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Fast methods to compute
the Riemann zeta function

By Ghaith Ayesh Hiary

Abstract

The Riemann zeta function on the critical line can be computed using

a straightforward application of the Riemann-Siegel formula, Schönhage’s

method, or Heath-Brown’s method. The complexities of these methods

have exponents 1/2, 3/8, and 1/3 respectively. In this article, three new

fast and potentially practical methods to compute zeta are presented. One

method is very simple. Its complexity has exponent 2/5. A second method

relies on this author’s algorithm to compute quadratic exponential sums.

Its complexity has exponent 1/3. The third method, which is our main

result, employs an algorithm developed here to compute cubic exponential

sums with a small cubic coefficient. Its complexity has exponent 4/13

(approximately, 0.307).

1. Introduction

The Riemann zeta function is defined by

(1.1) ζ(s) :=
∞∑
n=1

1

ns
, <(s) > 1 .

It can be continued analytically to the entire complex plane except for a simple

pole at s = 1. The values of ζ(1/2+it) on finite intervals are of great interest to

number theorists. For example, they are used in the numerical verification of

the Riemann Hypothesis, and more recently, as numerical evidence for appar-

ent connections between the zeta function and certain random matrix theory

models.

Such considerations have motivated searches for methods to numerically

evaluate ζ(1/2 + it) to within ± t−λ for any t > 1 and any fixed λ. Searches
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for such methods can also be motivated from a computational complexity per-

spective, for the zeta function is of fundamental importance in number theory,

so one may simply ask: how fast can it be computed?

In this article, new fast methods to numerically evaluate ζ(1/2 + it) to

within ± t−λ for any t > 1 and any fixed λ are presented. Our fastest method

has complexity t4/13+oλ(1) (notice 4/13 ≈ 0.307). This improves by a notice-

able margin on the “complexity bound” of t1/3+oλ(1). (The notations Oλ(t)

and toλ(1) indicate asymptotic constants depend only on λ, and are taken as

t→∞.)

Our main result is the following upper bound on the number of arith-

metic operations (additions, multiplications, evaluations of the logarithm of a

positive number, and evaluations of the complex exponential) on numbers of

Oλ((log t)2) bits that our fastest algorithm uses.

Theorem 1.1. Given any constant λ, there are effectively computable

constants A1 := A1(λ), A2 := A2(λ), A3 := A3(λ), and A4 := A4(λ), and ab-

solute constants κ1, κ2, and κ3, such that for any t > 1, the value of ζ(1/2+it)

can be computed to within ± t−λ using ≤ A1 (log t)κ1 t4/13 operations on num-

bers of ≤ A2 (log t)2 bits, provided a precomputation costing ≤ A3 (log t)κ2 t4/13

operations, and requiring ≤ A4 (log t)κ3 t4/13 bits of storage, is performed.

We did not try to obtain numerical values for the constants κ1, κ2, and κ3,

in the statement of the theorem. With some optimization, it is likely each can

be taken around 4. We remark that a bit-complexity bound follows routinely

from the arithmetic operations bound because all the numbers occurring in our

algorithm have Oλ((log t)2) bits. Also, our algorithm can be modified easily

so that arithmetic is performed using Oλ(log t) bits, which is what one should

do in a practical version.

All of our methods immediately generalize off the critical line since the

Riemann-Siegel formula (1.2) can be generalized there. The methods exclu-

sively tackle the issue of accurately computing the main sum (1.3) in the

Riemann-Siegel formula, so they are quite independent of the precise choice of

the remainder function there.

There are several known methods to compute ζ(1/2 + it) to within ± t−λ
for any t > 1 and any fixed λ. An elementary such method is usually derived

from the Euler-Maclaurin summation formula. The majority of the computa-

tional effort in that method is in computing a main sum of length Oλ(t) terms,

where each term is of the form n−1/2 exp(it log n); see [Edw01] and [Rub05] for

a detailed description.

Another method to compute ζ(1/2+it) relies on a straightforward applica-

tion of the Riemann-Siegel formula, which has a main sum of length b
»
t/(2π)c



FAST METHODS TO COMPUTE THE RIEMANN ZETA FUNCTION 893

terms. A simplified version of that formula on the critical line is

(1.2)

ζ(1/2 + it) = e−iθ(t)<
(

2 e−iθ(t)
n1∑
n=1

n−1/2 exp(it log n)

)
+ Φλ(t) +O(t−λ) ,

where n1 := b
»
t/(2π)c, and θ(t) and Φλ(t) are certain generally understood

functions. Odlyzko and Schönhage [OS88] showed that the rotation factor θ(t)

and the remainder term Φλ(t) can both be evaluated to within ± t−λ for any λ

using toλ(1) operations on numbers of Oλ(log t) bits. So to calculate ζ(1/2+ it)

using (1.2) directly, the bulk of the computational effort is exerted on the main

sum, which is

(1.3)
n1∑
n=1

n−1/2 exp(it log n) , n1 := b
»
t/(2π)c .

Odlyzko and Schönhage [OS88] derived a practical algorithm to simultane-

ously compute any bT 1/2c values of ζ(1/2 + it) in the interval t ∈ [T, T +T 1/2],

to within ±T−λ each, using T 1/2+oλ(1) arithmetic operations on numbers

of Oλ(log T ) bits, and requiring T 1/2+oλ(1) bits of storage. The Odlyzko-

Schönhage algorithm does not reduce the cost of a single evaluation of zeta be-

cause it requires numerically evaluating a certain sum of length about
»
t/(2π)

terms, which is the same length as the Riemann-Siegel main sum (1.3).

Schönhage [Sch90] improved the complexity of a single evaluation of zeta

to t3/8+oλ(1) operations on numbers of Oλ(log t) bits, and requiring t3/8+oλ(1)

bits of storage. Schönhage [Sch90] employed the Fast Fourier Transform (FFT)

and subdivisions of the main sum in the Riemann-Siegel formula to derive his

algorithm.

Heath-Brown [HB] later presented a method that further lowered the cost

of a single evaluation to about t1/3 operations. He described the approach in

the following way:

The underlying idea was to break the zeta-sum into t1/3 sub-

sums of length t1/6, on each of which exp(it log(n+ h)) could

be approximated by a quadratic exponential e(Ah+Bh2+f(h))

with f(h) = O(1). One would then pick a rational approxima-

tion a/q to B and write the sum in terms of complete Gauss

sums to modulus q.

This is motivated by Section 5.2 in Titchmarsh, but using

explicit formulae with Gauss sums in place of Weyl squaring.

The problem of numerically evaluating ζ(1/2 + it) was also considered by

Turing [Tur53], Berry and Keating [BK92], and Rubinstein [Rub05], among

others.
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The work of [Sch90] and [HB] (see also [Tit86, p. 99 and §2]) makes it quite

apparent that a possible approach to improving the complexity of computing

zeta is to find efficient methods to numerically evaluate exponential sums of

the form

(1.4)
1

Kj

K∑
k=1

kj exp(2πif(k)), f(x) ∈ R[x] .

This is our approach to improving the complexity of computing zeta. We

derive algorithms that enable faster evaluations of the sum (1.4) when f(x) is

a quadratic polynomial or a cubic polynomial, with additional restrictions on

the size of the cubic coefficient in latter. The basic idea is to apply Poisson

summation to (1.4) to obtain a shorter exponential sum of a similar type. This

is followed by an intervention that suitably normalizes the arguments of the

new sum, then another application of Poisson summation, which yields yet

a shorter sum, and so on. Notice the reason that repeated applications of

Poisson summation do not trivialize (i.e. bring us back to where we started)

is precisely because we intervene in between consecutive applications.

We explain the relation between the exponential sums (1.4) and the zeta

function in Section 2. In the same section, we outline three methods to compute

ζ(1/2 + it) to within ± t−λ in asymptotic complexities t2/5+oλ(1), t1/3+oλ(1),

and t4/13+oλ(1). The first method is rather simple, while the second and third

methods are substantially more complicated. The second method, which has

complexity t1/3+oλ(1), relies on an efficient and quite involved algorithm to

compute quadratic exponential sums. These are sums of the form (1.4) with

f(x) a (real) quadratic polynomial. A nearly-optimal algorithm to compute

such sums has already been derived in [Hia11]. The third method, which

has complexity t4/13+oλ(1), relies on an efficient algorithm to compute cubic

exponential sums with a small cubic coefficient (see §2 for precise details).

This algorithm is developed in Sections 3, 4, and 5.

We wish to make two remarks about the structure and the presentation of

the cubic sums algorithm, which, as mentioned earlier, is the essential compo-

nent of our t4/13+oλ(1) method. First, as discussed in Section 3, the algorithm

generalizes that of [Hia11] to compute quadratic exponential sums, except it

incorporates the FFT and a few additional ideas. Second, our motivation for

deriving the algorithm is to enable efficient enough evaluations of cubic sums

rather than obtain elegant asymptotic expressions for them. So, for example,

we describe in Section 4 how the algorithm involves evaluating certain expo-

nential integrals, then we show in Section 5 how to compute each of these

integrals separately. By doing so, however, we obscure that some of these

integrals might combine in a manner that collapses them. We do not con-

cern ourselves with combining or simplifying such integrals since this does not

improve the complexity exponent of our method to compute zeta.
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To summarize, Sections 4 and 5 communicate the details of the cubic sums

algorithm. If one merely wishes to overview the general structure without

getting too involved in the details, then Section 3 might suffice.

2. Outline of fast methods to compute ζ(1/2 + it)

We first consider the following simplified, but prototypical, situation. Sup-

pose we wish to numerically evaluate the sum

(2.1)
2P−1∑
n=P

exp(it log n) , P := Pt = d0.5
»
t/(2π)e .

The sum (2.1) is basically the last half of the Riemann-Siegel main sum for

ζ(σ+ it) on the line σ = 0. We initially restrict our discussion to this line, and

for the last half of the main sum, because the treatment of other values of σ,

as well as of the remainder of the main sum, is completely similar, albeit more

tedious. (See the discussion following Theorem 2.2 for a detailed presentation

on the critical line for the full main sum.)

A direct evaluation of the sum (2.1) to within ± t−λ requires P 1+oλ(1)

operations on numbers of Oλ(log t) bits. However, one observes that individual

“blocks” in that sum have a common structure, and that they all can be

expressed in terms of exponential sums of the form (1.4). The new algorithms

take advantage of this common structure to obtain substantially lower running

times.

Specifically, we divide the sum (2.1) into consecutive blocks of length

K := Kt each, where, for simplicity, we assume P is multiple of K. So the

sum (2.1) is equal to a sum of P/K blocks:

(2.2)
P+K−1∑
n=P

exp(it log n) +
P+2K−1∑
n=P+K

exp(it log n) + · · ·+
2P−1∑

n=2P−K
exp(it log n) .

Let v := vP,K,r = P + (r − 1)K − 1. Then the vth block (the one starting

at v) can be written in the form

(2.3)
K−1∑
k=0

exp(it log(v + k)) = exp(it log v)
K−1∑
k=0

exp(it log(1 + k/v)) .

Since K − 1 < v, we may apply Taylor expansions to log(1 + k/v) to obtain

K−1∑
k=0

exp(it log(v + k)) = exp(it log v)
K−1∑
k=0

exp

Ç
itk

v
− itk2

2v2
+
itk3

3v3
− itk4

4v4
+ · · ·

å
.

(2.4)

There is much flexibility in which block sizes K can be used. For example,

if we choose Pt−1/3 < K ≤ Pt−1/3 + 1, then the sum (2.4) can be reduced to

a linear combination of quadratic exponential sums. Because with this choice
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of K, the ratio K/P is very small and in particular tK3/P 3 = O(1), so the

terms in the exponent on the right-hand side of (2.4) become of size O(1)

starting at the cubic term itk3/(3v3) (more precisely, the rth term, which is

(−1)r+1itkr/(rvr), is of size ≤ 2rt1−r/3). This suggests the cubic and higher

terms in (2.4) should be expanded away as polynomials in k of low degree (say

degree J). This in turn allows us to express the vth block (2.4) as a linear

combination of quadratic exponential sums

(2.5)
1

Kj

K−1∑
k=0

kj exp
Ä
2πiat,vk + 2πibt,vk

2
ä
, j = 0, 1, . . . , J ,

plus a small error that we can easily control via our choice of J . It is easy

to see that the coefficients of said linear combination are quickly computable,

and are of size O(1) each.

If the condition Pt−1/3 < K ≤ Pt−1/3 + 1 is replaced by Pt−1/4 < K ≤
Pt−1/4 + 1 say, then the cubic term itk3/(3v3) is no longer of size O(1), but

the quartic term −itk4/(4v4) still satisfies the bound O(1). Thus, on following

a similar procedure as before, each block (2.4) can be reduced to a linear

combination of cubic sums (instead of quadratic sums)

(2.6)
1

Kj

K−1∑
k=0

kj exp
Ä
2πiat,vk + 2πibt,vk

2 + 2πict,vk
3
ä
, j = 0, 1, . . . , J ,

where the cubic coefficient ct,v := t/(6πv3), and K ≈ t1/4. Notice by a straight-

forward calculation, we have 0 ≤ ct,v ≤ K−2, so the range where ct,v can as-

sume values is quite restricted. By comparison, at,v and bt,v can fall anywhere

in [0, 1).

Table 1. Choosing K ≈ tβ in (2.2), where P ≈ t1/2, yields a total of

≈ t1/2−β blocks, each of which can be expressed as a linear combination of

the exponential sums (2.7). Below are examples of the polynomial fβ,t,v(x)

in (2.7) for various choices of β.

β 1/2− β fβ,t,v(x)

1/10 2/5 at,vx+ bt,vx
2

1/8 3/8 at,vx+ bt,vx
2

1/6 1/3 at,vx+ bt,vx
2

5/26 4/13 at,vx+ bt,vx
2 + ct,vx

3

1/5 3/10 at,vx+ bt,vx
2 + ct,vx

3

1/4 1/4 at,vx+ bt,vx
2 + ct,vx

3

3/10 1/5 at,vx+ bt,vx
2 + ct,vx

3 + dt,vx
4

1/3 1/6 at,vx+ bt,vx
2 + ct,vx

3 + dt,vx
4 + et,vx

5
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Table 2. Bounds, in terms of K, on the absolute values of the coefficients

of the polynomial fβ,t,v(x) in (2.7).

β 1/2− β at,v bt,v ct,v dt,v et,v
1/10 2/5 1 1

1/8 3/8 1 1

1/6 1/3 1 1

5/26 4/13 1 1 K−13/5

1/5 3/10 1 1 K−5/2

1/4 1/4 1 1 K−2

3/10 1/5 1 1 K−5/3 K−10/3

1/3 1/6 1 1 K−3/2 K−6/2 K−9/2

It is plain the procedure described so far can be continued further under

appropriate hypotheses. In general, given β ∈ (0, 1/2), if the block size K :=

Kβ,t in (2.2) is chosen according to Ptβ−1/2 < K ≤ Ptβ−1/2 + 1, we obtain a

total of ≈ t1/2−β blocks, each of which can be expressed as a linear combination

of exponential sums of degree d := dβ = d1/(1/2− β)e − 1:

(2.7)
1

Kj

K−1∑
k=0

kj exp(2πifβ,t,v(k)) , j = 0, 1, . . . , J ,

plus a small error of size O(tβ+J(1−(d+1)(1/2−β))/bJ/(d+ 1)c!). Tables 1 and 2

provide examples of the (degree-dβ) polynomial fβ,t,v(x) for various choices

of β. Notice that the error in approximating each block by a linear combination

of the sums (2.7) declines extremely rapidly with J . For example, taking

J = Jβ,t,λ := d(d + 1)(λ + 3) log te enables the computations of the vth block

to within ± t−λ−2 for any fixed λ.

Furthermore, it is straightforward to show, under mild hypotheses, that

if one is capable of evaluating the exponential sums (2.7), to within ± t−λ−2

each, for all v ∈ {P, P + K, . . . , 2P −K} (which is a total of ≈ (J + 1)t1/2−β

such sums), using t1/2−β+oλ(1) time, then the entire Riemann-Siegel main

sum, rather than its last half (2.2) only, can be computed to within ± t−λ
in t1/2−β+oλ(1) time. In particular, the column 1/2−β in Tables 1 and 2 is the

complexity exponent with which ζ(σ + it) can be computed on the line σ = 0

should the sums (2.7) lend themselves to an efficient enough computation (in

the sense just described). It is clear the restriction to the line σ = 0 is not

important, and similar conclusions can be drawn for other values of σ.

Reformulating the main sum of the Riemann-Siegel formula in terms of

quadratic exponential sums was carried out by Titchmarsh [Tit86, p. 99], and

later by Schönhage [Sch90] and Heath-Brown [HB]. But higher degree expo-

nential sums were not considered in these approaches. Schönhage sought an
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efficient method to evaluate quadratic exponential sums in order to improve

the complexity of computing the zeta function. He observed that if the values

of the quadratic sums

(2.8) F (K, j; a, b) :=
1

Kj

K∑
k=0

kj exp
Ä
2πiak + 2πibk2

ä
, j = 0, 1, . . . , J ,

and several of their partial derivatives (which are of the same form), were

known at all points (a, b) of the lattice

(2.9) L = {(p/K, q/K2) : 0 ≤ p < K, 0 ≤ q < K2} ,

then values of F (K, j; a, b) elsewhere can be calculated quickly via a Taylor

expansion like

(2.10)

F (K, j; a, b) =
∞∑
r=0

1

r!

r∑
l=0

Ç
r

l

å
F (K, j + 2r − l; p0/K, q0/K)(∆a)l(∆b)r−l ,

where ∆a := 2πK(a− p/K), ∆b := 2πK2(b− q/K2), p0/K is a member of L
closest to a, and q0/K

2 is a member of L closest to b. This is because |∆a| and

|∆b| are both bounded by π, so |
(r
l

)
(∆a)l(∆b)r−l| ≤ (2π)r, which implies the

rth term in (2.10) is of size ≤ K(2π)r/r!. Therefore, expansion (2.10) can be

truncated early, say after J ′ := J ′t,λ = d100(λ + 1) log te = toλ(1) terms, which

yields a truncation error of size ≤ Kt−λ−2.

In particular, Schönhage observed, if for each integer 0 ≤ m ≤ J+2J ′ the

values F (K,m; p/K, q/K) are precomputed to within ± t−λ−2 on all of L, then

F (K, j; a, b) can be computed for any (a, b) ∈ [0, 1) × [0, 1) to within ± t−λ−1

using expansion (2.10) in about (J ′+1)2 = toλ(1) steps. Consequently, provided

K ≤ Pt−1/3 + 1, which ensures that each block in (2.2) can be approximated

accurately by a linear combination of the quadratic sums (2.8), then (2.2) can

be computed to within ±t−λ in about (J + 1)(J ′+ 1)2P/K = toλ(1)P/K steps.

Letting C := CK,J,J ′ denote the presumed cost of computing the values of

F (K,m; a, b) on all of L and for 0 ≤ m ≤ J + 2J ′, we deduce that the choice

of K minimizing the complexity exponent for computing zeta is essentially

specified by the condition C = P/K, since this is when the precomputation

cost C is balanced against the cost of computing the sum (2.2) in blocks. Notice

if K is small, then the number of blocks P/K will be much larger than the size

of the lattice L. So there will be significant overlaps among the quadratic sums

arising from the blocks in the sense many of them can be expanded about the

same point (p/K, q/K2) ∈ L. And this should lead to savings in the running

time.

To reduce the precomputation cost C, Schönhage observed that the value

of F (K, j; a, b) at (p/K, q/K2) is the discrete Fourier transform, evaluated at
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−p/K, of the sequence of points

(2.11)
¶

(k/K)j exp(2πiqk2/K2) : 0 ≤ k < K
©
.

So for each 0 ≤ m ≤ J + 2J ′, and each 0 ≤ q < K2, one can utilize the FFT to

compute F (K,m; p/K, q/K2) for all 0 ≤ p < K in K1+oλ(1) steps. Since there

are J + 2J ′+ 1 = toλ(1) relevant values of m, and K2 relevant values of q, then

the total cost of the precomputation is about K3+oλ(1) steps. The condition

C = P/K thus reads K3+oλ(1) = P/K, and so one chooses K = P 1/4. This

implies P/K = P 3/4+oλ(1) = t3/8+oλ(1), yielding Schönhage’s t3/8+oλ(1) method

to compute the sum (2.2), hence, by a slight extension, the zeta function itself.

It is possible to improve the complexity of computing the zeta function via

this approach while avoiding the FFT, which can be advantageous in practice.

Indeed, if one simply evaluates (2.8) at all points of L in a direct way, then

the total cost of the precomputation is about (J + 2J ′+ 1)K4+oλ(1) steps. The

condition C = P/K hence reads K = P 1/5, which gives a t2/5+oλ(1) method to

compute the zeta function.

In order to achieve a t1/3+oλ(1) complexity via this approach, the precom-

putation cost C must be lowered to about K2+oλ(1) operations. However, it is

not possible to lower the precomputation cost to K2 operations (or to anything

≤ K3 operations) if one insists on precomputing the quadratic sum on all of L.

This difficulty motivated our search in [Hia11] for efficient methods to compute

quadratic exponential sum, which led to

Theorem 2.1 (Theorem 1.1 in [Hia11]). There are absolute constants κ4,

κ5, A5, A6, and A7, such that for any integer K > 0, any integer j ≥ 0, any

positive ε < e−1, any a, b ∈ [0, 1), and with ν := ν(K, j, ε) = (j + 1) log(K/ε),

the value of the function F (K, j; a, b) can be computed to within ±A5 ν
κ4ε

using ≤ A6 ν
κ5 arithmetic operations on numbers of ≤ A7 ν

2 bits.

Theorem 2.1 yields a t1/3+oλ(1) method to compute zeta, as we describe,

in detail, later in this section.

In Sections 3, 4, and 5, we generalize Theorem 2.1 to cubic exponen-

tial sums

(2.12) H(K, j; a, b, c) :=
1

Kj

K∑
k=0

kj exp(2πiak + 2πibk2 + 2πick3) ,

with a small cubic coefficient c. Unlike the the algorithm for quadratic sums

though, where neither a precomputation nor an application of the FFT is

necessary, our algorithm for cubic sums does require a precomputation and, in

doing so, relies on the FFT in a critical way. We prove:

Theorem 2.2. There are absolute constants κ6, κ7, κ8, κ9, A8, A9, A10,

A11, and A12, such that for any µ ≤ 1, any integer K > 0, any integer j ≥ 0,
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any positive ε < e−1, any a, b ∈ [0, 1), any c ∈ [0,Kµ−3], and with ν :=

ν(K, j, ε) = (j + 1) log(K/ε), the value of the function H(K, j; a, b, c) can be

computed to within ±A8 ν
κ6ε using ≤ A9 ν

κ7 arithmetic operations on numbers

of ≤ A10 ν
2 bits, provided a precomputation costing ≤ A11 ν

κ8 K4µ arithmetic

operations, and requiring ≤ A12 ν
κ9 K4µ bits of storage, is performed.

Theorem 2.2 yields a t4/13+oλ(1) method to compute zeta, as we explain

later in this section. (We remark that the restriction µ ≤ 1 in the statement

of the theorem is first needed during the first phase of the algorithm, in Sec-

tion 4.1, to ensure that a certain cubic sum can be evaluated accurately using

the Euler-Maclaurin summation formula with only a few correction terms.)

Let us show precisely how Theorems 2.1 and 2.2 lead to faster method

to compute the main sum in the Riemann-Siegel formula, hence ζ(1/2 + it)

itself. To this end, assume t is large (say t > 106), fix parameters λ > 0

and 0 < β < 1/4 say, and suppose our goal is to enable the computation

of ζ(1/2 + it) to within ± t−λ using t1/2−β+oλ(1) operations on numbers of

Oλ((log t)κ0) bits for some absolute constant κ0, where we allow for a one-time

precomputation costing t1/2−β+oλ(1) operations (e.g. in order to obtain the

t1/3+oλ(1) and t4/13+oλ(1) complexities, β will have to be specialized to 1/6 and

5/26, respectively, while to obtain the t2/5+oλ(1) and t3/8+oλ(1) complexities,

one specializes β to 1/10 and 1/8).

We digress briefly to remark that as β increases, the target complexity

t1/2−β+oλ(1) improves, but also, the arguments of the resulting exponential

sums will be allowed to assume values in larger and larger intervals, and some-

times the degree of these sums will increase (see Tables 1 and 2 for examples).

In fact, the latter observations are the main difficulties in deriving yet faster

zeta methods. Because, as explained in Section 3, computing exponential sums

via our approach becomes harder as the intervals where the arguments are al-

lowed to assume values expand, or as the degree of the sum increases.

Let us subdivide the Riemann-Siegel main sum (1.3) into O(log t) subsums

of the form

(2.13)

2ng−1∑
n=ng

n−1/2 exp(it log n) ,

where t1/2−β ≤ ng ≤ 0.5
»
t/(2π), plus a remainder series of length O(t1/2−β).

The remainder series is not problematic since it can be evaluated directly in

t1/2−β+oλ(1) operations on numbers of Oλ(log t) bits, which falls within our

target complexity.

By construction, ng assumes only O(log t) distinct values. For each ng, we

choose a block size Kng := Kβ,ng according to ngt
β−1/2 < Kng ≤ ngtβ−1/2 + 1,
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so Kng ≈ ngtβ−1/2. Then we rewrite the sum (2.13) as

(2.14)
∑
v∈Vng

Kng∑
k=0

exp(it log(v + k))√
v + k

+Rt,ng ,Kng ,

where Vng := Vng ,Kng is any set of bng/Kngc equally spaced points in the

interval [ng, 2ng), and Rt,ng is a Dirichlet series of length at most 2K = O(tβ)

terms. Since tβ ≤ t1/2−β for β ∈ [0, 1/4], then Rt,ng can be evaluated directly

in t1/2−β+oλ(1) operations on numbers of Oλ(log t) bits, which is falls within

our target complexity. So we may focus our attention on the double sum in

(2.14).

Like before, one notes exp(it log(v+k)) = exp(it log v) exp(it log(1+k/v)).

Also,
√
v + k =

√
v
»

1 + k/v. So by a routine application of Taylor expansions

to log(1 + k/v) and 1/
»

1 + k/v, each inner sum in (2.14) is expressed in the

form

(2.15) exp(it log v)
∞∑
l=0

(−1)l
∏l
r=1(2r − 1)

l! 2lvl+1/2

Kng∑
k=0

kl exp

(
it
∞∑
m=1

(−1)m+1km

mvm

)
.

Since k/v ≤ Kng/ng ≤ 2tβ−1/2, the Taylor series over l and m in (2.15) con-

verge quite fast. Truncating them at L and U respectively yields

(2.16)

exp(it log v)
L∑
l=0

(−1)l
∏l
r=1(2r − 1)

l! 2lvl+1/2

Kng∑
k=0

kl exp

(
it

U∑
m=1

(−1)m+1km

mvm
+ εk,U

)
+δL,

where

εk,U = O
Ä
tKU

ng/n
U
g

ä
= O(t1−(1/2−β)U ) ,(2.17)

δL = O
Ä
KL+1
ng /nLg

ä
= O(tβ−(1/2−β)L) .

We choose L = U := Uβ,λ = d(λ + 10)/(1/2 − β)e say. So L = U = Oβ,λ(1).

By straightforward calculations, the total error (from the εk,U ’s and δL) is of

size Oλ(t−λ−1). Therefore, each of the inner sums in (2.14) is equal to

(2.18)
L∑
l=0

wl,t,v,Kng
K l
ng

Kng∑
k=0

kl exp

(
it

U∑
m=0

(−1)m+1km

mvm

)
+O(t−λ−1) ,

where

(2.19) wl,t,v,Kng :=
(−1)l

∏l
r=1(2r − 1)K l

ng

l! 2lvl+1/2
exp(it log v) .

It is easy to see that each wl,t,v,Kng can be computed to within ± t−λ−1 us-

ing toλ(1) operations on numbers of Oλ(log t) bits. Also, by our choices of v
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and Kng , wl,v,Kng = O(1) (in fact |wl,v,Kng | ≤ 2lt−l(1/2−β), but that is not

important). Now let

(2.20) d := dβ = d1/(1/2− β)e − 1 .

By truncating the series over m in (2.18) at d, each inner sum there is equal

to

(2.21)
L∑
l=0

wl,t,v,Kng
K l
ng

Kng∑
k=0

kl exp (2πifβ,t,v(k))

[ ∞∑
h=0

(−1)hdih

h!

Ç
tkd+1

vd+1

åh
(αv,U,d,k)

h

]
,

where

fβ,t,v(x) :=
d∑

m=0

at,v,mx
m , at,v,m :=

(−1)m+1t

2πmvm
,(2.22)

αv,U,d,k =
U−d−1∑
m=0

(−1)mkm

(m+ d+ 1) vm
,(2.23)

Notice that in the notation of Tables 1 and 2, we have at,v,1 = at,v mod 1,

at,v,2 = bt,v mod 1, at,v,3 = ct,v mod 1, and so on.

By routine calculations, at,v,m ∈ [−t/(2πmnmg ), t/(2πmnmg )], |αv,U,d,k| <
2, and, by our choice of d, t(k/v)d+1 ≤ 2d+1. So if the Taylor series over h

in (2.21) is truncated after J ′′ := J ′′t,λ = d(λ + 100) log te terms, the resulting

error is of size O(t−λ−1). Each inner sum in (2.14) is thus equal to

(2.24)
J ′′′∑
j=0

zl,t,v,Kng ,U

Kj
ng

Kng∑
k=0

kj exp (2πifβ,t,v(k)) +O(t−λ−1),

where J ′′′ := L+ (d+ 1)J ′′ + 1 = Oλ(log t), and fβ,t,v(x) is a real polynomial

of degree d = d1/(1/2 − β)e − 1. The coefficients zl,t,v,Kng ,U in (2.24) are of

size O(1) each, and are computable to within ± t−λ−1 using toλ(1) operations

on numbers of Oλ(log t) bits. Last, suppose each of the sums: (this is a crit-

ical assumption, and proving it is the main difficulty in deriving faster zeta

methods)

(2.25)
1

Kj
ng

Kng∑
k=0

kj exp (2πifβ,t,v(k)) , j = 0, 1, . . . , J ′′′

can be evaluated to within ± t−λ−1 in toλ(1) operations on Oλ((log t)κ0)-bit

numbers for some absolute constant κ0, where we allow for a one-time precom-

putation costing t1/2−β+oλ(1) operations. Then ζ(1/2 + it) can be computed to

within ± t−λ using t1/2−β+oλ(1) operations on numbers of O((log t)κ0) bits.

Using this setup, Theorem 2.1, which handles quadratic exponential sums,

yields a t1/3+oλ(1) method to compute zeta. First, we let β = 1/6, which implies
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the polynomial fβ,t,v(x) has degree d = d1/(1/2 − 1/6)e − 1 = 2, and the

sums (2.25) are quadratic exponential sums F (Kng , j; at,v, bt,v). So applying

the algorithm of Theorem 2.1 with j ≤ d(10λ + 100) log te, ε = t−λ−10, and

K = Kng , permits the evaluation of each quadratic sum to within ± t−λ−1

using toλ(1) operations on numbers of Oλ(ν(K, j, ε)2) bits. In addition, given

our choices of Kng , j, and ε, we have ν(Kng , j, ε) = Oλ((log t)2). Together,

this yields a t1/3+oλ(1) method to compute zeta:

Theorem 2.3. Given any constant λ, there are effectively computable

constants A13 := A13(λ) and A14 := A14(λ), and an absolute constant κ10,

such that for any t > 1, the value of the function ζ(1/2+it) can be computed to

within ± t−λ using ≤ A13 (log t)κ10 t1/3 operations on numbers of ≤ A14 (log t)4

bits.

Similarly, Theorem 2.2, which handles cubic sums, yields the t4/13+oλ(1)

asymptotic complexity. First, we let β = 5/26, which implies the degree d

of fβ,t,v(x) in (2.25) is d1/(1/2 − 5/26)e − 1 = 3. So the sums (2.25) are

now cubic exponential sums H(Kng , j; at,v, bt,v, ct,v). Also, by construction,

we have Kng ≤ ngt
−4/13 + 1 and |ct,v| ≤ t/(6πn3

g), and so |ct,v| ≤ t1/13K−3
ng .

In particular, the range where the cubic coefficient ct,v can assume values is

restricted by the sizes of Kng and t. With this in mind, we distinguish the

following two cases: Kng ≤ t1/13, and Kng > t1/13.

If Kng ≤ t1/13, we use the FFT to precompute H(Kng , j; a, b, c), for each

0 ≤ j ≤ J ′′′, and at all points (a, b, c) of the lattice

(2.26) {(p/Kng , q/K
2
ng , r/K

3
ng) | 0 ≤ p < Kng , 0 ≤ q < K2

ng , 0 ≤ r ≤ t
1/13} .

Once the precomputation is carried out, then by a similar arguments to Schön-

hage’s method, Taylor expansions can be used to evaluate

H(Kng , j; at,v, bt,v, ct,v)

for any v ∈ Vng to within ± t−λ−1 in toλ(1) operations on numbers of Oλ(log t)

bits using the precomputed data. It remains to calculate the cost of the pre-

computation. Since |ct,v| ≤ t1/13K−3
ng , then for each Kng , the cost of the

FFT precomputation is K3
ng t

1/13+oλ(1) = t4/13+oλ(1) operations on numbers

of Oλ(log t) bits, and requiring t4/13+oλ(1) bits of storage. As there are only

O(log t) different values of Kng that arise (one for each ng), then the total cost

of the precomputation is still t4/13+oλ(1) operations.

On the other hand, if Kng > t1/13, then the previous FFT computa-

tion becomes too costly. So we invoke the algorithm of Theorem 2.2 for cu-

bic sums. We first observe |ct,v| ≤ t1/13K−3
ng = K µ̃−3

ng , where µ̃ := µ̃t,Kng =

(log t1/13)/(logKng) (notice since t1/13 < Kng < t5/26, then 2/5 ≤ µ̃ ≤ 1, but

this is not important to what follows). Applying Theorem 2.2 with µ = µ̃,
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we merely need to perform an FFT precomputation costing K
4µ̃+oλ(1)
ng =

t4/13+oλ(1) operations and requiring K
4µ̃+oλ(1)
ng = t4/13+oλ(1) bits of storage,

after which H(Kng , j; at,v, bt,v, ct,v) can be computed for any v ∈ Vng to within

± t−λ−10 say using toλ(1) operations on numbers of Oλ(ν(K, j, ε)2) bits, where

ε = t−λ−10, and j ≤ J ′′′. Last, since β = 5/26 we have the finer estimate

J ′′′ = Oλ(1), and also logKng = O(log t), which together imply ν(Kng , j, ε) =

Oλ(log t). Collecting the various pieces together yields Theorem 1.1 immedi-

ately.

We make several comments. First, in order to improve on the complexity

exponent 4/13, one must lower the precomputation cost in Theorem 2.2 (equiv-

alently, one needs a better handle on sums with larger cubic coefficients). In

this regard, it appears that if certain quite substantial modifications to our

cubic sums algorithm are carried out, then the t4/13+oλ(1) method is capable of

improvement to t3/10+oλ(1) complexity (see §3 for further comments on this).

Second, both of the t1/3+oλ(1) and t4/13+oλ(1) methods appear to be compat-

ible with the amortized complexity techniques of Odlyzko-Schönhage [OS88].

In the case of the t1/3+oλ(1) method, for instance, this means that it can be

modified to permit the computation of about T 4/13 values of ζ(1/2 + i(T + t))

in the interval t ∈ [0, T 4/13] using T 4/13+oλ(1) operations.

Last, in the specific case of the t1/3+oλ(1) method, the use of the Riemann-

Siegel formula is actually not important. One can still achieve the t1/3+oλ(1)

complexity using Theorem 2.1 even if one starts with the main sum in the

Euler-Maclaurin formula, which involves ≈ t terms. This flexibility is particu-

larly useful if one is interested in very accurate evaluations of ζ(s) in regions

where explicit asymptotics for the error term in the Riemann-Siegel formula

have not been worked out.

3. The idea of the algorithm to compute cubic exponential

sums with a small cubic coefficient

We first recall that by a direct application of Poisson summation we have

(3.1)
K∑
k=0

e2πif(k) =
1 + e2πif(K)

2
+ PV

∞∑
m=−∞

∫ K

0
e2πif(x)−2πimx dx ,

where PV means the terms of the infinite sum are taken in conjugate pairs.

Theorems 2.1 and 2.2, which handle quadratic and cubic exponential sums

respectively, were inspired by the following application of formula (3.1) due to

van der Corput (see [Tit86, p. 75], for a slightly different version; also see the

discussion following Theorem 1.2 in [Hia11]):

Theorem 3.1 (van der Corput iteration). Let f(x) be a real function

with a continuous and strictly increasing derivative in s ≤ x ≤ t. For each

integer f ′(s) ≤ m ≤ f ′(t), let xm be the (unique) solution of f ′(x) = m in
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[s, t]. Assume f(x) has continuous derivatives up to the third order, that λ2 <

|f ′′(x)| < Aλ2 and |f ′′′(x)| < Aλ3 for all s ≤ x ≤ t, where A is an absolute

constant. Then

(3.2)
∑
s≤k≤t

e2πif(k) = eπi/4
∑

f ′(s)≤m≤f ′(t)

e2πi(f(xm)−mxm)»
|f ′′(xm)|

+Rs,t,f ,

where Rs,t,f = O
(
λ
−1/2
2 + log(2 + (t− s)λ2) + (t− s)λ1/5

2 λ
1/5
3

)
.

In the case of quadratic exponential sums the polynomial f(x) in (3.2)

is ax+ bx2, where, by the periodicity of e2πix, we may assume a and b are

in [0, 1). Taking s = 0 and t = K in (3.2), and assuming dae < ba + 2bKc,
which is frequently the case (this assumption is for a technical reason, and is to

ensure bK is bounded away from 0), then on substituting xm = (m− a)/(2b)

and f(xm) = axm + bx2
m in (3.2), the van der Corput iteration points to a

relation like
K∑
k=0

exp(2πiak + 2πibk2)(3.3)

=
eπi/4−πia

2/(2b)

√
2b

ba+2bKc∑
m=dae

exp

Å
2πi

a

2b
m− 2πi

1

4b
m2
ã

+R1(a, b,K) .

As explained in [Hia11], the sum on the right-hand side of (3.3) arises from

the integrals in (3.1) that contain a saddle-point, where an integral is said to

contain a saddle-point if the exponent f ′(x)−m vanishes for some 0 ≤ x ≤ K
(intuitively, the integral accumulates mass in a neighborhood of the saddle-

point).

As discussed in [Hia11], the relation (3.3) has several interesting features.

For example, the new sum there (on the right-hand side) is still a quadratic

sum. This is essentially a consequence of the self-similarity of the Gaussian

e−x
2
. Also, although we started with a sum of length K + 1 terms, the new

sum has ≤ 2bK terms. In particular, since we can always normalize b so that

b ∈ [0, 1/4] (see [Hia11]), then we can ensure the new sum has length ≤ K/2

terms, which is at most half the length of the original sum.

Moreover, the remainder term R1 := R1(a, b,K), which corresponds to

integrals in (3.1) with no saddle-point, has a fairly elementary structure, and,

as proved in [Hia11], it can be computed to within ± ε using O(logκ̃1(K/ε)) op-

erations on numbers of O(log2(K/ε)) bits, where κ̃1 is some absolute constant.

Indeed, the bulk of the effort in computing R1 is exerted on a particularly

simple type of an incomplete Gamma function:

(3.4) h(z, w) :=

∫ 1

0
tz exp(wt) dt , 0 ≤ z , z ∈ Z , <(w) ≤ 0 .

For purposes of our algorithms, the nonnegative integer z in (3.4) will be of size

O(log(K/ε)κ̃), where κ̃ is some absolute constant, and we wish to compute the
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quadratic sum to within ± ε say. So the relevant range of z is rather restricted,

which is important as it enables fast evaluations of the integrals (3.4).

Given these features, the important observation is that by iterating re-

lation (3.3) at most log2K times (log2 x stands for the logarithm to base 2),

the quadratic sum can be computed to within ± ε
√
K log2K in poly-log time

in K/ε. It should be emphasized that the main technical hurdle in proving

this is in showing the remainder term R1 can in fact be computed sufficiently

accurately and quickly.

It is natural to ask whether this procedure, whereby one attempts to apply

the van der Corput iteration repeatedly, should generalize to cubic and higher

degree exponential sums. If it does, then in view of Tables 1 and 2 from

Section 2, we could obtain faster methods to compute the zeta function. One

difficulty towards such generalizations is the lack of self-similarity in the case

of higher degree exponential sums. As we explain next, however, it is possible

to overcome this difficulty if the coefficients of higher degree terms are small

enough.

To this end, consider the van der Corput iteration in the case of cubic

exponential sums. So in (3.2), we take s = 0, t = K, and

(3.5) f(x) = ax+ bx2 + cx3 .

As explained in [Hia11], it follows from the periodicity of e2πix, and conjugation

if necessary, that we may assume a ∈ [0, 1) and b ∈ [0, 1/4]. We may also

assume K > 1000 say, and c 6= 0, because if c = 0 we obtain a quadratic sum.

We require the starting cubic coefficient c and the starting sum length K to

satisfy |cK2| ≤ 0.01 (the constant 0.01 is not significant but it is convenient

to use). This condition essentially corresponds to restricting µ ≤ 1 in the

statement of Theorem 2.2.

Our plan is to cut the length of the cubic exponential sums by repeatedly

applying the van der Corput iteration until one, or both, of the following two

conditions fails (possibly before entering the first iteration): |cK2| ≤ 0.01b,

or bK ≥ 1. Notice these conditions necessitate dae ≤ ba + 2bK + 3cK2c,
among other consequences. The significance of these conditions will become

clear a posteriori.

First, we locate the saddle-points by solving the equation f ′(x) = m for

f(0) ≤ m ≤ f(K), or equivalently for dae ≤ m ≤ ba+2bK+3cK2c. We obtain

(3.6) xm =

»
b2 + 3c(m− a)− b

3c
.

On substituting xm in f(x)−mx, one finds

(3.7) f(xm)−mxm =
2b3 + 9bc(m− a)− 2

(
b2 + 3c(m− a)

)3/2
27c2

.
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The function f(xm) −mxm is not a polynomial in m because it involves

a square-root term
»
b2 + 3c(m− a) (informally, this is a manifestation of the

lack of self-similarity in the cubic case). So the behavior of f(xm)−mxm under

further applications of the van der Corput iteration is likely to be complicated

and hard to control. It therefore appears we cannot apply relation (3.2) repeat-

edly, like we did in the quadratic case, because we do not obtain sums of the

same type with each application. However, if c is sufficiently small, it is rea-

sonable to apply Taylor expansions to the problematic term
»
b2 + 3c(m− a)

in order to express it as a rapidly convergent power series in 3c(m − a)/b2.

And if c is sufficiently small, then the contribution of the quartic and higher

terms in this series will be of size O(1), which allows us to expand them away

as polynomials of low degree in m− a.

Indeed, by the conditions |cK2| ≤ 0.01b and 1 ≤ bK that we imposed on

c and b earlier, together with the restriction dae ≤ m ≤ ba + 2bK + 3cK2c,
we see that 3c(m − a)/b2 ≤ 9cK/b ≤ 0.09b < 1. So it is permissible to apply

Taylor expansions to
»
b2 + 3c(m− a) = (1/b)

»
1 + 3c(m− a)/b2 to obtain

f(xm)−mxm = −(m− a)2

4 b
+
c(m− a)3

8 b3
− 9 c2(m− a)4

64 b5
(3.8)

+
27 c3(m− a)5

128 b7
− 189 c4(m− a)6

512 b9
+ · · · .

Notice that if bK ≥ 1, then expansion (3.8) is still valid under the looser

condition |cK2| ≤ 0.01, so, in particular, the full force of the condition |cK2| ≤
0.01b has not been used yet.

Now the quartic term in (3.8) satisfies 9c2(m−a)4/(64b5)≤100c2K4/b<b,

which is small. And the quintic term satisfies 27c3(m − a)5/(128b7) < b/K,

which is also small. In general, the rth term is of the form ηrc
r−2(m− a)r/b2r−3,

where |ηr| < 3r, and so it has size ≤ 9rcr−2Kr/br−3 < bK4−r. The rapid de-

cline in (3.8) is useful because, as indicated earlier, the contributions of quartic

and higher terms can now be eliminated from the exponent on the right side

of (3.2) by expanding them away as a polynomial in m − a of relatively low

degree, plus a small error term. This ensures the new sum produced by the

van der Corput iteration is still cubic. Specifically, we obtain

exp(2πi(f(xm)−mxm))»
|f ′′(xm)|

(3.9)

= exp

Ç
−2πi (m− a)2

4 b
+

2πi c(m− a)3

8 b3

å J̃∑
j=0

ηa,b,c,j(m− a)j + EJ̃ ,a,b,c,m ,
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where we have tactfully expanded the term»
|f ′′(xm)| =

√
2b(1 + 3c(m− a)/b2)1/4

in the denominator on the l.h.s. as a power series in m − a as well. Notice

that the full force of the condition |cK2| < 0.01b still has not been used,

and all is needed to ensure the new sum is still cubic is a looser bound like

|cK2| < 0.01
√
b.

By straightforward estimates, we have

(3.10) |ηa,b,c,jmj | ≤ A√
b
, |EJ̃ ,a,b,c,m| ≤

A√
b

Ç
1

bJ̃/4c!
+ e−J̃

å
,

where A is some absolute constant, 4 ≤ J̃ , and dae ≤ m ≤ ba+ 2bK + 3cK2c.
Therefore, given a ∈ [0, 1) and b ∈ [0, 1/4], and assuming |cK2| ≤ 0.01b (c is

real), and 1 ≤ bK, as we have done so far, then summing both sides of (3.9)

over dae ≤ m ≤ ba+ 2bK+ 3cK2c, the van der Corput iteration (3.2) suggests

a relation of the form

(3.11) H(K, 0; a, b, c) =
J̃∑
j=0

z̃j H(K̃, j; ã, b̃, c̃) +R2(a, b, c,K) + EJ̃ ,a,b,c,K ,

where K̃ := K̃(a, b, c,K) = ba+ 2bK + 3cK2c, and

(3.12) z̃j := z̃j,a,b,c,K = exp

Ç
πi

4
− πia2(ac+ 2b2)

4b3

å
K̃j ηa,b,c,j .

The remainder R2 := R2(a, b, c,K) corresponds to the remainder term in

iteration (3.2), except possibly for an extra term of −z0 in case dae = 1. Also,

simple algebraic manipulations yield

(3.13) ã := ãa,b,c =
a

2b
+

3a2c

8b3
, b̃ := b̃a,b,c =

1

4b
+

3ac

8b3
, c̃ := c̃a,b,c =

c

8b3
.

And as a consequence of the estimates in (3.10), we have

(3.14) |z̃j | ≤
A√
b
, |EJ̃ ,a,b,c,K | ≤ 3A

√
bK

Ç
1

bJ̃/4c!
+ e−J̃

å
.

By the second estimate in (3.14), if we choose J̃ = d4 log(K/ε)e say, we ensure

|EJ̃ ,a,b,c,K | ≤ Aε, which is small enough for purposes of the algorithm. So J̃

need not be taken large at all.

The remainder term R2 in the van der Corput iteration (3.11) essentially

corresponds to terms in the Poisson summation formula with no saddle-point

contribution. This is because such contributions have already been extracted

as the new cubic sums. So, guided in part by the case of quadratic sums, we

expect R2 to involve relatively little cancellation among its terms, and that

its computation is much less expensive than a direct evaluation of the original

cubic sum.
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It will transpire that the bulk of the effort in computing R2 is essentially

spent on dealing with a particularly simple type of an incomplete Gamma

function like (3.4) (which, as mentioned earlier, is where the bulk of the effort is

spent in the quadratic case as well). It will also transpire there are many routes

with great flexibility to evaluating the expressions and integrals occurring in

R2. One finds several methods, applicable in overlapping regions, that can be

used. This flexibility is somewhat analogous to that encountered in evaluating

the incomplete Gamma function for general values of its arguments, where also

many methods applicable in overlapping regions are available; see [Rub05]. But

in our case, the task is significantly simpler because the relevant ranges of the

arguments will be fairly restricted.

With this in mind, our goal for this article is not to develop especially prac-

tical techniques to compute the integrals occurring in R2, which is a somewhat

challenging task on its own, rather, it is to obtain explicit and provably efficient

techniques to achieve the complexity bounds claimed in Theorem 2.2. For ex-

ample, we make heavy use of Taylor expansions throughout, which simplifies

some conceptual aspects of the techniques that we present, but it also often

leads to large asymptotic constants and a loss of practicality.

We expect the van der Corput iteration (3.11) to generalize even further.

Under the same assumptions on K, a, b, and c as before, and for J of moderate

size (say J bounded by some absolute power of logK), we expect a relation

like

J∑
j=0

wj H(K, j; a, b, c) =
J+J̃∑
j=0

w̃j H(K̃, j; ã, b̃, c̃) + R̃2 + ẼK,J̃ ,(3.15)

where K̃, ã, b̃, and c̃ are the same as in (3.13). This is because the additional

term kj/Kj (on the l.h.s.) is not oscillatory, and so the form of the result is

given by (3.2), except for an extra factor of (xm)j on the right side.

The utility of a transformation like (3.15) is it can be repeated easily, for

we still obtain cubic exponential sums with each repetition. In other words,

provided the cubic coefficient is small enough (specifically cK2 ≤ 0.01b), re-

lation (3.15) enables us to circumvent one difficulty in the cubic case, which

is the lack of self-similarity (recall the self-similarity of the Gaussian and the

periodicity of the complex exponential are critical ingredients in our algorithm

for computing quadratic sums).

Importantly, if a and b continue to be normalized suitably at the begin-

ning of each iteration of (3.15), and if c continues to satisfy |cK2| ≤ 0.01b

throughout, then the outcome after m repetitions is a linear combination of

J+mJ̃+1 cubic sums, each of length ≤ K/2m+2, where K denotes the length

of the original cubic sum (the sum we started with). It is straightforward to

show the coefficients in the linear combination are bounded by an absolute
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power of K. And due to the lack of saddle-points the remainder term R2, we

anticipate it will be computable accurately and efficiently enough for purposes

of proving the complexity bounds of Theorem 2.2.

It remains to deal with the possibility that either (or both) of the condi-

tions 1 ≤ bK and |cK2| ≤ 0.01b fails, or that K gets too small in comparison

with the given ε, say K ≤ ν(K, ε)6. The latter case is trivial though since

the cubic sum can then be evaluated directly to within ± ε in poly-log time in

K/ε.

A failure of the condition 1 ≤ bK implies b < 1/K, which means b is

quite small. This is a boundary case of the algorithm. One can use the Euler-

Maclaurin summation technique to compute the cubic sum to within ± ε in

poly-log time in K/ε. This is possible to do because we will have a + 2bK +

|3cK2| = O(1), which means the derivatives of the summand exp(2πiax +

2πibx2 + 2πicx3), evaluated at K, will not grow too rapidly for purposes of

applying the Euler-Maclaurin formula in such a way that only O(log(K/ε))

correction terms are needed. (Of course, depending on the exact size of a +

2bK+ |3cK2|, one may first have to divide the cubic sum into O(1) consecutive

subsums, then apply the Euler-Maclaurin formula to each subsum.) To see

why the estimate a + 2bK + |3cK2| = O(1) should hold, let b′, c′, and K ′

denote the quadratic coefficient, cubic coefficient, and sum length from the

previous iteration, respectively. Then K ≤ 2b′K ′ + 1, c = c′/(2b′)3, and by

hypothesis |c′(K ′)2| ≤ 0.01b′, 1 ≤ b′K ′, and bK < 1. Combined, this implies

a+ 2bK + |3cK2| < 3 + |4c′(K ′)2|/b′ = O(1). Notice this is the first time the

full force of the condition |cK2| ≤ 0.01b has been used.

Put together, we may now assume the condition |cK2| ≤ 0.01b is the

sole condition that fails. Notice the reason the condition |cK2| ≤ 0.01b can

eventually fail is that the new cubic coefficient is given by c = c′/(8(b′)3),

which for b′ ∈ (0, 1/2) is greater than the previous cubic coefficient c′. So

although the length of the cubic sum is cut by a factor of about 2b′ with each

application of the van der Corput iteration, the size of the cubic coefficient

grows by a factor of 1/((2b′)3.

Now, when the condition |cK2| ≤ 0.01b fails, we apply the van der Corput

iteration exactly once more. Since cK2 ≤ c′(2b′K ′+1)2/(2b′)3 ≤ 0.02, the series

expansion (3.8) is still valid, but its convergence is quite slow. In particular,

the exponential sum resulting from this last application of the van der Corput

iteration, which is a sum of length K̃ ≤ cK3 terms, is not necessarily cubic.

In order to compute this (possibly high degree) sum efficiently, we ultimately

rely on precomputed data. And as shown in Section 4 later, the cost of the

precomputation is about K̃4 ≤ c4K12 operations.

In summary, starting with a cubic coefficient satisfying c ∈ [0,Kµ−3] say,

where µ ≤ 1, we repeatedly apply the van der Corput iteration (3.15) until K is
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not large enough, or the condition 1 ≤ bK fails, or we encounter a sole failure of

the condition |cK2| < 0.01b (b here refers to the normalized b ∈ [0, 1/4]). The

first two scenarios are relatively easy to handle, and represent boundary points

of the algorithm. The third scenario is more complicated. There, we apply

the van der Corput iteration exactly once more, which leads to an exponential

sum of length roughly ≤ Kµ terms. This last sum is not necessarily cubic, and

can be of high degree. Nevertheless, we show it can in fact be evaluated to

within ± ε in poly-log time in K/ε provided an FFT precomputation costing

K4µ+o(1) operations on numbers of O(log(K/ε)2) bits is performed.

It might be helpful to keep the following prototypical example in mind.

We start with c = Kµ−3 and b = Kµ−1, and apply the van der Corput iteration

to the cubic sum. This produces a new sum of length K̃ ≈ Kµ terms. The

new sum is still cubic because the contribution of the quartic and higher terms

in the series (3.8) is of size O(1). We observe that the new cubic coefficient

c̃ = c/(2b)3 is of size about K̃−2 ≈ K−2µ, and that the van der Corput iteration

must end since c̃K̃2 ≈ 1. The last cubic sum is then evaluated in poly-log

time using data that was precomputed via the FFT. The typical cost of the

precomputation is about K̃4 ≈ K4µ steps since there are approximately K̃,

K̃2, and K̃, discretized values to consider for the linear, quadratic, and cubic,

arguments in the last sum (see our description of Schönhage’s method earlier).

We remark that many of steps of the previous outline still work even if

we relax some of the conditions; e.g. it might be possible to relax the halting

criteria cK2 ≤ 0.01b to cK2 ≤ 0.01
√
b. So it might be possible to obtain

some yet faster algorithms to compute cubic sums via this approach, which in

turn lead to faster methods to compute ζ(1/2 + it). In addition, the idea of

repeated applications of the van der Corput iteration can be used to compute

exponential sums of higher degree (as well as cubic sums with a larger cubic

coefficient). However, the complexities of the resulting algorithms are not

useful for computing zeta since the costs of their needed precomputations are

too high.

It is plain that the quadratic and cubic sums algorithms share many fea-

tures, and it is desirable to take advantage of such similarities as directly and

as fully as possible. So although the approach just outlined appears to be a

natural way to generalize the quadratic sums algorithm of [Hia11] to the case

of cubic sums, a literal implementation of it does not make direct use of the

techniques and methods already developed in [Hia11]. We thus choose a dif-

ferent implementation that breaks up the cubic sum into simpler components

most of which are already handled by [Hia11]. This way, in the course of our

derivation of the cubic sums algorithm, we avoid having to reconstruct the

algorithm for quadratic sums from scratch.
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Specifically, in the initial step of our implementation, we convert the cubic

sum to an integral involving a quadratic sum. This is followed by two phases

(one of which is largely a direct application of the quadratic sums algorithm),

then an elementary saddle-point calculation, and an FFT precomputation. We

give a technical overview of this chain of steps in the next few paragraphs.

Let ε ∈ (0, e−1), and 0 ≤ µ ≤ 1, assume K > 1000, and c0 ∈ [0,Kµ−3/100]

say. It is straightforward to verify

(3.16) H(K, j; a0, b0, c0) =
1

Kj

∫ 1/2

−1/2
F (K; a0 − x, b0)Q(K, j;x, c0) dx ,

where the quadratic sum F (.) and the cubic sum Q(.) are defined by

F (K; a0, b0) :=
K∑
k=0

exp(2πia0k + 2πib0k
2) ,(3.17)

Q(K, j;x, c0) :=
1

Kj

K∑
k=0

kj exp(2πixk + 2πic0k
3) .

In order to motivate the first phase of the algorithm, we observe that if

F (K; a0 − x, b0) on the right-hand side of (3.16) is replaced (completely un-

justifiably) by F (K; a0, b0), then the cubic and quadratic sums there become

“decoupled”, or independent of each other. Also, since c is small, the cubic

sum Q(.) can essentially be converted, via the Euler-Maclaurin formula, to an

integral that is not problematic to compute. So, under such a hypothetical

replacement of F (K; a0 − x, b0) by F (K; a0, b0), the bulk of the effort in com-

puting the right-hand side is essentially in computing a quadratic sum, which

we already know how to do efficiently via Theorem 2.1.

With this in mind, the purpose of the first phase is to “decouple” the

quadratic and cubic sums in (3.16) by making the coefficient of −x in F (K; a0−
x, b0), which starts at 1, as small as possible. We essentially regard the first

phase as a useful technical device to allow us to apply the quadratic sums

algorithm during the second phase. Slightly more explicitly, the first phase

consists of O(logK) iterations. With each iteration, the size of cubic coefficient

c0 in (3.16) grows, while the length of the cubic sum Q(.) decreases. Also,

the coefficient of −x in F (K; a0 − x, b0), which starts at 1, decreases with

each iteration. It is shown the number of operations cost of each iteration is

polynomial in ν(K, j, ε).

The first phase ends when c, which denotes the current value of the cubic

coefficient, starts becoming too large for the Euler-Maclaurin formula to accu-

rately approximate the cubic sum Q(.) in such a way that only a few correction

terms are needed. This roughly occurs when cN2 ≈ 1, where N denotes the

current length of the cubic sum. At that point, the cubic sum Q(.) is converted

to an integral, plus a few correction terms, via the Euler-Maclaurin formula,
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which yields a main expression of the form:

(3.18)
1

N j

∫ N

0
exp(2πicy3)

∫ 1/4

−1/4
exp(−2πixy)F (K; a0 − α0 x, b0) dx dy ,

where 0 < α0 . Kµ−1, N . Kµ, and 0 < c < 1/N2 (see §4.1 for precise

details).

In the second phase, we apply the quadratic sums algorithm to F (K; a0−
α0 x, b0). It is straightforward to do so, despite the presence of the integral sign

in (3.18), precisely because α0 is relatively small (recall 0 < α0 . Kµ−1), and

so the length of the quadratic sum, which is about a0 − α0x + 2bK, depends

very weakly on x. With each iteration of the second phase, the size of α0

grows by a factor of 1/2b0 ≥ 2 while the length of the quadratic sum F (.) is

multiplied by a factor of about 2b0 ≤ 1/2. It is shown the number of operations

cost of each iteration is polynomial in ν(K, j, ε). In general, the second phase

is more time-consuming than the first one because it requires evaluating the

remainder terms resulting from the quadratic sums algorithm.

The second phase ends when the value of α0 nears 1, at which point further

applications of the quadratic sums algorithm start becoming complicated. This

is because the length of the quadratic sum, which is about a0 − α0x + 2bK,

then depends measurably on x. At the end of the second phase, we are left

with an expression of the form

1

N j

∫ N

0
exp(2πicy3)

∫ 1/4

−1/4
exp(−2πiyx− 2πiα1x− 2πiα2x

2)(3.19)

×F (M ; a− αx, b) dx dy ,

where M ≤ N/α, 1/Λ(K, j, ε) < α < 1, and α, a, and b, denote the values

of α0, a0, and b0 at the end of the second phase. The numbers α1 and α2 in

(3.19) are certain real parameters that are related to α and satisfy |α1| < 4α

and |α2| < α.

To each term in the quadratic sum F (M ; a−αx, b), there is an associated

“saddle-point with respect to y” (see §4.3). On extracting the saddle-point

contributions (there are about M of them), expression (3.19) is reduced to a

short linear combination of O(ν(K, j, ε)) exponential sums of the form

(3.20)
1

M l

M∑
k=0

kl exp(2πiβ1k + 2πiβ2k
2 + · · ·+ 2πiβSk

S) ,

where 3 ≤ S ≤ 3 + logN/ logM , 0 ≤ l = O(ν(K, j, ε)), and the (real) coeffi-

cients βs, 3 ≤ s ≤ S, will typically assume values in restricted subintervals near

zero of decreasing length with s; see Section 4.3. The appearance of higher

degree exponential sums in (3.20) is simply a reflection of the growth in the

size of the cubic coefficient during the first phase, which implies that expansion
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(3.8) from earlier converges more slowly, leading to higher degree exponential

sums.

Next, we perform a “dyadic subdivision” of the sums (3.20) so that we may

restrict our attention to lengths of the form M = 2n. For each relevant value of

n, l, and S, we precompute the sums (3.20) on a dense enough grid of points,

taking into account that the coefficients βs, 3 ≤ s ≤ S, are generally small in

size. There are also some relations among the coefficients β4, β5, . . . , βS , which

are useful during the FFT precomputation in the case M much smaller than

N . It is shown in Section 4.4 that the overall cost of the FFT precomputation

is about N4+o(1) = K4µ+o(1) operations. Once the precomputation is finished,

the sums (3.20) can be evaluated quickly elsewhere via Taylor expansions, as

claimed in Theorem 2.2.

4. The algorithm for cubic exponential sums

with a small cubic coefficient

Let bxc denote the largest integer less than or equal to x , dxe denote

smallest integer greater than or equal to x, {x} denote x − bxc, and log x

denote loge x. Let exp(x) and ex both stand for the usual exponential func-

tion (they are used interchangeably). We define 00 := 1 whenever it occurs.

We measure complexity (or time) by the number of arithmetic operations on

numbers of O((log t)κ0) bits required, where κ0 is an absolute constant (not

necessarily the same for different methods to compute zeta). An arithmetic

operation means an addition, a multiplication, an evaluation of the logarithm

of a positive number, or an evaluation of the complex exponential. In what

follows, asymptotic constants are absolute unless otherwise is indicated.

Let µ ∈ [0, 1], ε ∈ (0, e−1), 0 ≤ j, 0 < K, a0 ∈ [0, 1), b0 ∈ [0, 1),

and c0 ∈ [0,Kµ−3]. As before, ν(K, j, ε) := (j + 1) log(K/ε), and we define

Λ(K, j, ε) := 504ν(K, j, ε)6 say. We also define F (K; a, b) := F (K, 0; a, b).

In this section, different occurrences of K, j, and ε will denote the same

values. For this reason, we drop the dependence of Λ and ν on K, j, and ε,

throughout Section 4. We use the same computational model as the one de-

scribed in Section 2. Arithmetic is performed using O(ν(K, j, ε)2)-bits. And

any implicit asymptotic constants are absolute, unless otherwise is indicated.

In order to spare the reader some straightforward and repetitious details,

we will often use informal phrases such as “It is possible to reduce (or sim-

plify) the problem of computing the function XK,j(.) to that of computing the

function YK,j(.),” or “In order to compute the function XK,j(.), it is enough

(or suffices) to compute the function YK,j(.).” This will mean there are abso-

lute constants κ̃3, κ̃4, B̃1, B̃2, and B̃3 (not necessarily the same on different

occasions) such that for any positive ε < e−1, if the function YK,j(.) can com-

puted for any of the permissible values of its arguments to within ± ε, then
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the function XK,j(.) can be computed for any of the permissible values of its

arguments to within ± B̃1 ν(K, j, ε)κ̃3ε using at most B̃2 ν(K, j, ε)κ̃4 arithmetic

operations on numbers of B̃3 ν(K, j, ε)2 bits. The meaning of the phrase “per-

missible values of the arguments” will be clear from the context.

Similarly, we frequently say “the function XK,j(.) can be computed (or

evaluated) efficiently (or quickly).” This means there are absolute constants

κ̃5, κ̃6, B̃4, B̃5, and B̃6 (not necessarily the same on different occasions) such

that for any positive ε < e−1, the function XK,j(.) can be computed for any

of the permissible values of its arguments to within ± B̃4 ν(K, j, ε)κ̃5ε using at

most B̃5 ν(K, j, ε)κ̃6 arithmetic operations on numbers of B̃6 ν(K, j, ε)2 bits.

We may assume K > Λ, otherwise the cubic sum can be evaluated directly

in O(Λ) operations on numbers of O(ν) bits. Notice by the conventions just

presented, we will often abbreviate this, and similar statements, by saying that

the cubic sum can be computed efficiently or quickly if K < Λ.

As stated at the beginning of the section, c0 ∈ [0,Kµ−3]. We may assume

µ ≥ 0, because if µ < 0 we have cK3 ≤ 1, so by a routine application of

Taylor expansions, the term exp(2πick3) can be reduced to a polynomial in k

of degree O(ν), plus an error of size O(ε/K) say. As it is clear the coefficients

of this polynomial are quickly computable and are of size O(1) each, then the

cubic sum can be expressed as a linear combination of O(ν) quadratic sum,

plus an error of size O(ε). And since each such quadratic sum can be computed

efficiently via Theorem 2.1, so can the cubic sum.

We may also assume c0K
2 < 1/Λ4 (this is convenient to assume during the

first phase of the algorithm in Section 4.1). Because if K−2/Λ4 ≤ c0 ≤ K−2,

then by a procedure completely similar to that used in describing Schönhage

method earlier, the cubic sum can be computed quickly provided an FFT pre-

computation costing ≤ ΛK4 operations on numbers of O(ν) bits, and requiring

≤ ΛK4 bits of storage, is performed. In particular, since K−2/Λ4 ≤ c0, then µ

in the statement of Theorem 2.2 satisfies 1− 4(log Λ)/(logK) ≤ µ. Therefore,

K4 ≤ Λ16K4µ, and the claim of Theorem 2.2 over K−2/Λ4 ≤ c0 ≤ K−2 holds

anyway.

4.1. The first phase: decoupling the cubic and quadratic sums. As before,

let Q(K, j;x, c0) := H(K, j;x, 0, c0), so

(4.1) Q(K, j;x, c0) :=
1

Kj

K∑
k=0

kj exp(2πixk + 2πic0k
3) .

Also define

(4.2)

Sp,K,j,a0,b0(N0, c0, α0,0) :=
1

(N0)j

∫
Ip

F (K; a0 − α0,0 x, b0)Q(N0, j;x, c0) dx ,
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where I1 := [−1/2,−1/4), I2 := [−1/4, 1/4], and I3 := (1/4, 1/2]. By a

straightforward calculation, we have

H(K, j; a0, b0, c0) = S1,K,j,a0,b0(K, c0, 1) + S2,K,j,a0,b0(K, c0, 1)(4.3)

+ S3,K,j,a0,b0(K, c0, 1) .

We do not expect the terms S1(.) and S3(.) in (4.3) to be computationally

troublesome because if K is large enough, which we are assuming, then the

derivative with respect to k of xk+ c0k
3 (this is the exponent of the summand

in Q(.)) never vanishes over 1/4 ≤ |x|, 0 ≤ k ≤ K, and 0 ≤ c0 ≤ Kµ−3, with

c0K
2 < 1/Λ4. So once Q(.) is converted to an integral via the Euler-Maclaurin

summation formula, as we plan to do, then the resulting cubic exponential inte-

gral will not contain any saddle-points. Thus, ultimately, we expect S1(.) and

S3(.) can be expressed as a linear combination of a few quadratic exponential

sums.

Indeed, on applying the Euler-Maclaurin summation formula to the cubic

sum Q(K, j;x, c0) in S3,K,j,a0,b0(K, c0, 1), for instance, we obtain, via auxiliary

Lemma 5.1 in Section 5, an expression of the form

S3,K,j,a0,b0(K, c0, 1) =
1

Kj

∫ 1/2

1/4

∫ K

0
yj exp(2πic0y

3 + 2πixy)

(4.4)

× F (K; a0 − x, b0) dy dx+R3,K,j,a0,b0(K, c0, 1) ,

where R3,K,j,a0,b0(K, c0, 1) is a remainder function arising from the correction

terms in the Euler-Maclaurin formula.

We claim the the remainder R3,K,j,a0,b0(K, c0, 1) can be computed effi-

ciently (in poly-log time). For as an immediate consequence of auxiliary Lem-

mas 5.2 and 5.3 in Section 5, the remainder R3,K,j,a0,b0(K, c0, 1) can be written

as a linear combination of ≤ B̃7ν quadratic exponential sums, plus an error

of size ≤ B̃8 ν
κ̃7 ε/K2, where B̃7, B̃8, and κ̃7, are absolute constants (notice

an error size of ≤ B̃8 ν
κ̃7 ε/K2 is small enough for purposes of proving Theo-

rem 2.2). The coefficients of said linear combination can be computed to within

± νκ̃8 B̃9 ε using ≤ B̃10ν
κ̃9 operations on numbers of ≤ B̃11ν

2 bits, and each

coefficient is of size ≤ B̃12, where B̃9, B̃10, B̃11, B̃12, κ̃8, and κ̃9, are absolute

constants. For simplicity, we will often abbreviate the above technical details

by saying “R3,K,j,a0,b0(K, c0, 1) can be written as a linear combination, with

quickly computable coefficients each of size O(1), of O(ν) quadratic sum, plus

an error of size O(ε/K2).” Now, since each quadratic sum can be computed

efficiently via Theorem 2.1, then so can the remainder R3,K,j,a0,b0(K, c0, 1).

As for the main term in (4.4), which is a double integral, we have by auxil-

iary Lemma 5.4 that it too can be written as a linear combination, with quickly

computable coefficients each of size O(1), of O(ν) quadratic exponential sums,
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plus an error of size O(ε/K2). The treatment of the term S1,K,j,a0,b0(K, c0, 1)

in (4.3) is almost identical to that of the term S3,K,j,a0,b0(K, c0, 1).

So it remains to tackle the term S2,K,j,a0,b0(K, c0, 1) in (4.3). This is the

computationally demanding term because it is where the cubic exponential

integral obtained from the cubic sum Q(.) can contain saddle-points. For sim-

plicity, assume K is a power of 2. The argument to follow is easily modifiable

to the case K not a power of 2. We define

(4.5) Nm := K/2m , cm := 23mc0 , α0,m := 2−m .

Notice S2,K,j,a0,b0(K, c0, 1) = S2,K,j,a0,b0(N0, c0, α0,0). By splitting Q(.) into a

sum over the evens and a sum over the odds we obtain

(4.6) Q(Nm, j;x, cm) = 2Q(Nm+1, j; 2x, cm+1)−Q(Nm, j;x+ 1/2, cm) .

By the definitions of Nm, cm, and α0,m, coupled with the transformation (4.6)

and the change of variable x← 2x applied to the integral with respect to x in

S2(Nm, cm, α0,m), we obtain

S2,K,j,a0,b0(Nm, cm, α0,m) = S2,K,j,a0,b0(Nm+1, cm+1, α0,m+1)(4.7)

+ S1,K,j,a0,b0(Nm+1, cm+1, α0,m+1)

+ S3,K,j,a0,b0(Nm+1, cm+1, α0,m+1)

− S4,K,j,a0+α0,m+1,b0(Nm, cm, α0,m) ,

where the integral with respect to x in S4(.) is taken over the interval I4 :=

(1/4, 3/4].

Again, by the auxiliary Lemmas 5.1 through 5.4 in Section 5, the functions

S1(.), S3(.), and S4(.), on the right side of (4.7) can be computed efficiently

provided cmN
2
m < 1/Λ say (this condition ensures the Euler-Maclaurin formula

can approximate the cubic sum Q(.) by an integral to within O(ε/K2) using

only O(ν) correction terms, which, since 1/4 ≤ |x|, ensures said integral never

contains a saddle-point).

So by repeating the transformation (4.7) at most dlog2Ke times, we reach

either 1/Λ < cmN
2
m orNm < Λ. The latter is a boundary point of the algorithm

since the problem simplifies to computing a total of Nm+1 ≤ Λ functions of the

form
∫ 1/2
−1/2 exp(2πixn)F (K; a0−α0,m x, b0) dx, where 0 ≤ n ≤ Nm is an integer.

As an immediate consequence of the proof of Lemma 5.3 (see the calculations

following (5.8) there), such functions can be evaluated efficiently since they

reduce to quadratic sums. So we may assume Λ ≤ Nm, and that the first phase

is ended due to a failure of the condition 0 ≤ cmN2
m ≤ 1/Λ. By the definitions

of cm and Nm, a failure of this condition implies 1/Λ < (23mc)(K/2m)2, and

hence α0,m = 2−m < ΛcK2. Recalling that 0 ≤ c ≤ Kµ−3 by hypothesis, it

follows α0,m ≤ ΛKµ−1, which in turn implies Nm = α0,mK ≤ ΛKµ. Notice

also, since c0N0 ≤ 1/Λ4 by hypothesis, then α0,m ≤ 1/Λ.
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Put together, letting N , α0, and c denote the values of Nm, α0,m, and

cm, respectively, at the end of the first phase, our task has been reduced to

numerically evaluating (to within ± νκ ε, for any absolute κ) the function

(4.8)
1

N j

∫ 1/4

−1/4

∫ N

0
yj exp(2πicy3 − 2πixy)F (K; a0 + α0 x, b0) dy dx ,

where, for later convenience, we made the change of variable x← −x in (4.8).

Here, a0 ∈ [0, 1), b0 ∈ [0, 1), and N , c, and α0, satisfy the bounds

(4.9)

1/Λ ≤ cN2 ≤ 2/Λ , Λ ≤ N ≤ ΛKµ , Λ/K ≤ α0 ≤ min{ΛKµ−1, 1/Λ} .

4.2. The second phase: the algorithm for quadratic sums. Each term in

the quadratic sum F (K; a0 + α0 x, b0) in (4.8) has a saddle-point associated

with it; see Section 4.3 for a precise formulation of this. If we extract the

contribution of each saddle-point at this point of the algorithm (as done in

§4.3 later), we obtain a sum of length K terms, which is of the same length as

the original cubic sum H(K, j; a0, b0, c0). But if we are able to cut the length

of F (K; a0 + α0 x, b0), then there will be fewer saddle-points to consider.

To cut the length, we employ the algorithm of [Hia11]. By the periodicity

of the complex exponential we have

F (K; a0 + α0 x, b0) = F (K; a0 + α0 x± 1/2, b0 ± 1/2)(4.10)

= F (K; a0 + α0 x± 1/2, b0 ∓ 1/2) .

Using (4.10), it is not too hard to see given any pair (ã0, b̃0) ∈ [0, 1)×[0, 1), and

any 0 ≤ α̃ ≤ 1/Λ say, there is a quickly computable pair (ã1, b̃1), depending

only on ã0 and b̃0, that satisfies

N1. ã ∈ [0, 2],

N2. b̃1 ∈ [0, 1/4],

N3. ã1 + α̃ x ∈ (0, 2) for all x ∈ [−1/4, 1/4],

and such that either

(4.11) F (K; ã0 + α0 x, b̃0) = F (K; ã1 + α0 x, b̃1) ,

or

(4.12) F (K; ã0 + α0 x, b̃0) = F (K; ã1 − α0 x, b̃1) .

The pair (ã1, b̃1) is not necessarily unique.

Without loss of generality, we may assume the original pair (a0, b0) in

(4.8) already satisfies the normalization conditions N1 and N3, and that b0 ∈
[−1/4, 1/4]. Also, for now, let us assume da0 + α0 xe < ba + α0 x + 2|b0|Kc
holds for all x ∈ [−1/4, 1/4]. Notice this immediately implies |b0| ≥ 1/(2K),
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so |b0| cannot be too small. Under such circumstances, Lemma 6.6 in [Hia11]

applies. If b0 ∈ (0, 1/4], that lemma yields

F (K; a0 +α0 x, b0) =
1√
2b0

eπi/4−πi(a0+α0 x)2/(2b0)F

Å
b2b0Kc;

a0 + α0 x

2b0
,− 1

4b0

ã(4.13)

+R(K, a0 + α0 x, b0) +O(K2ε+ e−K) ,

which is valid for any ε ∈ (0, e−1), and any x ∈ [−1/4, 1/4]. And if b0 ∈
[−1/4, 0), which implies conjugation is needed to ensure condition N2 holds,

we obtain the same formula as (4.13) except the right side is replaced by its

conjugate, and α0, b0, and a0, are replaced by −α0, −b0, and 1− a0 or 2− a0,

respectively. In either case, the resulting remainder term R(K, a0 + α0 x, b0)

in (4.13) is fully described by Lemma 6.6 in [Hia11], as we discuss here later.

(It might be helpful to consult Lemmas 6.6 and 6.7 in [Hia11] at this point.)

We can repeatedly apply formula (4.13) for as long as the analogue of the

condition da0 +α0 xe < ba0 +α0 x+2|b0|Kc holds for all x ∈ [−1/4, 1/4]. After

m such applications say, we arrive at an expression of the form

F (K; a0 + α0 x, b0) = Dm e
−2πi α1,m x−2πi α2,m x2 F (Km; am + αm x, bm)

(4.14)

+Rm(K; a0, α0, x, b0) +O(K2ε+ e−Km) ,

where

Kl ≤ 2b0 2b1 . . . 2bl−1K ,(4.15)

Rm(K; a0, α0, x, b0) :=
m−1∑
l=0

Dl e
−2πi α1,l x−2πi α2,l x

2
R(Kl, al + αl x, bl) .

For example, if b0 ∈ (0, 1/4] and m = 1, then K0 := K, K1 := b2b0K0c,
α1 := α0/(2b0), α1,0 = 0, α1,1 := α1,0 + a0α1, α2,0 = 0, α2,1 := α2,0 +

b0(α1)2, D0 = 1, and D1 := D0 (2b0)−1/2eπi/4−πi(a0)2/(2b0). As for a1 and b1,

they are defined according to whether the normalization procedure expresses

F (K1; a0/(2b0)+α1x,−1/(4b0)) as F (K1; ã+α1x, b̃) or as F (K1; ã− α1x, b̃), for

some ã and b̃ satisfying conditions N1, N2, and N3. In the former case we define

a1 := ã and b1 := b̃, and in the latter case we define a1 := −ã and b1 := −b̃.
It is understood if bl in (4.15) is negative, the remainder R(Kl, al + αlx, bl)

stands for R(Kl,−al − αlx,−bl).
The numbers Kl, al, bl, αl, α1,l, α2,l, and Dl are quickly computable. We

only need the following properties for them, which are valid for 1 ≤ l ≤ m,

where m denotes the number of repetitions of formula (4.13), or its conjugate
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analogue, so far

αl−1/αl = |2bl−1| ≤ 1/2 , |Dl| = 1/
»
|2b0 2b1 . . . 2bl−1| ≤

√
K ,

(4.16)

0 < α1,l =
l∑

r=1

|ar−1|αr < 4αl , |α2,l| =
l∑

r=1

|br−1|(αr)2 < min{αl, (αl)2} .

Each application of formula (4.13) reduces the length of the quadratic

sum by a factor of about 2b0 ≤ 1/2, but it also multiplies the size of α0 by a

factor of 1/(2b0) ≥ 2. So during the second phase, the length of quadratic sum

decreases, while the size of the parameter α0 grows. Eventually, formula (4.13)

is no longer useful because, essentially, due to the growth in α0, the length of

the new quadratic sum will start to depend strongly on x. The precise point at

which we stop applying formula (4.13) is determined by the following criteria.

Let m0 be the first nonnegative integer for which at least one of the following

conditions fails (notice multiple conditions can fail at the same time):

C1. αm0 ≤ 1/Λ ,

C2. Λ ≤ Km0 ,

C3. d|am0 |+αm0xe < b|am0 |+αm0x+ 2|bm0 |Km0c for some x ∈ [−1/4, 1/4].

Then the second phase is ended after exactly m0 applications of formula

(4.13), or its conjugate analogue. We observe since 2bl ≤ 1/2, then Kl+1 ≤
Kl/2. So by construction, m0 ≤ log2K.

A failure of condition C2 or condition C3 is not hard to handle, and in

fact represents a boundary points of the algorithm (while a failure of condition

C1 is substantially more difficult to deal with, and will occupy most of this

remainder of this subsection). For the former means Km0 is not large enough,

and the latter means bm0 is too small. If Km0 is not large enough, then,

ignoring the remainder Rm0(.) for the moment, we need to deal with the sum

Km0∑
k=0

exp(2πi am0k + 2πi bm0k
2)
Dm0

N j

∫ N

0
yj exp(2πicy3)(4.17)

×
∫ 1/4

−1/4
exp
Ä
2πiyx+ 2πi(αm0 k − α1,m0)x− 2πiα2,m0 x

2
ä
dx dy .

Since Km0 ≤ Λ, it suffices to deal with this sum term by term. Lemma 5.5

shows each term in (4.17) can indeed be computed efficiently (because, essen-

tially, the integral over y in each term contains at most one saddle-point, and

there are only O(Λ) terms). And if condition C3 is the one that fails (so b is

too small), then the Euler-Maclaurin formula can be applied to F (.), which
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leads to a triple integral

1

N j

∫ N

0
yj exp(2πicy3)

∫ 1/4

−1/4
exp
Ä
2πiyx− 2πiα1,m0x− 2πiα2,m0 x

2
ä

(4.18)

×
∫ Km0

0
exp(2πiαm0xz + 2πiam0z + 2πibm0z

2) dz dy dx

plus a remainder term arising from the correction terms in the Euler-Maclaurin

formula. Cauchy’s theorem as well as saddle-point techniques very similar to

those carried out in Section 4.3 later allow us to reduce (4.18) to double in-

tegrals (with respect to x and y) of the type handled by Lemma 5.5. The

calculations involved are tedious but elementary to do, and they involves con-

sidering several cases; see the discussion following (4.23) for instance.

Put together, we may assume conditions C2 and C3 still hold by the last

iteration (that is, Km0 > Λ and αm0 > 1/Λ), and the algorithm halts due to a

failure of condition C1. In other words, our task has been reduced to showing

how to deal with a sole failure of condition C1, and also to dealing with the

remainder functions

Dl

N j

∫ N

0
yj exp(2πicy3)

∫ 1/4

−1/4
exp(−2πixy − 2πiα1,l x− 2πiα2,l x

2)(4.19)

×R(Kl, al + αl x, bl) dx dy ,
for 0 ≤ l < m0.

Let us deal with the remainder functions first. We will show how to

efficiently compute (4.19). To this end, suppose bl (hence al) is positive. Let

[w, z) be any subinterval of [−1/4, 1/4) such that bal +αlx+ 2blKlc and dal +
αlxe are constant for all x ∈ [w, z). Since αl < 1/Λ, the interval [−1/4, 1/4) can

be written as the union of at most 4 such subintervals, and these subintervals

can be determined quickly. Similarly, if bl (hence al) is negative, we choose the

subinterval [w, z) ⊂ [−1/4, 1/4) so that b−al − αlx − 2blKlc and d−al − αlxe
are constant for all x ∈ [w, z). Since the treatments of these possibilities are

analogous, let us focus out attention on the case bl is positive.

Let r, d ∈ [0, 1000 ν(K, ε)] be integers, and let ωa0+α0 x := ωa0+α0 x,b0,K0 =

{a0 + α0 x + 2b0K0}, where {y} denotes the fractional part of y, and let

ω1,a0+α0 x := da0 + α0 xe − (a0 + α0 x). Then by Lemma 6.7 in [Hia11], we

have that over x ∈ [w, z) the remainder R(Kl, al +αl x, bl) can be written as a

linear combination of the functions

(4.20) xr , xr exp (2πiαlxKl) , exp
î
2πiP αl+1x− 2πibl (αl+1)2 x2

ó
,

where P ∈ {−1, 0,Kl+1,Kl+1 + 1}, and the functions

exp

ñ
2πi ωal+αlxQ− 2π(1− i)r ωal+αlx√

2bl

ô
(4.21)

×
∫ 1

0
td exp

ñ
−2π(1− i) ωal+αlx√

2bl
t− 2πrt

ô
dt ,
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where Q ∈ {0,Kl}, and the functions

(4.22) (ωal+αlx)r exp [2πi ωal+αlx L− 2π ωal+αlxR] ,

where L,R ∈ [Kl,Kl+1000 ν(Kl, ε)] say, as well as functions of the same form,

but with ωal+αlx possibly replaced by 1−ωal+αlx, or ω1,al+αlx, or 1−ω1,al+αlx,

plus an error term bounded by O(ΛK−2ε); the length of the linear combi-

nation is O(Λ) terms, and the coefficients in the linear combination can all

be computed efficiently. We remark that, using the notation and terminology

of [Hia11], the functions (4.20) arise from bulk terms like J(K, j;M,ωal+αlx, bl),

while the functions (4.21) arise from boundary terms like ĨC7(K, j;ωal+αlx, bl).

By choice of [w, z), it is straightforward to see there are two numbers

λ := λ(al, αl) and λ′ := λ′(al, αl), which can be computed quickly, such that

ωal+αlx = λ+αlx and ω1,al+αlx = λ′−αx, for all x ∈ [w, z) (notice 0 ≤ λ+αlx ≤
1 and 0 ≤ λ′ − αlx ≤ 1 over x ∈ [w, z)). Substituting λ + αlx for ωal+αlx we

see that the functions (4.21) and (4.21) can be expressed explicitly in terms

of x. It is plain such substitutions extend completely similarly if, instead of

ωal+αlx, the functions (4.21) and (4.22) involve ω1,al+αlx, or 1 − ωal+αlx, or

1− ω1,al+αlx.

Therefore, in order to enable an efficient computation of (4.19), it suf-

fices to show how to efficiently compute the expressions arising from replacing

R(Kl, al +αl x, bl) in (4.19) by any of the functions in (4.20), (4.21), or (4.22).

Substituting any of the functions (4.20) and (4.22) for R(Kl, al + αl x, bl)

leads to integrals that can be computed efficiently by a direct application of

Lemma 5.5, provided one appeals to the set of observations (4.16), and the

fact 0 ≤ ωal+αlx = λ1 +αlx ≤ 1 over x ∈ [w, z). In fact, Lemma 5.5 can handle

substantially more general integrals than those arising from (4.20) and (4.22),

and can be generalized yet more.

As for the functions (4.21), they produce somewhat more complicated

expressions, involving a triple integral

Dl

N j

∫ N

0
yje2πicy3

∫ z

w
e

2πiQλαlx−2π(1−i)r λ+αlx√
2bl
−2πiyx−2πiα1,lx−2πiα2,lx

2

(4.23)

×
∫ 1

0
tde
−2π(1−i)λ+αlx√

2bl
t−2πrt

dt dx dy ,

which are not of the type immediately handled by Lemma 5.5. Nevertheless,

expression (4.23) can still be evaluated efficiently via that lemma. For one

can first apply the change of variable x← λ+ αlx to (4.23), so the interval of

integration with respect to x is transformed to [w1, z1], where w1 := w1,λ,αl,w =

λ + αlw and z1 := z1,λ,αl,w = λ + αlz. One then considers the following two

cases.

On the one hand, if w1 > Λ
√

2bl say, so
√

2bl/w1 < 1/Λ, we evaluate the

integral with respect to t explicitly, which leads to a polynomial in
√

2bl/x
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of degree d. We then make the change of variable x ← 2x/w1, which trans-

forms the interval of integration with respect to x to [2, 2z1/w1]. Observing

z1/w1 = O(
√
Kl), one can divide the interval of integration with respect to

x into O(logKl) consecutive subintervals of the form [An, An + ∆n), where

2 ≤ An < 2z1/w1 and ∆n = bAn/2c, except in the final subinterval where ∆n

is possibly smaller. In any case, we always have ∆n < An/2. So now, the

change of variable x ← x − An, followed by an application of Taylor expan-

sions to the new term
√

2bl/(w1(x+An)), where now 0 ≤ x ≤ ∆n ≤ An/2, can

be used to write
√

2bl/(Anw1(1 + x/An)) as a polynomial in x/An of degree

bounded by O(ν), plus an error of size O(ε/K2) say. Together, this procedure

yields a linear combination, with quickly computable coefficients each of size

O(1), of O(Λ) integrals of the type directly handled by Lemma 5.5.

On the other hand, if w1 ≤ Λ
√

2bl, then one separately deals with the

integral over x ∈ [Λ
√

2bl, z1] as was just described, while over x ∈ [w1,Λ
√

2bl]

one expresses the cross-term e−2π(1−i)xt/
√

2bl , which was obtained after our

very first change of variable x← λ+αlx, as a polynomial in x of degree O(ν),

with coefficients depending on t, plus an error of size O(ε/K2). Specifically, we

apply the preliminary change of variable t← dΛ2et say, then divide the interval

of integration with respect to t into dΛ2e consecutive subintervals [n, n + 1).

Over each such subinterval we apply the change of variable t← t−n. Last, by

a routine application of Taylor expansions, followed by integrating explicitly

with respect to t, we are led to a linear combination, with quickly computable

coefficients each of size O(1), of O(Λ2) integrals of the type directly handled

by Lemma 5.5.

To summarize, let M := Km0 , a := am0 , D := Dm0 , b := bm0 , α := αm0 ,

α1 := α1,m0 , and α2 := α2,m0 . Notice N := α0K and α := α0/|2b0 2b1 . . . 2bm0 |
by definition, and Λ ≤ M ≤ |2b0 2b1 . . . 2bm0 |K by construction. From this it

follows Λ ≤M ≤ N/α. Also, we may assume m0 > 0, otherwise condition C3

fails before entering the second phase, in which case the question is reduced,

via the Euler-Maclaurin summation formula, to computing an integral of the

form (4.18), which can be done efficiently, as described earlier. Thus, our task

has been reduced to evaluating the expression

D

N j

∫ N

0
yj exp(2πicy3)

∫ 1/4

−1/4
exp(−2πiyx− 2πiα1x− 2πiα2x

2)(4.24)

×F (M ; a+ αx, b) dx dy ,

where a ∈ [0, 1), b ∈ [0, 1), and by (4.9), (4.16), the remarks preceding (4.24),

as well as the bound 1/K3 ≤ |α2|, which is easy to show, we have

Λ ≤ N ≤ ΛKµ , Λ ≤M ≤ N/α , 1/Λ ≤ cN2 ≤ 2/Λ ,(4.25)

1/Λ ≤ α ≤ N/M , 0 ≤ α1 ≤ 4α , 1/K3 ≤ |α2| ≤ α .
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4.3. Some saddle-point calculations. In this subsection, we extract the

saddle-point contribution associated with the terms of F (M ; a+ αx, b) in the

double integral (4.24). There are about M saddle-points.

Since α2 can assume values in a symmetric interval about zero, then with-

out loss of generality we may replace α2 by −α2. Also, let us drop the constant

D in front of (4.24) since it is bounded by
√
K, and the methods we present

permit the evaluation of (4.24) to within ±K−d for any fixed d > 0 anyway.

So the expression we wish to compute can be written explicitly as:

1

N j

∫ N

0
yj exp(2πicy3)

∫ 1/4

−1/4
exp(2πiα2x

2 − 2πiα1x− 2πiyx)(4.26)

×
M∑
k=0

exp(2πi(a+ αx)k + 2πibk2) dx dy .

We split the sum over k in (4.26) into three subsums (some of which possi-

bly empty): a bulk subsum consisting of the terms bΛ2c < k < M − bΛ2c, and

two tail subsums consisting of the terms 0 ≤ k ≤ bΛ2c and M − bΛ2c ≤ k ≤M .

By a direct application of Lemma 5.5, each term in the tail subsums can be

computed efficiently (each such term contains at most one saddle-point with

respect to y and there are only O(Λ2) terms). We remark the reason we single

out the tail subsums is technical and it is to simplify the proof of Lemma 5.6

and the calculation of integrals (4.39) later.

Therefore, we only need to deal with the bulk subsum. The domain of

integration with respect to x for each term in the bulk can be extended to

(−∞,∞) because by a direct application of Lemma 5.6 the sum of the integrals

over the extra pieces x ∈ (−∞,−1/4) and x ∈ (1/4,∞) can be computed

efficiently (because over these pieces, the integral with respect to y contains

no saddle-points, so the expression can be reduced to quadratic exponential

sums). Each term in the bulk sum thus becomes

1

N j

∫ N

0
yj exp(2πicy3)

∫ ∞
−∞

exp
Ä
2πiαkx− 2πixy − 2πiα1x+ 2πiα2x

2
ä
dx dy

(4.27)

=
exp
Ä
sign(α2) iπ4

ä»
2|α2|N j

∫ N

0
yj exp (2πifk(y)) dy ,

where sign(x) := x/|x| for x 6= 0, and

(4.28) fk(y) := fk(y, c, α, α1, α2) = cy3 − y2

4α2
+
αk − α1

2α2
y − (αk − α1)2

4α2
,
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and we used the easily-provable formula

(4.29)

∫ ∞
−∞

e2πixt+2πiyt2 dt =
esign(y)πi/4»

2|y|
e−2πix2/(4y), x, y ∈ R, y 6= 0 .

We want to extract the saddle point contribution from (4.27). To this end,

define the saddle-points

(4.30) yk := yk(c, α, α1, α2) =
1

12cα2

(
1−
»

1− 24cα2(αk − α1)
)
.

Notice by choice of yk, we have f ′k(yk) = 0. In what follows, it might be helpful

to keep in mind the bound

(4.31) |24cα2(αk − α1)| ≤ 48

MΛ
,

which follows from assumptions (4.25). The integral (4.27) can be written as

exp
Ä
sign(α2) iπ4

ä»
2|α2|N j

exp (2πifk(yk))

∫ N

0
yj exp (2πihk(y − yk)) dy ,(4.32)

hk(y) := hk(y, c, α2) = cy3 +

Å
3cyk −

1

4α2

ã
y2 .(4.33)

By elementary algebraic manipulations and Taylor expansions, we obtain

fk(yk) =
1

864c2α3
2

Ä
(1− 24cα2(αk − α1))3/2 − 1(4.34)

+ 36cα2(αk − α1)− 216c2α2
2(αk − α1)2

ä
=:

∞∑
s=0

dsk
s ,

where

ds := ds,c,α,α1,α2 = (24)scs−2αs−3
2 αsqs ,(4.35)

qs := qs,c,α1,α2 =
∞∑
l=0

Ç
l + s

s

å
gl+s(−1)l(24)lclαl2α

l
1 ,

and where g0 = 0, g1 = 0, g2 = 0, |gl| ≤ 1, and gl depends on l only. Notice

since |qs| ≤ 2s+1, |α2| ≤ α, cN2 ≤ 1/Λ, and αk ≤ N , it follows

(4.36)
∣∣∣ds+3M

s+3
∣∣∣ ≤ 2(48)3cα3k3(48)scsα2sM s <

N

4M s
for s ≥ 0 .

Also, each qs, hence ds, can be computed efficiently. Now define

(4.37) Ik,j := Ik,j,N,c,α,α1,α2 =
1»

2|α2|N j

∫ N

0
yj exp (2πihk(y − yk)) dy .
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Then the sum (4.26) has been reduced to a sum of the form

(4.38)

M−bΛ2c∑
k=bΛ2c

exp
Ä
2πiak + 2πibk2 + 2πifk(yk)

ä
Ik,j .

By our assumptions on N , M , c, α, α1, and α2, and the bound bΛ2c ≤ k ≤
M − bΛ2c, we have α(bΛ2c − 6) ≤ yk ≤ N − α(bΛ2c+ 6), and so 0 < yk < N .

So let us consider the integral (4.37) over the subintervals [0, yk) and [yk, N ]

separately. We use Cauchy’s theorem to replace the contour {y : 0 ≤ y < yk},
for instance, with {yeπi/4 : 0 ≤ y <

√
2yk} and {y + iyk : 0 ≤ y < yk}

(or their conjugates, appropriately oriented, depending on whether α2 is neg-

ative or positive, respectively). Taking into account the easily-deducible facts

hk(−yk) = −(αk − α1)2/(4α2) − fk(yk) and hk(N − yk) = fk(N) − fk(yk),

combined with suitable applications of Taylor expansions, one finds

Ik,j =
L∑
l=0

zl
kl

M l
+ e2πia1k+2πib1k2−2πifk(yk)

L∑
l=0

wl
kl

M l

(4.39)

+ e2πia1k+2πib1k2−2πifk(yk)
L∑
l=0

w̃l
1

kl
+ e2πia2k+2πib1k2−2πifk(yk)

L∑
l=0

vl
kl

M l

+ e2πia2k+2πib1k2−2πifk(yk)
L∑
l=0

ṽl
1

kl
+O(ΛK−2ε) ,

where L = O(ν), and a1 := a1,α,α1,α2 , a2 := a2,N,α,α1,α2 , and b1 := b1,α,α2 , are

real numbers of size O(K3) that are quickly computable. The coefficients zl :=

zl,N,c,α,α1,α2 , wl := wl,N,c,α,α1,α2 , and vl := vl,N,c,α,α1,α2 are quickly computable

and bounded by O(1). And the coefficients w̃l := w̃l,N,c,α,α1,α2 and ṽl :=

ṽl,N,c,α,α1,α2 are of size O(Λl) and are also quickly computable. In particular, on

substituting expression (4.39) back into (4.38), we see the sum (4.38) is equal to

(4.40)
L∑
l=0

zl
M l

M−bΛ2c∑
k=bΛ2c

kl exp(2πiak + 2πibk2 + 2πifk(yk)) ,

plus a linear combination, with quickly computable coefficients, of either O(ν)

quadratic sums of length ≤ M terms, or O(ν) sums of the type discussed in

Section 5 of [Hia11] of length ≤M terms (the latter also reduce to usual qua-

dratic sums; see [Hia11]). And all such sums can be computed efficiently via

Theorem 2.1.
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Let S := 3 + blogN/ logMc. Then by the Taylor expansion of fk(yk) as a

polynomial in k, given in (4.34) and (4.35), we have

(4.41) fk(yk) =
S∑
s=0

dsk
s +

∞∑
s=S+1

dsk
s .

Also, by estimate (4.36) we have |dsM s| ≤ N/M s−3. Since 0 ≤ k ≤M , the tail∑∞
s=S+1 dsk

s = O(N/MS−2) = O(1). So the tail can be routinely eliminated

from the exponent in (4.40) via Taylor expansions; see Section 2 for a similar

calculation. This transforms (4.40) into a linear combination, with quickly

computable coefficients each of size O(1), of O(ν2) sums of the form

(4.42)
1

M l

M∑
k=0

kl exp(2πiβ1k + 2πiβ2k
2 + · · ·+ 2πiβSk

S) ,

where by (4.34), (4.35), (4.36), and the periodicity of the complex exponential,

we have

0 ≤ l = O(ν) , Λ ≤M ≤ ΛN ≤ Λ2Kµ ,(4.43)

S := 3 + blogN/ logMc , |βs| ≤ min

ß
1

2
,

N

4M2s−3

™
.

Notice that, for simplicity, we extended the range of summation in (4.42) to

include the tails 0 ≤ k < bΛ2c and M − bΛ2c < k ≤ M since these extra

subsums can be computed efficiently (they involve O(Λ2) terms only).

4.4. The FFT precomputation. We will show any sum of the form (4.42)

satisfying conditions (4.43) can be computed efficiently provided we perform

a precomputation costing ≤ 16Λ5N4 operations on numbers of O(ν2) bits,

and requiring ≤ 16Λ5N4 bits of storage. (Notice by conditions (4.43) we have

N ≤ ΛKµ, and so N4 ≤ Λ4K4µ.)

More specifically, our plan is to precompute the sum (4.42) for values of

its arguments specified by conditions (4.43) on a dense enough grid of points

so its evaluation elsewhere can be done quickly. To this end, let

(4.44) n := n(M) = blog2Mc , R := R(N,Λ) = dlog2(ΛN + 1)e .

Notice by the bounds on N and M in (4.43), we have 0 < n < R. Rather than

dealing with (4.42), we deal with the following more general sum:

(4.45) FM,l,q(M̃ ; β̃1, . . . , β̃S̃) :=
1

M l

M̃∑
k=0

(q + k)l exp(2πiβ̃1k + · · ·+ 2πiβ̃S̃k
S̃) ,

where q and M̃ are nonnegative integers, the β̃’s are real numbers, and

(4.46) q+M̃ ≤M , S̃ = 3+ bR/nc , |β̃s| ≤ min
¶

1/2, 2R−22(3−2s)n
©
,
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Since S ≤ S̃, and N/(4M2s−3) ≤ 2R−22(3−2s)n, the sum (4.45), with condi-

tions (4.46), is indeed more general than the sum (4.42), with conditions (4.43).

For example, (4.42) can be written as

(4.47)

1

M l

M∑
k=0

kl exp(2πiβ1k + · · ·+ 2πiβSk
S) = FM,l,0(M ;β1, . . . , βS , 0, . . . , 0) ,

where we padded S̃−S zeros at the end. We now carry out a “dyadic approx-

imation” of the sum (4.47). With this in mind, let q0 := 0, M0 := M , n0 := n,

and β̃
(0)
s := β̃s, for 1 ≤ s ≤ S̃. Then for integers d ≥ 0, and for as long as

Md+1 > 1, sequentially define

Md+1 := Md − 2nd , nd+1 := blog2Md+1c ,(4.48)

qd+1 := qd + 2nd , β̃(d+1)
s =

S̃∑
p=s

Ç
p

s

å
2nd(p−s)β̃(d)

p .

Notice Md + qd = M0 + q0 ≤ M , Md+1 < Md/2, d < n, and nd ≤ n− d. And

we have

FM,l,qd(Md; β̃
(d)
1 , . . . , β̃

(d)

S̃
) = FM,l,qd(2

nd − 1; β̃
(d)
1 , . . . , β̃

(d)

S̃
)(4.49)

+ cd FM,l,qd+1
(Md+1; β̃

(d+1)
1 , . . . , β̃

(d+1)

S̃
) ,

where cd satisfies |cd| = 1, and Md, qd, cd, nd, β̃
(d), and β̃(d+1), can all be

computed efficiently. By iterating (4.49) at most n times, the evaluation of

(4.47) can be reduced to numerically evaluating at most n functions of the

form

(4.50) FM,l,qd(2
nd − 1; β̃

(d)
1 , . . . , β̃

(d)

S̃
) .

Since n = O(ν), it suffices to show how to deal with each such function. To

do so, we will need an upper bound on the size of the coefficients β
(d)
s . By

induction on d, suppose the inequality

(4.51) |β̃(d)
s | ≤ 2R−22(3−2s)n2sd(1 + 1/(2R))d

holds for 3 ≤ s ≤ S̃ (notice by the third condition in (4.46) that (4.51) is

satisfied for d = 0 and all 3 ≤ s ≤ S̃). Then by the recurrence for β̃(d+1) in

(4.48), and the estimate
(p+s
p

)
≤ 2p+s, we obtain

(4.52) |β(d+1)
s | ≤ 2R−22(3−2s)n2s(d+1)(1 + 1/(2R))d

S̃−s∑
p=0

2p2pnd2−2np2dp .
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As remarked earlier, nd ≤ n− d, so if n ≥ log2R+ 4 say, then

(4.53)
S̃−s∑
p=0

2p2pnd2−2np2dp ≤
S̃∑
p=0

2−(n−1)p ≤ 1 + 1/(2R) .

Substituting (4.53) back into (4.52) shows estimate (4.51) holds for β
(d+1)
s , as

claimed. Moreover, if n < log2R + 4, then M ≤ 32R = O(ν), so should this

happen the sum (4.45) can be evaluated directly anyway. By (4.51), the fact

(1 + 1/(2R))d ≤ 2, and using similar calculations to those in Section 2 (while

describing Schönhage’s method), one can employ Taylor expansions to reduce

the evaluation of (4.50) to that of precomputing the sums

(4.54)

1

2(n−d)l

2(n−d)−1∑
k=0

kl exp

Ñ
2πi

σ̃
(d)
n,1

2(n−d)
k + 2πi

σ̃
(d)
n,2

22(n−d)
k2 + · · ·+ 2πi

σ̃
(d)

n,S̃

2S̃(n−d)
kS̃

é
,

for all integers 1 ≤ R < dlog2(Λ2Kµ + 1)e, 1 ≤ n < R, 0 ≤ d < n, 0 ≤ l =

O(S̃ ν), and all integers σ̃
(d)
n,s satisfying

(4.55) |σ̃(d)
n,s| ≤ min

¶
2s(n−d)−1, 2R−12(3−s)n

©
.

Once the sums (4.54) are precomputed for all such values, the sum (4.42), with

conditions (4.43), can be evaluated efficiently using Taylor expansions. Alter-

natively, one can use band-limited interpolation techniques, which is probably

more practical; see [Odl].

Now, the sum (4.54) is the discrete Fourier transform, evaluated at −σ̃(d)
n,1,

of the sequence of points

(4.56)

kl

2(n−d)l
exp

Ñ
2πi

σ̃
(d)
n,2

22(n−d)
k2 + · · ·+ 2πi

σ̃
(d)

n,S̃

2S̃(n−d)
kS̃

é
, 0 ≤ k < 2(n−d) .

So, given l, n, and d, (4.54) can be computed at all the (integer) values of σ̃(d)

specified in (4.55) using the FFT in at most

(4.57) Λ 23(n−d)
3+bR/nc∏
s=3

min
¶

2s(n−d), 2R2(3−s)n
©

operations on numbers of O(ν2) bits, and requiring at most as many bits

of storage. Since min
¶

2s(n−d)−1, 2R−12(3−s)n
©
≤ min

¶
2sn, 2R+(3−s)n

©
, then

(4.57) is bounded by

(4.58) Λ

3+bR/nc∏
s=0

min
¶

2sn, 2R+(3−s)n
©
.



930 G. A. HIARY

We observe min
¶

2sn, 2R+(3−s)n
©

= 2sn for s < dR/2n+ 3/2e, from which it

follows by a fairly straightforward calculation that (4.58) is bounded by

(4.59) Λ 2n(R/(2n)+3/2)2 .

The function n(R/(2n)+3/2)2 is of size ≤ 4R exactly when R/9≤n≤R.

So, given n, l, and d such that R/9 ≤ n ≤ R, the cost of the FFT precompu-

tation is ≤ Λ 24R operations on numbers of O(ν2) bits. Since 0 ≤ d < n − 1

and 0 ≤ l = O(S̃ν), and since by conditions (4.43) and definitions (4.44) we

have 2R ≤ 2Λ2Kµ, then the total cost of the precomputation (for all possible

values of l, d, and R/9 ≤ n < R) is at most 16 Λ9K4µ operations on numbers

of O(ν2) bits. Notice for R/9 ≤ n ≤ R, we have S̃ ≤ 12. So the exponential

sum (4.54) will have have degree ≤ 12 over that range of n.

It remains to consider the case n < R/9. This implies M ≤ νN1/9. So M

is small compared to N , and the convergence of the Taylor series (4.34) from

Section 2 is slower, which leads to higher degree exponential sums (4.42).

By the definitions (4.44) of n and R, and the condition 2R ≤ 2Λ2Kµ, we

have if n < R/9, the length of the sum (4.42) is at most 2n+1 ≤ 2R/9+1 ≤
4ΛKµ/9 terms. Since this is a relatively short length, one option is to directly

evaluate (4.42) in such cases. If we do so, however, a simple optimization

procedure reveals the resulting algorithm to compute ζ(1/2+it) has complexity

t37/117+o(1) only (notice 37/117 ≈ 0.316 . . . ). We would like to avoid direct

computation of these sums in order to achieve the t4/13+o(1) complexity.

To this end, observe the sum (4.42) can be viewed in the following alter-

native light. Recall by Taylor series (4.34) we have βs = ds for s ≥ 3, where

ds is defined as in (4.35). So the coefficients βs+3, for s ≥ 0, can be expressed

in the form

(4.60) βs+3 = τηs , ηs := ηs,ρ,γ = ρs
∞∑
l=0

zl,sγ
l ,

where the numbers zl,s are quickly computable, depend only on l and s, satisfy

|zl,s| ≤ 1/2, and

(4.61)

τ := τc,α = 2(48)3cα3 , ρ := ρc,α,α2 = 2cαα2 , γ := γc,α1,α2 = 48cα1α2 .

(Notice τ , ρ, and γ are real numbers.) Therefore, by the bounds on c, α, α1,

and α2, specified in (4.25), as well as the bound |zl,s| ≤ 1/2, we have

(4.62) |τ | ≤ N

M3
, |ρ| ≤ 1

M2
, |γ| ≤ 1

M2
.

The infinite series defining ηs in (4.60) converges rapidly, and only O(ν) terms

are needed to ensure its calculation to within O(ε/K2) say. Since each of zl,s,

ρ, and γ can be computed quickly, so can ηs. So the sum (4.42) may now be



FAST METHODS TO COMPUTE THE RIEMANN ZETA FUNCTION 931

formulated as a function W (M, l, S;β1, β2, β3, τ, ρ, γ) given by

W (M, l, S;β1, β2, β3, τ, ρ, γ) :=
1

M l

M∑
k=0

kl exp(2πiβ1k + 2πiβ2k
2 + 2πiβ3k

3

(4.63)

+2πiτη1k
4 + · · ·+ 2πiτηS−3k

S) .

In particular, once β1, β2, β3, τ , ρ, and γ, are determined, so is the value of

the original sum (4.42).

Presenting the sum (4.42) in the form W (M, l, S;β1, β2, β3, τ, ρ, γ) is use-

ful because it considers that the coefficients β4, β5, . . . , βS in (4.42) are not

independent of each other. Thus, the grid points where it is necessary to

precompute the sum (4.42) is much sparser than is required in formulation

(4.54). This becomes especially important when M is small in comparison to

N because this is when S = 3 + blogN/ logMc is of noticeable size, and so

simplifying matters by treating the variables β4, . . . , βS independently, like we

did to arrive at (4.54), becomes quite costly as there are many variables β.

Given β1, β2, β3 ∈ [0, 1), and τ , ρ, and γ, conforming to conditions (4.62),

we obtain by Cauchy’s estimate applied with circles C̃1, C̃2, C̃3, C̃4, C̃5, and

C̃6, going about the origin once with radii 1/(8πM), 1/(8πM2), 1/(8πM3),

1/(8πM2), 1/(8πNM), and M/(8πN), respectively, that

1

r1! . . . r6!

∣∣∣∣∣ ∂r1 . . . ∂r6∂zr11 . . . ∂zr66

W (M, l, S;β1 + z1, . . . , γ + z6)

∣∣∣∣∣
z1=0,...,z6=0

(4.64)

≤ N M (8πM)r1 (8πM2)r2 (8πM3)r3 (8πM2)r4 (8πMN)r5 (8πN/M)r6 .

Also, by Taylor expansions we have

W (M, l, S;β1 + z1, . . . , γ + z6) =
∞∑
r1=0

· · ·
∞∑
r6=0

zr11 . . . zr66

r1! . . . r6!
(4.65)

×
ñ
∂r1 . . . ∂r6

∂zr11 . . . ∂zr66

W (M, l, S;β1 + z1, . . . , γ + z6)

ô
z1=0,...,z6=0

.

Therefore, if we ensure |z1| ≤ 1/(16πM), |z2| ≤ 1/(16πM2), |z3| ≤ 1/(16πM3),

|z4| ≤ 1/(16πM2), |z5| ≤ 1/(16πMN), and |z6| ≤ M/(16πN), then by bound

(4.64) each of the series over r1, . . . , r6 in (4.65) can be truncated after O(ν)

terms, which results in a truncation error of size O(ε/K2) say. So for z1, . . . , z6

of such sizes, the value of the perturbed function W (M, l, S;β1 +z1, . . . , γ+z6)

can be recovered efficiently, using expansion (4.65), from the values

(4.66)

ñ
∂r1 . . . ∂r6

∂zr11 . . . zr66

W (M, l, S;β1 + z1, . . . , γ + z6)

ô
z1=0,...,z6=0

for 0 ≤ r1, . . . , r6 = O(ν), and 0 ≤ l = O(Sν), assuming each such value is

known to within ± ε/K2 say.
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We discretize the interval [0, 1), which is where β1 resides, in step sizes of

1/(16πM). This ensures any β1 ∈ [0, 1) can be expressed as β1 = p1/(16πM)

+ z1, where 0 ≤ p1 ≤ 16πM an integer, and |z1| ≤ 1/(32πM). This suffices to

kill the growth in the derivatives of W with respect to z1, as can be seen from

bound (4.64).

As for β2 and β3, which both also reside in [0, 1), we use step sizes of

1/(16πM2) and 1/(16πM3) respectively. This ensures they can be written as

β2 = p2/(16πM2) + z2 and β3 = p3/(16πM3) + z3, where |z2| ≤ 1/(32πM2)

and |z3| ≤ 1/(32πM3). This again suffices to kill the growth in the derivatives

of W with respect to z2 and z3.

Similarly, we discretize the interval [−N/M3, N/M3], which is where τ

resides, in steps of 1/(16πM2). This gives ≤ 32πN/M relevant discretiza-

tions for τ . As for ρ, which resides in [−1/M2, 1/M2], we use a step size of

1/(16πNM), which yields 32πN/M relevant discretizations. Last, in the case

of γ, which is restricted to [−1/M2, 1/M2], we use a step size of M/(16πN),

yielding 32πN/M3 relevant discretizations for it.

It is clear once we obtain the values of the partial derivatives of W in

(4.66) at the discretized values of β1, β2, β3, τ , ρ, and γ, and for integers

0 ≤ l = O(Sν), and integers 0 ≤ r1, . . . , r6 = O(ν), then the values of W

elsewhere in the region β1, β2, β3 ∈ [0, 1), and τ , ρ, and γ, conforming to

conditions (4.62), and with 0 ≤ l = O(ν), can be recovered quickly, in O(ν6)

steps, via (the truncated version of) expansion (4.65).

Suppose the values of W (M, l, S;β1, β2, β3, τ, ρ, γ) have been precomputed

at all the discretized values of β1, β2, β3, τ , ρ, and γ, and for integers 0 ≤ l =

O(Sν), to within ± ε/K2 each say. Since the partial derivatives of W in (4.64),

evaluated at any of these discretizations, are needed up to r1 = O(ν), . . . , r6 =

O(ν) only, they can be calculated via (quite laborious) recursions using O(Λ3)

operations on numbers ofO(ν2) bits (see the proof of Lemma 5.2 for an example

of such a recursion).

To conclude, for each l, S, and M , we employ the FFT to precompute

the values of W (M, l, S;β1, β2, β3, τ, ρ, γ) at all the discretizations of β1, β2,

β3, τ , ρ, and γ, to within ± ε/K2 each say. By the discussion following (4.66),

there are ≤ (16πM)6 (32πN/M)2 (32πN/M3) ≤ (32π)9N3M discretizations to

consider. So the cost of the FFT precomputation is bounded by O(ν2MN3)

operations on numbers of O(ν2) bits. Finally, since l = O(Sν), S = O(ν),

and, by hypothesis, M ≤ νN1/9, there are only O(ν4N1/9) permissible tuples

(l, S,M). Therefore, the total cost of the FFT precomputation is bounded by

O(ΛN29/9) operations on numbers of O(ν2) bits. Since N ≤ ΛKµ, this cost

is certainly bounded by O(Λ5K4µ) operations on numbers of O(ν2), which

completes our proof of Theorem 2.2.
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5. Auxiliary results

Remark. The conventions stated at the start of Section 4 regarding the pre-

sentation of certain frequently occurring details apply here as well.

Lemma 5.1. Let B2 = 1/6, B4 = −1/30, . . . , denote the even Bernoulli

numbers. For any j ≥ 0, any integer K > Λ(K, j, ε), any real c, and with

fK,j,x,c(y) := yj

Kj e
2πicy3+2πixy , we have

K∑
n=0

fK,j,x,c(n) =

∫ K

0
fK,j,x,c(y) dy +

1

2
(fK,j,x,c(K) + fK,j,x,c(0))(5.1)

+
M∑
m=1

B2m

(2m)!

(
f

(2m−1)
K,j,x,c (K)− f (2m−1)

K,j,x,c (0)
)

+ EM,K,j,x,c ,

where f
(m)
K,j,x,c(y) denotes the mth derivative of fK,j,x,c(y) with respect to y, and

(5.2) |EM,K,j,x,c| ≤
10

(2π)2M

∫ K

0

∣∣∣f (2M)
K,j,x,c(y)

∣∣∣ dy .
Proof. This is a direct application of the well-known Euler-Maclaurin sum-

mation formula, and the estimate |B2m| ≤ 10 (2m)!/(2π)2m for m ≥ 1, say;

see [Rub05] for instance. �

Lemma 5.2. For any ε ∈ (0, e−1) , any integer j ≥ 0, any integer K >

Λ(K, j, ε), any x ∈ [−3/4, 3/4] say, any real c satisfying |cK2| ≤ 1/48 say, and

with fK,j,x,c(y) and EM,K,j,x,c defined as in Lemma 5.1, we have

(5.3) max
|y|≤K
|x|≤1

∣∣∣f (m)
K,j,x,c(y)

∣∣∣ ≤ Å6πcK2 + 3π/2 +
2m+ j

K

ãm
,

where f
(m)
K,j,x,c(y) denotes the mth derivative of fK,j,x,c(y) with respect to y.

If M = d8 log(K/ε)e, the remainder EM,K,j,x,c from Lemma 5.1 satis-

fies |EM,K,j,x,c| < ε. Also, the value of the derivative f
(m)
K,j,x,c(y) for any y,

x, K , j, and c, falling within the ranges specified in the lemma, can be com-

puted to within ±K−2ε, say, using O((m+ j + 1)2) operations on numbers of

O(ν(K, j, ε)2) bits.

Proof. One finds f
(m)
K,j,x,c(y) =Pm,K,j,x,c(y)e2πicy3+2πixy, where Pm,K,j,x,c(y)

is a polynomial in y of degree 2m+ j (it is also a polynomial in x of degree m).

Notice |f (m)
K,j,x,c(y)| = |Pm,K,j,x,c(y)|, and the polynomials Pm,K,j,x,c(y) are de-

termined by the following recursion on m:

(5.4) Pm+1,K,j,x,c(y) = 2πi(x+ 3cy2)Pm,K,j,x,c(y) +
d

dy
Pm,K,j,x,c(y) ,
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where P0,K,j,x,c(y) := yj/Kj . So PK,j,x,c,m(y) =
∑2m+j
l=0 dl,m,K,j,c(x)yl, where

the coefficients dl,m,K,j,c(x) =:
∑m
r=0 zr,l,m,K,j,c x

r. It is convenient to define the

norm |Pm,K,j,x,c(y)|1 :=
∑2m+j
l=0

∑m
r=0 |zr,l,m,K,j,c xryl|. Notice |Pm,K,j,x,c(y)| ≤

|Pm,K,j,x,c(y)|1. By induction on m, suppose

(5.5) max
|y|≤K
|x|≤1

|PK,j,x,c,m(y)|1 ≤
Ä
6πcK2 + 3π/2 + (2m+ j)/K

äm
.

One easily deduces from (5.5) that

(5.6) max
|y|≤K
|x|≤1

∣∣∣∣ ddy Pm,K,j,x,c(y)

∣∣∣∣
1

≤ 2m+ j

K
max
|y|≤K
|x|≤1

|Pm,K,j,x,c(y)|1 .

On combining (5.4), (5.5), and (5.6), the first part of the lemma follows. The

second part of the lemma follows by using the recursion (5.4). �

Lemma 5.3. Let B2 = 1/6, B4 = −1/30, . . . , denote the even Bernoulli

numbers. There are absolute constants κ11, κ12, A15, A16, and A17, such that

for any ε ∈ (0, e−1), any integer j ≥ 0, any positive integers K , K1 satisfying

Λ(K, j, ε) ≤ K1 ≤ K , any a ∈ [0, 1), any b ∈ [0, 1), any real c satisfying

|cK2
1 | < 1/48, any 1 ≤ m ≤ 100ν(K, j, ε) say, any α ∈ [−1, 1], any interval

[w, z] ⊂ [−1, 1], and with fK,j,x,c(y) := yj

Kj e
2πicy3+2πixy , the sum

(5.7)
B2m

(2m)!

∫ z

w

(
f

(2m−1)
K,j,x,c1

(K1)− f (2m−1)
K,j,x,c1

(0)
)
F (K; a+ αx, b) dx ,

where f
(m)
K,j,x,c(y) denotes the mth derivative of fK,j,x,c(y) with respect to y,

can be computed to within ±A15 ν(K, j, ε)κ11K−2ε using ≤ A16 ν(K, j, ε)κ12

arithmetic operations on numbers of ≤ A17 ν(K, j, ε)2 bits.

Proof. Write f
(m)
K,j,x,c(y) = PK,j,y,c,m(x)e2πicy3+2πixy, where, as can be seen

from the proof of Lemma 5.2,

PK,j,y,c,m(x) =
m∑
l=0

vl,K,j,c,m(y)xl,

and vl,K,j,c,m(y) are polynomials in y of degree ≤ 2m + j. Now the bound

|vl,K,j,c,m| ≤ (2π)m, afforded by Lemma 5.2, together with |B2m/(2m)!| ≤
10/(2π)2m, yields the bound (B2m/(2m)!)|vl,K,j,c,2m−1(y)|1 ≤ 10. So in order

to be able to compute (5.7) with the claimed accuracy, it is enough to be able

to deal with the integrals

(5.8)

∫ z

w
xle2πiK1xF (K; a+ αx, b) dx ,

∫ z

w
xlF (K; a+ αx, b) dx ,
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where 0 ≤ l ≤ m. More generally, we show how to deal with integrals of the

form

(5.9)

∫ z

w
xle2πiτxF (K; a+ αx, b) ,

where −K ≤ τ ≤ K say. We split the quadratic sum F (K; a + αx, b) into

two subsums, one over {0 ≤ k ≤ K : |τ + αk| ≤ 2l + 2}, and another over

{0 ≤ k ≤ K : |τ + αk| > 2l + 2}. For the first subsum, we use a change

of variable to expand the interval of integration, then we divide the expanded

interval into a few consecutive subintervals, and over each subinterval we show

the integral can be computed efficiently. Specifically, we start by applying the

change of variable x← (2l+ 2)x to the integral (5.9). Then we divide the now

expanded interval of integration into ≤ 4l+ 4 = O(ν) consecutive subintervals

[n, n+ 1), where 0 ≤ n < 4l + 4. This leads to O(ν) integrals of the form

(5.10)
∑

0≤k≤K
|τ+αk|≤2l+2

e2πiak+2πibk2 1

(2l + 2)l+1

∫ n+1

n
xle2πi(τ+αk)x/(2l+2) dx.

For each integral (5.10), we apply the change of variable x← x− n. Then we

use Taylor expansions to reduce the integrand to a polynomial in x of degree

bounded by O(ν), plus an error of size O(ε/K2) say. Explicitly, we obtain

1

(2l + 2)l+1

∫ n+1

n
xle2πi(τ+αk)x/(2l+2) dx

(5.11)

=
e2πi(τ+αk)n

(2l + 2)l+1

l∑
r=0

Ç
l

r

å
nl−r

d2νe∑
s=0

(2πi)s

s!

(τ + αk)s

(2l + 2)s

∫ 1

0
xr+s +O(ε/K2) .

The coefficients in said polynomial are quickly computable and are each

bounded by O(1). We then integrate (the polynomial in x) explicitly. On

substituting back into (5.10), we obtain a linear combination, with quickly

computable coefficients each of size O(1), of quadratic exponential sums. And

these sums are handled by Theorem 2.1 of [Hia11].

We remark it is not desirable to immediately apply a binomial expansion

to the powers (τ+αk)s resulting from the above procedure because the terms of

such an expansion might have significant cancellations among them, depending

on the signs and sizes of α and τ . Instead, one can first change the index of

summation by k ← k + bτ/αc (if |α| > 1/K2 say), then apply a binomial

expansion. This way, the amount of cancellation is minimal, which is useful

in practice (in theory this does not matter because |τ | ≤ K, s = O(ν), and

we are using O(ν2) bit arithmetic, so the amount cancellation is manageable

either way).
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For the second subsum, we integrate explicitly with respect to x. Specifi-

cally,

(5.12)

∫ z

w
xle2πi(τ+αk)x dx =

l∑
v=0

(−1)v l!

(l − v)!

zl−ve2πi(τ+αk)z − wl−ve2πi(τ+αk)w

(2πiτ + 2πiαk)v+1
.

Substituting (5.12) back into the second subsum produces a linear combination,

with quickly computable coefficients, of 2l + 2 exponential sums; namely,

(5.13)
l∑

v=0

(−1)v l! zl−ve2πiτz

(l − v)! (2πi)v+1

∑
0≤k≤K

2l+2<|τ+αk|

e2πi(a+αz)k+2πibk2

(τ + αk)v+1
,

as well as another identical sum but with z replaced by w. We may assume

|α| ≥ 1/K2 say, otherwise we can apply a Taylor expansion to the term e2πiαkx

in (5.9) from the beginning, which immediately reduces it to a linear combi-

nation, with quickly computable coefficients each of size O(1), of O(ν(K, j, ε))

quadratic exponential sums, and such sums are handled by Theorem 2.1. To

deal with subsum in (5.13) with τ + αk > 2l + 2, for example, we define

k0 = b(2l + 2− τ)/αc, and so
(5.14)∑

0≤k≤K
2l+2<τ+αk

e2πi(a+αz)k+2πibk2

(τ + αk)v+1
= e2πi(a+αz)k0+2πibk20

K−k0∑
k=1

e2πi(a+αz+2bk0)k+2πibk2

(τ + αk0 + αk)v+1
.

Observing τ + αk0 ≥ 2l + 2 and l!/(l − v)! ≤ lv, we see

(5.15)

∣∣∣∣∣ (−1)v l! zl−ve2πiτz

(l − v)! (2πi)v+1 (τ + αk0 + αk)v+1

∣∣∣∣∣ < 1 ,

for all 1 ≤ k ≤ K−k0. In particular, the subsum in (5.13) with τ+αk > 2l+2

is of the type discussed in Section 5 of [Hia11], which is handled by Theorem 2.1

since, as shown in [Hia11], such sums can be reduced to a linear combination,

with quickly computable coefficients each of size O(1), of O(ν2) quadratic

sums. Last, the treatment of the subsum in (5.13) with τ + αk < −2l − 2 is

identical. �

Lemma 5.4. There are absolute constants κ13, κ14, A18, A19, and A20,

such that for any ε ∈ (0, e−1), any integer j ≥ 0, any positive integers K , K1

satisfying Λ(K, j, ε) ≤ K1 ≤ K , any a ∈ [0, 1), any b ∈ [0, 1), any real c

satisfying |cK2
1 | < 1/48, any α ∈ [−1, 1], and any interval (w, z) ⊂ (−1, 1)

such that |w| ≥ 1/4, the function

(5.16)
1

(K1)j

∫ z

w

∫ K1

0
yje2πicy3−2πixyF (K; a+ αx, b) dy dx

can be computed to within ±A18 ν(K, j, ε)κ13K−2ε using ≤ A19 ν(K, j, ε)κ14

arithmetic operations on numbers of ≤ A20 ν(K, j, ε)2 bits.
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Proof. We assume w > 0, since if w < 0 the treatment is completely

analogous. Define the contours C1 := {te−iπ/6 | 0 ≤ t ≤ 2K1/
√

3}, C2 :=

{K1 − it | 0 ≤ t ≤ K1/
√

3}, and C0 := {t | 0 ≤ t ≤ K1}. Also define

(5.17) Ix(C) := Ix,K1,j,c(C) =
1

(K1)j

∫
C
yje2πicy3−2πixy dy .

With this notation, the integral (5.16) can be expressed as

(5.18)

∫ z

w
Ix(C0)F (K; a+ αx, b) dx .

By Cauchy’s theorem Ix(C0) = Ix(C1)− Ix(C2). And by a routine calculation,

Ix(C1) =
d1,K1,j,c

(K1)j

∫ 2K1√
3

0
yje2πcy3−

√
3πixy−πxy dy ,

(5.19)

Ix(C2) =
d2,K1,j,ce

−2πiK1x

(K1)j

∫ K1√
3

0
(K1 − iy)je6πcK2

1y−6πicK1y2−2πcy3−2πxy dy ,

where d1,K1,j,c and d2,K1,j,c each has modulus 1, and both can be computed

quickly.

Since 1/4 ≤ w ≤ x and cK2
1 ≤ 1/48, the absolute values of the integrands

in Ix(C1) and Ix(C2) decline faster than e−y/6 throughout y ∈ [0,
√

2K1]. So,

in both cases we can truncate the interval of integration with respect to y at

L := L(K, j, ε) = d6ν(K, j, ε)e say.

Once truncated, the interval of integration (in both cases) is divided into

L consecutive intervals [n, n+1). As explained in detail following (5.9) earlier,

over each subinterval [n, n + 1), we apply the change of variable y ← y − n.

Then we employ Taylor expansions to reduce the integrand to a polynomial in

y, with coefficients depending on x, of degree O(ν(K, j, ε)), plus an error of size

O(ε/K2) say. On integrating said polynomial directly with respect to y, we

see that (5.18), hence (5.16), is equal to a linear combination of O(ν(K, j, ε)2)

integrals of the form

(5.20)∫ z

w
xle−

√
3πinx−πnxF (K; a+αx, b) dx ,

∫ z

w
xle−2πiK1x−2πnxF (K; a+αx, b) dx ,

plus an error of size O(ε/K2) say, where 0 ≤ n < L, and 0 ≤ l = O(ν(K, j, ε)),

and where the coefficients of the linear combination can be computed quickly

and are each of size O(1). Finally, these integrals are treated similarly to (5.9)

earlier. �

Lemma 5.5. There are absolute constants κ15, κ16, A21, A22, and A23,

such that for any ε ∈ (0, e−1), any integer j ≥ 0, any positive integers K and

K1 satisfying Λ(K, j, ε) < K1 < K , any real β satisfying |β| ≤ 100K3
1 say,

any real α satisfying |α| ≤ 100K3
1 say, any real η satisfying |η| ≤ 100K3

1 say,
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any real w ∈ [0, 1] say, any θ ∈ {−1, 1}, and any real c satisfying |cK2
1 | <

1/Λ(K, j, ε), the integral

(5.21)
1

(K1)j

∫ K1

0
yje2πicy3+2πiηy

∫ w

0
e2πi(α−θy)x−2πiβx2 dx dy

can be computed to within ±A21 ν(K, j, ε)κ15K−2ε using ≤ A22 ν(K, j, ε)κ16

arithmetic operations on numbers of ≤ A23 ν(K, j, ε)2 bits.

Proof. Conjugating if necessary, we may also assume β ≥ 0. Let us first

deal with the case β ≤ L := L(K, j, ε) = dν(K, j, ε)e. We make the change of

variable x← Lx in (5.21). Then we divide the resulting interval of integration

into bLc consecutive subintervals [n, n + 1), where 0 ≤ n < L an integer, as

well as a final subinterval over [bwLc, wL). It suffices to show how to deal with

the integral over each such subinterval since there are ≤ L+1 = O(ν) of them.

Following a similar procedure to that following (5.9) earlier, over the subin-

terval [n, n + 1), we employ Taylor expansions (preceded, as usual, by the

change of variable y ← y − n) to reduce the term e−2πiβx2/L2
in the integrand

to a polynomial in x of degree O(ν(K, j, ε)), plus an error of size O(ε/K2).

Notice in doing so, we appeal to the bound β ≤ L. At this point, we reach a

linear combination of O(ν(K, j, ε)) integrals of the form

(5.22)
1

(K1)j

∫ K1

0
yje2πicy3+2πiη1y

∫ 1

0
xse2πi

α1−θy
L

x dx dy ,

where the coefficients of the linear combination can be computed quickly, are

of size O(1) each, and where 0 ≤ s = O(ν(K, j, ε)) an integer, η1 := η1,β,L,n a

real number satisfying η1 = O(K3
1 ), and α1 := α1,β,L,n a real number satisfying

α1 = O(K3
1 ). We divide the interval of integration with respect to y in (5.22)

into two sets:

I1 := {y ∈ [0,K1] : |α1 − θy| ≥ 2(s+ 1)L} ,(5.23)

I2 := {y ∈ [0,K1] : |α1 − θy| < 2(s+ 1)L} .

So I1 ∪ I2 = [0,K1]. Notice each of I1 and I2, as are all other such sets that

occur in this proof, is the union of O(1) many intervals of the form [s, t] where

s, t ∈ [0,K1].

To deal with the integral (5.22), with y restricted to I2, we start by making

the change of variable y ← α1 − θy. This leads to

(5.24)
1

(K1)j

∫
I3

yje2πicθ(α1−y)3+2πiη1θ(α1−y)
∫ 1

0
xse2πiyx/L dx dy ,

where I3 := {y ∈ [α1, α1 − θK1] : |y| < 2(s + 1)L}. By another change of

variable, x← 2(s+ 1)x, applied to the integral with respect to x in (5.24), fol-

lowed by dividing the resulting interval of integration into 2(s+ 1) consecutive

intervals [n, n+ 1), we can reduce (5.24), via a standard application of Taylor
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expansions, to a linear combination, with quickly computable coefficients each

of size O(1), of O(ν(K, j, ε)) integrals of the form

(5.25)
1

(K1)j (2s+ 2)s

∫
I3

yje2πicθ(α1−y)3+2πiη1θ(α1−y)
∫ n+1

n
xse2πiyx/(2(s+1)L) dx dy ,

plus an error of size O(ε/K2) say, where 0 ≤ n < 2(s+ 1) an integer.

Since |y/(2(s + 1)L)| < 1 over I3, then by the change of variable x ←
x− n, followed by yet another application of Taylor expansions, we can elim-

inate the cross term e2πixy/(2(s+1)L) in (5.25) as a polynomial in xy of degree

O(ν(K, j, ε)), plus an error of size O(ε/K2) say. On integrating directly with

respect to x, we arrive at a linear combination, with quickly computable co-

efficients each of size O(1), of O(ν(K, j, ε)) integrals of the form (5.27) below.

As we will soon explain, such integrals can be computed efficiently,

As for the set y ∈ I1, we integrate directly with respect to x in (5.22) to

also obtain a linear combination, with quickly computable coefficients each of

size O(1), of s+ 1 integrals

(5.26)
s!Lr

(s+ 1− r)! (K1)j (2πi)r

∫
I1

yj(α1 − θy)−re2πicy3+2πiη2y dy ,

where 0 ≤ r ≤ s + 1 an integer and η2 := η2,α1,η1 is a real number satisfying

η2 = O(K3
1 ) that can be computed quickly. Since |α1 − θy| ≥ 2(s+ 1)L for all

y ∈ I1, it follows with careful use of Taylor expansions (see the treatment of

(4.21) in Section 4.2) that the evaluation of (5.26) can be reduced to computing

a linear combination, with quickly computable coefficients each of size O(1),

of O(ν(K, j, ε)3) integrals of the form

(5.27)
1

∆u

∫ ∆

0
yue2πicy3+2πiη4y2+2πiη3y dy ,

where 0 ≤ u = O(ν(K, j, ε)) an integer, ∆ = O(K1) a real number, |c∆2| <
1/Λ(K, j, ε) say, where c is a real number, η3 = O(K3

1 ) a real number, and

η4 = O(1) a real number. The integral (5.27) is a variation on the Airy

integral; see [GK91] for example. We implicitly showed how to compute it

efficiently in Section 4.3. Briefly though, one considers two cases: either the

integrand has a saddle-point or it does not; that is, either 3cy2 + 2η4y + η3 has

a zero in [0,∆] or it does not. In the former case, we extract the saddle-point

contribution like is done in Section 4.3. This reduces the problem to evaluating

an integral of the form (5.27), but with no saddle-point. And in the latter

case (the no saddle-point case), we use Cauchy’s theorem to suitably shift the

contour of integration (to the stationary phase) so the modulus of the integrand

is rapidly decaying, and the interval of integration can be truncated quickly,

after distance about O(ν(K, j, ε)). We then divide the truncated interval of

integration into O(ν(K, j, ε)) consecutive subintervals [n, n + 1). Over each
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subinterval, we show the integral can be computed efficiently. We mention the

procedure for extracting the saddle point is that followed in evaluating the

integrals (4.39) in Section 4.3. We remark the evaluation of integral (5.27)

essentially reduces to evaluating incomplete Gamma functions like (3.4).

Having disposed of the case β < L in the integral (5.21), we now consider

the case β ≥ L (recall L := L(K, j, ε) = dν(K, j, ε)e). So define

I4 := {y ∈ [0,K1] : (α− θy)/(2β) ∈ [0, w]} ,(5.28)

I5 := {y ∈ [0,K1] : (α− θy)/(2β) /∈ [0, w]} .

Let us compute the integral (5.21) over the region (x, y) ∈ [0, w]× I5 first. We

write I5 = I6 ∪ I7, where I6 is the subset of I5 where α − θy > 2βw and I7 is

the subset where α− θy < 0. We deal with I6 and I7 separately.

Over (x, y) ∈ [0, w]× I6, we apply Cauchy’s theorem to the integral with

respect to x in (5.21) to replace the contour {x : 0 ≤ x ≤ w} there with

the contours {ix : 0 ≤ x < ∞} and {w + ix : 0 ≤ x < ∞}, appropriately

oriented. On following this by the change of variable x ←
√

2βx, we see the

integral (5.21), restricted to (x, y) ∈ [0, w]×I6, is equal to a linear combination,

with quickly computable coefficients each of size O(1), of the two integrals

1

(K1)j

∫
I6

yje2πicy3+2πiηy 1√
2β

∫ ∞
0

e−2πτ1(y)x+πix2 dx dy ,(5.29)

1

(K1)j

∫
I6

yje2πicy3+2πiη̃y 1√
2β

∫ ∞
0

e−2πτ2(y)x+πix2 dx dy ,

where η̃ := η̃θ,w,η is a real number satisfying η̃ = O(η + 1), and

(5.30)

τ1(y) := τ1,α,θ,β(y) =
α− θy√

2β
, τ2(y) := τ2,α,θ,β,w(y) =

α− θy − 2βw√
2β

.

We start by showing how to compute the second integral in (5.29) effi-

ciently. By the definitions of τ2(y) and I6, we have τ2(y) ≥ 0 over I6. So

we can use Cauchy’s theorem to shift the contour of integration in the inner

integral by an angle of π/4. This transforms the second integral in (5.29) to:

(5.31)
1

(K1)j

∫
I6

yje2πicy3+2πiη̃y e
πi/4

√
2β

∫ ∞
0

e−2πeπi/4τ2(y)x−πx2 dx .

We invoke our standard argument where we exploit the exponential decay in

the modulus of the integrand to truncate the interval of integration with re-

spect to x in (5.31) after distance about O(ν(K, j, ε) (which results in small

enough truncation error of size O(ε/K2)), then divide the truncated interval

into O(ν(K, j, ε)) consecutive subintervals [n, n+ 1), and deal with one subin-

terval at a time. Over each subinterval, one considers the regions determined

by τ2(y) ≤ L and τ2(y) ≥ L separately. One obtains, with some labor, that
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the evaluation of the integral (5.31) can be reduced to evaluating a linear com-

bination of O(ν(K, j, ε)3) of Airy integrals of the form (5.27). (Notice over the

region determined by τ2(y) > L, we encounter integrals like (5.26).)

As for the first integral in (5.29), its computation is even easier because

τ1(y) ≥
√

2βw for y ∈ I6 which ensures faster decay. And the evaluation

of the integral (5.21), restricted to (x, y) ∈ [0, w] × I7, is similar to the case

(x, y) ∈ [0, w]× I6 already considered.

So it remains to deal with (5.21) when restricted to the region (x, y) ∈
[0, w] × I4. There, we use Cauchy’s theorem to replace the contour {x : 0 ≤
x ≤ w} in the integral with respect to x in (5.21) with the contours {w − ix :

0 ≤ x ≤ w} and {xe−πi/4 : 0 ≤ x ≤
√

2w}, appropriately oriented. On

following this by the change of variable x←
√

2βx, we see the integral (5.21),

restricted to (x, y) ∈ [0, w] × I4, is equal to a linear combination of the two

integrals

1

(K1)j

∫
I4

yje2πicy3+2πiηy 1√
2β

∫ 2
√
βw

0
e2πie−πi/4τ1(y)x−πx2 dx dy ,(5.32)

1

(K1)j

∫
I4

yje2πicy3+2πiηy 1√
2β

∫ √2βw

0
e2πτ2(y)x+πix2 dx dy ,

where the coefficients of the linear combination are quickly computable, and

are of size O(1) each. By the definition of τ2(y) in (5.30), and the definition

of I4 in (5.28), we have τ2(y) ≤ 0 for y ∈ I4. So the second integral in (5.32)

can be evaluated efficiently in an essentially similar way to the second integral

in (5.29); that is, we use Cauchy’s theorem to shift the contour of integration

by an angle of π/4, then we exploit the guaranteed exponential decay thus

obtained.

As for the first integral in (5.32), we have τ1(y) ≥ 0, which means there

is possibly some exponential growth with x in the linear factor e2πie−πi/4τ1(y)x

there. To deal with this, we consider two cases:
√
βw ≤ 1 and 1 <

√
βw.

The treatment of the case
√
βw ≤ 1 is particularly simple since by a direct

use of Taylor expansions, the integrand is reduced to a polynomial in τ1(y)

and x of degree bounded by O(ν(K, j, ε)) in each, which, on integrating with

respect to x, leads to integrals of the type (5.27). So suppose
√
βw > 1. In

this case, we consider the “complementary” regions (x, y) ∈ (−∞, 0]× I4 and

(x, y) ∈ [2
√
βw,∞) × I4. Computing the first integral in (5.32), but with

the region of integration switched to (x, y) ∈ (−∞, 0]× I4, is not problematic

because the linear factor e2πie−πi/4τ1(y)x now provides exponential decay with

x, and so the treatment coincides with that of integral (5.31) earlier. As for the

region (x, y) ∈ [2
√
βw,∞)× I4, we have τ1(y) ≤

√
2βw there. Combined with

x ≥ 2
√
βw, this yields τ1(y)x/

√
2 − x2/2 ≤

√
βw(1 − x). Since

√
βw > 1 by

hypothesis, the modulus of the integrand over (x, y) ∈ [2
√
βw,∞)×I4 declines
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faster than e−x with x. So once again our standard argument exploiting such

exponential decay applies, and leads to integrals of the type (5.27). It only

remains to calculate

1√
2β (K1)j

∫
I4

yje2πicy3+2πiηy
∫ ∞
−∞

e2πeπi/4τ1(y)x−πx2 dx dy(5.33)

=
1√

2β (K1)j

∫
I4

yje2πicy3+2πiηy+πiτ21 (y) dy .

But this is also of the form (5.27), which we know how to handle efficiently. �

Lemma 5.6. There are absolute constants κ17, κ18, A24, A25, and A26,

such that for any ε ∈ (0, e−1), any integer j ≥ 0, any positive integers K

and K1 satisfying Λ(K, j, ε) < K1 < K , any α ∈ [1/Λ(K, j, ε),K1], any α1 ∈
[0, 4α], any real number α2 satisfying 1/K2 ≤ |α2| ≤ α and α2/α

2 ≤ 10 say,

any a∈ [0, 1), any b∈ [0, 1), any real number c1 satisfying |c1K
2
1 |< 1/Λ(K, j, ε),

any positive integer K2 satisfying, if possible, K2 ≤ K1/α, and with C0 = {x :

1/4 < x <∞}, C̃0 = {x : −∞ < x < −1/4}, the sum

(5.34)

1

(K1)j

K2−bΛ2c∑
k=bΛ2c

e2πiak+2πibk2
∫ K1

0

∫
C
yje2πic1y3−2πixye2πi(αk−α1)x−2πiα2x2 dx dy ,

where C ∈ {C0, C̃0}, can be computed to within ±A24 ν(K, j, ε)κ17K−2ε using

≤ A25 ν(K, j, ε)κ18 arithmetic operations on numbers of ≤ A26 ν(K, j, ε)2 bits.

Proof. It suffices to efficiently compute the sum (5.34) with C = C0 as

the case C = C̃0 is simply a conjugate case (since c1 and α2 are allowed to

assume values in a symmetric interval about 0, and a and b are allowed to

be any numbers in [0, 1)). By the change of variable x ← x + 1/4, (5.34) is

transformed to

vα1,α2

(K1)j

K2−bΛ2c∑
k=bΛ2c

e2πia1k+2πibk2
∫ ∞

0
e2πiτkx−2πiα2x2(5.35)

×
∫ K1

0
yje2πic1y3−πiy/2−2πixy dy dx ,

where a1 := a1,a,α = a + α/4, τk := τk,α,α1,α2 = αk − α1 − α2/2, and vα1,α2 is

quickly computable coefficient of modulus 1. Define the contours

(5.36)

C1 := {ye−πi/6 : 0 ≤ y ≤ 2K1/
√

3}, C2 := {K1 − iy : 0 ≤ y ≤ K1/
√

3} .

By an application of Cauchy’s theorem, the contour {y : 0 ≤ y ≤ K1} in the

integral with respect to y in (5.35), can be replaced with the contours C1 and
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C2, appropriately oriented. Over C1, we obtain

ṽα1,α2,j

(K1)j

K2−bΛ2c∑
k=bΛ2c

e2πia1k+2πibk2
∫ ∞

0
e2πiτkx−2πiα2x2(5.37)

×
∫ 2K1√

3

0
yje2πc1y3−πeπi/3y/2−2πeπi/3xy dy dx ,

where ṽα1,α2,j is a quickly computable coefficient of modulus 1. Since |c1K
2
1 | ≤

1/Λ(K, j, ε) by hypothesis, the integrand in (5.37) declines faster than e−y/16

in absolute value throughout 0 ≤ y ≤ 2K1/
√

3. Therefore, by our standard

argument of truncating the interval of integration with respect to y at say

L := L(K, j, ε) = d16ν(K, j, ε)e, subdividing it into L consecutive subintervals

[n, n + 1), applying the change of variable y ← y − n in each subinterval,

followed by a routine application of Taylor expansions, the expression (5.37) is

reduced to a linear combination, with quickly computable coefficients each of

size O(1), of O(ν(K, j, ε)2) sums of the form

(5.38)

K2−bΛ2c∑
k=bΛ2c

e2πia1k+2πibk2
∫ 1

0
yl
∫ ∞

0
e−2πeπi/3(y+n)xe2πiτkx−2πiα2x2 dx dy ,

where n and l are integers satisfying 0 ≤ n < L and 0 ≤ l = O(ν(K, j, ε)), plus

an error of size O(ε/K2). Now define

(5.39) C3 := {e−πi/4x|0 < x <∞}, C4 := {eπi/4x|0 < x <∞} .

If α2 is positive, then

(5.40)

∣∣∣∣∣
∫ T

0
e−2πeπi/3(y+n)(T−ix)e2πiτk(T−ix)−2πiα2(T−ix)2 dx

∣∣∣∣∣→T→∞ 0 .

So via Cauchy’s theorem, we can exchange the contour {x : 0 ≤ x < ∞} in

the integral with respect to x in (5.38) with the contour C3. Similarly, if α2 is

negative, we can exchange {x : 0 ≤ x <∞} for C4. Dealing with the case α2

is positive first, we obtain, after a few rearrangements, that (5.38) is equal to

(5.41)

K2−bΛ2c∑
k=bΛ2c

e2πia1k+2πibk2
∫ 1

0
yl
∫ ∞

0
e2π(eπi/4τk−eπi/12(y+n))x−2π|α2|x2 dy dx .

Since by hypothesis 0 ≤ α1 ≤ 4α and |α2| ≤ α, it follows from the definition

τk := αk − α1 − α2/2 that for k ≥ bΛ(K, j, ε)2c, we have

(5.42) τk ≥ α(Λ(K, j, ε)2 − 6) .

And since α≥1/Λ(K, j, ε) by hypothesis, then (5.42) implies τk≥Λ(K, j, ε)−1,

say. Hence, for 0 ≤ y ≤ 1, bΛ(K, j, ε)2c ≤ k, and 0 ≤ n < L, we have

(5.43) <{eπi/4τk − eπi/12(y + n)} ≥ τk/2− n− 1 ≥ Λ(K, j, ε)/3 ,
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which is large. So initially there is some exponential growth with x in the size of

the integrand in (5.41), which is problematic. As usual though, we handle the

situation by writing the integral with respect to x in (5.41) as the difference

of two integrals, one over −∞ < x < ∞ and another over −∞ < x ≤ 0.

Starting with the latter, we have by (5.43) that the integrand declines faster

than e−Λ(K,j,ε)|x|/3 in absolute value with x, hence, it can be truncated at x =

−1. The resulting truncation error is bounded by O(e−Λ(K,j,ε)/3) = O(ε/K2),

which is small enough for purposes of the lemma. Since now |xy| ≤ 1, then by

a routine application of Taylor expansions, the cross-term e−2πeπi/12yx in the

integrand in (5.41) can be expressed as a polynomial in yx of degree bounded

by O(ν(K, j, ε)), plus an error of size O(ε/K2) say. So integrating the resulting

integral explicitly with respect to y, this procedure yields a linear combination,

with quickly computable coefficients each of size O(1), of O(ν(K, j, ε)) integrals

(5.44)

K2−bΛ2c∑
k=bΛ2c

e2πia1k+2πibk2
∫ 1

0
xpe−2π(eπi/4τk−eπi/12n)x−2π|α2|x2 dx ,

where p is an integer satisfying 0 ≤ p = O(ν(K, j, ε)), plus an error of size

O(ε/K2).

With the aid of the bound (5.42) and α ≥ 1/Λ(K, j, ε) (by hypoth-

esis), the integral (5.44) can be truncated at min{1, α−1} with a trunca-

tion error bounded by O(ε/K2) say. Once truncated, the quadratic factor

e−2π|α2|x2 can be reduced, via Taylor expansions and by appealing to the bound

α2/α
2 = O(1), to a polynomial in x of degree at most O(ν(K, j, ε)), plus an

error of size O(ε/K2). Last, we evaluate the resulting integral (an incom-

plete Gamma function) explicitly. This, combined with a few further algebraic

manipulations, yields quadratic exponential sums of the type discussed in Sec-

tion 5 of [Hia11], and these sums can be computed efficiently via Theorem 2.1.

So it only remains to calculate

(5.45)

K2−bΛ2c∑
k=bΛ2c

e2πia1k+2πibk2
∫ 1

0
yl
∫ ∞
−∞

e2π(eπi/4τk−eπi/12(y+n))x−2πα2x2 dy dx .

Integrating explicitly with respect to x produces

(5.46)
1√
2α2

K2−bΛ2c∑
k=bΛ2c

e2πia2k+2πib1k2
∫ 1

0
yle
−2π

eπi/3(y+n)τk
2α2

+2π
eπi/6(y+n)2

4α2 dy ,

where a2 := a2,a1,α,α1,α2 and b1 := b1,b,α,α1,α2 are real numbers satisfying a2 =

O(α2/α2) = O(K4) and b1 = O(α2/α2) = O(K4). Certainly, a2 and b1 can

be reduced modulo 1, but we point out their magnitude pre-reduction modulo

1 to show they can be expressed using O(ν(K, j, ε)2) bits throughout, as do

all other numbers in this article. The integrand in (5.46) declines very rapidly
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with y. In fact, it is of size O(ε/K2) say if n > 0, which is negligible for our

purposes. So we may assume n = 0.

We truncate the integral with respect to y at α2/α (notice α2/α ≤ 1

by hypothesis). Since y2/α2 = O(α2/α
2) for 0 ≤ y ≤ α2/α, and since

α2/α
2 = O(1) by hypothesis, we can use Taylor expansions to express the term

exp(πeπi/6y2/(2α2)) as a polynomial in y of degree bounded by O(ν(K, j, ε)),

plus an error of size O(ε/K2). Integrating explicitly with respect to y, along

with a few further manipulations, reduces the problem once again to computing

a linear combination, with quickly computable coefficients each of size O(1),

of O(ν(K, j, ε)) quadratic exponential sums of the type discussed in Section 5

in [Hia11].

This concludes our computation of (5.35) when the contour {y : 0 ≤
y ≤ K1} there is replaced by C1, and assuming α2 is positive. The situa-

tion when α2 is negative, where C4 is used instead of C3, is even easier be-

cause we essentially obtain an integral of the form (5.41), but with contour

{x : −∞ < x ≤ 0}, over which there is (extremely) rapid decay with x.

Having shown how to deal with (5.35) when the contour of integration

with respect to y is C1, we move on to C2. In this case, the integral is

ṽK1,c1

(K1)j

K2−bΛ2c∑
k=bΛ2c

e2πia1k+2πibk2
∫ ∞

0
e−2πiτ̃kx−2πiα2x2(5.47)

×
∫ K1√

3

0
(K1 − iy)je−2πc1y3−6πic1K1y2−2π(1/4+x−3c1K2

1 )y dy dx ,

where τ̃k := τK1,τk = K1 − τk, and ṽK1,c1 is a quickly computable constant

of modulus 1. Since |3c1K
2
1 | ≤ 3/Λ(K, j, ε), the integral with respect to y

declines faster than e−y/16 throughout 0 ≤ y ≤ K1/
√

3. Employing our stan-

dard argument of exploiting the exponential decay, the expression (5.47) can

be reduced to a linear combination, with quickly computable coefficients each

of size O(1), of O(ν(K, j, ε)2) sums

(5.48)

K2−bΛ2c∑
k=bΛ2c

eπia1k+2πibk2
∫ 1

0
yl
∫ ∞

0
e−2π(y+n)x−2πiτ̃kx−2πiα2x2 dy dx ,

where the integers n and l satisfy 0 ≤ n < L and 0 ≤ l = O(ν(K, j, ε)). Finally,

(5.48) is treated in a completely analogous way to (5.38) except now, instead

of the bound (5.42), one appeals to the bound τ̃k ≥ α(Λ(K, j, ε)2 − 6), which

holds for 0 ≤ k ≤ K2−bΛ(K, j, ε)2c, hence, holds over the range of summation

in (5.48). �
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