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On the Ramanujan conjecture
over number fields

By Valentin Blomer and Farrell Brumley

Abstract

We extend to an arbitrary number field the best known bounds towards

Ramanujan for the group GLn, n = 2, 3, 4. In particular, we present a

technique which overcomes the analytic obstacles posed by the presence of

an infinite group of units.

1. Introduction

1.1. Statement of results. Since Ramanujan [19], in 1916, stated his con-

jecture on the size of the coefficients τ(n) of the ∆(z) function, the task of

bounding Fourier coefficients of modular forms has occupied a venerable posi-

tion in analytic and algebraic number theory. Deligne [4], famously, proved the

Ramanujan conjecture for weight k ≥ 2 holomorphic Hecke cusp forms, a result

which was recently widely extended by Harris-Taylor [8]. That said, important

natural generalizations of Ramanujan’s conjecture remain open, the most no-

table of which is the Ramanujan-Petersson/Selberg conjecture on weight-zero

Maass forms for congruence subgroups Γ of SL2(Z).

The most general formulation of the Ramanujan conjecture is expressed

through representation theory. Let K be a number field with ring of adeles A.

Let π be a cuspidal automorphic representation of GLn(A) with unitary cen-

tral character. Fix an identification π ' ⊗vπv. Then πv is an irreducible

unitary generic representation of GLn(Kv) and the Ramanujan conjecture is

the assertion that πv is tempered.

A nontempered representation πv can be described in the following way.

There exists a standard parabolic subgroup P of GLn(Kv) of type (n1, . . . , nr)

with unipotent radical U , irreducible tempered representations τj of GLnj (Kv),

and real numbers σj satisfying σ1 > · · · > σr such that πv is equivalent to the
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fully induced representation Ind(GLn(Kv), P ; τ [σ]). Here τ [σ] is the repre-

sentation of the group M = P/U ' GLn1 × · · · × GLnr given by τ [σ] =

τr[σ1]⊗ · · · ⊗ τ1[σr], and τ [σ] is the twisted representation g 7→ τ(g)| det g|σv .

The size of the parameters σj allows one to quantitatively measure the

failure of a given local representation to be tempered. Note that since πv
is unitary, we have {τj [σj ]} = {τ̃j [−σj ]} as sets, from which we deduce that

maxj σj ≤ δ is equivalent to maxj |σj | ≤ δ.
For any nontempered πv appearing in π ' ⊗vπv we restore the dependence

of the parameters σj on π and the place v, writing σπ(v, 1), . . . , σπ(v, r). For

the rest of this paper we put m(π, v) = maxj |σπ(v, j)| if πv is nontempered,

and m(π, v) = 0 otherwise. To state our results, and to facilitate our discussion

of the existing literature, let us make the following definition.

Definition 1 (Hypothesis Hn(δ)). Let n ≥ 2 be an integer and δ ≥ 0.

We call Hypothesis Hn(δ) the statement that for any number field K, for

any cuspidal automorphic representation π of GLn(A) with unitary central

character, and for any place v of K, one has

(1.1) m(π, v) ≤ δ.

Jacquet and Shalika [10] showed1 Hn(1/2) for any n ≥ 2. Often, however,

hypothesis Hn(1/2) falls just short of what is needed for concrete applica-

tions, a situation reminiscent of the subconvexity problem in the theory of

L-functions. It was thus a major breakthrough when Luo-Rudnick-Sarnak [15]

showed that for any n ≥ 2, hypothesis Hn(δ) holds for some δ = δn < 1/2.

Their method gives the numerical value of δ = 1/2− 1/(n2 + 1). Owing to the

existence of proven cases of functoriality in low rank, there are certain small

values of n for which Hn(δ) holds for a smaller δ; for example Kim-Shahidi

[13] prove H2(1/9).

Over the years, various methods in analytic number theory have been

developed which, for a fixed δ, establish the bounds (1.1) for K = Q, and

possibly for K an imaginary quadratic field, but not for others. This is due to

the presence of an infinite unit group for such fields. For example, the work of

Kim-Sarnak [12] establishes the bounds (1.1) for n = 2 and any place v with

δ = 7/64, but only for the field K = Q. It has therefore been an outstanding

problem to find a method robust enough to extend these results to an arbitrary

number field. A recent article of Nakasuji [17] extends the result of Kim-Sarnak

to imaginary quadratic fields.

1Many of the results in the literature are stated for unramified places only. This is the case

for [10], [12], [13], [15], and [17] mentioned here. Often, however, one can prove the same

numerical bounds for the ramified places with slightly more work. For instance Rudnick-

Sarnak [21, Appendix] extend the Jacquet-Shalika bounds to ramified places, and Müller-

Speh [16] do the same for the bounds of Luo-Rudnick-Sarnak.
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The aim of this paper is to prove the following result, which represents an

improvement over existing bounds for all fields other than Q and imaginary

quadratic fields.

Theorem 1. Hypothesis Hn(δn) holds with δ2 = 7/64, δ3 = 5/14, δ4 =

9/22.

As an immediate application we obtain the following numerical improve-

ment for subconvexity bounds of twisted L-functions over number fields [1]:

Let K be a totally real number field, let π be a cuspidal automorphic rep-

resentation of GL2(A) with unitary central character, and let χ be a Hecke

character of conductor q. Then the twisted L-function satisfies

L(1/2, π ⊗ χ)�π,χ∞,K,ε N (q)
1
2
− 25

256
+ε.

In [12] it is shown that Theorem 1 follows as a consequence of the next

result.

Theorem 2. Let π be a cuspidal automorphic representation of GLn(A)

with unitary central character. Assume that L(s, π, sym2) converges absolutely

on <s > 1. Set m = n(n+ 1)/2. Then (1.1) holds with δ = 1
2 −

1
m+1 .

The rest of this introduction will serve to explain what goes into our proof

of Theorem 2.

1.2. The method of Duke-Iwaniec. Let π be a cusp form on GLn over Q.

Let λπ, sym2(n) denote the Dirichlet coefficients of L(s, π, sym2). Fix a prime p.

It is an elementary exercise that the inequality (1.1) at the place v = p with

δ = (1/2)− 1/(m+ 1) is equivalent to the estimate

(1.2) λπ, sym2(p`)�ε p
`(1− 2

m+1
+ε)

for arbitrarily large `. For some parameter Q ≥ 1 let2

(1.3) F (p`) =
∑

Q≤q<2Q
q 6=p prime

∑
n2p−2`≡1 (q)

λπ, sym2(n)g(np−`),

where g is a nonnegative smooth function of support in [12 , 2] satisfying g(1)=1.

Inverting the summation one finds

F (p`) =
∑

p`/2≤n≤2p`
λπ, sym2(n)f(np−`),

2The presence of squares in the summation condition is ubiquitous in this paper; the nice

analytic properties of L(s, π ⊗ χ, sym2) = L(s, π, sym2 × χ2) are easier to obtain than for

general twists L(s, π, sym2 × χ), which have only very recently been investigated in [27].
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where for γ ∈ Q× we have

(1.4) f(γ) = g(γ)|{Q ≤ q < 2Q : q prime, q 6= p, γ2 ≡ 1 (mod q)}|.

As 0 has considerably more divisors than any other number, we find

(1.5) |F (p`)| � |λπ, sym2(p`)| Q

logQ
+Oε(p

`(1+ε)).

On the other hand, an upper bound for the inner sum in (1.3) can be ob-

tained through detecting the congruence condition by characters, inserting the

functional equation for L(s, π, sym2 × χ2) and applying Deligne’s bounds on

Hyper-Kloosterman sums. In this way one can show

(1.6) F (p`)� p` +Q
m+1

2
+ε.

In the above error terms the absolute convergence of L(s, π, sym2) on <s > 1

was implicitly used. Taking Q = p2`/(m+1) in (1.5) and (1.6) gives (1.2).

This argument can be adapted to the real place by setting g to be the

inverse Mellin transform of L∞(s, π∞, sym2) and considering

(1.7) F (Y ) =
∑

Q≤q<2Q

∑
n2≡1 (q)

λπ, sym2(n)g(nY ), Y → 0.

The idea of choosing g in this way to gain access to the size of the archimedean

parameters is due to Iwaniec [9]. Alternatively, one can argue by nonvanishing

of L(s, π, sym2×χ2) as in [12]. It should be emphasized that the argument by

nonvanishing, introduced by Luo-Rudnick-Sarnak in [14], was the first treat-

ment to successfully bound the archimedean parameters for general GLn cusp

forms, and consequently was the first to beat Selberg’s 3/16 bound on Lapla-

cian eigenvalue of weight zero Maass forms.

Lastly we remark that the innovation of Duke-Iwaniec [6] in the above ar-

gument was in the construction of the test function f in (1.4). It allowed them

to amplify the contribution of a single coefficient, namely λπ, sym2(p`). Prior to

their work, one needed an L-series with positivite coefficients in order to drop

all but one. This in turn required the use of the Rankin-Selberg L-function,

whose coefficients are positive but whose larger degree yields weaker bounds.

On the other hand, the Rankin-Selberg L-function is known to converge abso-

lutely on <s > 1 for cusp forms on GLn, making it the only tool of this sort

available when dealing with an arbitrary cusp for on GLn, n ≥ 5.

1.3. The method of this paper. Let us first describe what difficulties one

encounters in the situation of a general number field. Take ` ≥ 1 divisible by

the class number of K. Let p be a prime ideal of the ring of integers OK of K

and let π be a generator of p`. For an integral ideal m (coprime to p) denote

by O×K (modm) the image of the unit group O×K in (OK/m)×. As an analogue
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of the inner sum in (1.3) consider

(1.8)
∑

a=(α)⊆OK
α2π−2 (modm)∈O×K (modm)

λπ, sym2(a)g(N (ap−`)),

where g is as before and N (a) is the norm of a.

We immediately observe that the strength of the condition

(1.9) α2 (modm) ∈ O×K (modm)

on principal ideals a = (α) ⊆ OK varies with m. Indeed, for fields with an

infinite unit group, the image O×K (modm) can frequently be all of (OK/m)×

(cf. [18]), in which case the condition (1.9) is literally empty and (1.5) and

(1.6) break down. Rohrlich [20] has a fundamental result showing that for

every ε > 0 there exists an infinite number of square-free moduli m such that

|O×K (modm)| � N (m)ε. This construction was critical to the work of Luo-

Rudnick-Sarnak [15]. Unfortunately, the sparseness of the special moduli m

given by Rohrlich’s results does not allow an additional average over m as in

(1.3).

To make the above argument go through, the idea is to construct a test

function on ideals that takes into account not only residue classes mod m

but also certain archimedean information that compensates for the varying

size of O×K (modm). We give first a description in elementary terms for easy

comparison with the previous section. We will only need the case when m = q

is a prime ideal. Fix a fundamental domain F for the action of O×K on K×∞ =∏
v|∞K

×
v . Fix additionally a set of representatives {c} ⊆ O×K for O×K (mod q).

Let Fc be the union of the translates uF for u running over units congruent

to c modulo q. The condition

(1.10) α2 ≡ c (mod q) and α2 ∈ Fc for some c

is satisfied by a fraction constantly equal to

2× (|O×K (mod q)|/φ(q))× (1/|O×K (mod q)|) = 2/φ(q)

of all principal ideals a = (α) ⊆ OK . More simply, one can express (1.10) as

follows: For each principal ideal a = (α) let α0 be the unique generator such

that α2
0 ∈ F . Then (1.10) is equivalent to α2

0 ≡ 1 (mod q).

Replacing (1.9) by (1.10), evaluated at α2π−2, we can sum over all primes

q 6= p (and not just those with |O×K (mod q)| small) in a dyadic interval Q ≤
N (q) < 2Q. With this modification in place, we are able to prove the analog

of estimate (1.5) as a consequence of a suitable diophantine condition and the

analog of (1.6) from Deligne’s bounds on Hyper-Kloosterman sums. These

appear in Section 6 as Proposition 3 and Proposition 4, respectively.
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We remark that the condition (1.10) is naturally obtained by our method

via an averaging operator over S-units. Assume for simplicity that π is un-

ramified at all finite places. Then we shall take S = {q} ∪ ∞. Let gq be the

characteristic function of U
(1)
q = 1+q in K×q and g∞ the characteristic function

of F in K×∞. Put gS = gq × g∞. Then

∑
u∈O×S

gS(ux2) =

1, x2 ∈ O×S (U
(1)
q ×F);

0, else

is well defined as a function on O×S \K×. Identifying O×S \K× with the group

of principal ideals coprime to q, and taking g∞ smooth, we thereby obtain

an analytic way to capture condition (1.10). This convenient formalism of

averaging over S-units will be used frequently in the present paper and allows

for a clear separation between local and global properties.

Besides the above arithmetic conditions, we also need to encode some re-

striction of the norm into our test function, as in (1.8). When proving (1.1) for

finite places, we choose g∞ to be some smooth approximation to the character-

istic function of a ball about 1 ∈ K×∞. When proving (1.1) for an archimedean

place v | ∞, we follow Iwaniec (1.7) and choose gv to be the inverse Mellin

transform of L(s, πv, sym2), the rest being unchanged.

We have compared the methods in Section 1.2 and the present paragraph

in terms of test functions and the respective conditions on ideals they im-

pose. An alternative point of view is to compare them via the class of Hecke

characters appearing in their spectra. Recall that a Grössencharacter χ mod

m determines a unique pair (χf , χ∞), where χf is a primitive character of

(OK/m)×, χ∞ is a continuous homomorphism of K×∞ into C×, and

χ((a)) = χf ((a))χ∞(a) for a ∈ OK , (a,m) = 1.

The character χ∞ can be written as
∏
v|∞ χv. When v = R one may write

χv(x) = sgn(x)mv |x|itv , with mv ∈ {0, 1} and tv ∈ R, and when v = C
χv(z) = (z/|z|)mv |z|2itv , with mv ∈ Z and tv ∈ R. Now let C(χ∞) =∏
v|∞(1 + |mv + itv|)deg(v), where deg(v) = [Kv : R]. The analytic conductor

of χ is then C(χ) = C(χ∞)N (m). This is the proper measure of complexity of

a Grössencharacter. In our setting, the goal is to define a test function whose

Mellin transform is supported on a set of about X Grössencharacters, each of

conductor X.

This is manifestly not the case for condition (1.9). Indeed if one expands

(1.9), one obtains characters χ2 where χ is of the form χ(a) = ω(a)N (a)s. Here

ω denotes a ray class character of conductor dividing m, so that ω∞ = 1 and

C(ω) = N (m). The number of such ω relative to N (m) depends on the size

of O×K (modm). By contrast, the Grössencharacters obtained by expanding a

smooth version of condition (1.10) are not necessarily of finite order. Written
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χ2 with χ(a) = ω(a)N (a)s, the characters ω that contribute to the Fourier

expansion in an essential way satisfy C(ω∞)� N (q)ε, whereas ωf ∈⁄�(OK/q)×

may be taken arbitrary. Thus we obtain at least N (q) characters of analytic

conductor at most N (q)1+ε. This aspect of our work will be explored more in

depth in Section 7.
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2. Some GL1 preliminaries

Let K be a number field of degree d over Q. We write r for the number

of inequivalent archimedean embeddings of K. Let OK be the ring of integers

of K and d the different. Let PK = O×K\K× be the group of all principal

fractional ideals of K. Let h be the class number of K. For an integral ideal

a we denote its norm by N (a) and put φ(a) = |(OK/a)×|.
For each place v of K let | · |v be the normalized v-adic absolute value. In

particular, if v = C, then | · |v is the square of the modulus. Write Kv for the

completion of K with respect to | · |v. If v = p, let Op be the ring of integers

of Kp, dp the local different, and $p a uniformizer. Let Up = U
(0)
p = O×p and

U
(r)
p = 1 + pr for r ≥ 1. We set Uv = {±1} if Kv = R and Uv = U(1) if

Kv = C. In all cases, Uv is the maximal compact subgroup of K×v .

For any locally compact abelian group A let “A be the group of characters.

These are the continuous homomorphisms into U(1). It will sometimes be

convenient to write a character χ ∈ ‘K×v as χ(x) = |x|itv η(x), where t ∈ R
and η ∈ ”Uv. When v = R we write ηm(x) = sgn(x)m for m ∈ {0, 1}. When

v = C we write ηm(z) = (z/|z|)m for m ∈ Z. When v = p the real number t is

determined only up to an integer multiple of 2π/ logN (p). We say η ∈ Ûp has

degree m ≥ 1 and write deg(η) = m, if η is trivial on U
(m)
p but not on U

(m−1)
p .

In all cases, χ(x) = |x|itv η(x) is said to be unramified when η = 1.

Let S be a finite set of places containing all infinite places. Set K×S =∏
v∈SK

×
v endowed with its norm | · |S =

∏
v∈S | · |v. Denote by OS the ring of

S-integers. Let PK(S) be the group of principal fractional ideals prime to S.
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Then PK(S) can be identified withO×S \K× by sending the ideal (γ) ∈ PK(S) to

the orbit O×S .γ. The inverse map sends the O×S -orbit o to the ideal (γ), where γ

is any element in o with vp(γ) = 0 for all finite p ∈ S. Under this identification,

the norm N (γ) of the ideal (γ) is |γ|S . We denote by ∆ : R+ ↪→ K×∞ the map

t 7→ ∏
v|∞ t

1/d.

Let A be the adele ring of K. Let I = A× be the group of ideles of K.

Put | · |A for the idelic norm and let I1 be the closed subgroup of I consisting

of ideles of norm 1. Put C = K×\I and C 1 = K×\I1, the latter of which

is compact by Dirichlet’s theorem. We identify “I1 (resp. ”C 1) with the closed

subgroup of Î (resp. “C ) consisting of those characters trivial on ∆(R+) ⊂ I.
We have Î ' “I1 × R and

(2.1) “C ' ”C 1 × R,

the correspondence χ ↔ (ω, t) being given by χ(x) = ω(x)|x|itA. If m is an

integral ideal of OK , we denote by Î(m) (resp. “C (m), ”C 1(m)) the group of

characters χ ∈ Î (resp., “C , ω ∈ ”C 1) of conductor dividing m.

We fix a nontrivial character ψv of Kv by taking ψv(x) = exp(2πix) when

v = R, ψv(x) = exp(2πi(x + x)) when v = C, and ψp an additive character

trivial on d−1p but not on $−1p d−1p when v = p is non-archimedean. Let dxv be

the self-dual Haar measure on Kv. Explicitly, dxv is Lebesque measure if v is

real, twice the Lebesque measure if v is complex, and the unique Haar measure

such that Op has volume N (dp)
−1/2 if v = p is finite. On K×v we choose the

normalized Haar measure d×xv = ζv(1)dxv/|xv|v, where ζv is the Tate local

zeta function at v. We let d×x be the measure on I that on the standard basis

of open sets of I coincides with
∏
v d
×xv. We continue to denote by d×x the

quotient measure on C .

Let A be one of the groups K×v , I, or C , taken with its norm | · | and

the choice of Haar measure indicated above, which we write here as d×a. For

σ ∈ R let L1(A, σ) = {g : | · |σg ∈ L1(A)}. When g ∈ L1(A, σ) we write

ĝ(σ, χ) =
∫
A g(a)χ(a)|a|σd×a. If g is continuous and ĝ(σ, .) ∈ L1(“A), the

Mellin inversion formula reads

(2.2) g(a) =

∫
Â
ĝ(σ, χ)χ−1(a)|a|−σdχ

for a unique choice of Haar measure dχ on “A. When A = K×v and χ(x) =

|x|itv η(x) we sometimes write ĝ(s, η) in place of ĝ(σ, χ), where s = σ + it.

Similarly, when A = I or C , and χ(x) = |x|itAω(x), we sometimes write ĝ(s, ω)

in place of ĝ(σ, χ). The measures dχ on ‘K×v are explicitly given by

cv
∑
m

∫
(σ)
g(s, ηm)

ds

2πi
,

∑
η∈“Up

∫ σ+ iπ
logN (p)

σ− iπ
logN (p)

g(s, η) logN (p)
ds

2πi
,
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for v |∞ and p, respectively. Here cR = 1/2 and cC = 1/(2π). The correspond-

ing measure on “C ' ”C 1 × R is the product of the counting measure on the

first factor and cK/2π times Lebesgue measure on the second factor, where

c−1K = Res
s=1

ζK(s) (see [28, VII.6. Prop. 12]).

For fixed c ∈ R let z(c) be the vector space of continuous complex-valued

functions g on I such that the K×-invariant function G(x) =
∑
γ∈K× g(γx)

converges absolutely and uniformly on compacta in I, and in addition g ∈
L1(I, σ), “G(σ, ·) ∈ L1(“C ) for all σ > c. The unfolding technique shows

ĝ(σ, χ) =

∫
I
g(x)χ(x)|x|σAd×x =

∫
C
G(x)χ(x)|x|σAd×x = “G(σ, χ).

Clearly G ∈ L1(C , σ) for all σ > c. We deduce that for g ∈ z(c) the function

G satisfies the criteria under which (2.2) holds. Thus

(2.3) G(x) =

∫
Ĉ

“G(σ, χ)χ−1(x)|x|−σA dχ =

∫
Ĉ
ĝ(σ, χ)χ−1(x)|x|−σA dχ

for σ > c.

3. Symmetric square L-functions

Let n ≥ 2. Let π be a cuspidal automorphic representation of GLn(A),

with unitary central character ωπ. Fix an identification π ' ⊗′vπv, where πv
is an irreducible unitary representation of GLn(Kv). Denote by π̃ = ⊗vπ̃v the

contragredient representation of π. We shall always normalize π so that ωπ is

trivial on ∆(R+) ⊂ I. We may take an arbitrary π into this form by twisting

it by | det |it for an appropriate t ∈ R.

Let k be a local or global field. Let GLn(C) × Wk be the L-group of

G = GLn, where GLn is viewed as an algebraic group over k. Here Wk is

the Weil-Deligne group of k. For K a global field and Kv the completion

of K at the place v, there is a natural map θv : WKv → WK . Thus if ρ is

a finite dimensional complex representation of GLn(C) × WK , then there is

an associated collection {ρv} of finite dimensional complex representations of

GLn(C)×WKv , each given by composition with Id× θv.
We return to the case where K is a number field. Let π ' ⊗vπv be as

above. Let ρ be a finite-dimensional representation of GLn(C)×WK . To this

data Langlands has attached an Euler product Λ(s, π, ρ) =
∏
v L(s, πv, ρv). We

shall be interested in character twists of the symmetric square representation

sym2 × χ2 : GLn(C)×WK → GLm(C), where m = n(n+ 1)/2.

The local symmetric square L-function L(s, πv, sym2) at v is defined by

Shahidi in [22], for v infinite, and [25], for p finite. For p finite, it is of the form

P (N (p)−s)−1 for a polynomial with complex coefficients and constant term 1.

For all v, if πv is tempered, then L(s, πv, sym2) is holomorphic on <s > 0 (see

[23] for v archimedean). For πv nontempered, then writing it as a Langlands
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quotient as in the introduction we have the factorization (see, for example, [26,

page 30])

L(s, πv, sym2) =
r∏
j=1

L(s+ 2σj , τj , sym2)
∏
i<j

L(s+ σi + σj , τi × τj).

Since local Rankin-Selberg L-functions are holomorphic on <s > 0 for tem-

pered pairs (see, for example, [21, Appendix]), we deduce that in all cases

L(s, πv, sym2) is holomorphic on <s > 2m(π, v), the real number m(π, v) be-

ing defined in the introduction.

For p finite we expand L(s, πp, sym2) into a Dirichlet series, obtaining

L(s, πp, sym2) =
∑
r≥1

λπ, sym2(pr)N (p)−rs,

for some coefficients λπ, sym2(pr), satisfying λπ, sym2(1) = 1. This series con-

verges absolutely on <s > 2m(π, p). In view of the isomorphism π̃p ' πp, the

coefficients of L(s, π̃p, sym2) are simply λπ, sym2(pr).

For <s > m(π, v), put Z(s, χv, πv, sym2) = L(2s, πv, sym2 × χ2
v) for χv

unramified and zero otherwise. As a function of χv it is in L1(‘K×v ) for all

<s > m(π, v). For σ in this range we define the inverse Mellin transform

(3.1) λv(x) =

∫”K×v Z(σ, χv, πv, sym2)χ−1v (x)|x|−σv dχv.

Thus λv is continuous and Uv-invariant. More explicitly, for v |∞ one has

λv(x) = cv

∫
(σ)
L(2s, πv, sym2)|x|−sv

ds

2πi
,

where cR = 1/2 and cC = 1/(2π), while for v = p one has

λp(x) =

∫ σ+iπ/ logN (p)

σ−iπ/ logN (p)
L(2s, πp, sym2)|x|−sp logN (p)

ds

2πi
(3.2)

=

λπ, sym2(pr), for vp(x) = 2r, r ≥ 0;

0, otherwise.

Observe that λp($
2r
p ) = λπ,sym2(pr). In all cases, shifting the contour we find

that

(3.3) λv(x)

�σ |x|−σv , as x→ 0, ∀ σ > m(π, v);

�A |x|−Av , as |x| → ∞.

Bounding the blow-up rate of λv at zero is therefore equivalent to bounding

m(π, v). This observation seems to have been first used by Iwaniec in [9]. It

allows us to treat all places in a uniform way. Finally, it is easy to see that

λ̂v(σ, χ) = Z(σ, χ, πv, sym2) for σ > m(π, v).
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Let S be any finite set of places of K containing all infinite places. Denote

by LS(s, π, sym2) the product of L(s, πp, sym2) over all p /∈ S. We have

LS(s, π, sym2) =
∑

a⊆OK
(a,S)=1

λπ, sym2(a)N (a)−s,

where λπ, sym2(a) =
∏

pr||a λπ, sym2(pr) for (a, S) = 1. This series converges

absolutely for <s > 3/2 by the bounds Hn(1/2) of Jacquet-Shalika.

Let Bπ be the set of places at which π is ramified, together with all

infinite places. Assume that S contains Bπ. Then it was proven in [3] (see

also [27]) and then again in [11] by the Langlands-Shahidi method that the

function LS(s, π, sym2) admits a meromorphic continuation to all of C. In

fact, if π 6' π̃ then LS(s, π, sym2) is entire; whereas if π ' π̃, the only possible

poles are finite in number3 and located within the critical strip. This follows

immediately from [27, Theorem 4.1]. Moreover, the work [7] assures that

away from possible poles, the function LS(s, π, sym2) is of moderate growth

on vertical lines.

Shahidi [24] has shown that the functional equation

(3.4) LS(s, π, sym2) = γS(s, π, sym2)LS(1− s, π̃, sym2)

holds for all s ∈ C, where γS(s, π, sym2) =
∏
v∈S γ(s, πv, sym2) satisfies

γ(s, πv, sym2) = ε(s, πv, sym2)L(1− s, π̃v, sym2)/L(s, πv, sym2).

We make note of the following properties.

(1) For finite p /∈ Bπ one has ε(s, πp, sym2) = 1; thus γ(s, πp, sym2) =

Pp(N (p)−s)/Qp(N (p)−(1−s)) for polynomials Pp, Qp of degree m such

that Pp(0) = Qp(0) = 1. Moreover, Qp(N (p)−(1−s)) 6= 0 for <s ≤ 0.

(2) For finite p ∈ Bπ the function γ(s, πp, sym2) is a rational function in

N (p)−s that is pole free for <s ≤ 0.

(3) For infinite v |∞ the function γ(s, πv, sym2) is a meromorphic function

of moderate growth in vertical strips (away from its poles), and is

holomorphic on <s < 0, pole free on <s = 0.4

For later purposes we record several reformulations of the above facts

upon replacing π by π⊗χ. We have LS(s, π⊗χ, sym2) = LS(s, π, sym2×χ2),

where by χ2 on the right-hand side we intend the unique character of WK

associated to χ2 via the (dual of the) homeomorphism C
∼−→ W ab

K . One has

3Of course it is believed that there are no poles in the critical strip but it is enough for us

to know that the number of such poles is Oπ(1).
4The pole free regions given in (2) and (3) above can be improved by the work of Luo-

Rudnick-Sarnak. This improvement will not be needed as an input to our method.
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the factorization LS(s, π, sym2×χ2) =
∏

p/∈S L(s, πp, sym2×χ2
p). The functional

equation (3.4) becomes

(3.5) LS(s, π, sym2 × χ2) = γS(s, π, sym2 × χ2)LS(1− s, π̃, sym2 × χ−2).

If π⊗χ is not self-dual, then LS(s, π, sym2×χ2) is holomorphic. On the other

hand, if π ⊗ χ ' π̃ ⊗ χ−1, then by equating central characters we deduce that

χn = ωπ.

Fix a prime q /∈ Bπ. It will be useful to quantify how many χ ∈ “C (q) can

satisfy χn = ωπ. Note that the conductor m of ωπ has support in Bπ. Since

q /∈ Bπ, we see that if m 6= 1, then no such χ can verify χn = ωπ.

Lemma 1. Let q be a prime ideal of K . Let ξ ∈ “C be fixed, of conductor 1.

Then the number of χ ∈ “C (q) such that χn = ξ is O(1), where the implied

constant depends only on K and n.

Proof. For the proof we use the language of Grössencharacters. Assume

the conductor of χ is q, the case where the conductor is equal to 1 being

similar. Recall that χ mod q determines (uniquely, up to multiplication by a

class group character) a pair (χf , χ∞), where χf is a primitive character of

(OK/q)×, χ∞ =
∏
v|∞ χv is a character of K×∞, and χ((a)) = χf (a)χ∞(a) for

all a ∈ OK prime to q. Similarly, ξ determines a character ξ∞ of K×∞. We

may therefore equate χv = ξv for every v |∞ and χnf = 1 and then count the

number of solutions in each equation individually. If v = R, there are at most

two χv such that χnv = ξv, depending on the parity of ξv and n. If v = C,

there is at most one χv such that χnv = ξv. Since the group (OK/q)× is cyclic

of order φ(q), there are at most (n, φ(q)) ≤ n choices of χf . �

Let Bπ,K be the set of finite places at which K is ramified, together with

all places in Bπ. Let q /∈ Bπ,K be a prime and take χ ∈ “C (q). Then

(3.6) γ(s, πq, sym2 × χ2
q) = L(1− s, π̃q, sym2 × χ−2q )/L(s, πq, sym2 × χ2

q)

for χ of conductor 1 and

(3.7) γ(s, πq, sym2 × χ2
q) = ε(s, πq, sym2 × χ2

q) = N (q)−msτ(χ2
q)
m

for χ of conductor q. Here τ(χq) =
∑
ε χq(ε)ψq($

−1
q ε) is the Gauss sum, where

ε runs through a set of representatives of Uq/U
(1)
q .

4. Local and S-adic computations

We make the following general conventions that remain valid for the rest

of the paper. As in the previous section, we let n ≥ 2 and fix π a cuspidal

automorphic representation of GLn(A), with unitary central character ωπ.

For v ∈ Bπ let gv be a smooth, Uv-invariant function on K×v that is either

of compact support or equal to λv. Next fix a prime ideal q /∈ Bπ,K and let
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gq be the characteristic function on U
(1)
q . Write S = {q} ∪ Bπ. Let T ⊂ S be

the subset of places where the function gv is a genuine “test function;” that is,

T = {q} ∪ {v ∈ Bπ : gv 6= λv}. For each v ∈ S define

(4.1) g∗v(x) =

∫”K×v ĝv(1/2− σ, χ−1)γ(1− 2σ, πv, sym2 × χ2)χ−1(x)|x|−σv dχ,

where σ > 1/2. By Mellin inversion,

(4.2) ĝ∗v(σ, χ) = ĝv(1/2− σ, χ−1)γ(1− 2σ, πv, sym2 × χ2).

Lemma 2. (1) We haveg∗q(x)�ε φ(q)−1(|x|−
1
2
−ε

q + |x|−
1
4
+ 1

4m
q ), |x|q ≤ N (q)2m;

g∗q(x) = 0, |x|q > N (q)2m.

(2) For v ∈ Bπ , A≥1, and 0<ε<1/2 we have g∗v(x)�v,ε min(|x|−
1
2
−ε

v , |x|−Av ).

Proof. (1) One computes easily that “gq = φ(q)−11deg(χ)≤1. Using the

explicit formula for γ(1− 2s, πq, sym2×χ2) in (3.6) and (3.7), we find g∗q(x) =

φ(q)−1(A(x) +B(x)), where

A(x) =

∫ σ+iπ/ logN (q)

σ−iπ/ logN (q)

L(2s, π̃q, sym2)

L(1− 2s, πq, sym2)
|x|−sq logN (q)

ds

2πi

and

B(x) =
∑

deg(η)=1

τ(η2)mη(x/|x|q)
∫ σ+iπ/ logN (q)

σ−iπ/ logN (q)
N (q)m(2s−1)|x|−sq logN (q)

ds

2πi
.

The integrand L(2s, π̃q, sym2)/L(1− 2s, πq, sym2) in A(x) is described in

(1) of Section 3. A direct calculation then shows that A(x) = 0 if |x|q >
N (q)2m. Otherwise, we shift the line of integration to σ = 1/2+ε for any ε > 0

(which is admissible by the Jacquet-Shalika bounds Hn(1/2)) for 0 < |x|q ≤ 1

and to some very large number for 1 < |x|q ≤ N (q)2m, and estimate trivially.

The integral in B(x) is nonzero if and only if |x|q = N (q)2m, in which case

it is N (q)−m. Thus we have

B(x) = |x|−1/2q

∑
deg(η)=1

τ(η2)mη(x/|x|q), (|x|q = N (q)2m).

Now for y ∈ Uq we have

1

φ(q)

Ç
(−1)m +

∑
deg(η)=1

τ(η2)mη(y)

å
=

∑
(y1···ym)2=y

ψq($
−1
q (y1 + · · ·+ ym)).
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The latter convolution sum vanishes if y is not equal to y20 for some y0 ∈ Uq,

and otherwise if y = y20, it is Kl(y0) +Kl(−y0), where

Kl(y) =
∑

y1···ym=y

ψq($
−1
q (y1 + · · ·+ ym))

is the degree-m Hyper-Kloosterman sum. Deligne [5, p. 219] has shown Kl(y)

� N (q)
m−1

2 , so that B(x)� |x|−
1
2

q N (q)
m+1

2 = |x|−
1
4
+ 1

4m
q for |x|q = N (q)2m.

(2) By properties (2) and (3) in Section 3 we can shift the contour in (4.1)

to <s = 1/2 + ε or <s = A, getting the desired bounds. �

The following useful result of Bruggeman-Miatello [2, Lemma 8.1] states,

essentially, that in descending local estimates to global ones, one only loses on

a logarithmic scale.

Lemma 3. Let a, b ∈ R, a + b > 0. Let g : K×∞ → C be a function

satisfying |g(x)| ≤ ∏v|∞min(|xv|av, |xv|−bv ). Then∑
u∈O×K

|g(ux)| �a,b

Ä
1 + | log |x|∞|r−1

ä
min(|x|a∞, |x|−b∞ ).

With the notation and assumptions as in the beginning of this section put

gS =
∏
v∈S gv and g∗S =

∏
v∈S g

∗
v . Next we write

(4.3) GS(x) =
∑
u∈O×S

gS(ux) and G∗S(x) =
∑
u∈O×S

g∗S(ux).

Proposition 1. We haveG∗S(x)�ε,π N (q)
m−1

2
+ε|x|−

1
2

S , |x|S ≥ 1;

G∗S(x)�ε,A,π |x|−AS , |x|S ≥ N (q)2m+ε

for all A ≥ 1 and ε > 0.

Proof. Let S′ := S \ {q} = Bπ. By Lemma 2 we have, for |x|S ≥ 1,

g∗S(x)�ε,π φ(q)−1|x|−
1
2
−ε

S N (q)2m( 1
4
+ 1

4m
+ε)

∏
v∈S′

min(1, |xv|−Av )

and g∗S(x) = 0 if |x|q > N (q)2m. We fix a set of representatives of O×K\O
×
S .

By Lemma 3 we obtain G∗S(x)�ε,A,π N (q)
m−1

2
+ε|x|−

1
2

S K where

K =
∑

u∈O×S \O
×
K

vq(uxq)≥−2m

∏
p∈S′

min(1, |uxp|−Ap ) min
Ä
|ux∞|−ε∞ , |ux∞|−A∞

ä
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for any A ≥ 0, ε > 0. We can majorize K as follows:

K ≤
∑

`q≥−2m−vq(xq)

∑
`p∈Z
p∈S′

∏
p∈S′

min
Ä
1, (Np−`p |xp|p)−A

ä
×min

((
|x∞|∞N (q)`q

∏
p∈S′
N (p)`p

)−ε
,
(
|x∞|∞N (q)`q

∏
p∈S′
N (p)`p

)−A)
.

Let r be the number of finite primes in S′. Inductively it is now easy to see

that

K �ε,A

∑
`q≥−2m−vq(xq)

min
((
|xS′ |S′N (q)`q

)−(r+1)ε
,
(
|xS′ |S′N (q)`q

)−A+rε)

=
∑

`q≥−2m
min

((
|xS |SN (q)`q

)−(r+1)ε
,
(
|xS |SN (q)`q

)−A+rε)
.

The bounds in the proposition follow from the above estimates. �

5. Voronoi formula

The goal of this section is to prove the summation formula in Proposi-

tion 2. We begin by a technical lemma.

Let λS =
∏
v 6∈S λv. Write g = λS×gS and g∗ = λS×g∗S as complex valued

functions on I.

Lemma 4. The functions g and g∗ lie in the space z(c) for any c ≥ 1.

Proof. It is clear that g and g∗ are continuous. To prove that g and g∗

are in L1(I, σ), for any σ > 1, we first observe that for p /∈ S,

‖λp‖L1(K×p ,σ)
=

∫
K×p

λp(x)|x|σpd×x =
∑
r≥0

λπ,sym2(pr)N (p)−2rσ

= 1 +Oε

Ç∑
r≥1
N (p)−2r(σ−m(π,p)−ε)

å
= 1 +Oε(N (p)2(m(π,p)−σ+ε))

and

‖λ̂p(σ, ·)‖
L1(”K×p )

=

∫ σ+π/ logN (p)

σ−π/ logN (p)
|L(2s, πp, sym2)| logN (p)

|ds|
2π

= 1 +Oε(N (p)2(m(π,p)−σ+ε)).

In particular, if σ −m(π, v) > 1/2 + ε for every v, then the infinite products

‖g‖L1(I,σ) =
∏
v

‖gv‖L1(K×v ,σ)
, ‖ĝ(σ, ·)‖

L1 (̂I) =
∏
v

‖ĝv(σ, ·)‖
L1(”K×v )

converge. The same is true when g is replaced by g∗. By the Jacquet-Shalika

bounds Hn(1/2) we may take any σ > 1.
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Next we prove the absolute and uniform convergence of G on compacta C.

By the K×-invariance of G we may assume that vp(x) ≤ 0 for all p and all

x ∈ C. Recall that supp(gp) = Op and gp(x) � |x|−
1
2
−ε

p for p /∈ S, while

gv(x)� min(|x|−
1
2
−ε

v , |x|−2v ) for v ∈ S. Letting U =
∏

p6∈S Op ×K×S , we find∑
γ∈K×

|g(γx)| �C

∑
γ∈K×∩x−1U

∏
v∈S

min(1, |γxv|
− 3

2
+ε

v ).

The sum over γ ∈ K×∩x−1U can be regrouped alongO×S -cosets (α) ∈ PK(S) =

O×S \K× such that vp(α) ≥ −vp(x) ≥ 0 for all p /∈ S. The resulting S-unit sum

is ∑
u∈O×S

∏
v∈S

min(1, |uαxv|
− 3

2
+ε

v ).

The same argument as in Proposition 1 can be used to bound the preceding

expression by |αxS |ε−3/2S . We can complete the α-sum to a sum over all integral

ideals obtaining
∑ |g(γx)| �C ζK(3/2 − ε) for x ∈ C. The same argument

works for G∗.

The fact that
∫
Ĉ
|“G(χ)|dχ <∞ and

∫
Ĉ
|“G(χ)|dχ <∞ follows easily from

the decay properties of gS and g∗S after the same manipulations as in (5.6) and

(5.7) below. �

We have

(5.1) ĝ(σ, χ) =

LS(2σ, π, sym2 × χ2)ĝS(σ, χ), χ ∈ Î(q);

0, else

and

(5.2) ĝ∗(σ, χ) =

LS(2σ, π̃, sym2 × χ−2)ĝ∗S(σ, χ), χ ∈ Î(q);

0, else

for σ > 1. The existence of the left-hand sides of (5.1) and (5.2) is guaranteed

by Lemma 4. Let

(5.3) G(x) =
∑
γ∈K×

g(γx) and G∗(x) =
∑
γ∈K×

g∗(γx),

as functions on C . We deduce from Lemma 4 and (2.3) that

(5.4) G(x) =

∫
Ĉ
ĝ(σ, χ)χ−1(x)|x|−σA dχ, G∗(x) =

∫
Ĉ
ĝ∗(σ, χ)χ−1(x)|x|−σA dχ

for any σ > 1.

Proposition 2 (Voronoi summation). Let the notation and assumptions

be as described in Section 4. Then

G(x2) = |x|−1A R+ |x|−1A G∗(1/x2)
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for x ∈ C , where

(5.5) R = cK
∑

ω∈Ĉ 1(q)

ωn=ωπ

ω2(x)
∑
ρ

Res
s=ρ
|x|1−2sA ĝT (s, ω)LT (2s, π, sym2 × ω2),

with c−1K = Res
s=1

ζK(s) and the sum over ρ running over all poles of the function

LT (2s, π, sym2 × ω2). The (possibly empty) sum over ω and ρ is finite.

Proof. We apply the decomposition (2.1) to (5.4) to obtain

(5.6) G(x2) = cK
∑
ω∈Ĉ 1

ω2(x)

∫
(3/2)

ĝ(s, ω)|x|−2sA
ds

2πi
.

By (5.1), we have

(5.7) ĝ(s, ω) = LS(2s, π, sym2 × ω2)ĝS(s, ω) = LT (2s, π, sym2 × ω2)ĝT (s, ω),

if ω ∈ ”C 1(q) and ĝ(s, ω) = 0 otherwise. Hence we can restrict the sum over

ω to the set ”C 1(q). For each such ω we shift the contour to <s = −1. This

is admissible by the rapid decay of the infinite components of ĝ(s, ω) along

vertical lines. We apply the functional equation (3.5) and change variables

s 7→ 1/2− s, ω 7→ ω. In this way we obtain

G(x2) = |x|−1A R+ cK |x|−1A
∑

ω∈Ĉ 1(q)

ω2(1/x)

×
∫
(3/2)

LS(2s, π̃, sym2×ω2)ĝS(1/2−s, ω)γS(1−2s, π, sym2×ω2)|1/x|−2sA
ds

2πi
.

By the known properties of the poles of L(s, π, sym2) and Lemma 1, the sum

defining R is finite. Applying (2.1) in the other direction together with (4.2)

we find

G(x2) = |x|−1A R+ |x|−1A

∫
Ĉ
LS(2σ, π̃, sym2 × χ−2)ĝ∗S(σ, χ)χ(1/x2)−1|1/x2|−σA dχ.

From (5.4) and (5.2) we deduce that the last term above equals |x|−1A G∗(1/x2).

6. Proof of Theorem 2

We prove Theorem 2 by combining the Voronoi summation formula given

in Proposition 2 with the S-adic estimates in Proposition 1. Recall the hy-

pothesis of Theorem 2 that L(s, π, sym2) converges absolutely on <s > 1.

We first establish Theorem 2 for v0 = p0 6∈ Bπ finite and then indicate the

necessary changes for an infinite or ramified place at the end of the section.

We keep the notation and assumptions as in Section 4.

Fix q 6∈ Bπ,K distinct from p0. For each v ∈ Bπ we take gv of compact

support. Thus T = S = {q} ∪Bπ. Moreover, for every v ∈ Bπ we require that
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gv be nonnegative and satisfy gv(1) = 1. Let x ∈ I be such that xv = 1 for

v 6= p0 and xp0 = $`
p0 for a positive integer ` divisible by the class number h

of K; clearly |x|A = N (p0)
−`.

We first write the functions G(x2) and G∗(1/x2) as smooth sums of Dirich-

let series coefficients. To this end, recall that λp is Up-invariant for each p 6∈ S
and PK(S) = O×S \K×; hence

(6.1) G(x) =
∑

(γ)∈PK(S)

λS(γxS)GS(γxS)

with GS as in (4.3). Inputting our choice of x this gives

G(x2) =
∑

(γ)∈PK(S)

Ç ∏
p/∈S∪{p0}

λp(γ)

å
λp0(γ$2`

p0)GS(γ).

Now λp for p 6∈ S is supported on Op. The summation over (γ) therefore runs

through the semi-group of fractional principal ideals prime to S of the form

ap−`0 where a is an integral principal ideal prime to S. Changing variables and

inserting (3.2) we obtain

(6.2) G(x2) =
∑

a⊆OK
a∈PK(S)

λπ, sym2(a)GS(a2p−2`0 ).

Likewise,

(6.3) G∗(1/x2) =
∑

a⊆OK
a∈PK(S)

λπ, sym2(a)G∗S(a2p2`0 ).

Recall that if c = (γ) ∈ PK(S), then GS(c) simply means GS(γ).

As we now want to vary q, our notation will henceforth explicitly reflect

the dependence of all quantities on q. Thus we write Sq = {q} ∪ Bπ, and

correspondingly we define gSq and GSq . Moreover, we now write g(x; q) =

λSq × gSq , G(x; q) =
∑
γ∈K× g(γx; q), and similarly for g∗(x; q) and G∗(x; q).

Fix a parameter Q�K,π logN (p0), to be chosen later in terms of N (p0).

Let Q = {q prime : Q ≤ N (q) < 2Q, q 6= p0, q /∈ Bπ,K} and put F (x) =∑
q∈QG(x; q).

Proposition 3. There is a constant c > 0 depending only on K such

that

|F (x2)| ≥ c|λπ, sym2(p`0)|
Q

logQ
+Oε

Ä
N (p0)

(1+ε)`
ä
.

Proof. Put S′ := Sq \ {q} = Bπ. We switch the order of summation in

F (x2) and use (6.2) to obtain

F (x2) =
∑

a⊆OK
a∈PK(S′)

λπ, sym2(a)
∑

q∈Q:(q,a)=1

GSq(a
2p−2`0 )

= λπ, sym2(p`0)
∑

q∈Q:(q,a)=1

GSq(1) + E,
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where E is the sum over all a 6= p`0. As GSq(1) ≥ 1, we have∑
q∈Q:(q,a)=1

GSq(1) ≥
∑

q∈Q:(q,a)=1

1�K
Q

logQ
.

As usual, for x ∈ K×S′ let GS′(x) denote the average of gS′(ux) as u ranges

over O×S′ . Note that we have GS′(x) = 0 for |x|S′ outside of a closed bounded

interval in (0,∞) depending only on the support conditions on gv, v ∈ Bπ.

Now suppose that for a principal fractional ideal c∈PK(S′), c 6=1, we have

(6.4)
∑
q∈Q

GSq(c)�ε H(c)εGS′(c),

where H(c) = max(N (a),N (b)) if c = a/b for coprime integral ideals a, b. We

deduce from (6.4) that

E �ε N (p0)
ε

∑
N (a)�N (p0)`

|λπ, sym2(a)|N (a)ε.

The absolute convergence of L(s, π, sym2) on <s > 1 implies E �ε N (p0)
(1+ε)`,

yielding the proposition.

To substantiate the claim (6.4) let c = (γ) for γ /∈ O×K and (γ, S′) = 1.

Then∑
q∈Q

GSq(γ) =
∑
q∈Q

∑
u∈O×Sq

gSq(uγ) =
∑
q∈Q

∑
u∈O×

S′
uγ≡1 (mod q)

gS′(uγ) ≤ GS′(γ)W (γ),

where
W (γ) = sup

u∈O×
S′

uγ∈supp(gS′ )

|{q ∈ Q : uγ ≡ 1 (mod q)}|.

To estimate W (γ), recall that if γ = α/β for α, β ∈ OK , the notation uγ ≡ 1

(mod q) means q|(uα − β). Our assumption that c 6= (1) translates to the

principal integral ideal (uα− β) being nonzero. Hence

W (γ)�ε sup
u∈O×

S′
uγ∈supp(gS′ )

N (uα− β)ε.

The sup runs over S′-units u satisfying uα − β ∈ β.Ω where Ω is the neigh-

borhood of 0 ∈ KS′ given by supp(gS′) − 1. Thus N (uα − β) �gS′ N (β)

for all such u. Now if c = ab−1 for relatively prime integral ideals a, b, then

N (β) ≤ N (b)h ≤ H(c)h. This shows that W (γ)�ε,K,π H(c)ε, as desired. �

Proposition 4. We have F (x2)�ε N (p0)
` +Q

m+1
2

+ε.

Proof. It suffices to prove that G(x2; q)�ε N (q)−1N (p0)
` +N (q)

m−1
2

+ε.

From Proposition 2 we have G(x2; q) = |x|−1A Rq + |x|−1A G∗(1/x2; q).

We have ĝSq(ρ, ω) � φ(q)−1 for <ρ ∈ [0, 1/2]. By Lemma 1, the number

of ω ∈ ”C 1(q) such that ωn = ωπ is O(1). Moreover, for any given ω such that
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π ⊗ ω is self-dual, the number of poles of LSq(s, π ⊗ ω, sym2) is On(1). We

conclude that Rq � N (q)−1.

From (6.3) and Proposition 1 we deduce

G∗(1/x2; q)�ε N (q)
m−1

2
+εN (p0)

−` ∑
N (a)�εN (q)m+εN (p0)−`

|λπ, sym2(a)|N (a)−1.

This last sum is �ε N (q)ε, by the absolute convergence of L(s, π, sym2) on

<s > 1. From this we deduce |x|−1F ∗(1/x2)�ε N (q)
m−1

2
+ε, as desired. �

Proof of Theorem 2. Propositions 3 and 4 combine to give

λπ, sym2(p`0)� Qε−1N (p0)
(1+ε)` +Q

m−1
2

+ε.

Choosing Q = N (p0)
2`
m+1 we obtain λπ, sym2(p`0)�ε N (p0)

`(1− 2
m+1

+ε), which is

(6.5) λp0(x)�σ |x|−σp0 , x = $2`
p0 , ∀ σ > 1

2
− 1

m+ 1
.

Letting `→∞ (along multiples of h) we obtain from (3.3) the desired bound

m(π, p0) ≤ (1/2)− 1/(m+ 1).

The case v0 = p0 ∈ Bπ is almost identical, with one notable exception: for

the local function at p0 we take gp0 = λp0 . The rest of the argument requires

only notational changes. We leave the details to the reader, and instead sketch

the necessary modifications to the argument at archimedean v0.

When v0 |∞ we take gv0 = λv0 . As before gq is the characteristic function

of U
(1)
q , and for every finite prime p ∈ Bπ, gp is the characteristic function of

Up. For each v ∈ ∞ \ {v0} we may choose gv to satisfy gv(1) = 1 and have

small enough support so that gS(u) = 0 if u ∈ O×S is not a root of unity. Let

x ∈ I satisfy

(6.6) xv = 1 for v 6= v0 and xv0 = Y for a small parameter 0 < Y < 1.

The parameter Y will tend to 0; it plays the role of |$`
0|p0 = N (p)−` for `

large. As in (6.2), for this choice of x we have

(6.7) G(x2; q) =
∑

a=(γ)∈PK(S)
a⊆OK

λπ,sym2(a)GSq(γ
2x2S).

When γ = 1 we obtain GS(x2S ; q) = wKλv0(Y 2), where wK is the number of

roots of unity in K.

The argument of Proposition 3 can be adapted to the current situation.

As before, one obtains the inequality (6.4). In this case GS′ no longer vanishes

for |x|S′ large enough, but applying the local bound (3.3) at the place v0 and

Lemma 3 one shows that GS′(x) �ε,A min(|x|−1/2−εS′ , |x|−AS′ ). This is enough
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for the same argument to go through. We find that

(6.8) |F (x2)| ≥ c|λv0(Y 2)| Q

logQ
+Oε(Y

−1−ε),

the main term coming from a = (1). Next

G∗(1/x2; q) =
∑

a⊆OK
a∈PK(Sq)

λπ, sym2(a)G∗Sq
(γ2/x2S).

We apply Proposition 1 unchanged, and arguing as in the proof of Proposition 4

one finds F (x2)� Y −1 +Q
m+1

2
+ε.

Choosing Q = Y −2/(m+1) as before we find, similarly to (6.5), that

λv0(x)�σ |x|−σv0 , x = Y 2, 0 < Y < 1, ∀ σ > 1

2
− 1

m+ 1
.

The bounds m(π, v0) ≤ 1
2 −

1
m+1 now follow from (3.3). �

7. Coda

At the suggestion of the referee, we have included this supplementary

expository section. We give an alternative proof of Theorem 2 in the case of

K a real quadratic field. This proof is similar in spirit to the method of Luo-

Rudnick-Sarnak in [14], [15], where bounds towards Ramanujan are deduced

from the nonvanishing of character twists of certain L-functions.

Let µ, ν denote the two real embeddings of K. We prove Theorem 2 at

the place ν.

Let q /∈ Bπ,K be a prime ideal and let gq be the characteristic function

of U
(1)
q . For finite primes p ∈ Bπ let gp be the characteristic function of Up.

Let gµ ∈ C∞c (R×) be even, nonnegative, and satisfy gµ(1) = 1. For a given

β ∈ (0, 1/2) let gν ∈ C∞(R×) be even, nonnegative, satisfy gν(y) = 0 for

|y| ≥ 2, and gν(y) = |y|−β for 0 < |y| < 1/2. As gµ and gν are even, their

Mellin transforms are zero on characters of the form sgn(x)|x|it. Note that

ĝν(σ, | · |it) = ĝν(s), viewed as a meromorphic function in s = σ + it, has a

pole at s = β of residue 1, while ĝµ(s) is entire; both are of rapid decrease in

vertical strips.

Let S = {q} ∪ Bπ. We write gS =
∏
v∈S gv. For v /∈ S put gv = λv.

Consider G(x) as in (5.3). Since gp is Up-invariant for all finite p 6= q, the

function “G(σ, χ) is supported on ’C (q).

For every fixed χ ∈ “C (q), written χ = | · |itAω where ω =
∏
v ωv ∈ ”C 1 as in

(2.1), the function of a complex variable s = σ+ it given by ĝ(σ, χ) = ĝ(s, ω) =∏
v ĝv(s, ωv) = LS(2s, π, sym2×ω2)ĝS(s, ωS) is holomorphic except possibly at
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(1) a finite set, of cardinality at most Oπ(1), of simple poles in the critical

strip 0 ≤ 2<(s) ≤ 1 when ω is such that π ⊗ ω ' π̃ ⊗ ω, coming from

the L-factor LS(2s, π, sym2 × ω2);

(2) and at s = ρω = β − irν , where ων = | · |irν , coming from ĝν(ρω, ων) =

ĝν(β) =∞.

(By adjusting β by an ε amount, these two sets of poles can be assumed

disjoint.) We emphasize that even when ω satisfies π ⊗ ω ' π̃ ⊗ ω, it is not

necessarily the case that LS(2s, π, sym2×ω2) has a pole at s = 1/2. Moreover,

at the point described in (2) it could very well happen that LS(2s, π, sym2×ω2)

vanishes, killing the pole. Our argument will show that the latter cannot take

place too often.

Consider the expansion (5.6) for some x ∈ I to be chosen momentarily.

For every fixed ω ∈ ”C 1(q) we shift the vertical contour across the critical strip,

picking up the possible poles enumerated in (1) and (2). Let T = S \ {ν}.
Following the proof of Proposition 2 we obtain G(x2) = |x|−1A R+ |x|−2βA L(x) +

|x|−1A G∗(1/x2), where R is defined in (5.5) and

(7.1) L(x) := cK
∑

χ∈Ĉ (q)
χν=1

LS(2β, π, sym2 × χ2)ĝT (β, χT )|x|−itµA .

In the above, we have written χµ(x) = |x|itµsgnmµ . To see (7.1), note for each

ω ∈’C (q) the point s = ρω of case (2) contributes

cK |x|−2ρωLS(2ρω, π, sym2 × ω2)ĝT (ρω, ωT ).

Next observe that ρω can be descibed as the unique point such that the char-

acter χ defined by | · |ρωA ω = | · |βAχ satisfies χν = 1. The triviality of χν implies

rν = −tµ/2, and we may then write ρω = β− irν = β+ itµ/2 to arrive at (7.1).

For ε > 0 let Xε(q) denote the set of Hecke characters χ ∈ “C (q) such that

χν = 1, Cond(χµ) ≤ N (q)ε, and deg(χq) ≤ 1. Then

(7.2) L(x) =
cK
φ(q)

∑
χ∈Xε(q)

LS(2β, π, sym2 × χ2)c(χ, x) +OA,ε(N (q)−A),

where c(χ, x) = ĝµ(β, χµ)|x|−itµA � 1. It is easy to verify that |Xε(q)| �
N (q)1+ε. Note furthermore that since we do not additionally require that

χµ = 1, the characters in Xε(q) are not necessarily of finite order.

As before, we now reintroduce the dependence on q into the notation.

When x is chosen as in (6.6), the sum G(x; q) can be written as (6.7), where

GSq is as in (4.3). Then letting F (x) denote the sum of G(x; q) over q ∈ Q we

obtain (6.8) as before, with λv0(Y 2) replaced by gν(Y 2) ∼ Y −2β. We apply
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Proposition 1 unchanged, and arguing as in the proof of Proposition 4 we find

F (x2) = Y −2β
∑
q∈Q

Lq(x) +Oε(Y
−1 +Q

m+1
2

+ε).

By (7.2) we obtain

Q

logQ
+Oε(Y

2β(Y −1−ε +Q
m+1

2
+ε))�

∑
q∈Q

1

φ(q)

∑
χ∈Xε(q)

|LS(2β, π, sym2 × χ2)|.

We take Y = Q−
m+1

2 . Then for any β > 1
2 −

1
m+1 we find

Q

logQ
�
∑
q∈Q

1

φ(q)

∑
χ∈Xε(q)

|LS(2β, π, sym2 × χ2)|.

Since the characters in Xε(q) are all trivial at ν, the standard argument of

Luo-Rudnick-Sarnak then implies Theorem 2 for the place ν. �
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