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The Bohnenblust-Hille inequality for
homogeneous polynomials

is hypercontractive

By Andreas Defant, Leonhard Frerick, Joaquim Ortega-Cerdà,

Myriam Ounäıes, and Kristian Seip

Abstract

The Bohnenblust-Hille inequality says that the `
2m

m+1 -norm of the coef-

ficients of an m-homogeneous polynomial P on Cn is bounded by ‖P‖∞
times a constant independent of n, where ‖·‖∞ denotes the supremum norm

on the polydisc Dn. The main result of this paper is that this inequality is

hypercontractive, i.e., the constant can be taken to be Cm for some C > 1.

Combining this improved version of the Bohnenblust-Hille inequality with

other results, we obtain the following: The Bohr radius for the polydisc

Dn behaves asymptotically as
√

(logn)/n modulo a factor bounded away

from 0 and infinity, and the Sidon constant for the set of frequencies
{

logn :

n a positive integer ≤ N
}

is
√
N exp{(−1/

√
2 + o(1))

√
logN log logN} as

N →∞.

1. Introduction and statement of results

In 1930, Littlewood [23] proved the following, often referred to as Little-

wood’s 4/3-inequality: For every bilinear form B : Cn × Cn → C we haveÇ∑
i,j

|B(e(i), e(j))|4/3
å3/4

≤
√

2 sup
z(1),z(2)∈Dn

|B(z(1), z(2))| ,

where Dn denotes the open unit polydisc in Cn and {e(i)}i=1,...,n is the canonical

base of Cn. The exponent 4/3 is optimal, meaning that for smaller exponents it

will not be possible to replace
√

2 by a constant independent of n. H. Bohnen-

blust and E. Hille immediately realized the importance of this result, as well

as the techniques used in its proof, for what was known as Bohr’s absolute

convergence problem: Determine the maximal width T of the vertical strip in
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which a Dirichlet series
∑∞
n=1 ann

−s converges uniformly but not absolutely.

The problem was raised by H. Bohr [7] who in 1913 showed that T ≤ 1/2. It

remained a central problem in the study of Dirichlet series until 1931, when

Bohnenblust and Hille [6] in an ingenious way established that T = 1/2.

A crucial ingredient in [6] is an m-linear version of Littlewood’s 4/3-

inequality: For each m there is a constant Cm ≥ 1 such that for every m-linear

form B : Cn × · · · × Cn → C we have

(1)

Ç ∑
i1,...,im

|B(e(i1), . . . , e(im))|
2m
m+1

åm+1
2m

≤ Cm sup
z(i)∈Dn

|B(z(1), . . . , z(m))| ,

and again the exponent 2m
m+1 is optimal. Moreover, if Cm stands for the best

constant, then the original proof gives that Cm ≤ m
m+1
2m (
√

2)m−1. This in-

equality was long forgotten and rediscovered more than forty years later by

A. Davie [11] and S. Kaijser [21]. The proofs in [11] and [21] are slightly

different from the original one and give the better estimate

(2) Cm ≤ (
√

2)m−1 .

In order to solve Bohr’s absolute convergence problem, Bohnenblust and

Hille needed a symmetric version of (1). For this purpose, they in fact invented

polarization and deduced from (1) that for each m there is a constant Dm ≥ 1

such for every m-homogeneous polynomial
∑
|α|=m aαz

α on Cn,

(3)

Ç ∑
|α|=m

|aα|
2m
m+1

åm+1
2m

≤ Dm sup
z∈Dn

∣∣∣∣ ∑
|α|=m

aαz
α
∣∣∣∣ ;

they showed again, through a highly nontrivial argument, that the exponent
2m
m+1 cannot be improved. Let us assume that Dm in (3) is optimal. By an

estimate of L. A. Harris [18] for the polarization constant of `∞, getting from

(2) to

Dm ≤ (
√

2)m−1m
m
2 (m+ 1)

m+1
2

2m(m!)
m+1
2m

is now quite straightforward; see e.g. [17, §4]. Using Sawa’s Khinchine-type

inequality for Steinhaus variables, H. Queffélec [25, Th. III-1] obtained the

slightly better estimate

(4) Dm ≤
Ç

2√
π

åm−1
m

m
2 (m+ 1)

m+1
2

2m(m!)
m+1
2m

.

Our main result is that the Bohnenblust-Hille inequality (3) is in fact hyper-

contractive, i.e., Dm ≤ Cm for some C ≥ 1:



THE BOHNENBLUST-HILLE INEQUALITY IS HYPERCONTRACTIVE 487

Theorem 1. Let m and n be positive integers larger than 1. Then we

have

(5)

Ç ∑
|α|=m

|aα|
2m
m+1

åm+1
2m

≤
Å

1 +
1

m− 1

ãm−1√
m(
√

2)m−1 sup
z∈Dn

∣∣∣∣ ∑
|α|=m

aαz
α
∣∣∣∣

for every m-homogeneous polynomial
∑
|α|=m aαz

α on Cn.

Before presenting the proof of this theorem, we mention some particularly

interesting consequences that serve to illustrate its applicability and impor-

tance.

We begin with the Sidon constant S(m,n) for the index set

{α = (α1, α2, . . . , αn) : |α| = m},

which is defined in the following way. Let

P (z) =
∑
|α|=m

aαz
α

be an m-homogeneous polynomial in n complex variables. We set

‖P‖∞ = sup
z∈Dn

|P (z)| and |||P |||1 =
∑
|α|=m

|aα|;

then S(m,n) is the smallest constant C such that the inequality |||P |||1 ≤
C‖P‖∞ holds for every P . It is plain that S(1, n) = 1 for all n, and this case

is therefore excluded from our discussion. Since the dimension of the space

of m-homogeneous polynomials in Cn is
(n+m−1

m

)
, an application of Hölder’s

inequality to (5) gives:

Corollary 1. Let m and n be positive integers larger than 1. Then

(6) S(m,n) ≤
(
1 +

1

m− 1

)m−1√
m(
√

2)m−1

Ç
n+m− 1

m

åm−1
2m

.

Note that the Sidon constant S(m,n) coincides with the unconditional

basis constant of the monomials zα of degree m in H∞(Dn), which is defined

as the best constant C ≥ 1 such that for every m-homogeneous polynomial∑
|α|=m aαz

α on Dn and any choice of scalars εα with |εα| ≤ 1 we have

sup
z∈Dn

∣∣∣∣ ∑
|α|=m

εαaαz
α
∣∣∣∣ ≤ C sup

z∈Dn

∣∣∣∣ ∑
|α|=m

aαz
α
∣∣∣∣ .

This and similar unconditional basis constants were studied in [13], where it

was established that S(m,n) is bounded from above and below by n
m−1

2 times

constants depending only on m. The more precise estimate

(7) S(m,n) ≤ Cmn
m−1

2 ,

with C an absolute constant, can be extracted from [15].
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Note that we also have the following trivial estimate:

(8) S(m,n) ≤
√Ç

n+m− 1

m

å
,

which is a consequence of the Cauchy-Schwarz inequality along with the fact

that the number of different monomials of degree m in n variables is
(n+m−1

m

)
.

Comparing (6) and (8), we see that our estimate gives a nontrivial result only

in the range log n > m. Using the Salem-Zygmund inequality for random

trigonometric polynomials (see [20, p. 68]), one may check that we have ob-

tained the right value for S(m,n), up to a factor less than cm with c > 1 an

absolute constant (for a different argument see [16, (4.4)]).

We will use our estimate for S(m,n) to find the precise asymptotic be-

havior of the n-dimensional Bohr radius, which was introduced and studied by

H. Boas and D. Khavinson [5]. Following [5], we now let Kn be the largest

positive number r such that all polynomials
∑
α aαz

α satisfy

sup
z∈rDn

∑
α

|aαzα| ≤ sup
z∈Dn

∣∣∣∣∑
α

aαz
α
∣∣∣∣.

The classical Bohr radius K1 was studied and estimated by H. Bohr [9] himself,

and it was shown independently by M. Riesz, I. Schur, and F. Wiener that

K1 = 1/3. In [5], the two inequalities

(9)
1

3

 
1

n
≤ Kn ≤ 2

 
log n

n

were established for n > 1. The paper of Boas and Khavinson aroused new

interest in the Bohr radius and has been a source of inspiration for many

subsequent papers. For some time (see for instance [4]) it was thought that

the left-hand side of (9) could not be improved. However, using (7), A. Defant

and L. Frerick [15] showed that

Kn ≥ c
 

log n

n log logn

holds for some absolut constant c > 0.

Using Corollary 1, we will prove the following estimate which in view of

(9) is asymptotically optimal.

Theorem 2. The n-dimensional Bohr radius Kn satisfies

Kn ≥ γ
 

log n

n

for an absolute constant γ > 0.
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Combining this result with the right inequality in (9), we conclude that

(10) Kn = b(n)

 
log n

n

with γ ≤ b(n) ≤ 2. We will in fact obtain

b(n) ≥ 1√
2

+ o(1)

when n → ∞ as a lower estimate; see the concluding remark of Section 4,

which contains the proof of Theorem 2.

Using a different argument, Defant and Frerick have also computed the

right asymptotics for the Bohr radius for the unit ball in Cn with the `p norm.

This result will be presented in the forthcoming paper [14].

Another interesting point is that Theorem 1 yields a refined version of a

striking theorem of S. Konyagin and H. Queffeléc [22, Th. 4.3] on Dirichlet

polynomials, a result that was recently sharpened by R. de la Bretèche [12].

To state this result, we define the Sidon constant S(N) for the index set

Λ(N) =
¶

log n : n a positive integer ≤ N
©

in the following way. For a Dirichlet polynomial

Q(s) =
N∑
n=1

ann
−s,

we set ‖Q‖∞ = supt∈R |Q(it)| and |||Q|||1 =
∑N
n=1 |an|. Then S(N) is the

smallest constant C such that the inequality |||Q|||1 ≤ C‖Q‖∞ holds for every Q.

Theorem 3. We have

(11) S(N) =
√
N exp

®Ç
− 1√

2
+ o(1)

å√
logN loglogN

´
when N →∞.

The inequality

S(N) ≥
√
N exp

®Ç
− 1√

2
+ o(1)

å√
logN loglogN

´
was established by R. de la Bretèche [12] combining methods from analytic

number theory with probabilistic arguments. It was also shown in [12] that

the inequality

S(N) ≤
√
N exp

®Ç
− 1

2
√

2
+ o(1)

å√
logN log logN

´
follows from an ingenious method developed by Konyagin and Queffélec in [22].

The same argument, using Theorem 1 instead of the weaker inequality (4),

gives (11). More precisely, following Bohr, we set zj = p−sj , where p1, p2, . . .
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denote the prime numbers ordered in the usual way, and make accordingly

a translation of Theorem 1 into a statement about Dirichlet polynomials; we

then replace Lemme 2.4 in [12] by this version of Theorem 1 and otherwise

follow the arguments in Section 2.2 of [12] step by step.

Theorem 3 enables us to make a nontrivial remark on Bohr’s absolute

convergence problem. To this end, we recall that a theorem of Bohr [8] says

that the abscissa of uniform convergence equals the abscissa of boundedness

and regularity for a given Dirichlet series
∑∞
n=1 ann

−s; the latter is the infimum

of those σ0 such that the function represented by the Dirichlet series is analytic

and bounded in <s = σ > σ0. When discussing Bohnenblust and Hille’s

solution of Bohr’s problem, it is therefore quite natural to introduce the space

H ∞, which consists of those bounded analytic functions f in C+ = {s =

σ+ i t : σ > 0} such that f can be represented by an ordinary Dirichlet series∑∞
n=1 ann

−s in some half-plane.

Corollary 2. The supremum of the set of real numbers c such that

(12)
∞∑
n=1

|an|n−
1
2 exp

{
c
√

log n log log n
}
<∞

for every
∑∞
n=1 ann

−s in H ∞ equals 1/
√

2.

This result is a refinement of a theorem of R. Balasubramanian, B. Cal-

ado, and H. Queffélec [1, Th. 1.2], which implies that (12) holds for every∑∞
n=1 ann

−s in H ∞ if c is less than 1/(2
√

2) . We will present the deduction

of Corollary 2 from Theorem 3 in Section 5 below.

An interesting consequence of the theorem of Balasubramanian, Calado,

and Queffélec is that the Dirichlet series of an element in H ∞ converges abso-

lutely on the vertical line σ = 1/2. But Corollary 2 gives a lot more; it adds a

level precision that enables us to extract much more precise information about

the absolute values |an| than what is obtained from the solution of Bohr’s

absolute convergence theorem.

2. Preliminaries on multilinear forms

We begin by fixing some useful index sets. For two positive integers m

and n, both assumed to be larger than 1, we define

M(m,n) =
{
i = (i1, . . . , im) : i1, . . . , im ∈ {1, . . . , n}

}
and

J(m,n) =
{
j = (j1, . . . , jm)∈M(m,n) : j1 ≤ · · · ≤ jm

}
.

For indices i, j ∈ M(m,n), the notation i ∼ j will mean that there is a per-

mutation σ of the set {1, 2, . . . ,m} such that iσ(k) = jk for every k = 1, . . . ,m.

For a given index i, we denote by [i] the equivalence class of all indices j such

that i ∼ j. Moreover, we let |i| denote the cardinality of [i] or in other words
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the number of different indices belonging to [i]. Note that for each i ∈M(m,n)

there is a unique j ∈ J(m,n) with [i] = [j]. Given an index i in M(m,n), we

set ik = (i1, . . . , ik−1, ik+1, . . . , im), which is then an index in M(m− 1, n).

The transformation of a homogeneous polynomial to a corresponding mul-

tilinear form will play a crucial role in the proof of Theorem 1. We denote by

B an m-multilinear form on Cn; i.e., given m points z(1), . . . , z(m) in Cn, we

set

B(z(1), . . . , z(m)) =
∑

i∈M(m,n)

biz
(1)
i1
· · · z(m)

im
.

We may express the coefficients as bi = B(e(i1), . . . , e(im)). The form B is sym-

metric if for every permutation σ of the set {1, 2, . . . ,m}, B(z(1), . . . , z(m)) =

B(z(σ(1)), . . . , z(σ(m))). If we restrict a symmetric multilinear form to the di-

agonal P (z) = B(z, . . . , z), then we obtain a homogeneous polynomial. The

converse is also true: Given a homogeneous polynomial P : Cn → C of de-

gree m, by polarization, we may define the symmetric m-multilinear form

B : Cn × · · · × Cn → C so that B(z, . . . , z) = P (z). In what follows, B

will denote the symmetric m-multilinear form obtained in this way from P .

It will be important for us to be able to relate the norms of P and B. It

is plain that ‖P‖∞ = supz∈Dn |P (z)| is smaller than supDn×···×Dn |B|. On the

other hand, it was proved by Harris [18] that we have, for nonnegative integers

m1, . . . ,mk with m1 + · · ·+mk = m,

(13) |B(z(1), . . . , z(1)︸ ︷︷ ︸
m1

, . . . , z(k), . . . , z(k)︸ ︷︷ ︸
mk

)| ≤ m1! · · ·mk!

mm1
1 · · ·m

mk
k

mm

m!
‖P‖∞.

Given an m-homogeneous polynomial in n variables P (z) =
∑
|α|=m aαz

α,

we will write it as

P (z) =
∑

j∈J(m,n)

cjzj1 · · · zjm .

For every i in M(m,n), we set c[i] = cj where j is the unique element of

J(m,n) with i ∼ j. Observe that in this representation the coefficient bi of the

multilinear form B associated to P can be computed from its corresponding

coefficient: bi = c[i]/|i|.

3. Proof of Theorem 1

For the proof of Theorem 1, we will need two lemmas. The first is due to

R. Blei [3, Lemma 5.3]:

Lemma 1. For all families (ci)i∈M(m,n) of complex numbers, we haveÇ ∑
i∈M(m,n)

|ci|
2m
m+1

åm+1
2m

≤
∏

1≤k≤m

ñ n∑
ik=1

Ç ∑
ik∈M(m−1,n)

|ci|2
å 1

2
ô 1

m

.
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We now let µn denote normalized Lebesgue measure on Tn; the second

lemma is a result of F. Bayart [2, Th. 9], whose proof relies on an inequality

first established by A. Bonami [10, Th. 7, Ch. III].

Lemma 2. For every m-homogeneous polynomial P (z) =
∑
|α|=m

aαz
α on

Cn, we have Ç ∑
|α|=m

|aα|2
å 1

2

≤ (
√

2)m
∥∥∥∥ ∑
|α|=m

aαz
α
∥∥∥∥
L1(µn)

.

We note also that Lemma 2 is a special case of a variant of Bayart’s

theorem found in [19], relying on an inequality in D. Vukotic’s paper [26].

The latter inequality, giving the best constant in an inequality of Hardy and

Littlewood, appeared earlier in a paper of M. Mateljević [24].

Proof of Theorem 1. We write the homogeneous polynomial P as

P (z) =
∑

j∈J(m,n)

cjzj1 · · · zjm .

We now get

∑
j∈J(m,n)

|cj |
2m
m+1 =

∑
i∈M(m,n)

|i|−
1

m+1

Ç |c[i]|
|i|

1
2

å 2m
m+1

≤
∑

i∈M(m,n)

Ç |c[i]|
|i|

1
2

å 2m
m+1

.

Using Lemma 1 and the estimate |i|/|ik| ≤ m, we therefore obtainÇ ∑
j∈J(m,n)

|cj |
2m
m+1

åm+1
2m

≤
m∏
k=1

ñ n∑
ik=1

Ç ∑
ik∈M(m−1,n)

|c[i]|2

|i|

å 1
2
ô 1

m

≤
√
m

m∏
k=1

ñ n∑
ik=1

Ç ∑
ik∈M(m−1,n)

|ik|
|c[i]|2

|i|2

å 1
2
ô 1

m

.

Thus it suffices to prove that

(14)
n∑

ik=1

Ç ∑
ik∈M(m−1,n)

|ik|
|c[i]|2

|i|2

å 1
2

≤
Ç

1 +
1

m− 1

åm−1

(
√

2)m−1‖P‖∞

for k = 1, 2, . . . ,m.

We observe that if we write Pk(z) = B(z, . . . , z, e(ik), z, . . . , z), then we

have Ç ∑
ik∈M(m−1,n)

|ik|
|c[i]|2

|i|2

å 1
2

=

Ç ∑
ik∈M(m−1,n)

|ik||bi|2
å 1

2

= ‖Pk‖2.
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Hence, applying Lemma 2 to Pk, we getÇ ∑
ik∈M(m−1,n)

|ik|
|c[i]|2

|i|2

å 1
2

≤ (
√

2)m−1
∫
Tn
|B(z, . . . , z, e(ik), z, . . . , z)| dµn(z).

It is clear that we may replace e(ik) by λik(z)e(ik) with λik(z) any point on the

unit circle. If we choose λik(z) such that B(z, . . . , z, λik(z)e(ik), z, . . . , z) > 0

and write τk(z) =
∑n
ik=1 λik(z)e(ik), then we obtain

n∑
ik=1

Ç ∑
ik∈M(m−1,n)

|ik|
|c[i]|2

|i|2

å 1
2

≤ (
√

2)m−1
∫
Tn
B(z, . . . , z, τk(z), z, . . . , z) dµ(z).

We finally arrive at (14) by applying (13) to the right-hand side of this in-

equality. �

4. Proof of Theorem 2

We now turn to multidimensional Bohr radii. In [16, Th. 2.2], a basic link

between Bohr radii and unconditional basis constants was given. Indeed, we

have
1

3 supm
m
√
Cm

≤ Kn ≤ min

Ç
1

3
,

1

supm
m
√
Cm

å
,

where Cm is the unconditional basis constant of the monomials of degree m in

H∞(Dn). Thus the estimates for unconditional basis constants for m-homoge-

neous polynomials always lead to estimates for multidimensional Bohr radii.

We still choose to present a direct proof of Theorem 2, as this leads to a

better estimate on the asymptotics of the quantity b(n) in (10). We need the

following lemma of F. Wiener (see [5]).

Lemma 3. Let P be a polynomial in n variables and P =
∑
m≥0 Pm its

expansion in homogeneous polynomials. If ‖P‖∞ ≤ 1, then ‖Pm‖∞ ≤ 1−|P0|2
for every m > 0.

Proof of Theorem 2. We assume that supDn

∣∣∣∑ aαz
α
∣∣∣ ≤ 1. Observe that

for all z in rDn, ∑
|aαzα| ≤ |a0|+

∑
m>1

rm
∑
|α|=m

|aα|.

If we take into account the estimates

(log n)m

n
≤ m! and

Ç
n+m− 1

m

å
≤ em

Ä
1 +

n

m

äm
,

then Corollary 1 and Lemma 3 give∑
m>1

rm
∑
|α|=m

|aα| ≤
∑
m>1

rme
√
m(2
√
e)m
Ç

n

log n

åm/2
(1− |a0|2).
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Choosing r ≤ ε
»

logn
n with ε small enough, we obtain∑

|aαzα| ≤ |a0|+ (1− |a0|2)/2 ≤ 1

whenever |a0| ≤ 1. Thus the theorem is proved with γ = ε. �

A closer examination of this proof shows that we get a better constant if

in the range m > log n we use (8) instead of Corollary 1. By this approach,

we get

b(n) ≥ 1√
2

+ o(1)

when n→∞.

5. Proof of Corollary 2

We need the following auxiliary result [1, Lemma 1.1].

Lemma 4. If f(s) =
∑∞
n=1 ann

−s belongs to H ∞, then we have

(15)

∥∥∥∥ N∑
n=1

ann
−s
∥∥∥∥
∞
≤ C logN sup

σ>0
|f(σ + it)|

for an absolute constant C and every N ≥ 2.

Proof of Corollary 2. For this proof, we will use the notation nk = 2k.

Assume first that c < 1/
√

2, and suppose we are given an arbitrary element

f(s) =
∑∞
n=1 ann

−s in H ∞. Then we have

∞∑
n=1

|an|n−
1
2 exp

{
c
√

log n log log n
}

≤
∞∑
k=0

n
− 1

2
k exp

{
c
√

log nk log log nk
} nk+1∑
n=1

|an|.

Applying Theorem 3 and Lemma 4 to each of the sums
∑nk+1

n=1 |an|, we see that

the right-hand is finite.

On the other hand, assume instead that c > 1/
√

2. By Theorem 3, we

may find a positive constant δ and a sequence of Dirichlet polynomials

Qk(s) =
n2k−1∑
n=1

a(k)
n n−s

such that ‖Qk‖∞ = 1 and

n2k−1∑
n=1

|a(k)
n | ≥ δn

1
2
2k exp

{
−c
√

log n2k loglog n2k

}
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for k = 1, 2, .... In fact, by the construction in [12, §2.1], we may assume that

(16)
n2k−1∑

n=n2(k−1)

|a(k)
n | ≥ δn

1
2
2k exp

{
−c
√

log n2k loglog n2k

}
for k = 1, 2, . . .. We observe that the function

f(s) =
∞∑
k=1

exp
{
−ε
√

log n2k loglog n2k

}
Qk(s)

is an element in H ∞ for every positive ε. Setting f(s) =
∑∞
n=1 ann

−s and

assuming again that Qk has been constructed as in [12, §2.1], we get that

n2k−1∑
n=n2(k−1)

|an| ≥ C
n2k−1∑

n=n2(k−1)

|a(k)
n | exp

{
−ε
√

log n2k loglog n2k

}

for some constant C independent of k and ε. (Here the point is that a
(j)
n

decays sufficiently fast when j grows because n2(j+1) = 4n2j .) Combining this

estimate with (16), we see that

∞∑
n=1

|an|n−
1
2 exp

{Ä
c+ ε

ä√
log n log log n

}
=∞.

Since this can be achieved for arbitrary c > 1/
√

2 and ε > 0, the result

follows. �
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Université de Strasbourg, Strasbourg, France

E-mail : ounaies@math.u-strasbg.fr

Norwegian University of Science and Technology, Trondheim, Norway

E-mail : seip@math.ntnu.no

http://www.emis.de/cgi-bin/JFM-item?56.0335.01
http://www.ams.org/mathscinet-getitem?mr=0577467
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0446.30020
http://www.ams.org/mathscinet-getitem?mr=1340125
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0881.11068
http://www.ams.org/mathscinet-getitem?mr=1984405
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1061.30027
http://dx.doi.org/10.2307/3647909
mailto:defant@mathematik.uni-oldenburg.de
mailto:frerick@uni-trier.de
mailto:jortega@ub.edu
mailto:ounaies@math.u-strasbg.fr
mailto:seip@math.ntnu.no

	1. Introduction and statement of results
	2. Preliminaries on multilinear forms
	3. Proof of [mainresult]Theorem 1
	4. Proof of [bohrradius]Theorem 2
	5. Proof of [bh]Corollary 2
	References

