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On the Castelnuovo-Mumford regularity of
rings of polynomial invariants

By Peter Symonds

Abstract

We show that when a group acts on a polynomial ring over a field the

ring of invariants has Castelnuovo-Mumford regularity at most zero. As

a consequence, we prove a well-known conjecture that the invariants are

always generated in degrees at most n(|G| − 1), where n > 1 is the number

of polynomial generators and |G| > 1 is the order of the group. We also

prove some other related conjectures in invariant theory.

The main result of this paper is the following theorem.

Theorem 0.1. Let k be any field and S = k[x1, . . . , xn] a graded polyno-

mial ring. Let the group G act on S by homogeneous linear substitutions. Then

the invariant subring SG has Castelnuovo-Mumford regularity at most zero.

As a consequence, we can prove a conjecture of Gregor Kemper [19] on

the degrees of the generators of SG.

Corollary 0.2. The invariant subring SG is generated in degrees at

most n(|G| − 1) (provided that n > 1, |G| > 1). The relations between the the

generators are generated in degrees at most 2n(|G| − 1).

That just |G| is a bound on the degrees of the generators when k has

characteristic 0 is a result of Noether (for this reason such a bound is called a

Noether bound in the literature). This was generalized to the case of coprime

characteristic by Fleischmann [13] and Fogarty [14], with a much simplified

proof by Benson. However, in general, no bound depending only on |G| is

possible, as was shown by Richman [21], [22]. The bound above was shown

to hold when S1 is a trivial source module by Göbel [15]. Some very much

weaker bounds have been shown to hold by Derksen and Kemper [8] and by

Karagueuzian and the author [18].

This corollary follows from the next corollary, which in turn follows easily

from the Main Theorem 0.1 and elementary properties of regularity.
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Corollary 0.3. Let k[d1, . . . , dn] < SG be a subring of primary invari-

ants. Then :

(1) the secondary invariants are bounded in degree by
∑

i(deg(di)− 1),

(2) the relations as a ring are generated in degrees at most 2
∑

i(deg(di)−1).

The first part was conjectured by Kemper [19]. It is well known when

k has characteristic zero [23] and was proved in the case when the ring of

invariants is Gorenstein by Campbell, Geramita, Hughes, Shank and Wehlau

[7], then in the Cohen-Macauley case by Broer [5].

The Hilbert series of SG is the formal power series

H(SG, t) =
∑
i

dimk(SG
i )ti.

It is known to be a rational function, by the Hilbert-Serre Theorem. The next

result (strictly speaking only a corollary of the proof of Theorem 0.1) was also

conjectured by Kemper [19].

Corollary 0.4. The degree of H(SG, t) as a rational function is at

most −n.

This corollary is easily seen to be equivalent to the previous one in the

Cohen-Macaulay case. It was proved for a reductive algebraic group over an

algebraically closed field of characteristic zero by Knop [20].

There is an excellent survey of results and conjectures on degree bounds

by Wehlau [26].

The proof of the Main Theorem 0.1 is quite short, but it depends heavily

on the details of the Structure Theorem that we proved with Karagueuzian

in [18] and on the relatively projective resolutions of [24]. We also need to

develop some of the properties of Castelnuovo-Mumford regularity.

I wish to thank Dikran Karagueuzian, without whom this project would

have been impossible, and Gregor Kemper for making these conjectures and for

his hospitality. Burt Totaro showed me how to extend these results to infinite

fields, and David Wehlau provided some calculations which revealed an error in

a preliminary version of this paper. I also thank Ergün Yalçin for introducing

me to the concept of regularity and Luchezar Avramov for patiently explaining

it to me.

1. Castelnuovo-Mumford Regularity

We will work in categories of Z-graded rings and modules throughout,

so M = ⊕i∈ZMi. We will write M≥d = ⊕i≥dMi and similarly for other in-

equalities. We also use M(d) to denote a shift down in grading by d, so that

M(d)i = Mi+d.
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Let k be a field, and let R be a finitely generated commutative graded

k-algebra in nonnegative degrees with dimk R0 <∞. Let I be a (homogeneous)

ideal in R, and let M be an R-module (graded, by assumption). The I-torsion

in M is ΓI(M) = {m ∈ M | ∃n ∈ N Inm = 0}. The local cohomology,

H i
I(R,M), is then defined to be the ith right derived functor of ΓI(M) (in the

category of graded R-modules); frequently the ring R is suppressed from the

notation and just H i
I(M) is written. It follows easily from the definitions that

H i
I(R,M) = H i√

I
(R,M).

For more information on local cohomology see [6], [4], [11] or [17].

Let m = R>0 be the ideal of positively graded elements of R; usually we

will have R0 = k, so m is the unique maximal homogeneous ideal. We will be

interested in H i
m(M). Let ai(R,M) denote the maximum degree of a nonzero

element of H i
m(R,M) (possibly ∞ if unbounded or −∞ if H i

m(R,M) = 0).

The Castelnuovo-Mumford regularity (or just regularity) of M over R is, by

definition,

reg(R,M) = sup
i
{ai(R,M) + i}.

The number reg(R,R) is important and we denote it by just reg(R).

The Independence Theorem for local cohomology ([16, 5.7], [4, 13.1.6])

states that if R′ is another ring satisfying the same conditions as R, I ′ < R′ is

an ideal and f : R′ → R is a ring homomorphism (all graded), then f induces an

isomorphism H i
I′(R

′,M)→ H i
I′R(R,M) (where we regard M as an R′-module

via f and I ′R is the ideal in R generated by f(I ′)). Let m′ = R′>0; if R is

finite over R′, then it is easy to see that
√
m′R =

√
m. Combining these facts

we obtain H i
m′(R′,M) ∼= H i

m(R,M), so reg(R′,M) = reg(R,M).

We will use this theory when R′ is a Noether normalization of R, that is

to say a polynomial subring over which R is finitely generated. These always

exist, and their generators are often referred to as a homogeneous system of

parameters, or as primary invariants in the case of invariant theory (for more

information on this see the references mentioned above or [1]). Restricting

to any normalization will yield the same value for the regularity and we will

usually write just reg(M).

Now suppose that R = k[x1, . . . , xn] is a polynomial ring in which the

generators have arbitrary positive degree |xi| = deg(xi). We set σ(R) =∑n
i=1(|xi| − 1) although traditionally one considers the a-invariant, a(R) =

−σ(R)− n = −∑n
i=1 |xi|.

Let M be an R-module and consider the minimal (graded) projective

resolution of M (projective is equivalent to free in this case)

· · · → P1 → P0 →M → 0.

Let ρi(R,M) be the maximum degree of a nonzero element of R/m⊗R Pi

(possibly ∞ or −∞), which is equal to the maximum degree of a generator
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of Pi (Benson [2], [3] uses βi instead of ρi, but this can be confused with the

Betti numbers). Define

Preg(R,M) = sup
i
{ρi(R,M)− i} − σ(R).

This form of the definition first appeared in a paper of Benson [2]. The usual

definition does not contain a σ-term, because all the di are supposed to be in

degree 1 and so σ(R) = 0; but the necessity of using this form will become

apparent.

We consider Hom-groups between graded modules to be graded modules

as well. The homogeneous part in degree i consists of the homomorphisms that

increase the grading by i. In this way the Ext groups are also graded modules.

Now define εi(R,M) to be the minimum degree of a nonzero element of

ExtiR(M,R) (possibly ∞ or −∞). Define

Extreg(R,M) = sup
i
{−εi(R,M)− i} − σ(R).

Lemma 1.1. Assume that M is finitely generated over R (which is still a

polynomial ring). Then Preg(R,M) = Extreg(R,M).

Proof. A proof is given in [10, 20.16] (it is assumed there that σ(R) = 0,

but the argument still holds). For the convenience of the reader we sketch the

proof.

That Preg(R,M) ≥ Extreg(R,M) follows easily from the definitions. For

the reverse inequality, we will show that ρi(R,M) ≤ Extreg(R,M)+σ(R)+i by

downward induction on i. Since R is a polynomial ring, the minimal resolution

has finite length, so the induction certainly starts.

Let · · · → Pr
dr→ Pr−1 → · · · → M → 0 denote the minimal projective

resolution of M . We claim that there is no map f : Pr → R(−u), for any r

or u, such that fdr+1 is onto. For then fdr+1 would split, and Pr+1 would

contain a summand R(−u) that mapped isomorphically to its image in Pr.

We could then factor out the two copies of R(−u) in P• and obtain a smaller

resolution of M , a contradiction.

Suppose that the inequality is established for i > r, but that Pr con-

tains a summand R(−u) with u > Extreg(R,M) + σ(R) + r. In partic-

ular, u > −εr(R,M). Let f be the corresponding projection of Pr onto

R(−u) and consider the map (fdr+1)u : (Pr)u → R(−u)u ∼= k. If it is

onto then fdr+1 is onto, which is impossible by the discussion above. Thus

(fdr+1)u = 0 and since, by the induction hypothesis, Pr+1 contains no sum-

mands R(−v) with v > u, the map fdr+1 = 0. Thus f determines an element

of ExtrR(M,R(−u))0
∼= ExtrR(M,R)−u.

But this Ext-group is zero by the condition on u, so f factors through dr,

again contradicting the minimality of the resolution. �



RINGS OF POLYNOMIAL INVARIANTS 503

Note that we might well have ρi(R,M) 6= εi(R,M).

The Local Duality Theorem ([16, 6.3], [6, 3.6.19/3.6.11]) states that for R

a polynomial ring in n variables as above and M a finitely generated R-module

we have

Homk(H i
m(M), k) ∼= Extn−iR (M,R(a(R))).

Recall that k is in degree 0 and that R(a(R)) denotes a copy of R that has

been shifted down in degree by a(R) or, equivalently, up in degree by σ(R)+n.

Proposition 1.2. If R is a polynomial ring over a field and M is a

finitely generated R-module, then Preg(R,M) = reg(R,M).

Proof. Combine the Local Duality Theorem with Lemma 1.1. �

This result is well known when σ(R) = 0 (see e.g. [10, A4.2]). It is stated

in this generality in [3, 2.3].

We are really only concerned with Preg in this paper, but we need the

connection with local cohomology in order to see that if R is a noetherian ring

and R′ and R′′ are two different Noether normalisations of R, then for any

finitely generated R-module M we have Preg(R′,M) = Preg(R′′,M).

For example, if R is a ring of polynomial invariants, then Preg(R′, R) does

not depend on the choice of primary invariants R′ and it is equal to reg(R).

Remark. If R is a polynomial ring, then reg(R) = Preg(R;R) = −σ(R),

so the regularity of a ring of invariants can certainly be negative. However, in

characteristic zero the ring of invariants has regularity zero if and only if the

representation in degree one has trivial determinant (see [23, 3.9]).

This is in contrast to the case of the cohomology of a finite group, where

Benson shows in [3] that reg(H∗(G,Fp)) ≥ 0 and conjectures that equality

holds. This has now been proved [25].

2. Generators and relations

Given a finitely generated graded k-algebra S in nonnegative degrees and

an integer N , let τkNS be the k-algebra determined by the generators and

relations of S that occur in degrees at most N . We will normally write just

τNS. There is a canonical map τNS → S, which is an isomorphism in degrees

up to and including N .

For a more abstract setting, consider the functor S 7→ S/S>N on graded

k-algebras in nonnegative degrees; τN is its left adjoint.

It is not hard to see that if ` is an extension field of k then τ `N (`⊗k S) ∼=
`⊗k τ

k
NS.
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Proposition 2.1. Let R = k[d1, . . . , dm], and suppose that there is a

map f : R→ S such that S is finitely generated over R (e.g. if R is a Noether

normalisation of S). Then :

(1) if N ≥ max{reg(S) + σ(R), deg(di)}, then τNS → S is a surjection ;

(2) if N ≥ max{2(reg(S)+σ(R)), reg(S)+σ(R)+1, deg(di)}, then τNS →
S is an isomorphism ;

(3) if N ≥ max{reg(S) + σ(R) + 1, deg(di)} and if τNS, considered an

R-module, is generated in degrees at most N , then τNS → S is an

isomorphism.

Proof. Let · · · → P1 → P0 → S → 0 be the minimal projective resolution

of S as an R-module.

It is clear from the definitions that S, considered as an R-module, is

generated in degrees at most ρ0(R,S) and is presented in degrees at most

max{ρ0(R,S), ρ1(R,S)}.
If N ≥ max{deg(di)}, then f can be lifted uniquely to τNS, making τNS

into a finitely generated R-module.

Let {vi} be a set of homogeneous generators of S as anR-module with min-

imum degrees. These have degrees not exceeding ρ0(R,M), which is bounded

by reg(S) + σ(R) according to the definition of Preg. This proves part (1).

The R-module relations between the vi are generated in degrees at most

reg(S) + σ(R) + 1. The only information still needed in order to determine

the structure of S as a ring is an expression for each of the products vjvk as

an R-linear combination of the vi. Such a formula will lie in degree at most

2(reg(S) + σ(R)). This proves part (2).

For part (3), consider the following commutative diagram of R-modules

with exact rows, where the vertical arrows can be filled in since the Pi are

projective:

−−−−→ P1 −−−−→ P0 −−−−→ S −−−−→ 0y y ∥∥∥∥
0 −−−−→ K −−−−→ τNS −−−−→ S −−−−→ 0.

We know that K≤N = 0 and that P1 is generated in degrees at most ρ1(R,S)

≤ N . Thus the composite map P1 → τNS is zero. It follows that the bottom

row is split as a sequence of R-modules. Since τNS is generated as an R-module

in degrees at most N , by hypothesis, so is K, which implies that K = 0. �

Remark. There is a similar result when both S and τNS are taken to be

graded commutative rings (although R remains strictly commutative).

Proofs of 0.2 and 0.3. Corollary 0.3 now follows directly from the Main

Theorem 0.1 and Proposition 2.1. It is easy to check that the maximum in the
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formulas of Proposition 2.1 is achieved by the first term, except in the trivial

case when all the di have degree 1.

The remark about τN commuting with field extensions shows that, in order

to prove Corollary 0.2, we may extend the field. But then a result of Dade

in [23] shows that for some finite field extension we can find a set of primary

invariants of degree at most the order of the group, so from Corollary 0.3 we

obtain the bound max{n(|G| − 1), |G|} for the degrees of the generators. But

the |G| term is only larger than the other in the trivial cases that are excluded

in the statement of the corollary. Similarly, the bound obtained on the degrees

of the relations is always 2n(|G|− 1), except in the case when G = 1 and there

are no relations anyway.

Remark. In the case when G is a p-group, one of the primary invariants

can be taken to be in degree 1 and we obtain the bound (n− 1)(|G| − 1).

Remark. Benson [2, §10] defines τNS and proves a version of Proposi-

tion 2.1 in the case when S is the cohomology of a group.

3. Relatively projective resolutions

Let M be an RG-module for some finite group G. A relatively projective

resolution P• of M relative to kG is a complex of RG-modules

· · · → P2 → P1 → P0 →M → 0

that is split exact over kG and in which each Pi is a sum of terms R⊗k V (−d),

where V (−d) is a kG-module considered to be in degree d. For brevity we will

call this just an RG/kG-resolution. Here R acts on the first term of R⊗kV (−d)

and G acts on the second. We could also write R⊗k V (−d) as RG⊗kG V (−d),

with RG acting on the left in the usual way.

If N is another RG-module, then we obtain R-modules ExtiRG/kG(M,N)

by applying HomRG(−, N) to the resolution of M and taking homology.

For more information on general relative homological algebra see [9], [12],

[27]. We will closely follow our treatment in [24]. In particular, the next result

is taken from [24, 4.2].

Theorem 3.1. If M is a finitely generated RG-module, then M has a

unique minimal RG/kG-resolution P•. For any indecomposable kG-module V

and any integer d, the number of summands of the form R ⊗k V (−d) in any

given term Pi is finite and is zero if V is not a summand of M as a kG-module.

If R is polynomial, then this resolution has finite length.

The question of minimality and uniqueness is not explicitly addressed in

[24], but the construction used there proceeds by changing the problem to one

about projective resolutions in another category, in which modules bounded
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below in degree have projective covers, so the existence of a unique minimal

projective resolution is guaranteed. For a theoretical framework in the context

of relative homological algebra see [12, Chap. 8].

From now on, assume that R is polynomial and that M is finitely gener-

ated over R. For any indecomposable kG-module V , define ρi(R,G;M,V ) to

be the largest d for which R⊗k V (−d) appears in the Pi term of the minimal

RG/kG-resolution of M . Define

ρi(R,G;M) = sup
V
{ρi(R,G;M,V )},

Preg(R,G;M) = sup
i
{ρi(R,G;M)− i} − σ(R).

It is clear that if H is a subgroup of G, then an RG/kG-resolution of M

restricts to an RH/kH-resolution of M ↓GH . This fact together with the next

lemma is key to our strategy.

Lemma 3.2. If · · · → P1 → P0 →M → 0 is an RG/kG-resolution of M ,

then · · · → PG
1 → PG

0 → MG → 0 is a projective resolution of the invariants

MG over R. As a consequence,

ρi(R,M
G) ≤ ρi(R,G;M),

Preg(R,MG) ≤ Preg(R,G;M).

Proof. Since the resolution is split over kG, taking fixed points preserves

exactness. Each Pi is a sum of terms of the form R ⊗k V (−d); thus PG
i is a

sum of terms of the form R⊗k V
G(−d), so is free over R. �

The next lemma is a sort of generalization of Lemma 1.1, but notice that

the bound is horizontal instead of diagonal.

Lemma 3.3. For any integer N , the following are equivalent :

(1) ρi(R,G;M) ≤ N for all i;

(2) ExtiRG/kG(M,R ⊗k V (−d))0 = 0 for all kG-modules V , all i and all

d > N ;

(3) ExtiRG/kG(M,R⊗k V (−d))0 = 0 for all indecomposable kG modules V

that occur as a summand of M , all i and all d > N ;

(4) for each indecomposable kG-module V , either ρi(R,G;M,V ) ≤ N for

all i or ExtiRG/kG(M,R⊗k V (−d))0 = 0 for all i and all d > N .

Proof. This is essentially what is proved in [24, §5], where it is shown that

condition (3′) there is equivalent to the other conditions, although the given

proof does not explicitly keep track of N , so we do so here.

Condition (4) is implied by each of the other conditions and, using the

definition of Ext∗RG/kG, we see that condition (1) implies all the others, so we

concentrate on (4)⇒(1). We assume (4) and prove (1) by downward induction
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on i. Since the minimal projective resolution is of finite length, the induction

starts.

We suppose that ρi(R,G;M) ≤ N for all i > r. Consider an indecom-

posable kG-module V ; if ρr(R,G;M,V ) ≤ N , then there is nothing to prove,

so we assume that there is a summand R ⊗k V (−u) of Pr for some u > N .

Let f be a projection of Pr onto R ⊗k V (−u). Since Pr+1 is generated as an

R-module in degrees at most N , the map fdr+1 is zero. Thus f determines an

element of ExtrRG/kG(M,R⊗k V (−u))0.

But this Ext-group is zero, by hypothesis, so f factors through dr. It

follows that R ⊗k V (−u)
dr→ dr(R ⊗k V (−u)) is a summand of the mini-

mal resolution as a complex of RG-modules, a contradiction. We must have

ρr(R,G;M,V ) ≤ N , as required. �

Lemma 3.4. If H < G and W is a kH-module, then

ExtiRG/kG(M,R⊗k (W (−d)↑GH)) ∼= ExtiRH/kH(M ↓GH , R⊗k W (−d)).

As usual, ↑ denotes induction and ↓ denotes restriction.

Proof. This is an easy adaptation of the usual Eckmann-Shapiro lemma.

�

Lemma 3.5. If R′ < R and both are polynomial rings, R is finitely gen-

erated over R′ and V is an indecomposable kG-module, then

ρi(R
′, G;M,V )− σ(R′) ≤ ρi(R,G;M,V )− σ(R).

As a consequence,

Preg(R′, G;M) ≤ Preg(R,G;M).

Proof. Take a minimal RG/kG-resolution of M and restrict it to R′. By

the basic theory of Cohen-Macauley rings (see e.g. [1] or [6]), R is free of finite

rank over R′ with a basis of homogeneous elements {zj} bounded in degree by

σ(R′)− σ(R). For each summand R⊗k V (−d) in Pi in the original resolution,

we now have ⊕jR
′zj ⊗k V (−d) and the result follows. �

Lemma 3.6. If R′ < R, M is a finitely generated R′G-module and V is

an indecomposable kG-module, then

ρi(R,G;R⊗R′ M,V ) ≤ ρi(R′, G;M,V ).

Proof. Tensoring an R′G/kG-resolution of M with R yields an RG/kG-

resolution of R⊗R′ M . �

Lemma 3.7. If H < G, then ρi(R,H;M ↓GH) ≤ ρi(R,G;M) and so

Preg(R,H;M ↓GH) ≤ Preg(R,G;M).
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Proof. Take an RG/kG-resolution of M and restrict it to H. �

Lemma 3.8. If P is a Sylow p-subgroup of G (where p = char k), then

ρi(R,P ;M ↓GP ) = ρi(R,G;M) and so Preg(R,P ;M ↓GP ) = Preg(R,G;M).

Proof. The inequality ≤ follows from 3.7.

For ≥, note that M is a summand of M ↓P ↑Gas an RG-module; thus

ρi(R,G;M ↓P ↑G) ≥ ρi(R,G;M). But an RP/kP -resolution of M ↓P induces

to an RG/kG-resolution of M ↓P ↑G and so

ρi(R,P ;M ↓P ) ≥ ρi(R,G;M ↓P ↑G). �

Lemma 3.9. Let 0 → A → B → C → 0 be a short exact sequence of

RG-modules that is split over kG and let V be an indecomposable kG-module.

Then

ρi(R,G;B, V ) ≤ max{ρi(R,G;A, V ), ρi(R,G;C, V )}.
As a consequence,

Preg(R,G;B) ≤ max{Preg(R,G;A),Preg(R,G;C)}.

Proof. A relatively projective resolution for B can be constructed from

ones for A and C (see [12, 8.2.1]) just as in the Horseshoe Lemma for ordinary

projective resolutions (cf. [27, 2.2.8]). �

Lemma 3.10. If M is a finitely generated RG-module and d is an integer

such that M>d = 0, then Preg(R,G;M) ≤ d.

Proof. Filter M by its submodules M≥r; since M is finitely generated and

M>d = 0, this is a finite filtration and the composition factors are just the ho-

mogeneous pieces Mr. Clearly M is the sum of its composition factors over kG.

By repeated use of 3.9, we see that Preg(R,G;M) ≤ maxr{Preg(R,G;Mr)};
hence it will be sufficient to show that Preg(R,G;Mr) ≤ r.

Let R = k[d1, . . . , dn], where |d1| ≥ |d2| ≥ · · · ≥ |dn| ≥ 1. Since the di
annihilate Mr, we can resolve Mr by tensoring it with the Koszul resolution

on the di; this is an RG/kG-resolution.

It is now easy to calculate that ρi(R,G;Mr) ≤ r+
∑i

j=1 |dj |. But
∑i

j=1 |dj |
≤∑i

j=1 |dj |+
∑n

j=i+1(|dj | − 1) = σ(R) + i. Hence ρi(R,G;Mr)− i− σ(R) ≤ r
and so Preg(R,G;Mr) ≤ r. �

4. The Structure Theorem

Here we summarize the material that we will require from our paper with

Karagueuzian [18].

From now until Section 6, k will always be a finite field. Let S =

k[x1, . . . , xn] be a polynomial ring with all the generators in degree 1. For
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any subset I ⊆ {1, 2, . . . , n − 1}, let UI denote the group of upper-triangular

matrices over k with 1’s on the diagonal and nonzero off-diagonal entries only

in rows corresponding to the elements of I. The group UI acts on S in the

natural way, i.e. so that S1 is the canonical module. The invariants form a

polynomial ring generated by the orbit powers of the xi; we denote the latter

by di(I) (here our notation differs slightly from that of [18]).

The Main Theorem of [18] is as follows.

Theorem 4.1. As a graded kUI-module,

S ∼=
⊕
J⊆I

k[di(I); i 6∈ J ]⊗k X̄J(I),

where X̄J(I) is a finite-dimensional graded kUI-submodule of S and the map

from right to left is induced by multiplication in S.

We also have some information about the modules X̄J(I). Let us write

k[d(I)] for k[di(I); i = 1, . . . , n] and σ(I) for σ(k[d(I)]).

Proposition 4.2. (1) X̄J(I) is induced from UJ .

(2) X̄∅(I) is homogeneous of degree σ(I).

(3) X̄I(I) lies in degrees at most σ(I)−∑i∈I |di(I)|.

Proof. We refer by numbers in parentheses to statements in [18].

Part (1) is by construction (10.1(2)).

For part (2), notice that X̄∅(I)UI is 1-dimensional in a degree that is

denoted by degI(~p) (10.1(3) and 5.14). The fact that degI(~p) = σ(I) can

be verified by direct calculation from the definitions or, more conceptually,

by observing that deg X̄∅(I) = deg(G(I, ∅)) by construction (10.1(2)), where

G(I, ∅) is a polynomial that clearly has degree σ(I) from its definition (9.1).

Part (3) follows from part (2) and (5.22). �

We also record one other fact.

Proposition 4.3. The ring S contains a k[di(I); i ∈ I]UI-submodule

T (I) such that

S ∼= k[di(I); i 6∈ I]⊗k T (I) ∼= k[d(I)]⊗k[di(I);i∈I] T (I)

as k[d(I)]UI-modules.

This is (6.4) in [18]; although there the map is only stated to be a

k[di(I); i ∈ I]UI -module isomorphism, it is clearly a k[d(I)]UI -isomorphism,

by construction.
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5. Proof of the Main Theorem

What we would like to do is to construct an explicit k[d(I)]UI/kUI -

resolution of S. There is an obvious candidate for a description of what the

modules in this resolution ought to be. For each XJ(I)=k[di(I); i 6∈J ]⊗kX̄J(I)

in the Structure Theorem, there should be a contribution that looks like XJ(I)

tensored with the Koszul complex on the di(I), i ∈ J . If we knew that there

existed a filtration of S by k[d(I)]UI -modules with the XJ(I) as composition

factors, then this could be verified. However, the existence of such a filtration

is not clear.

We will content ourselves with proving some of the bounds that would be

implied by the existence of such a resolution.

Our key result is the following proposition. Notice that the bound is not

the diagonal one that might be expected.

Proposition 5.1. In the context of the Structure Theorem,

ρi(k[d(I)], UI ;S) ≤ σ(I)

for all i ≥ 0. As a consequence,

Preg(k[d(I)], UI ;S) ≤ 0.

Proof. Use induction on |I|; the case I = ∅ is clear since k[d(∅)] = S and

σ(∅) = 0.

Let V be an indecomposable kUI -module; by Lemma 3.3, it is sufficient

to verify condition 3.3(4) with N = σ(I). First consider the case when V is

projective relative to some proper subgroup UJ , J $ I; say V is a summand

of W ↑UI
UJ

for some indecomposable kUJ -module W . Then, by 3.4,

Extik[d(I)]UI/kUI
(S, k[d(I)]⊗k V )

is a summand of

Extik[d(I)]UJ/kUJ
(S, k[d(I)]⊗k W ).

By the induction hypothesis, ρi(k[d(J)], UJ ;S,W ) ≤ σ(J), so, by 3.5,

ρi(k[d(I)], UJ ;S,W ) ≤ σ(I).

This implies that the first Ext group above vanishes in degrees less than

−σ(I) for all i, so the same is true for the second one. Since

Extik[d(I)]UI/kUI
(S, k[d(I)]⊗k V (−d))0

∼= Extik[d(I)]UI/kUI
(S, k[d(I)]⊗k V )−d,

this Ext-group vanishes for d > σ(I), as required.

In the case that V is not projective relative to any proper subgroup UJ ,

we use 4.3 to write

S ∼= k[d(I)]⊗k[d(I)′] T (I),
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where k[d(I)′] = k[di(I); i ∈ I]. Thus

ρi(k[d(I)], UI ;S, V ) ≤ ρi(k[d(I)′], UI ;T (I), V ),

by 3.6. We need to show that the right-hand side is bounded by σ(I).

Since V is not projective relative to any proper subgroup UJ , 4.2(1) shows

that the only X̄J(I) in which it can appear is X̄I(I). As a consequence, V does

not appear in T (I)>b, where b is the maximum degree of an element of X̄I(I)

(finite, by 4.2(3)).

From the short exact sequence, split over kUI ,

0→ T (I)>b → T (I)→ T (I)/T (I)>b → 0,

it follows, by 3.9, that

ρi(k[d(I)′], UI ;T (I), V ) ≤ ρi(k[d(I)′], UI ;T (I)/T (I)>b, V ).

But, since T (I)/T (I)>b is bounded in degree by b, we know, from 3.10, that

Preg(k[d(I)′], UI ;T (I)/T (I)>b) ≤ b.

Thus we have

ρi(k[d(I)′], UI ;T (I)/T (I)>b, V )− i ≤ b+
∑
i∈I

(|di(I)| − 1).

But, by 4.2(3), b ≤ σ(I) −∑i∈I |di(I)|. Thus ρi(k[d(I)′], UI ;T (I), V ) ≤
σ(I), as required. �

We can now finish the proof of the Main Theorem 0.1 in the case of a

finite field.

Since the field k is finite, the largest possible group that can act on S is

G`n = G`n(k), which is finite. Its Sylow p-subgroup is Un = U{1,2,...,n−1}, in

the notation of Section 4. Let k[c] denote the ring of Dickson invariants in S

for the action of G`n, and let k[d] be the invariants for Un.

For our given group G < G`n we may compute reg(SG) by treating SG as

a k[c]-module:

reg(SG) = Preg(k[c], SG) by 1.2

≤ Preg(k[c], G;S) by 3.2

≤ Preg(k[c], G`n;S) by 3.7

= Preg(k[c], Un;S) by 3.8

≤ Preg(k[d], Un;S) by 3.5

≤ 0 by 5.1.

This completes the proof.
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The last result that remains to be proved is Corollary 0.4. Let · · · → P1 →
P0 → SG → 0 be the minimal k[c]-resolution of SG. Then

H(SG, t) =
∑
i

(−1)iH(Pi, t).

Now

H(Pi, t) =
fi(t)∏

j(1− t|cj |)
,

where fi(t) is a polynomial in which the coefficient of tu is the multiplicity of

k[c](−u) in Pi. Thus the degree of fi(t) is equal to ρi(k[c], SG).

Because

H(SG, t) =

∑
i(−1)ifi(t)∏
j(1− t|cj |)

,

we see that it suffices to show that deg(fi) ≤ σ(k[c]). But we have just seen

that deg(fi) = ρi(k[c], SG), and ρi(k[c], SG) ≤ ρi(k[c], G;S), by 3.2. The proof

concludes with the next lemma.

Lemma 5.2. ρi(k[c], G;S) ≤ σ(k[c]).

Proof.

ρi(k[c], G;S) ≤ ρi(k[c], G`n;S) by 3.7

= ρi(k[c], Un;S) by 3.8

≤ ρi(k[d], Un;S)− σ(k[d]) + σ(k[c]) by 3.5

≤ σ(k[c]) by 5.1. �

6. Infinite fields

We now explain how the case of Theorem 0.1 for finite fields implies the

result for all fields. This argument was shown to us by Burt Totaro, and we

are grateful to him for permission to include it here.

Of course, if the representation of G on S1 can be written in the algebraic

closure of the prime field, then it can be written in a finite field, so our results

for finite fields still hold. It is not so clear what might happen if the field

contains transcendental elements.

We have a finite group G that acts on SK = K[x1, . . . , xn] for some infinite

field K. The representation of G on (SK)1, the part in degree 1, can be written

over a finitely generated subring A of K (the Z-subalgebra generated by the

coefficients of the matrices with respect to some basis); hence the same is true

in all degrees and G acts on SA = A[x1, . . . , xn].

Let S
(G)
A denote

∏
g∈G SA, and let ∆

(G)
A : SA → S

(G)
A be the map that is

multiplication by g − 1 on the g-coordinate. Then SG
A = ker(∆

(G)
A ) and we
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have an exact sequence of SG
A -modules

0→ SG
A → SA

∆
(G)
A→ S

(G)
A → C → 0.

We know, by the Hilbert-Noether Theorem (see e.g. [1, 1.3.1], [8, 3.0.6]), that

SG
A is noetherian and that SA is finite over it. By Grothendieck’s Generic

Freeness (or Flatness) Lemma (see e.g. [10, 14.4]), there is a nonzero element

f ∈ A such that C⊗AA[f−1] is free as an A[f−1]-module. Let M be a maximal

ideal of A[f−1] with residue field k, and let B denote the localization of A[f−1]

at M .

Lemma 6.1. As a B-module, SG
B is free and SG

B ⊗B k ∼= SG
k .

Proof. As an A-module, B is flat, so if we apply − ⊗A B to the exact

sequence above, it remains exact and becomes

0→ SG
A ⊗A B → SB

∆
(G)
B→ S

(G)
B → C ⊗A B → 0.

All the terms but the first are certainly free over B, so the sequence splits over

B and the first term must also be free over B. This first term is ker(∆
(G)
B );

thus it is isomorphic to SG
B . If we now apply −⊗B k, we obtain

0→ SG
B ⊗B k → Sk

∆
(G)
k→ S

(G)
k → C ⊗A B ⊗B k → 0.

But ker(∆
(G)
k ) = SG

k , by the discussion above. �

By the Hilbert-Noether Theorem again, SG
B is finitely generated by ho-

mogeneous elements as a B-algebra, and thus it is finite over some polynomial

ring B[d1, . . . , dm]. Consequently, SG
k is finite over k[d1, . . . , dm].

The next lemma is standard.

Lemma 6.2. Any projective resolution P• of SG
k over k[d1, . . . , dm] can be

lifted to a projective resolution Q• of SG
B over B[d1, . . . , dm] such that P• ∼=

Q• ⊗B k.

Proof. We lift the resolution step by step, starting at the 0-term. Clearly

P0 can be lifted to a projective module Q0, and the map P0 → SG
k can be

lifted to a map Q0 → SG
B , by 6.1. Furthermore, this map is surjective, by

Nakayama’s Lemma in each degree; hence it is split over B, since SG
B is free

over B, by 6.1 again.

Let Z0 denote the kernel of the lifted map. It is free of finite rank over B

and, because of the splitting, Z0 ⊗B k ∼= ker(P0 → SG
k ). We can now repeat

the procedure at the 1-term and continue. �

The field k is finite, since any field that is finitely generated as a ring is

finite (cf. [10, 4.19]). Thus our previous results give us bounds on the degrees
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of the generators of the terms of the minimal projective resolution P• of SG
k

over k[d1, . . . , dm]. These bounds are inherited by Q•, and even by Q• ⊗B K,

which is a projective resolution of SG
K over K[d1, . . . , dm].

It follows that the results 0.1, 0.2, 0.3, 0.4 are all valid for arbitrary fields.

The same will be true for 7.2 and 8.2.

Remark. Experts will recognize that the argument can be summarized by

saying that regularity is upper semicontinuous on flat families.

7. Horizontal bounds

The proofs yield more precise information than can be stated in terms of

regularity, although this is not useful for bounding the degrees of the generators

of the invariants, which is why we only mention it here.

Instead of using the usual diagonal bound in the definition of regularity

we can use a horizontal one: we set

hreg(R,M) = sup
i
{ai(R,M)},

Phreg(R,M) = sup
i
{ρi(R,M)} −

∑
i

|di|,

Exthreg(R,M) = sup
i
{εi(R,M)} −

∑
i

|di|.

It is still true that these numbers coincide. The same proof still works, the key

point being that the proof of Lemma 1.1 is still valid; in fact, what we need

is Lemma 3.3 in the case of the trivial group (see too [2, 5.7(i)]). Also hreg is

still clearly invariant under change of ring.

It follows from the definitions that hreg(R,M) ≤ reg(R,M).

Similarly, we can define

Phreg(R,G;M) = sup
i
{ρi(R,G;M)} −

∑
i

|di|.

Lemma 5.2 now becomes:

Proposition 7.1. In the context of the Structure Theorem,

Phreg(k[c], G;S) ≤ −n.

From which we deduce, as before:

Theorem 7.2. We have

hreg(SG) ≤ −n.

Our bound on ρi is thus improved by i. The statement of Proposition 2.1

now has both the reg(S) + σ(R) and the reg(S) + σ(R) + 1 terms replaced by

hreg(S) +
∑ |di|.
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Remark. All that we need for a version of Lemma 1.1 to hold is that the

bound on ρi+1 should not exceed the desired bound on ρi by more than 1 or,

at any rate, not by more than min{i > 0 | Ri 6= 0}. This allows the definition

of many different well-behaved regularities between reg and hreg; cf. [2, §5].

8. Polynomial tensor exterior algebras

One sometimes encounters invariants of algebras of the form k[V ]⊗kΛ(V ∗),

where V is a kG-module for some group G; V ∗ is its contragredient (the dual

module considered as a left kG-module); k[V ] is the symmetric algebra on V ∗,

but graded so that the elements of V ∗ are in degree 2, and Λ(V ∗) is the exterior

algebra on V ∗, graded with V ∗ in degree 1.

More generally, let S be our usual polynomial ring with an action of G;

for any positive integer r, let S〈r〉 denote the dilated ring with S
〈r〉
ri = Si (0 in

degrees not divisible by r). If S is a module over k[d1, . . . , dm], then S〈r〉 is a

module over k[d
〈r〉
1 , . . . , d

〈r〉
m ], where |d〈r〉i | = r|di|.

Let X be a finite-dimensional graded kG-module; we will write reg(X) for

the top nonzero degree (this is consistent with the definition of reg(k,X), and

we could just as well use hreg(X)).

Proposition 8.1. In the context of the Structure Theorem,

reg((S〈r〉 ⊗X)G) ≤ reg(X)− (r − 1)n,

hreg((S〈r〉 ⊗X)G) ≤ hreg(X)− rn.

Proof. We work over a finite field k and consider S as a module over the

ring of Dickson invariants k[c]. It is easily verified that σ(k[c〈r〉]) = rσ(k[c]) +

(r − 1)n.

From Lemma 5.2, we know that ρi(k[c], G;S) ≤ σ(k[c]). By dilating the

minimal relatively projective resolution of S we find that ρi(k[c〈r〉], G;S〈r〉) ≤
rσ(k[c]); by tensoring this dilated resolution with X we see that

ρi(k[c〈r〉], G;S〈r〉 ⊗X) ≤ rσ(k[c]) + reg(X).

The proposition now follows in the usual way from the definition of regu-

larity. �

Corollary 8.2. For a polynomial tensor exterior algebra of the type

discussed above,

reg((k[V ]⊗ Λ(V ∗))G) ≤ 0,

hreg((k[V ]⊗ Λ(V ∗))G) ≤ −dimV.
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