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A remark on the convolution
with the box spline

By MICHELE VERGNE

Abstract

The semi-discrete convolution with the box spline is an important tool in
approximation theory. We give a formula for the difference between semi-
discrete convolution and convolution with the box spline. This formula
involves multiple Bernoulli polynomials.

1. Box splines and semi-discrete convolution

Let V be a n-dimensional real vector space equipped with a lattice A. If
we choose a basis of the lattice A, then we may identify V' with R™ and A with
Z". We choose here the Lebesgue measure dv associated to the lattice A.

Let X = [a1,aq,...,an]| be a sequence (a multiset) of N nonzero vectors
in A.

The zonotope Z(X) associated with X is the polytope

Z(X) = {ﬁ;tiai; ti € [0, 1]}.

In other words, Z(X) is the Minkowski sum of the segments [0, a;] over all
vectors a; € X.

We denote by C[V] the space of (complex valued) polynomial functions
onV.

Recall that the box spline B(X) is the distribution on V' such that, for a
test function test on V', we have the equality

(1) (B(X), test) = /::0 e /t:rzo test (g: tiai>dt1 < dty.

i=1

We will also use the notation (B(X), test) = [;, B(X)(v)test(v).

The distribution B(X) is a probability measure supported on the zonotope
Z(X). If X is empty, then B(X) is the § distribution on V. For the basic
properties of the box spline, we refer to [5] (or [6, Chap. 16]) .

If D is any distribution on V, the convolution B(X) % D is well defined
and is again a distribution on V. If D = f(v)dv is a smooth density, then
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Figure 1. Affine topes for X = [e1, ea, €1 + €9]

B(X) % D = F(v)dv is a smooth density with

1 1 N
F(U) - /t1=0 o /tN=0 f(v - Ztiai>dtl o dtN.

i=1

If X generates V, the zonotope is a full dimensional polytope, and B(X)
is given by integration against a locally L!-function. Let us describe more
precisely where this function is smooth.

We continue to assume that X generates V. A hyperplane of V' generated
by a subsequence of elements of X is called admissible. An element of V is
called (affine) regular if no translate v+ of v by any A in the lattice A lies in an
admissible hyperplane. We denote by Vieg ot the open subset of V' consisting
of affine regular elements: the set Ve ot is the complement of the union of all
the translates by A of admissible hyperplanes. A connected component 7 of
the set of regular elements will be called an (affine) tope (see Figure 1).

The choice of the Lebesgue measure dv on V allows us to identify dis-
tributions and generalized functions: if F' is a generalized function, Fdv is a
distribution. If the distribution Fdv is given by (Fdv, test) = [, f(v)test(v)dv,
with f(v) locally L', we say that F is locally L', and we use the same notation
for F and the locally L' function f.

A generalized function b on V' will be called piecewise polynomial (relative
to X, A) if:

e the function b is locally L';

e on each tope 7, there exists a polynomial function b(7) on V such that
the restriction of b to 7 coincides with the restriction of the polynomial
b(T) to T.

If F is a piecewise polynomial function, we will say that the distribution
Fdv is piecewise polynomial.
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If X generates V, the box spline B(X) is a piecewise polynomial (relative
o (X, A)) distribution supported on the zonotope Z(X).

Let f be a smooth function on V. Then there are two distributions natu-
rally associated to X, A, f:

e the piecewise polynomial distribution B(X) x4 f: on a test function
test,

N
(B(X) #4 f, test) = / / test ()\ + Z tiai)dtl cdty;
t1=0 =0

/\EA i=1

e the smooth density B(X) . f: on a test function test,

N
(B(X) %, f, test) :/vf(”)/tlo"'/tlo test(v%—Ztiai)dtl---dtNdv.

=1

The notation *4 and *. means discrete, versus continuous. B(X)x*g4f is the
convolution of B(X) with the discrete measure >, f(A)dy, while B(X) x. f is
the usual convolution of B(X) with the smooth density f(v)dv. The subscript
% 1s just for emphasis. The operation *4 is denoted " in [5], [6] and is called
semi-discrete convolution.

Our aim is to write an explicit formula for the difference B(X) x4 f —
B(X)*.f.

We also associate to a € X three operators:

e the partial differential operator
d

(Qaf)(v) = d*f(v +ea)|

€ e=0

e the difference operator

(Vaf)(v) = f(v) = f(v = a),

e the integral operator
1
v) = / fv—ta)dt
0

The operator I, is the convolution B([a])*.f with the box spline associated
to the sequence with a single element a.

These three operators respect the space of polynomial functions C[V]
on V. The Taylor series formula implies that, on the space C[V], the operator
1, is the invertible operator given by

1—egf & ,
I, = = (=1) ——0.
20 j + 1)
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In particular, if f € C[V] is a polynomial,

(2) B(X) %, f = (( II 1_;_6>f> dv.

acX

If I,J are subsequences of X, we define the operators 0; = [[,er 0o and
V7 =TlIpes Vi They are defined on distributions.

Recall that 0y B(X) = VyB(X \Y) if Y is a subsequence of X. A subse-
quence Y of X will be called long if the sequence X \ Y does not generate the
vector space V. A long subsequence Y, minimal along the long subsequences,
is also called a cocircuit; then Y = X\ H where H is an admissible hyperplane.

In our formula, when f is a polynomial, B(X) %4 f — B(X) *. f is nat-
urally expressed as a function of the derivatives 0y f with respect to long
subsequences Y. More generally, for any smooth function f, products of dif-
ference operators V; and differentiation operators d; (with I and J spanning
long subsets of X) will appear naturally in the rest B(X) %4 f — B(X) *. f.

2. Piecewise smooth distributions

Our aim is to write an explicit formula for the difference of the two distri-
butions B(X) %4 f and B(X) *. f. As the first one is a piecewise polynomial
distribution, the second a smooth density, we will need to introduce an inter-
mediate space of distributions. We will use “piecewise smooth distributions.”
Let us give a definition.

We continue to assume that X generates V.

Definition 2.1. A generalized function b on V will be called piecewise
smooth (relative to X, A) if:

e the generalized function b is locally L';

e on each tope 7, there exists a smooth function b(7) on the full space V'
such that the restriction of b to 7 coincides with the restriction of the
smooth function b(7) to .

In this definition, given a tope 7, the function b restricted to 7 (as well
as all its derivatives) extends continuously to the closure of 7. However, these
extensions do not always coincide on intersections of the closures of topes.

If b is piecewise smooth, we then say that the distribution B := b(v)dv
(given by integration against the locally L' function b) is piecewise smooth.

It is clear that if we multiply a piecewise polynomial distribution B by
a smooth function, we obtain a piecewise smooth distribution. Note that the
space of piecewise smooth distributions is stable by the operators V, and by
convolution with box splines B(Y') (Y any subsequence of X). However, it is
not stable under operators d,. For example, 0x B(X) = VxB(0) is a linear
combination of ¢ distributions.
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3. Multiple Bernoulli periodic polynomials

Let U be the dual vector space to V and I' C U be the dual lattice to A.
If Y is a subsequence of X, we define

Uweg(Y) ={u e U;(a,u) #0, foralla € Y}

and
Freg(Y) =T N Ueg(Y).
Consider the periodic function on V' given by the (oscillatory) sum
e2im(v,Y)
3) W(X)(v) =

’Yerreg(X) HCLEX 2i7r<a7 7)

This is well defined as a generalized function on V. In the sense of gener-
alized functions, we have
(4) W (X)(v)= > ¥,

Y€l reg(X)

We will use this equation to construct “primitives” of parts of the Poisson
formula.

We will call the series W (X) a multiple Bernoulli series. Multiple Bernoulli
series have been extensively studied by A. Szenes [7]. They are natural gener-
alizations of Bernoulli series: for A = Zw and X} := [w,w,...,w|, where w is
repeated k times with k > 0, the series

W (Xp)(tw) =)

n#0

is equal to —;B(k,t — [t]), where B(k,t) denotes the k' Bernoulli polynomial

in variable ¢. In particular, for k = 1, we have W (X1)(tw) = 1 — ¢ + [t] (see
Figure 2).

eQzﬂ'nt

(2in)k

AN ANERNERN
TNTON N N NN

Figure 2. Graph of W (X1)(tw) = 5 —t + [t]
We recall the following proposition [7] (see also [2], [1]).

PROPOSITION 3.1. If X generates V', the generalized function W (X) is
piecewise polynomial (relative to (X, A)).
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Thus we will also call W(X) a multiple periodic Bernoulli polynomial.
The above proposition is proved by reduction to the one variable case.
Indeed, the function W can be decomposed in a sum of functions
acX \7
W with respect to a basis a;, of V' extracted from X. This reduces
i=1 \33;»

the computation to the one-dimensional case. A. Szenes [7] gave an efficient
multidimensional explicit residue formula to compute W (X).

Example 3.2. Let V = Re; @ Rey with lattice A = Zey @ Zey. Let X =
[e1,€2,e1 + e2]. We write v € V as v = vie] + vaes.
We compute the generalized function

€2i7r(n1 V1 +n202)

(2i7TTL1)(2i7Tn2)<2i7T(7”L1 + TLQ)) '

W(’Ul,’l)g) = Z

n1#0,n27#0,n1+n27#0

Then W is a locally L'-function on V, periodic with respect to Ze; + Zes.
To describe this, it is sufficient to write the formulae of W (v, v2) for 0 <
v] < 1 and 0 < v < 1, which we compute (for example, using the relation

1 _ 1 1 .
ninz(ni+n2) — ni(ni+ng)? + nz(m-i-nz)z) as

W (01, v9) = _%(1 + v —2v2)(v1 — 1 4 v2) (201 —va), v1 < Vg,
_%(’Ul - 21)2)(1)1 -1+ 1)2)(2@1 —1- ,02)7 01> vy,

Thus we see that W is a piecewise polynomial function.

Remark 3.3. If X does not generate V, W(X) is not locally L': Take
X = (); then, by the Poisson formula, W () is the delta distribution of the
lattice A.

Definition 3.4. A subspace s of V generated by a subsequence of elements
of X is called X-admissible. We denote by R the set of X-admissible subspaces
of V. We denote by R’ the set of proper X-admissible subspaces.

The spaces s = V and s = {0} are among the admissible subspaces of V.
The set R’ consists of all admissible subspaces of V', except s = V.

Let s be an admissible subspace of V. Let us consider the list X \'s, where
we have removed from the list X all elements belonging to s. The projection of
the list X \ s on V/s will be denoted by X/s. The image, in V/s, of the lattice
A is again a lattice. If X generates V', X/s generates V/s. Using the projection
V — V/s, we identify the piecewise polynomial function W(X/s) on V/s to a
piecewise polynomial function on V constant along the affine spaces v + s.

Define Upeg(X/8) = Upeg(X \ 8) Nst. Thus Tyeg(X/s) := T'N Upeg(X/8) is
the set of elements v € I" such that:

(v,5) =0 forall se€s; (v,a)#0 foralla € X \'s.
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Identifying the dual space to V/s to the space sT, we see that the function
W (X/s) is the function on V' given by the series (convergent in the sense of
generalized functions)

e2i7r(v,7)

W(X/s)(v) := . .
'yEFre%X/s) HaEX\S 217T<CL, ’Y>
This function is periodic with respect to the lattice A, piecewise polynomial
on V (relative to X ,A) and constant along v + s.
If s = V, the function W (X/s) is identically equal to 1, while if s = {0},
we obtain again our series W (X).

4. A formula

Let us now state our formula. We assume, as before, that X generates V.
For each s € R, we consider all possible decompositions of the list X \ s
in disjoint lists I L J. If f is a smooth function, the function

F(v) = W(X/s)(0)(0rV s f)(v)

is a piecewise smooth function on V. If YV is a subsequence of X, the convolu-
tion B(Y')* Fdv is well defined and the result is a piecewise smooth distribution
on V that we denote by B(Y') x. (W (X/s)0;V s f).

THEOREM 4.1. Let f be a smooth function on V. We have

BX)#af=B(X) s f=3 > (DIBXNs)UT) s (W(X/$)0V,f).
seER' ICX\s

In this formula J is the complement of the sequence I in X \'s. This equality

holds in the space of piecewise (relative to (X, A)) smooth distributions on V,

relative to (X, A).

Remark 4.2. If f is a polynomial, the term B(X)x*. f is a polynomial den-
sity and all terms of the difference formula are locally polynomial distributions

on V.

Before proceeding, let us comment on the proof. As in [3] (see also [5]), we
use the Poisson formula to compute B(X)#4f. Then we group the terms in the
dual lattice I in strata according to the hyperplane arrangement U,e x {a = 0}.
We then use the Bernoulli series as primitives of the corresponding sums. This
way, we introduce the needed derivatives of the function f.

Proof. Let R be the set of admissible subspaces of V. We have the disjoint
decomposition

(5) U= || Ureg(X/s).

sER
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Let test be a test function on V. We compute
S = / (B(X) *q f)(v)test(v Z fA / B(X)(v)test(A +v).
v AeA
We apply the Poisson formula to the compactly supported smooth function

/ B(X)(v)test(w + v)

as our sum S is equal to > yea ¢(A). We obtain

S — Z / 24 (w ,'y

vel
The lattice I' is a disjoint union of the sets I'ieg(X/s) = I' N Ureg(X/s)
associated to the admissible subspaces s. Note that the set associated to
s =V is {7y = 0}. The term in S corresponding to v =0 is [}, ¢(w)dw; that is
(B(X) *c f, test).
As in the generalized function sense

Z p2im(wy) Ox\s W (X/s)(w),
’YGFreg (X/S)
we obtain

s=% / W (X/5) (w) ()X 59 g (w)duo.

seR
The function g(w) is a product of the two smooth functions

f(w) and / B(X)(v)test(w + v).
1%
By the Leibniz rule,
S =3 (- 3 / / W (X /) (w)dr f(w) B(X)(0)dytest(w + v)duw.
s IUJ=X\s
We first integrate in v and use the equation satisfied by the box spline
(6) (B(X),0ph) = —=(B(X \ {b}),V_ph).

Thus we obtain

S=%" Y (- /V /V W (X /) ()1 f(w) B(X\J)(0)(V _y test) (w—v)duw.

s JUJ=X\s
Let us integrate in w. The integral being invariant by Vj, we have
| (Ve w)atwide = [ fi@)(V-so)w)dw
Asbe Jisin A and W(X/s)(w) is periodic,

S=% 3 (- / / B(X\J)(0)W (X /) (w)V 101 f(w)test (w+v)dw.

s€ER IUJ=X\s
Writing R = {V} UR/, we obtain the formula of the theorem. O
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On the space of polynomials, one has

— e
Vjorf = (H 18b>8X\sf

beJ
ifIruJ=X\s.

Recall that the space D(X) of Dahmen-Micchelli polynomials is the space
of polynomials on V such that dy f = 0 for all long subsequences Y. In
particular, if s is a proper subspace, the sequence X \ s is a long subsequence.
So if I and J are such that IUJ = X \ s and f € D(X), then V;0;f = 0.

As a corollary of our formula, if p € D(X), we see that B(X) x4 p =
B(X) . p. Let us state more precisely this result of Dahmen-Micchelli [4] (see
also [6, Chap. 17]).

COROLLARY 4.3. Ifp € D(X), then
P(v) := B(X) *ap =Y p(N)B(X)(v =)
)

_8(1

is a polynomial function on V', equal to ([Jaex 1_ga )p = B(X) *¢ p.

In this formula, we have identified B(X), B(X) *q p, and B(X) *. p to
piecewise polynomial functions.

5. Vertices of the arrangement and semi-discrete convolutions

We now give a twisted version of Theorem 4.1, where we twist f by an

exponential function e27{Gv),

The set of characters on A is the torus T := U/I". If g € T, we denote by
g” the corresponding character on A. More precisely, if g has representative
G € U, then by definition ¢* = ¢2™(GN | Define

X(g9) ={a€ X;¢" =1}

If g € T = UJ/T has representative G € U, we denote by g + I" the set
G+T.

For a € X, introduce the operator

(V(a,9)f)(v) = f(v) =g~ f(v—a).
If Y is a subsequence of X, define
Vi = H V(a,g).
acY
We introduce a subset R(g) of admissible subspaces, depending on g.

Definition 5.1. The admissible space s is in R(g) if the space (g +T)Ns*
is nonempty

Note that if G is not in I', then V' is not in the set R(g).
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Remark 5.2. If s € R(g), then all elements of XNs are in X (g). Thus R(g)
is contained in the set of admissible spaces for X (g). However the converse does
not hold: take V = Rw, X = [2w], A = Zw, and G = iw*. Then X(g) = X,
so that V' is an admissible subspace for X(g). However, V is not in R(g).

If s € R(g), take gs € (g +T') Nst. Then (g +I') Ns* is the translate by
gs of the lattice I' N's™t.
Define
Treg(X/s,9) = (9 +T) N Ureg(X/s)*.
Thus I'eg(X/s, g) consists of elements £ € g + I' such that
(€,s) =0 forall ses; (& a)#0 foralla € X\ s.

The following series

(7) W(X/s,9)(0) =

€eT e (X/5,g) L1a€X 2im(a, §)

o 2im(v.€)

is well defined as a generalized function on V.
The function W (X/s,g)(v) is not periodic with respect to A. We have
instead the covariance formula

8) W(X/s,9)(v = X) = g W (X/s,g)(v).
In the sense of generalized functions, we have
(9) Ox\W(X/s,9)(w) = 3 A

ferreg(X/svg)

We recall the following proposition [7] (see also [2], [1]).

PROPOSITION 5.3. The generalized function W(X/s, g) is a piecewise poly-
nomial (relative to (X, A)) function on V.

This is proved similarly by reduction to one variable.

Ezample 5.4. Let V = Rw, A = Zw, and X}, := [w,w,...,w], where w is
repeated k times with k > 0. Then I' = Zw*, and if z is not an integer, we
have

( )( ) Z e2im(n+z)t
W (X, z2w*)(tw) = —_.
=, (2im(n + z))k
We have, for example (see [2]),
—_— . e2i7r[t]z
(X1, 2w")(tw) = 1 _e—2Zinz’
* _ 2im[t]z t— [t] _ 1
W(X2, 2w7)(tw) = € (1 T e-2imz (] _ e—2ime)(] _ ¢Zimz) )

Here [t] is the integral part of ¢t. This function [¢] is a constant on each
interval ¢, ¢ + 1], and W (X, zw™) is locally a polynomial function of ¢.
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THEOREM 5.5. Let GEU, and g its image in U/T. Let f(v)=e*™ VG h(v),
where h is a smooth function. Then
Yraf= > > (-DIB(X ns)UT) * (W(X/s,9)01V5h).
SER(g) ICX\s
In this formula, J is the complement of I in X \'s.

Remark 5.6. If G € T', then B(X) *q f = B(X) %4 h, and the formula of
the theorem above coincides with the formula of Theorem 4.1 for h: The set
R(g) coincides with the set R, and the term corresponding to V' in the formula
of Theorem 5.5 is B(X) *. h.

Proof. We proceed in the same way as in the proof of Theorem 4.1. Let
test be a test function on V. We compute S := [;,(B(X) %4 f)(v)test(v) by
the Poisson formula. If

= h(w / B(X)(v)test(w + v),
we obtain
S = Z/ 2im(w,y) ZzﬂwG)q( )d
vyerl’
Thus
S = Z / 2™ W8 g(w)dw.
ce(g+n)”V

The set g+ I' is a disjoint union over s € R(g) of the sets I'tes(X/s,9) =
(g +T) N Ureg(X/s), so that

S= % [ W/s.0)w) (D oy gw)du.

sER(g)
Then, using the Leibniz rule for d, and equation (6) for the box spline, we
obtain that S is equal to

S X 0 WX, g)(w)0rf () BOT) @0)(V - stest) (wro)du.

seR(g) IUJ=X\s

Using the covariance formula (8) for W (X \ s, g), we see that

/V W (X \ 5, 9)(w) f1 () (V_y f2) (w)duw
= /V W (X \ 5,9)(w)(V (b, 9) 1) (w) fo (w) dw

and we obtain the formula of the theorem. O

Let us point out a corollary of this formula.

Definition 5.7. We say that a point g € U/T" is a toric vertex of the
arrangement X if X (g) generates V. We denote by V(X) the set of toric
vertices of the arrangement X.
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If g is a vertex, there is a basis ¢ of V extracted from X such that ¢* = 1,
for all a € 0. We thus see that the set V(X)) is finite. If X is unimodular, then
V(X) is reduced to g = 0.

COROLLARY 5.8 (Dahmen-Micchelli). Let g € V(X) be a toric vertex of
the arrangement X, and let p € D(X(g)) be a polynomial in the Dahmen-
Micchelli space for X(g). Assume that g # 0. Let f(\) = g*p()\). Then
B(X) *dq f =0.

Proof. We apply the formula of Theorem 5.5 with h = p. As g # 0, all
terms s € R(g) are proper subspaces of V. Let us show that all the terms in
our formula are 0. Indeed let ILIJ = X\s. Let I’ = INX(g) and J' = JNX(g).
Then I'U J" = X(g) \ s is a long subset of X(g). As VY, = V, we see that
op'VYh, is already equal to 0. O

A simple proof of this corollary is also given in ([6, Th. 17.15]).

Acknowledgement.1 wish to thank Michel Duflo for comments on this
text.
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