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A new proof of the graph removal lemma

By Jacob Fox

Abstract

Let H be a fixed graph with h vertices. The graph removal lemma states

that every graph on n vertices with o(nh) copies of H can be made H-free

by removing o(n2) edges. We give a new proof which avoids Szemerédi’s

regularity lemma and gives a better bound. This approach also works to

give improved bounds for the directed and multicolored analogues of the

graph removal lemma. This answers questions of Alon and Gowers.

1. Introduction

Szemerédi’s regularity lemma [29] is one of the most powerful tools in

graph theory. It was introduced by Szemerédi in his proof [28] of the Erdős-

Turán conjecture on long arithmetic progressions in dense subsets of the in-

tegers. Roughly speaking, it says that every large graph can be partitioned

into a small number of parts such that the bipartite subgraph between almost

every pair of parts is random-like. This structure is useful for approximating

the number of copies of some fixed subgraph.

To properly state the regularity lemma requires some terminology. The

edge density d(X,Y ) between two subsets of vertices of a graphG is the fraction

of pairs (x, y) ∈ X×Y that are edges of G. A pair (X,Y ) of vertex sets is called

ε-regular if for all X ′ ⊂ X and Y ′ ⊂ Y with |X ′| ≥ ε|X| and |Y ′| ≥ ε|Y |, we

have |d(X ′, Y ′)−d(X,Y )| < ε. A partition V = V1∪· · ·∪Vk is called equitable

if ||Vi| − |Vj || ≤ 1 for all i and j. The regularity lemma states that for each

ε > 0, there is a positive integer M(ε) such that the vertices of any graph G

can be equitably partitioned V (G) = V1 ∪ · · · ∪ Vk into k ≤M(ε) parts where

all but at most εk2 of the pairs (Vi, Vj) are ε-regular. For more background on

the regularity lemma, see the excellent survey by Komlós and Simonovits [17].

In the regularity lemma, M(ε) can be taken to be a tower of twos of

height proportional to ε−5. On the other hand, Gowers [10] proved a lower

bound on M(ε) which is a tower of twos of height proportional to ε−1/16, thus
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demonstrating that M(ε) is inherently large as a function of ε−1. Unfortu-

nately, this implies that the bounds obtained by applications of the regularity

lemma are usually quite poor. It remains an important problem to determine

if new proofs giving better quantitative estimates for certain applications of

the regularity lemma exist (see, e.g., [11]). One such improvement is the proof

of Gowers [12] of Szemerédi’s theorem using Fourier analysis.

The triangle removal lemma of Ruzsa and Szemerédi [24] is one of the

most influential applications of Szemerédi’s regularity lemma. It states that

any graph on n vertices with o(n3) triangles can be made triangle-free by re-

moving o(n2) edges. It easily implies Roth’s theorem [22] on 3-term arithmetic

progressions in dense sets of integers. Furthermore, Solymosi [27] gave an ele-

gant proof that the triangle removal lemma further implies the stronger corners

theorem of Ajtai and Szeméredi [1], which states that any dense subset of the

integer grid contains the vertices of an axis-aligned isosceles triangle.

The triangle removal lemma was extended by Erdős, Frankl, and Rödl [7]

to the graph removal lemma. It says that for each ε > 0 and graph H on h

vertices there is δ = δ(ε,H) > 0 such that every graph on n vertices with at

most δnh copies of H can be made H-free by removing at most εn2 edges.

The graph removal lemma has many applications in graph theory, additive

combinatorics, discrete geometry, and theoretical computer science.

One well-known application of the graph removal lemma is in property

testing. This is an active area of computer science where one wishes to quickly

distinguish between objects that satisfy a property from objects that are far

from satisfying that property. The study of this notion was initiated by Ru-

binfield and Sudan [23], and subsequently Goldreich, Goldwasser, and Ron [9]

started the investigation of property testers for combinatorial objects. One

simple consequence of the graph removal lemma is a constant time algorithm

for subgraph testing with one-sided error (see [2] and its references). A graph

on n vertices is ε-far from being H-free if at least εn2 edges need to be removed

to make it H-free. The graph removal lemma implies that there is an algo-

rithm which runs in time Oε(1) which accepts all H-free graphs, and rejects

any graph which is ε-far from being H-free with probability at least 2/3. The

algorithm samples t = 2δ−1 h-tuples of vertices uniformly at random, where δ

is picked according to the graph removal lemma, and accepts if none of them

form a copy of H, and otherwise rejects. Any H-free graph is clearly accepted.

If a graph is ε-far from being H-free, then it contains at least δnh copies of H,

and the probability that none of the sampled h-tuples forms a copy of H is at

most (1− δ)t < 1/3. Notice that the running time as a function of ε depends

on the bound in the graph removal lemma.

Ruzsa and Szemerédi [24] derived the triangle removal lemma in the course

of settling an extremal hypergraph problem asked by Brown, Erdős, and Sós [5].



A NEW PROOF OF THE GRAPH REMOVAL LEMMA 563

Let gr(n, v, e) be the maximum number of edges an r-uniform hypergraph may

have if the union of any e edges span more than v vertices. Ruzsa and Szemerédi

[24] use the triangle removal lemma to settle the (6, 3)-problem, which states

that g3(n, 6, 3) = o(n2). Equivalently, any triple system on n vertices not

containing six vertices with three or more triples has o(n2) triples. This was

generalized by Erdős, Frankl, and Rödl [7] using the graph removal lemma to

establish gr(n, 3r − 3, 3) = o(n2).

For most of the applications of the graph removal lemma in number the-

ory, new proofs using Fourier analysis were discovered which give better bounds

(see, e.g., [12], [26]). However, for the applications which are more combina-

torial, no such methods exist. The only known proof of the graph removal

lemma used the regularity lemma, leading to weak bounds for the graph re-

moval lemma and its applications. Hence, finding a proof which yields better

bounds by avoiding the regularity lemma is a problem of considerable inter-

est and has been reiterated by several authors, including Erdős [6], Alon [2],

Gowers [15], and Tao [31].

Our main result is a new proof of the graph removal lemma which avoids

using the regularity lemma and gives a better bound.

Theorem 1. For each graph H on h vertices, if δ−1 is a tower of twos of

height 5h4 log ε−1, then every graph G on n vertices with at most δnh copies

of H can be made H-free by removing εn2 edges.

For comparison, the regularity proof necessarily gives a bound on δ−1 that

is a tower of twos of height polynomial in ε−1.

We next sketch the proof idea of the regularity lemma and our proof of

the graph removal lemma. At each stage of the proof of the regularity lemma,

we have a partition V (G) = V1 ∪ · · · ∪ Vk of the vertex set of a graph G on n

vertices into parts which differ in cardinality by at most 1. Let pi = |Vi|/n. The

mean square density with respect to the partition is
∑

1≤i,j≤k pipjd(Vi, Vj)
2. A

refinement of a partition P of a set V is another partition Q of V such that

each member of Q is a subset of some member of P. If the partition does not

satisfy the conclusion of the regularity lemma, then using the Cauchy-Schwarz

defect inequality, the partition can be refined such that the mean square density

increases by Ω(ε5) while the number of parts is at most exponential in k. This

process must stop after O(ε−5) steps as the mean square density cannot be

more than 1. We thus get a bound on M(ε) which is a tower of twos of height

O(ε−5).

Now we sketch the proof of Theorem 1. Let H be a fixed graph with h

vertices. We suppose for contradiction that G = (V,E) is a graph on n vertices

for which εn2 edges need to be removed to make it H-free and yet G contains

less than δnh copies ofH. We pass to a subgraphG′ ofG consisting of the union
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of a maximum collection of edge-disjoint copies of H in G. As the removal of

the edges of G′ leaves an H-free subgraph of G, the graph G′ has at least εn2

edges. Let d = 2e(G′)/n2 ≥ 2ε. At each stage of our proof, we have a partition

V = V1 ∪ · · · ∪ Vk of the vertex set into parts such that almost all vertices are

in parts of the same size. Let pi = |Vi|/n. The mean entropy density with

respect to the partition is
∑

1≤i,j≤k pipjf(d(Vi, Vj)), where f(x) = x log x for

0 < x ≤ 1 and f(0) = 0. A convexity argument shows that the mean entropy

density with respect to any partition of V is at least d log d. The fact that

f(x) is nonpositive for 0 ≤ x ≤ 1 implies that the mean entropy density is

always nonpositive. We prove a key lemma which shows how to “shatter” sets

with few copies of H and a Jensen defect inequality for such a shattering.

These lemmas enable us to show that we can refine the partition such that

the mean entropy density increases by Ω(d) while the number of parts only

goes up exponentially in c(ε, h)k, where c(ε, h) = 2(h/ε)
O(h2)

. So essentially

in each iteration the number of parts is one exponential larger. This process

must stop after O(log d−1) = O(log ε−1) steps as the mean entropy density is

at least d log d, increases Ω(d) at each refinement, and is always nonpositive.

We thus get a bound on δ−1 in the graph removal lemma which is a tower of

twos of height O(log ε−1).

In the next section, we prove a key lemma showing how to “shatter” sets

with few copies of H between them. In Section 3, we prove a Jensen defect

inequality. We use these lemmas in Section 4 to prove Theorem 1. In the

concluding remarks, we discuss several variants of the graph removal lemma

for which we obtain similar improved bounds, and some open problems. We do

not make any serious attempt to optimize absolute constants in our statements

and proofs. All logarithms are assumed to be base e.

2. Key lemma

The purpose of this section is to prove a key lemma, Lemma 5, for the

proof of Theorem 1. Let H be a labeled graph with vertex set [h] := {1, . . . , h}.
Lemma 5 shows that if V1, . . . , Vh are vertex subsets of a graph such that there

are few copies of H with the copy of vertex i in Vi for i ∈ [h], then there is an

edge (i, j) of H such that the pair (Vi, Vj) can be shattered in the following

sense. An (α, c, t)-shattering of a pair (A,B) of vertex subsets in a graph G is

a pair of partitions A = A1 ∪ · · · ∪Ar and B = B1 ∪ · · · ∪Bs such that r, s ≤ t
and the sum of |Ai||Bj | over all pairs (Ai, Bj) with d(Ai, Bj) < α is at least

c|A||B|. Note that if α′ ≥ α, c′ ≤ c, and t′ ≥ t, then an (α, c, t)-shattering for

a pair (A,B) is also an (α′, c′, t′)-shattering for (A,B). Before proving the key

lemma, we first establish some auxiliary results on ε-regular tuples in uniform

hypergraphs.
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2.1. Regular tuples in hypergraphs. A hypergraph Γ = (V,E) consists of a

set V of vertices and a set E of edges, which are subsets of V . A hypergraph is

k-uniform if every edge contains precisely k vertices. A k-uniform hypergraph

Γ = (V,E) is k-partite if there is a partition V = V1 ∪ · · · ∪ Vk such that every

edge of Γ contains exactly one vertex from each Vi. In a hypergraph Γ, for

vertex subsets V1, . . . , Vk, let e(V1, . . . , Vk) denote the number of k-tuples in

V1 × · · · × Vk which are edges of Γ, and let d(V1, . . . , Vk) = e(V1,...,Vk)
|V1|···|Vk| , which is

the fraction of k-tuples in V1 × · · · × Vk which are edges of H.

We begin with a simple lemma which follows by an averaging argument.

Lemma 1. Let Γ be a k-uniform hypergraph and A1, . . . , Ak be nonempty

vertex subsets. If 1 ≤ ai ≤ |Ai| for i ∈ [k], then there are subsets Bi, Ci ⊂ Ai
each of cardinality ai such that d(B1, . . . , Bk) ≥ d(A1, . . . , Ak) ≥ d(C1, . . . , Ck).

Proof. By averaging, the expected value of d(X1, . . . , Xk) with Xi ⊂ Ai
chosen uniformly at random with |Xi| = ai is d(A1, . . . , Ak). Hence, there are

choices of Bi, Ci ⊂ Ai for each i ∈ [k] satisfying the desired properties. �

In a k-uniform hypergraph Γ, a k-tuple (V1, . . . , Vk) of vertex subsets is

(α, β)-superregular if d(U1, . . . , Uk) ≥ β holds for all k-tuples (U1, . . . , Uk) with

|Ui| ≥ α|Vi| for i ∈ [k].

Lemma 2. Suppose Γ is a k-uniform hypergraph and A1, . . . , Ak are vertex

subsets each of cardinality n with d = d(A1, . . . , Ak). If 0 < α, β < 1/4 are

such that d ≥ 2β and (A1, . . . , Ak) is not (α, β)-superregular, then there are

Bi ⊂ Ai for i ∈ [k] with |B1| = · · · = |Bk| ≥ αn and d(B1, . . . , Bk) ≥ (1+ αk

2 )d.

Proof. Since (A1, . . . , Ak) is not (α, β)-superregular, there are subsets Ai,1
⊂ Ai such that |Ai,1| ≥ α|Ai| and d(A1,1, . . . , Ak,1) < β. By Lemma 1, we may

suppose that |Ai,1| = dαne for i ∈ [k]. Let Ai,2 = Ai \ Ai,1, so |Ai,j | ≥ αn for

i ∈ [k] and j ∈ {1, 2} as long as Ai,j is nonempty.

Summing over all (j1, . . . , jk) ∈ {1, 2}k with (j1, . . . , jk) 6= (1, . . . , 1), we

have ∑
|A1,j1 | · · · |Ak,jk | = |A1| · · · |Ak| − |A1,1| · · · |Ak,1|

and∑
d(A1,j1 , . . . , Ak,jk)|A1,j1 | · · · |Ak,jk |

=
∑

e(A1,j1 , . . . , Ak,jk) = e(A1, . . . , Ak)− e(A1,1, . . . , Ak,1)

= d(A1, . . . , Ak)|A1| · · · |Ak| − d(A1,1, . . . , Ak,1)|A1,1| · · · |Ak,1|
> d|A1| · · · |Ak| − β|A1,1| · · · |Ak,1|.
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By averaging, there is (j1, . . . , jk) ∈ {1, 2}k with (j1, . . . , jk) 6= (1, . . . , 1) such

that

d(A1,j1 , . . . , Ak,jk) >
d|A1| · · · |Ak| − β|A1,1| · · · |Ak,1|
|A1| · · · |Ak| − |A1,1| · · · |Ak,1|

= d+ (d− β)c/(1− c) ≥ d+ (d− β)αk

≥ d
Ç

1 +
αk

2

å
,

where c =
|A1,1|···|Ak,1|
|A1|···|Ak| ≥ α

k. By Lemma 1, for each i ∈ [k] there is a subset Bi

of Ai,ji of cardinality dαne such that d(B1, . . . , Bk) ≥ d(1 + αk

2 ). �

The following lemma is a straightforward generalization of a result of

Komlós that dense graphs contain large superregular pairs.

Lemma 3. Suppose Γ is a k-uniform hypergraph, and A1, . . . , Ak are

disjoint vertex subsets each of cardinality n. If 0 < α, β < 1/4 are such

that d(A1, . . . , Ak) ≥ 2β, then there are subsets Vi ⊂ Ai for i ∈ [k] with

|V1| = · · · = |Vk| ≥ α3α−k log β−1
n for which (V1, . . . , Vk) is (α, β)-superregular.

Proof. We repeatedly apply Lemma 2 until we arrive at subsets Vi ⊂ Ai of

the same size for i ∈ [k] such that (V1, . . . , Vk) is (α, β)-superregular. In each

application of Lemma 2 we pass to subsets each with size at least an α-fraction

of the size of the original set and the density between them is at least a factor

(1 + αk

2 ) larger than the density between the original sets. After t iterations,

the density between them is at least (1 + αk

2 )td(A1, . . . , Ak) ≥ (1 + αk

2 )t2β.

This cannot continue for more than 3α−k log β−1 iterations since otherwise

the density would be larger than 1. Hence, we have |V1| = · · · = |Vk| ≥
α3α−k log β−1

n, which completes the proof. �

The next lemma allows us to find a large matching of regular k-tuples.

Lemma 4. Suppose α, β, c, d > 0 with α, β < 1/4 and d ≥ 2β, Γ is

a k-uniform hypergraph, and (A1, . . . , Ak) is a (c, d)-superregular k-tuple of

disjoint vertex subsets each of cardinality N . Then there is a positive integer

r such that for each i ∈ [k] there is a partition Ai = Ai,0 ∪ Ai,1 ∪ · · · ∪ Ai,r
with |Ai,0| < cN , and for each j ∈ [r] the k-tuple (A1,j , . . . , Ak,j) is (α, β)-

superregular with |A1,j | = |A2,j | = · · · = |Ak,j | ≥ α3α−k log β−1
cN .

Proof. In the first step, we pick out subsets Ai,1 ⊂ Ai for i ∈ [k] such that

the k-tuple (A1,1, . . . , Ak,1) is (α, β)-superregular and |Ai,1| = · · · = |Ak,1| ≥
α3α−k log β−1

N . We can do this by Lemma 3 since the k-tuple (A1, . . . , Ak) is

(c, d)-superregular and hence d(A1, . . . , Ak) ≥ d ≥ 2β.
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Suppose we have already picked out Ai,` for i ∈ [k], ` ∈ [j] satisfying that

for each `, (A1,`, . . . , Ak,`) is (α, β)-superregular, and |A1,`| = · · · = |Ak,`| ≥
α3α−k log β−1

cN . Let Bi = Ai \
⋃
`∈j Ai,`, so |B1| = · · · = |Bk|. If |B1| < cN ,

then we let Ai,0 = Bi for i ∈ [k] and the proof is complete. Otherwise, we pick

out subsets Ai,j+1 ⊂ Bi for i ∈ [k] satisfying

|A1,j+1| = · · · = |Ak,j+1| ≥ α3α−k log β−1 |B1| ≥ α3α−k log β−1
cN,

and (A1,j+1, . . . , Ak,j+1) is (α, β)-superregular. We can do this by Lemma 3

since (A1, . . . , Ak) is (c, d)-superregular, |Bi| ≥ cN = c|Ai| for i ∈ [k], and

hence d(B1, . . . , Bk) ≥ d ≥ 2β. Since each Ai,j has cardinality at least

α3α−k log β−1
cN , this process terminates in at most N/

Ä
α3α−k log β−1

cN
ä

=

c−1α−3α
−k log β−1

steps, and when this happens, we have the desired parti-

tions. �

2.2. Shattering sets with few copies of H . The following lemma is the

main result of this section and is crucial for the proof of Theorem 1. Before

going into the precise statement and proof, we give a rough sketch. Let H be

a graph with vertex set [h] and suppose G is a graph with disjoint vertex sets

V1, . . . , Vh of the same size with few copies of H with the copy of vertex i in

Vi for i ∈ [h]. The lemma then says that there is an edge (i, j) of H for which

there is an (α, c, t)-shattering of (Vi, Vj), where c > 0 depends only on h and t

is not too large as a function of α and h.

The proof is by induction on h, with the base case h = 2 being trivial. Let

H ′ be the induced subgraph of H with vertex set [h− 1]. The proof splits into

two cases. In the first case, there are large subsets V ′i ⊂ Vi with few copies of

H ′ between V ′1 , . . . , V
′
h−1 with the copy of vertex i lying in V ′i . In this case, by

induction, we can shatter a pair (V ′i , V
′
j ) with (i, j) an edge of H ′ (and hence

of H), and this extends to a shattering of (Vi, Vj), completing this case.

In the second case, for all large subsets V ′i ⊂ Vi there are a substantial

number of copies of H ′ between V ′1 , . . . , V
′
h−1 with the copy of i lying in V ′i .

We create an auxiliary (h−1)-partite (h−1)-uniform hypergraph Γ with parts

V1, . . . , Vh−1 where (v1, . . . , vh−1) ∈ V1 × · · · × Vh−1 is an edge of Γ if these

vertices form a copy of H ′ in G with vertex vi the copy of i. In this case we

can use Lemma 4 to partition each Vi = Vi,0∪· · ·∪· · ·∪Vi,z with i ∈ [h−1] such

that for each j ∈ [z] the (h − 1)-tuple (V1,j , . . . , Vh−1,j) is (α, β)-superregular

in Γ with β not too small, |V1,j | = · · · = |Vh−1,j | is large, and |Vi,0| not too

large. By this superregularity and the definition of Γ, each vertex v ∈ Vh,

which has for some j at least α|Vi,j | neighbors in Vi,j for each neighbor i of h

in H, is a vertex of many copies of H in G with the copy of i in Vi. As there

are few copies of H with the copy of i in Vi for each i, this implies that for

each j, there are few vertices in Vh which have at least α|Vi,j | neighbors in Vi,j
for each neighbor i of h. In other words, for most vertices v ∈ Vh there is a
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neighbor i of h such that v has less than α|Vi,j | neighbors in Vi,j . We partition

Vh, where a vertex v ∈ Vh lies in a certain subset in this partition depending on

which pairs (i, j) with i a neighbor of h in H and j ∈ [z], the vertex v has less

than α|Vi,j | neighbors in Vi,j . We get that for some neighbor i of h in H, this

partition of Vh and the partition of Vi form an (α, c, t)-shattering of (Vi, Vh).

Lemma 5. Let 0 < α < 1/4 and dh = 2−(2/α)
h2

. Let H be a graph with

vertex set [h]. Suppose G is a graph with disjoint vertex subsets V1, . . . , Vh each

of size n such that the number of copies of H with the copy of vertex i in Vi
for i ∈ [h] is at most dhn

h. Then there is an edge (i, j) of H for which there

is an (α, h−2, 2d
−1
h )-shattering of the pair (Vi, Vj).

Proof. The proof is by induction on h. In the base case h = 2, as the

number of edges between V1 and V2 is at most d2n
2 < αn2, the trivial partitions

of V1 and V2 form an (α, 1, 1)-shattering of the pair (V1, V2). Thus the base

case holds. The induction hypothesis is that the lemma holds for h− 1.

Let H ′ be the induced subgraph of H on vertex set [h − 1]. Let Γ be

the (h − 1)-partite (h − 1)-uniform hypergraph on V1, . . . , Vh−1 such that

(v1, . . . , vh−1) ∈ V1 × · · · × Vh−1 forms an edge of Γ if (vi, vj) is adjacent in G

whenever (i, j) is an edge of H ′.

The proof splits into two cases, depending on whether or not (V1, . . . , Vh−1)

is (1− 1
h , dh−1)-superregular in Γ.

Case 1: (V1, . . . , Vh−1) is not (1 − 1
h , dh−1)-superregular in Γ. In this

case, there are sets Wi ⊂ Vi for i ∈ [h − 1] with |Wi| ≥ (1 − 1
h)|Vi| and

d(W1, . . . ,Wh−1) < dh−1. By Lemma 1, letting n′ = d(1 − 1
h)ne, we may

suppose further that |W1| = · · · = |Wh−1| = n′. Therefore, the number of

copies of H ′ with the copy of vertex i in Vi for i ∈ [h−1] is at most dh−1n
′h−1.

By the induction hypothesis, there is an edge (i, j) of H ′ (and hence also of H)

and partitions Wi = A1∪· · ·∪Ar−1 and Wj = B1∪· · ·∪Bs−1 with r−1, s−1 ≤
2d
−1
h−1 and the sum of |Ap||Bq| over all pairs (Ap, Bq) with d(Ap, Bq) < α is at

least (h − 1)−2|Wi||Wj | ≥ (h − 1)−2(1 − 1
h)2|Vi||Vj | = h−2|Vi||Vj |. Letting

Ar = Vi \Wi and Bs = Vj \Wj , we have an (α, h−2, 2d
−1
h−1 + 1)-shattering of

the pair (Vi, Vj), which completes the proof in this case.

Case 2: (V1, . . . , Vh−1) is (1− 1
h , dh−1)-superregular in Γ. In this case, by

Lemma 4, there are partitions Vi = Vi,0 ∪ Vi,1 ∪ · · · ∪ Vi,z for i ∈ [h − 1] with

|Vi,0| < (1 − 1
h)|Vi| = (1 − 1

h)n such that for each j ∈ [z] the (h − 1)-tuple

(V1,j , . . . , Vh−1,j) is (α, β)-superregular in Γ with β = dh−1/2, and |V1,j | =

|V2,j | = · · · = |Vh−1,j | ≥ γn, where

γ = α3α1−h log β−1
Å

1− 1

h

ã
> β3α

−h
=

Å
dh−1

2

ã3α−h
> d4α

−h
h−1

= 2−4α
−h(2/α)(h−1)2 ≥ 2−(2/α)

h2−h+1
.
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Since each Vi,j has cardinality at least γn and each Vi has cardinality n, we

have z ≤ n
γn = γ−1.

Let I denote the set of neighbors of h in H. Suppose for contradiction

that there is j ∈ [z] such that at least |Vh|/h vertices v ∈ Vh have at least

α|Vi,j | neighbors in Vi,j for all i ∈ I. For i ∈ I, let N(v, i) denote the set of

neighbors of v in Vi,j , and for i ∈ [h− 1] \ I, let N(v, i) = Vi,j . So for at least

|Vh|/h vertices v ∈ Vh, |N(v, i)| ≥ α|Vi,j | for i ∈ [h − 1]. Since the (h − 1)-

tuple (V1,j , . . . , Vh−1,j) is (α, β)-superregular in Γ, the number of copies of H

containing such a fixed v and with the copy of vertex i in Vi,j for i ∈ [h− 1] is

at least

β|N(v, 1)| · · · |N(v, h− 1)| ≥ βαh−1|V1,j | · · · |Vh−1,j | ≥ βαh−1 (γn)h−1 .

Hence, the number of copies of H with the copy of vertex i in Vi for i ∈ [h] is

at least

|Vh|
h
βαh−1 (γn)h−1=h−1βαh−1γh−1nh ≥ (2h)−1dh−1α

h−12−(h−1)(2/α)
h2−h+1

nh

> 2−(2/α)
h2

nh = dhn
h,

contradicting that there are at most dhn
h copies of H with the copy of vertex

i in Vi for i ∈ [h].

So, for every j ∈ [z], less than |Vh|/h vertices v ∈ Vh have at least α|Vi,j |
neighbors in Vi,j for all i ∈ I. For each subset S ⊂ I × [z], let AS denote the

set of vertices v ∈ Vh with less than α|Vi,j | neighbors in Vi,j for all (i, j) ∈ S
and at least α|Vi,j | neighbors in Vi,j for all (i, j) ∈ (I × [z]) \ S. We have

Vh =
⋃
S∈I×[z]AS is a partition of Vh into 2|I|z subsets. As for each j ∈ [z],

we have |V1,j | = · · · = |Vh−1,j | and more than (1− 1/h)|Vh| vertices in Vh have

less than α|Vi,j | neighbors in Vi,j for some i ∈ I, the sum of |AS ||Vi,j | over all

S ⊂ I× [z] and i ∈ I for which d(AS , Vi,j) < α is more than (1−1/h)|Vh||V1,j |.
Summing over all j ∈ [z], the sum of |AS ||Vi,j | over all S ⊂ I × [z], i ∈ I,

and j ∈ [z] for which d(AS , Vi,j) < α is at least
∑
j∈[z](1 − 1/h)|Vh||V1,j | ≥

(1 − 1/h)|Vh|(|V1|/h) = (1 − 1/h)h−1n2. Hence, there is i ∈ I such that the

sum of |AS ||Vi,j | over all S ⊂ I × [z], j ∈ [z] for which d(AS , Vi,j) < α is at

least 1
|I|(1 − 1/h)h−1n2 ≥ h−2n2. As also z + 1, 2|I|z ≤ 2(h−1)z ≤ 2d

−1
h , it

follows that the partitions Vh =
⋃
S⊂I×[z]AS and Vi =

⋃
0≤j≤z Vi,j form an

(α, h−2, 2d
−1
h )-shattering of the pair (Vi, Vh). �

3. A defect inequality for convex functions

Jensen’s inequality states that if f is a convex function, ε1, . . . , εs are

nonnegative real numbers which sum to 1, and x1, . . . , xs are real numbers,

then

ε1f(x1) + · · ·+ εsf(xs) ≥ f(ε1x1 + · · ·+ εsxs).
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The following lemma is a simple consequence of Jensen’s inequality.

Lemma 6. Let f : R≥0 → R be a convex function, ε1, . . . , εs and x1, . . . , xs
be nonnegative real numbers with

∑
1≤i≤s εi = 1. For I ⊂ [s], c =

∑
i∈I εi with

0 < c < 1, u =
∑
i∈I εixi/c, and v =

∑
i∈[s]\I εixi/(1− c), we have

∑
1≤i≤s

εif(xi) ≥ cf(u) + (1− c)f(v).

Proof. By Jensen’s inequality, we have

f(u) ≤
∑
i∈I

εi
c
f(xi).

Since c =
∑
i∈I εi and 1 =

∑
1≤i≤s εi, then 1 − c =

∑
i∈[s]\I εi. By Jensen’s

inequality, we have

f(v) ≤
∑

i∈[s]\I

εi
1− c

f(xi).

From the two previous inequalities, we get

cf(u) + (1− c)f(v) ≤
∑

1≤i≤s
εif(xi). �

Note that equality holds in Jensen’s inequality when the numbers x1, . . . , xs
are equal. A defect inequality shows that if these numbers are far from being

equal, then Jensen’s inequality can be significantly improved. The following

lemma is a defect inequality for a particular convex function which we will use

in the proof of Theorem 1.

Lemma 7. Let f : R≥0 → R be the convex function given by f(x) = x log x

for x > 0 and f(0) = 0. Let ε1, . . . , εs, x1, . . . , xs be nonnegative real numbers

with
∑

1≤i≤s εi = 1, and a =
∑

1≤i≤s εixi. Suppose β < 1 and I ⊂ [s] is such

that xi ≤ βa for i ∈ I and let c =
∑
i∈I εi. Then∑

1≤i≤s
εif(xi) ≥ f(a) + (1− β + f(β))ca.

Proof. Notice that if a or c is 0, the desired inequality is Jensen’s inequal-

ity. We may therefore assume a, c > 0. We also have c < 1 as otherwise c = 1,

εi = 0 for i ∈ [s] \ I, and a =
∑

1≤i≤s εixi =
∑
i∈I εixi ≤ βa as xi ≤ βa

for i ∈ I, a contradiction. Let u =
∑
i∈I εixi/c, which is a weighted average

of the xi with i ∈ I, and v =
∑
i∈[s]\I εixi/(1 − c). Let δ = u/a, so δ ≤ β,

and δ′ = v/a = (1 − δc)/(1 − c) = 1 + (1−δ)c
1−c . Note also that cu = caδ,
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(1− c)v = a(1− c)δ′, and cu+ (1− c)v = a. Hence, by Lemma 6, we have∑
1≤i≤s

εif(xi)≥ cf(u) + (1− c)f(v) = f(a) + caf(δ) + a(1− c)f(δ′)

≥ f(a) + caf(δ) + a(1− c)(1− δ)c
1− c

= f(a) + (f(δ) + 1− δ) ca,

where the first equality follows from substituting in f(x) = x log x for 0 < x ≤ 1

and f(0) = 0, and the second inequality follows from substituting x = δ′ into

the inequality f(x) ≥ x− 1 for x ≥ 0. Since 0 ≤ δ ≤ β < 1, and f(x) + 1−x is

a decreasing function on the interval [0, 1], we get the desired inequality. �

4. Proof of Theorem 1

In this section we prove Theorem 1. Our presentation is chosen to eluci-

date the similarities and differences with the well-known proof of Szemerédi’s

regularity lemma.

Let G = (V,E) be a graph. Recall that for vertex subsets A and B,

e(A,B) denotes the number of pairs (a, b) ∈ A × B that are edges of G and

d(A,B) = e(A,B)
|A||B| is the density of the pair (A,B), which is the fraction of pairs

(a, b) ∈ A×B that are edges of G. For a function f : R≥0 → R define

f(A,B) =
|A||B|
|V |2

f(d(A,B)).

For partitions A of A and B of B, let

f(A,B) =
∑

A′∈A,B′∈B
f(A′, B′)

and f(A) = f(A,A).

Lemma 8. Let f : R≥0 → R be a convex function, G = (V,E) be a graph,

and d = d(V, V ) = 2|E|/|V |2.

(1) For vertex subsets A,B ⊂ V and partitions A of A and B of B, we

have f(A,B) ≥ f(A,B).

(2) If P is a partition of V , then f(P) ≥ f(d).

(3) If P and P ′ are partitions of V and P ′ is a refinement of P , then

f(P ′) ≥ f(P).

(4) Suppose that A,B are vertex subsets with d(A,B) ≥ 10α, partitions

A of A and B of B form an (α, c, t)-shattering of (A,B), and f(x) =

x log x for x > 0 and f(0) = 0. Then

f(A,B) ≥ f(A,B) +
c

2

e(A,B)

|V |2
.
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Proof. We have

f(A,B) =
∑

A′∈A,B′∈B
f(A′, B′) =

∑
A′∈A,B′∈B

|A′||B′|
|V |2

f(d(A′, B′))

=
|A||B|
|V |2

∑
A′∈A,B′∈B

|A′||B′|
|A||B|

f(d(A′, B′))≥ |A||B|
|V |2

f(d(A,B))=f(A,B),

where we used
∑
A′∈A,B′∈B

|A′||B′|
|A||B| = 1 and Jensen’s inequality. This establishes

part 1. For part 2, note that if P is a partition of V , then by part 1 we have

f(P) = f(P,P) ≥ f(V, V ) = f(d).

Part 3 is an immediate corollary of part 1. For part 4, we use Lemma 7

such that for each A′ ∈ A and B′ ∈ B, there is an i corresponding to the pair

(A′, B′) with εi = |A′||B′|
|A||B| and xi = d(A′, B′), and we let a =

∑
i εixi = d(A,B),

β = 1/10, and I be the set of i such that xi ≤ α ≤ βa. Since A is a partition

of A and B is a partition of B, the sum of all εi is 1. By the definition of an

(α, c, t)-shattering, we have
∑
i∈I εi ≥ c. We conclude that

f(A,B) =
|A||B|
|V |2

∑
i

εif(xi)

≥ |A||B|
|V |2

(f(a) + ca(1− β + f(β))) ≥ f(A,B) +
c

2

e(A,B)

|V |2
. �

The next lemma shows how to refine a partition into not too many parts

so that almost all vertices are in parts of the same size, and the remaining

vertices are in parts of smaller size.

Lemma 9. Suppose Q is a partition of a set V of size n into at most k

parts and υ > 0. Then there is a refinement Q′ of Q into at most (2υ−1 + 1)k

parts and a number r such that all parts have size at most r, and all but at

most υn vertices are in parts of size r.

Proof. If k > υn, then let r = 1 and Q′ be the partition of V into parts of

size 1. Otherwise, let r = bυn/kc. Refine each part in Q into parts of size r,

with possibly one remaining part of size less than r. The number of parts is at

most n/r + k ≤ (2υ−1 + 1)k. The number of vertices in parts of size less than

r is at most kr ≤ υn. �

The next lemma allows us to refine a vertex partition of a graph with many

edge-disjoint copies of H but with relatively few (total) copies of H so that

the mean entropy density increases significantly, while the number of parts is

roughly one exponential larger.

Lemma 10. Let H be a graph on h vertices. Suppose G = (V,E) is a

graph on n vertices, whose edge set can be partitioned into ε0n
2 copies of H .
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Let n0 ≤ ε0
4 n be a positive integer and P be a partition of V into at most T

parts with all parts of size at most n0, and all but at most ε0
8 n vertices in parts

of size n0. Suppose further that G has at most 2−(40/ε0)
h2

T−hnh copies of H .

Let f(x) = x log x for x > 0 and f(0) = 0. Then there is a refinement P ′ of P

with at most sT parts with s = 22
(50/ε0)

h2

, such that f(P ′) ≥ f(P) + ε0
4h2

and

all but at most ε0
8 n vertices are in parts of equal size, and all other parts are

of smaller size.

Proof. We refine the partition P as follows. Let α = ε0/20, c = h−2, and

t = 22
(2/α)h

2

. For every pair Pi, Pj ∈ P of distinct parts each of size n0 for

which there is an (α, c, t)-shattering of (Pi, Pj), let Pij denote the partition of Pi
and Pji denote the partition of Pj in an (α, c, t)-shattering of the pair (Pi, Pj).

For each i, let Pi be the partition of Pi which is the common refinement of

all partitions Pij , so Pi has at most tT parts. Let Q be the partition of V

consisting of all parts of the partitions Pi. As each of the at most T parts of

P is refined into at most tT parts, the number of parts of Q is at most TtT .

Let G′ be the subgraph of G obtained by deleting edges which are inside

parts of P, contain a vertex in a part of P of size not equal to n0, or go between

parts of P with density less than ε0/2. The number of edges inside parts is

at most nn0/2 ≤ ε0n
2/8. As all but at most ε0

8 n vertices are in parts of size

n0, the number of edges containing a vertex in a part of size not equal to n0 is

at most ε0
8 n

2. The number of edges between parts of density less than ε0/2 is

at most (ε0/2)n2/2 ≤ ε0n
2/4. So the number of edges of G deleted to obtain

G′ is at most ε0n
2/8 + ε0n

2/8 + ε0n
2/4 = ε0n

2/2. Hence, G′ contains at least

ε0n
2 − ε0n2/2 = ε0n

2/2 edge-disjoint copies of H. Each copy of H in G′ has

its vertices in different parts each of size n0, and its edges go between parts

with density at least ε0/2. As every part of P has size at most n0 and there

are T parts, n0 ≥ n/T . Note that the number of copies of H in G is at most

2−(40/ε0)
h2

T−hnh = dh(n/T )h ≤ dhnh0 . For each copy of H in G′, by Lemma 5,

at least one of its edges goes between parts which are (α, c, t)-shattered. Hence,

the number of edges of G which are between parts of size n0 with density at

least ε0
2 = 10α between them and which are (α, c, t)-shattered is at least the

number of edge-disjoint copies of H in G′, which is at least ε0n
2/2.

By Lemma 8, parts 1 and 4, we have

f(Q) ≥ f(P) +
∑

(Pi,Pj)

c

2

e(Pi, Pj)

n2
≥ f(P) +

c

2

ε0n
2/2

n2

≥ f(P) + cε0/4 = f(P) +
ε0

4h2
,

where the sum is over all pairs (Pi, Pj) of parts of P of size n0 with i < j and

density at least ε0
2 = 10α between them that are (α, c, t)-shattered.
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By Lemma 9 with υ = ε0
8 , there is a refinement P ′ of Q into at most

(2υ−1 + 1)|Q| ≤ (16ε−10 + 1)TtT ≤ 17ε−10 TtT ≤ sT

parts, such that all but at most ε0
8 n vertices are in parts of equal size, and all

other parts are of smaller size. By Lemma 8, part 3, we have f(P ′) ≥ f(Q) ≥
f(P) + ε0

4h2
, which completes the proof. �

We now have the necessary lemmas for the proof of Theorem 1.

Proof of Theorem 1. Suppose for contradiction that there is a graph G on

n vertices with at most δnh copies of H and for which εn2 edges need to be

removed from G to make it H-free. Let G′ be a subgraph of G which consists

of the union of a maximum collection of edge-disjoint copies of H in G. As the

removal of the edges of G′ from G leaves an H-free subgraph of G, the graph

G′ has at least εn2 edges. Let ε0n
2 denote the number of edge-disjoint copies

of H in G′, so e(G′) = e(H)ε0n
2.

As there is at least one and at most δnh copies of H, we have n ≥ δ−1/h.

Let P0 be an arbitrary partition V = V1 ∪ · · · ∪ Vk of the vertex set of G′

into parts of size n0 = d ε08 ne, except possibly one remaining set of size less

than ε0
8 n. The number p0 of parts of P0 is at most 8ε−10 + 1 ≤ 5h2ε−1. By

Lemma 8, part 2, we have f(P0) ≥ f(d) = d log d, where d = 2e(G′)/n2 ≥ 2ε.

We repeatedly apply Lemma 10 to obtain a sequence of partition refinements

P0,P1, . . . , and we let pi denote the number of parts of Pi. Once we have the

partition Pi, as long as δ ≤ 2−(40/ε0)
h2

p−hi , we can apply Lemma 10 to obtain a

refinement Pi+1 of Pi. After i iterations, f(Pi) ≥ f(P0) + i ε0
4h2

and pi ≤ spi−1 ,

where s = 22
(50/ε0)

h2

. Roughly, at each iteration the number of parts is one

exponential larger than in the previous iteration. As δ−1 is a tower of twos

of height 5h4 log ε−1, this process continues for at least i0 := d4h4 log ε−1e
iterations. Also using the inequalities h2ε0 > 2e(H)ε0 = d and d ≥ 2ε, we

have

f(Pi0) ≥ f(P0) + i0
ε0

4h2
≥ d log d+

Ä
4h4 log ε−1

ä ε0
4h2

= d log d+ h2ε0 log ε−1 > d log(d/ε) > 0,

which contradicts that f applied to any partition is nonpositive. �

5. Concluding remarks

We gave a new proof of the graph removal lemma with an improved bound.

Below we discuss improved bounds for several variants of the graph removal

lemma and finish with some open problems.



A NEW PROOF OF THE GRAPH REMOVAL LEMMA 575

Removing homomorphisms. There is a seemingly stronger variant of the

graph removal lemma mentioned in [7] which we refer to as the homomorphism

removal lemma. It states that for every graph H on h vertices and every ε > 0,

there is δ > 0 such that if G is a graph on n vertices with at most δnh copies of

H, then εn2 edges of G can be removed to obtain a graph G′ for which there

is no homomorphism from H to G′. It is rather straightforward to obtain this

result from Szemerédi’s regularity lemma. However, one can further show that

the δ in the homomorphism removal lemma is closely related to the δ in the

graph removal lemma, and thus Theorem 1 implies a similar improved bound

in the homomorphism removal lemma. The proof of this fact is quite simple,

so we only sketch it below.

Suppose G is a graph on n vertices which has at most δnh copies of H. A

homomorphic image of a graph H is a graph F for which there is a surjective

homomorphism from H to F . As each homomorphic image of H has at most

|H| vertices, the number of homomorphic images of H is finite. Notice that

to remove all homomorphisms from H to G, it suffices to remove all copies of

homomorphic images of H in G. If there are few copies in G of each homo-

morphic image of H, then by the graph removal lemma we can remove few

edges and remove all homomorphisms from H to G. So there must be a ho-

momorphic image F of H for which there are many copies of F in H, say cnk

with c > δh
−h

, where k is the number of vertices of F . Let f be a surjective

homomorphism from H to F , and for each vertex i of F , let ai denote the

number of vertices of H which map to vertex i in f . The blow-up F (a1, . . . , ak)

of F is the graph obtained from F by replacing each vertex i by an indepen-

dent set Ii of order ai, and a pair of vertices in different parts Ii and Ij are

adjacent if and only if i and j are adjacent in F . Note that H is a subgraph of

the blow-up F (a1, . . . , ak). Let S denote the set of sequences (v1, . . . , vk) of k

vertices of G which form a copy of F with vi the copy of vertex i. If A1, . . . , Ak
are vertex subsets of G with |Ai| = ai and all k-tuples in A1× · · · ×Ak belong

to S, then these vertex subsets form a copy of F (a1, . . . , ak) in G, and hence

also make a copy of H in G. As G has cnk copies of F , a simple convexity

argument as in [8] shows that if c � n−1/(a1···ak), then S contains at least

(1− o(1))ca1···akna1+···+ak = (1− o(1))ca1···aknh k-tuples of disjoint vertex sub-

sets (A1, . . . , Ak) with |Ai| = ai and A1 × · · · × Ak ⊂ S. Thus, G contains at

least

(1− o(1))ca1···aknh ≥ (1− o(1)δ(3
1/3/h)hnh ≥ h!δnh

labeled copies of H, where we use a1 · · · ak ≤ 3h/3 as a1, . . . , ak are positive

integers which sum to h, and c > δh
−h

. This contradicts G has at most δnh

copies of H.
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Directed, colored, and arithmetic removal lemmas. The directed graph

removal lemma, proved by Alon and Shapira [3], states that for each directed

graph H on h vertices and ε > 0 there is δ = δ(ε,H) > 0 such that every

directed graph G = (V,E) on n vertices with at most δnh copies of H can be

made H-free by removing at most εn2 edges. The proof of Theorem 1 can be

slightly modified to obtain a similar bound as in Theorem 1 for the directed

graph removal lemma. The proof begins by finding a subgraph G′ of G which

is the disjoint union of ε′n2 copies of H, with ε′ ≥ 2h−2ε. There is a partition

V = V1∪ · · ·∪Vh with at least h−hε′n2 edge-disjoint copies of H with the copy

of vertex i in Vi. Indeed, in a uniform random partition into h parts, each copy

of H has probability h−h that its copy of vertex i lies in Vi for all i ∈ [h]. We

then let G′′ be the subgraph of G′ which consists of the union of these at least

2h−h−2εn2 edge-disjoint copies of H. The proof of the directed graph removal

lemma is then essentially the same as the proof of Theorem 1, except we start

with the partition V = V1 ∪ · · · ∪ Vh and refine it further at each step.

There is also a colored graph removal lemma. For each ε > 0 and positive

integer h, there is δ = δ(ε,H) > 0 such that if φ : E(H) → [k] is a k-edge-

coloring of the edges of a graph H on h vertices, and ψ : E(G) → [k] is a

k-edge-coloring of the edges of a graph G on n vertices such that the number

of copies of H with coloring φ in the coloring ψ of G is at most δnh, then one

can remove all copies of H with coloring φ by deleting at most εn2 edges of G.

We can also obtain a similarly improved bound on the colored graph removal

lemma, and the proof is identical to the proof of the directed graph removal

lemma.

Green [16] developed an arithmetic regularity lemma and used it to deduce

an arithmetic removal lemma. It states that for each ε > 0 and integer m ≥ 3

there is δ > 0 such that if G is an abelian group of order N , and A1, . . . , Am
are subsets of G such that there are at most δNm−1 solutions to the equation

a1 + · · ·+ am = 0 with ai ∈ Ai for all i, then it is possible to remove at most

εN elements from each set Ai so as to obtain sets A′i for which there are no

solutions to a′1+ · · ·+a′m = 0 with a′i ∈ A′i for all i. Like Szemerédi’s regularity

lemma, the bound on δ−1 grows as a tower of twos of height polynomial in

ε−1. Green’s proof of the arithmetic regularity lemma relies on techniques

from Fourier analysis and does not extend to nonabelian groups. Král, Serra,

and Vena [19] found a new proof of Green’s removal lemma using the directed

graph removal lemma which extends to all groups. They proved that for each

integer m ≥ 3 and ε > 0 there is δ > 0 such that the following holds. Let G be

a group of order N , A1, . . . , Am be sets of elements of G, and g be an arbitrary

element of G. If the equation x1x2 · · ·xm = g has at most δNm−1 solutions

with xi ∈ Ai for all i, then there are subsets A′i ⊂ Ai with |Ai \ A′i| ≤ εN

such that there is no solution to x1x2 · · ·xm = g with xi ∈ A′i for all i. Their
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proof relies on the removal lemma for directed cycles, and we thus obtain a

new bound for this removal lemma as well.

Further directions. Alon [2] showed that the largest possible δ(ε,H) in

the graph removal lemma has a polynomial dependency on ε if and only if H

is bipartite. For nonbipartite H, he showed that there is c = c(H) > 0 such

that δ(ε,H) < (ε/c)c log(c/ε). Note that this upper bound is far from the lower

bound provided by Theorem 1, and it would be extremely interesting to close

the gap. Similarly, Alon and Shapira [3] determined for which directed graphs

H the function δ(ε,H) in the directed graph removal lemma has a polynomial

dependency on ε. It is precisely when the core of H, which is the smallest

subgraph K of H for which there is a homomorphism from H to K, is an

oriented tree or a directed cycle of length 2. A similar bound also holds for

Green’s removal lemma. All of the superpolynomial lower bounds are based

on variants of Behrend’s construction [4] giving a large subset of the first n

positive integers without a three-term arithmetic progression.

A great deal of research has gone into proving a hypergraph analogue of the

removal lemma [13], [14], [20], [21], [30], leading to new proofs of Szemerédi’s

theorem and some of its extensions. Using a colored version of the hypergraph

removal lemma, Shapira [25] and independently Král, Serra, and Vena [18]

proved a conjecture of Green establishing a removal lemma for systems of

linear equations. It would be interesting to find new proofs of these results

without using any version of the regularity lemma.
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[12] , A new proof of Szemerédi’s theorem, Geom. Funct. Anal. 11 (2001),

465–588. MR 1844079. Zbl 1028.11005. doi: 10.1007/s00039-001-0332-9.

[13] , Quasirandomness, counting and regularity for 3-uniform hypergraphs,

Combin. Probab. Comput. 15 (2006), 143–184. MR 2195580. Zbl 1082.05081.

doi: 10.1017/S0963548305007236.

[14] , Hypergraph regularity and the multidimensional Szemerédi theorem,
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Bolyai Soc. Math. Stud. 2, János Bolyai Math. Soc., Budapest, 1996, pp. 295–352.

MR 1395865. Zbl 0851.05065.

[18] D. Král, O. Serra, and L. Vena, A removal lemma for systems of linear

equations over finite fields, Isreal J. Math., to appear.

[19] , A combinatorial proof of the removal lemma for groups, J. Combin.

Theory Ser. A 116 (2009), 971–978. MR 2513645. Zbl 1209.05261. doi: 10.

1016/j.jcta.2008.12.003.

http://www.ams.org/mathscinet-getitem?mr=0975526
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0661.05037
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0661.05037
http://dx.doi.org/10.1016/0012-365X(88)90196-3
http://www.ams.org/mathscinet-getitem?mr=0932119
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0593.05038
http://dx.doi.org/10.1007/BF01788085
http://dx.doi.org/10.1007/BF01788085
http://www.ams.org/mathscinet-getitem?mr=0726456
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0529.05027
http://dx.doi.org/10.1007/BF02579292
http://dx.doi.org/10.1007/BF02579292
http://www.ams.org/mathscinet-getitem?mr=1675099
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1065.68575
http://dx.doi.org/10.1145/285055.285060
http://www.ams.org/mathscinet-getitem?mr=1445389
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0876.05053
http://dx.doi.org/10.1007/PL00001621
http://dx.doi.org/10.1007/PL00001621
http://www.ams.org/mathscinet-getitem?mr=1826250
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0989.01020
http://www.ams.org/mathscinet-getitem?mr=1844079
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1028.11005
http://dx.doi.org/10.1007/s00039-001-0332-9
http://www.ams.org/mathscinet-getitem?mr=2195580
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1082.05081
http://dx.doi.org/10.1017/S0963548305007236
http://www.ams.org/mathscinet-getitem?mr=2373376
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1159.05052
http://dx.doi.org/10.4007/annals.2007.166.897
http://dx.doi.org/10.4007/annals.2007.166.897
www.dpmms.cam.ac.uk/�wtg10/papers.html
http://www.ams.org/mathscinet-getitem?mr=2153903
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1160.11314
http://dx.doi.org/10.1007/s00039-005-0509-8
http://www.ams.org/mathscinet-getitem?mr=1395865
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0851.05065
http://www.ams.org/mathscinet-getitem?mr=2513645
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1209.05261
http://dx.doi.org/10.1016/j.jcta.2008.12.003
http://dx.doi.org/10.1016/j.jcta.2008.12.003


A NEW PROOF OF THE GRAPH REMOVAL LEMMA 579
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[21] V. Rödl and J. Skokan, Regularity lemma for k-uniform hypergraphs, Random

Structures Algorithms 25 (2004), 1–42. MR 2069663. Zbl 1046.05042. doi: 10.

1002/rsa.20017.

[22] K. F. Roth, On certain sets of integers, J. London Math. Soc. 28 (1953), 104–

109. MR 0051853. Zbl 0050.04002. doi: 10.1112/jlms/s1-28.1.104.

[23] R. Rubinfeld and M. Sudan, Robust characterizations of polynomials

with applications to program testing, SIAM J. Comput. 25 (1996), 252–271.

MR 1379300. Zbl 0844.68062. doi: 10.1137/S0097539793255151.
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