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Abstract

We consider an ergodic invariant measure µ for a smooth action α of

Zk, k ≥ 2, on a (k + 1)-dimensional manifold or for a locally free smooth

action of Rk, k ≥ 2, on a (2k+1)-dimensional manifold. We prove that if µ

is hyperbolic with the Lyapunov hyperplanes in general position and if one

element in Zk has positive entropy, then µ is absolutely continuous. The

main ingredient is absolute continuity of conditional measures on Lyapunov

foliations which holds for a more general class of smooth actions of higher

rank abelian groups.

1. Introduction

In this paper we continue and significantly advance the line of develop-

ment started in [6] and [18]. The general program is to show that actions

of higher rank abelian groups, i.e. Zk × Rl, k + l ≥ 2, by diffeomorphisms

of compact manifolds must preserve a geometric structure, such as an ab-

solutely continuous invariant measure, under global conditions of topological

or dynamical nature which ensure both infinitesimal hyperbolic behavior and

sufficient global complexity of the orbit structure.

In [6] and [18] we considered Zk actions on the torus Tk+1, k ≥ 2, that

induce on the first homology group the action of a maximal abelian subgroup

of SL(k+ 1,Z) diagonalizable over R. We say that such an action has Cartan

homotopy data.1 The central feature of that situation is existence of a semi-

conjugacy h between the action, which we denote by α, and the corresponding

Cartan action α0 by affine automorphisms of the torus, i.e. a unique surjective

continuous map h : Tk+1 → Tk+1 homotopic to the identity such that

h ◦ α = α0 ◦ h.

The first named author was supported by NSF grant DMS-0701292. The second named

author was supported by NSF grants DMS-0505539 and DMS-0803880. The the third named

author was supported by PDT grants 54/18 and 63/204.
1In the case of the torus it may seem more natural to speak about homology data, but we

wanted to emphasize that what mattered was the homotopy types on individual elements;

this notion can be generalized while homological information in general is clearly insufficient.
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This gives desired global complexity right away and allows us to produce

nonuniform hyperbolicity (nonvanishing of the Lyapunov exponents) with lit-

tle effort (see [6, Lemma 2.3]). Existence of the semi-conjugacy allows us to

use specific properties of the affine action α0 and reduces the proofs to showing

that the semi-conjugacy is absolutely continuous and bijective on an invariant

set of positive Lebesque measure.2 Thus, this may be considered as a version

in the setting of global measure rigidity of the a priori regularity method de-

veloped for the study of local differentiable rigidity in [21] (see also an earlier

paper [16]) and successfully applied to the global conjugacy problem on the

torus in [28].

In the present paper we consider an essentially different and more general

situation. We make no assumptions on the topology of the ambient manifold

or the action under consideration and instead assume directly that the action

preserves a measure with nonvanishing Lyapunov exponents whose behavior is

similar to that of the exponents for a Cartan action. Namely, we consider a Zk,
k ≥ 2, action on a (k + 1)-dimensional manifold or an Rk, k ≥ 2, action on a

(2k+1)-dimensional manifold with an ergodic invariant measure for which the

kernels of the Lyapunov exponents are in general position (see the definition

below). Dynamical complexity is provided by the assumption that at least one

element of the action has positive entropy. In fact our results for Zk actions

are direct corollaries of those for Rk actions via suspension construction.

To formulate our results precisely recall that the Lyapunov characteristic

exponents with respect to an ergodic invariant measure for a smooth Rk action

are linear functionals on Rk. For a smooth Zk action they are linear functionals

on Zk which are extended to Rk by linearity. The kernels of these functionals

are called the Lyapunov hyperplanes. A Lyapunov exponent is called simple if

the corresponding Lyapunov space is one-dimentional. See Section 2 for more

details.

Definition. We will say that m hyperplanes (containing 0) in Rk are in

general position if the dimension of the intersection of any l of them is the

minimal possible, i.e. is equal to max{k − l, 0}.
We will say that the Lyapunov exponents of an ergodic invariant measure

for a Zk action are in general position if they are all simple and nonzero, and

if the Lyapunov hyperplanes are distinct hyperplanes in general position.

Similarly, for an Rk action the Lyapunov exponents of an ergodic invariant

measure are in general position if the zero exponent has multiplicity k and

the remaining exponents are all simple and nonzero, and if the Lyapunov

hyperplanes are distinct hyperplanes in general position.

2And, in fact, smooth in the sense of Whitney on smaller noninvariant sets of positive

Lebesgue measure.
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Main Theorem. (1) Let µ be an ergodic invariant measure for a

C1+θ, θ > 0, action α of Zk, k ≥ 2, on a (k + 1)-dimensional man-

ifold M . Suppose that the Lyapunov exponents of µ are in general

position and that at least one element in Zk has positive entropy with

respect to µ. Then µ is absolutely continuous.

(2) Let µ be an ergodic invariant measure for a locally free C1+θ, θ > 0,

action α of Rk, k ≥ 2, on a 2k+ 1-dimensional manifold M . Suppose

that Lyapunov exponents of µ are in general position and that at least

one element in Rk has positive entropy with respect to µ. Then µ is

absolutely continuous.

As already mentioned, the statement (1) is a direct corollary of (2) applied

to the suspension of the Zk action α. We are not aware of any examples of Rk
actions satisfying assumptions of (2) other than time changes of suspensions

of Zk actions satisfying (1).

Thus, what we prove is the first case of existence of an absolutely con-

tinuous invariant measure for actions of abelian groups whose orbits have

codimension two or higher which is derived from general purely dynamical

assumptions. Nothing of that sort takes places in the classical dynamics for

actions of orbit codimension two or higher.3 Only for codimension-one actions

(diffeomorphisms of the circle and fixed-point-free flows on the torus) of suffi-

cient smoothness, the Diophantine condition on the rotation number (which is

of dynamical nature) guarantees existence of a smooth invariant measure [4],

[31]. One can point out though that even in those cases existence of topological

conjugacy (for the circle) or orbit equivalence (for the torus) to an algebraic

system follows from the classical Denjoy theorem (see e.g. [14, Th. 12.1.1]) and

the work goes into proving smoothness. Thus this falls under the general um-

brella of a priori regularity methods, albeit substantively very different from

the hyperbolic situations, and should be more appropriately compared with

results of [6] and [18].

In order to prove measure rigidity we develop principal elements of the

basic geometric approach of [20] in this general nonuniform setting. This

has been done partially already in [6] and we will rely on those results and

constructions of that paper which do not depend on existence of the semi-

conjugacy.

The main technical problem which we face is showing recurrence for el-

ements within the Lyapunov hyperplanes. For the actions on the torus the

3In our situation the codimension of orbits is at least three. When codimension of orbits

equals two there is not enough space for nontrivial behavior of higher rank actions involving

any kind of hyperbolicity; see [13].
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semi-conjugacy was used in a critical way. One main innovation here is a

construction of a particular time change which is smooth along the orbits

of the action but only measurable transversally which “straightens out” the

expansion and contractions coefficients. This is somewhat similar to the “syn-

chronization” time change for Anosov flows introduced by Bill Parry in [27].

The main technical difficulty lies in the fact that we need the new action to

possess certain properties as if it were smooth. Section 6, where this time

change is defined and its properties are studied, is the heart and the main

technical part of the present paper.

Results of this paper were announced in [7].

Added in Proof. In [19, Th. 2.4] the Main Theorem is generalized from

maximal rank actions, i.e. Rk, k ≥ 2 actions on 2k+ 1-dimensional manifolds,

to a certain class of Rk, k ≥ 2 actions on manifolds of arbitrary dimension.

The technical Theorem 4.1 remains a starting point of the proof but it is

supplemented by an essential new ingredient, see [19, Th 2.10].

2. Preliminaries

2.1. Lyapunov exponents and suspension. In this section we briefly recall

the definitions of Lyapunov characteristic exponents and related notions for Zk
and Rk actions by measure-preserving diffeomorphisms of smooth manifolds.

We refer to [5, §§5.1 and 5.2] for more details on general theory in the discrete

case and to [6] for further development in a more specialized setting. We will

use those notions without special references.

Let α be a smooth Zk action on a manifold M with an ergodic invariant

measure µ. According to Multiplicative Ergodic Theorem for Zk actions (see

[5]) the Lyapunov decompositions for individual elements of α have a common

refinement TM =
⊕
Eχ called the Lyapunov decomposition for α. For each

Lyapunov distribution Eχ the corresponding Lyapunov exponent, viewed as

a function of an element in Zk, is a linear functional χ : Zk → R which is

called a Lyapunov exponent of α. The Lyapunov exponents of α are extended

by linearity to functionals on Rk. The hyperplanes ker χ ⊂ Rk are called

the Lyapunov hyperplanes and the connected components of Rk \⋃χ kerχ are

called the Weyl chambers of α. The elements in the union of the Lyapunov

hyperplanes are called singular, and the elements in the union of the Weyl

chambers are called regular. The corresponding notions for a smooth Rk action

are defined similarly (see Proposition 2.1 below for more details). We note that

any Rk action has k identically zero Lyapunov exponents corresponding to the

orbit directions. These Lyapunov exponents are called trivial and the other

ones are called nontrivial. For the rest of the paper a Lyapunov exponent of

an Rk action will mean a nontrivial one.
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One of the reasons for extending the Lyapunov exponents for a Zk action

to Rk is that the Lyapunov hyperplanes may be irrational and hence “invisible”

within Zk. It is also natural to construct an Rk action for which the extensions

of the exponents from Zk will provide the nontrivial exponents. This is given

by the suspension construction which associates to a given Zk action on a

manifold M an Rk action on the suspension manifold S, which is a bundle

over Tk with fiber M . Namely, let Zk act on Rk×M by z (x,m) = (x−z, z m)

and form the quotient space

S = Rk ×M/Zk.

Note that the action of Rk on Rk×M by x (y, n) = (x+y, n) commutes with the

Zk-action and therefore descends to S. This Rk-action is called the suspension

of the Zk-action. There is a natural correspondence between the invariant

measures, nontrivial Lyapunov exponents, Lyapunov distributions, stable and

unstable manifolds, etc. for the original Zk action and its suspension.

Since most of the arguments will be for the Rk case, we summarize in

the next proposition important properties of smooth Rk actions given by the

nonuniformly hyperbolic theory (see [5], [2]). For a smooth Rk action α on a

manifold M and an element t ∈ Rk we denote the corresponding diffeomor-

phism of M by α(t). Sometimes we will omit α and write, for example, tx in

place of α(t)x and Dt in place of Dα(t) for the derivative of α(t)x.

Proposition 2.1. Let α be a locally free C1+θ, θ > 0, action of Rk on

a manifold M preserving an ergodic invariant measure µ. There are linear

functionals χi, i = 1, . . . , l, on Rk and an α-invariant measurable splitting,

called the Lyapunov decomposition, of the tangent bundle of M

TM = TO ⊕
l⊕

i=1

Ei

over a set of full measure R, where TO is the distribution tangent to the Rk
orbits, such that for any t ∈ Rk and any nonzero vector v ∈ Ei the Lyapunov

exponent of v is equal to χi(t), i.e.

lim
n→±∞

n−1 log ‖D(nt) v‖ = χi(t),

where ‖·‖ is any continuous norm on TM . Any point x ∈ R is called a regular

point.

Furthermore, for any ε > 0 there exist positive measurable functions Cε(x)

and Kε(x) such that for all x ∈ R, v ∈ Ei(x), t ∈ Rk, and i = 1, . . . , l,

(1) C−1ε (x)eχi(t)− 1
2
ε‖t‖‖v‖ ≤ ‖Dt v‖ ≤ Cε(x)eχi(t)+

1
2
ε‖t‖‖v‖;

(2) Angles ∠(Ei(x), TO) ≥ Kε(x) and ∠(Ei(x), Ej(x)) ≥ Kε(x), i 6= j;

(3) Cε(tx) ≤ Cε(x)eε‖t‖ and Kε(tx) ≥ Kε(x)e−ε‖t‖.
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The stable and unstable distributions of an element α(t) are defined as

the sums of the Lyapunov distributions corresponding to the negative and the

positive Lyapunov exponents for α(t) respectively:

E−α(t) =
⊕

χi(t)<0

Ei, E+
α(t) =

⊕
χi(t)>0

Ei.

2.2. Actions with Lyapunov exponents in general position. Let α be an Rk
action as in the Main Theorem. Since (k+1) nontrivial Lyapunov exponents of

α with respect to µ are nonzero functionals and the Lyapunov hyperplanes are

in general position, the total number of Weyl chambers is equal to 2k+1 − 2.

Each Weyl chamber corresponds to a different combination of signs for the

Lyapunov exponents. In fact, 2k+1 − 2 Weyl chambers correspond to all pos-

sible combinations of signs except for all pluses and all minuses. The fact

that these two combinations are impossible can be seen as follows. First we

note that µ is nonatomic since it is ergodic for α and the entropy for some

element is positive. Now assume that there is an element t ∈ Rk such that

all exponents for α(t) are negative. Then every ergodic component for α(t) is

an isolated contracting periodic orbit [13, Prop. 1.3] and hence the measure

µ must be atomic. In particular, we obtain the following property which will

play an important role in our considerations. Let χi, i = 1, . . . , k + 1, be

the Lyapunov exponents of the action α and let Ei, i = 1, . . . , k + 1, be the

corresponding Lyapunov distributions.

(C) For every i ∈ {1, . . . , k + 1} there exists a Weyl chamber Ci such that

for every t ∈ Rk ∩ Ci the signs of the Lyapunov exponents are

χi(t) < 0 and χj(t) > 0 for all j 6= i.

In other words, property (C) implies that each Lyapunov distribution Ei is the

full stable distribution for any t ∈ Ci.
Recall that stable distributions are always Hölder continuous (see, for

example, [2]). Therefore, property (C) implies, in particular, that all Lya-

punov distributions for such actions inherit the Hölder continuity of stable

distributions. More generally, we have the following.

Proposition 2.2. Let α be a C1+θ, θ > 0, action Rk as in Proposi-

tion 2.1. Suppose that a Lyapunov distribution E is the intersection of the

stable distributions of some elements of the action. Then E is Hölder contin-

uous on any Pesin set

(2.1) Rlε = {x ∈ R : Cε(x) ≤ l,Kε(x) ≥ l−1}

with Hölder constant which depends on l and Hölder exponent δ > 0 which

depends on the action α only.



NONUNIFORM MEASURE RIGIDITY 367

2.3. Invariant manifolds. We will use the standard material on invariant

manifolds corresponding to the negative and positive Lyapunov exponents

(stable and unstable manifolds) for C1+θ measure-preserving diffeomorphisms

of compact manifolds; see for example [1, Ch. 4].

We will denote by W−α(t)(x) and W−α(t)(x) correspondingly the local and

global stable manifolds for the diffeomorphism α(t) at a regular point x. Those

manifolds are tangent to the stable distribution E−α(t). The global manifold is

an immersed Euclidean space and is defined uniquely. Any local manifold is a

C1+θ embedded open disc in a Euclidean space. Its germ at x is uniquely de-

fined and for any two choices their intersection is an open neighborhood of the

point x in each of them. On any Pesin set Rlε the local stable manifolds can be

chosen of a uniform size and changing continuously in the C1+θ topology. The

local and global unstable manifolds W+
α(t)(x) and W+

α(t)(x) are defined as the

stable manifolds for the inverse map α(−t) and thus have similar properties.

It is customary to use words “distributions” and “foliations” in this setting

although in fact the objects we are dealing with are correspondingly measur-

able families of tangent spaces defined almost everywhere with respect to an

invariant measure and measurable families of smooth manifolds which fill a

set of full measure.

Let α be an Rk action as in the Main Theorem. Then property (C) says

that each Lyapunov distribution E coincides with the full stable distribution

of some element of the action. Therefore, we have the corresponding local

and global manifolds W (x) and W(x) tangent to E. More generally, these

local and global manifolds are defined for any Lyapunov distribution E as in

Proposition 2.2. We refer to these manifolds as local and global leaves of the

Lyapunov foliation W.

3. Proof of the Main Theorem

As mentioned before, part (1) of the Main Theorem follows immediately

from part (2) by passing to the suspension. In this section we deduce part (2)

from the technical Theorem 4.1. First we show that the existence of an element

with positive entropy implies that all regular elements have positive entropy

and that the conditional measures on every Lyapunov foliation are nonatomic

almost everywhere. This is done in Section 3.1. Applying Theorem 4.1 we

obtain that for every Lyapunov foliation W the conditional measures on W
are absolutely continuous. We conclude the proof of the Main Theorem in

Section 3.2 by showing, as in [6], that this implies absolute continuity of µ

itself.

3.1. Conditional measures on all Lyapunov foliations are nonatomic. We

recall that a diffeomorphism has positive entropy with respect to an ergodic
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invariant measure µ if and only if the conditional measures of µ on its sta-

ble (unstable) foliation are nonatomic a.e. This follows for example from [25].

Thus if the entropy hµ(t) is positive for some element t ∈ Rk, then the condi-

tional measures of µ onW+
α(t) are nonatomic. Then there exists an element s in

a Weyl chamber Ci such that the one-dimensional distribution Ei = E−α(s) is not

contained in E+
α(t), and thus E+

α(t) ⊂ E+
α(s) =

⊕
j 6=iEj . Hence the conditional

measures onW+
α(s) are also nonatomic. This gives hµ(s) > 0 which implies that

the conditional measures on Wi = W−α(s) must also be nonatomic. Now for

any j 6= i consider the codimension-one distribution E′j =
⊕

k 6=j Ek = E+
α(tj)

for any tj in the Weyl chamber Cj . Since Ei ⊂ E′j , we see that the conditional

measures on the corresponding foliation W ′j are nonatomic. Hence hµ(tj) > 0

and the conditional measures onWj =W−α(tj) are nonatomic too. We conclude

that the conditional measures on every Lyapunov foliationWi, i = 1, . . . , k+1,

are nonatomic. This implies, in particular, that the entropy is positive for any

nonzero element of the action.

3.2. The absolute continuity of µ. The remaining argument is similar to

that in [6]. In order to prove that µ is an absolutely continuous measure, we

shall use the following theorem that is essentially the flow analogue of what is

done in Section 5 of [22] (see particularly [22, Th. (5.5)] and also [25, Cor. H]).

Theorem 3.1. Let f : M → M be a C1+α diffeomorphism with invari-

ant measure µ and assume that hµ(f) is equal both to the sum of the positive

Lyapunov exponents and to the absolute value of the sum of the negative Lya-

punov exponents. If the directions corresponding to zero Lyapunov exponents

integrates to a smooth foliation and the conditional measures with respect to

this central foliation are absolutely continuous, then µ is absolutely continuous

with respect to Lebesgue measure.

To use Theorem 3.1 recall that there are 2k+1−2 Weyl chambers for α and

any combination of positive and negative signs for the Lyapunov exponents,

except for all positive or all negative, appears in one of the Weyl chambers.

We use the notation of Section 2.2 and consider an element t in the Weyl

chamber −Ci. Then the Lyapunov exponents of t have the following signs:

χi(t) > 0 and χj(t) < 0 for all j 6= i. Since the conditional measures on W+
α(t)

are absolutely continuous by Lemma 7.4, we obtain that

hµ(α(t)) = χi(t)

for any t in −Ci. By the Ruelle entropy inequality, hµ(α(t)) ≤ −∑j 6=i χj(t)

and hence
k+1∑
j=1

χj(t) ≤ 0.

If
∑k+1
j=1 χj(t) = 0, then Theorem 3.1 applies and the proof is finished.
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Thus we have to consider the case when
∑k+1
j=1 χj(t) < 0 for all t in all

Weyl chambers −Ci, i = 1, . . . k + 1. This implies that
⋃k+1
i=1 Ci lies in the

positive half space of the linear functional
∑k+1
j=1 χj . But this is impossible

since there exist elements ti ∈ Ci, i = 1, . . . k + 1 such that
∑k+1
i=1 ti = 0.

4. The technical theorem

In the notation of Proposition 2.1, an ergodic invariant measure µ for a

smooth locally free Rk action α is called hyperbolic if all nontrivial Lyapunov

exponents χi, i = 1, . . . , l, are nonzero linear functionals on Rk.

Theorem 4.1. Let µ be a hyperbolic ergodic invariant measure for a

locally free C1+θ, θ > 0, action α of Rk, k ≥ 2, on a compact smooth man-

ifold M . Suppose that a Lyapunov exponent χ is simple and there are no

other exponents proportional to χ. Let E be the one-dimensional Lyapunov

distribution corresponding to the exponent χ.

Then E is tangent µ-a.e. to a Lyapunov foliation W and the conditional

measures of µ on W are either atomic a.e. or absolutely continuous a.e.

The assumptions on the Lyapunov exponents in Theorem 4.1 are consid-

erably more general than in the Main Theorem. In particular they may be

satisfied for all exponents of a hyperbolic measure for an action on any rank

greater than one on a manifold of arbitrary, large dimension. As an example

one can take restriction of an action satisfying the assumption of part (1) of

the Main Theorem to any lattice L ⊂ Zk of rank at least two which has trivial

intersection with all Lyapunov hyperplanes. For this reason Theorem 4.1 has

applications beyond the maximal rank case considered in the Main Theorem.

Those applications with be discussed in a subsequent paper.

On the other hand, positivity of entropy for some or even all nonzero

elements is not sufficient to exclude atomic measures on some of the Lyapunov

foliations. Thus application to more general actions may include stronger

assumptions on ergodic properties of the measure.

4.1. Outline of the proof of Theorem 4.1. We note that the Lyapunov dis-

tribution E may not coincide with the full stable distribution of any element of

α. First we will show that E is an intersection of some stable distributions of α.

An element t ∈ Rk is called generic singular if it belongs to exactly one

Lyapunov hyperplane. We consider a generic singular element t in L; i.e., χ

is the only nontrivial Lyapunov exponent that vanishes on t. Thus

TM = TO ⊕ E−α(t) ⊕ E ⊕ E
+
α(t).

We can take a regular element s close to t for which χ(s) > 0 and all other

nontrivial exponents have the same signs as for t. Thus E−α(s) = E−α(t) and
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E+
α(s) = E+

α(t)⊕E. Similarly, we can take a regular element s′ close to t on the

other side of L for which χ(s′) < 0 and E+
α(s′) = E+

α(t) and E−α(s′) = E−α(t)⊕E.

Therefore,

E = E+
α(s) ∩ E

−
α(s′) = E−α(−s) ∩ E

−
α(s′).

We conclude that the Lyapunov distribution E is an intersection of stable

distributions and, as in Proposition 2.2, is Hölder continuous on Pesin sets.

As in Section 2.3, E is tangent µ-a.e. to the corresponding Lyapunov foliation

W =W−α(−s) ∩W
−
α(s′).

We denote by µWx the system of conditional measures of µ on W. By

ergodicity of µ these conditional measures are either nonatomic or have atoms

for µ-a.e. x. Since W is an invariant foliation contracted by some elements of

the action, it is easy to see that in the latter case the conditional measures

are atomic with a single atom for µ-a.e. x (see, for example, [20, Prop. 4.1]).

The main part of the proof is to show that if the conditional measures µWx are

nonatomic for µ-a.e. x, then they are absolutely continuous µ-a.e.

To prove absolute continuity of the conditional measures on W we show

in Section 7 that they are Haar with respect to the invariant family of smooth

affine parameters on the leaves ofW. As in [6], this approach uses affine maps

of the leaves which preserve the conditional measures up to a scalar multiple.

Such affine maps are obtained in [6] as certain limits of actions along W by

some elements of the action. It is essential that derivatives of these elements

alongW are uniformly bounded. In [6] it was possible to choose such elements

within the Lyapunov hyperplane L. We note that in general the Multiplicative

Ergodic Theorem only guarantees that the elements in L expand or contract

leaves of W at a subexponential rate.

The main part of the proof is to produce a sequence of elements of the ac-

tion with uniformly bounded derivatives alongW and with enough recurrence.

In Section 5 we define a special Lyapunov metric on distribution E and show

that it is Hölder continuous on Pesin sets. Then in Section 6.1 we construct

a measurable time change for which the expansion or contraction in E with

respect to this Lyapunov metric is given exactly by the Lyapunov exponent χ.

This gives sufficient control for the derivatives along W.

To produce enough recurrence we study properties of this measurable time

change in Section 6.2. We prove that it is differentiable along regular orbits

and Hölder continuous when restricted to any Pesin set (2.1). This allows us

to show in Section 6.3 that the time change has some structure similar to that

of the original action. First, it preserves a measure equivalent to µ. Second,

it preserves certain “foliations” whose restrictions to Pesin sets are Hölder

graphs over corresponding foliations of the original action α. More precisely,

the leaves for α are tilted along the orbits to produce invariant sets for the
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time change action β and the tilt is a Hölder function when restricted to a

set of large measure (the intersection with such a set has large conditional

measure for a typical leaf). Of course, the Hölder constants (but not the

exponents) deteriorate when one increases the Pesin set but in the end one

gets a measurable function defined almost everywhere.

Using these properties, we show in Section 6.4 that for a typical element

in the Lyapunov hyperplane L the time change acts sufficiently transitively

along the leaves of W. For this we use the “π-partition trick” first introduced

in [20] for the study of invariant measure of actions by automorphisms of a

torus and adapted to the general nonuniform situation in [6]. We use this

argument for the time change action β and the main technical difficulty is

in showing that the weird “foliations” described above can still be used in

essentially the same way as for smooth actions.

5. Lyapunov metric

In this section we use notation of Theorem 4.1. We define a Lyapunov

metric on the Lyapunov distribution E and establish its properties.

We fix a smooth Riemannian metric 〈·, ·〉 on M . Given ε > 0 and a

regular point x ∈ M we define the standard ε-Lyapunov scalar product (or

metric) 〈·, ·〉x,ε as follows. For any u, v ∈ E(x) we define

(5.1) 〈u, v〉x,ε =

∫
Rk
〈(Ds)u, (Ds)〉 exp(−2χ(s)− 2ε‖s‖) ds.

We observe using (1) of Proposition 2.1 that for any ε > 0 the integral above

converges exponentially for any regular point x.

We will usually omit the word “standard” and will call this scalar product

ε-Lyapunov metric or, if ε has been fixed and no confusion may appear, simply

Lyapunov metric. The norm generated by this scalar product will be called

the (standard ε-) Lyapunov norm and denoted by ‖ · ‖x,ε or ‖ · ‖ε.

Remark. The definition above gives a measurable scalar product on any

Lyapunov distribution E of an arbitrary nonuniformly hyperbolic Rk action

(and similarly for a Zk action), without any assumption on Lyapunov expo-

nents, such as multiplicity, or on geometry of Lyapunov hyperplanes. One can

also define the Lyapunov scalar product on the whole tangent space TxM by

declaring the Lyapunov distributions to be pairwise orthogonal and orthogo-

nal to the distribution TO tangent to the orbits of the Rk action (on TO one

can take a canonical Euclidean metric given by the action). Proposition 5.1

as well as estimates (5.4) and (5.5) hold for such a general case. Also, conti-

nuity of the Lyapunov scalar product on sets of large measure follows simply

from measurability by Luzin’s theorem. However, Hölder continuity on Pesin
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sets for the Lyapunov scalar product on a given Lyapunov distribution E re-

quires similar Hölder continuity of E. The latter is not necessarily true for an

arbitrary Lyapunov distribution.

We denote by DE
x the restriction of the derivative to the Lyapunov dis-

tribution E. The main motivation for introducing the Lyapunov metric is the

following estimate for the norm of this restriction with respect to the Lyapunov

norm.

Proposition 5.1. For any regular point x and any t ∈ Rk,

(5.2) exp(χ(t)− ε‖t‖) ≤ ‖DE
x t‖ε ≤ exp(χ(t) + ε‖t‖).

Proof. Fix a nonzero u ∈ E(x). Using the definition of the standard

ε-Lyapunov norm we obtain

‖(Dxt)u‖2tx,ε =

∫
Rk
‖(Dtxs)(Dxt)u‖2 exp(−2χ(s)− 2ε‖s‖) ds(5.3)

=

∫
Rk
‖(Dx(s + t))u‖2 exp(−2χ(s)− 2ε‖s‖) ds

=

∫
Rk
‖(Dxs

′)u‖2 exp(−2χ(s′ − t)− 2ε‖s′ − t‖) ds′.

We note that the exponent can be estimated above and below as follows:

−2χ(s′ − t)− 2ε‖s′ − t‖ ≤ (−2χ(s′)− 2ε‖s′‖) + 2(χ(t) + ε‖t‖),
−2χ(s′ − t)− 2ε‖s′ − t‖ ≥ (−2χ(s′)− 2ε‖s′‖) + 2(χ(t)− ε‖t‖).

These inequalities together with the definition

‖u‖2x,ε =

∫
Rk
‖(Dxs

′)u‖2 exp(−2χ(s′)− 2ε‖s′‖) ds′

give the following estimate

e2(χ(t)−ε‖t‖)‖u‖2x,ε ≤ ‖(Dxt)u‖2tx,ε ≤ e2(χ(t)+ε‖t‖)‖u‖2x,ε
which concludes the proof of the proposition. �

Now we establish some important properties of the Lyapunov metric.

First we note that the original smooth metric gives a uniform below estimate

for the Lyapunov metric; i.e., there exists positive constant C such that for all

regular x ∈M and all u ∈ E

(5.4) ‖u‖x,ε ≥ C‖u‖.

The next proposition establishes the opposite inequality as well as conti-

nuity of the Lyapunov metric on a given Pesin set. We note that, similar to

the proof of Lemma 6.1 below, one can show that the ε-Lyapunov metric is

actually smooth along the orbits.



NONUNIFORM MEASURE RIGIDITY 373

Proposition 5.2. The ε-Lyapunov metric is continuous along any reg-

ular orbit and on any Pesin set Rlε. Furthermore, there exists C(l, ε) > 0 such

that for all x ∈ Rlε and all u ∈ E,

(5.5) ‖u‖x,ε ≤ C(l, ε)‖u‖.

Proof. Let us fix u ∈ E(x) with ‖u‖ = 1. The integrand in equation (5.1)

f(x, s) = 〈(Dxs)u, (Dxs)u〉 exp(−2χ(s)− 2ε‖s‖)

is continuous with respect to x on Rlε by Proposition 2.2. Also, by (1) of

Proposition 2.1 we have |f(x, s)| ≤ Cε(x) exp(−ε‖s‖) and hence for x ∈ Rlε,∫
Rk
f(x, s) ds ≤

∫
Rk
Cε(x) exp(−ε‖s‖) ds ≤ l

∫
Rk

exp(−ε‖s‖|) ds.

This implies the estimate (5.5) and the continuity of the metric on the

Pesin set Rlε. The continuity along orbits follows since for any regular point x

and any bounded set B ⊂ Rk there is l such that Bx ⊂ Rlε. �

Next we obtain Hölder continuity of the Lyapunov metric which will be

crucial for deducing properties of the time change in Section 6.

Proposition 5.3. There exists γ > 0 which depends only on ε and on

the action and K(l, ε) > 0 which, in addition, depends on the Pesin set Rlε
such that the ε-Lyapunov metric is Hölder continuous on Rlε with exponent γ

and constant K(l, ε).

Remark. We note the dependence of the constant in (5.5) and Hölder con-

stants in Propositions 2.2 and 5.3, as well as below in Propositions 6.4 and 6.7

on the Pesin set Rlε. For a fixed ε these constants depend only on l and can

be estimated by Clp for some power p. This holds in Proposition 2.2 and can

be observed in the proofs of the other propositions. By (3) of Proposition 2.1,

for any t ∈ Rk we have α(t)(Rlε) ⊂ Rl
′
ε with l′ = exp(ε‖t‖)l. Therefore, we

can say that these constants may grow in t with a slow exponential rate, more

precisely, by a factor at most exp(pε‖t‖).

Proof. We consider two nearby points x and y in a Pesin set Rlε. By

Proposition 2.2 we can take vectors u ∈ E(x) and v ∈ E(y) with ‖u‖ = ‖v‖ = 1

for which the distance in TM can be estimated as dist(u, v) ≤ K1ρ
δ, where

ρ = dist(x, y). Since E is one-dimensional it suffices to show that ‖u‖x,ε and

‖v‖y,ε are Hölder close in ρ. We will now estimate

‖u‖2x,ε − ‖v‖2y,ε =

∫
Rk

(‖(Ds)u‖2 − ‖(Ds)v‖2) exp(−2χ(s)− 2ε‖s‖) ds.

Using spherical coordinates s = s(r, θ) where r = ‖s‖ and denoting

ψ(s) = (‖(Ds)u‖2 − ‖(Ds)v‖2) exp(−2χ(s)− 2εr),
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we can write

‖u‖2x,ε − ‖v‖2y,ε =

∫ ∞
0

f(r) dr, where f(r) = rk−1
∫
Sk−1

ψ(s) dθ.

We will estimate the difference ‖(Ds)u‖2 − ‖(Ds)v‖2 inside a large ball using

closeness of u and v and outside it by estimating each of the two terms. Since

the action α is smooth we observe that

|‖(Ds)u‖2 − ‖(Ds)v‖2| ≤ dist((Ds)u, (Ds)v) · (‖(Ds)u‖+ ‖(Ds)v‖)

≤ C1 exp(L‖s‖) · dist(u, v) ≤ C1 exp(Lr) K1ρ
δ

for some L > 0. Hence we obtain |ψ(s)| ≤ K1C2 exp(M ′r) ρδ, where M ′ =

L+ 2(‖χ‖+ ε). Then for sufficiently large a we have∫ a

0
|f(r)| dr ≤

∫ a

0
rk−1K1C3 exp((M ′)r) ρδdr ≤ K1C4 exp(Ma) ρδ,

where for simplicity we absorbed the polynomial factor appearing in the esti-

mates into the exponent. Then

(5.6) for a =
δ

2M
log

1

ρ
we have

∫ a

0
|f(r)| dr ≤ K2 ρ

δ/2.

Now we consider
∫∞
a |f(r)| dr. Since x, y ∈ Rlε, using (1) of Proposition 2.1 we

obtain |ψ(s)| ≤ 2l2 exp(−εr). Hence∫ ∞
a
|f(r|) dr ≤

∫ ∞
a

rk−1C5l
2 exp(−εr) dr ≤ K3 exp(−εa/2),

where we again absorbed the polynomial factor into the exponent. For a

defined in (5.6) this gives us∫ ∞
a
|f(r)| dr ≤ K3 exp(−εa/2) ≤ K3ρ

γ ,

where γ = εδ
4M . Combining this with the estimate (5.6) for

∫ a
0 |f(r)| dr we

obtain

|‖u‖2x,ε − ‖v‖2y,ε| ≤
∫ ∞
0
|f(r)| dr ≤ K4ρ

γ .

According to (5.4), the Lyapunov norm is bounded below by the usual norm,

so that

|‖u‖x,ε − ‖v‖y,ε| ≤ |‖u‖2x,ε − ‖v‖2y,ε|/(‖u‖x,ε + ‖v‖y,ε)

≤ |‖u‖2x,ε − ‖v‖2y,ε|/2K ≤ K5ρ
γ

which completes the desired Hölder estimate. �
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6. Measurable time change and its properties

6.1. Construction of a measurable time change. In this section we use

the notation of Theorem 4.1. We fix small ε > 0 and consider the Lyapunov

metric ‖.‖ε on the Lyapunov distribution E. We first study the behavior of

the derivative restricted to E along the Rk-orbits. For a regular point x we

consider the function fx : Rk → R given by

(6.1) fx(t) = log ‖DE
x t‖ε.

According to Proposition 5.1 the function f satisfies inequalities

(6.2) χ(t)− ε‖t‖ ≤ fx(t) ≤ χ(t) + ε‖t‖.

Also, since E is one-dimensional, f satisfies the cocycle identity

(6.3) fx(t + s) = fx(t) + ftx(s).

We will now establish smoothness of the function fx in t.

Lemma 6.1. For any regular point x the function fx(t) is C1. More

precisely, for any t, e ∈ Rk we have

(Dtfx) e = χ(e) + εψtx(e),

where |ψtx(e)| ≤ 1
2‖e‖ and ψtx(e) is continuous in t and e.

Proof. Fix a regular point x and consider the function

F (t) = exp(fx(t)) = ‖DE
x t‖ε.

Fix a vector u ∈ E(x) with ‖u‖x,ε = 1. Since E(x) is one-dimensional,

F (t) = ‖(Dxt)u‖tx,ε.

Using the definition of the Lyapunov metric we obtain as in (5.3) that

F 2(t) =

∫
Rk
‖(Dxs)u‖2 exp(−2χ(s) + 2χ(t)− 2ε‖s− t‖) ds.

Differentiating at t we obtain

(Dt F
2) e =

∫
Rk
‖(Dxs)u‖2 exp(−2χ(s) + 2χ(t)− 2ε‖s− t‖)

×
Ç

2χ(e) + ε
〈s− t, e〉
‖s− t‖

å
ds

=

∫
Rk
‖(Dx(s + t))u‖2 exp(−2χ(s)− 2ε‖s‖)

×
Ç

2χ(e) + ε
〈s, e〉
‖s‖

å
ds

= 2χ(e)F 2(t) + εψ̃(t, e),
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where

ψ̃(t, e) =

∫
Rk
‖(Dx(s + t))u‖2 exp(−2χ(s)− 2ε‖s‖)〈s, e〉

‖s‖
ds.

Then for the function fx we obtain

(Dtfx) e =
1

2
Dt(logF 2) e =

(DtF
2) e

2F 2(t)
= χ(e) + εψx(t, e),

where ψ(t, e) = ψ̃(t, e)/2F 2(t). We observe that ψ̃(t, e) is continuous in t and

ε and hence so is ψx(t, e). We conclude that fx(t) is C1. Since |〈s, e〉·‖s‖−1| ≤
‖e‖ we obtain |ψ̃(t, e)| ≤ F 2(t)‖e‖, and hence

|ψx(t, e)| ≤ ‖e‖/2.

We also note that ψx(t, e) = ψtx(0, e), which follows for example from the

cocycle relation (6.3). Denoting ψx(e) = ψ(0, e) we obtain the desired formula

for (Dtfx) e with function ψx(e) which is continuous in e ∈ Rk and satisfies

|ψtx(e)| ≤ 1
2‖e‖. �

Now we proceed to constructing the time change. We fix a vector w in

Rk normal to L with χ(w) = 1. We will assume that ε and ε‖w‖ are both

small; in particular ε‖w‖ < 1/2.

Proposition 6.2. For µ-a.e. x ∈M and any t ∈ Rk there exists a unique

real number g(x, t) such that the function g(x, t) = t + g(x, t)w satisfies the

equality

‖DE
x α(g(x, t))‖ε = eχ(t).

The function g(x, t) is measurable and is continuous in x on Pesin sets (2.1)

and along the orbits of α. It satisfies the inequality |g(x, t)| ≤ 2ε‖t‖.

In Section 6.2 we will show that g(x, t) is actually Hölder continuous in

x on Pesin sets and is C1 in t.

Proof. Recall that by Proposition 5.1 for any regular point z we have

(6.4) exp(χ(t)− ε‖t‖) ≤ ‖DE
z α(t)‖ε ≤ exp(χ(t) + ε‖t‖);

thus in particular

(6.5) exp(s− εs‖w‖) ≤ ‖DE
z α(sw)‖ε ≤ exp(s+ εs‖w‖).

We fix a regular point x and define

φ(s) = log ‖DE
α(t)xα(sw)‖ε = fα(t)x(sw).

Using Lemma 6.1 we obtain

φ′(s) =
d

ds
fα(t)x(sw) = (Dswfα(t)x)w(6.6)

= χ(w) + εψ(sw+α(t))x(w)) ≥ 1− ε‖w‖/2 > 0.
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This implies that φ : R → R is a C1 bijection. Hence there exists a unique

number s0 such that φ(s0) = χ(t) − log ‖DE
x α(t)‖ε, and thus g(x, t) = s0

satisfies the equation in the lemma. We observe that (6.4) implies

−ε‖t‖ ≤ χ(t)− log ‖DE
x α(t)‖−1ε ≤ ε‖t‖.

Also, (6.5) implies

s− εs‖w‖ ≤ φ(s) ≤ s+ εs‖w‖.
Hence |φ(s)| ≥ 1

2 |s| and we conclude that |g(x, t)| = |s0| ≤ 2ε‖t‖
The continuity of g(x, t) in x on Pesin sets and along the orbits of α

follows from the corresponding continuity of the Lyapunov norm. �

Proposition 6.3. The formula β(t, x) = α(g(x, t))x defines an Rk ac-

tion β on M which is a measurable time change of α, i.e.

β(s + t, x) = β(s, β(t, x)) or(6.7)

g(x, s + t) = g(x, t) + g(α(g(x, t))x, s).(6.8)

The action β is measurable and is continuous on any Pesin set for α.

Remark. The time change is defined using a condition on the derivative of

the original action restricted to E. The new action is not necessarily smooth

and typically does not preserve the Lyapunov foliation W. However, it does

preserve the sum of the distribution E with the orbit distribution as well as

the corresponding orbit-Lyapunov foliation.

Proof. We will verify (6.7). This relies on the uniqueness part of the

previous proposition. If we denote

y = β(t, x) = α(g(x, t))x,

we can rewrite the right side of (6.7) as

β(s, β(t, x)) = β(s, y) = α(g(y, s)) y(6.9)

= α(g(y, s)) ◦ α(g(x, t))x = α(g(y, s) + g(x, t))x

= α(s + t + (g(y, s) + g(x, t))w)x.

From this equation we see that the point β(s, β(t, x)) belongs to the {tw}-
orbit of α(s+t)x. By definition, the point β(s+t, x) also belongs to this orbit;

moreover, it is the unique point of the form α(s + t + gw)x for which

‖DE
x α(s + t + gw)‖ε = eχ(s+t).

On the other hand, equation (6.9) and the definitions of g(y, s) and g(x, t)

imply that

‖DE
x α(s + t + (g(y, s) + g(x, t))w)‖ε

= ‖DE
y α(g(y, s))‖ε · ‖DE

x α(g(x, t))‖ε = eχ(s) · eχ(t).



378 B. KALININ, A. KATOK, and F. RODRIGUEZ HERTZ

Thus we conclude that the points β(s, β(t, x)) and β(s + t, x) coincide, i.e.

(6.7). In particular, we obtain

g(x, s + t) = g(x, t) + g(β(t, x), s)

which gives equation (6.8). �

6.2. Properties of the time change.

Proposition 6.4. The time change g(x, t) is Hölder continuous in x

with Hölder exponent γ on any Pesin set Rlε. The Hölder constant depends on

the Pesin set and can be chosen uniform in t for any compact subset of Rk.

Proof. We fix t ∈ Rk and two nearby points x and y in a Pesin set Rl
′
ε . We

take l = l′ exp(ε‖t‖) and note that by Proposition 2.1(3) we have α(t)(Rl
′
ε ) ⊂

Rlε. Hence the points x, y, α(t)x, and α(t)y are all in the Pesin set Rlε. To

prove the Hölder continuity of g(x, t) we need to show that |g(x, t)−g(y, t)| are

Hölder close with respect to the distance between x and y; i.e., |g(x, t)−g(y, t)|
can be estimated from above by a constant multiple of a power of ρ = dist(x, y).

First we show that ‖DE
x α(t + g(x, t)w)‖ε and ‖DE

y α(t + g(x, t)w)‖ε are

Hölder close in ρ. This can be seen as follows. Since the action α is smooth,

the points α(t + g(x, t)w, x) and α(t + g(x, t)w, y) as well as the derivatives

Dxα(t + g(x, t)w) and Dyα(t + g(x, t)w) are Hölder close in ρ with constant

depending only on the action and ‖t‖. Also, by Proposition 2.2 the distribution

E is Hölder continuous in ρ on the Pesin set Rlε. Finally, the Lyapunov metric

is Hölder continuous in ρ on Rlε with the Hölder exponent γ by Proposition 5.3,

and its ratio to a smooth metric is uniformly bounded above and below on Rlε
by (5.4) and (5.5). We conclude that

(6.10) |‖DE
x α(t + g(x, t)w)‖ε − ‖DE

y α(t + g(x, t)w)‖ε| ≤ K1ρ
γ .

By the definition of g(x, t) = t + g(x, t)w we have

(6.11) ‖DE
x α(t + g(x, t)w)‖ε = eχ(t) = ‖DE

y α(t + g(y, t)w)‖ε.

Then (6.10) and the first equality in (6.11) imply that

|‖DE
y α(t + g(x, t)w)‖ε − eχ(t)| ≤ K1ρ

γ .

We note that the points α(t + g(x, t)w, y) and α(t + g(y, t)w, y) are on the

{tw}-orbit of point α(t, y), and that the value g(y, t) is determined by the

second equality in (6.11). Therefore, the difference g(y, t)− g(x, t) represents

the time adjustment in w direction required to bring the norm ‖DE
y α(t+sw)‖ε

from being K1ρ
γ-close to eχ(t) to being exactly eχ(t). Recall that by Lemma 6.1

the norm ‖DE
y α(t + sw)‖ε varies smoothly with s (see equation (6.6) in the

proof of Proposition 6.2). Thus we conclude that |g(y, t)−g(x, t)| ≤ K2ρ
γ . �
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Proposition 6.5. The time change g(x, t) = t+g(x, t)w is differentiable

and C1 close to the identity in t. More precisely, for a.e. x,∥∥∥∂g
∂t

(x, t)
∥∥∥ ≤ ε.

Proof. We fix a regular point x and vectors t, e in Rk and consider a

function of two real variables

(6.12) Φ(s, g) = fx(t + se + gw)− χ(t + se).

We note that, by Proposition 6.2, g(s) = g(x, t + se) is the unique solution

for the implicit function equation Φ(s, g(s)) = 0.

Using Lemma 6.1 we obtain that

∂Φ

∂g
(s, g) = (Dt+se+gwfx)w = χ(w) + εψ(t+se+gw)x(w)

is continuous in s, g variables, and |ψ(t+se+gw)x(w)| ≤ 1
2‖w‖. Similarly,

∂Φ

∂s
(s, g) = χ(e) + εψ(t+se+gw)x(e)− χ(e) = εψ(t+se+gw)x(e).

We conclude that Φ is a C1 function of (s, g). Moreover, since χ(w) = 1 and

ε is small, we obtain

∂Φ

∂g
(s, g) = 1 + εψ(t+se+gw)x(w) ≥ 1− ε‖w‖/2 > 0.

Therefore, by the implicit function theorem, g(s) is differentiable and

g′(s) = −
Å
∂Φ

∂s
(s, g(s))

ãÅ
∂Φ

∂g
(s, g(s))

ã−1
=
−εψ(t+se+gw)x(e)

1 + εψ(t+se+gw)x(w)
.

Moreover, since |ψ(t+se+gw)x(.)| ≤ 1
2‖.‖, we obtain

|g′(s)| ≤ ε‖e‖
2− ε ‖w‖

≤ ε‖e‖

provided that ε‖w‖ < 1. Since g(s) = g(x, t + se), we haveÅ
∂g

∂t
(x, t)

ã
e = g′(s),

and thus the partial derivatives of g(x, t) in the second variable exist and are

continuous in t. We conclude that g(x, t) is C1 in t with ‖∂g∂t (x, t)‖ ≤ ε. �
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6.3. Properties of the action β. We note that the new action β is not

smooth. Hence the notions and results of nonuniformly hyperbolic theory do

not apply to β formally. In particular, such objects as derivatives, Lyapunov

distributions, Lyapunov exponents, and Lyapunov hyperplanes will always

refer to the ones of the original action α. However, the new action β inherits

some structures of α such as invariant measure and invariant “foliations” which

are close to those of α. This is described in the following two statements.

We will use these structures in the next section to obtain some important

transitivity properties of β.

Proposition 6.6. The determinant of the time change g(x, t)

∆(x) = det

Å
∂g

∂t
(x,0)

ã
is a measurable function which is L∞ close to the constant 1 on M . There-

fore, the new action β preserves an invariant measure ν which is absolutely

continuous with respect to µ (and equivalent to µ) with density dν
dµ = ∆(x)−1.

Proof. The L∞ estimate for the determinant follows immediately from

the fact that by Proposition 6.5 for a.e. x,∥∥∥∂g(x, t)

∂t
− Id

∥∥∥ ≤ ε.
Then the existence of the invariant measure ν for β follows from [11]. �

We denote by N the orbit foliation of the one-parameter subgroup {tw}.

Proposition 6.7. For any element s ∈ Rk there exists stable “foliation”

W̃−β(s) which is contracted by β(s) and invariant under the new action β. It

consists of “leaves” W̃−β(s)(x) defined for almost every x. The “leaf ” W̃−β(s)(x)

is a measurable subset of the leaf (N ⊕W−α(s))(x) of the form

W̃−β(s)(x) = {α(ϕx(y)w)y : y ∈ W−α(s)(x)},

where ϕx :W−α(s)(x)→ R is an almost-everywhere defined measurable function.

For x in a Pesin set, the ϕx is Hölder continuous on the intersection of this

Pesin set with any ball of fixed radius in W−α(s)(x)with Hölder exponent γ and

constant which depends on the Pesin set and radius.

Proof. We will give an explicit formula for the function ϕx in terms of the

time change so that its graph is contracted by β(s). The calculation is similar

to finding stable manifolds for a time change of a flow. The Hölder continuity

of ϕx will follow from the formula and the Hölder continuity of the time change.

Since W−α(s) is invariant under α, we note that N ⊕W−α(s) is invariant under β

by the construction of the time change. Since W̃−β(s)(x) is clearly characterized
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within N ⊕W−α(s)(x) by the contraction property and since β(t) is continuous

on Pesin sets, the usual argument yields that for µ-a.e. regular point x we have

β(t)(W̃−β(s)(x)) = W̃−β(s)(β(t)x) mod 0. Thus we obtain the invariance of W̃
under the whole action β.

Let x and y ∈ W−α(s)(x) be in a Pesin set Rlε. We denote x0 = x and

(1) xn = β(s, xn−1) = β(ns, x) = α(sn)x, where sn = ns + g(x, ns)w.

Since points y and xn, n ≥ 1, are in the same orbit-stable leaf O⊕W−α(s)(x) we

can define yn to be the intersection of the orbit of y with W−α(s)(xn). Since all

points yn, n ≥ 1, are on the orbit of y, we can represent yn+1 as β(s + tn, yn)

for some tn ∈ Rk and write

(2) yn = β(s + tn−1, yn−1) = · · · = β(ns + (t0 + ...+ tn−1), y) = α(sn)y.

The last equality follows from invariance of W−α(s) under α which gives that

α(sn)y is onW−α(s) leaf of xn = α(sn)x and thus coincides with yn by definition.

Recall that by Proposition 6.2 the function g satisfies

(3) |g(z, t)| ≤ 2ε‖t‖

for any regular point z and t ∈ Rk. Hence the sequence sn = ns + g(x, ns)w

remains in a narrow cone around the direction of s. We conclude that dif-

feomorphisms α(sn) contract the stable manifold W−α(s)(x) exponentially and

thus

(4) dist(xn, yn) = dist(α(sn)x, α(sn)y) ≤ K1e
−nχ dist(x, y)

for some χ > 0 which can be chosen close to the slowest contraction rate

for α(s).

Next we will show that the series t =
∑∞
i=0 ti converges exponentially

so that according to (2) we have dist(yn, β(ns + t, y)) → 0 exponentially.

Combining this with (4) we obtain that for ỹ = β(t, y),

(5) dist(β(ns, x), β(ns, ỹ)) = dist(xn, β(ns + t, y))→ 0

exponentially, and thus ỹ belongs to the stable “leaf” W̃−β(s)(x).

To show that the series t =
∑∞
i=0 ti converges we estimate tn as follows.

Similarly to the last equalities in (1) and (2) we can write

(6) xn+1 = α(s + g(xn, s)w)xn and yn+1 = α(s + g(xn, s)w)yn.

Denoting t′n = (g(xn, s)− g(yn, s))w, using (2) and (6) we obtain that

β(tn)β(s, yn) = β(s + tn, yn) = yn+1 = α(s + g(xn, s)w)yn

= α(t′n + s + g(yn, s)w)yn = α(t′n)α(s + g(yn, s)w)yn = α(t′n)β(s, yn).

This shows that tn is uniquely determined by the following equations

α(t′n)zn = β(tn)zn or tn + g(zn, tn)w = t′n = (g(xn, s)− g(yn, s))w,
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where zn = β(s, yn). Using (3) we conclude that tn is a vector parallel to w

whose length satisfies

c t′n ≤ ‖tn‖Rk ≤ C t′n, where t′n = |g(xn, s)− g(yn, s)|.

Thus we need to investigate the convergence of the series

t′ =
∞∑
n=0

t′n =
∞∑
n=0

|g(xn, s)− g(yn, s)| .

By Proposition 6.4, the function g is Hölder continuous with exponent γ and

constant depending on the Pesin set. For x and y in the Pesin set Rlε, xn and

yn are in another Pesin set Rl
′
ε for which the Hölder constant deteriorates from

that of Rlε by a factor at most exp(pε‖sn‖) ≤ exp(2pεn) (see the remark after

Proposition 5.3). Replacing s by its multiple if necessary, we may assume

without loss of generality that χ > 2pε. Then (4) implies that the series

converges exponentially and its sum satisfies

t′ ≤ K2dist(x, y)γ .

This completes the proof of (5) and shows that ỹ ∈ W̃−β(s)(x), where ỹ = β(t, y)

with t = tw and ‖t‖ ≤ C t′ ≤ K3dist(x, y)γ . Hence ỹ can be represented as

ỹ = α(ϕx(y)w)y, where |ϕx(y)| ≤ K4dist(x, y)γ .

We conclude that W̃−β(s)(x) is of the form stated in the proposition. The

Hölder continuity of ϕx with Hölder exponent γ can be obtained similarly to

the Hölder estimate for ϕx in the previous equation. The constant K4 depends

on the Pesin set Rlε. �

The corresponding unstable “foliation” W̃+
β(s) can be obtained as W̃−β (−s).

Since the foliation W corresponding to the Lyapunov distribution E is an

intersection of stable foliations we obtain the following corollary.

Corollary 6.8. For the Lyapunov foliation W corresponding to the dis-

tribution E of the original action α there exists “foliation” W̃ invariant under

the new action β of the form described in Proposition 6.7.

The foliation W̃ will be referred to as the Lyapunov foliation of β corre-

sponding to the Lyapunov distribution E.

6.4. Recurrence argument for the time change. Recall that an element

t ∈ Rk is generic singular if it belongs to exactly one Lyapunov hyperplane.

We consider a generic singular element t in the Lyapunov hyperplane L. Our

goal is to show that for a typical point x the limit points of the orbit β(nt),

n ∈ N, contain the support of the conditional measure of ν on the leaf W̃(x).

More precisely, we prove the following lemma which is an adaptation of an

argument from [20] for the current setting.
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We say that partition ξ1 is coarser than ξ2 (or that ξ2 refines ξ1) and

write ξ1 < ξ2 if ξ2(x) ⊂ ξ1(x) for a.e. x.

Proposition 6.9. For any generic singular element t ∈ L the partition

ξβ(t) into ergodic components of ν with respect to β(t) is coarser than the

measurable hull ξ(W̃) of the foliation W̃ .

Proof. For a generic singular element t in L, χ is the only nontrivial Lya-

punov exponent that vanishes on t. As in Section 4.1 we take a regular element

s close to t for which χ(t) > 0 and all other nontrivial exponents have the same

signs as for t. Then E−α(s) = E−α(t) and E+
α(s) = E+

α(t)⊕E. Consequently, for the

action β we have ξ(W̃−β(s)) = ξ(W̃−β(t)) and ξ(W̃+
β(s)) < ξ(W̃+

α(t)). Birkhoff aver-

ages with respect to β(t) of any continuous function are constant on the leaves

of W̃−β(t). Since such averages generate the algebra of β(t)-invariant functions,

we conclude that the partition ξβ(t) into the ergodic components of β(t) is

coarser than ξ(W̃−β(t)), the measurable hull of the foliation W̃−β(t). The equal-

ity ξ(W̃+
β(s)) = ξ(W̃−β(s)) is proved in the next proposition, so we conclude that

�(6.13) ξβ(t) < ξ(W̃−β(t)) = ξ(W̃−β(s)) = ξ(W̃+
β(s)) < ξ(W̃).

Remark. Equalities in (6.13) represent the “π-partition trick” which first

appeared in [20] in the setting of actions by automorphisms of a torus. Ab-

sence of Lyapunov exponents negatively proportional to χ is necessary for this

argument to work. If this condition holds for all exponents (other than the

trivial one corresponding to the orbit directions), the action is called totally

nonsymplectic (TNS). On the other hand, presence of exponents positively pro-

portional to χ, e.g. nonsimplicity of χ itself, forces considering multidimen-

sional coarse Lyapunov foliations, corresponding to all exponents positively

proportional to χ. Naturally one cannot hope any more to have the dichotomy

of atomic vs. absolutely continuous. Nevertheless, under additional assump-

tions the π-partition trick still works and allows us to make conclusions about

conditional measures.

The (long) remainder of this section is dedicated to the justification of

the expression “π-partition trick” in our setting.

Proposition 6.10. ξ(W̃+
β(s))=ξ(W̃−β(s))=π(β(s)), the π-partition of β(s).

Proof. We will show that ξ(W̃+
β(s)) = π(β(s)). The other equality is

obtained in the same way. We note that in the case of diffeomorphisms this

result is given by Theorem B in [24]. Also, for the case of a hyperbolic measure

this result was established earlier in [22, Th. 4.6]. In our case, although some

zero Lyapunov exponents appear, they correspond to the orbit direction, so
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that the central direction will be easier to control than in [24]. We will follow

[22] and [24], so let us give a sketch of the proof in their case.

6.4.1. Sketch of the proof in [22], [24]. In what follows, f will be a dif-

feomorphism preserving a measure µ with unstable foliation W+ and local

unstable manifolds W+. The idea is to use the following criterion due to

Rokhlin [29, Ths. 12.1 and 12.3]. Given a partition ξ we denote by Mξ the

σ-algebra generated by ξ.

Theorem 6.11. Let f be a measure-preserving transformation and as-

sume ξ is an increasing partition, i.e. ξ > fξ, satisfying :

(1)
∨∞
n=0 f

−nξ is the partition into points,

(2) h(f) = h(f, ξ) <∞.

Then the Pinsker σ-algebra coincides mod 0 with the σ-algebra
⋂∞
n=0Mfnξ .

For two partitions η and ξ,

H(η|ξ) = −
∫

logµξx (η(x)) dµ(x),

where µξ are the conditional measures associated to the measurable partition ξ.

Furthermore, for an increasing partition ξ, h(f, ξ) = H(f−1ξ|ξ). Also, H(η) =

H(η|τ) where τ is the trivial partition. We shall make use of the following

known formulas of the conditional entropy. Given partitions η, ξ, ζ,

(1) H(ζ ∨ ξ|η) = H(ζ|η) +H(ξ|ζ ∨ η);

(2) if η > ξ, then for any ζ, H(ζ|η) ≤ H(ζ|ξ);
(3) H(ζ|ξ) ≥ H(η|ξ)−H(η|ζ).

Also we shall make use of the following lemma whose proof is left to the reader.

Lemma 6.12. Let ξ and ηn be measurable partitions, and assume that if

Dn = {x : ξ(x) ⊂ ηn(x)}, then µ(Dn)→ 1. Then for any ζ ,

limH(ζ|ξ ∨ ηn) = H(ζ|ξ).

We say that a partition ξ is subordinated to W+ if Ux ⊂ ξ(x) ⊂ W+(x)

for a.e. x, where Ux is some open neighborhood of x in W+(x). In [22], [24] a

partition ξ is first constructed as follows:

Lemma 6.13 ([24, Lemma 3.1.1]). There exists a measurable partition ξ

with the following properties :

(1) ξ is an increasing partition subordinated to W u,

(2)
∨∞
n=0 f

−nξ is the partition into points,

(3)
⋂∞
n=0Mfnξ =Mξ(Wu).

Partitions of this type were used by Sinai [30] to study uniformly hy-

perbolic systems and were built in the general context in [23, Prop. 3.1]; see
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also [22, Prop. 3.1]. Then it is proven that hypothesis (2) of Theorem 6.11 is

satisfied by any such partition.

In [22] and [24] the proof that hypothesis (2) of Theorem 6.11 is satisfied

by any of these partitions is in various steps. On one hand, the following

lemma is proven.

Lemma 6.14 ([24, Lemma 3.1.2]). For any two partitions ξ1 and ξ2 built

in Lemma 6.13, h(f, ξ1) = h(f, ξ2).

On the other hand, it is proven that the entropy of the partitions ξ built

in Lemma 6.13 approaches h(f). To this end, we build a countable partition P,

with finite entropy, i.e., H(P) <∞ and such that h(f,P) is close to h(f). Then

h(f,P) and h(f, ξ) are compared where ξ is a partition built in Lemma 6.13.

It is in comparing these two entropies where the proofs in [22] and [24] differ.

In [22] the comparison follows from the properties of ξ and from the fact that

P+ :=
∨∞
n=0 f

nP refines ξ (this is done in the proof of [22, Prop. 4.5]) while

in [24] more work is needed because P+ does not a priori refine ξ due to

the presence of zero exponents. However, in our case, although some zero

exponents appear, they correspond to the orbit direction, so that P+ will

essentially refine ξ because of the properties of the partition P. That is why

we are somehow closer to the proof in [22]. Finally, the proof ends because we

can take the partition P with entropy as close to h(f) as wanted.

6.4.2. Proof in our case. Let us go now to the proof in our case. We will

follow the above sketch, but now f := β(s) will not be a diffeomorphism, so

we need to take some care. Let W̃ := W̃+
β(s) and W̃ := W̃+

β(s) be the global and

local unstable “manifolds” built in Proposition 6.7. As the global “manifold”

W̃(x) is a graph over W+
α(s)(x), the local “manifold” W̃ (x) is the restriction

of this graph to W+
α(s)(x).

As the main contraction/expansion properties of W̃ come from the con-

traction/expansion properties of W+
α(s)(x), we will most often measure the

distances between points in W̃ projecting them into W+
α(s)(x). Thus, we de-

fine πx : W̃(x) → W+
α(s)(x) as the projection and observe that the restriction

of πx to W̃ (x) is Lipschitz continuous, with Lipschitz constant depending only

on the Pesin set that x belongs to. Observe also that the inverse of πx is not

Lipschitz. For z, y ∈ W(x) we define d̃x(y, z) = d(πx(y), πx(z)).

We begin with a useful lemma:

Lemma 6.15. If η is an increasing partition and η(x) ⊂ W̃ (x) for a.e. x,

then the sequence of partitions {f−nη} is generating ; i.e.,
∨∞
n=0 f

−nη is the

partition into points.
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Proof. Let us see that for a.e. x, if y ∈ (f−nη)(x) for every n, then x = y.

We have that a.e. x belongs infinitely many times to some fixed Pesin set,

say R. Take ni as the sequence of integers such that fni(x) ∈ R. Now we

have that y ∈ f−ni(η(fni(x))) ⊂ f−ni(W̃ (fni(x))) for every i. Since fni(x) is

in R, we have that the projected diameter of W̃ (fni(x)) is uniformly bounded

and that the projected diameter of f−ni(W̃ (fni(x))) tends to 0. Hence, since

πx(y) ∈ πx(f−ni(W̃ (fni(x)))), the distance between the projection of y into

W+
α(s)(x) with x is 0. This means that, in fact, y is in the orbit of x. But this

is only possible if x = y since y ∈ W̃ (x). �

Recall that by Proposition 6.7 we have that W̃(x) = {α(ϕx(y)w)y : y ∈
W+
α(s)(x)}. Following the above philosophy, let us say that a partition ξ is sub-

ordinated to W̃ if ξ(x) ⊂ W̃ (x) for a.e. x, and there is an open neighborhood

Ux ⊂W+
α(s)(x) such that {α(ϕx(y)w)y : y ∈ Ux} ⊂ ξ(x).

Here again, we will use the criterion in Theorem 6.11 to prove Propo-

sition 6.10, that is to prove that the Pinsker σ-algebra coincides with the

σ-algebra generated by the “foliation” W̃+
β(s). So that lets us build partitions

like the ones in Lemma 6.13.

Lemma 6.16. There exists a measurable partition ξ with the following

properties :

(1) ξ is an increasing partition subordinated to W̃ ,

(2)
∨∞
n=0 f

−nξ is the partition into points,

(3)
⋂∞
n=0Mfnξ =M

ξ(‹W)
.

Proof. We take ξ̂, the measurable partition built in Lemma 6.13, for α(s),

and define the partition ξ as the graph over ξ̂(x):

ξ(x) = {α(ϕx(y)w)y : y ∈ ξ̂(x)}.

Let us show that this is a partition that satisfies the three properties. Property

(1) follows by definition and because ξ̂ also satisfies property (1). Property (2)

follows from Lemma 6.15. Observe that property (3) is the same as proving

that
∧∞
n=0 f

nξ = ξ(W̃). Notice that
∧∞
n=0 f

nξ is the graph over
∧∞
n=0 f

nξ̂

which equals ξ(W+
α(s)) by property (3) of Lemma 6.13. So, since ξ(W̃) is the

graph over ξ(W+
α(s)), we get property (3). �

The next step is to prove the analog of Lemma 6.14; in fact we prove a

more general result. We follow the proof in [24, Lemma 3.1.1].

Lemma 6.17. If ξ is a partition as in Lemma 6.16 and ζ is an inceasing

partition such that ζ(x) ⊂ W̃ (x), then h(f, ζ ∨ ξ) = h(f, ζ).



NONUNIFORM MEASURE RIGIDITY 387

Proof. For n ≥ 1 we have

h(f, ζ ∨ ξ) = h(f, ζ ∨ fnξ) = H(ζ ∨ fnξ|fζ ∨ fn+1ξ)

= H(ζ|fζ ∨ fn+1ξ) +H(ξ|fξ ∨ f−nζ).

As n → ∞, the second term goes to 0 since by Lemma 6.15 {f−nζ} is a

generating sequence of partitions. So we want to show that H(ζ|fζ ∨ fn+1ξ)

→ H(ζ|fζ). To this end we shall make use of Lemma 6.12. So let Dn =

{x : (fζ)(x) ⊂ (fn+1ξ)(x)}. Since ζ(x) ⊂ W̃ (x) and the projected diameter

of W̃ (x) into W+
α(s)(x) is finite a.e., we have that the projected diameter of

(f−nζ)(x) goes to 0. Hence, since ξ(x) contains a graph over an open neigh-

borhood of x in W+
α(s)(x), we have that (f−nζ)(x) ⊂ ξ(x) if n is big enough

and hence µ(Dn)→ 1. Now the lemma follows from Lemma 6.12 and the fact

that h(f, ζ) = H(ζ|fζ) since ζ is an increasing partition. �

Corollary 6.18. For any two partitions ξ1 and ξ2 as in Lemma 6.16,

h(f, ξ1) = h(f, ξ2).

It remains to show that the entropy of a partition built in Lemma 6.16

equals the entropy of f . We shall build a countable partition P with finite

entropy to compare h(f,P) with h(f, ξ) as in the sketch. To this end we shall

use the following lemma due to Mañé [26].

Lemma 6.19 ([26, Lemma 2]). If µ is a probability measure and 0 < ψ < 1

is such that logψ is µ integrable, then there exists a countable partition P with

entropy H(P) < +∞ such that P(x) ⊂ B(x, ψ(x)) for a.e. x.

We construct a suitable function ψ. For a set A ⊂ M let us define

OεA = {α(t)(a) : a ∈ A ; ‖t‖ < ε}. We fix a Pesin set R1 of positive measure

and take R0, another Pesin set, such that OεR1 ⊂ R0. Arguing as in Lemma

2.4.2 of [24] we define a measurable function ψ : S → R+ by

ψ(x) =

®
δ if x /∈ R0

δl−10 e−λr(x) if x ∈ R0,

where r(x) is the smallest positive integer k > 0 such that fk(x) ∈ R0, λ

and l0 = lR0 are the constants in Lemma 6.21 below. Also, δ is such that if

x, y ∈ R0 and dist(x, y) < δ, then OεW+
α(s)(x)∩OεW−α(s)(y) 6= ∅ and vice versa

when we interchange x and y for some ε > 0 small that depends on the Pesin

set (such δ and ε exists by transversality and uniformity over Pesin sets). We

will require other properties for δ later (see Lemma 6.20). Since
∫
R0
rdµ = 1,

we get that logψ is integrable. We may assume also, by an appropriate choice

of R0, that infn≥0 ψ(f−n(x)) = 0 for a.e. x.

Hence, by Lemma 6.19, there is a partition P̃ such that H(P̃) < ∞ and

P̃(x) ⊂ B(x, ψ(x)) for a.e. x. Take “R1 ⊂ R1 such that if x, y ∈ “R1 and
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dist(x, y) < δ, then there is a point z ∈ R1 ∩ OεW+
α(s)(x) ∩ OεW−α(s)(y). If R1

is of big enough measure, then there is such a set “R1 of positive measure. Let

us define P = P̃ ∨ {“R1, S \ “R1} and recall that P+ =
∨∞
n=0 f

nP.

Lemma 6.20. For some δ > 0 we have that P+(x) ⊂ W̃ (x), x a.e.

Before the proof of this lemma, let us begin with a property of the W̃

“manifolds” that, apart from invariance and uniformity over Pesin sets, simply

reflects the Lipschitz property of the original map α(s).

Lemma 6.21. There is λ > 0 that depends on s and there is l = lR > 0

that depends on the Pesin set R, such that if points x ∈ R and z ∈ W̃ (x)

satisfy d̃x(x, z) < δe−nλ for some n > 0 and 0 < δ ≤ l−1, then

d̃fn(x)(f
n(x), fn(z)) < δ

and fn(z) ∈ W̃ (fn(x)).

Let us go now into the proof of Lemma 6.20.

Proof of Lemma 6.20. Let us see first that P+(x) ⊂ OεW+
α(s)(x), x a.e.

Let y ∈ P+(x). Take the sequence of negative integers −ni < −ni−1 such that

xni = f−ni(x) ∈ “R1. Since y ∈ P+(x) =
∨∞
n=0 f

nP and P = P̃ ∨ {“R1, S \ “R1},
we have that yni = f−ni(y) ∈ “R1. Hence, since dist(xni , yni) < δ, we get

R1 ∩ OεW+
α(s)(xni) ∩ OεW−α(s)(yni) 6= ∅.

So, the whole piece of orbit OεW+
α(s)(xni) ∩OεW−α(s)(yni) is in R0. Call z1ni

=

W̃+
β(s)(xni) ∩ OεW−α(s)(yni) and z2ni

= OεW+
α(s)(xni) ∩ W̃−β(s)(yni).

We claim that fni−ni−1(z1ni
) = z1ni−1

for every i and hence fni−nj (z1ni
)

= z1nj
. The same happens for the sequence z2ni

. Let us proof the claim.

Since z1ni
= W̃+

β(s)(xni) ∩ OεW−α(s)(yni), we have that

fni−ni−1(z1ni
) = fni−ni−1(W̃+

β(s)(xni)) ∩ fni−ni−1(OεW−α(s)(yni)).

Hence to prove the claim it is enough to show that fni−ni−1(z1ni
)∈ W̃+

β(s)(xni−1),

and to this end we shall use Lemma 6.21. Take the sequence of positive integers

kj , j = 0, . . . l such that fkj (xni) enters in R0, k0 = 0, kl = ni − ni−1. By

definition we have that kj − kj−1 = r(fkj−1(xni)) = rj−1. Now,

f rj−1(fkj−1(z1ni
)) ∈ W̃+

β(s)(f
rj−1(fkj−1(xni))).

By Lemma 6.21 it is enough to see that

d̃
fkj−1 (xni )

(fkj−1(xni), f
kj−1(z1ni

)) < l−10 e−rj−1λ.
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We assume by induction that

fkj−1(z1ni
) = W̃+

β(s)(f
kj−1(xni)) ∩ OεW−α(s)(f

kj−1(yni)).

Since fkj−1(xni) ∈ R0, we know that

dist(fkj−1(xni), f
kj−1(yni)) < δe−rj−1λ.

Now, by the uniformity of the invariant stable and unstable manifolds for

points in a given Pesin set and by the uniform transversality of the invariant

distribution, there is a constant C0 that depends on the Pesin set such that

d̃
fkj−1 (xni )

(fkj−1(xni), f
kj−1(z1ni

)) ≤ C0dist(fkj−1(xni), f
kj−1(yni)).

Taking δ small enough we get

f rj−1(fkj−1(z1ni
)) ∈ W̃+

β(s)(f
rj−1(fkj−1(xni)));

hence

fkj (z1ni
) = W̃+

β(s)(f
kj (xni)) ∩ OεW−α(s)(f

kj (yni)).

The claim is proved for z1ni
.

For the case of z2ni
observe that z2ni

= Oε(z1ni
)∩W̃−β(s)(yni) for every i. On

the other hand, W̃−β(s) is f -invariant and since the derivative of fn restricted

to any orbit O is uniformly bounded from below and from above we get that

fni−ni−1(z2ni−1
) = fni−ni−1(Oε(z1ni−1

)) ∩ fni−ni−1(W̃−β(s)(yni−1))

⊂ OCε(fni−ni−1(z1ni−1
)) ∩ W̃−β(s)(f

ni−ni−1(yni−1))

= OCε(z1ni
) ∩ W̃−β(s)(yni)

for some fixed constant C. So, if ε is small enough, we get that the last term

equals z2ni
.

Finally, since fni−n0(z2ni
) = z2n0

, we get that

dist(z2n0
, yn0) = dist(fni−n0(z2ni

), fni−n0(yni))

and hence, since the right-hand side tends to zero because z2ni
∈ W̃−β(s)(yni),

we get that z2n0
= yn0 . Thus, f−n0(y) ∈ OεW+

α(s)(f
−n0(x)), and since n0 ≤

r(f−n0(x)), we get that P+(x) ⊂ OεW+
α(s)(x) by using Lemma 6.21 and the

fact that the derivative of fn restricted to any orbit O is uniformly bounded

from below and from above.

So we get that P+(x) ⊂ OεW+
α(s)(x), x a.e. and see now that in fact

P+(x) ⊂ W̃+
β(s)(x), x a.e. Using the same notations as above, we take y ∈

P+(x) and get that yn0 = z2n0
and hence that it is in the ε-orbit of z1n0

,

where z1n0
= W̃+

β(s)(xn0) ∩ OεW−α(s)(yn0). Let us show that z1n0
= yn0 . In fact,

dist(f−n(z1n0
), f−n(xn0)) → 0 since z1n0

∈ W̃+
β(s)(xn0). On the other hand,
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since infn≥0 ψ(f−n(x)) = 0, we get that lim inf dist(f−n(yn0), f−n(xn0)) = 0.

So

lim inf dist(f−n(yn0), f−n(z1n0
)) = 0.

But the derivative of fn restricted to any orbit O is uniformly bounded from

below and from above; that is, ‖Dzf
n|TO‖ ≤ C for every n ∈ Z. So we have

C−1dist(yn0 , z
1
n0

) ≤ dist(f−n(yn0), f−n(z1n0
))

for every n and hence dist(yn0 , z
1
n0

) = 0. Thus, f−n0(y) ∈ W̃+
β(s)(f

−n0(x)),

and since n0 ≤ r(f−n0(x)), we get Lemma 6.20 by using Lemma 6.21. �

So we can now begin the comparison of the entropies h(f,P) and h(f, ξ)

for the partition P built just before Lemma 6.20 and the partition ξ built in

Lemma 6.16. But first let us state the following corollary of Lemma 6.17.

Corollary 6.22. Let P be the partition in Lemma 6.20 and Q be any

finite entropy partition. Then, for P0 = P ∨ Q and ξ a partition built in

Lemma 6.16, we have that h(f,P0) = h(f,P+
0 ) = h(f, ξ ∨ P+

0 ).

Proof. The result follows since P+
0 (x) ⊂ W̃ (x). �

Finally we get:

Lemma 6.23. h(f, ξ ∨ P+
0 ) = h(f, ξ).

Proof. As in the argument in the proof of Lemma 6.17 (see also [24,

Lemma 3.2.1]) we have,

h(f, ξ ∨ P+
0 ) = h(f, ξ ∨ fnP+

0 )

=H(ξ|fξ ∨ fn+1P+
0 ) +H(P+

0 |f
−nξ ∨ fP+

0 ),

where the first term is ≤ H(ξ|fξ) and the second term goes to 0 since {f−nξ}
is a generating sequence of partitions. Hence h(f, ξ∨P+

0 ) ≤ H(ξ|fξ) = h(f, ξ).

Finally, since H(P0) < ∞ we have that h(f, ξ ∨ P+
0 ) ≥ h(f, ξ), and thus we

are done. �

Finally, combining the above lemma with Corollary 6.22 we get that

h(f,P0) = h(f, ξ). Taking finite partitions Qn such that h(f,Qn) → h(f)

we get that

h(f, ξ) = h(P ∨ Qn) ≥ h(f,Qn),

and hence h(f, ξ) ≥ h(f). The other inequality follows since ξ is a measurable

partition.
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7. Conclusion of the proof of Theorem 4.1.

We will use the properties of the time change and the transitivity prop-

erty of the action β to produce elements of the action α with recurrence and

uniformly bounded derivatives along W.

We denote by µWx the conditional measure of µ on W(x) and by BWr (x)

the ball in W(x) of radius r with respect to the induced smooth metric.

Lemma 7.1. For any Pesin set Rlε there exist positive constants K and

l′ so that for µ- a.e. x ∈ Rlε and for µWx - a.e. y ∈ Rlε ∩ BWr (x) there exists a

sequence of elements tj ∈ Rk with

(1) xj = α(tj)x ∈ Rl
′
ε ,

(2) xj → y,

(3) K−1 ≤ ‖DE
x α(tj)‖ ≤ K .

Proof. Consider typical points x ∈ Rlε and y ∈ Rlε ∩ BWr (x), and let

ỹ = α(ϕx(y)w)y be the point on W̃(x) corresponding to y. We denote s =

ϕx(y)w and observe that ỹ ∈ Rl
′′
ε with l′′ = l exp(‖s‖). By Proposition 6.7

the function ϕx(y) is Hölder on Rlε∩BWr (x); hence s is uniformly bounded, so

that the constant l′′ can be chosen the same for all x and y in the lemma.

As we show below, x and ỹ are are also typical points with respect to the

invariant measure ν for β. Then by Proposition 6.9 there exists a sequence

nj →∞ such that x̃j = β(njt, x) = α(g(x, njt))x→ ỹ. Since both x and ỹ are

in Rl
′′
ε , the iterates x̃j can also be taken in this set. Denoting tj = g(x, njt)−s

we conclude that xj = α(tj)x→ y. Again, all points xj are in a Pesin set Rl
′
ε

with l′ the same for all x and y in the lemma. Thus the sequence tj satisfies

(1) and (2). To obtain (3) we note that by the definition of the time change

‖DE
x α(g(x, njt)‖ε = 1.

Then the estimates in (3) follow from the uniform boundedness of the correc-

tion s for all x and y in the lemma and from the uniform estimates (5.4),(5.5)

for the ratio of the Lyapunov and smooth norms on the Pesin set Rl
′
ε .

We will now show that x and ỹ are ν-typical. Since measures µ and ν

are equivalent we may assume that x is ν-typical. It remains to prove that

ỹ is typical for the conditional measure ν‹Wx of ν on W̃. For this we need

to show that the holonomy along N between the leaves W(x) and W̃(x) is

absolutely continuous with respect to the measures µWx and ν‹Wx . We consider

the foliation W = (N ⊕ W) = (N ⊕ W̃). We note that the conditional

measures µx and νx of µ and ν on W (x) are also equivalent. Since N is the

orbit foliation of the one-parameter subgroup {tw} for both α and β, the the

conditional measures µx and νx are locally equivalent to the product of µWx
and ν‹Wx with the conditional measures on N (x) for µ and ν respectively. The
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latter measures are equivalent to Lebesgue on N (x), for ν this follows from

differentiability of the time change β along the orbits. Since the time change β,

as well as the leaf W̃(x) viewed as a graph over W(x), is also continuous on

Pesin sets, it follows that the holonomy along N is absolutely continuous. �

We will use the notion of an affine map on a leaf of a Lyapunov foliation.

These are the maps which are affine with respect to the atlas given by affine

parameters on these leaves. The notion of affine parameters is similar to that

of nonstationary linearization. The following proposition provides α-invariant

affine parameters on the leaves of any Lyapunov foliation W.

Proposition 7.2 ([6, Prop. 3.1, Remark 5]). There exists a unique mea-

surable family of C1+θ smooth α-invariant affine parameters on the leaves

W(x). Moreover, they depend uniformly continuously in C1+θ topology on x

in any Pesin set.

Now we can apply Lemma 7.1 to obtain the following invariance property

for the conditional measures of µ on W. We note that if the conditional

measures µWx are atomic, this invariance property degenerates into trivia.

Lemma 7.3 ([6, Lemma 3.9]). For µ- a.e. x ∈ Rlε and for µWx - a.e. y ∈
Rlε ∩BWr (x) there exists an affine map g :W(x)→W(x) with g(x) = y which

preserves the conditional measure µWx up to a positive scalar multiple.

This lemma is proved by finding a limit for the restrictions of maps α(tj)

to W(x). The proof is identical to the one of Lemma 3.9 in [6]. It relies

only on the conclusions of Lemmas 3.7 and 3.8 in [6], which are now given by

Lemma 7.1.

Assuming that the conditional measures µWx are nonatomic for µ-a.e. x,

the following lemma from [6] establishes the absolute continuity of these con-

ditional measures and completes the proof of Theorem 4.1. Its proof in [6]

relies only on the conclusion of Lemma 7.3 (Lemma 3.9 in [6]).

Lemma 7.4 ([6, Lemma 3.10]). The conditional measures µWx are abso-

lutely continuous for µ - a.e. x. (In fact, µWx is Haar with respect to the affine

parameter on W(x).)

8. Concluding remarks and some open problems

8.1. Further properties of maximal rank actions. For a Zk, k ≥ 2, action

α on the torus Tk+1 with Cartan homotopy data there is a unique invariant

measure µ which is projected to Lebesgue measure λ by the semi-conjugacy

with the corresponding linear Cartan action α0; this measure is absolutely con-

tinuous and the semi-conjugacy is bijective and measure preserving between

certain sets of full µ-measure and full Lebesgue measure. Thus (α, µ) and
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(α0, λ) are isomorphic as measure-preserving actions ([18, Cor. 2.2]); further-

more, the measurable conjugacy is smooth on almost every local (and hence

global) stable manifold for any element of α, in particular, along the Lya-

punov foliations, [18, Prop. 2.9]. This implies that the Jacobians along those

foliations are rigid, i.e. multiplicatively cohomologous to the corresponding

eigenvalues of elements of α0 ([6, Lemma 4.4]).4 Another consequence is that

the metric entropy of α with respect to µ is the logarithm of an algebraic

integer of degree at most k + 1.

It is natural to ask whether in our more general setting similar proper-

ties of the expansion coefficients and for entropy hold. In a general setting, a

Jacobian along a Lyapunov foliation is called rigid if its logarithm is cohomol-

ogous (with a measurable transfer function) to the corresponding Lyapunov

exponent. Notice that our proof of the key recurrence property is based on

rigidity of Jacobians for the special time changes constructed in Section 6.1,

which is true essentially by definition. Notice however that different Lyapunov

foliations may require different time changes.

Conjecture 1. Jacobians along Lyapunov foliations for an action α

satisfying assumptions of the Main Theorem are rigid.

Problem 1 ([12]). What are possible values of entropy for elements of an

action satisfying assumptions of the Main Theorem?

The following conjecture represents a cautiously optimistic view which

presumes existence of a certain underlying arithmetic structure.

Conjecture 2. The values of Lyapunov exponents and hence of entropy

are logarithms of algebraic integers.

Notice that this is true for all known examples on a variety of manifolds

as described in the introduction and in those cases the algebraic integers have

degree at most k + 1.

Another result of [18, Th. 3.1] establishes existence of a set of periodic

points dense in the support of the measure µ whose eigenvalues are equal

to the corresponding powers of the eigenvalues of α0. This implies that the

Lyapunov exponents of atomic measures concentrated on the corresponding

periodic orbits are equal to those of µ. Again, the latter property is also true

4In fact, we can prove in this setting rigidity of general cocycles which are Hölder with

respect to the Lyapunov metric. Although the proof is not very difficult it uses the semi-

conjugacy and its regularity properties very heavily, and thus it would not fit well with

the program of the present paper which aims at deriving geometric/rigidity properties from

purely dynamical assumptions irrespective of any model.
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for all known examples on manifolds other than tori. Let us call such periodic

points proper.

Problem 2. Under the assumptions of the Main Theorem (1) is there any

proper periodic point for α? Are proper periodic points dense in the support

of the measure µ?

Another circle of questions concerns relations between the Zk actions

satisfying assumptions of the Main Theorem (1) and Rk actions satisfying as-

sumptions of the Main Theorem (2). Any suspension of the action of the first

kind is an action of the second kind. One can also make time changes for

the suspension. A trivial type of time change is given by a linear automor-

phism of Rk. Any time change is given by an Rk cocycle over the action and

Lyapunov exponents are transformed according to the cocycle averages and

hence assumptions of the Main Theorem (2) are preserved under a smooth

time change. Thus existence of nontrivial time changes is closely related to

the problem of cocycle rigidity.

Problem 3. Is any smooth R-valued cocycle over an action satisfying as-

sumptions of the Main Theorem (1) (or (2)) cohomologous to a constant co-

cycle?

The answer may depend on the regularity of cohomology. In particular, it

is more likely to be positive if the cohomology in question is only measurable,

rather than smooth.

Problem 4. Are there Rk actions satisfying assumptions of the Main The-

orem (2) which do not appear from time changes of suspensions of Zk actions

satisfying assumptions of the Main Theorem (1)?

Notice that on the torus for an action with Cartan homotopy data,

the unique “large” invariant measure — i.e. the measure which projects to

Lebesgue measure for the linear Cartan action under the semi-conjugacy (see

[18]) — changes continuously in weak* topology. Thus there is not only global

but also local rigidity for such a measure. While global rigidity is problematic

in the setting of the Main Theorem, the local version is plausible.

Conjecture 3. Given a C2 action α with an invariant measure µ sat-

isfying assumptions of the Main Theorem (1) or (2), any action α′ close to

α in C2 topology has an ergodic invariant measure µ′ satisfying the same as-

sumptions. One can choose µ′ in such a way that when α′ converges to α in

C2 topology, µ′ converges to µ in weak* topology.

Furthermore, in the Zk case Lyapunov exponents of µ′ are equal to those

of µ.
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8.2. High rank and low dimension. As explained in [18, §4] many exam-

ples of manifolds with actions satisfying assumptions of the Main Theorem (1)

can be obtained by starting from the torus and applying two procedures:

• blowing up points and glueing in copies of the projective space RP (k),

and
• cutting pairs of holes and attaching handles Sk × D1.

Conjecture 4. An action satisfying assumptions of the Main Theorem

(1) exists on any compact manifold of dimension three or higher.

The sphere S3 seems to be a good open test case.

Definition. [13] An ergodic invariant measure of a Zk action with nonva-

nishing Lyapunov exponents is called strongly hyperbolic if the intersection of

all Lyapunov hyperplanes is the origin.

Obviously the rank of a strongly hyperbolic action does not exceed the

dimension of the manifold. Furthermore, any ergodic measure for a strongly

hyperbolic action of Zk on a k-dimensional manifold is atomic and is supported

by a single closed orbit; see [13, Prop. 1.3]. Thus the maximal rank for a

strongly hyperbolic action on a manifold M with a nonatomic ergodic measure,

in particular a measure with positive entropy, is dimM − 1, exactly the case

considered in the present paper.

Let us consider the lowest dimension compatible with the higher rank as-

sumption, namely strongly hyperbolic Z2 actions on three-dimensional man-

ifolds. Lyapunov hyperplanes are lines in this case and the general position

condition is equivalent to three Lyapunov lines being different. In this case

our theorem applies and any ergodic invariant measure either has zero entropy

for all elements of Z2 or is absolutely continuous.

Let us consider other possible configurations of Lyapunov lines:

(1) Two Lyapunov exponents proportional with negative proportionality

coefficient; two Lyapunov lines.
(2) Two Lyapunov exponents proportional with positive proportionality

coefficient; two Lyapunov lines.
(3) All three Lyapunov exponents proportional; one Lyapunov line.

(1) First notice that such a measure cannot be absolutely continuous.

For an absolutely continuous invariant measure, the sum of the Lyapunov

exponents is identically equal to zero. But in this case two exponents are zero

along the common kernel of two proportional exponents while the third one is

not zero there.

Now we construct an example of an action with a singular positive entropy

measure of this type. Consider the following action on T3: Cartesian product

of the action generated by a diffeomorphism f of S1 with one contracting fixed
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point p with positive eigenvalue β < 1 and one expanding fixed point, with the

action generated by a hyperbolic automorphism F of T2 with an eigenvalue

ρ > 1. The measure µ = δp × λT2 is invariant under the Cartesian product

and is not absolutely continuous. Lyapunov exponents are x log β, y log ρ, and

−y log ρ; the entropy is hµ(fmFn) = |n| log ρ.

(2) There are four Weyl chambers, and in one of those all three Lyapunov

exponents are negative; hence by [13, Prop. 1.3] any ergodic invariant measure

is atomic. Notice that this includes the case of a multiple exponent.

(3) On the Lyapunov line all three Lyapunov exponents vanish; hence the

action is not strongly hyperbolic.

Thus we obtain the following necessary and sufficient condition for a con-

figuration of Lyapunov lines.

Corollary 8.1. A strongly hyperbolic ergodic invariant measure for a

Z2 action on a three-dimensional compact manifold with positive entropy for

some element is absolutely continuous if and only if Lyapunov lines for three

exponents are different.

There is an open question related to the case (1). In our examples both

Lyapunov lines are rational. One can modify this example to make the “single”

Lyapunov line (the kernel of a single exponent) irrational. It is conceivable,

although not very likely, that the situation when the “double” line (i.e. the

kernel of two exponents, or both lines) are irrational may be different.

Problem 5. Construct an example of a smooth Z2 action on a compact

three-dimensional manifold with a singular ergodic invariant measure with

positive entropy with respect to some element of the action, such that two

Lyapunov exponents are negatively proportional and their common kernel is

an irrational line.

8.3. Low rank and high dimension. Essentially all known rigidity results

for algebraic actions (hyperbolic or partially hyperbolic), including cocycle,

measurable, and local differentiable rigidity, assume only some sort of “gen-

uine higher (≥ 2) rank”; see e.g. [21], [15], [3] and references thereof. By

contrast, global rigidity for Anosov actions on a torus [28] and nonuniform

measure rigidity on a torus [6], [18], as well as results of this paper, deal with

maximal rank actions. Notice, however, that global rigidity results for Anosov

actions on an arbitrary manifold satisfying stronger dynamical assumptions

only require rank ≥ 3 [10] or rank ≥ 2 [8], [9].

We expect that global measure rigidity results, both on the torus and in

the general setting, similar to those of the present paper, hold at a greater

generality although we do not see a realistic approach for the most general
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“genuine higher rank” situation even on the torus. There is still an interme-

diate class which is compatible with the lowest admissible rank (i.e. rank two)

on manifolds of arbitrary dimension, mentioned in the remark in Section 6.4.

Definition. An ergodic invariant measure for a Zk action is called totally

nonsymplectic (TNS) if for any two Lyapunov exponents there exists an ele-

ment of Zk for which both those exponents are negative.

Equivalently all Lyapunov exponents are nonzero and there are no pro-

portional exponents with negative coefficient of proportionality.5

The TNS condition is the most general one for the “π-partition trick” to

work. It also greatly helps in the geometric treatment of cocycle rigidity; see

e.g. [17]. It has a nice property that it is inherited by a restriction of the action

to a subgroup of rank ≥ 2 if it is in general position. While it is possible that

our result generalizes to the TNS measures (i.e. assuming only existence of

some elements with positive entropy), we prefer to be more conservative and

formulate a conjecture under a stronger entropy assumption.

Conjecture 5. Let µ be an ergodic invariant totally nonsymplectic mea-

sure for a smooth action α of Zk, k ≥ 2. Assume that every element other

than the identity has positive entropy. Then µ is absolutely continuous.

A serious difficulty even in the TNS case may appear in the presence of

multiple exponents. Recall that, even for linear actions, multiple eigenvalues

lead to Jordan blocks so that when the eigenvalue has absolute value one, the

action is not isometric. More generally, positively proportional eigenvalues

also lead to complications. Thus a more tractable case would be that with

simple Lyapunov exponents and no proportional ones. In this case the Lya-

punov distributions are one-dimensional and coincide with coarse Lyapunov

ones. For the suspension, every Lyapunov exponent satisfies assumptions of

Theorem 4.1. This is a nonuniform counterpart of Cartan actions in the sense

of [10].

Conjecture 6. Let µ be an ergodic invariant measure for a smooth ac-

tion α of Zk, k ≥ 2, such that all Lyapunov exponents are simple and all

Lyapunov hyperplanes different. Assume that some element of the action has

positive entropy. Then µ is absolutely continuous.
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nombre de rotation vérifie une condition diophantienne, Ann. Sci. École Norm.
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