
Annals of Mathematics 174 (2011), 859–889
http://dx.doi.org/10.4007/annals.2011.174.2.3

A nearly-optimal method to compute
the truncated theta function,
its derivatives, and integrals

By Ghaith Ayesh Hiary

Abstract

A poly-log time method to compute the truncated theta function, its

derivatives, and integrals is presented. The method is elementary, rigorous,

explicit, and suited for computer implementation. We repeatedly apply the

Poisson summation formula to the truncated theta function while suitably

normalizing the linear and quadratic arguments after each repetition. The

method relies on the periodicity of the complex exponential, which enables

the suitable normalization of the arguments, and on the self-similarity of the

Gaussian, which ensures that we still obtain a truncated theta function after

each application of the Poisson summation. In other words, our method

relies on modular properties of the theta function. Applications to the

numerical computation of the Riemann zeta function and to finding the

number of solutions of Waring type Diophantine equations are discussed.

1. Introduction

Sums of the form

(1.1)
K2∑

k=K1

g(k) exp(f(k)), f(x) ∈ C[x] , g(x) ∈ C[x]

arise in areas such as number theory, differential equations, lattice-point prob-

lems, optics, and mathematical physics, among others. For example, one en-

counters these sums in the context of Diophantine equations and fractional

parts of polynomials ([Kor92]), solutions of heat and wave equations ([Mum83]),

counting of integer points lying close to a curve ([Hux96]), numerical integra-

tion and quadrature formulas ([Kor92]), and motion of harmonic oscillators

([Kar04]). Due to the importance of such sums, there exists an abundance of

methods to bound them. For instance, Vinogradov’s [Vin54] methods supply

Preparation of this material is partially supported by the National Science Foundation

under agreements No. DMS-0757627 (FRG grant) and DMS-0635607 (while at the Institute

for Advanced Study). This material is based on the author’s Ph.D. thesis.

859

http://annals.math.princeton.edu/annals/about/cover/cover.html
http://dx.doi.org/10.4007/annals.2011.174.2.3

860 G. A. HIARY

such bounds, which along with some involved sieving techniques are used in

attacking Goldbach-Waring type problems (see [LWY04] for example).

Despite the substantial interest in the sums (1.1), comparatively little is

known about how to compute them for general values of their arguments. Yet

in some settings, it is useful to be able to compute these sums efficiently and

accurately. We soon describe two such settings, both of which originate in

number theory.

The simplest examples of the exponential sums (1.1) occur when f(x) is of

degree one, where we obtain the geometric series and its derivatives for which

“closed-form” formulae are available. The first nontrivial example occurs when

f(x) is a quadratic polynomial. In this case, the exponential sum (1.1) can be

written as a linear combination of exponential sums of the form

(1.2) F (K, j; a, b) :=
1

Kj

K∑
k=0

kj exp(2πiak + 2πibk2) .

Suppose the integer j is not too large. Then in this article, using ideas

rooted in analysis, we prove the sum F (K, j; a, b) can be numerically computed

to within ± ε, for any positive ε < e−1, in poly-log time in K/ε. The linear

and quadratic arguments a and b are any numbers in [0, 1), and j is any integer

that satisfies 0 ≤ j ≤ O(log(K/ε)κ0), where κ0 is any fixed constant.

More precisely, we obtain the following upper bound on the number of

elementary arithmetic operations (additions, multiplications, evaluations of

the logarithm of a positive number, or evaluations of the complex exponential)

on numbers of O((j + 1) log(K/ε)) bits that our theta algorithm uses.

Theorem 1.1. There are absolute constants κ1, κ2, A1, A2, and A3,

such that for any positive ε < e−1, any integer K > 0, any integer j ≥ 0, any

a, b ∈ [0, 1), and with ν := ν(K, j, ε) = (j + 1) log(K/ε), the value of the func-

tion F (K, j; a, b) can be computed to within ±A1 ν
κ1ε using ≤ A2 ν

κ2 arith-

metic operations on numbers of ≤ A3 ν
2 bits.

We remark that a bit complexity bound follows routinely from the arith-

metic operations bound in Theorem 1.1. This is because all the numbers that

occur in our algorithm have ≤ A3 ν(K, j, ε)2 bits. We do not try to obtain

numerical values for the constants κ1 and κ2 in Theorem 1.1. With some

optimization, they probably can be taken around 3. Also, in a practical ver-

sion of the algorithm, the arithmetic can be performed using substantially

fewer than A3 ν
2 bits, and we will likely be able to replace ν(K, j, ε) with

j + log(K/ε). If we take ε = K−d in the statement of the theorem, then

ν(K, j, ε) = (d+1)(j+1) logK. So the running time of the algorithm becomes

≤ A2 (d+ 1)κ2(j+ 1)κ2(logK)κ2 operations. For d and j bounded by any fixed

power of logK, this running time is poly-log in K.

A METHOD TO COMPUTE THE TRUNCATED THETA FUNCTION 861

We now discuss two applications of the algorithm of Theorem 1.1. For

brevity, we will often refer to it as the “theta algorithm” because F (K, j; a, b)

is directly related to the truncated theta function.

The values of ζ(1/2 + it) on finite intervals are of great interest to num-

ber theorists. For example, the numerical verification of the Riemann hy-

pothesis is clearly dependent on such data. There exist several methods to

compute ζ(1/2 + it), which means methods to obtain the numerical value of

ζ(1/2 + it) to within ± t−λ, for any fixed λ > 0, and any t > 1. A well-known

approach to computing ζ(1/2 + it) relies on a straightforward application of

the Riemann-Siegel formula. The Riemann-Siegel formula has a main sum of

length b
»
t/(2π)c terms. A simplified version of that formula is

(1.3) ζ(1/2+it) = e−iθ(t)<
(
2 e−iθ(t)

n1∑
n=1

n−1/2 exp(it log n)
)

+Φλ(t)+O(t−λ) ,

where n1 := b
»
t/(2π)c, and θ(t) and Φλ(t) are certain well-understood func-

tions that can be evaluated accurately in toλ(1) operations on numbers of

Oλ(log t) bits; see [OS88]. (The notation Oλ(t) or toλ(1) indicates asymptotic

constants are taken as t → ∞, and they depend only on λ, where we wish to

compute ζ(1/2 + it) to within ± t−λ.)

Our theta algorithm directly leads to a practical method to compute

ζ(1/2 + it) to within ± t−λ using t1/3+oλ(1) operations on numbers of Oλ(log t)

bits and requiring Oλ(log t) bits of storage. The derivation is explained in a

general context in [Hia08] (similar manipulations can also be found in [Sch90]

and in [Tit86, p. 99]). A preliminary step in the derivation is to apply appro-

priate subdivisions and Taylor expansions to the main sum in the Riemann-

Siegel formula in order to reduce its computation to that of evaluating, to

within ± t−λ−1, a sum of about t1/3+oλ(1) terms of the form F (K, j; a, b), where

K = O(t1/6), and 0 ≤ j = Oλ(log t). The power savings now follow because,

using the theta algorithm, each of the functions F (K, j; a, b) can be evaluated

to within ± t−λ−2 in poly-log time in t.

As another simple and direct application of the theta algorithm, we show

how to find the number of solutions of a Waring type Diophantine equation.

Suppose we wish to find the number of integer solutions to the system

(1.4)
s∑
r=1

(αr kr + βr k
2
r)−

s+t∑
r=s+1

(αr kr + βr k
2
r) ≡ 0 (modM) ,

where 0 ≤ k1, . . . , ks+t ≤ K, and α1, β1, . . . , αs+t, βs+t are some fixed integers.

A straightforward calculation reveals that the number of solutions is given by

(1.5)
1

M

M−1∑
l=0

(s∏
r=1

F (K, 0;αr l/M, βr l/M)
)(s+t∏

r=s+1

F (K, 0;αr l/M, βr l/M)
)
.

862 G. A. HIARY

Using the theta algorithm, the expression (1.5) can be evaluated, to the

nearest integer say, in M1+o(1)Kos,t(1) time. This is already significantly better

than a brute-force search. One can also employ the fast Fourier transform to

compute (1.5) with sufficient accuracy in M1+o(1)Kos,t(1)+K3+os,t(1) time. But

this is less efficient, and it requires temporarily storing large amounts of data.

In the special case M = K, one can calculate (1.5) to the nearest integer in

M1+o(1)Kos,t(1) time using well-known formulae for complete Gauss sums.

In searching for methods to compute F (K, j; a, b), one should make use

of the rich structure of the theta function. The theta function, together with

variants, occurs frequently in number theory. It is directly related to the zeta

function by a Mellin transform, and it has a functional equation as well as

other modular properties. So one anticipates that a fast method to compute

the truncated theta function will take advantage of this.

With this in mind, let us motivate the algorithm of Theorem 1.1 in the

case j = 0. To this end, recall the following application of Poisson summation

due to van der Corput (see [Tit86, p. 74], for a slightly different version). We

refer to this application as the van der Corput iteration, although it is not

conventionally labelled as such.

Theorem 1.2 (van der Corput iteration). Let f(x) be a real function with

a continuous and strictly increasing derivative in s ≤ x ≤ t. Let f ′(s) = α and

f ′(t) = β. Then

(1.6)
∑
s≤k≤t

exp(2πif(k)) =
∑

α−η<v<β+η

∫ t

s
exp(2πi(f(x)− vx)) dx+Rs,t,f ,

where Rs,t,f = O (log(2 + β − α)) for any positive constant η less than 1.

The van der Corput iteration turns a sum of length t−s terms into a sum

of length about β − α = f ′(t)− f ′(s) terms, plus a remainder term Rs,t,f . In

order for this transformation to be a potentially useful computational device,

we need β − α ≤ τ(t− s) for some absolute constant 0 ≤ τ < 1. This ensures

that the new sum is shorter than the original sum. Moreover, we must be

able to compute the remainder term Rs,t,f , and each of the integrals in the

sum over v in (1.6), using relatively few operations. For η sufficiently small,

the latter are precisely the integrals in the Poisson summation formula that

contain a saddle point, where an integral is said to contain a saddle point if

the function d
dx (f(x)− vx) = f ′(x) − v vanishes for some x in the interval of

integration [s, t]. So the integrals containing saddle points are determined by

(1.7) f ′(x) = v , for some x ∈ [s, t] , ⇐⇒ α ≤ v ≤ β .

Still, if we simply ensure β−α ≤ τ(t−s) for some fixed constant 0 ≤ τ < 1,

then the length of the sum over v in (1.6) might be of the same order of

A METHOD TO COMPUTE THE TRUNCATED THETA FUNCTION 863

magnitude as the length of the original sum. For example, if τ = 1/2, then

we are only guaranteed a cut in the length by 1/2. So the complexity of the

problem appears unchanged (in the sense of power-savings). But if we also

require the function exp(2πif(x)) to possess some favorable Fourier transform

properties that allow us to turn the v-terms into ones suited for yet another

application of the transformation (1.6), then under such hypotheses, one may

hope repeated applications of the van der Corput iteration are possible. If they

are, then one can compute the original sum over k using ≤ log2K applications

of (1.6). (log2 x is the logarithm of x to base 2.)

These restrictions on f(x) and its Fourier transform are quite stringent.

They severely limit the candidate functions for the proposed strategy. Fortu-

nately, the choice f(x) = ax+ bx2, which occurs in F (K, j; a, b), is particularly

amenable to repeated applications of the van der Corput iteration. Indeed, if

we take s = 0 and t = K in relation (1.6), and assume dae < ba + 2bKc say,

which is frequently the case, then with f(x) = ax+ bx2, and for η sufficiently

small, the transformation (1.6) becomes

(1.8)
K∑
k=0

exp(2πiak+ 2πibk2) =

ba+2bKc∑
v=dae

∫ K

0
exp(2πiax+ 2πibx2 − 2πivx) dx+ R1 ,

where R1 := R1(a, b,K). We remark that if the condition dae < ba + 2bKc
fails, so ba+ 2bKc ≤ dae, then b < 1/K. This means b will be relatively small.

For such small b, we will use the Euler-Maclaurin summation formula instead

of the van der Corput iteration to calculate the sum on the left side in (1.8);

see Section 3.2 for details. That aside, let us write the relation (1.8) as

(1.9) F (K; a, b) = F̃ (ba+ 2bKc; a, b) +R1 ,

where

F (K; a, b) :=
K∑
k=0

exp(2πiak + 2πibk2) ,(1.10)

F̃ (ba+ 2bKc; a, b) :=

ba+2bKc∑
v=dae

∫ K

0
exp(2πiax+ 2πibx2 − 2πivx) dx .

We refer to sums of the form F (K; a, b) as quadratic sums. We recall the

following “self-similarity” property of the Gaussian:

(1.11)

∫ ∞
−∞

exp(ηt− t2) dt =
√
π exp(η2/4), η ∈ C .

With this setup, we describe the typical iteration of our algorithm. Using

the identities in Lemma 4.1 in Section 4, as well as conjugation if necessary,

it is easily shown the arguments a and b in (1.8) can always be normalized

864 G. A. HIARY

so that a ∈ [0, 1) and b ∈ [0, 1/4]. The normalization is important, otherwise

successive applications of the Poisson summation (in the form of the van der

Corput iteration) will essentially cancel each other. Since b ∈ [0, 1/4], the new

sum F̃ (ba + 2bKc; a, b) has length ba + 2bKc ≤ K/2, which is at most half

the length of the original sum. We observe each term in F̃ (ba + 2bKc; a, b)
is an integral of the form

∫K
0 exp(2πiax + 2πibx2 − 2πivx) dx for some dae ≤

v ≤ ba + 2bKc. And by construction, each such integral contains a saddle-

point. We extract the saddle point contribution from each of these integrals.

To do so, we first shift the contour of integration to the stationary phase (at

an angle of π/4). Then we complete the domain of integration on both sides

to infinity. Last, we use the self-similarity of the Gaussian (1.11) to calculate

the completed integral explicitly. This yields a new quadratic exponential sum

F (ba+ 2bKc; a/2b,−1/4b). Slightly more explicitly, one obtains

(1.12) F̃ (ba+ 2bKc; a, b) =
eπi/4−πia

2/(2b)

√
2b

F

Å
ba+ 2bKc; a

2b
,− 1

4b

ã
+R2 ,

where R2 := R2(a, b,K) is a remainder term. It is shown that the original

remainder term R1 in (1.6), and the new remainder term R2 in (1.12), can both

be computed to within ± ε in poly-log time in K/ε. Therefore, on repeating

the typical iteration at most log2K times, we arrive at a quadratic sum of a

small enough length to be evaluated directly.

In the typical iteration, most of the effort is spent on computing the “error

terms” R1 and R2. So in order for the overall algorithm to work, it is critical

to prove that R1 and R2 can in fact be computed to within ± ε in poly-log time

in K/ε. This is accomplished in detail in Sections 3 and 6. Briefly though, let

us give a heuristic description of why that is.

The remainder terms R1 and R2 are implicitly defined by relations (1.8)

and (1.12), respectively. It is not hard to show these definitions, together with

the Poisson summation formula, and the self-similarity of the Gaussian, imply

R1 and R2 must equal the following:

R1(a, b,K) = ca,b,K + PV
∑

v>ba+2bKc
or v<dae

∫ K

0
exp(2πiax+ 2πibx2 − 2πivx) dx ,

R2(a, b,K) = da,b +

ba+2bKc∑
v=dae

∫
x<0 or
x>K

exp(2πiax+ 2πibx2 − 2πivx) dx ,

where ca,b,K and da,b are certain easily computable quantities, and PV in front

of the sum in R1 means the terms of the infinite sum are taken in conjugate

pairs. One observes none of the integrals in R1 and R2 contains a saddle point.

Because, by construction, R1 consists of precisely the integrals in the Poisson

summation formula with no saddle point, while R2 consists of “complements”

A METHOD TO COMPUTE THE TRUNCATED THETA FUNCTION 865

of such integrals, hence, by the monotonicity of d
dx(ax+bx2−vx) = a+2bx−v,

they do not contain saddle points themselves.

The absence of saddle points from the geometric sums R1 and R2 is the

reason they do not present any computational difficulty. This is because the

absence of saddle points, when combined with suitable applications of Cauchy’s

theorem, allows for their oscillations to be controlled easily and in an essentially

uniform way. This means the same suitably chosen contour shift can be applied

to a large subset of the integrals in R1 (or R2) to ensure rapid exponential decay

in the modulus of their integrands. The shifted integrals can thus be truncated

quickly, and at a uniform point (after distance about log(K/ε), where we wish

to evaluated F (K; a, b) to within ± ε say). Once truncated, the quadratic part

of the integrand, which is exp(2πibx2), can be expanded away as a polynomial

in x of low degree (since 2πbx2 no longer gets too large; see Section 3 and

Lemmas 6.1 and 6.2 for the details). One then finds that in computing R1 and

R2 the bulk of the computational effort is exerted on integrals of the form

(1.13) h(z, w) :=

∫ 1

0
tz exp(wt) dt , 0 ≤ z , z ∈ Z , <(w) ≤ 0 .

The function h(z, w) is directly related to the incomplete gamma func-

tion. For purposes of our algorithm, the nonnegative integer z will be of size

O(log(K/ε)κ̃), where κ̃ is some absolute constant. In particular, the range of

z is quite constrained, which enables a fast evaluation of the integrals (1.13)

via relatively simple methods. But the literature is rich with methods to com-

pute the incomplete gamma function, and consequently h(z, w), for general

values of its arguments. These methods are surveyed in great detail by Rubin-

stein [Rub05], where they arise in the context of his derivation of a smoothed

approximate functional equation for a general class of L-functions.

We further remark that the linear argument a, and the quadratic argu-

ment b, play different roles in the algorithm. Varying the linear argument a

corresponds to sliding the sum over v in (1.8), whereas varying the quadratic

argument b corresponds to compressing, or stretching, the sum. The latter

feature greatly accounts for the utility of the van der Corput iteration in the

context of the theta algorithm. Also, the role played by the self-similarity of

the Gaussian is crucial, because it is the reason we still obtain a quadratic sum

after each application of the van der Corput iteration, making its repetition

natural to do.

At the beginning of each iteration, the algorithm normalizes the pair

(a, b) to be in [0, 1) × [0, 1/4]. Afterwards, it computes the remainder terms

R1(a, b,K) and R2(a, b,K) to within ± ε in poly-log time in K/ε. We com-

ment that the remainder terms R1 and R2 can still be computed with the same

accuracy and efficiency even if we only normalize (a, b) to be in [0, 1)× [0, 1).

However, the resulting quadratic sum, which is of length ≈ 2bK, could then be

866 G. A. HIARY

longer the original sum, which is of length K. So, although normalizing (a, b)

to be in [0, 1)× [0, 1/4] is not important to computing the remainder terms R1

and R2 accurately and efficiently in a single iteration, it is important for the

recursive step in the algorithm.

Notice it is not enough to normalize the quadratic argument b so it is

in [0, 1/2) (this is straightforward to do using the periodicity of the complex

exponential and conjugation if necessary). Because if b ∈ [0, 1/2), then 2bK

could be very close to K. So the length of the new sum in the van der Corput

iteration, which is ≈ 2bK, might be very close to the length of the original

sum, which is K. In particular, we will not have a sufficiently good upper

bound on the number of iterations required by theta algorithm. For example,

if b starts close to 1/2 mod 1, then its image under the map b ← −1/(4b),

which is the map that occurs in the algorithm, remains close to 1/2 mod 1.

The extra ingredient needed to ensure that b is bounded away from 1/2, that

in fact b ∈ [0, 1/4], is the following (easily-provable) identity from Lemma 4.1:

(1.14) F (K, j; a, b) = F (K, j; a± 1/2, b± 1/2) = F (K, j; a∓ 1/2, b± 1/2) .

This concludes our sketch of the theta algorithm in the special case j = 0.

For a general j ≥ 0, the theta algorithm consists of at most log2K iterations.

Each iteration acts on F (K, j; a, b) in the following way:

(1.15) F (K, j; a, b) =
j∑
l=0

wl,j,a,b,K F
Ä
qa,b,K , l; a

∗
a,b, b

∗
a,b

ä
+RK,j,a,b ,

where qa,b,K := ba + 2bKc, a∗a,b := a/(2b), b∗b := −1/(4b), and the coeffi-

cients wl,j,a,b,K are given by formula (6.14) in Lemma 6.3. The remainder term

RK,j,a,b is computed to within ± ε in poly-log time in K/ε, via the algorithm.

A key point is the tuple (qa,b,K , a
∗
a,b, b

∗
b) does not depend on j. Therefore,

the number of new sums F (.) we need to compute in each iteration is always

≤ j + 1. And since the length of each new sum in (1.15) is qa,b,K ≤ (K + 1)/2,

the algorithm has to repeat at most log2K times.

More generally, our method acts on a sum of the form
∑j
l=0 zlF (K, l; a, b)

in the following way:

(1.16)
j∑
l=0

zl F (K, l; a, b) =
j∑
l=0

w̃l,j,a,b,K F
Ä
qa,b,K , l; a

∗
a,b, b

∗
b

ä
+

j∑
l=0

RK,l,j,a,b ,

where qa,b,K , a∗a,b, and b∗b are the same as in (1.15), and

(1.17) w̃l,j,a,b,K :=
j∑
s=l

zswl,s,a,b,K .

In Section 3, we show that the coefficients w̃l,j,a,b,K do not grow too rapidly with

each iteration. Specifically, we show that the maximum modulus of w̃l,j,a,b,K

A METHOD TO COMPUTE THE TRUNCATED THETA FUNCTION 867

over all iterations of the algorithm is O(8jK2), provided the initial coefficients

zl satisfy max0≤l≤j |zl| = O(1) say, which is often the case. This bound is

rather generous, but it is sharp enough for purposes of our error analysis,

and for bounding the number of bits needed by the algorithm to perform its

arithmetic operations.

The presentation is organized as follows. In Section 3, we describe the

typical van der Corput iteration. In Section 4, we provide a pseudo-code for

the algorithm. In Section 5, it is shown how to compute the related sums

(1.18) G(K, j; a, b) :=
K∑
k=1

1

kj
exp(2πiak + 2πibk2) ,

with a similar complexity and accuracy to F (K, j; a, b). This is done mainly

for use in the separate paper [Hia08]. Finally, in Section 6, we give proofs

of various lemmas employed in the previous sections. Section Section 6 in-

cludes Lemmas 6.6 and 6.7, which are also intended for use in the separate

paper [Hia08]. These two lemmas give a complete account of how the theta

algorithm behaves, in the case j = 0, under small perturbations in the linear

argument a.

2. Notation

We let bxc denote the largest integer less than or equal to x , dxe denote

smallest integer greater than or equal to x, {x} denote x − bxc, log x denote

loge x, and exp(x) as well as ex stand for the exponential function (they are

used interchangeably). We define 00 := 1 whenever it occurs (e.g. in a bino-

mial expansion). For easy reference, we list contours frequently used in later

sections:

C0 := {t | 0 ≤ t < K} , C1 := {K + it | 0 ≤ t < K} ,
C2 := {eπi/4 t | 0 ≤ t <

√
2K} , C3 = {−it | 0 ≤ t <∞} ,

C4 = {K − it | 0 ≤ t <∞} , C5 := {eπi/4 t | −∞ < t < 0} ,
C6 := {eπi/4 t |

√
2K ≤ t <∞} , C7 := {e−πi/4 t | 0 ≤ t <

√
2K} ,

C8 := C2 ∪ C5 ∪ C6 , C9 := {t | 0 ≤ t <∞} .

Next, define the functions

IC(K, j; a, b) :=
1

Kj

∫
C
tj exp(2πiat+ 2πibt2) dt ,(2.1)

J(K, j;M,a, b) :=
1

Kj

∫ K

0
tj exp

Ä
−2πat− 2πibt2

ä 1− exp (−2πMt)

exp(2πt)− 1
dt .

It is convenient to define ĨC(K, j; a, b) := IC(K, j; ia,−b) because it will occur

often. Notice ĨC(K, j; a, b) = e−πi/2Ieπi/2C(K, j; a, b), so it is essentially a

868 G. A. HIARY

rotation by π/2. We also define

p := p(a) = dae , ω1 := ω1(a) = dae − a ,
q := q(a, b,K) = ba+ 2bKc , ω := ω(a, b,K) = {a+ 2bK} ,
p1 := p1(a, b,K) = q(a, b,K)− p(a) , ν(K, l, ε) := (l + 1) log(K/ε) .

For any j ≥ 0 and ε ∈ (0, e−1), we say K is large enough if it is satis-

fies the lower bound K > Λ(K, j, ε), where Λ(K, j, ε) := 1000ν(K, j, ε)6, and

ν(K, j, ε) := (j + 1) log(K/ε). For example, if K is large enough, then among

other consequences, e−K < (ε/K)1000(j+1). Finally, in the remainder of the

paper, any implicit asymptotic constants are absolute, and are applicable as

soon as ε < e−1, 0 ≤ j, and Λ(K, j, ε) < K, unless otherwise is indicated.

In Sections 3 and 4, we prove Theorem 1.1, which is our main theorem.

3. The basic iteration of the algorithm

Let j be any nonnegative integer, ε any number in (0, e−1), K any large

enough integer, and (a, b) any pair in [0, 1)× [0, 1) (the assumption b ∈ [0, 1/4]

is not needed in this section, but it is needed in §4). Then with p := p(a) = dae,
and q := q(a, b,K) = ba+ 2bKc, either p < q or q ≤ p. The first possibility is

the main case, and it is where the algorithm typically spends most of its time.

The second possibility is a boundary point that will be handled separately

using the Euler-Maclaurin summation.

3.1. Main case: p < q. Let p := p(K, a, b) = dae−a, and q := q(K, a, b) =

ba+ 2bKc. Assume p < q. By the Poisson summation formula

(3.1) F (K, j; a, b) = cbd + PV
∞∑

m=−∞
IC0(K, j; a−m, b) ,

where δj is Kronecker’s delta, and cbd := cbd(a, b, j,K) = 1
2 δj + 1

2 e
2πiaK+2πibK2

is a boundary term. The notation PV in (3.1) stands for principal value, so

terms are taken in conjugate pairs. Define

S1(K, j; a, b) :=
q∑

m=p

IC0(K, j; a−m, b) ,(3.2)

S2(K, j; a, b) := PV
∑

m/∈[p,q]
IC0(K, j; a−m, b) .

Therefore,

(3.3) F (K, j; a, b) = cbd + S1(K, j; a, b) + S2(K, j; a, b) .

Since the boundary term cbd in (3.3) can be computed in a constant num-

ber of operations on numbers of O(logK) bits, then it is enough to show

how to deal with S1(K, j; a, b) and S2(K, j; a, b). We remark that the sum

S1(K, j; a, b) corresponds to the terms in the Poisson summation formula that

A METHOD TO COMPUTE THE TRUNCATED THETA FUNCTION 869

contain a saddle point, and S2(K, j; a, b) corresponds to the terms that do not

contain a saddle point. The plan is to extract the saddle point contributions

from S1(K, j; a, b), which will yield a new (shorter) quadratic exponential sum,

plus a remainder term (involving no saddle points) that we will show is com-

putable to within ± ε in poly-log time in K/ε. As for S2(K, j; a, b), whose

terms do not contain saddle-points and hence will not contribute to the new

quadratic sum, we will show it also can be computed in a similar amount of

time and accuracy.

3.1.1. The sum S1(K, j; a, b). By definition,

(3.4) S1(K, j; a, b) =
q∑

m=p

IC0(K, j; a−m, b) ,

where p = dae, q = ba+ 2bKc, C0 := {t | 0 ≤ t < K}, and

IC0(K, j; a−m, b) :=
1

Kj

∫
C0

tj exp(2πi(a−m)t+ 2πibt2) dt(3.5)

=
1

Kj

∫ K

0
tj exp(2πi(a−m)t+ 2πibt2) dt .

The integral IC0(K, j; a−m, b) contains a saddle-point when d
dt [(a−m)t− bt2]

vanishes for some 0 ≤ t ≤ K, which is the interval of integration in (3.5). This

occurs precisely when

(3.6) 0 ≤ (m− a)/(2b) ≤ K ⇐⇒ a ≤ m ≤ a+ 2bK .

Since (3.6) is exactly the range of summation in the definition of S1(K, j; a, b),

then each integral there contains a saddle-point. As stated earlier, we plan to

extract the saddle-point contributions from these integrals, which will produce

a new shorter quadratic exponential sum of length ≤ q + 1 terms.

To this end, define the contours C1 := {K + it | 0 ≤ t < K}, and C2 :=

{eπi/4 t | 0 ≤ t <
√
K}. So C1 and C2 are the two other sides of a right-angle

triangle with base C0. By Cauchy’s theorem,

(3.7) S1(K, j; a, b) =
q∑

m=p

IC2(K, j; a−m, b)−
q∑

m=p

IC1(K, j; a−m, b) .

We first consider the sum
∑q
m=p IC1(K, j; a−m, b) in (3.7). Let us exclude

the term corresponding to m = q in that sum for now as it will require a

special treatment. We apply the change of variable t← K+ it to each integral

IC1(K, j; a − m, b), followed by interchanging the order of summation, then

870 G. A. HIARY

executing the resulting geometric sum, to obtain
q−1∑
m=p

IC1(K, j; a−m, b) = c1

j∑
l=0

il
Ç
j

l

å
1

K l

∫ K

0
tl exp

Ä
−2πωt− 2πibt2

ä
(3.8)

× 1− exp(−2πp1t)

exp(2πt)− 1
dt ,

where ω = {a+ 2bK}, p1 = q − p, and c1 := c1(a, b,K) = ie2πiaK+2πibK2
. For

any integer M ≥ 0, define

(3.9) J(K, l;M,a, b) :=
1

K l

∫ K

0
tl exp(−2πat− 2πibt2)

1− exp(−2πMt)

exp(2πt)− 1
dt .

Then (3.8) can be expressed as

(3.10)
q−1∑
m=p

IC1(K, j; a−m, b) = c1

j∑
l=0

il
Ç
j

l

å
J(K, l; p1, ω, b) .

The integrand on the right side of (3.8) declines at least like e−2πt with t.

The rapid decline permits the interval of integration to be truncated quickly,

which enables an efficient evaluation of the (3.8), hence of J(K, l; p1, ω, b).

(Notice if the term m = q were included in the sum (3.8), the integrand will

decline only like e−2πωt, which might not be fast enough if ω is very close to

zero, and it is the reason that term was excluded earlier.)

Indeed, according to Lemma 6.1, which is proved via this approach, there

exist absolute constants κ3, κ4, A4, A5, and A6 such that J(K, l; p1, ω, b) can

be evaluated (in terms of short exponential sums) to within

±A4 10κ4 ν(K, j, ε)κ44−jε

using ≤ A5 10κ3 ν(K, j, ε)κ3 operations on numbers of ≤ A6 ν(K, j, ε)2 bits.

Notice the reason we built in the factor 4−j in the accuracy is because each

term in (3.10) is multiplied by
(j
l

)
≤ 2j , and there are j + 1 ≤ 2j terms. But

even if we require J(.) to be computed to within ± 2−jd1 K−d2 ε, say for any

fixed d1 and d2, then the running time will still be polynomial in ν(K, j, ε).

As for the term IC1(K, j; a− q, b), which we excluded earlier, it is treated

as follows. Using the change of variable t ← K + it, followed by a binomial

expansion, we obtain

IC1(K, j; a− q, b) = c1

j∑
l=0

il
Ç
j

l

å
1

K l

∫ K

0
tl exp(−2πωt− 2πibt2) dt(3.11)

= c1

j∑
l=0

il
Ç
j

l

å
ĨC0(K, l;ω, b) ,

where, as before, c1 := c1(a, b,K) = ie2πiaK+2πibK2
, and

(3.12) ĨC0(K, l;ω, b) :=
1

K l

∫ K

0
tl exp(−2πωt− 2πibt2) dt .

A METHOD TO COMPUTE THE TRUNCATED THETA FUNCTION 871

The integrand in ĨC0(K, l;ω, b) might not experience rapid exponential decline,

because ω could be very close to zero (recall ω := {a+ 2bK}, which could get

arbitrarily close to zero). One overcomes this difficulty by using Cauchy’s

theorem: let C7 := {te−πi/4 | 0 ≤ t <
√

2K} and C1 := {K− it | 0 ≤ t < K}, so

C7 and C1 are the two other sides of a right-angle triangle with base C0; one

finds

(3.13)
j∑
l=0

il
Ç
j

l

å
ĨC0(K, l;ω, b) =

j∑
l=0

il
Ç
j

l

å
ĨC7(K, l;ω, b)−

j∑
l=0

il
Ç
j

l

å
ĨC1

(K, l;ω, b) .

The point now is that if b is not too small, the functions IC7(.) and IC1
(.)

in (3.13) experience more rapid exponential decay, making them much easier to

evaluate than ĨC0(K, l;ω, b). Specifically, by Lemma 6.1, each of the functions

ĨC7(K, l;ω, b) and ĨC1
(K, l;ω, b) can be evaluated to within

±A7 10κ6 ν(K, j, ε)κ68−jε

using ≤ A8 10κ5 ν(K, j, ε)κ5 operations on numbers of ≤ A9 ν(K, j, ε)2 bits,

provided 1 ≤ 2bK. Since in this subsection it is assumed p = dae < q =

ba+ 2bKc, it follows a+ 1 ≤ a+ 2bK, and so 1 ≤ 2bK. Put together, we have

q∑
m=p

IC1(K, j; a−m, b) = c1

j∑
l=0

il
Ç
j

l

å
J(K, l; p1, ω, b)(3.14)

+ c1

j∑
l=0

il
Ç
j

l

å
ĨC7(K, l;ω, b)

− c1
j∑
l=0

il
Ç
j

l

å
ĨC1

(K, l;ω, b) ,

where we have shown the right of (3.14) side can be computed accurately and

efficiently enough for purposes of proving Theorem 1.1.

Having disposed of the sum
∑
IC1(.) in (3.7), we now consider the sum∑

IC2(.) there. Recall C2 := {eπi/4 t | 0 ≤ t <
√

2K}. We “complete” C2

to span the full range (−∞,∞). This yields C2 = C8 − C5 − C6, where

C8 := {eπi/4 t | − ∞ < t < ∞}, C5 := {eπi/4 t | − ∞ < t < 0}, and C6 :=

{eπi/4 t |
√

2K ≤ t < ∞}. The advantage of rewriting C2 in this way is the

following. The integrand in

(3.15)

IC2(K, j; a−m, b) =
eπi(j+1)/4

Kj

∫ √2K
0

tj exp(2πieπi/4(a−m)t− 2πbt2) dt ,

experiences large oscillations that lead to a tremendous amount of cancel-

lation. Consider, for instance, |e2πieπi/4(a−m)t−2πbt2 | reaches a maximum of

872 G. A. HIARY

eπ(m−a)
2/(4b) at the point 0 ≤ t = (m − a)/(2

√
2b) ≤

√
2K, while, in compar-

ison, the actual value of the integral is typically much smaller in size. This

makes IC2(.) difficult to evaluate numerically for such m. On the other hand,

IC8(.), which still involves a tremendous amount of cancellation, can be eval-

uated at once via formula (1.11), which is the self-similarity property of the

Gaussian. Moreover, the extra integrals IC5(.) and IC6(.), which were needed to

complete IC2(.), can also be evaluated efficiently because when m ∈ {p, . . . , q}
and t /∈ [0,

√
2K], the integrand e2πie

πi/4(a−m)t−2πbt2 declines rapidly (a conse-

quence of the lack a saddle-point there). Explicitly, since C2 = C8 − C5 − C6,

we have

q∑
m=p

IC2(K, j; a−m, b) =
q∑

m=p

IC8(K, j; a−m, b)−
q∑

m=p

IC5(K, j; a−m, b)

(3.16)

−
q∑

m=p

IC6(K, j; a−m, b).

We consider
∑q
m=p IC5(.) first. Let us exclude the term corresponding to m = p

from the sum for now because it will require a special treatment. By Cauchy’s

theorem and a straightforward estimate, we obtain

(3.17)
q∑

m=p+1

IC5(K, j; a−m, b) = c2J (K, j; p1, ω1, b) +O(e−K) ,

where ω1 := dae−a, and c2 := c2(j) = (−1)je(j+1)πi/2. Like before, the integral

J(.) in (3.17) is handled by Lemma 6.1. To deal with the special term m = p,

we relate it to the integral ĨC7(.):

(3.18) IC5(K, j; a− p, b) = c2ĨC7(K, j;ω1, b) +O(e−K) .

And we already know how to handle ĨC7(.) via Lemma 6.2.

We now consider the sum
∑q
m=p IC6(.) in (3.16). It is not hard to see

IC6(K, j; a−m, b) is bounded by O(e−K/K) for each m = p, . . . , q − 1; hence,

these terms are negligible due to our assumption K is large enough. And when

m = q, we have

IC6(K, j; a−q, b) = c3 2
j+1
2 e−2πωK

j∑
l=0

Ç
j

l

å
ĨC9(K, l;ω−iω+2bK+i2bK,−2ib) ,

where c3 := c3(a, j,K) = e(j+1)πi/4+2πiaK . The integral ĨC9(.) above is also

handled by Lemma 6.2. Finally, the sum
∑q
m=p IC8(.) in (3.16) produces the

new quadratic exponential sums since by Lemma 6.3, we obtain

(3.19)
q∑

m=p

IC8(K, j; a−m, b) =
j∑
s=0

ws,j,a,b,KF (q, s; a∗, b∗)− δ1−pw0,j,a,b,K ,

A METHOD TO COMPUTE THE TRUNCATED THETA FUNCTION 873

where a∗ ≡ a/(2b)(mod 1), b∗ ≡ −1/(4b)(mod 1), and as is apparent from

formula (6.14) in Lemma 6.3, the coefficients ws,j,a,b,K can be computed to

within ±, 8−jK−2ε say for all s = 0, 1, . . . , j using ≤ A10 j
2 operations on

numbers of ≤ A11 ν(K, j, ε)2 bits, where A10 and A11 are absolute constants.

More generally, if we wish to compute a linear combination of quadratic

sums
∑j
l=0 zl F (K, l; a, b), rather than a single quadratic sum, then instead of

(3.19), we obtain

(3.20)
j∑
l=0

zl

q∑
m=p

IC8(K, l; a−m, b) =
j∑
l=0

w̃l,j,a,b,K F (q, l; a∗, b∗)− δ1−p w̃0,j,a,b,K ,

where

(3.21) w̃l,j,a,b,K :=
j∑
s=l

zswl,s,a,b,K .

And we have the bound

(3.22) |w̃l,j,a,b,K | ≤
(

max
0≤l≤j

|zl|
) j∑
s=l

|wl,s,a,b,K | .

We consider the growth in the coefficients w̃s,j,a,b,K with each iteration.

For our purposes, it suffices to bound the maximum modulus of w̃s,j,a,b,K over

a full run of the algorithm. We examine two scenarios. In the first scenario,

2ν(K, j, ε)3 ≤ 2bK say. Here, as a consequence of Lemma 6.4, we have (log2K

denotes the logarithm to the base 2):

j∑
m=s

|ws,m,a,b,K | ≤ (2b)−1/2 e1+j/2ν
3
(1 + j/ν3)(3.23)

≤ (2b)−1/2 e1+1/ log2K(1 + 1/ log2K) .

In the second scenario, 2bK < 2 ν(K, j, ε)3. We observe this can happen only

in the last iteration (because then q = ba + 2bKc is not large enough, which

is a boundary point of the algorithm). There are two possibilities: q ≤ p or

p < q < 2 ν(K, j, ε)3 + 1. In the former case, the algorithm concludes via the

Euler-Maclaurin summation method of Section 3.2, and not via the van der

Corput iteration. In particular, if q ≤ p, we do not reach the right side of

(3.20) at all. In the latter case (the case p < q < 2 ν(K, j, ε)3 + 1), Lemma 6.4

supplies the bound

(3.24)
j∑

m=s

|ws,m,a,b,K | ≤ (2b)−1/2 (j + 1)4j+2 .

Therefore, by the bounds (3.22), (3.23), and (3.24), and taking into account

the algorithm involves ≤ log2K iterations and 1 ≤ 2bK, it follows that the

874 G. A. HIARY

maximum modulus of the coefficients w̃s,j,a,b,K that can occur over a full run

of the algorithm is

(3.25) ≤ elog2K(2 logK)2(j + 1)4j+2
√
K = O

Ä
8jK2

ä
.

In Section 4, we use the bound (3.25) to determine by how much ε needs

to be adjusted over a full run of the algorithm so that the final output is still

accurate to within ±A1 ν
κ1ε, as claimed in Theorem 1.1.

3.1.2. The sum S2(K, j; a, b). By definition,

(3.26) S2(K, j; a, b) :=
M∑

m=q+1

IC0(K, j; a−m, b) +
p−1∑

m=−M
IC0(K, j; a−m, b) .

Let us deal with the subsum
∑M
m=q+1 IC0(K, j; a −m, b) first. If m > q, then

it holds

(3.27)

|IC0−iT (K, j; a−m, b)| ≤ (2T)je−2π(1−ω)T
∫ K

0
e−4πbT (K−t) dt→T→∞ 0 ,

where the fact 1 ≤ 2bK was used to ensure b is bounded from below. So by

Cauchy’s theorem we can replace C0 with the contours C3 = {−it | 0 ≤ t <∞}
and C4 = {K − it | 0 ≤ t <∞}, which yields

(3.28)
M∑

m=q+1

IC0(K, j; a−m, b) =
M∑

m=q+1

IC3(K, j; a−m, b)−
M∑

m=q+1

IC4(K, j; a−m, b) .

(We remark that if j = 0, then (3.27) holds uniformly in a ∈ [0, 2] and integers

m > q. Therefore, (3.28) holds for all a ∈ [0, 2] and integers m > q = ba+2bKc.
This observation is used in the proof of Lemma 6.6 later.) Now, by a routine

calculation

(3.29)
M∑

m=q+1

IC3(K, j; a−m, b) = c4J(K, j;M − q, 2bK − ω, b) +O(e−K) ,

where c4 =: c4(j) = e−(j+1)πi/2. A similar calculation gives

(3.30)
M∑

m=q+2

IC4(K, j; a−m, b) = c5

j∑
l=0

(−i)l
Ç
j

l

å
J(K, l;M−q−1, 1−ω, b)+O(e−K) ,

where we isolated the term IC4(K, j; a− q − 1; b) since it will require a special

treatment, and where c5 := c5(a, b,K) = −ie2πiaK+2πibK2
(note c5 = −c1,

where c1 as in (3.8)). Last, in the case of IC4(K, j; a− q − 1; b), we have

(3.31) IC4(K, j; a− q − 1, b) = c5

j∑
l=0

(−i)l
Ç
j

l

å
ĨC9(K, l; 1− ω, b) ,

A METHOD TO COMPUTE THE TRUNCATED THETA FUNCTION 875

where C9 := {t | 0 ≤ t < ∞}. As before, the integrals J(.) and ĨC9(.), which

occur in (3.29), (3.30) and (3.31), can by computed to within ± ε in polynomial

time in ν(K, j, ε) by Lemmas 6.1 and 6.2.

As for the second subsum
∑p−1
m=−M IC0(K, j; a −m, b) in (3.26), the situ-

ation is analogous. We simply use the conjugates of the contours C3 and C4,

then repeat the previous calculations with appropriate modifications, which

results in the integrals

p−2∑
m=−M

IC3
(K, j; a−m, b) = c6J(K, j;M + p− 1, 1− ω1, b)i+O(e−K) ,

(3.32)

p−1∑
m=−M

IC4
(K, j; a−m, b) = c7

j∑
l=0

Ç
j

l

å
ilJ(K, l;M + p, 2bK − ω1, b) +O(e−K) ,

and

(3.33) IC3
(K, j; a− p+ 1, b) = c6ĨC9(K, j; 1− ω1, b) ,

where c6 := c6(j) = e(j+1)πi/2, and c7 := c7(a, b,K) = ie2πiaK+2πibK2
(note

c7 = c1, where c1 occurs in (3.8)). Once again, the functions on the right

side in (3.32) and (3.33) can by computed to within ± ε in polynomial time

in ν(K, j, ε) by Lemmas 6.1 and 6.2. Finally, the sum PV
∑
|m|>M IC0(.) is

bounded as follows:

PV
∑
|m|>M

IC0(K, j; a−m, b) =
∑
m>M

2

Kj

∫ K

0
tj exp(2πiat+2πibt2) cos(2πmt) dt .

Integrating by parts this is equal to

−
∑
m>M

Ç
j

πmKj

∫ K

0
(1− δj)tj−1 exp(2πiat+ 2πibt2) sin(2πmt) dt(3.34)

+
2i

mKj

∫ K

0
tj (a+ 2bt) exp(2πiat+ 2πibt2) sin(2πmt) dt

å
.

By the second mean value theorem, we deduce for M > 2K that

(3.35) PV
∑
|m|>M

IC0(K, j; a−m, b) = O

Ç ∑
m>M

K

m(m−K)

å
= O

Å
K

M

ã
.

Finally, take M = d8jK3eν(K,j,ε)e to obtain

(3.36) PV
∑
|m|>M

IC0(K, j; a−m, b) = O(8−jK−2(ε/K)j+1) ,

which suffices in light of our earlier bound (3.25) on the maximum modulus of

the coefficients w̃s,j,a,b,K after a full run of the algorithm. We remark that one

can let M tend to ∞ unless j = 0, in which case, one can still let M tend to

876 G. A. HIARY

∞ provided the various J(.) integrals are paired appropriately. Of course, this

is what one should do in a practical implementation of the algorithm (we do

not do this here to simplify the presentation).

In summary, we have shown the following: Let

c1 := i e2πiaK+2πibK2
, c2 := (−1)j e(j+1)πi/2 , c3 := e(j+1)πi/2+2πiaK ,

c4 := e−(j+1)πi/2 , c5 := −i e2πiaK+2πibK2
, c6 := e(j+1)πi/2 .

Let wl,j := wl,j,a,b,K be defined as in (6.14), and let

c̃bd :=
1

2
e2πiaK+2πibK2

+
1

2
δj − w0,j δ1−p ,

where δj is Kronecker’s delta. Also define

a∗ := a/(2b) , b∗ := −1/(4b) , q := ba+ 2bKc ,
ω := {a+ 2bK} , ω1 := dae − a , p := dae , p1 := q − p .

Then, for p < q, 0 ≤ j, ε ∈ (0, e−1), and K large enough, it holds

(3.37) F (K, j; a, b) =
j∑
l=0

wl,j F (q, l; a∗, b∗)+S̃1(K, j; a, b)+S2(K, j; a, b)+c̃bd ,

where, for some absolute constant κ̃1, we have

S̃1(K, j; a, b) =− c1
j∑
l=0

il
Ç
j

l

å
J(K, l; p1, ω, b)− c2J(K, j; p1, ω1, b)

(3.38)

− c1
j∑
l=0

il
Ç
j

l

å
ĨC7(K, l;ω, b) + c1

j∑
l=0

il
Ç
j

l

å
ĨC1

(K, l;ω, b)

− c32
j+1
2 e−2πωK

j∑
l=0

ĨC9(K, l;ω − iω + 2bK + i2bK,−2ib)

− c2ĨC7(K, j;ω1, b) +O(ν(K, j, ε)κ̃18−jK−2ε).

S2(K, j; a, b)= − c5
j∑
l=0

(−i)l
Ç
j

l

å
J(K, l;M, 1− ω, b)+c4J(K, j;M, 2bK − ω, b)

(3.39)

+ c5

j∑
l=0

il
Ç
j

l

å
J(K, l;M, 2bK − ω1, b)+c6J(K, j;M ; 1− ω1, b)

− c5
j∑
l=0

(−i)l
Ç
j

l

å
ĨC9(K, l; 1− ω, b)+c6ĨC9(K, j; 1− ω1, b)

+O(ν(K, j, ε)κ̃18−jK−2ε) .

A METHOD TO COMPUTE THE TRUNCATED THETA FUNCTION 877

Furthermore, we have shown, with the aid of Lemmas 6.1 and 6.2, that each

of the functions on the right side of (3.38) and (3.39) can be computed to

within O(ν(K, j, ε)κ̃2 8−jK−2 ε) using O(ν(K, j, ε)κ̃3) operations on numbers

of O(ν(K, j, ε)2) bits, where the constants κ̃2 and κ̃3 are absolute.

3.2. Boundary case: q ≤ p. This occurs when b is very small. We tackle

it using the Euler-Maclaurin summation. Without loss of generality, one may

assume K is a multiple of 8. So we may write

F (K, j; a, b) = e2πiaK+2πibK2
+

1

Kj

7∑
m=0

(m+1)K/8−1∑
k=mK/8

kj exp(2πiak + 2πibk2) .

It suffices to deal with each inner sum in (3.40) since there are only eight of

them. By a binomial expansion, we have

1

Kj

(m+1)K/8∑
k=mK/8

kj exp(2πiak + 2πibk2) = cK,m 8−j
j∑
l=0

mj−l
Ç
j

l

å
F (K1, l; aK,m, b) ,

where cK,m :=cK,m,a,b is a quickly computable constant of modulus 1, 0≤m<8,

K1 := K/8, and aK,m := aK,m,a,b = a + mbK/4. Using the periodicity of the

complex exponential, we can normalize aK,m so it satisfies −1/2 ≤ aK,m ≤ 1/2.

Since by assumption q ≤ p, then 0 ≤ a + 2bK < 2. So 0 ≤ 2bK < 2, which

implies 0 ≤ 2bK1 < 1/4. Therefore, 0 ≤ |aK,m| + 2bK1 < 3/4. Put together,

we may now assume our task is to compute a quadratic sum F (K, j; a, b) with

|a|+ |2bK| < 3/4. To this end, define

fK,j,a,b(t) :=
tj

Kj
exp(2πiat+ 2πibt2) .

By Lemma 6.5, we obtain

max
0≤t≤K

|f (N)
K,j,a,b(t)| ≤

Å
j +N

K
+ 2π(|a|+ |2bK|)

ãN
,

where f
(N)
K,j,a,b(t) denotes the N th derivative with respect to t. Applying the

Euler-Maclaurin summation formula to

(3.40) F (K, j; a, b) =
1

Kj

K∑
k=0

kj exp(2πiak + 2πibk2) =:
K∑
k=0

fK,j,a,b(k) ,

yields

F (K, j; a, b) =

∫ K

0
fK,j,a,b(t) dt+

N∑
n=0

(−1)nBn
n!

(f
(n−1)
K,j,a,b(K)− f (n−1)K,j,a,b(0))

(3.41)

+O

Ç
1

N !

∫ K

0
|BN ({t}) f (N)

K,j,a,b(t)| dt
å
,

878 G. A. HIARY

where {t} denotes the fractional part of t, Bn are the Bernoulli numbers, and

Bn(t) are the Bernoulli polynomials; so B0 = 1, B1 = −1/2, B2 = 1/6, . . . ,

and B0(t) = 1, B1(t) = t− 1/2, B2(t) = t2 − t+ 1/6,

Taking N = d2 log(8jK3/ε)/ log(8/7)+1e in (3.41), it follows from known

asymptotics for Bn and Bn({t}) (see [Rub05] for instance) that

(3.42) O

Ç
2

(2π)N

∫ K

0
|f (N)(t)| dt

å
= O

Ä
2K(7/8)−N

ä
= O(8−jK−2ε) .

Given our earlier bound (3.25) on the maximum modulus of the coefficients

ws,l,a,b,K after a full run of the algorithm, the bound (3.42) suffices for purposes

of the algorithm.

Last, the correction terms in (3.41) can be computed quickly because there

are only ≤ N + 1 ≤ 10ν(K, j, ε) of them, and each can be computed to within

± ε using O(ν(K, j, ε2)) operations on numbers of O(ν(K, j, ε)2) bit via the

recursion formula for f
(n)
K,j,a,b(t) provided in the proof of Lemma 6.5. It only

remains to evaluate the integral
∫K
0 fK,j,a,b(t) dt in (3.41), which is the main

term. But this is equal to IC0(K, j; a, b), which is handled by Lemma 6.2.

4. The algorithm for F (K, j; a, b)

We call a real pair (a, b) normalized if (a, b) ∈ [0, 1) × [0, 1/4]. The

normalization is important because sums are converted to integrals via Poisson

summation. Therefore, different choices of a or b produce different integrals.

We remark that it is mainly the normalization of quadratic argument b that

truly matters. Normalizing a so that it is in the interval [0, 1) is not critical to

what follows. For example, it suffices to take a ∈ [−m,m] for a fixed integer

m > 0. To normalize the arguments a and b properly, we use the following

lemma:

Lemma 4.1. For any integer K ≥ 0, any integer j ≥ 0, and any a, b ∈ C,

the function F (K, j; a, b) satisfies the identities

F (K, j; a, b) = F (K, j; a+ 1, b) = F (K, j; a, b+ 1)

= F (K, j; a± 1/2, b± 1/2) = F (K, j; a∓ 1/2, b± 1/2) .
(4.1)

Proof. This follows from the fact exp(2πi(z + 1)) = exp(2πiz), and the

fact (k2 ± k)/2 ∈ Z for any k ∈ Z. �

As a direct application of the identities in Lemma 4.1, we obtain a simple

procedure such that starting with any real pair (a, b) it produces a normalized

pair (a0, b0) ∈ [0, 1)× [0, 1/4] satisfying

(4.2)

F (K, j; a, b) = F (K, j; a0, b0) , or F (K, j; a, b) = F (K, j; a0, b0) .

A METHOD TO COMPUTE THE TRUNCATED THETA FUNCTION 879

Notice that the pair (a0, b0) is independent of K and j. The normalization

procedure is used in the pseudo-code below to compute
∑j
l=0 zl F (K, l; a, b). As

before, we let ν(K, j, ε) := (j + 1) log(K/ε), and Λ(K, j, ε) := 1000ν(K, j, ε)6.

• INPUT: Numbers a, b ∈ [0, 1), an integer K > 0, a positive number ε ∈
(0, e−1), an integer j ≥ 0, and an array of numbers zl, l = 0, . . . , j, with

|zl| ≤ 1 say.

• OUTPUT: A complex number S that equals
∑j
l=0 zl F (K, l; a, b) to within

±A1 ν(K, j, ε)κ1ε, where A1 and κ1 are the absolute constants in Theo-

rem 1.1.

• INITIALIZE: Set S = 0, flag = 0, and counter = 0. It suffices to per-

form arithmetic using A3 ν(K, j, ε)2 bit numbers where A3 is the absolute

constant in Theorem 1.1.

(1) Normalize (a, b)← (a0, b0) using the identities in Lemma 4.1. This costs a

constant number of operations on numbers of A3 ν(K, j, ε)2 bits. If conju-

gation is needed to normalize (a, b), set flag← 1 and zl ← zl.

(2) Let p = da0e, and q = ba0 + 2b0Kc. These numbers can be calculated

using a constant number of operations on numbers of A3 ν(K, j, ε)2 bits.

(3) If K < Λ(K, j, ε) (a boundary case), evaluate the sum
∑j
l=0 zl F (K, l; a, b)

directly. This can be done using ≤ Ã1 (j + 1)Λ(K, j, ε) operations on

number of A3 ν(K, j, ε)2 bits, where Ã1 is an absolute constant. Store the

result in R[counter]. If flag = 1, set R[counter]← R[counter]. Go to (9).

(4) If q ≤ p (a boundary case), apply the Euler-Maclaurin technique of Sec-

tion 3.2 to evaluate the sum to within ± ε̃ where ε̃ := 8−jK−2ε. This costs

≤ Ã2 ν(K, j, ε̃)κ̃4 operations on numbers of A3 ν(K, j, ε)2 bits, where Ã2

and κ̃4 are absolute constants. (Notice ν(K, j, ε̃) ≤ 4(j + 1)ν(K, j, ε), and

so Ã3ν(K, j, ε̃)κ̃4 ≤ 4κ̃4Ã3 ν(K, j, ε)2κ̃4 .) Store the result in R[counter]. If

flag = 1, set R[counter]← R[counter]. Go to (9).

(5) Apply the algorithm iteration for the case p < q. This step requires the

calculation of the quantities q := ba0 + 2b0Kc, a∗ := a0
2b0

, and b∗ := − 1
4b0

,

all of which can be calculated using a constant number of operations. We

obtain

j∑
l=0

zl F (K, l; a, b) =
j∑
l=0

w̃l,j,a,b,K F (q, l; a∗, b∗) +
j∑
l=0

RK,l,j,a,b ,

where w̃l,j,a,b,K :=
∑j
s=l zswl,s,a,b,K . The remainder

∑j
l=0RK,l,j,a,b is com-

puted by the algorithm to within ± Ã4 ν(K, j, ε)κ̃5ε using ≤ Ã5 ν(K, j, ε̃)κ̃6

880 G. A. HIARY

operations on numbers of A3 ν(K, j, ε)2 bits, where Ã4, Ã5, κ̃5, and κ̃6, are

absolute constants.

(6) Set R[counter] =
∑j
l=0 zlRl, zl ←

∑j
s=l zs,jwl,s,a0,b0,K , a ← a∗, b ← a∗,

K ← q, and counter ← counter + 1.

(7) If flag = 1, set zl ← zl, R[counter] ← R[counter], a ← −a, b ← −b, and

flag← 0.

(8) Go to (1).

(9) Set S =
∑counter
l=0 R[l]. Return S.

5. The sums G(K, j; a, b)

We show how evaluate the sums G(K, j; a, b) defined in (1.18) to within

± ε. Assume K is large enough (i.e. K > Λ(K, j, ε)), otherwise we can evaluate

the sum directly. Define

(5.1) G̃(N, j; a, b) :=
2N−1∑
k=N

1

kj
exp(2πiak + 2πibk2) .

It is not too hard to show that G(K, j; a, b) can be written as the sum of

O(logK) subsums of the form G̃(N, j; a, b), with N < K, plus a remainder

sum of length O(logK) terms. So it is enough to show how to compute G̃(.)

to within ± ε. Without loss of generality, we may assume N is a multiple of

16, so we may write

(5.2) G̃(N, j; a, b) =
15∑
m=0

Nm+1−1∑
k=Nm

1

kj
exp(2πiak + 2πibk2) ,

where Nm := N +mN/16. The inner sum in the last expression is

(5.3)
cN,m

N j
m

∞∑
l=0

(−1)l
Ç
j + l − 1

j − 1

åN/16−1∑
k=0

kl

N l
m

exp(2πiaN,mk + 2πibk2) ,

where cN,m := cN,m,a,b satisfies |cN,m| = 1, and aN,m := a + 2bNm. Since(j+l−1
j−1

)
kl/N l+j

m ≤ 8−l, we can truncate the sum over l in (5.3) after say

d10 log(K/ε)e terms, which yields a truncation error of say ±ε/K . Finally, by

Theorem 1.1, each inner sum in (5.3) can be computed to within ± ε/K, using

≤ 2κ1A2 ν(K, j, ε)κ1 operations on numbers of ≤ A3 ν(K, j, ε)2 bits.

6. Auxiliary results

Lemma 6.1. There are absolute constants κ3, κ4, A4, A5, and A6, such

that for any positive ε < e−1, any integer 0 ≤ j, any integer 10 ν(K, j, ε)2 < K

say, any integer 0 < M < e10 ν(K,j,ε)
2

say, any 0 ≤ w < K say, and any 0 ≤

A METHOD TO COMPUTE THE TRUNCATED THETA FUNCTION 881

b ≤ 1, the integral J(K, j;M,w, b) can be evaluated to within ±A4 ν(K, j, ε)κ3ε

using ≤ A5 ν(K, j, ε)κ4 operations on numbers of ≤ A6 ν(K, j, ε)2 bits.

Proof. The integrand in J(K, j;M,w, b) declines exponential fast, so the

integral can be truncated quickly. Specifically, let L :=L(K, j, ε) = dν(K, j, ε)e;
then

J(K, j;M,w, b) =
1

Kj

∫ L

0
tj exp

Ä
−2πwt− 2πibt2

ä 1− exp (−2πMt)

exp(2πt)− 1
dt+O(ε) .

Therefore, in order to evaluate J(K, j;M,w, b) in a time complexity as stated

in the lemma, it suffices to deal with the integrals

g(j,M,w, b, n) :=
1

Kj

∫ n+1

n
tj exp

Ä
−2πwt− 2πibt2

ä 1− exp (−2πMt)

exp(2πt)− 1
dt ,

where n ∈ {0, . . . , L − 1}. By the change of variable t ← t − n, followed by

Taylor expansions applied to the quadratic factor e−2πibt
2
, we obtain after some

simple estimates that

g(j,M,w, b, n) =
exp(−2πwn− 2πibn2)

Kj

j∑
s=0

Ç
j

s

å
nj−s

L∑
r=0

(−2πib)r

r!

×
∫ 1

0
ts+2r exp (−2πwt− 4πibnt)

1− exp (−2πM(t+ n))

exp(2π(t+ n))− 1
dt+O(ε logM) .

Since the last expression is a linear combination of (L+1)(j+1) ≤ 10 ν(K, j, ε)2

terms of the form

(6.1)

∫ 1

0
tα exp (−2πwt− 4πibnt)

1− exp (−2πM(t+ n))

exp(2π(t+ n))− 1
dt ,

for integers 0 ≤ α ≤ 2L + j, then our task is reduced to dealing with the

integral (6.1) over that range of α. To evaluate this integral, we first unfold

the geometric series in the integrand; that is, we write (6.1) as

(6.2)
M∑
m=1

exp(−2πmn)

∫ 1

0
tα exp (−2π(m+ w + 2ibn)t) dt .

(Notice the integrals occurring in (6.2) are incomplete Gamma functions, which

we alluded to earlier in formula (1.13). Although the methods given in this

lemma to evaluate such integrals suffice for complexity bounds, there are other

more practical, though more tedious to describe, methods.) Define mα,n :=

mα,n,w = max{1, dα− w − 2bne}, in particular α ≤ mα,n + w + 2bn. We split

(6.2) into two subsums:
∑
mα,n≤m≤M and

∑
1≤m<mα,n (the splitting of the sum

is because the general function h(z, w) :=
∫ 1
0 t

z exp(wt) dt behaves essentially

differently according to whether |w| < |z| or |z| < |w|). Each term in the

882 G. A. HIARY

subsum
∑
mα,n≤m≤M can be calculated explicitly as∫ 1

0
tα exp (−2π(m+ w + 2ibn)t) dt(6.3)

= −
α+1∑
v=1

α!

(α+ 1− v)!

exp(−2πm− 2πw − 4πbin))

(2πm+ 2πw + 4πibn)v

+
α!

(2πm+ 2πw + 4πibn)α+1
.

So, on interchanging the order of summation, the subsum
∑
mα,n≤m≤M is equal

to

−
α+1∑
v=1

α!

(α+ 1− v)!

M∑
m=mα,n

exp(−2πmn)
exp(−2πm− 2πw − 4πbin))

(2πm+ 2πw + 4πibn)v
(6.4)

+α!
M∑

m=mα,n

exp(−2πmn)

(2πm+ 2πw + 4πibn)α+1
.

We claim expression (6.4) can be evaluated to within ± 100 ν(K, j, ε) ε using

≤ 1000 ν(K, j, ε)2 operations on numbers of 100 ν(K, j, ε)2 bits. To see why,

notice if n 6= 0, the series over m can be truncated after L := L(K, j, ε)

terms, with a truncation error ≤ 10 (α + 1) exp(−2πn(α + L)) ≤ 10 ε, where

we used the facts αv ≤ (mα,n + w + 2bn)v, which holds by construction, and

α!/(α+1−v)! ≤ αv. Once truncated, the series (6.4) can be evaluated directly

in ≤ 100L(K, j, ε) operations. If n = 0, the series (6.4) is equal to

(6.5)

−
α+1∑
v=1

α!

(α+ 1− v)!

M∑
m=mα,n

exp(−2πm− 2πw))

(2πm+ 2πw)v
+ α!

M∑
m=mα,n

1

(2πm+ 2πw)α+1
.

Since the terms in the first series over m in (6.5) decline exponentially fast

with m (due the the decay provided by the term e−2πm), it can be trun-

cated early, after L := L(K, j, ε) terms, with truncation error ≤ 10 ε. The

truncated series can then be evaluated directly. As for the second series

in (6.5), it can be calculated efficiently using the Euler-Maclaurin summa-

tion formula; specifically, the initial sum
∑
mα,n≤m<10(mα,n+L), which consists

of ≤ 10(mα,n + L) ≤ 100 ν(K, j, ε) terms, is evaluated directly, while the tail

sum
∑

10(mα,n+L)≤m≤M is evaluated to within ± 10 ν(K, j, ε) ε using an Euler-

Maclaurin formula like (3.41) at a cost of ≤ 100 ν(K, j, ε)2 operations on num-

bers of ≤ 100 ν(K, j, ε)2 bits say.

It remains to deal with the subsum
∑

1≤m<mα,n from (6.2). Since this

subsum consists of < mα,n = 2L + j ≤ 10 ν(K, j, ε) terms, it suffices to show

how to deal with a single term there, which is essentially an integral of the

A METHOD TO COMPUTE THE TRUNCATED THETA FUNCTION 883

form

(6.6)

∫ 1

0
tα exp (−2π(m+ w + 2ibn)t) dt , 1 ≤ m < mα,n .

To do so, we apply the change of variable t ← dm + w + 2bne t to (6.6) to

reduce it to a sum of the dm+ w + 2bne ≤ 10 ν(K, j, ε) integrals

(6.7)
1

dm+ w + 2bneα+1

∫ l+1

l
tα exp (−2π(m+ w + 2ibn)t/dm+ w + 2bne) dt ,

where 0 ≤ l ≤ dm + w + 2bne − 1 is an integer. The integrals (6.7) are

straightforward to evaluate: one makes the change of variable t ← t − l, then

uses Taylor expansions to break down the integrand into a polynomial in t

of degree 2L + α say, plus an error of size O(ε), and finally one integrates

each term explicitly (note each term is just a monomial zdt
d for some integer

0 ≤ d ≤ 2L+ α, and some quickly computable coefficient zd). �

Lemma 6.2. There are absolute constants κ5, κ6, A7, A8, and A9, such

that for any positive ε < e−1, any integer 0 ≤ j, any integer 10 ν(K, j, ε)2 < K

say, any 0 ≤ b ≤ 1 satisfying 1 ≤ 2bK say, and any 0 ≤ w ≤ 1 say, each of

the integrals

ĨC1
(K, j;w, b), ĨC7(K, j;w, b) ,

ĨC9(K, j;w, b), ĨC9(K, j;w − iw + 2bK + i2bK,−2ib)

can be evaluated to within ±A7 ν(K, j, ε)κ5ε using ≤ A8 ν(K, j, ε)κ6 operations

on numbers of ≤ A9 ν(K, l, ε)2 bits. Moreover, under the same assumptions

on K , j, and b, as above, except b need not satisfy the condition 1 ≤ 2bK , and

for any −1 ≤ a ≤ 1 say, the integral IC0(K, j; a, b) can be evaluated with the

same accuracy and efficiency as the above four integrals.

Proof. We show how to compute ĨC1
(K, j;w, b) first. We have

ĨC1
(K, j;w, b)

= c8e
−2πwK

j∑
l=0

Ç
j

l

å
(−i)l

K l

∫ K

0
tl exp

Ä
2πiwt− 4πbKt+ 2πibt2

ä
dt ,

where c8 := c8(b,K) = −ie−2πibK2
. Since 2bK ≥ 1 by hypothesis, we can

truncate the interval of integration above at L := L(K, j, ε) = dν(K, j, ε)e,
which reduces our task to evaluating (j + 1)L integrals of the form

(6.8)
1

Ll

∫ n+1

n
tl exp

Ä
2πiwt− 4πbKt+ 2πibt2

ä
dt ,

for integers 0 ≤ l ≤ j and 0 ≤ n ≤ L−1. To evaluate (6.8), substitute t← t−n,

then eliminate the quadratic term exp(2πibt2) using Taylor expansion. This

884 G. A. HIARY

results in a linear combination, with quickly computable coefficients each of

size O(1), of, say, 3L integrals of the form

(6.9)

∫ 1

0
tα exp (2πiηt) dt ,

where η := ηn,w,b,K = w + 2bn + 2ibK and 0 ≤ α < 3L an integer. The

integrals (6.9) are easily-calculable: if α < |w+ 2bn+ 2ibK|, we evaluate (6.9)

explicitly as was done in (6.3), and if |w + 2bn+ 2ibK| ≤ α, we follow similar

techniques to those used to arrive at expression (6.7) earlier. The evaluation

of ĨC9(K, l;w− iw+ 2bK+ i2bK,−2ib) is completely similar to ĨC1
(K, j;w, b),

already considered.

We move on to ĨC7(K, j;w, b). We have by definition

ĨC7(K, j;w, b) =
c9
Kj

∫ √2K
0

tj exp
Ä
−
√

2πwt+
√

2πiwt− 2πbt2
ä
dt ,

where c9 := c9(j) = exp (−(j + 1)πi/4). The change of variable t←
√
b t yields

ĨC7(K, j;w, b) =
c9

b(j+1)/2Kj

∫ √2bK
0

tj exp
(
− 2π

w√
2b
t+ 2πi

w√
2b
t− 2πt2

)
dt .

So, truncating the interval of integration at d
√
Le reduces the problem to

evaluating

(6.10)
c9

b(j+1)/2Kj

∫ n+1

n
tj exp

(
− 2π

w√
2b
t+ 2πi

w√
2b
t− 2πt2

)
dt ,

for integers 0 ≤ n < d
√
Le. The integrals are handled as follows: substitute

t ← t − n, then eliminate the quadratic term using Taylor expansions, this

results in integrals similar to (6.9), which we already know how to handle.

Next, we consider ĨC9(K, j;w, b). If w = 0, this integral is quickly calcu-

lable via the self-similarity formula (1.11), or some variation of it. So we may

assume w > 0. Since

(6.11)

∣∣∣∣ 1

Kj

∫ T

0
(T − it)j exp

Ä
−2πw(T − it)− 2πib(T − it)2

ä
dt

∣∣∣∣→T→∞ 0,

then by Cauchy’s theorem, we may replace C9 by e−πi/4C9 in ĨC9(K, j;w, b).

(We remark that if j = 0, then (6.11) holds uniformly in 0 ≤ ω ≤ 1. This ob-

servation is used in the proof of Lemma 6.6 later.) Combined with a straight-

forward estimate, this yields

(6.12) Ĩe−πi/4C9
(K, j;w, b) = ĨC7(K, j;w, b) +O(e−K) ,

which we have already shown how to compute.

Last, we consider the integral IC0(K, j; a, b). This may contain a critical

point or it may not according to whether −a/(2b) ∈ [0,K] or not. We supplied

methods to deal with these possibilities in Sections 3.1.1 and 3.1.2 respectively,

provided 1 ≤ 2bK. But the same methods still apply as long as b is not too

small, say 1 < bK2. If not, say b < 1/K2, then computing IC0(K, j; a, b)

A METHOD TO COMPUTE THE TRUNCATED THETA FUNCTION 885

is straightforward anyway because one can apply Taylor expansions to the

quadratic factor exp(2πibt2) in IC0(K, j; a, b) to reduce it to a polynomial in

t of degree 2L say, plus an error of size O(ε), which, on applying the change

of variable t← t/K, yields an integral similar to (6.9), which we have already

shown how to handle. �

Lemma 6.3. For any integer K > 0, any integer j ≥ 0, any integer m,

any a ∈ R, and any b > 0 such that q := ba+ 2bKc is not zero, we have

(6.13) IC8(K, j; a−m, b) = exp

Å
2πia

2b
m− 2πi

4b
m2
ã j∑
s=0

ws,j,a,b,K m
s

qs
,

ws,j,a,b,K = qs
j!
√

2πeπi/4e(j−s)3πi/4e−iπa
2/(2b)

2j/2s!(2
√
bπ)j+1Kj

(
2π

b

)s
(6.14)

×
j−s∑
l=0

δ(j−s−l) mod 2(−1)(j+l−s)/2

l! j−s−l2 !

(
ae−3πi/4

2π

b

)l
.

We remark that (6.13) is what one would expect ; it is also essentially inde-

pendent of K . The normalization by qs, as well as the shifting by m, in the

statement of the lemma is done because it is convenient in the context of our

proof of Theorem 1.1 in Sections 3 and 4.

Proof. This follows from well-known properties of the Hermite polynomi-

als; see [Ism05]. �

Lemma 6.4. For any ε ∈ (0, e−1), any a ∈ [0, 1], any b ∈ [0, 1], any

integer j ≥ 0, any positive integer K > Λ(K, j, ε), any integer 0 ≤ s ≤ j, let

ws,m,a,b,K be defined as in (6.14), then assuming dae < ba+ 2bKc, we have

(6.15)
j∑

m=s

|ws,m,a,b,K | ≤
e√
2b

Å
1 +

1

2bK

ãj j∑
g=0

Å
j

2bK

ãg
.

If, in addition, 2bK ≤ 4 ν(K, j, ε)3 say, then

j∑
m=s

|ws,m,a,b,K | ≤ (2b)−1/2(j + 1)4j+2.

Proof. From formula (6.14), and the bounds b ∈ [0, 1] and s ∈ [0, j], we
obtain

j∑
m=s

|ws,m,a,b,K | ≤
(ba+ 2bKc)s

(2bK)s
1√
2b

j−s∑
m=0

(m+ s)mÄ√
2π
äm

(2bK)m

∑
0≤l≤m

m−l even

Ä√
2πa
äl
b(m−l)/2

l! m−l
2 !

≤
(

1 +
a

2bK

)j 1√
2b

[
j∑

g=0

Å
j

2bK

ãg]
ea .

886 G. A. HIARY

The bound (6.15) now follows because a ∈ [0, 1] by hypothesis. To prove the

last part of the lemma, notice if 2bK ≤ 4 ν(K, j, ε)3, then since Λ(K, j, ε) < K,

it follows b < 1/(2j + 2)2. Also, the assumption dae < ba + 2bKc implies

1/(2K) ≤ b. Therefore, by the definition (6.14), and a direct calculation,

�(6.16)
j∑

m=s

|ws,m,a,b,K | ≤
2qs

(2bK)s
√

2b

j−s∑
m=0

(m+ s)!

s!m! (2bK)m
≤ (j + 1)4j+2

√
2b

.

Lemma 6.5. For any integer j ≥ 0, any integer m ≥ 0, any integer K > 0,

and any real numbers a and b, the function fK,j,a,b(x) := xj

Kj exp(2πiax +

2πibx2) satisfies

(6.17) max
0≤x≤K

|f (m)
K,j,a,b(x)| ≤ (2π(|a|+ |2bK|) + (m+ j)/K)m .

Proof. f
(m)
K,j,a,b(x) = Pm,K,j,a,b(x) exp(2πiax+ 2πibx2), where Pm,K,j,a,b(x)

is a polynomial in x of degree m + j. So Pm,K,j,a,b(x) :=
∑m+j
l=0 dl,m,K,j,a,b x

l

for some coefficients dl,m,K,j,a,b defined by the recursion

(6.18) Pm+1,K,j,a,b(x) = 2πi(a+ 2bx)Pm,K,j,a,b(x) + P ′m,K,j,a,b(x) ,

where P0,K,j,a,b(x) := xj/Kj and P ′m,K,j,a,b(x) is the derivative of Pm,K,j,a,b(x)

with respect to x. Notice |f (m)
K,j,a,b(x)| = |Pm,K,j,a,b(x)|. Define

|Pm,K,j,a,b(x)|1 :=
m+j∑
l=0

|dl,m,K,j,a,bxl|

and notice |P (x)| ≤ |P (x)|1. By induction on m, suppose

(6.19) max
0≤x≤K

|Pm,K,j,a,b(x)|1 ≤ (2π(|a|+ |2bK|) + (m+ j)/K)m .

Clearly, (6.19) holds when m = 0, and it is straightforward to verify

(6.20) max
0≤x≤K

|P ′m,K,j,a,b(x)|1 ≤
m+ j

K
max

0≤x≤K
|Pm,K,j,a,b(x)|1 .

On combining relations (6.18) and (6.20), we obtain

max
0≤x≤K

|Pm+1,K,j,a,b(x)|1 ≤ max
0≤x≤K

|2πi(a+ 2bx)Pm,K,j,a,b(x)|1(6.21)

+ max
0≤x≤K

|P ′m,K,j,a,b(x)|1

≤ (2π(|a|+ |2bK|) + (m+ 1 + j)/K)m+1 ,

as required. Notice the inductive proof naturally gives a method to compute

the polynomials Pm,K,j,a,b(x). �

Lemma 6.6. Let ε ∈ (0, e−1), a ∈ [0, 2], b ∈ [0, 1/4], and K > 0 an inte-

ger. Define ν(K, ε) := log(K/ε), M := M(K, ε) = dK3eν(K,ε)e, F (K; a, b) :=

F (K, 0; a, b), pa = dae, qa := qa,b,K = ba + 2bKc, p1,a := p1,a,b,K = qa,b,K −
pa,b,K , ωa := ωa,b,K = {a+2bK}, and ω1,a = pa−a. Let δn denote the function

A METHOD TO COMPUTE THE TRUNCATED THETA FUNCTION 887

which is 1 for n = 0, and 0 otherwise, and let J(.) and ĨC.(.) be as defined

in Section 2. Then for any tuple (α, a, b) ∈ [−1, 1] × [0, 2] × [0, 1/4] such that

pa+αx < qa+αx and a+ αx ∈ (0, 2) for all x ∈ [−1/4, 1/4], we have

F (K; a+ αx, b) = eπi/4−πi(a+αx)
2/(2b) F

Å
b2bKc; a+ αx

2b
,− 1

4b

ã
(6.22)

+RM (K, a+ αx, b) +O(K−2ε+ e−K) ,

where x is any number in [−1/4, 1/4], and RM (K, a + αx, b) is a linear com-

bination of the constant function 1, and the following eighteen functions :

J(K;M, 2bK − ωa+αx, b) , e2πiαxK J(K;M, 2bK − ω1,a+αx, b) ,

J(K; p1,a+αx, ω1,a+αx, b) , e2πiαxK J(K; p1,a+αx, ωa+αx, b) ,

J(K;M, 1− ω1,a+αx, b) , e2πiαxK J(K;M, 1− ωa+αx, b) ,
ĨC7(K; 1− ω1,a+αx, b) , e2πiαxK ĨC7(K; 1− ωa+αx, b) ,
ĨC7(K;ω1,a+αx, b) , e2πiαxK ĨC7(K;ωa+αx, b) ,

1√
2b
e−πi(a+αx)

2/(2b) , e2πiαxK−2πωa+αxK ĨC0(K; eπi/4(−iωa+αx + 2bK),−ib) ,
e2πiαxK , e2πiαxK−2πωa+αxK ĨC0(K;−iωa+αx + 2bK,−b) .

c1,a+αxe
2πiαx/(2b)−πi(a+αx)2/(2b), c2,a+αxe

2πiαx(K∗+1)/(2b)−πi(a+αx)2/(2b),

c3,a+αxe
2πiαx(K∗+1)/(2b)−πi(a+αx)2/(2b), c3,a+αx e

2πiαx(K∗+2)/(2b)−πi(a+αx)2/(2b),

where c1,a = δ2−pa , c2,a := c2,a,b,K = δqa,b,K−K∗
b,K
−1, and c3,a := c3,a,b,K =

δqa,b,K−K∗
b,K
−2. The coefficients in the linear combination can all be computed to

within ± ε/K2 say using O(ν(K, ε)) operations on numbers of O(ν(K, ε)) bits,

are bounded by O(1), and do not depend on x. Implicit asymptotic constants

are absolute.

Proof. This follows directly from formulas (3.37), (3.38), and (3.39), the

method of proof of Lemmas 6.2 and 6.3, the remarks following formulas (3.28)

and (6.11), and some routine calculations and estimates. The conditions

pa+αx < qa+αx and a + αx ∈ (0, 2) for all x ∈ [−1/4, 1/4], which are stated

in the lemma, are not essential but they help simplify the presentation of

Lemma 6.7 next. �

Lemma 6.7. Let ε ∈ (0, e−1), K > Λ(K, ε) := 1000 ν(K, ε)6 say, K an

integer, and (α, a, b) ∈ [−1/Λ(K, ε), 1/Λ(K, ε)] × [0, 2] × [0, 1/4]. Let [w, z) ⊂
[−1/4, 1/4] be any subinterval such that pa+αx and qa+αx are constant over x ∈
[w, z), pa+αx < qa+αx for all x ∈ [w, z), and a+ αx ∈ (0, 2) for all x ∈ [w, z).

Last, let l and m denote any integers satisfying m, l ∈ [0, 1000 ν(K, ε)] say.

Then for any x ∈ [w, z), each of the eighteen functions listed in Lemma 6.6

can be written as a linear combination of the functions

xm , xm exp (2πiαxK) , exp
Ä
2πiαxP/(2b)− 2πiα2x2/(4b)

ä
,

888 G. A. HIARY

where P ∈ {−1, 0,K∗,K∗ + 1}, and the functions

exp

Ç
2πi ωa+αxN − 2π(1− i)m ωa+αx√

2b

å
×
∫ 1

0
tl exp

Ç
−2π(1− i) ωa+αx√

2b
t− 2πmt

å
dt ,

where N ∈ {0,K}, and the functions

(ωa+αx)m exp (2πi ωa+αx L− 2π ωa+αxR) ,

where L,R ∈ [K,K + 1000 ν(K, ε)] say, as well as functions of the same form,

but with ωa+αx possibly replaced by 1− ωa+αx or ω1,a+αx or 1− ω1,a+αx, plus

an error term bounded by O(Λ(K, ε)K−2ε). The length of the linear combi-

nation is O(ν(K, ε)) terms. The coefficients in the linear combinations can

all be computed to within ± ε/K2 using O(Λ(K, ε)) operations on numbers of

O(ν(K, ε)2) bits, are bounded by O(K), and are independent of x. Implicit

Big-O constants are absolute.

Proof. This follows from Lemma 6.6, the proofs of Lemmas 6.1 and 6.2,

the assumption that pa+αx and qa+αx are constant over x ∈ [w, z), and some

routine calculations. �

Acknowledgment. I would like thank my Ph.D. thesis advisor Andrew

Odlyzko. Without his help and comments this paper would not have been

possible. I would like to thank Jonathan Bober, Dennis Hejhal, and Michael

Rubinstein, for helpful remarks.

References

[Hia08] G. A. Hiary, Fast methods to compute the Riemann zeta function, Pro-

Quest LLC, Ann Arbor, MI, 2008, Ph.D. thesis, University of Minnesota.

MR 2712221. Available at http://gateway.proquest.com/openurl?url ver=

Z39.88-2004&rft val fmt=info:ofi/fmt:kev:mtx:dissertation&res dat=xri:

pqdiss&rft dat=xri:pqdiss:3328310.

[Hux96] M. N. Huxley, Area, Lattice Points, and Exponential Sums, London Math.

Soc. Monogr. New Series 13, Oxford Science Publications, The Clarendon

Press Oxford Univ. Press, New York, 1996. MR 1420620. Zbl 0861.11002.

[Ism05] M. E. H. Ismail, Classical and Quantum Orthogonal Polynomials in One

Variable, with two chapters by Walter Van Assche and a foreword by Richard

A. Askey, Encyclopedia Math. Appl. 98, Cambridge Univ. Press, Cambridge,

2005. MR 2191786. Zbl 1082.42016.

[Kar04] E. A. Karatsuba, Approximation of sums of oscillating summands in cer-

tain physical problems, J. Math. Phys. 45 (2004), 4310–4321. MR 2098139.

Zbl 1064.11086. http://dx.doi.org/10.1063/1.1797552.

http://www.ams.org/mathscinet-getitem?mr=2712221
http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3328310
http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3328310
http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3328310
http://www.ams.org/mathscinet-getitem?mr=1420620
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0861.11002
http://www.ams.org/mathscinet-getitem?mr=2191786
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1082.42016
http://www.ams.org/mathscinet-getitem?mr=2098139
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1064.11086
http://dx.doi.org/10.1063/1.1797552

A METHOD TO COMPUTE THE TRUNCATED THETA FUNCTION 889

[Kor92] N. M. Korobov, Exponential Sums and their Applications, Math. Appl.

(Soviet Series) 80, Kluwer Academic Publishers Group, Dordrecht, 1992,

translated from the 1989 Russian original by Yu. N. Shakhov. MR 1162539.

Zbl 0754.11022.

[LWY04] J. Liu, T. D. Wooley, and G. Yu, The quadratic Waring-Goldbach prob-

lem, J. Number Theory 107 (2004), 298–321. MR 2072391. Zbl 1056.11055.

http://dx.doi.org/10.1016/j.jnt.2004.04.011.

[Mum83] D. Mumford, Tata Lectures on Theta. I, Progr. Math. 28, Birkhäuser,

Boston, MA, 1983, with the assistance of C. Musili, M. Nori, E. Previato

and M. Stillman. MR 0688651. Zbl 0509.14049.

[OS88] A. M. Odlyzko and A. Schönhage, Fast algorithms for multiple eval-

uations of the Riemann zeta function, Trans. Amer. Math. Soc. 309

(1988), 797–809. MR 0961614. Zbl 0706.11047. http://dx.doi.org/10.2307/

2000939.

[Rub05] M. Rubinstein, Computational methods and experiments in analytic num-

ber theory, in Recent Perspectives in Random Matrix Theory and Num-

ber Theory, London Math. Soc. Lecture Note Ser. 322, Cambridge Univ.

Press, Cambridge, 2005, pp. 425–506. MR 2166470. Zbl 1168.11329. http:

//dx.doi.org/10.1017/CBO9780511550492.015.

[Sch90] A. Schönhage, Numerik analytischer Funktionen und Komplexität,

Jahresber. Deutsch. Math.-Verein. 92 (1990), 1–20. MR 1037441. Zbl 0797.

68090.

[Tit86] E. C. Titchmarsh, The Theory of the Riemann zeta-Function, second ed.,

The Clarendon Press Oxford University Press, New York, 1986, edited and

with a preface by D. R. Heath-Brown. MR 0882550. Zbl 0601.10026.

[Vin54] I. M. Vinogradov, Elements of Number Theory, Dover Publications, New

York, 1954, translated by S. Kravetz. MR 0062138. Zbl 0057.28201.

(Received: January 1, 2008)

Pure Mathematics, University of Waterloo, Waterloo, Ontario, Canada

E-mail : hiaryg@gmail.com

http://www.ams.org/mathscinet-getitem?mr=1162539
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0754.11022
http://www.ams.org/mathscinet-getitem?mr=2072391
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1056.11055
http://dx.doi.org/10.1016/j.jnt.2004.04.011
http://www.ams.org/mathscinet-getitem?mr=0688651
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0509.14049
http://www.ams.org/mathscinet-getitem?mr=0961614
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0706.11047
http://dx.doi.org/10.2307/2000939
http://dx.doi.org/10.2307/2000939
http://www.ams.org/mathscinet-getitem?mr=2166470
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1168.11329
http://dx.doi.org/10.1017/CBO9780511550492.015
http://dx.doi.org/10.1017/CBO9780511550492.015
http://www.ams.org/mathscinet-getitem?mr=1037441
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0797.68090
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0797.68090
http://www.ams.org/mathscinet-getitem?mr=0882550
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0601.10026
http://www.ams.org/mathscinet-getitem?mr=0062138
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0057.28201
mailto:hiaryg@gmail.com

	1. Introduction
	2. Notation
	3. The basic iteration of the algorithm
	3.1. Main case: p<q
	3.2. Boundary case: q p

	4. The algorithm for F(K,j;a,b)
	5. The sums G(K,j;a,b)
	6. Auxiliary results
	Acknowledgment

	References

