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First cohomology groups of Chevalley
groups in cross characteristic

By Robert M. Guralnick and Pham Huu Tiep

Abstract

Let G be a simple Chevalley group defined over Fq. We show that if r

does not divide q and k is an algebraically closed field of characteristic r,

then very few irreducible kG-modules have nonzero H1(G,V ). We also give

an explicit upper bound for dimH1(G,V ) for V an irreducible kG-module

that does not depend on q, but only on the rank of the group. Cline,

Parshall and Scott showed that such a bound exists when r|q. We obtain

extremely strong bounds in the case that a Borel subgroup has no fixed

points on V .

1. Introduction

Let G be a finite group with k an algebraically closed field of characteris-

tic r. Let V be an irreducible kG-module that is faithful as a G-module (we

will abuse notation and say that V is a faithful kG-module).

We are interested in how largeH1(G,V ) can be. These cohomology groups

are critical to understanding primitive permutation groups as well as the mod-

ule structure of indecomposable modules.

In 1985, the first author [Gur86] made the rather optimistic conjecture:

Conjecture 1.1. There exists an absolute constant C such that if G is a

finite group and V is an irreducible faithful kG-module, then dimH1(G,V )≤C .

Indeed, the original conjecture was with C = 2. While there were some

weak results obtained about dimH1, very little progress toward the conjecture

was made. There have been some examples constructed with dimH1(G,V ) = 3

(in particular, see [Sco03] with examples for arbitrarily large characteristic
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and [BW08] for examples in characteristic 2). However, in the last few years,

there have been some breakthroughs. In particular, Cline, Parshall and Scott

[CPS09, Thms. 7.3, 7.10] proved:

Theorem 1.2. Let G be either a simple algebraic group or a finite simple

group of Lie type over a field of characteristic r. Let k be an algebraically

closed field of characteristic r. If V is an irreducible kG-module, then there is

a constant C such that dimH1(G,V ) < C where C depends only on the rank

of G.

This result depends on the fact that Lusztig’s conjecture holds in suffi-

ciently large characteristics as well as many other deep results about algebraic

groups and the relationship between cohomology of algebraic groups and coho-

mology of finite groups of Lie type. In particular, our conjecture implies that

there are bounds on certain coefficients of the Kazhdan-Lusztig polynomials.

The general problem reduces to the case of simple groups (see [AS85,

Th. 3] or [GKKL07, Lemma 5.2]). We then use the classification of finite

simple groups. In this paper, we consider the finite simple Chevalley groups.

We consider the Chevalley groups to include all the finite simple groups of

Lie type including the twisted variations of Steinberg, Suzuki and Ree. See

[GLS98, Chap. 2] and [Car89] for the basic facts about Chevalley groups, in-

cluding the structure of the twisted groups and root subgroups. We consider

cross characteristic modules (i.e. modules over fields of characteristic differ-

ent from the natural characteristic of the Chevalley group). Thus, our results

are complementary to those in [CPS09] (and our methods are almost totally

disjoint as is to be expected).

So let k be an algebraically closed field of characteristic r, and let G be

a finite simple Chevalley group over Fq with (r, q) = 1. We prove the same

type of result as Theorem 1.2 (but with explicit, albeit almost certainly not

best possible, bounds). Indeed, we prove much more — we show that there are

very few irreducible kG-modules with nonzero H1 and that
∑

dimH1(G,V )

is bounded (in terms of the Weyl group of G) — here the sum is over all ir-

reducible kG-modules. See [CPS99, Thms. 10.2, 10.5] for a weak version (in

particular, there are no explicit bounds) of some of these results for r suffi-

ciently large and G = GLn(q) or SLn(q) using completely different methods.

Here is a summary of our main results. Let B be a Borel subgroup of G,

with unipotent radical Q, and let W be the Weyl group of G. The permutation

module L := kGB will play a key role in our considerations. We denote by

Irrk(G) the set of isomorphism classes of irreducible kG-modules. Let e denote

the twisted rank of G. (If G is an untwisted group, this is just the rank

of the ambient group. In general, it is the number of orbits of the graph

automorphism used in defining the group on the nodes of the Dynkin diagram.
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Alternatively, it is the rank of a maximal torus of the Borel subgroup as an

abelian group as long as q is sufficiently large.) If V is an H-module, let V H

denote the fixed point subspace of H on V ; furthermore, if H ≤ G, then V G
H

denotes the corresponding induced module.

Theorem 1.3. Let V be an irreducible kG-module.

(i) If V is not a composition factor of L, then H1(G,V ) = 0.

(ii) If V B = 0, then dimH1(G,V ) ≤ 1 and there are at most four distinct

such modules with H1(G,V ) 6= 0.

(iii) There are at most |W | isomorphism classes of irreducible kG-modules

V with V B 6= 0, and∑
V ∈ Irrk(G)

dimV B · dimH1(G,V ) ≤ |W |+ e.

(iv) dimH1(G,V ) ≤ |W |+ e.

Note that the number of irreducible kG-modules goes to ∞ as q grows.

Thus, for large q, we see that almost every irreducible kG-module has triv-

ial H1.

Combining our theorem with Theorem 1.2 gives:

Theorem 1.4. Let G be a finite simple Chevalley group whose underlying

algebraic group has rank f . Let V be an irreducible KG-module where K is an

algebraically closed field of arbitrary characteristic. Then there is a function

C(f) such that dimH1(G,V ) ≤ C(f).

Thus, even if Conjecture 1.1 is false, an obviously very important problem

is to study the growth of C(f).

There is a version of the previous theorem for any finite group. As Tits has

suggested, let us view the alternating group An as a Chevalley group of rank

n− 1 over the field of 1 element. Using Theorem 1.4, the reduction theorems

in [AS85, Th. 3] or [GKKL07, Lemma 5.2] and the fact there are only finitely

many sporadic simple groups, we immediately obtain:

Corollary 1.5. Let the function C(f) satisfy the conclusion of Theo-

rem 1.4. Then there is an absolute constant C such that, if G is any finite

group, K is any algebraically closed field and V is any faithful irreducible KG-

module, then one of the following holds :

(i) dimH1(G,V ) < C ;

(ii) G has a normal subgroup that is a direct product of copies of a simple

Chevalley group of rank f and dimH1(G,V ) ≤ C(f).

These results lead naturally to the question of what one can say about

higher cohomology groups. In more recent papers [PS11], [PS], Parshall and
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Scott have obtained results about Ext and higher cohomology groups in the

context of algebraic and quantum groups (with applications to the finite groups

of Lie type). See [GKKL07, §12] for some results and questions for higher

cohomology groups for general finite groups. We refer the reader to [AG84],

[GH98] for some weaker results about H1(G,V ) that give bounds in terms of

dimV . See [KW84] for a nice application of those bounds.

The paper is organized as follows. We first show that if V is an irreducible

kG-module and V is not a composition factor of L, then H1(G,V ) = 0. We

then obtain bounds for those irreducible kG-modules with V B 6= 0 (equiva-

lently those in soc(L)). Next, we analyze L completely for the rank 1 groups.

This is used to prove (ii) of Theorem 1.3.

We thank the referee for his/her very careful reading of the manuscript

and various suggestions which we feel have significantly improved the paper.

2. Modules not involved in L = kGB

Let G be a Chevalley group defined over Fq with Borel subgroup B. Let

r be a prime not dividing q and let k be an algebraically closed field of char-

acteristic r. Let L := kGB .

We first show that most kG-modules have trivial H1. Let L0 be the unique

submodule of L of codimension 1 (i.e. the “augmentation” submodule).

We begin with the following trivial observation.

Lemma 2.1. Let A := Or′(B). For any kB-module V , the following state-

ments are equivalent :

(i) V B 6= 0;

(ii) B has trivial composition factors on V ;

(iii) V A 6= 0;

(iv) (V ∗)B 6= 0.

Proof. Obviously, (i) implies (ii), and (ii) implies (iii) as A acts coprimely

on V . Next, the r-group B/A acts on the k-space V A and so (iii) implies (i).

Also, V A 6= 0 if and only if (V ∗)A 6= 0 (since r does not divide |A|.) Thus,

(i)–(iii) hold for V if and only if they hold for V ∗, whence (iv) is equivalent

to (iii). �

Theorem 2.2. Let V be an irreducible kG-module with V B = 0. Then

dimH1(G,V ) is the multiplicity of V in head(L0).

By duality, this is also the multiplicity of V ∗ in soc(L/LG) ∼= head((L0)∗).

Before proving the theorem, we point out a corollary:

Corollary 2.3. Let V be an irreducible kG-module. If V is not a com-

position factor of L, then H1(G,V ) = 0.
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Proof. If V is not a composition factor of L, then V B = 0. If V B = 0

and H1(G,V ) 6= 0, then the previous result indicates that V is a composition

factor of L. �

Proof of Theorem 2.2. Since V B = 0 , by Lemma 2.1 we have V Or′ (B) = 0,

whence H1(B, V ) = 0 (in the semidirect product V B any complement B1 to

V will be the normalizer of Or′(B1) and by the Schur-Zassenhaus theorem,

Or′(B1) and Or′(B) are conjugate — this also follows by the Hochschild-Serre

sequence).

Suppose that H1(G,V ) is d-dimensional. By duality, it suffices to show

that V ∗ occurs with multiplicity d in soc(L/LG).

Since V B = (V ∗)B = 0, by Frobenius reciprocity, V ∗ does not embed in

soc(L).

Choose a module Y of maximal dimension such that 0→ kd→Y →V ∗→ 0

is indecomposable. Note that d = dim Ext1
G(V ∗, k) = dimH1(G,V ). Also note

that Y is uniquely determined (indeed Y = D∗ where D := Der(G,V ) is the

space of derivations of G into V ).

It follows that dim HomB(Y, k) = d (since Y ∼= V ∗ ⊕ kd as B-modules

and HomB(V ∗, k) = 0). So by Frobenius reciprocity, HomG(Y,L) is also d-

dimensional. If f ∈ HomG(Y,L) is nonzero, then f cannot vanish on kd (since

otherwise the image of f would be isomorphic to V ∗ and contained in soc(L),

a contradiction). Thus, Ker(f) is a hyperplane in kd and so the image of f(Y )

in soc(L/LG) embeds in V ∗.

Consider the natural map φ : HomG(Y,L) → HomG(Y,L/LG). If 0 6=
f ∈ Ker(φ), then f(Y ) = LG. However, by indecomposability, k is not a

homomorphic image of Y . Thus, φ is an injection. Together with the previous

paragraph, this implies that V ∗ has multiplicity at least d in soc(L/LG). Since

Y surjects onto any nonsplit module N with 0 → k → N → V ∗ → 0, we

see that φ is surjective as well. Thus, if V ∗ occurs with multiplicity m in

soc(L/LG), then m = dim HomG(Y,L) = d. �

3. Composition factors of kGB and modules with V B 6= 0

Keep notation as in the previous section. Let Q be the unipotent radical

of B, T a maximal torus of B (so B = QT ), and let W be the Weyl group of

G (generically, W = NG(T )/T ).

The following proposition is crucial for our considerations:

Proposition 3.1. For any irreducible kG-module V , set

fB(V ) := dim(V B), fQ(V ) := dim(V Q),

and let mL(V ) be the multiplicity of V as a composition factor of L. Then the

following statements hold :
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(i) dimLB = dimLQ = |W |.
(ii) XQ = XB for any submodule X of L.

(iii) mL(V ) ≥ fB(V ).

(iv)
∑
V ∈Irrk(G)mL(V ) · fB(V ) ≤∑

V ∈Irrk(G)mL(V ) · fQ(V ) = |W |.

(v) If dim(V Q) = d > 0, then mL(V ) ≤ |W |/d ≤ |W |.
(vi) mL(k) ≤∑

V ∈Irrk(G), V B 6=0mL(V ) ≤ |W |.

Proof. Note that G = ∪w∈WBwB. Now B = QT , whence BwB =

QTwB = QwB. Thus, Q and B each have |W | orbits on G/B and so

dim(LQ) = dim(LB) = |W |. It follows that XQ = XB for any submodule

X of L.

By Frobenius reciprocity, HomG(L, V ) ∼= HomB(k, V ) ∼= V B, whence (iii)

holds. The first inequality of (iv) is obvious. Since Q has order coprime to

char(k), |W | = dim(LQ) =
∑
V ∈Irrk(G)mL(V ) · fQ(V ), yielding (iv). The next

two statements are immediate consequences of (iv). �

Corollary 3.2. Let X be a submodule of L. Then dimH1(G,X) ≤
|W |+ e′, where e′ is the r-rank of B/Q and is at most the twisted rank e of G.

Proof. Start with the short exact sequence 0→ X → L → L/X → 0. The

long exact sequence in cohomology gives

0→ H0(G,X)→ H0(G,L)→ H0(G,L/X)→ H1(G,X)→ H1(G,L).

Note that H1(G,L) ∼= H1(B, k) has dimension e′ ≤ e. By the previous result,

H0(G,L/X) ≤ |W |. Thus, dimH1(G,X) ≤ |W |+ e′. �

Corollary 3.3.
∑
V ∈Irrk(G) fB(V ) · dimH1(G,V ) ≤ |W |+ e. In partic-

ular, ∑
V ∈Irrk(G), V B 6=0

dimH1(G,V ) ≤ |W |+ e,

and

dimH1(G,V ) ≤ |W |+ e

fQ(V )

if V B 6= 0.

Proof. Consider X := soc(L). Then V ∈ Irrk(G) embeds in X if and only

if (V ∗)B 6= 0, which is equivalent to V B 6= 0 by Lemma 2.1. By Proposition 3.1

and Frobenius reciprocity, the multiplicity mX(V ) of V as a composition factor

of X equals

mX(V ) = dim(V ∗)B = dim(V ∗)Q = dimV Q = fQ(V ) = dimV B = fB(V ).

Thus X ∼= ⊕V ∈Irrk(G)fB(V ) · V . Now apply Corollary 3.2 to X. �
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One can show that G has exactly |W | isomorphism classes of irreducible

kG-modules V with V B 6= 0 precisely when G has rank 1 and r is coprime to

[G : B]. In fact, under some mild conditions on r, Geck [Gec06] has shown that

there is a canonical injection of the set of isomorphism classes of irreducible

kG-modules with V B 6= 0 into Irr(W ).

4. Rank 1 groups

We are interested in the submodule structure of the module L := kGB ,

where G is a finite group of Lie type of (twisted) rank 1 and B a Borel subgroup

of G, with unipotent radical Q. In this case, the permutation action of G on

Ω := G/B is doubly transitive. One can identify L with kΩ and consider the

G-submodules

J := 〈
∑
ω∈Ω

ω〉 ∼= k, J⊥ :=

{∑
ω∈Ω

aωω | aω ∈ k,
∑
ω∈Ω

aω = 0

}
.

Then the heart of L is defined to be H := J⊥/(J ∩ J⊥).

First we recall some well-known facts.

Lemma 4.1. (i) Assume r|[G : B], equivalently, J ⊆ J⊥. Then any

nontrivial composition factor M of L has no nonzero Q-fixed points, and the

socle and the head of L are simple and trivial.

(ii) Assume the heart H of L is simple. Then the only submodules of L
are 0, J , J⊥, and L. Furthermore, one of the following holds :

(a) (r, [G : B]) = 1 and L ∼= J ⊕H;

(b) r|[G : B] and L is uniserial with composition factors k, H, k (in that

order).

(iii) Assume the heart H of L is not simple. Then r = 2 (and q is odd) if

G = PSL2(q), r|(q2 + 1) if G = 2B2(q), r|(q3 + 1) if G = 2G2(q), and r|(q+ 1)

if G = SU3(q).

Proof. (i) Note that the permutation module CΩ affords the character

1G + St, where St is the Steinberg character of G, and furthermore, [StQ, 1Q]Q
= 1. Since Q acts coprimely on L, we get dimLQ = 2. Also, L has the

filtration 0 ⊂ J ⊂ J⊥ ⊂ L, and J ∼= L/J⊥ ∼= k, whence HQ = 0. Now, if

M is a nontrivial composition factor of L, then we may assume that M is a

subquotient of H, and so MQ = 0.

Next, since L is self-dual and soc(L) ⊇ J , it suffices to prove that any

simple submodule M of L must equal J . Assume the contrary: M 6= J .

Now, 0 6= HomG(M,L) ∼= HomB(M,k) implies that 0 6= HomQ(M,k), and so

MQ 6= 0. By the above, M ∼= k, soc(L) ⊇ k ⊕ k, and so

2 ≤ dim HomG(k,L) = dim HomB(k, k) = 1,

a contradiction.
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(ii) In the case of (a), J ∩J⊥ = 0 and H ∼= J⊥ ∼= L/J , whence L ∼= J⊕H.

Next, (b) follows from (i).

(iii) is recorded in [Mor80, Table 1]. �

Lemma 4.2. Assume r divides |G| but not |B|, and the Sylow r-subgroups

of G are cyclic. Then L is uniserial, with simple, trivial, socle and head. Fur-

thermore, MQ=0 for each nontrivial composition factor M of the G-module L.

Proof. The assumptions imply that L is projective. By Lemma 4.1(i),

soc(L) ∼= head(L) ∼= k, so L is a projective cover of the trivial kG-module k.

Next, let D be a defect group of the principal block B0 of G, D1 the unique

subgroup of order r of D, N := NG(D1), and b the unique kN -block with

bG = B0. Then the Green correspondence (G,B0) → (N, b) sends the trivial

kG-module k to the trivial kN -module; in particular, the Green correspondent

of k has composition length 1. Hence [Pea75, theorem, pp. 234–236] implies

that the projective covers of k are uniserial. �

4.1. PSL2(q). In this case, Lemmas 4.1 and 4.2 imply that L has the

following structure, where V , V1, V2 are certain simple kG-modules:

• L = k ⊕ V if (r, q + 1) = 1;

• L is uniserial of length 3 with composition factors k, V , k, if G = PSL2(q)

and 2 < r|(q + 1), or if G = PGL2(q) and r|(q + 1);

• L has socle series

k

V1 ⊕ V2

k

if G = PSL2(q) and r = 2|(q + 1).

4.2. 2B2(q), q = 22a+1 ≥ 8. Here, L has the following structure where V

and U 6∼= U∗ are simple, and dimU = (q − 1)
»
q/2:

• L = k ⊕ V if (r, q2 + 1) = 1;

• L is uniserial of length 3 with composition factors k, V , k, if r|(q−
√

2q+1);

• L is uniserial of length 5 with composition factors k, U , V , U∗, k (in this

order), if r|(q +
√

2q + 1).

Indeed, by Lemma 4.2, L is uniserial if r|(q2 + 1). Furthermore, the

Brauer tree for the principal block of G, and the possible structure of L/k as

a uniserial reduction modulo r of the Steinberg character St, are described in

[His93, Anhang D.1].

4.3. 2G2(q), q = 32a+1 ≥ 27. In this case, L has the following structure,

where V , U 6∼= U∗, M 6∼= M∗, T , are simple kG-modules:

• L = k ⊕ V if (r, q3 + 1) = 1;

• L is uniserial of length 3 with composition factors k, V , k, if r|(q−
√

3q+1);

• L is uniserial of length 5 with composition factors k, U , V , U∗, k (in this

order, and dimU = (q − 1)(q +
√

3q + 1)
»
q/12), if 2 < r|(q + 1);
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• L is uniserial of length 7 with composition factors k, M , U , V , U∗, M∗,

k (in this order, and dimU = (q − 1)(q −
√

3q + 1)
»
q/12, dimM =

(q2 − 1)
»
q/3), if r|(q +

√
3q + 1).

Indeed, by Lemma 4.2, L is uniserial if 2 < r|(q3 + 1). Again, in this case

we use the structure of the Brauer tree for the principal block of G as described

in [His93, Anhang D.2]:

• L has socle series

k

T

U ⊕ V ⊕ U∗
T

k

if r = 2, by [LM80, Prop. 3.8].

4.4. PSU3(q). In this case, L has the following structure, where V and U

are simple, and dimU = q(q − 1):

• L = k ⊕ V if (r, q3 + 1) = 1;

• L is uniserial of length 3 with composition factors k, V , k, if r divides

q3 +1 but not q+1. These first two cases follow from Lemmas 4.1 and 4.2.

• Assume G = PGU3(q), and either 2 < r|(q + 1), or r = 2 and q ≡
3(mod 4). Then L is uniserial of length 5 with composition factors k, U ,

M , U , k (in this order). Here, M is irreducible over PGU3(q), and a sum

of 1 or 3 irreducible PSU3(q)-modules, according to r 6= 3 or r = 3. This

case is analyzed in [His04, Th. 4.1].

• L has socle series

k

U⊕V
k

if r=2 and q≡1 (mod 4), by [Erd79, Lemma (4.2)].

Now we are ready to prove the main result of this section:

Theorem 4.3. Let G be one of the following rank 1 groups : PSL2(q),

PGL2(q), PSU3(q), PGU3(q), 2B2(q) with q ≥ 8, or 2G2(q) with q ≥ 27. Then

dimH1(G,V ) ≤ 1 for any irreducible kG-module V . Moreover, H1(G,V ) 6= 0

for at most two irreducible kG-modules.

Proof. 1) First we claim that H1(G, k) = 0 unless

(a) r = 2|(q + 1) and G = PGL2(q), or

(b) r = 3 and G = PGU3(2),

in which cases H1(G, k) ∼= k. Indeed, H1(G, k) ∼= Ext1
G(k, k). Let U be

any 2-dimensional kG-module with k as the unique composition factor (with

multiplicity 2). The action of G on U induces a group homomorphism f ∈
Hom(G, (k,+)) ∼= Hom(G/G′, (k,+)). The latter hom-space is 0 unless (a) or

(b) occurs. In the case of (a), r = 2 = |G/G′|. In the case of (b), r = 3 =

|G/G′|. (Note that G/G′ is a 2-group if G = PSL2(2) or PSU3(2), but here

r 6= 2.) In either case, the hom-space is 1-dimensional, and the claim follows.
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2) Next we assume that H1(G,V ) 6= 0 for some nontrivial V ∈ Irrk(G).

By Corollary 2.3, V is a composition factor of L = kGB .

Consider the case r|[G : B]. By Lemma 4.1(i), V B = 0; hence d :=

dimH1(G,V ) is just the multiplicity of V in head(L0) by Theorem 2.2. The

structure of head(L0) has already been described above. It follows that, if

G = PGL2(q) or PGU3(2) then V is unique (up to isomorphism) and d = 1.

In all other cases, d = 1 and there are at most two isomorphism classes for

such V .

Finally, we consider the case (r, [G : B]) = 1. By Lemma 4.1, L ∼= k ⊕H;

hence we may assume that V ∼= H and H1(G,V ) embeds in H1(G,L). But

H1(G,L) ∼= H1(B, k) has dimension e′ ≤ e = 1, where e′ is the r-rank of B.

It follows that H1(G,V ) is 1-dimensional, and V is unique in this case. �

Note that if G = 2B2(q), r|(q +
√

2q + 1) or 2G2(q), 2 < r|(q + 1)(q +√
3q + 1), then there is an irreducible kG-module V with H1(G,V ) 6= 0 but

H1(G,V ∗) = 0.

Also note that if G = PSL2(q) with r = 2|(q + 1) or PSU3(q) with r = 2,

q ≡ 1(mod 4), then there are two irreducible modules V with V B = 0 and

H1(G,V ) 6= 0. In fact, more generally if G = Sp2n(q) with q odd and r = 2,

then each of the two irreducible Weil modules of dimension (qn − 1)/2 has

1-dimensional H1.

5. Quasi-equivalence and duality

Let k be an algebraically closed field of characteristic r > 0 and G a group.

We say that two G-modules X and Y are quasi-equivalent if Y can be

obtained from X by a twist by an automorphism of G. If X is a kG-module,

we denote Xσ as the twist of X by σ (in particular if the character of X is χ,

then the character of Xσ is χ ◦ σ). Clearly, modules that are quasi-equivalent

have the same cohomology.

The next result will be very useful.

Lemma 5.1. Let G be a normal subgroup of a finite group H such that

every r′-element of G is conjugate to its inverse in H . If V is any irreducible

kG-module, then V and V ∗ are quasi-equivalent.

Proof. Note the hypothesis implies that any H-invariant semisimple kG-

module is self-dual. Consider M := V H
G . Then M is a semisimple kG-module,

where the simple summands are precisely all the twists of V by elements in

H/G. By our observation, M is a self-dual kG-module, and so both V and V ∗

are kG-summands of M . Hence the result follows. �

We have seen examples with H1(G,V ) 6= 0 and H1(G,V ∗) = 0. Note that

M11 provides another example.
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If G is a Chevalley group (or an algebraic group) in the same characteristic

as k, the dual of any irreducible module is quasi-equivalent. If G is finite, this

can be seen via the previous result because every semisimple element of G is

inverted by an automorphism of G. In the case G is an algebraic group, there is

always an automorphism τ of G which acts as inversion on a maximal torus T .

Thus, V ∗ ∼= V τ and so we see directly that V ∗ and V are quasi-equivalent.

If G is any finite classical group of simply connected type (no matter what

is the characteristic of k), then any irreducible kG-module is quasi-equivalent

to its dual. For it is again well known that every element of G is inverted by

an automorphism of G. For instance, every element of SLn(q) is conjugate to

its inverse via an element of GLn(q).〈τ〉 where τ is the transpose-inverse map.

We record the result we need in the next section.

Corollary 5.2. Let G = SLn(q). Every irreducible kG-module is quasi-

equivalent to its dual.

6. Modules with V B = 0

In this section we assume that G has twisted rank e > 1. Fix a Borel

subgroup B. We keep notation as above.

Let V be an irreducible kG-module with V B = 0. We will show that any

such irreducible has at most 1-dimensional H1, and moreover there are at most

four such modules (the example G = Sp4(q) with q odd and r = 2 show that

three is possible). In fact, in many cases we will see that there is at most one

such module.

A very easy case is the following:

Theorem 6.1. Let V be a kG-module with V B = 0. Let Pi, 1 ≤ i ≤ n,

denote the minimal parabolic subgroups of G containing B. If r does not divide

[Pi : B] for any i, then H1(G,V ) = 0.

Proof. Since V B = 0, it follows by Lemma 2.1 that V Or′ (B) = 0, whence

H1(B, V ) = 0. Since r does not divide [Pi : B] for any i, the restriction map

H1(Pi, V ) → H1(B, V ) is injective, whence H1(Pi, V ) = 0 for all i. Since

G = 〈P1, . . . , Pn〉, the result follows by [AG72] (or see [GK90]). �

We now give some examples of modules with H1(G,V ) 6= 0 and V B = 0.

This construction will be used in the proof of Theorem 6.6.

Remark 6.2. Let St denote the Steinberg module for QG in characteris-

tic 0. Note that St is a free rank 1 module for Q and so V Q is 1-dimensional.

It is well known that dimV B = 1 as well. Thus, St embeds in QG
B and we view

it as such. Let M be the standard permutation module for 1GB over Z. Then

L := St ∩M is a ZG-lattice in St with L a pure submodule of M .

Now reducing modulo r, we have a submoduleX of L withX the reduction

of L. Clearly, dimXQ = 1 and so X has exactly one composition factor Y
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with Y Q 6= 0. Since soc(X) ≤ soc(L), it follows by Frobenius reciprocity that

Y = soc(X). If P is a parabolic subgroup containing B with radical R, then

Y R is a reduction of the Steinberg module for P/R. So by induction and

inspection of the rank one cases, it follows that Y ∼= k if and only if r divides

[P : B] for every nontrivial parabolic subgroup P (and so it is enough to check

the minimal ones). See [His90, Th. A]. In particular, Ext1
G(Y,Z) 6= 0 for each

composition factor Z in soc(X/Y ). So if Y = k (i.e. r divides [Pi : B] for each

minimal parabolic Pi), we see that H1(G,Z∗) 6= 0 and ZB = (Z∗)B = 0.

Next, we have:

Lemma 6.3. Let P be a parabolic subgroup properly containing B with

radical R. Then LR ∼= ⊕w∈W0k
P
P∩BwR

∼= ⊕w∈W0k
P
B as kP -modules where W0

is a set of double coset representatives for P\G/B.

Proof. Let ∆ be a set of positive roots corresponding to the root system

which determines B. Recall that Q is the product of various root subgroups

Uβ, β a positive root (see [Car89, 13.6] or [GLS98, 2.3]).

We viewW0 as a subset ofW. By Mackey decomposition, L∼=⊕w∈W0k
P
P∩Bw

as kP -modules. Now take R-fixed points. Observe that since R ≤ P , P ∩
BwR = (P ∩Bw)R. Note that the space of R-fixed points of kPP∩Bw is isomor-

phic to kPP∩BwR. Let H be the standard Levi subgroup of P ; so H is generated

by a maximal torus of B and all the root subgroups Uβ where the roots β

are linear combinations of a subset of the simple roots. Note for each positive

root subgroup Uβ < G and for each w ∈ W , we have that precisely one of Uβ
or U−β is contained in Bw ∩H. Thus, P ∩ BwR = B1R where B1 is a Borel

subgroup of H and so B1R is a Borel subgroup contained in P . This completes

the proof. �

Theorem 6.4. Let P be a minimal parabolic subgroup containing B with

radical R. Assume that r divides [P : B]. Let X be a submodule of L containing

LG such that XQ = LG and dimXR > 1. Then the following statements hold :

(i) Either soc(XR/XG) is an irreducible kP -module, or r = 2 and [P, P ]/R
∼= SL2(q) with q odd or SU3(q) with q ≡ 1(mod 4). In the latter two cases

soc(XR/XG) is either irreducible or a direct sum of two nonisomorphic

irreducible kP -modules.

(ii) If X/LG is irreducible, then Ext1
G(X, k) = 0 and dim Ext1

G(X/k, k) = 1.

Proof. It is clear that Y := XR is a kP -submodule of M := LR, and, by

Lemma 6.3, M is a direct sum of copies of kPB as kP -modules. Since XB is

1-dimensional, the same is true for XP and so Y P is 1-dimensional.

We claim that Y embeds in kPB . Let π be a projection of Y into one of

the direct factors of M with π(Y ) 6= 0. Now Z := Ker(π) is a submodule
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of Y with ZQ = 0. In particular, soc(Z) contains no trivial kP -composition

factors. Since soc(M) is a direct sum of trivial composition factors, it follows

that soc(Z) = 0, whence Z = 0 and the claim follows.

Now (i) follows by our results on the rank 1 groups. Set U := X/k. If U

is semisimple, then by (i), U is multiplicity free (since soc(UR) is multiplicity

free as a kP -module). Thus, by Theorem 2.2 if V is any simple summand of U ,

dimH1(G,V ) = dim Ext1
G(V ∗, k) = 1, whence the second part of (ii) holds.

Now assume that U is simple. Let X∗ denote the dual of X. So it has socle

U∗ and is indecomposable of length 2. Then we have 0→ U∗ → X∗ → k → 0,

giving rise to:

0→ k → H1(G,U∗)→ H1(G,X∗)→ H1(G, k) = 0.

As we have already noted, H1(G,U∗) is 1-dimensional, whence (ii) follows. �

Corollary 6.5. Let V be an irreducible kG-module with V B = 0 and

H1(G,V ) 6= 0.

(i) dimH1(G,V ) = 1.

(ii) If r 6= 2, then V is defined over Fr.
(iii) If r 6= 2 and H1(G,V ∗) 6= 0, then V ∼= V ∗.

Proof. Let X be a submodule of L such that XQ = LG. Assume first that

Z := X/XG is simple.

We claim that dimXR > 1 for R the radical of some minimal parabolic

P containing B with r dividing [P : B]. If not, then Ext1
P (X/k, k) = 0 for

each minimal parabolic subgroup P and so Ext1
G(X/k, k) = 0 by [AG72], a

contradiction.

Now apply the previous result to see that dim Ext1
G(Z, k) = 1.

Now take X a submodule of L with XQ = LG and Z := X/XG semisimple

and as large as possible. Suppose that R is the radical of a minimal parabolic

subgroup P . Note that soc(XR/XG) is a simple kP -module if r 6= 2 or at

worst a direct sum of 2 distinct irreducibles. Thus, for r 6= 2, there is at most

one summand of Z with ZR 6= 0 (and at most two if r = 2).

The previous result also implies that ZR is multiplicity free as a kP -

module. This implies that dim Ext1
G(U, k) = 1 for any simple summand U

of Z. So (i) follows by Theorem 2.2.

Now assume that r 6= 2. If σ is an element of the Galois group of Fr,
then H1(G,V σ) 6= 0, and V σ is a also a summand of Z. Moreover, dimV R =

dim(V ∗)R. As we have seen above, there is at most one simple summand of Z

having nontrivial R-fixed points. Thus, V ∼= V σ. Thus, V is defined over Fr.
A similar argument gives the last result. �

We want to show that there are very few irreducible modules with V B =

0 6= H1(G,V ). The proof of the previous result easily gives that there are most
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e (for r 6= 2) or 2e such modules. We will show that there are at most four

such modules (one can check that for r = 2, there are three such modules for

Sp4(q) with q odd).

We first classify such modules for G = SLn(q). By Theorem 6.1, we may

assume that r divides q + 1.

Theorem 6.6. Let G = SLn(q) with n > 2 and r|(q + 1). There is a

unique irreducible kG-module V with V B = 0 and H1(G,V ) 6= 0, and this V

can be found as in Remark 6.2.

Proof. 1) Let W be any irreducible kG-module with WB = 0, and so

(W ∗)B = 0 by Lemma 2.1. By Theorem 2.2, H1(G,W ∗) 6= 0 precisely when

W is a submodule of soc(L/LG). By Corollary 5.2, W ∗ is quasi-equivalent

to W ; hence H1(G,W ∗) 6= 0 if and only if H1(G,W ) 6= 0. It follows that

H1(G,W ) 6= 0 exactly when W is a submodule of soc(L/LG). Observe that

in this case, W τ is also a submodule of soc(L/LG), where τ = τ−1 is the

transpose-inverse map. (Indeed, dimH1(G,W τ ) = dimH1(G,W ). Next, if T

is an irreducible kH-module lying above W for H := GLn(q), then it is well

known that T τ ∼= T ∗, and TB = 0 if and only if WB = 0 as H = NH(B)G.

Hence we also have (W τ )B = 0.)

2) We have seen in Remark 6.2 that such a module V exists. Let X̄ be

the sum of all simple summands W of soc(L/LG) with WB = 0, and let X be

the complete inverse image of X̄ in L; in particular, XG = LG ∼= k. By the

observations in 1), it suffices to show that X/XG is simple. We will proceed

by induction on n. When n = 2, the claim follows by Section 4.1 unless r = 2

and q is odd, but even in that case, the result holds for PGL2(q).

For the induction step, let B ≤ P be a maximal end node parabolic

subgroup ofG with unipotent radicalR. Let P1 be the other end node parabolic

subgroup containing B and set R1 to be its unipotent radical. Note that

R1 = Rτg for some g ∈ G.

Set Y = XR. By Lemma 6.3, Y embeds in a direct sum of copies of kPB .

Since Y B = XG ∼= k, it follows that Y embeds in kPB . By induction on n

(notice that when n = 3, P/R ∼= GL2(q)), the socle of Y/k as a kP -module

is simple. It follows that there is at most one summand U of X/XG with

UR 6= 0. Since R is unipotent, for such a U we also have (U∗)R 6= 0. As in 1),

if T is an irreducible kH-module lying above U , then T τ ∼= T ∗, (T τ )R 6= 0,

and so (U τ )R 6= 0 (since H = NH(R)G). According to 1), U τ is a summand

of X/XG, so the uniqueness of U implies that U ∼= U τ . Now assume that W

is a summand of X/XG with WR1 6= 0. Then

dim(W τ )R = dim(W τ−1
)R = dimWRτ = dimWR1 ,

and so (W τ )R 6= 0. By 1), W τ is a summand of X/XG, so the uniqueness

of U again implies that W τ ∼= U ∼= U τ , whence W ∼= U . It follows that
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WR ∼= UR 6= 0 and so W = U . Consequently, U is also the unique summand

of X/XG with UR1 6= 0.

Now, if Y 6= U is any summand of X/XG, then Y R = Y R1 = 0, whence

H1(P, Y ∗) = H1(P1, Y
∗) = H0(B, Y ∗) = 0. Thus, by [AG72], H1(G, Y ∗) = 0,

contradicting Theorem 2.2. Hence U exists and X/XG = U is simple, as

required. �

Corollary 6.7. There are at most four irreducible kG-modules V with

V B = 0 and H1(G,V ) 6= 0.

Proof. The proof is similar to the previous case. Let X be any submodule

of L containing LG = XG such that Y := X/XG is semisimple and every com-

position factor V of X/XG satisfies V B = 0. Choose two parabolic subgroups

P1 and P2 such that G = 〈P1, P2〉. Let Ri denote the unipotent radical of Pi.

Let mi be the number of summands V of Y such that Ri has fixed points on V .

It suffices to show that m1 + m2 ≤ 4. If Pi is a minimal parabolic, then we

have seen that mi ≤ 2 (and indeed mi ≤ 1 if r 6= 2). This gives the result if G

has rank 2. So we assume that G has rank at least 3.

If possible choose P1 with Levi subgroup of type SL, and so by the previous

result m1 ≤ 1. If we take P1 to be maximal, then we can choose P2 to be

minimal. We have seen that m2 ≤ 2. Thus, there are at most 3 summands.

This can be done in all cases except G = F4(q) or 2E6(q). If G = F4, we

take Pi to have a Levi of type SL3(q) for i = 1, 2. If G = 2E6(q), we take P1 to

have a Levi of type SU6(q) and P2 to be a minimal parabolic. Modifying the

argument above for SU, we see that m1 ≤ 2, whence the result. �

In many cases, the argument above can be used to give better bounds on

the number of such modules. For example, it is not hard to see that if G is

untwisted of types D or E, then there is a unique such module (when r divides

q + 1).
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