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On the distortion of knots
on embedded surfaces

By John Pardon

Abstract

Our main result is a nontrivial lower bound for the distortion of some

specific knots. In particular, we show that the distortion of the torus

knot Tp,q satisfies δ(Tp,q) ≥ 1
160

min(p, q). This answers a 1983 question

of Gromov.

1. Introduction

If γ is a rectifiable curve in R3, then its distortion is defined to be the

quantity

(1.1) δ(γ) = sup
p,q∈γ

dγ(p, q)

dR3(p, q)
≥ 1,

where dγ denotes the arclength along γ and dR3 denotes the Euclidean distance

in R3. In 1983, Gromov asked the following question:

Question (quoted directly from [6, p. 114]). Does every isotopy class of

knots in R3 have a representative in R3 with distortion < 100? Is it so for all

torus knots Tp,q for p, q →∞?

In this paper we show that this is not the case. For a knot K, let δ(K)

denote the infimum of δ(γ) over all rectifiable curves γ in the isotopy class K.

Theorem 1.1. Let Tp,q denote the (p, q)-torus knot. Then δ(Tp,q) ≥
1

160 min(p, q).

Theorem 1.2. Let K be a nontrivial tame knot, and let Kp,q denote the

(p, q)-cabling of K , where p is the longitudinal coefficient. Then δ(Kp,q) ≥ 1
160p.

These are both consequences of the following more general theorem which

deals with knots lying on any embedded surface.

Theorem 1.3. Let F ⊆ R3 be a PL embedded closed surface of genus

g ≥ 1. Let S denote the set of nontrivial isotopy classes of simple loops on F ,

and let i : S × S → Z≥0 denote the minimum geometric intersection number.

637

http://annals.math.princeton.edu/annals/about/cover/cover.html
http://dx.doi.org/10.4007/annals.2011.174.1.21


638 JOHN PARDON

Let β ∈ S , and let Kβ denote the corresponding knot in R3. Then we have

(1.2) δ(Kβ) ≥ 1

160
I(F, β)

where we define I(F, β) := minα∈U i(α, β), where U is the set of all α ∈ S
which bound a PL embedded disk whose interior is disjoint from F .

Some calculation shows that δ(Tp,q) is bounded above by a constant times

(1.3) min

ß
|xp|+ |yq|

∣∣∣∣ xp+ yq = 1, (x, y) ∈ Z2
™

(indeed, the standard embedding on a torus of revolution of the correct dimen-

sions achieves this). Thus for some families of torus knots (e.g. the (p, kp+ 1)-

torus knots for fixed k), the bound in Theorem 1.1 is sharp up to a con-

stant factor. In particular, Theorem 1.3 gives the best possible asymptotics in

terms of I(F, β), up to a constant factor. However, to the author’s knowledge,

there are no known embeddings of the torus knots which achieve distortion

smaller than a constant times (1.3), which is clearly at least max(p, q). Thus

one would like to improve Theorem 1.1 substantially. For instance, surely

limp→∞ δ(T2,p) = ∞, though at present it seems that a significant new idea

would be needed before our methods would yield such a result.

Despite the simplicity of (1.1), very little is known about the distortion of

knots, especially if one is interested in lower bounds. Gromov showed that for

any simple closed curve γ, we have δ(γ) ≥ 1
2π, with equality if and only if γ is

a circle, thus determining δ(unknot). Denne and Sullivan [2] have shown that

for any nontrivial tame knot K, we have δ(K) ≥ 5
3π.

The principal difficulty in dealing with the distortion is that it is not

coercive; that is, δ(γ) <∞ does not imply nice regularity properties of γ. As

a result, even if γ has finite distortion, it may still be knotted at arbitrarily

small length scales. The “remarkable simple closed curve” of Fox [3] is an

illuminating example of a wild knot with finite distortion, and it is easy to

observe (see, e.g., Gromov [5, p. 308]) that there is some finite threshold of the

distortion under which there are infinitely many tame knots (even prime ones).

It is also worth remarking that if we let δPL(K) equal the infimal distortion

over all polygonal representatives of K, then it is an open question whether

or not δPL(K) = δ(K) for all tame knots K. Because of the possibility of

pathological embeddings with small distortion, it is also an open problem to

establish the existence of minimizers of δ in any nontrivial knot class. It is not

clear how much information can be obtained from calculus of variations (e.g. as

applied by Mullikin [10]), the main difficulty being that (1.1) is a supremum,

not an average.

It is perhaps relevant to contrast the situation when an “energy functional”

is coercive. For example, suppose one can derive an a priori C1,α estimate in
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terms of the value of an energy functional on a curve. Since C1,α curves

are tame, we conclude that finite energy implies tameness. If in addition the

energy functional blows up for nonembedded curves (and depends continuously

on the input curve), a straightforward compactness argument (Arzelà-Ascoli)

shows the existence of energy minimizers in any tame knot class, as well as

the finiteness of the number of knot classes with energy less than any finite

threshold. As a typical example of a functional to which this applies, we cite

the knot energies epj of O’Hara [12], [13] in the range jp > 2. Freedman, He, and

Wang [4] have studied e12 (the “Möbius energy”) in detail, where the analysis

is much more delicate since this is the critical case jp = 2, and only a weaker

form of coercivity holds. It is natural to interpret the limit e∞0 as the logarithm

of the distortion; however, as noted above, the distortion is not coercive, and

thus the basic methods used to deal with epj apparently do not apply.

1.1. Acknowledgements. Most thanks is owed to David Gabai, whose sug-

gestion has led to a significantly improved estimate over the author’s original

Ω([I(F, β)/ log I(F, β)]1/3), as well as to a much simplified proof. The author is

grateful to David Gabai and Conan Wu for their interest in the result and their

discussions about it with the author. The author also thanks Greg Kuperberg

and John Sullivan for many useful comments on an earlier version of this paper.

Detailed and insightful comments from the referee have also been very helpful

in improving the clarity of this paper. The author first found out about this

problem while reading a problem list compiled by Mohammad Ghomi.

2. Proofs

We shall prove Theorem 1.3 by contradiction. Specifically, we shall show

that if the desired inequality is violated, then there exist arbitrarily small

regions of R3 whose intersection with F has a connected component of genus

g (recall g is the genus of F ). An outline of the proof is as follows.

We rely on two purely topological lemmas. Perhaps the key to the proof is

Lemma 2.3, which states, roughly speaking, that if one has a suitably generic

family of embedded spheres {St}t∈[0,1], and each of these spheres has inessential

intersection with F , then the component of F \ St with genus g must stay in

a single connected component of R3 \ St as t varies. A second essential fact is

encapsulated in Lemma 2.5, which says that if a sphere intersects β fewer than

I(F, β) times, then its intersection with F must be inessential.

These two purely topological facts are combined with geometric informa-

tion (i.e. the distortion) as follows. Suppose that the portion of F contained in

some region of R3, say the ball B(0, 1), has a connected component of genus g.

Counting the number of intersections between β and the sphere S(0, r) gives

a function of r, and the integral of this function over r ∈ [1, 1 + ε] is less
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than or equal to the length of β contained in B(0, 1 + ε). This length is

bounded in terms of the distortion δ(β), so we find that there exists some

r1 ∈ (1, 1 + ε) such that #(β ∩ S(0, r1)) ≤ ε−1δ(β) (we will ignore constants

in this paragraph). By a similar argument, we find s1 ∈ (−ε, ε) such that

#(β ∩ {z = s1} ∩ B(0, r1)) ≤ ε−1δ(β). The crucial step is as follows: We

consider a family of spheres {St}t∈[0,1], defined by starting with S(0, r1) and

performing a 2-surgery along the disk {z = s1} ∩ B(0, r1). By construc-

tion, #(St ∩ β) ≤ ε−1δ(β) for all t ∈ [0, 1]. If ε−1δ(β) < I(F, β), then by

Lemma 2.5, St has only inessential intersections with F for all t ∈ [0, 1]. Thus

by Lemma 2.3, the portion of F contained in one of the two half-spheres which

comprise S1 must have a connected component of genus g. In summary, we

have started with a region in R3 whose intersection with F has a connected

component of genus g, and under the assumption δ(β) < ε · I(F, β), we have

produced a smaller region with the same property. Iterating this construction

yields arbitrarily small such regions, a contradiction. Thus δ(β) ≥ ε · I(F, β)

and Theorem 1.3 is proved.

The topological portions of the proof appear first, in Sections 2.1 and 2.2,

which contain Lemmas 2.3 and 2.5 respectively. In Section 2.3, we formalize

the sphere cutting procedure from the previous paragraph in terms of “double

bubbles” (this is still purely topological). Then in Section 2.4, we use integral

geometry as above to relate the distortion with intersection counts, and thus

finish the proof of Theorem 1.3.

We shall do all the necessary topology in the piecewise-linear (PL) cate-

gory. To handle arbitrary topological embeddings of the knot, we appeal to

the Moise-Bing triangulation theorem to convert the relevant topology to the

PL category. The referee has pointed out that by working in the PL category

instead of the smooth category, we could avoid the use of Munkres’ theorem

[11] on approximating PL homeomorphisms with diffeomorphisms.

2.1. Embedded surfaces and families of spheres.

Definition 2.1. A simple closed curve on a closed surface Σ is called

inessential if and only if it bounds a disk in Σ; otherwise it is called essential.

Definition 2.2. If S ⊆ R3 is a disjoint union of embedded spheres, then we

denote by int(S) (the “interior” of S) the collection of components of R3 \ S
which are separated from infinity by an odd number of components of S.

Lemma 2.3. Suppose that F ⊆ R3 is a PL embedded closed surface of

genus g ≥ 1. Let {St}t∈[0,1] be a PL one-parameter family of embedded sur-

faces, with the property that St is a disjoint union of embedded spheres trans-

verse to F , except for finitely many values of t ∈ (0, 1), when either St or

St ∩ F undergoes a single surgery. Suppose that St∩F consists solely of curves
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inessential in F whenever St is transverse to F . If F ∩ int(S0) has a connected

component of genus g, then so does F ∩ int(S1).

Proof. At any time t when St is a disjoint union of spheres transverse to F ,

we know that F ∩St consists solely of inessential curves, and thus F \St has a

connected component of genus g. Furthermore, for such values of t, we have

(2.1) dimQ im(H1(F ∩ int(St),Q)→ H1(F,Q)) =

2g g(F ∩ int(St)) = g

0 otherwise.

Doing any of the allowed surgeries can change this value by at most 1, so since

it always equals either 2g or 0, we conclude that it must be constant. Thus

the lemma follows. �

2.2. An obstruction to essential intersections.

Definition 2.4. For a PL embedded closed surface F ⊆ R3, let S denote

the set of nontrivial isotopy classes of simple loops on F , and let i : S×S → Z≥0
denote the minimum geometric intersection number. For β ∈ S, we define

(2.2) I(F, β) := min
α∈U

i(α, β),

where U is the set of all α ∈ S which bound a PL embedded disk whose interior

is disjoint from F .

Lemma 2.5. Suppose that F ⊆ R3 is a PL embedded closed surface of

genus g ≥ 1 which contains a PL simple closed curve β. Let S be a PL

embedded sphere which is transverse to F and β, and which satisfies |S ∩ β| <
I(F, β). Then every curve in S ∩ F is inessential in F .

Proof. Suppose for sake of contradiction that S ∩ F contains an essential

curve. Consider the set of all such essential curves as a collection of curves

on of S, and let α be any such curve that is innermost (i.e. bounds a disk in

S which contains no other essential curves). Then by definition α bounds a

disk D whose interior intersection with F consists solely of inessential curves.

Considering such an inessential curve which is innermost in F , it is easy to

see that we can modify D so as to eliminate this intersection, while keeping

D embedded. Proceeding in this way, we may eliminate all the intersections

of the interior of D with F , and thus conclude that α bounds a PL embedded

disk whose interior is disjoint from F . Then by definition of I(F, β), we have

|α ∩ β| ≥ I(F, β), which contradicts the assumption |S ∩ β| < I(F, β). Thus

we are done. �

2.3. Double bubbles with few intersections with β.

Definition 2.6. A double bubble is a 2-complex (S,D) consisting of a sphere

S and a disk D glued along its boundary to a simple loop in S. The curve
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∂D ⊆ S thus divides S into two disks, and gluing either one of these disks to

D along their common boundary, we get two spheres, which we refer to as the

two halves of the double bubble.

When we say that a double bubble (S,D) is embedded in R3, it is required

that D is contained in int(S).

Lemma 2.7. Suppose that F ⊆ R3 is a PL embedded closed surface of

genus g ≥ 1 which contains a PL simple closed curve β. Let (S,D) be a double

bubble PL embedded in R3, and let H1 and H2 denote the two halves of the

double bubble. Suppose that (S,D) is transverse to F and β, and that

(2.3) |S ∩ β|+ 2 |D ∩ β| < I(F, β).

If F ∩ int(S) has a connected component of genus g, then so does F ∩ int(Hi)

for some i ∈ {1, 2}.

Proof. Let {St}t∈[0,1] be a PL one-parameter family of embedded spheres,

defined by starting with S0 = S and performing a 2-surgery along D as t varies

from 0 to 1. Putting this family in general position, we see that St is transverse

to F except for a finite number of values of t ∈ (0, 1) at which St∩F undergoes

a single surgery. By construction, we have

|St ∩ β| ≤ |S ∩ β|+ 2 |D ∩ β| < I(F, β).

Thus by Lemma 2.5, every curve in St ∩ F is inessential in F (for those times

t when St is transverse to F ). Now the hypotheses of Lemma 2.3 are satisfied,

and by assumption, F ∩ int(S0) has a connected component of genus g. Thus

we conclude that F ∩ int(S1) has a connected component of genus g. This

component is contained in the interior of one of the two spheres that comprise

S1, and these two spheres are in turn contained inH1 andH2 respectively. Thus

F ∩ int(Hi) has a connected component of genus g for some i ∈ {1, 2}. �

For technical reasons in the proof of Theorem 1.3, we shall not be able to

ensure that the relevant double bubble is PL at the points where it intersects β.

We thus need to prove a version of Lemma 2.7 which allows such double bub-

bles. We shall need the following lemma, which shows how to straighten the

double bubble without increasing its intersections with β.

Lemma 2.8. Fix p ∈ R3. Suppose that F ⊆ R3 is a PL embedded surface

containing p, and suppose that β is a simple PL curve on F passing through p.

Let U be an open embedded surface such that U ∩ β = {p} and U \ {p} is

PL. Then there exists a perturbation U ′ of U , supported in an arbitrarily small

neighborhood of p, such that U ′ is PL embedded, intersects β at most once, and

is transverse to F and β in a neighborhood of its intersection with β.
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Proof. Let T be a small tubular neighborhood of β in a neighborhood of p,

chosen so that ∂T is transverse to U . Any curve in U ∩ ∂T that is inessential

and innermost in ∂T may be eliminated by locally modifying U . After all such

modifications, U ∩∂T consists only of meridians of ∂T . If U ∩∂T = ∅, then we

are done. Otherwise, observe that any such circle which is innermost in U must

correspond to an intersection U ∩ β. Since there is only one such intersection,

there is only one innermost circle. Thus the circles U ∩ β are totally ordered

by containment (they are isotopic to concentric circles). Pick the outermost

circle α on U . This is a meridian of ∂T and as such clearly bounds a PL disk

which intersects β once and is transverse to F and β. Gluing this disk into U

in place of whatever is inside α, we are done. �

Lemma 2.9. Suppose that F ⊆ R3 is a PL embedded closed surface of

genus g ≥ 1 which contains a PL simple closed curve β. Let (S,D) be a double

bubble embedded in R3, and let H1 and H2 denote its two halves. Assume that

(S,D) is PL away from its intersections with β and that ∂D∩β = ∅. Suppose

that

(2.4) |S ∩ β|+ 2 |D ∩ β| < I(F, β).

If F ∩ int(S) has a connected component of genus g, then so does F ∩ (B(ε) +

int(Hi)) for some i ∈ {1, 2} and every ε > 0 (where B(ε) + int(Hi) denotes the

ε-neighborhood of int(Hi)).

Proof. First, apply Lemma 2.8 to each intersection of (S,D) with β to

construct an arbitrarily small perturbation (S′, D′) which is PL, still satisfies

(2.4), and is transverse to F and β in a neighborhood of its intersections

with β. Second, put (S′, D′) in general position to achieve transversality with

F everywhere, and call the resulting arbitrarily small perturbation (S′′, D′′).

At this point, (S′′, D′′) satisfies the hypotheses of Lemma 2.7.

Since F ∩ int(S) is an open surface, the property of it having a connected

component of genus g is preserved under sufficiently small perturbations of S.

Thus we may assume that F ∩ int(S′′) has a connected component of genus g.

Then applying Lemma 2.7, we conclude that F ∩ int(H ′′i ) has a connected

component of genus g for some i ∈ {1, 2}. Our perturbations can be arbitrarily

small, so the lemma follows. �

2.4. Integral geometry and the proof of Theorem 1.3.

Proof of Theorem 1.3. By hypothesis, we are given a PL curve β on a

surface F PL embedded in R3. We will prove that if β∗ is isotopic to β, then

δ(β∗) ≥ 1
160I(F, β).

By assumption, there is a homeomorphism ψ : R3 → R3 which sends

β to β∗. It is a fundamental fact of three-dimensional topology (a result of
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Moise [9] and later Bing [1]) that homeomorphisms of three-manifolds can be

approximated by PL homeomorphisms (see also Hamilton [7] for a modern

proof based on the methods of Kirby and Siebenmann [8]). Specifically, we

apply [1, p. 62, Th. 8] to modify ψ : R3 \ β → R3 \ β∗ so that it is a PL

homeomorphism. We let F ∗ denote the image of F under ψ. In symbols, we

have a homeomorphism

ψ : R3 → R3(2.5)

(F, β) 7→ (F ∗, β∗)

and the restriction ψ : R3\β → R3\β∗ is PL. This modification of ψ is necessary

in order to satisfy the hypotheses of Lemma 2.9, which we will eventually apply.

Let Box(r) denote the set {|x| < r, |y| < 21/3r, |z| < 22/3r} in R3. We will

make use of the convenient fact that the plane {z = 0} divides Box(r) into two

copies of Box(2−1/3r) (this is, however, not crucial for our method of proof;

scaled copies of any convex set K could be used in place of Box; we just might

have to cut K into more pieces to make every piece fit in a smaller copy of K).

Now we define the (clearly nonempty) set

R :=

r > 0

∣∣∣∣∣∣
there exists an open subset of R3 congruent to Box(r)
whose intersection with F ∗ has a connected compo-
nent of genus g

 .(2.6)

We will show that if δ(β∗) < 1
160I(F, β), then (1 − δ)R ⊆ R for some δ > 0.

This contradicts the obvious fact that infR > 0 and thus finishes the proof.

Suppose r0 ∈ R; our aim will be to show that (1 − δ)r0 ∈ R for some

δ > 0 (independent of r0). We may assume without loss of generality that

Box(r0)∩F ∗ has a connected component of genus g and that r0 = 1. Fix some

ε > 0. We begin with the following integral geometric estimate:

(2.7)

∫ 1+ε

1
#(β∗ ∩ ∂ Box(r)) dr ≤ Length(β∗ ∩ Box(1 + ε)).

Observe now that we may bound the right-hand side by 10(1 + ε)δ(β∗) (pick

any point p ∈ β∗ ∩ Box(1 + ε); then any other point q ∈ β∗ ∩ Box(1 + ε)

satisfies |p− q| ≤ 2(1 + ε)
√

1 + 22/3 + 24/3 < 5(1 + ε), and thus is within

distance 5(1 + ε)δ(β∗) of p along β∗). Thus we have

(2.8)

∫ 1+ε

1
#(β∗ ∩ ∂ Box(r)) dr ≤ 10(1 + ε)δ(β∗).

Hence there exists r1 ∈ (1, 1 + ε) such that

(2.9) #(β∗ ∩ ∂ Box(r1)) ≤ 10(1 + ε−1)δ(β∗).
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Similarly, let us intersect β∗ with the planes {z = s} (dividing the long dimen-

sion of Box(r1) roughly in half) and write

(2.10)∫ ε

−ε
#(β∗ ∩ Box(r1) ∩ {z = s}) ds ≤ Length(β∗ ∩ Box(r1)) ≤ 10(1 + ε)δ(β∗).

As above, we find s1 ∈ (−ε, ε) such that

(2.11) #(β∗ ∩ Box(r1) ∩ {z = s1}) ≤ 5(1 + ε−1)δ(β∗).

For technical convenience (to satisfy the hypotheses of Lemma 2.9), we shall

also assume that {z = s1} is disjoint from β∗ ∩ ∂ Box(r1) (at worst this dis-

qualifies a finite number of values of s).

Now define the double bubble (S∗, D∗) := (∂ Box(r1), {z = s1}∩Box(r1)),

and denote by H∗1 and H∗2 the two half-boxes into which D∗ divides S∗. By

construction, we have

|S∗ ∩ β∗|+ 2 |D∗ ∩ β∗| = #(β∗ ∩ ∂ Box(r1)) + 2 ·#(β∗ ∩ {z = s1} ∩ Box(r1))

(2.12)

≤ 20(1 + ε−1)δ(β∗).

Now if

20(1 + ε−1)δ(β∗) < I(F, β),

then we may apply Lemma 2.9 to (ϕ−1(S∗), ϕ−1(D∗)) and conclude that for

some i ∈ {1, 2} and all η > 0, the surface F ∩ (B(η) + int(ϕ−1(H∗i ))) has a

connected component of genus g. Of course, this implies that F ∗ ∩ (B(η) +

int(H∗i )) has a connected component of genus g for some i ∈ {1, 2} and all

η > 0. By construction, each H∗i is strictly contained in a congruent image of

Box(2−1/3(1 + ε) + ε
2), so we have shown that

(2.13) 20(1 + ε−1)δ(β∗) < I(F, β) =⇒
Å

2−1/3(1 + ε) +
ε

2

ã
R ⊆ R.

One easily calculates that for ε = 1
7 , we have 2−1/3(1 + ε) + ε

2 < 1, and so

the right-hand side would contradict the fact that infR > 0. Thus we have

160 · δ(β∗) ≥ I(F, β), as was to be shown. �
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