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Wiener’s ‘closure of translates’ problem
and Piatetski-Shapiro’s
uniqueness phenomenon

By Nir Lev and Alexander Olevskii

Abstract

N. Wiener characterized the cyclic vectors (with respect to translations)

in `p(Z) and Lp(R), p = 1, 2, in terms of the zero set of the Fourier trans-

form. He conjectured that a similar characterization should be true for

1 < p < 2. Our main result contradicts this conjecture.

1. Introduction

1.1. Let G be a locally-compact abelian group, and 1 6 p < ∞. A

function f ∈ Lp(G) is called a cyclic vector (with respect to translations) if

the linear span of its translates is dense in the space. It is well known that

f ∈ Lp(T) (where T is the circle group) is a cyclic vector if and only if all the

Fourier coefficients of f are nonzero. The same is true for general compact

groups (see [23]).

In the noncompact case the situation is more complicated. N. Wiener [24]

characterized the cyclic vectors in Lp(R) (or `p(Z)) only for p = 1 and 2. We

formulate the result for `p(Z), the Lp(R) case is similar.

Theorem A (Wiener). Let c = {cn}, n ∈ Z.

(i) c is a cyclic vector in `2(Z) if and only if the Fourier transform

(1) ĉ(t) :=
∑
n∈Z

cne
int

is nonzero almost everywhere.

(ii) c is cyclic in `1(Z) if and only if ĉ(t) has no zeros.

Part (i) is a consequence of the unitarity of the Fourier transform. Part

(ii) is more delicate; the proof is based on the fact that the space `1(Z) is a

convolution algebra.
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In both cases the result can be stated as follows: c is a cyclic vector if and

only if the set

Zĉ := {t ∈ T : ĉ(t) = 0}
of the zeros of the Fourier transform (1) is “small” in a certain sense. Wiener

conjectured (see [24, p. 93]) that a similar result should be true for `p spaces,

at least for 1 < p < 2. This problem has been studied by Segal [22], Beurling

[5], Pollard [19], Herz [7], Newman [18] and other authors (see [6], [13], [21]).

First of all, one should define precisely how to understand the zero set.

The answer is obvious if the vector c is assumed to be in `1(Z) (or L1(R)). The

above mentioned authors have studied the problem under this assumption. We

shall keep it as well.

A more serious question is — what kind of “smallness” should one con-

sider? One can show (see [22]) that if 1 < p < 2, then the condition in part (i)

of Theorem A is not sufficient, and the condition in part (ii) is not necessary

for cyclicity in `p. So one should look for an “intermediate measurement” of

smallness.

A. Beurling proved in [5] that if the Hausdorff dimension of Zĉ is less than

2(p− 1)/p, then c is a cyclic vector in `p (1 < p < 2). This condition is sharp,

but it is not necessary for the cyclicity (see [18]).

On the other hand, it is well known that not only metrical but also arith-

metical “thinness” properties may play an important role in problems of har-

monic analysis. In the above cited papers, various metrical and nonmetrical

properties of the zero set of cyclic vectors in Lp(R) (`p(Z)) have been studied,

and a number of interesting results were obtained. In particular, for p > 2 the

cyclic vectors were indeed characterized by a condition in terms of the zero

set. This condition (see Section 2.2 below) is not easy to check, but anyway it

supports Wiener’s conjecture that cyclicity depends on the set Zĉ only.

Our main result shows that this is not the case for 1 < p < 2.

Theorem 1. Let 1 < p < 2. Then there is a compact set K on the circle

T with the following properties :

(a) If a vector c has fast decreasing coordinates, say
∑
n∈Z |cn| |n|ε <∞ for

some ε > 0, and ĉ vanishes on K , then c is not cyclic in `p(Z).

(b) There exists c ∈ `1(Z), such that ĉ vanishes on K , and c is a cyclic

vector in `p(Z).

It follows that no characterization of the cyclic vectors exists in terms of

the zeros of the Fourier transform:

Corollary 1. Given any p, 1 < p < 2, one can find two vectors in

`1(Z) such that one is cyclic in `p(Z) and the other is not, but their Fourier

transforms have an identical set of zeros.

A similar result is true for Lp(R) (see Section 6 below).
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1.2. Our approach to the problem is based on its relation to the unique-

ness problem in Fourier analysis, or more specifically, to an aspect of it which

we call the “Piatetski-Shapiro phenomenon”.

Recall that a set K ⊂ T is called a set of uniqueness (U-set) if whenever

a trigonometric series ∑
n∈Z

cne
int

converges to zero at every point t /∈ K, then all the coefficients cn must be

zero. Otherwise, K is called a set of multiplicity (M-set). Classical Riemannian

theory allows one to characterize the compact M-sets as the compacts which

support a nonzero distribution S with Fourier transform Ŝ(n) tending to zero

as |n| → ∞ (see [10]).

It was D. E. Menshov who discovered (1916) that a set of Lebesgue mea-

sure zero can be an M-set. In fact, Menshov constructed a compact set K

of Lebesgue measure zero, which supports a measure whose Fourier transform

vanishes at infinity (see [3]). It was believed for a long time that every compact

M-set must support such a measure. This was disproved in 1954 by I. Piatetski-

Shapiro [20], who constructed a compact M-set which does not support such

a measure.

This striking result was further developed by T. Körner [14] and R. Kauf-

man [12], who presented different examples of compact M-sets K which are

Helson sets. The latter means that every measure µ supported by K satisfies

the condition

lim sup
|n|→∞

|µ̂(n)| > δ(K)

∫
|dµ|, δ(K) > 0.

As Kaufman mentioned, his construction was inspired by Piatetski-

Shapiro’s original ideas. An additional improvement of this technique was

done by J.-P. Kahane [10, pp. 213–216] in his presentation of Kaufman’s pa-

per. This presentation was the starting point for our approach.

1.3. Let X be a Banach space of sequences (with a norm weaker than `2).

We say that Piatetski-Shapiro’s phenomenon exists for the space X if there is

a compact set K ⊂ T, which supports a (nonzero) distribution S with Fourier

transform Ŝ ∈ X, but which does not support such a measure. The result

from [20] means that the phenomenon exists for the space co. On the other

hand, potential theory (see [4], [10]) provides an important example of spaces

for which the phenomenon does not exist: the weighted spaces `2(Z, w) with

e.g. the power weight w(n) = (1 + |n|)−α, 0 < α 6 1.

Our concern, inspired by Wiener’s problem, was:

Does Piatetski-Shapiro’s phenomenon exist for `q spaces, q > 2 ?

The answer is yes:
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Theorem 2 ([15]). Given any q>2 there is a compact set K⊂T such that

(a′) K supports a nonzero distribution S such that Ŝ ∈ `q ;

(b′) K does not support any nonzero measure µ such that µ̂ ∈ `q .

The role of Theorem 2 in the cyclicity problem is clarified by the following

observation (see Section 2.2 below):

Condition (a′) is equivalent to part (a) of Theorem 1, while condition (b′)

is necessary for part (b), with q = p/(p− 1).

So Theorem 2 provides a chance for (although it does not imply) the

existence of a counterexample to Wiener’s conjecture. Such a counterexample

— in a weaker form than Corollary 1 above — was sketched in [16]. The

present paper contains full proofs and extensions of the results obtained in

[15], [16]. It is organized as follows.

In Section 2 we give some preliminary background and auxiliary lemmas.

Section 3 is the key one in the paper. Our main tools are special measures

on the circle, defined by Riesz-type products, and a version of Bernstein’s

stochastic exponential estimate.

In Section 4 we construct a Helson set with the property (a′) above. In

Section 5 we prove that every Helson set admits a vector with property (b).

So Theorem 1 follows.

The nonperiodic version is considered in Section 6. Section 7 contains

some additional remarks. In particular, we discuss there the relation of Theo-

rem 1 to P. Malliavin’s celebrated “non-synthesis” phenomenon, and mention

some open problems.

2. Preliminaries. Lemmas.

2.1. Notation. In what follows T is the circle group R/2πZ. As usual,

C(T) is the space of continuous complex functions on T, with the norm ‖f‖∞ :=

sup |f(t)|, t ∈ T. By a “measure” on T we always mean an element of the dual

space M(T), that is, a finite complex Borel measure.

We denote by {Ŝ(n)}, n ∈ Z, the Fourier coefficients of a Schwartz distri-

bution S on T. It will also be convenient to keep the notation ĉ for the Fourier

transform of a vector c ∈ `1(Z) as defined in (1).

Let Ap(T), 1 6 p 6 ∞, denote the Banach space of distributions S on T
with Fourier coefficients belonging to `p(Z), endowed with the norm

‖S‖Ap := ‖Ŝ‖`p .

For p = 1 this is the Wiener algebra A(T) of absolutely convergent Fourier

series (see [9]). Throughout we will use the following standard properties:

‖f‖∞ 6 ‖f‖A, f ∈ A(T),

‖f · g‖Ap 6 ‖f‖A ‖g‖Ap , f ∈ A(T), g ∈ Ap(T).
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2.2. Cyclic vectors. In this section we refer to some basic results about

cyclicity. The results go back to Segal [23], Beurling [5], Pollard [19], Herz [7]

and Newman [18]. Actually the first four authors considered Wiener’s problem

in Lp(R) rather than `p(Z), but, as the last author mentioned, “the distinction

is not vital”. See also Kahane-Salem [10, pp. 111–112 and 122–123].

First it would be convenient to reformulate the concept of cyclicity in an

equivalent way, using the following:

Definition. An element f ∈ Ap(T), 1 6 p < ∞, is called a cyclic vector

(with respect to multiplication by exponentials) if the set {P (t)f(t)}, where P

goes through all trigonometric polynomials, is dense in Ap(T).

Clearly, a vector c is cyclic (with respect to translations) in `p(Z) if and

only if its Fourier transform f := ĉ is cyclic in Ap(T) in the sense just defined.

In what follows f is assumed to belong to the Wiener algebra A(T), Zf
denotes the set of the zeros of f , and q = p/(p− 1).

(i) f is cyclic in Ap(T) if and only if there is a sequence of trigonometric

polynomials Pn such that

lim
n→∞

‖1− Pn · f‖Ap = 0.

(ii) If Zf is finite, then f is cyclic in Ap(T) for every p > 1.

(iii) If f is a noncyclic vector in Ap(T), then there is a nonzero distribution

S ∈ Aq(T), supported by Zf .

(iv) If there is a nonzero measure µ ∈ Aq(T), supported by Zf , then f is a

noncyclic vector in Ap(T).

(v) If f is continuously differentiable and there is a nonzero distribution

S ∈ Aq(T) supported by Zf , then f is a noncyclic vector in Ap(T).

Actually (see [7]) the smoothness condition in (v) can be reduced up to

f ∈ Lip ε for some ε > 0, or, in terms of the Fourier coefficients of f , up to∑
n∈Z
|f̂(n)| |n|ε <∞ for some ε > 0.

Observe that if p > 2, then Aq(T) is a functional space (embedded in

L2(T)). So conditions (iii)–(iv) imply:

A function f ∈ A(T) is a cyclic vector in Ap(T), p > 2, if and only if its

zero set Zf does not support any nonzero function g ∈ Aq(T).

This condition is not very effective, but it shows that the cyclicity of a

vector c ∈ `1(Z) in the space `p(Z), p > 2, admits characterization in terms

of the zero set of the Fourier transform (as Wiener thought). Here, by the

way, the condition that Zf has Lebesgue measure zero obviously implies the

cyclicity, but not vice versa [18] (see also [11, pp. 101–102]).
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The case p = ∞ was also considered. D. Newman [18] proved that c ∈
`1(Z) is a cyclic vector in the space c0(Z) if and only if Zĉ is a nowhere dense

set in T.

Now let 1 < p < 2 (the case where Wiener’s conjecture was most certain).

Then Aq(T) is not a functional space, and (iii)–(v) only imply the following:

Let f ∈ A(T) be smooth (f ∈ Lip ε, ε > 0). Then it is cyclic in Ap(T),

1 < p < 2, if and only if Zf does not support any nonzero distribution S ∈
Aq(T).

However we will see that without the smoothness condition, the zero set

Zf does not provide a characterization of the cyclic vectors.

2.3. Auxiliary polynomials. We shall use trigonometric polynomials with

the following properties.

Lemma 1. Given any q > 2 and γ > 0 there is a real trigonometric

polynomial ϕ = ϕq,γ such that

(2) ϕ̂(0) = 0, ‖ϕ‖∞ 6 1, ‖ϕ‖L2 = 1
2 , ‖ϕ‖Aq < γ.

Here and below, ‖ · ‖L2 denotes the L2 norm on T with respect to the

normalized Lebesgue measure.

There are several ways to get Lemma 1. In particular, one may use the

Shapiro-Rudin polynomials (see [9, p. 52]). Namely, for an appropriate choice

of signs εn = ±1 (n = 1, 2, . . . ) the trigonometric polynomial

Qk(t) =
2k∑
n=1

εn cosnt

satisfies ‖Qk‖∞ 6 2(k+1)/2. It follows that if k = k(q, γ) is sufficiently large,

then

ϕ(t) := 2−(k+1)/2Qk(t)

is a real trigonometric polynomial with properties (2).

2.4. Kahane’s lemma. One of the key arguments in [20] and [12] is based

on the uniqueness theorem for power series. In Kahane’s presentation of Kauf-

man’s paper (see [10, pp. 213–216]) this point was performed as follows:

Given any δ > 0 there is a real, signed measure ρ, supported by a finite

subset of the interval (1− δ, 1), such that

(3)

∫
dρ = 1 and

∣∣∣∣ ∫ sk dρ(s)

∣∣∣∣ < δ (k = 1, 2, . . . ).

This lemma was proved in [10, p. 214] based on the Hahn-Banach theo-

rem. Here we shall need a quantitative version, with an estimate on the total

variation of the measure.
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Lemma 2. Let an interval I = (a, b), 0 < a < b < 1
2 , and 0 < δ < 1 be

given. Then there is a real, signed measure ρ, supported by a finite subset of I ,

such that (3) holds, and such that

(4)

∫
|dρ| < δ−c(I),

where c(I) > 0 is a constant which depends only on I .

We proceed to the proof of Lemma 2.

2.4.1. The measure. Given n distinct points s1, . . . , sn ∈ I, consider a

measure ρ supported by these points and defined uniquely by the condition∫
p(s) dρ(s) = p(0), for every algebraic polynomial p of degree 6 n− 1.

In particular,

(5)

∫
dρ = 1,

∫
sk dρ(s) = 0 (k = 1, 2, . . . , n− 1).

Given any function f(s) one has
∫
f(s) dρ(s) = p(0), where p is the unique

polynomial of degree 6 n− 1 which interpolates f at the nodes s1, . . . , sn. It

is well known (see for example [1, pp. 134–135]) that if f(s) is real-valued and

sufficiently smooth, then there is 0 6 ξ < b such that

f(0) = p(0) +
f (n)(ξ)

n!

n∏
j=1

(0− sj).

Applying this with f(s) = sk, k > n, gives∫
sk dρ(s) = (−1)n−1

Ç
k

n

å
ξk−n

n∏
j=1

sj ,

and consequently the moments of ρ satisfy the estimate

(6)

∣∣∣∣ ∫ sk dρ(s)

∣∣∣∣ < 2k · bk−n · bn = (2b)k 6 (2b)n (k > n).

2.4.2. The total variation. Using the Lagrange polynomials

lj(s) =
∏
i 6=j

s− si
sj − si

(1 6 j 6 n),

one can calculate the masses

ρ({sj}) =

∫
lj(s) dρ(s) = lj(0) =

∏
i 6=j

si
si − sj

.

We choose the points s1, . . . , sn as equally spaced nodes, sj = a + (j − 1
2)h

where h = (b− a)/n. Then∣∣∣ ρ({sj})
∣∣∣ =

1

hn−1 (j − 1)! (n− j)!
∏
i 6=j

si ,
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and so we have∫
|dρ| 6

( b
h

)n−1 n∑
j=1

1

(j − 1)! (n− j)!
=

1

n!

( nb

b− a

)n−1 n∑
j=1

j

Ç
n

j

å
(7)

=
nn

n!

( 2b

b− a

)n−1
6
( 2eb

b− a

)n−1
.

Finally, choose n to be the least integer > log(1/δ)
log(1/2b) . It follows from (5),

(6) and (7) that ρ satisfies both (3) and (4). This proves the lemma. �

Remark. One can show that a power estimate (4) in Lemma 2 is sharp.

2.5. Bernstein inequality. Bernstein exponential estimates for sums of in-

dependent random variables are classical. Different versions, adopted for sums

of “almost” independent variables, in various senses, are also well known.

In particular, Azuma [2] considered the so-called multiplicatively orthog-

onal systems and obtained Bernstein-type exponential estimates for them.

It will be convenient for us to consider a similar version, suitable for an

“almost multiplicative” system of random variables, in the following sense:

Lemma 3. Let X1, . . . , XN be random variables on a probability space

(Ω, P ) such that −1 6 Xj 6 1 (j = 1, 2, . . . , N). Suppose that

(8) E(X1) = · · · = E(XN ) = µ > 0

and that there is 0 < ε < 1 such that

(9) (1− ε)µ|A| 6 E
{ ∏
j∈A

Xj

}
6 (1 + ε)µ|A|

for every nonempty subset A ⊂ {1, 2, . . . , N}, where |A| denotes the number of

elements in A. Define

X =
1

N

N∑
j=1

Xj .

Then for any α > 0,

(10) P
¶
X < E(X)− α

©
6 exp

Ä
− 1

8α
2N
ä

+ ε exp
Ä
1
4N
ä
.

Proof. Fix λ > 0. By the classical Bernstein method we can estimate the

probability on the left-hand side of (10) as follows:

(11) P
¶
X < µ− α

©
= P

{ N∏
j=1

eλ(µ−Xj) > eαλN
}
6 e−αλN E

N∏
j=1

eλ(µ−Xj).

To estimate the expectation on the right-hand side we adopt the approach

of [2]. Since |µ−Xj | 6 2 and by the convexity of the exponential function, we

have

eλ(µ−Xj) 6 cosh(2λ) + ((µ−Xj)/2) sinh(2λ) = b− aXj ,
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where

a := (1/2) sinh(2λ) and b := cosh(2λ) + (µ/2) sinh(2λ).

It follows that

(12) E
N∏
j=1

eλ(µ−Xj) 6 E
N∏
j=1

(b− aXj) =
∑

A⊂{1,...,N}
(−a)|A| bN−|A| E

∏
j∈A

Xj .

Now we invoke the assumption (9), which (together with the fact that a, b are

positive numbers) implies that the right-hand side of (12) is not larger than∑
(−a)|A| bN−|A|

{
1 + (−1)|A| ε

}
µ|A| = (b− aµ)N + ε(b+ aµ)N .

It is easy to see that b − aµ 6 exp(2λ2) and b + aµ 6 exp(2λ), so it follows

that

(13) E
N∏
j=1

eλ(µ−Xj) 6 exp(2λ2N) + ε exp(2λN).

Finally, a combination of (11) and (13), with λ = α/4, gives

P
¶
X < µ− α

©
6 exp

Ä
− 1

8α
2N
ä

+ ε exp
Ä
1
4α(2− α)N

ä
.

However α(2− α) 6 1, so the estimate (10) follows. �

3. Riesz-type products and exponential estimates

This section contains the central part of our approach. We prove here the

following main lemma:

Lemma 4. Suppose that we are given numbers q > 2, ε > 0, and a real

trigonometric polynomial u, not identically zero. Then we can find a compact

set K (a finite union of segments), an infinitely smooth function f and a real

trigonometric polynomial P such that

(i) f is supported by K , ‖1− f‖Aq < ε;

(ii) inf
t∈K
|P (t)| > 1, P (t)u(t) > 0 on K , ‖P‖A 6 C(q),

where C(q) is a constant which depends only on q.

The proof involves several steps.

3.1. Multiplicativity. We start with the following simple property.

Lemma 5. Let ν be a positive integer, and suppose that Pj are trigono-

metric polynomials, degPj < ν (j = 0, 1, . . . , N). Then∫
T

{ N∏
j=0

Pj(ν
jt)
} dt

2π
=

N∏
j=0

{∫
T
Pj(t)

dt

2π

}
.
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Proof. By Fourier expansion, the left-hand side is equal to∑
k

{ N∏
j=0

“Pj(kj)}∫
T
ei(k0+k1ν+k2ν

2+···+kNνN )t dt

2π
,

where the sum goes through all integer vectors k = (k0, k1, . . . , kN ) such that

|kj | 6 degPj . However it is easy to check that the only solution of the equation

k0 + k1ν + k2ν
2 + · · ·+ kNν

N = 0

with k as above, is k = (0, 0, . . . , 0). This implies the result. �

3.2. Riesz-type measures. Suppose that we are given a positive integer N ,

a real trigonometric polynomial ϕ with the properties

(14) ϕ̂(0) = 0, ‖ϕ‖∞ 6 1

and also a real trigonometric polynomial w such that

(15) ‖w‖∞ 6 1.

Choose a large integer ν, satisfying the condition

(16) ν > 2 max{degϕ, N degw},

and define a “Riesz-type product”

(17) λs(t) =
N∏
j=1

(
1 + sw(t)ϕ(νjt)

)
, 0 < s < 1.

Introduce a measure µs on the circle T:

(18) dµs(t) = λs(t)
dt

2π
.

Observe first that it is a probability measure on T. Indeed, it is clear from the

properties above that λs is everywhere positive. Now expand the product (17)

into the form

(19) λs(t) = 1 +
∑
B

Ä
sw(t)

ä|B| ∏
j∈B

ϕ(νjt),

where the sum goes through all nonempty subsets B ⊂ {1, . . . , N}. Condi-

tion (16) allows one to use Lemma 5, which implies that∫
T
λs(t)

dt

2π
= 1 +

∑
B

{∫
T
w(t)|B|

dt

2π

}{
s

∫
T
ϕ(t)

dt

2π

}|B|
.

However all terms in the above sum are zero, since ϕ̂(0) = 0. So it follows that∫
T
λs(t)

dt

2π
= 1,

and this proves the claim.
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3.3. Random variables. Consider random variables defined by

(20) Xj(t) = w(t)ϕ(νjt), 1 6 j 6 N,

on the probability space (T, µs).
It is well known that these variables are “almost independent” with re-

spect to the Lebesgue measure on T. However, we will see that (under some

additional condition) they are “almost independent” also with respect to µs,

which is going to be essentially “singular” with respect to the Lebesgue mea-

sure.

To establish such a property we first compute the “multiplicative mo-

ments”.

Lemma 6. Let A be a nonempty subset of {1, 2, . . . , N}. Then

(21) E
{ ∏
j∈A

Xj

}
=
{
s

∫
T
ϕ(t)2

dt

2π

}|A|{∫
T
w(t)2|A|

dt

2π

}
.

Proof. By (18) and (20), the left-hand side of (21) is equal to

(22)

∫
T

{
w(t)|A|

∏
j∈A

ϕ(νjt)
}
λs(t)

dt

2π
.

Let us again consider the expansion (19) for λs; however, this time we do not

distinguish the constant term as before, but rather write

λs(t) =
Ä
sw(t)

ä|A| ∏
j∈A

ϕ(νjt),+ · · ·

where the implicit terms correspond to all subsets B ⊂ {1, . . . , N} which are

different from A. Inserting this expression into (22) one can see that the

integration of the explicit term gives

s|A|
∫
T

{
w(t)2|A|

∏
j∈A

ϕ2(νjt)
} dt

2π

which, by condition (16) and Lemma 5, provides the right-hand side of (21).

So to conclude the proof it is enough to show that the integrals of the other

terms in the sum are all zero.

Indeed, if B is any subset 6= A, then the corresponding term is

s|B|
∫
T

{
w(t)|A|+|B|

∏
j∈A4B

ϕ(νjt)
∏

j∈A∩B
ϕ2(νjt)

} dt
2π

which, again by (16) and Lemma 5, is equal to

s|B|
{∫

T
w(t)|A|+|B|

dt

2π

}{∫
T
ϕ(t)

dt

2π

}|A4B|{∫
T
ϕ2(t)

dt

2π

}|A∩B|
.

However this is zero, because ϕ̂(0) = 0, so the lemma is proved. �
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One can see that if the trigonometric polynomial w is mostly close to 1

in modulus, then the integrals of the even powers of w which appear in (21)

are almost equal to 1. We will see that in such a case the X1, . . . , XN form an

“almost multiplicative” system of random variables (in the sense of Lemma 3)

with respect to the measure µs.

Precisely, Lemma 6 allows one to find the expectations

(23) E(Xj) = s ‖ϕ‖2L2 ‖w‖2L2 (1 6 j 6 N).

In particular all the Xj have the same expectation, as in (8). Now suppose

that the trigonometric polynomial w satisfies, in addition to property (15),

also the condition

(24)
{∫

T
w(t)2

dt

2π

}N
>

1

1 + ε
for some 0 < ε < 1.

Then, given any nonempty A ⊂ {1, 2, . . . , N}, by (21) and Jensen’s inequality

E
{ ∏
j∈A

Xj

}
>
{
s

∫
T
ϕ(t)2

dt

2π

}|A|{∫
T
w(t)2

dt

2π

}|A|
=
∏
j∈A

E(Xj).

On the other hand (15), (21) and (24) imply that

E
{ ∏
j∈A

Xj

}
6
{
s

∫
T
ϕ(t)2

dt

2π

}|A|
6 (1 + ε)

∏
j∈A

E(Xj).

This shows that the “almost multiplicativity” condition (9) is satisfied.

3.4. Concentration. Define a trigonometric polynomial

(25) X(t) =
1

N

N∑
j=1

Xj(t) = w(t) · 1

N

N∑
j=1

ϕ(νjt).

“Almost independence” suggests that this average is strongly concentrated

(with respect to the measure µs) near its expectation, and the rate of concen-

tration is governed by the classical exponential estimates.

Indeed, assuming (14), (15) and (24) one may use Lemma 3, which implies

(26) µs
¶
t : X(t) < E(X)− α

©
6 exp

Ä
− 1

8α
2N
ä

+ ε exp
Ä
1
4N
ä
, α > 0.

We use this to prove the following L2-concentration estimate.

Lemma 7. Suppose that (14) and (15) hold, and furthermore suppose that

(27) ‖ϕ‖L2 > 1
2

and

(28)
{∫

T
w(t)2

dt

2π

}N
>

1

1 + e−N
.

Then for every

(29) s ∈ I0 :=
Ä
1
4 ,

1
3

ä
,
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one has ∫
{t: X(t)<c1}

λ2s(t)
dt

2π
< 2 e−c2N

for some absolute positive constants c1, c2.

Proof. It follows from (23), (27), (28) and (29) that

E(X) = s ‖ϕ‖2L2 ‖w‖2L2 > 1
100 (s ∈ I0).

So the estimate (26) with ε = e−N implies that

(30) µs
¶
t : X(t) < c1

©
< 2 exp

Ä
−1

8( 1
100 − c1)

2N
ä
, 0 < c1 <

1
100 .

Using (17) we also obtain the estimate

(31) λs(t) 6 exp
(
sw(t)

N∑
j=1

ϕ(νjt)
)

= exp
Ä
sNX(t)

ä
.

A combination of (30) and (31) gives, for every s ∈ I0,∫
{t : X(t)<c1}

λ2s(t)
dt

2π
6

Ç ∫
{t : X(t)<c1}

λs(t)
dt

2π

åÇ
sup

{t : X(t)<c1}
λs(t)

å
< 2 exp

Ä
−1

8( 1
100 − c1)

2N
ä

exp
Ä
1
3c1N

ä
= 2 e−c2N

for appropriate absolute positive constants c1, c2. �

Below we continue to denote by c1, c2 the constants from Lemma 7, and

let c3, c4, . . . denote other absolute positive constants.

3.5. Proof of Lemma 4. Let the numbers q > 2 and ε > 0, and the real

trigonometric polynomial u (not identically zero) be given. Let N = N(ε) be

a sufficiently large integer, which will be chosen later. Denote by ϕ = ϕq,γ
the trigonometric polynomial from Lemma 1. Also let w = wN,u be a real

trigonometric polynomial, satisfying (15) and (28), which has the following

additional property:

(32) for every t ∈ T either w(t)u(t) > 0 or otherwise |w(t)| < c1/2 .

Such a w can be found easily by taking an approximation of the function

sign(u).

Given 0 < δ < 1 we use Lemma 2 to find a measure ρ, supported by the

interval I0 =
Ä
1
4 ,

1
3

ä
, satisfying (3) and such that

(33)

∫
|dρ| < δ−c3 , where c3 := c(I0).

Define

λ(t) =

∫
λs(t) dρ(s).
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One can expand the product (17) using the Fourier representation of the

trigonometric polynomial ϕ. This yields the expression

λ(t) = 1 +
∑
k

{∫
sl(k)dρ(s)

}{ ∏
kj 6=0

ϕ̂(kj)
}
w(t)l(k) ei(k1ν+k2ν

2+···+kNνN )t,

where the sum goes through all nonzero vectors

k = (k1, . . . , kN ) ∈ ZN , |kj | 6 degϕ,

and l(k) > 0 denotes the number of nonzero coordinates of k. Note that each

polynomial w(t)l(k) has degree 6 N degw. So condition (16) ensures that the

summands in the above sum have disjoint spectra. Taking advantage of the

fact that ‖w(t)l(k)‖Aq 6 1 (which follows from (15)) we deduce that

‖1− λ‖qAq
< δq

∑
k

∏
kj 6=0

|ϕ̂(kj)|q < δq (1 + ‖ϕ‖qAq
)N < δq exp(N‖ϕ‖qAq

).

Using (2) this implies

(34) ‖1− λ‖Aq < δ exp
Ä
1
qγ

qN
ä
.

Now consider the trigonometric polynomial X defined in (25). Set

E := {t ∈ T : X(t) > c1} and h := λ · 1E ;

then

‖λ− h‖Aq 6 ‖λ− h‖L2(T) = ‖λ‖L2(T\E) 6
∫
‖λs‖L2(T\E) |dρ(s)|.

Using Lemma 7 and (33) this implies

(35) ‖λ− h‖Aq 6
√

2 e−
1
2
c2N δ−c3 .

Let c4 > 0 be an absolute constant so small that, setting δ := e−c4N , the

right-hand side of (35) will tend to zero as N → ∞. Next, let the number

γ > 0 be an absolute constant, so small that also the right-hand side of (34)

will tend to zero as N → ∞. Now we fix N = N(ε) so large, such that the

right-hand sides of both (34) and (35) will be smaller than ε/2. Having fixed

N , the functions w, λ, X and h are also fixed, and it follows that

‖1− h‖Aq 6 ‖1− λ‖Aq + ‖λ− h‖Aq < ε.

Finally we will define the compact K, the function f and the trigonometric

polynomial P with properties (i) and (ii). Let χ be a nonnegative, infinitely

smooth function, with integral = 1. Set f := h ∗ χ; then ‖1 − f‖Aq < ε. By

choosing χ supported on a sufficiently small neighborhood of zero, we may
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assume that f is supported by a compact K (a finite union of segments) such

that X(t) > c1/2 on K. Thus (i) is satisfied. Now we set

P (t) := (2/c1) ·
1

N

N∑
j=1

ϕ(νjt)

and check that (ii) is satisfied. First, due to (15),

|P (t)| > P (t)w(t) = (2/c1)X(t) > 1, t ∈ K.
Secondly, since ‖ϕ‖∞ 6 1, for every t ∈ K we have |w(t)| > X(t) > c1/2, and

(32) implies that w(t)u(t) > 0. Hence P (t)u(t) > 0 on K. Lastly,

‖P‖A 6 (2/c1) ‖ϕ‖A = C(q),

and our main lemma is proved. �

4. Helson sets and distributions

4.1. Recall the main two properties of Piatetski-Shapiro’s compact K:

(I) K supports a nonzero distribution S with Ŝ(n)→ 0 as |n| → ∞.

(II) For every nonzero measure µ supported by K,

lim sup
|n|→∞

|µ̂(n)| > 0.

In a way, the existence of such a compact reveals a “compromise” between

certain “thickness” and “thinness” conditions of a set (understood not in a

metrical but rather an arithmetical sense). We will see that this compromise

can be achieved under stronger conditions, in both directions.

Definition (see for example [9, Chap. IV]). A compact set K is called a

Helson set if it satisfies any one of the following equivalent conditions:

(i) Every continuous function on K admits extension to a function in A(T).

(ii) There is δ1(K) > 0 such that, for every measure µ supported by K,

(36) sup
n∈Z
|µ̂(n)| > δ1(K)

∫
|dµ|.

(iii) There is δ2(K) > 0 such that, for every measure µ supported by K,

(37) lim sup
|n|→∞

|µ̂(n)| > δ2(K)

∫
|dµ|.

Körner [14] and Kaufman [12] generalized Piatetski-Shapiro’s result by

constructing Helson sets with property (I) above (that is, Helson M-sets).

We will prove the following stronger theorem:

Theorem 3. For any q > 2 there is a Helson set K on the circle T, which

supports a nonzero distribution S such that Ŝ ∈ `q .

Clearly this also implies Theorem 2.



534 NIR LEV and ALEXANDER OLEVSKII

4.2. For the proof of Theorem 3 we need the following:

Lemma 8. Let K be a totally disconnected compact set on T. Suppose

that there is a constant C > 0 such that the following is true: given any real-

valued function h ∈ C(T) with no zeros in K , one can find a real trigonometric

polynomial P (t) such that

(38) inf
t∈K
|P (t)| > 1, P (t)h(t) > 0 on K , ‖P‖A 6 C .

Then K is a Helson set.

Proof. It would be enough to show that there is δ1(K) > 0, such that (36)

is satisfied by every measure µ supported by K. In fact, it is enough to prove

(36) only for real, signed measures µ, as one can check easily by decomposing

a complex measure into its real and imaginary parts.

Let therefore µ be a real, signed measure supported by K, and suppose

that
∫
|dµ| = 1. Since K is totally disconnected, given ε > 0 there is a real-

valued function h ∈ C(T) such that h(t) = ±1 on K, and
∫
h dµ > 1− ε. Let

P (t) be a real trigonometric polynomial satisfying (38). Then∫
K
P dµ =

∫
K
P h |dµ| −

∫
K
P h (|dµ| − h dµ) > 1− Cε.

On the other hand,∫
K
P dµ =

∫
T
P dµ =

∑
n∈Z

“P (−n) µ̂(n) 6 C sup
n∈Z
|µ̂(n)|.

Since ε was arbitrary, this shows that (36) is true with δ1(K) = C−1. �

Remark. One can show that the condition in Lemma 8 is also necessary

for Helson sets. For comparison, we mention another necessary and sufficient

condition in a similar spirit: a compact K is a Helson set if and only if it is

totally disconnected, and every {0, 1}-valued continuous function on K admits

an extension to T with bounded A(T) norm (see [9, p. 52]).

4.3. Proof of Theorem 3. Fix q > 2. Choose a sequence uj of real, nonzero

trigonometric polynomials, which is dense in the metric space of real-valued

continuous functions on T. For a sequence εj use Lemma 4 with ε = εj and

u = uj to choose Kj , fj and Pj . We choose the εj by induction, such that

ε1 < 2−2 and ‖f1 · f2 · · · fj‖A εj+1 < 2−2−j (j = 1, 2, . . . ).

This condition allows us to define a distribution S ∈ Aq(T) by the infinite

product
∏∞
j=1 fj . Indeed, the partial products Sj = f1 · f2 · · · fj satisfy

‖Sj+1 − Sj‖Aq = ‖f1 · · · fj · (fj+1 − 1)‖Aq 6 ‖f1 · · · fj‖A εj+1 < 2−2−j ,
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hence the Sj converge in Aq(T) to a limit S. Observe that S is nonzero, since

‖S − 1‖Aq 6
∞∑
j=0

‖Sj+1 − Sj‖Aq <
∞∑
j=0

2−2−j < 1

and that S is supported by the compact K :=
⋂∞
j=1Kj .

On the other hand, we will show that K is a Helson set. It is enough to

check that K satisfies the conditions of Lemma 8. Indeed, for each j we have

inf
t∈K
|Pj(t)| > 1, Pj(t)uj(t) > 0 on K, ‖Pj‖A 6 C(q).

In particular, none of the uj has a zero in K. Since they are dense in the

metric space of real-valued continuous functions on T, it follows that K is

totally disconnected. Let now h ∈ C(T) be a real-valued function, with no

zeros in K. Choose j such that uj(t)h(t) > 0 on K, then (38) is satisfied with

P = Pj and C = C(q). It therefore follows from Lemma 8 that K is a Helson

set. �

5. Helson sets and cyclic vectors

5.1. The role of Helson sets in our problem is clarified by the following:

Lemma 9. Let K be a Helson set on T. Then there is a function g ∈ A(T),

vanishing on K , which is a cyclic vector in Ap(T) for every p > 1.

For the proof of Lemma 9 we will need the following property of Helson

sets. Denote by C(K) the space of continuous functions on K with the norm

‖h‖C(K) = sup
t∈K
|h(t)|.

Recall that one of the equivalent definitions of a Helson set is that every element

of C(K) admits an extension to a function in A(T). The next lemma shows

that one can actually find such extensions with arbitrarily small Ap norms.

Lemma 10. Let K be a Helson set, and suppose that ε > 0, p > 1 and

h ∈ C(K) are given. Then one can find f ∈ A(T) such that

f |K = h, ‖f‖A 6 (1/δ) ‖h‖C(K), ‖f‖Ap < ε,

where δ = δ2(K) > 0 is the constant from (37).

Proof. Fix p > 1 and ε > 0. Introduce a Banach space B = Bp,ε of

functions f on the circle T such that

‖f‖B := ‖f‖A + (1/ε) ‖f‖Ap <∞.

In other words, the space B coincides with the space A(T) but is equipped

with a different (equivalent) norm. Let also T : B → C(K) be the restriction

operator f 7→ f |K , and denote by T ∗ its dual operator.
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Given a measure µ supported by K, by (37) we have

L(µ) := lim sup
|n|→∞

|µ̂(n)| > δ
∫
|dµ|.

Take a sequence of integers nj , |n1| < |n2| < · · · , and real numbers θj such

that

lim
j→∞

µ̂(nj) e
−iθj = L(µ)

and define

fN (t) =
1

N

N∑
j=1

e−i(njt+θj).

Then ‖fN‖B = 1 + (1/ε)N (1/p)−1 and

〈fN , T ∗µ〉 = 〈TfN , µ〉 =

∫
K
fN (t) dµ(t) =

1

N

N∑
j=1

µ̂(nj) e
−iθj .

It follows that

‖T ∗µ‖B∗ > lim
N→∞

|〈fN , T ∗µ〉|
‖fN‖B

= L(µ) > δ
∫
|dµ|,

for every measure µ supported by K.

By a classical theorem of Banach (see [10, p. 141]) this implies that for

every h ∈ C(K), the equation Tf = h admits a solution f ∈ B such that

‖f‖B 6 (1/δ) ‖h‖C(K). This proves the lemma. �

5.2. Using Lemma 10 we can prove Lemma 9 above.

Proof of Lemma 9. It will be convenient to use Baire categories in the

proof. Let I(K) denote the set of functions g ∈ A(T) which vanish on K. This

is a complete metric space, with the metric inherited from A(T). We will prove

that the set of functions g ∈ I(K) which are cyclic in Ap(T) for every p > 1,

is a countable intersection of open, dense sets in the space I(K). By Baire’s

theorem, this set is therefore nonempty (and in fact is dense in the space).

For ε > 0 and p > 1, denote by G(ε, p) the set of g ∈ I(K) for which there

exists a trigonometric polynomial P such that ‖1 − P · g‖Ap < ε. Choose a

sequence εn → 0 and a sequence pn → 1 (n→∞), and consider the intersection

∞⋂
n=1

G(εn, pn).

According to condition (i) from Section 2.2, a function g ∈ I(K) belongs to

this intersection if and only if it is cyclic in Ap(T) for every p > 1. So to

conclude the proof it remains to show that each G(ε, p) is an open, dense set

in I(K).
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Let g0 ∈ G(ε, p) be given. Then ‖1−P · g0‖Ap < ε for some trigonometric

polynomial P . Given η > 0, suppose that g ∈ I(K) and ‖g − g0‖A < η. Then

‖1− P · g‖Ap 6 ‖1− P · g0‖Ap + η ‖P‖Ap .

It η is chosen sufficiently small then the right-hand side is smaller than ε.

Hence G(ε, p) contains the open ball B(g0, η) of radius η centered at g0, and

this shows that G(ε, p) is open.

Finally we show that G(ε, p) is dense. Let a ball B(g0, η) in I(K) be given.

Choose a trigonometric polynomial h, not identically zero, such that

‖h− g0‖A <
δ

1 + δ
· η ,

where δ = δ2(K) > 0 is the constant from (37). In particular, this implies that

sup
t∈K
|h(t)| < δ

1 + δ
· η .

Since h is nonzero, it has finitely many zeros, so by conditions (i) and (ii) from

Section 2.2 there is a trigonometric polynomial P such that ‖1−P ·h‖Ap < ε/2.

Now use Lemma 10 to find f ∈ A(T) such that

f |K = h|K , ‖f‖A < η/(1 + δ), ‖f‖Ap <
ε

2 ‖P‖A
,

and set g := h− f . Then clearly g ∈ I(K). Moreover

‖g − g0‖A 6 ‖h− g0‖A + ‖f‖A < η;

that is, g ∈ B(g0, η). Also,

‖1− P · g‖Ap 6 ‖1− P · h‖Ap + ‖P‖A‖f‖Ap < ε,

and therefore g ∈ G(ε, p). This shows that G(ε, p) is dense. �

5.3. Our main result now follows:

Proof of Theorem 1. By Theorem 3 there is a Helson set K satisfying

condition (a′) in Theorem 2. This condition is equivalent to condition (a) in

Theorem 1 (see Section 2.2, (iii) and (v)). On the other hand, Lemma 9 implies

that K also satisfies condition (b). So Theorem 1 is proved. �

Proof of Corollary 1. Let K be the compact set of Theorem 1. By prop-

erty (b) there is g ∈ A(T) vanishing on K, which is cyclic in Ap(T). Choose

a smooth (say, twice continuously differentiable) function f on T, such that

Zf = Zg. In particular, f vanishes on K. Since the Fourier coefficients of f

decrease sufficiently fast, property (a) implies that f is a noncyclic vector in

Ap(T). Thus our corollary is proved. �

Remark. One can see from the proof above that if p remains bounded away

from 2, then the two vectors in Corollary 1 may be chosen independently of p.
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6. Nonperiodic version

Here we extend the results to Lp(R) spaces, 1 < p < 2. This can be

deduced easily from the previous results, so we may be brief. In particular, we

skip the formulation of the corresponding version of Theorem 1, and restrict

ourselves to

Corollary 2. Given any 1 < p < 2 one can find two functions in L1(R)∩
C0(R), such that one is cyclic in Lp(R) and the other is not, but their Fourier

transforms have the same (compact) set of zeros.

Here C0(R) is the space of continuous functions on R vanishing at infinity.

It will be convenient to denote by “R another copy of the real line. We

consider distributions on the Schwartz space S(“R). We denote by Ap(“R),

1 6 p < ∞, the space of Fourier transforms of functions in Lp(R), with the

corresponding norm. In particular, for p = 1 this is the Wiener algebra A(“R)

of functions with an absolutely convergent Fourier integral.

Recall that, by definition, a function F (x) ∈ Lp(R) is a cyclic vector if the

translates {F (x − y)}, y ∈ R, span the whole space. Equivalently, F is cyclic

if the set {f(t)φ(t)}, where f = “F and φ runs over S(“R), is dense in Ap(“R).

Proof of Corollary 2. Fix 1 < p < 2, and take the compact K of Theo-

rem 1. By property (b) there is h ∈ A(T), vanishing on K, which is cyclic in

Ap(T) (with respect to multiplication by trigonometric polynomials).

We may assume that h(t) is positive at some point t, and by rotation,

that h(π) > 0. It follows that there is an interval

I := (−π + δ, π − δ), δ > 0,

such that K ⊂ {t : Reh(t) 6 0} ⊂ I. Choose a function χ ∈ S(“R), 0 6 χ 6 1,

compactly supported by (−π, π), and such that χ(t) = 1 on I. Define

g(t) := χ(t)h(t) + (1− χ(t)) e−t
2
, t ∈ “R.

It is easy to see that:

(i) The zero set Zg is compact, K ⊂ Zg ⊂ I.

(ii) g = “G for some G ∈ L1(R) ∩ C0(R), which implies g ∈ Ap(“R).

Claim 1. The set {g(t)φ(t)}, φ ∈ S(“R), is dense in Ap(“R).

If not then, by duality, there is a (nonzero) distribution S ∈ Aq(“R), q =

p/(p− 1), such that 〈S, g · φ〉 = 0 for every φ ∈ S(“R). It follows that

(39) supp(S) ⊂ Zg ⊂ I, |I| < 2π.

We have g(t) = h(t) on I, since χ(t) = 1 on I. Hence

(40) 〈S, h · φ〉 = 0 for every φ ∈ S(“R).
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Condition (39) allows us to regard S also as a distribution on T. It is well

known that under this condition the following equivalence holds:

S ∈ Aq(T) ⇐⇒ S ∈ Aq(“R).

But h is cyclic in Ap(T), so (40) implies that S = 0, which proves the claim.

Now take an arbitrary function f ∈ S(“R) with Zf = Zg.

Claim 2. The set {f(t)φ(t)}, φ ∈ S(“R), is not dense in Ap(“R).

Indeed, property (a) from Theorem 1 implies that K supports a (nonzero)

distribution S ∈ Aq(T). As above we can regard it as a distribution on “R,

belonging to Aq(“R). But f is a smooth function in Ap(“R), and f |K = 0, hence

〈S, f · φ〉 = 0 for every φ ∈ S(“R).

This means that the inverse Fourier transform of f is a function F ∈
L1(R) ∩C0(R), which is noncyclic in Lp(R). Our corollary is thus proved. �

7. Remarks

7.1. Theorem 1 may be put into the context of the theory of translation-

invariant subspaces. A linear subspace M ⊂ Lp(G) is called translation-

invariant if whenever f belongs to M , then so do all of the translates of f .

Observe that f ∈ Lp(G) is a cyclic vector if and only if it does not belong to

any proper closed translation-invariant subspace of Lp(G).

It is well known that any closed translation-invariant subspace in `2(Z)

can be uniquely recovered from the set of the common zeros of the Fourier

transforms of its elements.

This is not the case in `1(Z). Malliavin’s “non-synthesis” example [17]

means that different closed translation-invariant subspaces in this space may

have the same set of common zeros. More precisely, for a compact set K ⊂ T
consider the invariant subspaces

I(K) = {c ∈ `1(Z) : ĉ vanishes on K},

J(K) = {c ∈ `1(Z) : ĉ vanishes on some open set containing K}.

Malliavin proved that there is a compact compact K such that the closure of

J(K) is strictly smaller than I(K).

Kahane [8] (see also [10, p. 121]) showed that such a result still holds if

one takes the closures of J(K) and I(K) in `p(Z), 1 < p < 2.

Theorem 1 reveals a sharper phenomenon in these spaces, which is not

possible in `1(Z). Namely, there is a compact K such that the `p-closures

satisfy

Clos J(K) $ Clos I(K) = `p(Z).
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7.2. Strictly speaking, it is not necessary to require that c ∈ `1 in order

to have the zero set Zĉ well defined. The continuity of ĉ is sufficient for that,

as appeared in the weaker version of Theorem 1 proved in [16]. However, the

advantage of the present version seems to be substantial, since very little is

known about the relation between cyclicity in `p (1 < p < 2) and the zero

set unless c ∈ `1. In particular, we do not know the answer to the following

question: let f ∈ C(T) ∩ Ap(T) have no zeros; does this imply that c = f̂ is a

cyclic vector?

7.3. Let K be a Helson set. Define its ‘Helson constant’ as the maximal

possible δ1(K) in (36). Körner’s [14] and Kaufman’s [12] constructions (see

Section 4.1 above) give a Helson constant 1. What can be said about the

Helson constant of K in Theorem 3? Specifically, must it tend to zero when

q → 2?

7.4. Perhaps the most interesting problem left open is: could one char-

acterize in reasonable terms the cyclic vectors c in `p, 1 < p < 2, under the

standard assumption c ∈ `1 with no extra restrictions?
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[9] , Séries de Fourier Absolument Convergentes, Ergeb. Math. Grenzgeb.,

Springer-Verlag, New York, 1970. MR 0275043. Zbl 0195.07602.

[10] J.-P. Kahane and R. Salem, Ensembles Parfaits et Séries Trigonométriques,
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