation LG → G embeds QL into N , and V0 is obtained from V under

QL → N ⊂ G. The Euler characteristic of the bundle U ⊗ Vx is unchanged

under deformation, because of the rigidity of admissible representations of

G((w)) (and the techniques of [Tel98], which reduce this to a “finite type”

problem). We conclude that

H ∗ Vx ∼= RInd(U⊗ V0).

To prove the theorem, we must show that RInd : R(QL)→ Kτ
G(G) is an R(G)-

module map, under the inclusion QL ⊂ G. Factoring RInd as in (16.10), this

property is clear for the second step, restriction to Λreg, since that is nothing

but the map ω∗ of Section 7.10. A different description makes the same obvious

for the first step, the direct image. Indeed,

τ ′−σ(t)KW e
aff

(Λτ ) ∼= Kτ
Ne

aff
(t), τ ′−σ(t)Kπ(Λτ ) ∼= Kτ

QL
(t),

as in Remark 6.9. The direct image map becomes now induction along the

inclusion QL ⊂ N e
aff , and this is clearly a module homomorphism under the

super-ring R(N) (as N e
aff maps to N by evaluation at any fixed point in the

loop). �

17. Topological Peter-Weyl theorem

We now describe a topological version of the Peter-Weyl theorem for loop

groups. Beyond its entertainment value — pointing a way in which loop groups

behave like finite groups — the result can be used to confirm that the bilinear

form in the Frobenius ring Kτ
G(G) of [FHTa] agrees with the natural duality

pairing in the Verlinde ring, as we claimed in [FHT08, §8]. The TFT inter-

pretation is only available for twistings that are transgressed from BG in a
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suitable sense [FHT10], but our description of the duality pairing applies to

any regular twisting.

17.1. Compact groups. One version of the Peter-Weyl theorem for a com-

pact Lie group G asserts that the two-sided regular representation Reg —

the space of continuous functions on G, under its left and right translation

actions — is a topological completion of the direct sum
⊕
V ⊗ V ∗, ranging

over the irreducible finite-dimensional modules V . (The direct sum describes

the polynomial functions.) A variation of this, for a central extension Gτ by

T, describes the space of sections of the associated line bundle over G as the

corresponding sum over irreducible τ -representations.

Qua G × G-representation, Reg is induced from the trivial G-represen-

tation, under the diagonal inclusion G ⊂ G × G. For finite G, the result

can be expressed in terms of equivariant K-theory: it asserts that the trivial

representation [1] ∈ R(G) maps, under the diagonal inclusion G ⊂ G × G, to

the class
∑

[V ⊗ V ∗] ∈ R(G×G). To see this more clearly, identify R(G) with

KG×G(G), with the left×right action, and push forward to a point with G×G
action.

In the presence of a twisting τ for R(G), we map [1] ∈ R(G) instead to

Rτ×(−τ)(G × G). In constructing this last push-forward, we use the natural

trivialisation of the sum of a central extension τ of G with its opposite, so that

the restricted twisting on KG×G(G) is canonically zero and the “trivial” class

[1] is well-defined.

17.2. Remark. When τ is graded, our formulation of Peter-Weyl conceals a

finer point. The module Rτ (G) of graded representations has now an odd com-

ponent Rτ+1(G), defined from the super-symmetric representations [FHT08,

§4]. These are graded G-modules with a commuting action of the rank one

Clifford algebra Cliff(1). The contribution of such a super-symmetric repre-

sentation V to the Peter-Weyl sum is the (graded) tensor product V ⊗Cliff(1)V
∗

over Cliff(1), and not over C. However, this is exactly what we need to match

the cup-product

Rτ+1(G)⊗R−τ+1(G)→ Rτ×(−τ)+0(G×G);

indeed, the (graded) tensor product V ⊗C V
∗ has a commuting Cliff(2) action,

and defines an element of K2, which is indeed where the cup-product initially

lands [LM89]. Tensoring over Cliff(1) instead of C is the Morita identification

of complex Cliff(2)-modules with vector spaces, which implements the Bott

isomorphism to K0.

17.3. Loop groups. Before discussing the loop group analogue of this, let

us recall the algebraic Peter-Weyl theorem for loop groups; this is a special

case of the Borel-Weil theorem of [Tel98]. As in the preceding section, denote

by GC((z)) and GC((w)) be the two Laurent completions of the loop group LG
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at the points 0 and ∞ on the Riemann sphere. The Laurent polynomial loop

group L′GC = G[z, z−1] embeds in both (with w = z−1). The quotient variety

Y := G((w)) ×L′GC G((z)) for the diagonal action is a homogeneous space for

the product of the two loop groups, which should be regarded as a generalised

flag variety. For any twisting τ , the product O(τ−σ)�O(σ−τ) of the opposite

line bundles on the two factors carries an action of L′GC, so it descends to an

(algebraic) line bundle on Y . A special case of the Borel-Weil-Bott theorem of

[Tel98] asserts that, as a representation of G((w))×G((z)),

Γ (Y ;O(τ − σ) � O(σ − τ)) ∼=
⊕

H
H′ ⊗H

′
,

with the sum ranging over the lowest-weight representations H for GC((w)) at

level τ − σ.

17.4. Topological interpretation. The topological construction in Section

17.1 breaks down for infinite compact groups, but remarkably, it does carry

over to loop groups. To start with, the diagonal self-embedding of G leads to

a Gysin map

ι∗ : KG(G)→ KG×G(G×G),

with the Ad-action in both cases. When G is connected, this is a topological

model for the classifying map of the diagonal LG→ LG×LG. For general G,

the restriction of ι∗ to KG(G1) corresponds to the diagonal of LG, whereas the

restriction to KG(f)(fG1), in the notation of Section 7.7, captures the diagonal

embedding for the twisted loop group LfG. Finally, for any τ , we get a map

(17.5) ιτ∗ : KG(G)→ K
τ×(−τ)
G×G (G×G),

cancelling the pulled-back twisting by the earlier observation: the sum of ex-

tensions τ + (−τ) is canonically trivial on the diagonal LG.

To describe ι∗, we replaceKG(G) with the isomorphic groupK∗G×G(G×G),

the action being now

(17.6) (g1, g2).(x, y) = (g1xg
−1
1 , g1yg

−1
2 ).

The isomorphism with K∗G(G) arises by restriction to the diagonal G’s. The

map G × G → G × G inducing ι∗ sends (x, y) to (x, y−1xy). Note that the

relative tangent bundle of this map is (stably) equivariantly trivial, and there

is a preferred relative orientation, if we use the same dual pair of Spin modules

on each pair of g’s, so there is no ambiguity coming from orientations.

17.7. Remark. Geometrically, (17.6) gives a presentation of the stack of

flat G-connection on a cylinder, rigidified by trivializing the bundle at a point

on each boundary component; the morphism ι is the restriction of connections

to the two boundaries.
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17.8. Theorem (Peter-Weyl for Loop Groups). (i) When G is connected

and τ is regular, we have

ιτ∗(1) =
∑

H
[H⊗H∗],

summing over the irreducible admissible representations H of LG, and with

the correspondence with K-classes defined in Theorem 3.

(ii) For general G, the same formula describes ιτ∗(1), but the sum now

ranges over the conjugacy classes of π0G and, within each class, over the rep-

resentations of the corresponding twisted loop group of G.

Without using Theorem 3, we can assert that ι∗(1) has a diagonal decom-

position in the basis of Kτ
G(G) produced from regular affine Weyl orbits and

irreducible representations of the centralisers (Theorem 7.10), and the complex-

conjugate basis for K−τG (G). The two formulations are of course related by

Theorem 10.2. Let us state this more precisely: consider the “anti-diagonal”

class [∆−] on Λτ × Λ−τ , which is identically 1 on pairs (λ,−λ) and null else-

where. It is equivariant for the diagonal W e
aff -action. Also let τ ′′ = τ ′ − σ(t).

17.9. Lemma. The sum in the right-hand side of Theorem 17.8 corre-

sponds to the direct image of [∆−] under the direct image map

KW e
aff

Ä
Λτreg × Λ−τreg

ä
−→ K

τ”×(−τ”)
W e

aff
×W e

aff

Ä
Λτreg × Λ−τreg

ä
.

Proof. Replacing both sides with the sets of orbits, represented by weights

µ ∈ Λτ+ and stabilisers πµ ⊂W e
aff , we get the direct sum over µ of the diagonal

push-forwards

R(πµ)→ Rτ”(πµ)⊗R−τ”(πµ)

and apply the topological Peter-Weyl theorem to each πµ. �

For a torus T , the representation categories of LT τ and Γτ = (Π×T )τ are

equivalent, and ιτ∗ captures the Peter-Weyl theorem for Γτ : diagonal induction

of the trivial representation to Γτ × Γ−τ leads to the sum in Theorem 17.8.

This result generalises to every group N e
aff of (f -twisted) geodesic loops in

N , and is the basis for the general proof. To convert it into a topological

statement, we will factor both the algebraic and the topological induction

(direct image) maps into two steps, with the second step being described by

Lemma 17.9. Agreement of the other, first step is then verified by a Dirac

family construction generalising slightly the spectral flow family in Section 3.

As the general case may be obscured by the notational clutter imposed by the

groups of components, we handle the torus first.

17.10. Example: G = T . Let ` = dimT and factor ιτ∗ into the direct

images

(17.11) K0
T (T )

Bdiag∗−−−−→ K
τ×(−τ)−`
T×T (T )

diag∗−−−→ K
τ×(−τ)+0
T×T (T × T ),
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along the obvious diagonal morphisms. Describing diag∗ is easy. Double use of

the Key Lemma 5.2, with the same group T 2, followed by direct images (along

t and t2), leads to isomorphisms

K
τ×(−τ)−`
T×T (T ) ∼= K0(Λτ ×Π Λ−τ ),(17.12)

K
τ×(−τ)+0
T×T (T × T ) ∼= K0(Λτ/Π× Λ−τ/Π).

Moreover, diag∗ becomes the direct image between the groups on the right,

and this is the map appearing in Lemma 17.9.

In view of Lemma 17.9, we must check that Bdiag∗[1] in the middle group

of (17.11) is the anti-diagonal class [∆−]. We have a commutative square

K0
T (T )

Bdiag∗−−−−→ K
τ×(−τ)−`
T×T (T )

↑ � ↑
K0(T )

p∗−→ Kτ−`
T (T )

with the vertical arrows being the pull-backs, along the projection of BT to

a point and the map BT 2 → BT induced by group multiplication. Our anti-

diagonal class, in the upper right, is the pull-back of the sum of the irreducible

classes in Kτ−`
T (T ). But we identified this in Section 3.6 with p∗[1], as desired.

Proof of Theorem 17.8. Fix a twisting element f in the quasi-torus; we

prove the theorem for LfG. We use the notation of Sections 6 and 7, except

that we write G for G(f), N for N(f), W for W f for simplicity.

Step 1. In view of the following commutative square, in which ω∗(1) = 1,

KN (fT )
ι∗−−→ K

τ×(−τ)
N×N (fT × fT )yω∗ yω∗

KG(fG1)
ι∗−−→ K

τ×(−τ)
G×G (fG1 × fG1),

it suffices to prove the theorem for the upper ι∗: that is, we may assume

G = N .

Step 2. Let δ(N) be the left equaliser of the two projections N2 ⇒ N/T .

Its Ad-action on fT 2 preserves the diagonal copy of fT . With ` = dimT , we

can factor ιτ∗ as

(17.13) K0
N (fT )

Bdiag∗−−−−→ K
τ×(−τ)−`
δ(N) (fT )

diag∗−−−→ K
τ×(−τ)+0
N2 (fT × fT ).
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Moreover, we have the “key lemma” isomorphisms for M = T 2 in δ(N) and

N2,

K
τ×(−τ)−`
δ(N) (fT ) ∼= K

τ”×(−τ”)+0
W e

aff

Ä
Λτ × Λ−τ

ä
,(17.14)

K
τ×(−τ)+0
N2 (fT × fT ) ∼= K

τ”×(−τ”)+0

W e
aff

2

Ä
Λτ × Λ−τ

ä
.

and, as in (6.2), diag∗ is the push-forward from upper to lower K-groups. We

are reduced to showing that Bdiag∗[1] ∈ Kτ×(−τ)−`
δ(N) (fT ) is the anti-diagonal

class in the upper right group.

Step 3. Call δ(N e
aff) the left equaliser of the projections N e

aff×N e
aff ⇒W e

aff .

The presentation (6.5) of fT as a homogeneous space for N n t leads to the

isomorphisms

KN (fT ) ∼= K
τ×(−τ)
Ne

aff
(t),(17.15)

K
τ×(−τ)
δ(N) (fT ) ∼= K

τ×(−τ)
δ(Ne

aff
) (t),

as flagged in Remark 6.9. The twisting τ × (−τ) is null on the diagonal copy

of N e
aff in δ(N e

aff), but trivialising it in relation to the other twistings is the key

step in finding Bdiag∗.

Step 4. Call O(τ) the line bundle over T ∼= δ(N e
aff)/N e

aff descended from

the line bundle of the extension τ × (−τ) of δ(N e
aff). This O(τ) carries a

projective action of δ(N e
aff), by left translations, and its space of sections over T

is, by definition, the representation Ind[1] induced from C under the embedding

N e
aff ⊂ δ(N e

aff)τ×(−τ). This is the sought-after class [∆−] in (17.14).

Step 5. Finally, we show that, under the standard trivialisation of the

extension τ × (−τ) over N e
aff , the direct image of [1] along the topological

induction

K
τ×(−τ)+0
Ne

aff
(t)

Bdiag∗−−−−→ K
τ×(−τ)−`
δ(Ne

aff
) (t)

is represented by the Dirac family on t coupled to Ind[1]. This implies its

agreement with [∆−]. The argument repeats the discussion in Section 3.6, after

observing that [1] corresponds to the class of O(τ) in the chain of isomorphisms

[1] ∈ KNe
aff

(t) ∼= K
τ×(−τ)
Ne

aff
(t) ∼= K

τ×(−τ)
δ(Ne

aff
) (T × t). �

Appendix A. Affine roots and weights in the twisted case

We recall here the properties of diagram automorphisms, which lead to

a concrete description of the twisted affine algebras in terms of simple, finite-

dimensional ones. The connection between the two questions is due to Kac, to

which we refer for a complete discussion [Kac90, §§7.9 and 7.10]; but we refor-

mulate the basic facts in a form that is more convenient for our applications.
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A.1. When g is simple, the order of a diagram automorphism ε is r = 1, 2

or 3, with the last value only possible for so(8). Assume that ε 6= 1; g must

then be simply laced. We summarise the relevant results from [Kac90].

• The invariant sub-algebra g := gε is simple, with Cartan sub-algebra

t := tε and Weyl group W := W ε.

• The simple roots are the restrictions to t of those of g (with multiplic-

ities removed).

• The ratio of long to short root square-lengths in g is r, save for g =

su(3), when g = su(2).

• The ε-eigenspaces are irreducible g-modules. The two ε 6= 1-eigen-

spaces are isomorphic when g = so(8) and r = 3.

A.2. The weight θ. Denote by θ the highest weight of g
¿
g , and let a0 = 2

when g = su(2`+ 1) and r = 2; else, let a0 = 1. Then, θ /a0 is the short domi-

nant root of g. (When g = su(2`+1), g = so(2`+1) and g
¿
g is Sym2R2`+1 /R ,

whose highest-weight is twice the short root.) The basic inner product on g

restricts to a0 times the one on g; in particular, 〈θ|θ〉 = 2a0 /r .

A.3. Remark. With reference to [Kac90, VI], we have θ =
∑
aiαi − asαs,

where s = 0, except when g = su(2` + 1), in which case s = 2`: if so, our θ

differs from θ in loco citato.

A.4. Twisted affine Weyl group. Denote by a the simplex of dominant

elements ξ ∈ t satisfying θ(ξ) ≤ 1/r. The ε-twisted affine Weyl group Waff(g, ε)

is generated by the reflections about the walls of a. Let R′ ⊂ t correspond to

the root lattice R in t∗ under the g-basic inner product.

A.5. Proposition ([Kac90, Props. 6.5 and 6.6]). Waff(g, ε) is the semi-

direct product W n R′. Its action on t has a as fundamental domain. The

Waff(g, ε)-stabiliser of any point in a is generated by the reflections about the

walls containing it.

Proof. This follows from the analogous result for the untwisted affine al-

gebra based on the Langlands dual to g, in which a is the fundamental alcove

and R′ the co-root lattice. �

A.6. Twisted conjugacy classes. When G is simply connected, the points

of a parametrise the conjugacy classes in G. The alcove a fulfils the same role

for the ε-twisted conjugation g : h 7→ g · h · ε(g)−1.

A.7. Proposition. If G is simply connected, then every ε-twisted con-

jugacy class has a representative exp(2πξ), for a unique ξ ∈ a. The twisted

centraliser of exp(2πξ) in G is connected, and its Weyl group is isomorphic to

the stabiliser of ξ in Waff(g, ε).
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Proof. For the first part, we must show, given Propositions A.5 and 7.5,

that the integer lattice of Tε in tε ∼= t is R′, and that the ε-twisted action of

W on Tε is the obvious one. Now, the first lattice is the image, in the quotient

tε of t, of the integer (co-root) lattice R∨ ⊂ t of T . As g is simply laced, R∨

is identified with the root lattice R of g in t∗ by the basic inner product, so

the integer lattice of Tε is also the image of R in t∗. But, by (A.1), this agrees

with the root lattice R of g. Concerning W , since that is the Weyl group of

Gε, we can find ε-invariant representatives for its elements, and their ε-action

coincides with the usual one.

Connectedness of twisted centralisers, for simply connected G, is due to

Borel [Bor61]. Moreover, because maximal tori are maximal abelian subgroups,

T ε is connected as well, and Lemma 7.5 identifies the Weyl groups of centralis-

ers as desired. �

A.8. Remark. Connectedness of T ε can also be seen directly, as follows.

Clearly, the ε-fixed point set exp (aε) in the simplex exp(a), is connected. By

regularity of t, every component of T ε contains a regular element. This must

be conjugate to some a ∈ exp(a), hence of the form w(a), with w ∈ W and

a ∈ exp(a). Invariance under ε implies w(a) = ε(w(a)) = ε(w)(ε(a)). As a

and ε(a) are both in a and regular, it follows that w = ε(w) and a = ε(a), so

w(a) is in the W -image of exp(t), hence in T .

A.9. Affine roots and weights. The sub-algebra h = iRK ⊕ t⊕ iRE plays

the role of a Cartan sub-algebra of L̂′εg. The affine roots, living in h∗, are the

h-eigenvalues of the adjoint action on L̂′εg. Define the elements δ and K∗ of h∗

by δ(E) = 1/r, K∗(K) = 1, δ(K) = δ(t) = K∗(t) = K∗(E) = 0. The simple

affine roots are the simple roots of g, plus δ − θ; their Z-span is the affine

root lattice Raff . The positive roots are sums of simple roots. The standard

nilpotent sub-algebra N is the sum of the positive root spaces, and a triangular

decomposition L̂′εgC = N⊕ hC ⊕N is inherited from L̂′gC.

The simple co-roots are those of g, plus (K − β∨) /a0 , where β∨, the long

dominant co-root of g, satisfies λ(β∨) = 〈λ|θ〉/r.6 The restriction ‹T of the

basic central extension Proposition 9.8 to T is the quotient of iRK ⊕ t by the

affine co-root lattice R∨aff .

The weight lattice Λ̃ of L̃εG, in h∗, is the integral dual of R∨aff , and com-

prises the characters of ‹T . Calling Λ the (simply connected) weight lattice of

g, we have

(A.10) Λ̃ =

ZK∗ ⊕ Λ, if g 6= su(2`+ 1),

2ZK∗ ⊕ Λ+ ∪ (2Z + 1)K∗ ⊕ Λ− if g = su(2`+ 1),

6Recall from A.2 that θ /a0 is a short root, and θ2 = 2a0 /r .
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with the superscript + or − indicating the value of the character on the central

element of Spin(2`+ 1). The affine weight lattice Λ̂ includes, in addition, the

multiples of δ, giving the energy eigenvalue.

The dominant weights pair nonnegatively with the simple co-roots; this

means that (k, λ, x) is dominant if and only if λ is g-dominant and λ · θ ≤ k/r.
The affine Weyl group Waff(g, ε) preserves the constant level hyperplanes, and

its lattice part R (A.5) acts by k-fold translation at level k. Every positive-level

weight has a unique dominant affine Weyl transform. Regular weights are those

not fixed by any reflection in Waff(g, ε). The important identity 〈ρ|θ〉+θ2/2 =

h∨/r [Kac90, VI] implies that an integral weight (k, λ, x) is dominant if and

only if the shifted weight (k + h∨, λ+ ρ, x) is dominant regular.
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