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A remark on the convolution
with the box spline

By Michèle Vergne

Abstract

The semi-discrete convolution with the box spline is an important tool in

approximation theory. We give a formula for the difference between semi-

discrete convolution and convolution with the box spline. This formula

involves multiple Bernoulli polynomials.

1. Box splines and semi-discrete convolution

Let V be a n-dimensional real vector space equipped with a lattice Λ. If

we choose a basis of the lattice Λ, then we may identify V with Rn and Λ with

Zn. We choose here the Lebesgue measure dv associated to the lattice Λ.

Let X = [a1, a2, . . . , aN ] be a sequence (a multiset) of N nonzero vectors

in Λ.

The zonotope Z(X) associated with X is the polytope

Z(X) :=

® N∑
i=1

tiai ; ti ∈ [0, 1]

´
.

In other words, Z(X) is the Minkowski sum of the segments [0, ai] over all

vectors ai ∈ X.

We denote by C[V ] the space of (complex valued) polynomial functions

on V .

Recall that the box spline B(X) is the distribution on V such that, for a

test function test on V , we have the equality

(1) 〈B(X), test〉 =

∫ 1

t1=0
· · ·
∫ 1

tN=0
test

Ç N∑
i=1

tiai

å
dt1 · · · dtN .

We will also use the notation 〈B(X), test〉 =
∫
V B(X)(v)test(v).

The distribution B(X) is a probability measure supported on the zonotope

Z(X). If X is empty, then B(X) is the δ distribution on V . For the basic

properties of the box spline, we refer to [5] (or [6, Chap. 16]) .

If D is any distribution on V , the convolution B(X) ∗ D is well defined

and is again a distribution on V . If D = f(v)dv is a smooth density, then
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Figure 1. Affine topes for X = [e1, e2, e1 + e2]

B(X) ∗D = F (v)dv is a smooth density with

F (v) =

∫ 1

t1=0
· · ·
∫ 1

tN=0
f

Ç
v −

N∑
i=1

tiai

å
dt1 · · · dtN .

If X generates V , the zonotope is a full dimensional polytope, and B(X)

is given by integration against a locally L1-function. Let us describe more

precisely where this function is smooth.

We continue to assume that X generates V . A hyperplane of V generated

by a subsequence of elements of X is called admissible. An element of V is

called (affine) regular if no translate v+λ of v by any λ in the lattice Λ lies in an

admissible hyperplane. We denote by Vreg,aff the open subset of V consisting

of affine regular elements: the set Vreg,aff is the complement of the union of all

the translates by Λ of admissible hyperplanes. A connected component τ of

the set of regular elements will be called an (affine) tope (see Figure 1).

The choice of the Lebesgue measure dv on V allows us to identify dis-

tributions and generalized functions: if F is a generalized function, Fdv is a

distribution. If the distribution Fdv is given by 〈Fdv, test〉 =
∫
V f(v)test(v)dv,

with f(v) locally L1, we say that F is locally L1, and we use the same notation

for F and the locally L1 function f .

A generalized function b on V will be called piecewise polynomial (relative

to X,Λ) if:

• the function b is locally L1;

• on each tope τ , there exists a polynomial function b(τ) on V such that

the restriction of b to τ coincides with the restriction of the polynomial

b(τ) to τ .

If F is a piecewise polynomial function, we will say that the distribution

Fdv is piecewise polynomial.
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If X generates V , the box spline B(X) is a piecewise polynomial (relative

to (X,Λ)) distribution supported on the zonotope Z(X).

Let f be a smooth function on V . Then there are two distributions natu-

rally associated to X,Λ, f :

• the piecewise polynomial distribution B(X) ∗d f : on a test function

test ,

〈B(X) ∗d f, test〉 =
∑
λ∈Λ

f(λ)

∫ 1

t1=0
· · ·
∫ 1

tN=0
test

Ç
λ+

N∑
i=1

tiai

å
dt1 · · · dtN ;

• the smooth density B(X) ∗c f : on a test function test ,

〈B(X) ∗c f, test〉 =

∫
V
f(v)

∫ 1

t1=0
· · ·
∫ 1

tN=0
test

Ç
v +

N∑
i=1

tiai

å
dt1 · · · dtNdv.

The notation ∗d and ∗c means discrete, versus continuous. B(X)∗df is the

convolution of B(X) with the discrete measure
∑
λ f(λ)δλ, while B(X) ∗c f is

the usual convolution of B(X) with the smooth density f(v)dv. The subscript

∗c is just for emphasis. The operation ∗d is denoted ∗′ in [5], [6] and is called

semi-discrete convolution.

Our aim is to write an explicit formula for the difference B(X) ∗d f −
B(X) ∗c f .

We also associate to a ∈ X three operators:

• the partial differential operator

(∂af)(v) =
d

dε
f(v + εa)

∣∣∣∣
ε=0

,

• the difference operator

(∇af)(v) = f(v)− f(v − a),

• the integral operator

(Iaf)(v) =

∫ 1

0
f(v − ta)dt.

The operator Ia is the convolution B([a])∗cf with the box spline associated

to the sequence with a single element a.

These three operators respect the space of polynomial functions C[V ]

on V . The Taylor series formula implies that, on the space C[V ], the operator

Ia is the invertible operator given by

Ia =
1− e−∂a

∂a
=
∞∑
j=0

(−1)j
1

(j + 1)!
∂ja.
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In particular, if f ∈ C[V ] is a polynomial,

(2) B(X) ∗c f =

(Ç∏
a∈X

1− e−∂a
∂a

å
f

)
dv.

If I, J are subsequences of X, we define the operators ∂I =
∏
a∈I ∂a and

∇J =
∏
b∈J ∇b. They are defined on distributions.

Recall that ∂YB(X) = ∇YB(X \Y ) if Y is a subsequence of X. A subse-

quence Y of X will be called long if the sequence X \ Y does not generate the

vector space V . A long subsequence Y , minimal along the long subsequences,

is also called a cocircuit; then Y = X \H where H is an admissible hyperplane.

In our formula, when f is a polynomial, B(X) ∗d f − B(X) ∗c f is nat-

urally expressed as a function of the derivatives ∂Y f with respect to long

subsequences Y . More generally, for any smooth function f , products of dif-

ference operators ∇I and differentiation operators ∂J (with I and J spanning

long subsets of X) will appear naturally in the rest B(X) ∗d f −B(X) ∗c f .

2. Piecewise smooth distributions

Our aim is to write an explicit formula for the difference of the two distri-

butions B(X) ∗d f and B(X) ∗c f . As the first one is a piecewise polynomial

distribution, the second a smooth density, we will need to introduce an inter-

mediate space of distributions. We will use “piecewise smooth distributions.”

Let us give a definition.

We continue to assume that X generates V .

Definition 2.1. A generalized function b on V will be called piecewise

smooth (relative to X,Λ) if:

• the generalized function b is locally L1;

• on each tope τ , there exists a smooth function b(τ) on the full space V

such that the restriction of b to τ coincides with the restriction of the

smooth function b(τ) to τ .

In this definition, given a tope τ , the function b restricted to τ (as well

as all its derivatives) extends continuously to the closure of τ . However, these

extensions do not always coincide on intersections of the closures of topes.

If b is piecewise smooth, we then say that the distribution B := b(v)dv

(given by integration against the locally L1 function b) is piecewise smooth.

It is clear that if we multiply a piecewise polynomial distribution B by

a smooth function, we obtain a piecewise smooth distribution. Note that the

space of piecewise smooth distributions is stable by the operators ∇a and by

convolution with box splines B(Y ) (Y any subsequence of X). However, it is

not stable under operators ∂a. For example, ∂XB(X) = ∇XB(∅) is a linear

combination of δ distributions.
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3. Multiple Bernoulli periodic polynomials

Let U be the dual vector space to V and Γ ⊂ U be the dual lattice to Λ.

If Y is a subsequence of X, we define

Ureg(Y ) = {u ∈ U ; 〈a, u〉 6= 0, for all a ∈ Y }
and

Γreg(Y ) = Γ ∩ Ureg(Y ).

Consider the periodic function on V given by the (oscillatory) sum

(3) W (X)(v) =
∑

γ∈Γreg(X)

e2iπ〈v,γ〉∏
a∈X 2iπ〈a, γ〉

.

This is well defined as a generalized function on V . In the sense of gener-

alized functions, we have

(4) ∂XW (X)(v) =
∑

γ∈Γreg(X)

e2iπ〈γ,v〉.

We will use this equation to construct “primitives” of parts of the Poisson

formula.

We will call the seriesW (X) a multiple Bernoulli series. Multiple Bernoulli

series have been extensively studied by A. Szenes [7]. They are natural gener-

alizations of Bernoulli series: for Λ = Zω and Xk := [ω, ω, . . . , ω], where ω is

repeated k times with k > 0, the series

W (Xk)(tω) =
∑
n6=0

e2iπnt

(2iπn)k

is equal to − 1
k!B(k, t− [t]), where B(k, t) denotes the kth Bernoulli polynomial

in variable t. In particular, for k = 1, we have W (X1)(tω) = 1
2 − t + [t] (see

Figure 2).

1/2

−1/2

−1−2−3 1 2 3

Figure 2. Graph of W (X1)(tω) = 1
2 − t+ [t]

We recall the following proposition [7] (see also [2], [1]).

Proposition 3.1. If X generates V , the generalized function W (X) is

piecewise polynomial (relative to (X,Λ)).
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Thus we will also call W (X) a multiple periodic Bernoulli polynomial.

The above proposition is proved by reduction to the one variable case.

Indeed, the function 1∏
a∈X 〈a,z〉

can be decomposed in a sum of functions

1∏n
i=1
〈aji ,z〉

ni with respect to a basis aji of V extracted from X. This reduces

the computation to the one-dimensional case. A. Szenes [7] gave an efficient

multidimensional explicit residue formula to compute W (X).

Example 3.2. Let V = Re1 ⊕ Re2 with lattice Λ = Ze1 ⊕ Ze2. Let X =

[e1, e2, e1 + e2]. We write v ∈ V as v = v1e1 + v2e2.

We compute the generalized function

W (v1, v2) =
∑

n1 6=0,n2 6=0,n1+n2 6=0

e2iπ(n1v1+n2v2)

(2iπn1)(2iπn2)(2iπ(n1 + n2))
.

Then W is a locally L1-function on V , periodic with respect to Ze1 +Ze2.

To describe this, it is sufficient to write the formulae of W (v1, v2) for 0 <

v1 < 1 and 0 < v2 < 1, which we compute (for example, using the relation
1

n1n2(n1+n2) = 1
n1(n1+n2)2

+ 1
n2(n1+n2)2

) as

W (v1, v2) =

{
−1

6(1 + v1 − 2v2)(v1 − 1 + v2)(2v1 − v2), v1 < v2,

−1
6(v1 − 2v2)(v1 − 1 + v2)(2v1 − 1− v2), v1 > v2.

Thus we see that W is a piecewise polynomial function.

Remark 3.3. If X does not generate V , W (X) is not locally L1: Take

X = ∅; then, by the Poisson formula, W (∅) is the delta distribution of the

lattice Λ.

Definition 3.4. A subspace s of V generated by a subsequence of elements

of X is called X-admissible. We denote byR the set of X-admissible subspaces

of V . We denote by R′ the set of proper X-admissible subspaces.

The spaces s = V and s = {0} are among the admissible subspaces of V .

The set R′ consists of all admissible subspaces of V , except s = V .

Let s be an admissible subspace of V . Let us consider the list X \s, where

we have removed from the list X all elements belonging to s. The projection of

the list X \ s on V/s will be denoted by X/s. The image, in V/s, of the lattice

Λ is again a lattice. If X generates V , X/s generates V/s. Using the projection

V → V/s, we identify the piecewise polynomial function W (X/s) on V/s to a

piecewise polynomial function on V constant along the affine spaces v + s.

Define Ureg(X/s) = Ureg(X \ s) ∩ s⊥. Thus Γreg(X/s) := Γ ∩ Ureg(X/s) is

the set of elements γ ∈ Γ such that:

〈γ, s〉 = 0 for all s ∈ s; 〈γ, a〉 6= 0 for all a ∈ X \ s.
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Identifying the dual space to V/s to the space s⊥, we see that the function

W (X/s) is the function on V given by the series (convergent in the sense of

generalized functions)

W (X/s)(v) :=
∑

γ∈Γreg(X/s)

e2iπ〈v,γ〉∏
a∈X\s 2iπ〈a, γ〉

.

This function is periodic with respect to the lattice Λ, piecewise polynomial

on V (relative to X,Λ) and constant along v + s.

If s = V , the function W (X/s) is identically equal to 1, while if s = {0},
we obtain again our series W (X).

4. A formula

Let us now state our formula. We assume, as before, that X generates V .

For each s ∈ R, we consider all possible decompositions of the list X \ s
in disjoint lists I t J . If f is a smooth function, the function

F (v) = W (X/s)(v)(∂I∇Jf)(v)

is a piecewise smooth function on V . If Y is a subsequence of X, the convolu-

tion B(Y )∗Fdv is well defined and the result is a piecewise smooth distribution

on V that we denote by B(Y ) ∗c (W (X/s)∂I∇Jf).

Theorem 4.1. Let f be a smooth function on V . We have

B(X) ∗d f −B(X) ∗c f =
∑
s∈R′

∑
I⊂X\s

(−1)|I|B((X ∩ s) t I) ∗c (W (X/s)∂I∇Jf).

In this formula J is the complement of the sequence I in X \ s. This equality

holds in the space of piecewise (relative to (X,Λ)) smooth distributions on V ,

relative to (X,Λ).

Remark 4.2. If f is a polynomial, the term B(X)∗c f is a polynomial den-

sity and all terms of the difference formula are locally polynomial distributions

on V .

Before proceeding, let us comment on the proof. As in [3] (see also [5]), we

use the Poisson formula to compute B(X)∗df . Then we group the terms in the

dual lattice Γ in strata according to the hyperplane arrangement ∪a∈X{a = 0}.
We then use the Bernoulli series as primitives of the corresponding sums. This

way, we introduce the needed derivatives of the function f .

Proof. Let R be the set of admissible subspaces of V . We have the disjoint

decomposition

(5) U =
⊔
s∈R

Ureg(X/s).
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Let test be a test function on V . We compute

S :=

∫
V

(B(X) ∗d f)(v)test(v) =
∑
λ∈Λ

f(λ)

∫
V
B(X)(v)test(λ+ v).

We apply the Poisson formula to the compactly supported smooth function

q(w) = f(w)

∫
V
B(X)(v)test(w + v)

as our sum S is equal to
∑
λ∈Λ q(λ). We obtain

S =
∑
γ∈Γ

∫
V
e2iπ〈w,γ〉q(w)dw.

The lattice Γ is a disjoint union of the sets Γreg(X/s) = Γ ∩ Ureg(X/s)

associated to the admissible subspaces s. Note that the set associated to

s = V is {γ = 0}. The term in S corresponding to γ = 0 is
∫
V q(w)dw; that is

〈B(X) ∗c f, test〉.
As in the generalized function sense∑

γ∈Γreg(X/s)

e2iπ〈w,γ〉 = ∂X\sW (X/s)(w),

we obtain

S =
∑
s∈R

∫
V
W (X/s)(w)(−1)|X\s|∂X\sq(w)dw.

The function q(w) is a product of the two smooth functions

f(w) and

∫
V
B(X)(v)test(w + v).

By the Leibniz rule,

S :=
∑
s

(−1)|X\s|
∑

ItJ=X\s

∫
V

∫
V
W (X/s)(w)∂If(w)B(X)(v)∂J test(w + v)dw.

We first integrate in v and use the equation satisfied by the box spline

(6) 〈B(X), ∂bh〉 = −〈B(X \ {b}),∇−bh〉.

Thus we obtain

S=
∑
s

∑
ItJ=X\s

(−1)|I|
∫
V

∫
V
W (X/s)(w)∂If(w)B(X\J)(v)(∇−J test)(w+v)dw.

Let us integrate in w. The integral being invariant by ∇b, we have∫
V

(∇bf1)(w)f2(w)dw =

∫
V
f1(w)(∇−bf2)(w)dw.

As b ∈ J is in Λ and W (X/s)(w) is periodic,

S =
∑
s∈R

∑
ItJ=X\s

(−1)|I|
∫
V

∫
V
B(X \J)(v)W (X/s)(w)∇J∂If(w)test(w+v)dw.

Writing R = {V } t R′, we obtain the formula of the theorem. �
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On the space of polynomials, one has

∇J∂If =

Ç∏
b∈J

1− e−∂b
∂b

å
∂X\sf

if I t J = X \ s.
Recall that the space D(X) of Dahmen-Micchelli polynomials is the space

of polynomials on V such that ∂Y f = 0 for all long subsequences Y . In

particular, if s is a proper subspace, the sequence X \ s is a long subsequence.

So if I and J are such that I t J = X \ s and f ∈ D(X), then ∇J∂If = 0.

As a corollary of our formula, if p ∈ D(X), we see that B(X) ∗d p =

B(X) ∗c p. Let us state more precisely this result of Dahmen-Micchelli [4] (see

also [6, Chap. 17]).

Corollary 4.3. If p ∈ D(X), then

P (v) := B(X) ∗d p =
∑
λ

p(λ)B(X)(v − λ)

is a polynomial function on V , equal to (
∏
a∈X

1−e−∂a

∂a
)p = B(X) ∗c p.

In this formula, we have identified B(X), B(X) ∗d p, and B(X) ∗c p to

piecewise polynomial functions.

5. Vertices of the arrangement and semi-discrete convolutions

We now give a twisted version of Theorem 4.1, where we twist f by an

exponential function e2iπ〈G,v〉.

The set of characters on Λ is the torus T := U/Γ. If g ∈ T , we denote by

gλ the corresponding character on Λ. More precisely, if g has representative

G ∈ U , then by definition gλ = e2iπ〈G,λ〉. Define

X(g) := {a ∈ X; ga = 1}.

If g ∈ T = U/Γ has representative G ∈ U , we denote by g + Γ the set

G+ Γ.

For a ∈ X, introduce the operator

(∇(a, g)f)(v) = f(v)− g−af(v − a).

If Y is a subsequence of X, define

∇gY =
∏
a∈Y
∇(a, g).

We introduce a subset R(g) of admissible subspaces, depending on g.

Definition 5.1. The admissible space s is in R(g) if the space (g+ Γ)∩ s⊥
is nonempty

Note that if G is not in Γ, then V is not in the set R(g).
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Remark 5.2. If s ∈ R(g), then all elements of X∩s are in X(g). ThusR(g)

is contained in the set of admissible spaces for X(g). However the converse does

not hold: take V = Rω, X = [2ω], Λ = Zω, and G = 1
2ω
∗. Then X(g) = X,

so that V is an admissible subspace for X(g). However, V is not in R(g).

If s ∈ R(g), take gs ∈ (g + Γ) ∩ s⊥. Then (g + Γ) ∩ s⊥ is the translate by

gs of the lattice Γ ∩ s⊥.

Define
Γreg(X/s, g) = (g + Γ) ∩ Ureg(X/s)⊥.

Thus Γreg(X/s, g) consists of elements ξ ∈ g + Γ such that

〈ξ, s〉 = 0 for all s ∈ s; 〈ξ, a〉 6= 0 for all a ∈ X \ s.
The following series

(7) W (X/s, g)(v) =
∑

ξ∈Γreg(X/s,g)

e2iπ〈v,ξ〉∏
a∈X 2iπ〈a, ξ〉

is well defined as a generalized function on V .

The function W (X/s, g)(v) is not periodic with respect to Λ. We have

instead the covariance formula

(8) W (X/s, g)(v − λ) = g−λW (X/s, g)(v).

In the sense of generalized functions, we have

(9) ∂X\sW (X/s, g)(v) =
∑

ξ∈Γreg(X/s,g)

e2iπ〈ξ,v〉.

We recall the following proposition [7] (see also [2], [1]).

Proposition 5.3. The generalized function W (X/s, g) is a piecewise poly-

nomial (relative to (X,Λ)) function on V .

This is proved similarly by reduction to one variable.

Example 5.4. Let V = Rω, Λ = Zω, and Xk := [ω, ω, . . . , ω], where ω is

repeated k times with k > 0. Then Γ = Zω∗, and if z is not an integer, we

have

W (Xk, zω
∗)(tω) =

∑
n∈Z

e2iπ(n+z)t

(2iπ(n+ z))k
.

We have, for example (see [2]),

W (X1, zω
∗)(tω) =

e2iπ[t]z

1− e−2iπz
,

W (X2, zω
∗)(tω) = e2iπ[t]z

Ç
t− [t]

1− e−2iπz
− 1

(1− e−2iπz)(1− e2iπz)

å
.

Here [t] is the integral part of t. This function [t] is a constant on each

interval ]`, `+ 1[, and W (Xk, zω
∗) is locally a polynomial function of t.
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Theorem 5.5. Let G∈U , and g its image in U/Γ. Let f(v)=e2iπ〈v,G〉h(v),

where h is a smooth function. Then

B(X) ∗d f =
∑

s∈R(g)

∑
I⊂X\s

(−1)|I|B((X ∩ s) t I) ∗c (W (X/s, g)∂I∇gJh).

In this formula, J is the complement of I in X \ s.

Remark 5.6. If G ∈ Γ, then B(X) ∗d f = B(X) ∗d h, and the formula of

the theorem above coincides with the formula of Theorem 4.1 for h: The set

R(g) coincides with the set R, and the term corresponding to V in the formula

of Theorem 5.5 is B(X) ∗c h.

Proof. We proceed in the same way as in the proof of Theorem 4.1. Let

test be a test function on V . We compute S :=
∫
V (B(X) ∗d f)(v)test(v) by

the Poisson formula. If

q(w) = h(w)

∫
V
B(X)(v)test(w + v),

we obtain
S =

∑
γ∈Γ

∫
V
e2iπ〈w,γ〉e2iπ〈w,G〉q(w)dw.

Thus
S =

∑
ξ∈(g+Γ)

∫
V
e2iπ〈w,ξ〉q(w)dw.

The set g + Γ is a disjoint union over s ∈ R(g) of the sets Γreg(X/s, g) =

(g + Γ) ∩ Ureg(X/s), so that

S =
∑

s∈R(g)

∫
V
W (X/s, g)(w)(−1)|X\s|∂X\sq(w)dw.

Then, using the Leibniz rule for ∂a and equation (6) for the box spline, we

obtain that S is equal to∑
s∈R(g)

∑
ItJ=X\s

(−1)|I|
∫
V

∫
V
W(X\s, g)(w)∂If(w)B(X\J)(v)(∇−J test)(w+v)dw.

Using the covariance formula (8) for W (X \ s, g), we see that∫
V
W (X \ s, g)(w)f1(w)(∇−bf2)(w)dw

=

∫
V
W (X \ s, g)(w)(∇(b, g)f1)(w)f2(w)dw

and we obtain the formula of the theorem. �

Let us point out a corollary of this formula.

Definition 5.7. We say that a point g ∈ U/Γ is a toric vertex of the

arrangement X if X(g) generates V . We denote by V(X) the set of toric

vertices of the arrangement X.
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If g is a vertex, there is a basis σ of V extracted from X such that ga = 1,

for all a ∈ σ. We thus see that the set V(X) is finite. If X is unimodular, then

V(X) is reduced to g = 0.

Corollary 5.8 (Dahmen-Micchelli). Let g ∈ V(X) be a toric vertex of

the arrangement X , and let p ∈ D(X(g)) be a polynomial in the Dahmen-

Micchelli space for X(g). Assume that g 6= 0. Let f(λ) = gλp(λ). Then

B(X) ∗d f = 0.

Proof. We apply the formula of Theorem 5.5 with h = p. As g 6= 0, all

terms s ∈ R(g) are proper subspaces of V . Let us show that all the terms in

our formula are 0. Indeed let ItJ = X\s. Let I ′ = I∩X(g) and J ′ = J∩X(g).

Then I ′ t J ′ = X(g) \ s is a long subset of X(g). As ∇gI′ = ∇I′ , we see that

∂I′∇pJ ′ is already equal to 0. �

A simple proof of this corollary is also given in ([6, Th. 17.15]).

Acknowledgement. I wish to thank Michel Duflo for comments on this

text.
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