A remark on the convolution with the box spline

By Michèle Vergne

Abstract

The semi-discrete convolution with the box spline is an important tool in approximation theory. We give a formula for the difference between semidiscrete convolution and convolution with the box spline. This formula involves multiple Bernoulli polynomials.

1. Box splines and semi-discrete convolution

Let V be a n-dimensional real vector space equipped with a lattice Λ. If we choose a basis of the lattice Λ, then we may identify V with \mathbb{R}^{n} and Λ with \mathbb{Z}^{n}. We choose here the Lebesgue measure $d v$ associated to the lattice Λ.

Let $X=\left[a_{1}, a_{2}, \ldots, a_{N}\right]$ be a sequence (a multiset) of N nonzero vectors in Λ.

The zonotope $Z(X)$ associated with X is the polytope

$$
Z(X):=\left\{\sum_{i=1}^{N} t_{i} a_{i} ; t_{i} \in[0,1]\right\} .
$$

In other words, $Z(X)$ is the Minkowski sum of the segments $\left[0, a_{i}\right]$ over all vectors $a_{i} \in X$.

We denote by $\mathbb{C}[V]$ the space of (complex valued) polynomial functions on V.

Recall that the box spline $B(X)$ is the distribution on V such that, for a test function test on V, we have the equality

$$
\begin{equation*}
\langle B(X), \text { test }\rangle=\int_{t_{1}=0}^{1} \cdots \int_{t_{N}=0}^{1} t e s t\left(\sum_{i=1}^{N} t_{i} a_{i}\right) d t_{1} \cdots d t_{N} . \tag{1}
\end{equation*}
$$

We will also use the notation $\langle B(X)$, test $\rangle=\int_{V} B(X)(v) \operatorname{test}(v)$.
The distribution $B(X)$ is a probability measure supported on the zonotope $Z(X)$. If X is empty, then $B(X)$ is the δ distribution on V. For the basic properties of the box spline, we refer to [5] (or [6, Chap. 16]) .

If D is any distribution on V, the convolution $B(X) * D$ is well defined and is again a distribution on V. If $D=f(v) d v$ is a smooth density, then

Figure 1. Affine topes for $X=\left[e_{1}, e_{2}, e_{1}+e_{2}\right]$
$B(X) * D=F(v) d v$ is a smooth density with

$$
F(v)=\int_{t_{1}=0}^{1} \cdots \int_{t_{N}=0}^{1} f\left(v-\sum_{i=1}^{N} t_{i} a_{i}\right) d t_{1} \cdots d t_{N}
$$

If X generates V, the zonotope is a full dimensional polytope, and $B(X)$ is given by integration against a locally L^{1}-function. Let us describe more precisely where this function is smooth.

We continue to assume that X generates V. A hyperplane of V generated by a subsequence of elements of X is called admissible. An element of V is called (affine) regular if no translate $v+\lambda$ of v by any λ in the lattice Λ lies in an admissible hyperplane. We denote by $V_{\text {reg,aff }}$ the open subset of V consisting of affine regular elements: the set $V_{\text {reg,aff }}$ is the complement of the union of all the translates by Λ of admissible hyperplanes. A connected component τ of the set of regular elements will be called an (affine) tope (see Figure 1).

The choice of the Lebesgue measure $d v$ on V allows us to identify distributions and generalized functions: if F is a generalized function, $F d v$ is a distribution. If the distribution $F d v$ is given by $\langle F d v$, test $\rangle=\int_{V} f(v) t e s t(v) d v$, with $f(v)$ locally L^{1}, we say that F is locally L^{1}, and we use the same notation for F and the locally L^{1} function f.

A generalized function b on V will be called piecewise polynomial (relative to X, Λ) if:

- the function b is locally L^{1};
- on each tope τ, there exists a polynomial function $b(\tau)$ on V such that the restriction of b to τ coincides with the restriction of the polynomial $b(\tau)$ to τ.
If F is a piecewise polynomial function, we will say that the distribution $F d v$ is piecewise polynomial.

If X generates V, the box spline $B(X)$ is a piecewise polynomial (relative to (X, Λ)) distribution supported on the zonotope $Z(X)$.

Let f be a smooth function on V. Then there are two distributions naturally associated to X, Λ, f :

- the piecewise polynomial distribution $B(X) *_{d} f$: on a test function test,

$$
\left\langle B(X) *_{d} f, \text { test }\right\rangle=\sum_{\lambda \in \Lambda} f(\lambda) \int_{t_{1}=0}^{1} \cdots \int_{t_{N}=0}^{1} \operatorname{test}\left(\lambda+\sum_{i=1}^{N} t_{i} a_{i}\right) d t_{1} \cdots d t_{N}
$$

- the smooth density $B(X) *_{c} f$: on a test function test,

$$
\left\langle B(X) *_{c} f, \text { test }\right\rangle=\int_{V} f(v) \int_{t_{1}=0}^{1} \ldots \int_{t_{N}=0}^{1} \operatorname{test}\left(v+\sum_{i=1}^{N} t_{i} a_{i}\right) d t_{1} \cdots d t_{N} d v
$$

The notation $*_{d}$ and $*_{c}$ means discrete, versus continuous. $B(X) *_{d} f$ is the convolution of $B(X)$ with the discrete measure $\sum_{\lambda} f(\lambda) \delta_{\lambda}$, while $B(X) *_{c} f$ is the usual convolution of $B(X)$ with the smooth density $f(v) d v$. The subscript $*_{c}$ is just for emphasis. The operation $*_{d}$ is denoted $*^{\prime}$ in [5], [6] and is called semi-discrete convolution.

Our aim is to write an explicit formula for the difference $B(X) *_{d} f-$ $B(X) *_{c} f$.

We also associate to $a \in X$ three operators:

- the partial differential operator

$$
\left(\partial_{a} f\right)(v)=\left.\frac{d}{d \varepsilon} f(v+\varepsilon a)\right|_{\varepsilon=0},
$$

- the difference operator

$$
\left(\nabla_{a} f\right)(v)=f(v)-f(v-a),
$$

- the integral operator

$$
\left(I_{a} f\right)(v)=\int_{0}^{1} f(v-t a) d t
$$

The operator I_{a} is the convolution $B([a]) *_{c} f$ with the box spline associated to the sequence with a single element a.

These three operators respect the space of polynomial functions $\mathbb{C}[V]$ on V. The Taylor series formula implies that, on the space $\mathbb{C}[V]$, the operator I_{a} is the invertible operator given by

$$
I_{a}=\frac{1-e^{-\partial_{a}}}{\partial_{a}}=\sum_{j=0}^{\infty}(-1)^{j} \frac{1}{(j+1)!} \partial_{a}^{j}
$$

In particular, if $f \in \mathbb{C}[V]$ is a polynomial,

$$
\begin{equation*}
B(X) *_{c} f=\left(\left(\prod_{a \in X} \frac{1-e^{-\partial_{a}}}{\partial_{a}}\right) f\right) d v . \tag{2}
\end{equation*}
$$

If I, J are subsequences of X, we define the operators $\partial_{I}=\prod_{a \in I} \partial_{a}$ and $\nabla_{J}=\prod_{b \in J} \nabla_{b}$. They are defined on distributions.

Recall that $\partial_{Y} B(X)=\nabla_{Y} B(X \backslash Y)$ if Y is a subsequence of X. A subsequence Y of X will be called long if the sequence $X \backslash Y$ does not generate the vector space V. A long subsequence Y, minimal along the long subsequences, is also called a cocircuit; then $Y=X \backslash H$ where H is an admissible hyperplane.

In our formula, when f is a polynomial, $B(X) *_{d} f-B(X) *_{c} f$ is naturally expressed as a function of the derivatives $\partial_{Y} f$ with respect to long subsequences Y. More generally, for any smooth function f, products of difference operators ∇_{I} and differentiation operators ∂_{J} (with I and J spanning long subsets of X) will appear naturally in the rest $B(X) *_{d} f-B(X) *_{c} f$.

2. Piecewise smooth distributions

Our aim is to write an explicit formula for the difference of the two distributions $B(X) *_{d} f$ and $B(X) *_{c} f$. As the first one is a piecewise polynomial distribution, the second a smooth density, we will need to introduce an intermediate space of distributions. We will use "piecewise smooth distributions." Let us give a definition.

We continue to assume that X generates V.
Definition 2.1. A generalized function b on V will be called piecewise smooth (relative to X, Λ) if:

- the generalized function b is locally L^{1};
- on each tope τ, there exists a smooth function $b(\tau)$ on the full space V such that the restriction of b to τ coincides with the restriction of the smooth function $b(\tau)$ to τ.

In this definition, given a tope τ, the function b restricted to τ (as well as all its derivatives) extends continuously to the closure of τ. However, these extensions do not always coincide on intersections of the closures of topes.

If b is piecewise smooth, we then say that the distribution $B:=b(v) d v$ (given by integration against the locally L^{1} function b) is piecewise smooth.

It is clear that if we multiply a piecewise polynomial distribution B by a smooth function, we obtain a piecewise smooth distribution. Note that the space of piecewise smooth distributions is stable by the operators ∇_{a} and by convolution with box splines $B(Y)(Y$ any subsequence of $X)$. However, it is not stable under operators ∂_{a}. For example, $\partial_{X} B(X)=\nabla_{X} B(\emptyset)$ is a linear combination of δ distributions.

3. Multiple Bernoulli periodic polynomials

Let U be the dual vector space to V and $\Gamma \subset U$ be the dual lattice to Λ. If Y is a subsequence of X, we define

$$
U_{\mathrm{reg}}(Y)=\{u \in U ;\langle a, u\rangle \neq 0, \text { for all } a \in Y\}
$$

and

$$
\Gamma_{\mathrm{reg}}(Y)=\Gamma \cap U_{\mathrm{reg}}(Y)
$$

Consider the periodic function on V given by the (oscillatory) sum

$$
\begin{equation*}
W(X)(v)=\sum_{\gamma \in \Gamma_{\mathrm{reg}}(X)} \frac{e^{2 i \pi\langle v, \gamma\rangle}}{\prod_{a \in X} 2 i \pi\langle a, \gamma\rangle} . \tag{3}
\end{equation*}
$$

This is well defined as a generalized function on V. In the sense of generalized functions, we have

$$
\begin{equation*}
\partial_{X} W(X)(v)=\sum_{\gamma \in \Gamma_{\mathrm{reg}}(X)} e^{2 i \pi\langle\gamma, v\rangle} . \tag{4}
\end{equation*}
$$

We will use this equation to construct "primitives" of parts of the Poisson formula.

We will call the series $W(X)$ a multiple Bernoulli series. Multiple Bernoulli series have been extensively studied by A. Szenes [7]. They are natural generalizations of Bernoulli series: for $\Lambda=\mathbb{Z} \omega$ and $X_{k}:=[\omega, \omega, \ldots, \omega]$, where ω is repeated k times with $k>0$, the series

$$
W\left(X_{k}\right)(t \omega)=\sum_{n \neq 0} \frac{e^{2 i \pi n t}}{(2 i \pi n)^{k}}
$$

is equal to $-\frac{1}{k!} B(k, t-[t])$, where $B(k, t)$ denotes the $k^{\text {th }}$ Bernoulli polynomial in variable t. In particular, for $k=1$, we have $W\left(X_{1}\right)(t \omega)=\frac{1}{2}-t+[t]$ (see Figure 2).

Figure 2. Graph of $W\left(X_{1}\right)(t \omega)=\frac{1}{2}-t+[t]$
We recall the following proposition [7] (see also [2], [1]).
Proposition 3.1. If X generates V, the generalized function $W(X)$ is piecewise polynomial (relative to (X, Λ)).

Thus we will also call $W(X)$ a multiple periodic Bernoulli polynomial.
The above proposition is proved by reduction to the one variable case. Indeed, the function $\frac{1}{\prod_{a \in X}\langle a, z\rangle}$ can be decomposed in a sum of functions $\frac{1}{\prod_{i=1}^{n}\left\langle a_{j_{i}}, z\right\rangle^{n_{i}}}$ with respect to a basis $a_{j_{i}}$ of V extracted from X. This reduces the computation to the one-dimensional case. A. Szenes [7] gave an efficient multidimensional explicit residue formula to compute $W(X)$.

Example 3.2. Let $V=\mathbb{R} e_{1} \oplus \mathbb{R} e_{2}$ with lattice $\Lambda=\mathbb{Z} e_{1} \oplus \mathbb{Z} e_{2}$. Let $X=$ $\left[e_{1}, e_{2}, e_{1}+e_{2}\right]$. We write $v \in V$ as $v=v_{1} e_{1}+v_{2} e_{2}$.

We compute the generalized function

$$
W\left(v_{1}, v_{2}\right)=\sum_{n_{1} \neq 0, n_{2} \neq 0, n_{1}+n_{2} \neq 0} \frac{e^{2 i \pi\left(n_{1} v_{1}+n_{2} v_{2}\right)}}{\left(2 i \pi n_{1}\right)\left(2 i \pi n_{2}\right)\left(2 i \pi\left(n_{1}+n_{2}\right)\right)} .
$$

Then W is a locally L^{1}-function on V, periodic with respect to $\mathbb{Z} e_{1}+\mathbb{Z} e_{2}$. To describe this, it is sufficient to write the formulae of $W\left(v_{1}, v_{2}\right)$ for $0<$ $v_{1}<1$ and $0<v_{2}<1$, which we compute (for example, using the relation $\left.\frac{1}{n_{1} n_{2}\left(n_{1}+n_{2}\right)}=\frac{1}{n_{1}\left(n_{1}+n_{2}\right)^{2}}+\frac{1}{n_{2}\left(n_{1}+n_{2}\right)^{2}}\right)$ as

$$
W\left(v_{1}, v_{2}\right)= \begin{cases}-\frac{1}{6}\left(1+v_{1}-2 v_{2}\right)\left(v_{1}-1+v_{2}\right)\left(2 v_{1}-v_{2}\right), & v_{1}<v_{2}, \\ -\frac{1}{6}\left(v_{1}-2 v_{2}\right)\left(v_{1}-1+v_{2}\right)\left(2 v_{1}-1-v_{2}\right), & v_{1}>v_{2} .\end{cases}
$$

Thus we see that W is a piecewise polynomial function.
Remark 3.3. If X does not generate $V, W(X)$ is not locally L^{1} : Take $X=\emptyset$; then, by the Poisson formula, $W(\emptyset)$ is the delta distribution of the lattice Λ.

Definition 3.4. A subspace \mathbf{s} of V generated by a subsequence of elements of X is called X-admissible. We denote by \mathcal{R} the set of X-admissible subspaces of V. We denote by \mathcal{R}^{\prime} the set of proper X-admissible subspaces.

The spaces $\mathbf{s}=V$ and $\mathbf{s}=\{0\}$ are among the admissible subspaces of V. The set \mathcal{R}^{\prime} consists of all admissible subspaces of V, except $\mathbf{s}=V$.

Let \mathbf{s} be an admissible subspace of V. Let us consider the list $X \backslash \mathbf{s}$, where we have removed from the list X all elements belonging to s. The projection of the list $X \backslash \mathbf{s}$ on V / \mathbf{s} will be denoted by X / \mathbf{s}. The image, in V / \mathbf{s}, of the lattice Λ is again a lattice. If X generates $V, X / \mathbf{s}$ generates V / s. Using the projection $V \rightarrow V / \mathbf{s}$, we identify the piecewise polynomial function $W(X / \mathbf{s})$ on V / \mathbf{s} to a piecewise polynomial function on V constant along the affine spaces $v+\mathbf{s}$.

Define $U_{\text {reg }}(X / \mathbf{s})=U_{\text {reg }}(X \backslash \mathbf{s}) \cap \mathbf{s}^{\perp}$. Thus $\Gamma_{\text {reg }}(X / \mathbf{s}):=\Gamma \cap U_{\text {reg }}(X / \mathbf{s})$ is the set of elements $\gamma \in \Gamma$ such that:

$$
\langle\gamma, s\rangle=0 \text { for all } s \in \mathbf{s} ; \quad\langle\gamma, a\rangle \neq 0 \text { for all } a \in X \backslash \mathbf{s} .
$$

Identifying the dual space to V / \mathbf{s} to the space \mathbf{s}^{\perp}, we see that the function $W(X / \mathbf{s})$ is the function on V given by the series (convergent in the sense of generalized functions)

$$
W(X / \mathbf{s})(v):=\sum_{\gamma \in \Gamma_{\mathrm{reg}}(X / \mathbf{s})} \frac{e^{2 i \pi\langle v, \gamma\rangle}}{\prod_{a \in X \backslash \mathbf{s}} 2 i \pi\langle a, \gamma\rangle}
$$

This function is periodic with respect to the lattice Λ, piecewise polynomial on V (relative to X, Λ) and constant along $v+\mathbf{s}$.

If $\mathbf{s}=V$, the function $W(X / \mathbf{s})$ is identically equal to 1 , while if $\mathbf{s}=\{0\}$, we obtain again our series $W(X)$.

4. A formula

Let us now state our formula. We assume, as before, that X generates V. For each $\mathbf{s} \in \mathcal{R}$, we consider all possible decompositions of the list $X \backslash \mathbf{s}$ in disjoint lists $I \sqcup J$. If f is a smooth function, the function

$$
F(v)=W(X / \mathbf{s})(v)\left(\partial_{I} \nabla_{J} f\right)(v)
$$

is a piecewise smooth function on V. If Y is a subsequence of X, the convolution $B(Y) * F d v$ is well defined and the result is a piecewise smooth distribution on V that we denote by $B(Y) *_{c}\left(W(X / s) \partial_{I} \nabla_{J} f\right)$.

Theorem 4.1. Let f be a smooth function on V. We have
$B(X) *_{d} f-B(X) *_{c} f=\sum_{\mathbf{s} \in \mathcal{R}^{\prime}} \sum_{I \subset X \backslash \mathbf{s}}(-1)^{|I|} B((X \cap \mathbf{s}) \sqcup I) *_{c}\left(W(X / \mathbf{s}) \partial_{I} \nabla_{J} f\right)$.
In this formula J is the complement of the sequence I in $X \backslash \mathbf{s}$. This equality holds in the space of piecewise (relative to $(X, \Lambda))$ smooth distributions on V, relative to (X, Λ).

Remark 4.2. If f is a polynomial, the term $B(X) *_{c} f$ is a polynomial density and all terms of the difference formula are locally polynomial distributions on V.

Before proceeding, let us comment on the proof. As in [3] (see also [5]), we use the Poisson formula to compute $B(X) *_{d} f$. Then we group the terms in the dual lattice Γ in strata according to the hyperplane arrangement $\cup_{a \in X}\{a=0\}$. We then use the Bernoulli series as primitives of the corresponding sums. This way, we introduce the needed derivatives of the function f.

Proof. Let \mathcal{R} be the set of admissible subspaces of V. We have the disjoint decomposition

$$
\begin{equation*}
U=\bigsqcup_{\mathbf{s} \in \mathcal{R}} U_{\mathrm{reg}}(X / \mathbf{s}) . \tag{5}
\end{equation*}
$$

Let test be a test function on V. We compute

$$
S:=\int_{V}\left(B(X) *_{d} f\right)(v) \operatorname{test}(v)=\sum_{\lambda \in \Lambda} f(\lambda) \int_{V} B(X)(v) \operatorname{test}(\lambda+v) .
$$

We apply the Poisson formula to the compactly supported smooth function

$$
q(w)=f(w) \int_{V} B(X)(v) \operatorname{test}(w+v)
$$

as our sum S is equal to $\sum_{\lambda \in \Lambda} q(\lambda)$. We obtain

$$
S=\sum_{\gamma \in \Gamma} \int_{V} e^{2 i \pi\langle w, \gamma\rangle} q(w) d w .
$$

The lattice Γ is a disjoint union of the sets $\Gamma_{\text {reg }}(X / \mathbf{s})=\Gamma \cap U_{\mathrm{reg}}(X / \mathbf{s})$ associated to the admissible subspaces \mathbf{s}. Note that the set associated to $\mathbf{s}=V$ is $\{\gamma=0\}$. The term in S corresponding to $\gamma=0$ is $\int_{V} q(w) d w$; that is $\left\langle B(X) *_{c} f\right.$, test \rangle.

As in the generalized function sense

$$
\sum_{\gamma \in \Gamma_{\mathrm{reg}}(X / \mathbf{s})} e^{2 i \pi\langle w, \gamma\rangle}=\partial_{X \backslash \mathbf{s}} W(X / \mathbf{s})(w),
$$

we obtain

$$
S=\sum_{\mathbf{s} \in \mathcal{R}} \int_{V} W(X / \mathbf{s})(w)(-1)^{|X \backslash \mathbf{s}|} \partial_{X \backslash \mathbf{s}} q(w) d w .
$$

The function $q(w)$ is a product of the two smooth functions

$$
f(w) \quad \text { and } \quad \int_{V} B(X)(v) \operatorname{test}(w+v)
$$

By the Leibniz rule,

$$
S:=\sum_{\mathbf{s}}(-1)^{|X \backslash \mathbf{s}|} \sum_{I \sqcup J=X \backslash \mathbf{s}} \int_{V} \int_{V} W(X / \mathbf{s})(w) \partial_{I} f(w) B(X)(v) \partial_{J} t e s t(w+v) d w .
$$

We first integrate in v and use the equation satisfied by the box spline

$$
\begin{equation*}
\left\langle B(X), \partial_{b} h\right\rangle=-\left\langle B(X \backslash\{b\}), \nabla_{-b} h\right\rangle . \tag{6}
\end{equation*}
$$

Thus we obtain
$S=\sum_{\mathbf{s}} \sum_{I \sqcup J=X \backslash \mathbf{s}}(-1)^{|I|} \int_{V} \int_{V} W(X / \mathbf{s})(w) \partial_{I} f(w) B(X \backslash J)(v)\left(\nabla_{-J} t e s t\right)(w+v) d w$.
Let us integrate in w. The integral being invariant by ∇_{b}, we have

$$
\int_{V}\left(\nabla_{b} f_{1}\right)(w) f_{2}(w) d w=\int_{V} f_{1}(w)\left(\nabla_{-b} f_{2}\right)(w) d w .
$$

As $b \in J$ is in Λ and $W(X / \mathbf{s})(w)$ is periodic,

$$
S=\sum_{\mathbf{s} \in \mathcal{R}} \sum_{I \sqcup J=X \backslash \mathbf{s}}(-1)^{|I|} \int_{V} \int_{V} B(X \backslash J)(v) W(X / \mathbf{s})(w) \nabla_{J} \partial_{I} f(w) \text { test }(w+v) d w .
$$

Writing $\mathcal{R}=\{V\} \sqcup \mathcal{R}^{\prime}$, we obtain the formula of the theorem.

On the space of polynomials, one has

$$
\nabla_{J} \partial_{I} f=\left(\prod_{b \in J} \frac{1-e^{-\partial_{b}}}{\partial_{b}}\right) \partial_{X \backslash \mathbf{s}} f
$$

if $I \sqcup J=X \backslash \mathbf{s}$.
Recall that the space $D(X)$ of Dahmen-Micchelli polynomials is the space of polynomials on V such that $\partial_{Y} f=0$ for all long subsequences Y. In particular, if \mathbf{s} is a proper subspace, the sequence $X \backslash \mathbf{s}$ is a long subsequence. So if I and J are such that $I \sqcup J=X \backslash \mathbf{s}$ and $f \in D(X)$, then $\nabla_{J} \partial_{I} f=0$.

As a corollary of our formula, if $p \in D(X)$, we see that $B(X) *_{d} p=$ $B(X) *_{c} p$. Let us state more precisely this result of Dahmen-Micchelli [4] (see also [6, Chap. 17]).

Corollary 4.3. If $p \in D(X)$, then

$$
P(v):=B(X) *_{d} p=\sum_{\lambda} p(\lambda) B(X)(v-\lambda)
$$

is a polynomial function on V, equal to $\left(\prod_{a \in X} \frac{1-e^{-\partial_{a}}}{\partial_{a}}\right) p=B(X) *_{c} p$.
In this formula, we have identified $B(X), B(X) *_{d} p$, and $B(X) *_{c} p$ to piecewise polynomial functions.

5. Vertices of the arrangement and semi-discrete convolutions

We now give a twisted version of Theorem 4.1, where we twist f by an exponential function $e^{2 i \pi\langle G, v\rangle}$.

The set of characters on Λ is the torus $T:=U / \Gamma$. If $g \in T$, we denote by g^{λ} the corresponding character on Λ. More precisely, if g has representative $G \in U$, then by definition $g^{\lambda}=e^{2 i \pi\langle G, \lambda\rangle}$. Define

$$
X(g):=\left\{a \in X ; g^{a}=1\right\} .
$$

If $g \in T=U / \Gamma$ has representative $G \in U$, we denote by $g+\Gamma$ the set $G+\Gamma$.

For $a \in X$, introduce the operator

$$
(\nabla(a, g) f)(v)=f(v)-g^{-a} f(v-a)
$$

If Y is a subsequence of X, define

$$
\nabla_{Y}^{g}=\prod_{a \in Y} \nabla(a, g)
$$

We introduce a subset $\mathcal{R}(g)$ of admissible subspaces, depending on g.
Definition 5.1. The admissible space \mathbf{s} is in $\mathcal{R}(g)$ if the space $(g+\Gamma) \cap \mathbf{s}^{\perp}$ is nonempty

Note that if G is not in Γ, then V is not in the set $\mathcal{R}(g)$.

Remark 5.2. If $\mathbf{s} \in \mathcal{R}(g)$, then all elements of $X \cap \mathbf{s}$ are in $X(g)$. Thus $\mathcal{R}(g)$ is contained in the set of admissible spaces for $X(g)$. However the converse does not hold: take $V=\mathbb{R} \omega, X=[2 \omega], \Lambda=\mathbb{Z} \omega$, and $G=\frac{1}{2} \omega^{*}$. Then $X(g)=X$, so that V is an admissible subspace for $X(g)$. However, V is not in $\mathcal{R}(g)$.

If $\mathbf{s} \in \mathcal{R}(g)$, take $g_{\mathbf{s}} \in(g+\Gamma) \cap \mathbf{s}^{\perp}$. Then $(g+\Gamma) \cap \mathbf{s}^{\perp}$ is the translate by $g_{\mathbf{s}}$ of the lattice $\Gamma \cap \mathbf{s}^{\perp}$.

Define

$$
\Gamma_{\mathrm{reg}}(X / \mathbf{s}, g)=(g+\Gamma) \cap U_{\mathrm{reg}}(X / \mathbf{s})^{\perp} .
$$

Thus $\Gamma_{\text {reg }}(X / \mathbf{s}, g)$ consists of elements $\xi \in g+\Gamma$ such that

$$
\langle\xi, s\rangle=0 \text { for all } s \in \mathbf{s} ; \quad\langle\xi, a\rangle \neq 0 \text { for all } a \in X \backslash \mathbf{s} .
$$

The following series

$$
\begin{equation*}
W(X / \mathbf{s}, g)(v)=\sum_{\xi \in \Gamma_{\mathrm{reg}}(X / \mathbf{s}, g)} \frac{e^{2 i \pi\langle v, \xi\rangle}}{\prod_{a \in X} 2 i \pi\langle a, \xi\rangle} \tag{7}
\end{equation*}
$$

is well defined as a generalized function on V.
The function $W(X / \mathbf{s}, g)(v)$ is not periodic with respect to Λ. We have instead the covariance formula

$$
\begin{equation*}
W(X / \mathbf{s}, g)(v-\lambda)=g^{-\lambda} W(X / \mathbf{s}, g)(v) . \tag{8}
\end{equation*}
$$

In the sense of generalized functions, we have

$$
\begin{equation*}
\partial_{X \backslash \mathbf{s}} W(X / \mathbf{s}, g)(v)=\sum_{\xi \in \Gamma_{\mathrm{reg}}(X / \mathbf{s}, g)} e^{2 i \pi\langle\xi, v\rangle} . \tag{9}
\end{equation*}
$$

We recall the following proposition [7] (see also [2], [1]).
Proposition 5.3. The generalized function $W(X / \mathbf{s}, g)$ is a piecewise polynomial (relative to $(X, \Lambda))$ function on V.

This is proved similarly by reduction to one variable.
Example 5.4. Let $V=\mathbb{R} \omega, \Lambda=\mathbb{Z} \omega$, and $X_{k}:=[\omega, \omega, \ldots, \omega]$, where ω is repeated k times with $k>0$. Then $\Gamma=\mathbb{Z} \omega^{*}$, and if z is not an integer, we have

$$
W\left(X_{k}, z \omega^{*}\right)(t \omega)=\sum_{n \in \mathbb{Z}} \frac{e^{2 i \pi(n+z) t}}{(2 i \pi(n+z))^{k}} .
$$

We have, for example (see [2]),

$$
\begin{aligned}
& W\left(X_{1}, z \omega^{*}\right)(t \omega)=\frac{e^{2 i \pi[t] z}}{1-e^{-2 i \pi z}} \\
& W\left(X_{2}, z \omega^{*}\right)(t \omega)=e^{2 i \pi[t] z}\left(\frac{t-[t]}{1-e^{-2 i \pi z}}-\frac{1}{\left(1-e^{-2 i \pi z}\right)\left(1-e^{2 i \pi z}\right)}\right) .
\end{aligned}
$$

Here $[t]$ is the integral part of t. This function $[t]$ is a constant on each interval $] \ell, \ell+1\left[\right.$, and $W\left(X_{k}, z \omega^{*}\right)$ is locally a polynomial function of t.

Theorem 5.5. Let $G \in U$, and g its image in U / Γ. Let $f(v)=e^{2 i \pi\langle v, G\rangle} h(v)$, where h is a smooth function. Then

$$
B(X) *_{d} f=\sum_{\mathbf{s} \in \mathcal{R}(g)} \sum_{I \subset X \backslash \mathbf{s}}(-1)^{|I|} B((X \cap \mathbf{s}) \sqcup I) *_{c}\left(W(X / \mathbf{s}, g) \partial_{I} \nabla_{J}^{g} h\right) .
$$

In this formula, J is the complement of I in $X \backslash \mathbf{s}$.
Remark 5.6. If $G \in \Gamma$, then $B(X) *_{d} f=B(X) *_{d} h$, and the formula of the theorem above coincides with the formula of Theorem 4.1 for h : The set $\mathcal{R}(g)$ coincides with the set \mathcal{R}, and the term corresponding to V in the formula of Theorem 5.5 is $B(X) *_{c} h$.

Proof. We proceed in the same way as in the proof of Theorem 4.1. Let test be a test function on V. We compute $S:=\int_{V}\left(B(X) *_{d} f\right)(v) \operatorname{test}(v)$ by the Poisson formula. If

$$
q(w)=h(w) \int_{V} B(X)(v) \operatorname{test}(w+v)
$$

we obtain

$$
S=\sum_{\gamma \in \Gamma} \int_{V} e^{2 i \pi\langle w, \gamma\rangle} e^{2 i \pi\langle w, G\rangle} q(w) d w
$$

Thus

$$
S=\sum_{\xi \in(g+\Gamma)} \int_{V} e^{2 i \pi\langle w, \xi\rangle} q(w) d w
$$

The set $g+\Gamma$ is a disjoint union over $\mathbf{s} \in \mathcal{R}(g)$ of the sets $\Gamma_{\text {reg }}(X / \mathbf{s}, g)=$ $(g+\Gamma) \cap U_{\text {reg }}(X / \mathbf{s})$, so that

$$
S=\sum_{\mathbf{s} \in \mathcal{R}(g)} \int_{V} W(X / \mathbf{s}, g)(w)(-1)^{|X \backslash \mathbf{s}|} \partial_{X \backslash \mathbf{s}} q(w) d w .
$$

Then, using the Leibniz rule for ∂_{a} and equation (6) for the box spline, we obtain that S is equal to

$$
\sum_{\mathbf{s} \in \mathcal{R}(g)} \sum_{I \sqcup J=X \backslash \mathbf{s}}(-1)^{|I|} \int_{V} \int_{V} W(X \backslash \mathbf{s}, g)(w) \partial_{I} f(w) B(X \backslash J)(v)\left(\nabla_{-J} t e s t\right)(w+v) d w .
$$

Using the covariance formula (8) for $W(X \backslash \mathbf{s}, g)$, we see that

$$
\begin{aligned}
& \int_{V} W(X \backslash \mathbf{s}, g)(w) f_{1}(w)\left(\nabla_{-b} f_{2}\right)(w) d w \\
&=\int_{V} W(X \backslash \mathbf{s}, g)(w)\left(\nabla(b, g) f_{1}\right)(w) f_{2}(w) d w
\end{aligned}
$$

and we obtain the formula of the theorem.
Let us point out a corollary of this formula.
Definition 5.7. We say that a point $g \in U / \Gamma$ is a toric vertex of the arrangement X if $X(g)$ generates V. We denote by $\mathcal{V}(X)$ the set of toric vertices of the arrangement X.

If g is a vertex, there is a basis σ of V extracted from X such that $g^{a}=1$, for all $a \in \sigma$. We thus see that the set $\mathcal{V}(X)$ is finite. If X is unimodular, then $\mathcal{V}(X)$ is reduced to $g=0$.

Corollary 5.8 (Dahmen-Micchelli). Let $g \in \mathcal{V}(X)$ be a toric vertex of the arrangement X, and let $p \in D(X(g))$ be a polynomial in the DahmenMicchelli space for $X(g)$. Assume that $g \neq 0$. Let $f(\lambda)=g^{\lambda} p(\lambda)$. Then $B(X) *_{d} f=0$.

Proof. We apply the formula of Theorem 5.5 with $h=p$. As $g \neq 0$, all terms $\mathbf{s} \in \mathcal{R}(g)$ are proper subspaces of V. Let us show that all the terms in our formula are 0 . Indeed let $I \sqcup J=X \backslash$ s. Let $I^{\prime}=I \cap X(g)$ and $J^{\prime}=J \cap X(g)$. Then $I^{\prime} \sqcup J^{\prime}=X(g) \backslash \mathbf{s}$ is a long subset of $X(g)$. As $\nabla_{I^{\prime}}^{g}=\nabla_{I^{\prime}}$, we see that $\partial_{I^{\prime}} \nabla_{J^{\prime}}^{p}$ is already equal to 0 .

A simple proof of this corollary is also given in ([6, Th. 17.15]).
Acknowledgement. I wish to thank Michel Duflo for comments on this text.

References

[1] A. Boysal and M. Vergne, Multiple Bernoulli series, an Euler-MacLaurin formula and wall crossings, Annales de l'Institut Fourier, to appear. arXiv 1008.0263.
[2] M. Brion and M. Vergne, Arrangement of hyperplanes. II. The Szenes formula and Eisenstein series, Duke Math. J. 103 (2000), 279-302. MR 1760629. Zbl 0968. 32016. doi: 10.1215/S0012-7094-00-10325-0.
[3] W. Dahmen and C. A. Micchelli, Translates of multivariate splines, Linear Algebra Appl. 52/53 (1983), 217-234. MR 0709352. Zbl 0522.41009. doi: 10. 1016/0024-3795(83)80015-9.
[4] ${ }^{\text {_ }}$, On the solution of certain systems of partial difference equations and linear dependence of translates of box splines, Trans. Amer. Math. Soc. 292 (1985), 305320. MR 0805964. Zbl 0637.41012. doi: 10.2307/2000181.
[5] C. De Boor, K. Höllig, and S. Riemenschneider, Box Splines, Appl. Math. Sci. 98, Springer-Verlag, New York, 1993. MR 1243635. Zbl 0814.41012.
[6] C. De Concini and C. Procesi, Topics in Hyperplane Arrangements, Polytopes and Box-splines, Universitext, Springer-Verlag, New York, 2011. MR 2722776. Zbl 05288674 . Available at www.mat.uniroma1.it/~procesi/dida.html.
[7] A. Szenes, Iterated residues and multiple Bernoulli polynomials, Internat. Math. Res. Notices (1998), 937-956. MR 1653791. Zbl 1653791. doi: 10.1155/ S1073792898000567.
(Received: April 26, 2010)
Institut de Mathématiques de Jussieu, Paris, France
E-mail: vergne@math.jussieu.fr

