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On the spectral side of Arthur’s trace
formula — combinatorial setup

By Tobias Finis and Erez Lapid

Abstract

In Arthur’s trace formula, a ubiquitous role is played by certain limiting

expressions arising from piecewise smooth functions with respect to projec-

tions of the Coxeter fan ((G,M)-families). These include terms resulting

from intertwining operators on the spectral side and volumes of polytopes

on the geometric side. We introduce the combinatorial concept of a com-

patible family with respect to an arbitrary polyhedral fan and obtain new

formulas for the corresponding limiting expressions in this general frame-

work. Our formulas can be regarded as algebraic generalizations of certain

volume formulas for convex polytopes. In a companion paper, the results

are used to study the spectral side of the trace formula.

Contents

1. Introduction 197

2. Polyhedral fans 202

3. Piecewise polynomial functions 204

4. Compatible families and the first formula 206

5. The second formula 209

6. Nonsimplicial fans 214

7. Generalization to the relative case 216

8. Hyperplane arrangements 220

References 221

1. Introduction

The volume of a convex polytope P in a real vector space V can be com-

puted in several ways, for example by triangulating the polytope into sim-

plices. On the other hand, a beautiful localization formula due to Brion

[Bri97, Prop. 5.3] computes the Fourier-Laplace transform of the character-

istic function of P in terms of the piecewise linear support function HP (λ) =

maxx∈P 〈λ, x〉 on the dual vector space V ∗. As a consequence, the volume
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of P can be written as a canonical d-th order derivative DΣ(P ) expHP of the

function expHP at the origin, where d = dimP . Therefore, every volume

formula for polytopes can be interpreted as a derivative formula for the ex-

ponentials of certain piecewise linear functions. In this paper we show that

two previously known volume identities for polytopes can be generalized to

purely algebraic derivative formulas in a noncommutative setup. In this con-

text we are given a finite-dimensional algebra E over C and for each vertex of

a polytope a d-variable power series with coefficients in E subject to certain

compatibility relations. The crucial qualitative feature of our derivative for-

mulas is that they reduce a d-th order derivative to products of d first-order

derivatives in linearly independent directions.

In the scalar case (E = C) the main examples of compatible families are

indeed the exponentials of piecewise linear functions. Interesting examples

for the properly noncommutative situation arise in the representation theory

of reductive groups over local fields, namely as the normalized intertwining

operators associated to representations induced from parabolic subgroups. In

the paper [FLM] our results are used to rewrite the spectral side of Arthur’s

trace formula and to study it from an analytic point of view.

In the case of a simple polytope P (i.e. a polytope for which each vertex

belongs to exactly d edges), Brion’s formula can be stated as follows:

(1.1)∫
P
e〈λ,v〉 dv =

∑
u

vol{
d∑
i=1

αi(u− ui) : 0 ≤ αi ≤ 1} e〈λ,u〉∏d
i=1 〈λ, u− ui〉

, λ ∈ V ∗,

where u ranges over the vertices of P and u1, . . . , ud are the neighboring vertices

of u.1 This expresses an entire function as a sum of meromorphic functions

with hyperplane singularities. Following Brion, we can write the right-hand

side as δΣ(P ) expHP , where δΣ(P ) denotes a certain canonical push-forward

map of homogeneous degree −d from piecewise power series on the normal fan

Σ(P ) of P to power series on the vector space V ∗. (Since we are dealing with a

purely algebraic problem, we are free to work with formal power series rather

than analytic functions.) To compute the value at the origin we may use de

L’Hôpital’s rule to obtain

(1.2) volP =
∑
u

vol conv{u, u1, . . . , ud}
〈ξ, u〉d∏d

i=1 〈ξ, u− ui〉
for any ξ ∈ V ∗ which is not perpendicular to an edge of P. Brion’s formula

follows from (and is in fact, up to a set of measure zero, equivalent to) the

Lawrence-Varchenko decomposition expressing P as an alternating sum of

1While the restriction to simple polytopes allows a more elegant statement, Brion’s formula

is not restricted to this case.
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cones [Var87], [Law91]. Namely for ξ as before the characteristic function

χP of P can be expressed as

(1.3) χP =
∑
u

(−1)#{i=1,...,d:〈ξ,u−ui〉<0}χ
u+
∑d

i=1
Rsgn〈ξ,u−ui〉(ui−u)

,

where R+ = [0,∞) and R− = (−∞, 0). The expression (1.1) for <λ = ξ is

obtained by multiplying (1.3) by e〈ξ,·〉 (to make the right-hand side rapidly

decreasing) and taking the Fourier transform. We note that both Brion’s

formula and the Lawrence-Varchenko decomposition had been obtained earlier

by Arthur in the case where the normal fan of P is a Coxeter fan [Art76,

§3] (cf. [Art05, Figure 11.1]). The volumes of such polytopes appear as weight

factors in the weighted orbital integrals studied by Arthur. Moreover, piecewise

power series and the canonical push-forward map are also ubiquitous in the

theory of the trace formula, where they appear under the heading of (G,M)-

families ([Art81, §6], [Art05, §17]).

The volume of an arbitrary d-dimensional polytope P ⊂ V can also be

computed in a more geometric way by the inductive formula (cf. [Sch93, Ch. 5])

(1.4) volP =
1

d

∑
F

hF volF,

where F ranges over the set of facets (i.e. maximal faces) of P , we represent

F as
F = {v ∈ P : 〈λF , v〉 = hF = max

x∈P
〈λF , x〉}, λF ∈ V ∗

and use the identification λF : V(P − P )/V(F − F ) → R (equipped with

the standard Lebesgue measure) to normalize the measure on F . Here, V(S)

denotes the linear span of a subset S ⊂ V . This correlates (in the case where

the origin lies in the interior of P ) to the tessellation of P by the polytopes

conv(F ∪ {0}). Slightly more generally, we have

volP =
1

d

∑
F

(hF − 〈λF , u〉) volF

for any u ∈ V .

Choosing an auxiliary vector u(F ) ∈ F for any face F of P and iterating

this procedure we obtain

volP =
1

d!

∑
F0⊂...⊂Fd=P

〈λ1, F0 − u(F1)〉 〈λ2, F1 − u(F2)〉 · · · 〈λd, Fd−1 − u(Fd)〉

(1.5)

=
∑

F0⊂...⊂Fd=P

vol conv{u(F0), . . . , u(Fd)},

where the sum is over all ascending chains of faces of P with dimFi = i for

all i, the maximum of λi ∈ V ∗ on Fi is assumed on Fi−1, and the basis of

V(P − P )∗ obtained by restricting λ1, . . . , λd to V(P − P ) is normalized with
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respect to the dual measure. This corresponds to the triangulation of P by

the simplices conv{u(F0), . . . , u(Fd)}. For instance, taking u(F ) to be the

barycenter of F , (1.5) reflects the barycentric subdivision. Combining (1.2)

and (1.5) we obtain a first formula for the d-th order derivative δΣ(P ) expHP

evaluated at the origin.

Suppose now that P1, . . . , Pd ⊂ V are d polytopes. Recall that the volume

of the polytope a1P1 + · · · + adPd, a1, . . . , ad ≥ 0, is given by a homogeneous

polynomial of degree d in a1, . . . , ad. The coefficient of a1 · · · ad is called the

mixed volume of P1, . . . , Pd and is denoted by mixvol(P1, . . . , Pd). In particular,

mixvol(P, . . . , P ) = d! volP . Fix λ = (λ1, . . . , λd) ∈ (V ∗)d in general position.

To this choice we associate a set Xλ of d-tuples (e1, . . . , ed) where ei is an

edge of Pi. Namely, Xλ is the set of all (e1, . . . , ed) for which there exists

µ ∈ V ∗ such that 〈µ+ λi, u〉 = maxx∈Pi 〈µ+ λi, x〉 for all u ∈ ei, i = 1, . . . , d.

An argument in [MS83] (cf. also [Sch94, Th. 4.1]) based on the Walkup-Wets

lifting [WW69] shows that

(1.6) mixvol(P1, . . . , Pd) =
∑

(e1,...,ed)∈Xλ

vol{
d∑
i=1

αi~ei : 0 ≤ α1, . . . , αd ≤ 1},

where ~ei = vi−ui if ei connects the vertices ui and vi of Pi. Taking P1 = · · · =
Pd = P we obtain yet another formula for volP which has the pleasant feature

of expressing it directly in terms of the edge vectors. As it turns out, this

formula is closely related to (1.5). We remark that in the case of a zonotope

(i.e. a Minkowski sum of line segments) this formula takes a particularly simple

form, since then the individual summands in (1.6) do not depend on the choice

of λ. This is McMullen’s volume formula for zonotopes ([She74]). In the general

case the combination of (1.2) and (1.6) provides a second algebraic derivative

identity for expHP .

In our algebraic generalization of these identities the function expHP is

replaced by a general compatible family (with respect to Σ(P )). By this we

mean, for an arbitrary finite-dimensional C-algebra E , a collection of E-valued

power series Av on V ∗ indexed by the vertices v of P , such that Av(0) = 1E
for all v and Av2A−1

v1 ∈ E [[v2 − v1]] for any pair of adjacent vertices v1 and v2

(where we view v1 and v2 as linear functions on V ∗). We consider δΣ(P )A and

its value at zero DΣ(P )A and show that the two volume identities generalize to

this case. For example, the generalization of the second identity (Theorem 5.1

below) is

DΣ(P )A =
∑
u

vol conv{u, u1, . . . , ud}
Dd
ξAu(0)∏d

i=1 〈ξ, u− ui〉

=
1

d!

∑
(e1,...,ed)∈Xλ

vol{
d∑
i=1

αi~ei : 0≤α1, . . . , αd≤ 1}
d∏
i=1

AuiA−1
vi − 1E

ui − vi
(0).
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The generalization of the first identity is Corollary 4.3 below. Slightly more

general variants are obtained in Sections 6 and 7. Our two derivative identities

express DΣ(P )A in terms of first-order derivatives of the functions Av2A−1
v1 for

vertices v1 and v2 of P . The second identity has the additional feature that

it involves only the first-order derivatives of the basic one-variable functions

associated to adjacent vertices v1 and v2. A very special (but already impor-

tant) case of this identity has been previously obtained by Arthur in [Art82,

Lemma 7.1]. In essence this case is equivalent to McMullen’s volume formula

for zonotopes specialized to the case of Coxeter zonotopes.

For convenience, instead of working directly with polytopes, we will work

with (polyhedral) fans, which provide a slightly more general context. As is

well known, in the case of fans defined over the rational numbers the concepts

of piecewise polynomial functions, the push-forward operation δΣ and Brion’s

formula have natural interpretations in terms of the equivariant cohomology

of toric varieties (cf. [Ful93], [Bri96], [BV97]). However, we do not know if the

general concept of a compatible family and the associated derivative formulas

have a natural geometric meaning.

To finish this introduction, let us remark that our second derivative iden-

tity has been announced in [FLM09] in the case of Coxeter fans, and that the

generalization to arbitrary simplicial fans was conjectured there (and formu-

lated in more detail in the note [FL09]).

We now sketch the structure of the main part of this paper. We first

review some basic properties of polyhedral fans and set up the notation (§2).

Then we recall the notion of piecewise polynomial functions and the push-

forward operation (§3). Next, we describe the setup of compatible families

and derive the analogue of (1.4) and (1.5) in Section 4. The analogue of (1.6)

is given in Section 5. For completeness we extend the results to nonsimplicial

fans in Section 6. A slight refinement of the previous results in a relative

context (corresponding to the consideration of linear projections of polytopes

in the case of volume formulas) is provided in Section 7. Finally, in Section 8

we specialize the previous results to the case of fans defined by hyperplane

arrangements (or, dually, zonotopes), which is the case used in [FLM].
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2. Polyhedral fans

In this section we recall the basic definitions and facts concerning poly-

hedral fans which will be needed in the sequel. Let V be a finite-dimensional

real vector space and let V ∗ be its dual space. For any subset I ⊂ V ∗ we write

V(I) for the linear span of I in V ∗ and I⊥ for the annihilator of I in V . We

also denote by relint I the relative interior of I, i.e. its interior as a subset of

V(I). By a cone C in V ∗ we will always mean a closed convex polyhedral cone,

i.e. the Minkowski sum of a finite number of rays R≥0λ, λ ∈ V ∗, or equivalently

the intersection of finitely many half-spaces {λ ∈ V ∗ : 〈λ, v〉 ≥ 0}, v ∈ V . We

write codim C = dim C⊥. Note that C ∩ −C is the maximal subspace of V ∗

contained in C. A face of C is a subcone of the form

{λ ∈ C : 〈λ, v〉 = 0}

for some v ∈ V such that 〈·, v〉 ≤ 0 on C; in particular, v ∈ (C ∩ −C)⊥.

A (complete) fan2 Σ in V ∗ is a collection of cones (called the faces of Σ)

such that

(1) any face of a cone σ ∈ Σ belongs to Σ;

(2) if σ1, σ2 ∈ Σ, then σ1 ∩ σ2 is a face in both σ1 and σ2;

(3) ∪Σ = V ∗.

Thus, the relative interiors of the faces of a fan Σ form a partition of V ∗.

The minimal face µ = ∩Σ of Σ is a subspace of V ∗ called the core of Σ, and we

have C ∩−C = µ for all C ∈ Σ. The integer d = dimµ⊥ is called the dimension

of Σ.

A basic (although not the most general) example of a fan, which provides

most of the intuition, is the normal fan Σ(P ) of a polytope P in V . To define

it, recall that a face F of P is a subset of the form

F = {v ∈ P : 〈λ, v〉 = max
x∈P
〈λ, x〉}

for some λ ∈ V ∗. By definition, the faces of Σ(P ) are

F \ :=
{
λ ∈ V ∗ : 〈λ, v〉 = max

x∈P
〈λ, x〉 for all v ∈ F

}
,

where F runs over the faces over P . The map F 7→ F \ is an inclusion reversing

bijection between the sets of faces of P and of Σ(P ), and we have codimF \ =

2We will not consider incomplete fans.
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dimF . In particular, the core of Σ(P ) is P \, P \
⊥

is the linear span of P − P ,

and the dimension of Σ(P ) is the same as the dimension of P .

In general we denote by Σi the set of faces of Σ of codimension i. In

particular, Σd = {µ} and we call Σ0, Σ1 and Σd−1 the sets of chambers, walls

and rays of Σ, respectively.3 In the case Σ = Σ(P ), the chambers (resp. walls,

rays) of Σ correspond to the vertices (resp. edges, facets) of P . For any chamber

σ ∈ Σ0 we denote by R(σ) the set of rays of Σ contained in σ.

Two chambers are called adjacent if they intersect in a wall. Any wall is

contained in exactly two chambers (which are adjacent). We will write σ
τ−→ σ̃

for the ordered pair (σ, σ̃), if σ and σ̃ are adjacent chambers with a common

wall τ = σ ∩ σ̃. We call σ
τ−→ σ̃ the directed wall ω above τ emerging from σ.

If σ
τ−→ σ̃, then

(2.1) relintσ ·∪ relint σ̃ ·∪ relint τ = relint(σ ∪ σ̃).

Given C ∈ Σ we say that v ∈ V is positive with respect to C if 〈λ, v〉 > 0 for

any λ ∈ relint C. Given a directed wall ω : σ
τ−→ σ̃, a directed normal for ω, or

an ω-directed normal, is an element of τ⊥ which is positive with respect to σ.

Such a vector is uniquely determined up to multiplication by a positive scalar.

An element of V ∗ is called Σ-regular (resp. Σ-strongly regular) if it lies in

the complement of ∪Σ1 (resp. ∪τ∈Σ1V(τ)). Thus, λ is Σ-regular if and only if

it belongs to a unique chamber, or equivalently to the interior of a chamber.

Given a face C of Σ the cones σ⊃C := σ + V(C), C ⊂ σ ∈ Σ, comprise a

fan Σ⊃C in V ∗ which is called the restricted fan. Its core is V(C). If C′ ⊃ C,
then (Σ⊃C)⊃C

′
= Σ⊃C

′
. Note that if Σ = Σ(P ) is the normal fan of a polytope

P ⊂ V , then the restricted fan Σ⊃F
\

is the normal fan Σ(F ) of the face F

considered as a polytope in V .

An important special case, especially in the theory of piecewise polynomial

functions, is the class of simplicial fans. We say that a convex polyhedral cone

C is simplicial if there exist λ1, . . . , λk ∈ V ∗, linearly independent modulo

C ∩ −C, such that

C = (C ∩ −C) + R≥0λ1 + · · ·+ R≥0λk.

Equivalently, C can be written as the intersection of hyperplanes {λ ∈ V ∗ :

〈λ, vi〉 = 0}, i = 1, . . . , l, and half-spaces {λ ∈ V ∗ : 〈λ, vi〉 ≥ 0}, i = l+1, . . . ,m,

for linearly independent vectors v1, . . . , vm ∈ V and 0 ≤ l ≤ m. A face of a

simplicial cone is again simplicial. We say that a fan Σ is simplicial if each

face of Σ is simplicial; it suffices to check this condition for the chambers of Σ.

Equivalently, Σ is simplicial if and only if any σ ∈ Σ0 has precisely d directed

walls emerging from it. Also, Σ is simplicial if and only if |R(σ)| = d for all

3Note that strictly speaking ρ is a one-dimensional ray only after projection along µ.
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σ ∈ Σ0. In particular, for a polytope P ⊂ V the normal fan Σ(P ) is simplicial if

and only if P is simple, i.e. if each vertex of P is contained in exactly d = dimP

edges.

Suppose that Σ is simplicial. Then for any face C the restricted fan Σ⊃C is

also simplicial. Moreover, for any σ ∈ Σ0 and ρ ∈ R(σ) there exists a unique

wall τ ⊂ σ which does not contain ρ. Denote by prσ;ρ the projection of V ∗/µ

onto V(ρ)/µ along V(τ)/µ. Then
∑
ρ∈R(σ) prσ;ρ = id.

3. Piecewise polynomial functions

Next, we recall the definition and the basic properties of the ring of piece-

wise polynomial functions with respect to a fan Σ and the canonical push-

forward operation δΣ of homogeneous degree −d(Σ) in the case of simplicial

fans following Billera and Brion (cf. [Bil89], [Bri97] for more details). Let

S = Sym(V ) be the ring of polynomial functions on V ∗. For any λ ∈ V ∗ we

denote by Dλ the differential operator on S defined by λ (the directional de-

rivative along λ). For any face C ∈ Σ we denote by IC the ideal of S generated

by the subspace C⊥ of V . In other words, IC is the ideal of polynomials on V ∗

vanishing on C.

Definition 3.1. A Σ-piecewise polynomial function is a (necessarily con-

tinuous) function on V ∗ whose restriction to any chamber (and hence to any

face) of Σ is a polynomial. We denote by P = PΣ the graded S-algebra of

Σ-piecewise polynomials.

We can view an element of P as a collection (Xσ)σ∈Σ0 of elements of S

(obtained by restricting the function to the chambers), such that Xσ1 −Xσ2 ∈
Iσ1∩σ2 for any two chambers σ1, σ2. It suffices to check this condition for σ1, σ2

adjacent.

Remark 3.2. The algebra P has especially nice properties in the case where

Σ is simplicial. In this case, P is free over S. Also, P is generated as an algebra

by its degree 1 elements P1 (the Σ-piecewise linear forms) and it is possible to

describe its algebra structure in terms of the combinatorics of Σ. Moreover,

dimP1 = |Σd−1| (cf. [Bil89], [Bri97]). We will not use these facts here.

More generally, if M is an S-module, we define MΣ := M ⊗S PΣ to be the

PΣ-module of Σ-piecewise elements of M . If M is flat over S, then an element

of MΣ can be described as a collection (mσ)σ∈Σ0 of elements of M such that

mσ1 −mσ2 ∈ Iσ1∩σ2M for any σ1, σ2 ∈ Σ0.

For any C ∈ Σ there is a canonical homomorphism

PΣ → PΣ⊃C , f 7→ f⊃C ,
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given by f⊃C
σ⊃C

= fσ for any σ ∈ Σ0, σ ⊃ C. Thus, for any S-module M we get

a canonical restriction map

MΣ →MΣ⊃C , m 7→ m⊃C ,

which is a homomorphism with respect to the pull-back PΣ-structure on MΣ⊃C .

Let Σ = Σ(P ) be the normal fan of a polytope P ⊂ V . The support

function HP on V ∗ defined by HP (λ) = maxx∈P 〈λ, x〉 is a Σ-piecewise linear

form. The function HP corresponds to the vector X = (Xσ)σ∈Σ0 consisting

of the vertices of P indexed by the corresponding chambers of Σ. Conversely,

a Σ-piecewise linear form X = (Xσ)σ∈Σ0 defines a polytope with normal fan

Σ if and only if Xσ − Xσ̃ is positive with respect to σ for any directed wall

ω : σ
τ−→ σ̃. If we relax the positivity condition to allow the limiting case

Xσ = Xσ̃, we obtain all polytopes P with HP ∈ PΣ.

Suppose that Σ is a fan with core µ. Fix a Haar measure on µ⊥. We write

β(v1 ∧ · · · ∧ vd) = vol

® d∑
i=1

αivi : 0 ≤ α1, . . . , αd ≤ 1

´
, v1, . . . , vd ∈ µ⊥.

For our purposes the dual Haar measure on V ∗/µ is normalized in such a way

that for any basis v1, . . . , vd of µ⊥ and the corresponding dual basis λ1, . . . , λd
of V ∗/µ we have

β∗(λ1 ∧ · · · ∧ λd)β(v1 ∧ · · · ∧ vd) = 1,

where

β∗(λ1 ∧ · · · ∧ λd) = vol

® d∑
i=1

αiλi : 0 ≤ α1, . . . , αd ≤ 1

´
.

Assume that Σ is simplicial. For σ ∈ Σ0 let ωi : σ
τi−→ σi, i = 1, . . . , d, be

the directed walls emerging from σ. Set

θσ = θΣ
σ =

v1 · · · vd
β(v1 ∧ · · · ∧ vd)

∈ S,

where vi is a directed normal of ωi. As the notation suggests, θσ depends only

on σ and not on the choice of the vi’s or the order of the ωi’s. (For instance

we could take v1, . . . , vd to be the dual basis of λρ, ρ ∈ R(σ).)

A key elementary property of these polynomials is that for σ
τ−→ σ̃ and

0 6= v ∈ τ⊥ we have

(3.1)
θσ
v

= −θσ̃
v

on V(τ).

This property forms the basis for the following definition.

Definition 3.3. For any simplicial fan Σ (and choice of Haar measure on

µ⊥) denote by δ = δΣ : PΣ → S the S-linear map, homogeneous of degree
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−d(Σ), which is defined by

X = (Xσ)σ∈Σ0 7→
∑
σ∈Σ0

Xσ

θσ
.

We call δΣ the push-forward map associated to Σ. We also write DΣX =

(δΣX)(0).

The map δΣ is indeed well defined, since by (3.1) the apparent hyperplane

singularities cancel in pairs (cf. [Bri97, Th. 2.2]). In particular, δPk = 0 for

k < d. Extending scalars, we get for any S-module M an S-linear map

δ = δΣ;M : MΣ →M.

We may use de L’Hôpital’s rule to compute

DΣX =
1

d!

∑
σ∈Σ0

Dd
λXσ(0)

θσ(λ)

for any Σ-strongly regular λ ∈ V ∗. We also remark that

(3.2)
∑
σ∈Σ0

Dk
λXσ(0)

θσ(λ)
= 0

for all k < d, since by (3.1) the left-hand side is a regular function of λ of

degree k − d.

4. Compatible families and the first formula

Let C[[V ]] denote the algebra of formal power series in V , i.e. the comple-

tion of S⊗C at the origin. The constant term homomorphism C[[V ]]→ C will

be denoted by f 7→ f(0) and for any λ ∈ V ∗ we denote by Dλ : C[[V ]]→ C[[V ]]

the (formal) λ-directional derivative. For any subspace U ⊂ V we will identify

C[[U ]] with a subalgebra of C[[V ]]. Thus, C[[U ]] = {f ∈ C[[V ]] : Dλf = 0

for all λ ∈ U⊥}. Let E be a finite-dimensional algebra over C. Consider the

C[[V ]]-algebra E [[V ]] := C[[V ]] ⊗ E . As before, the canonical homomorphism

E [[V ]]→ E will be denoted by f 7→ f(0), and similarly for Dλ : E [[V ]]→ E [[V ]],

λ ∈ V ∗. Obviously, in this situation we can consider the module of E-valued Σ-

piecewise power series E [[V ]]Σ and the push-forward map δΣ : E [[V ]]Σ → E [[V ]].

We can now define the main object of interest.

Definition 4.1. A Σ-compatible family A = (Aσ)σ∈Σ0 with values in E
consists of elements Aσ ∈ E [[V ]], σ ∈ Σ0, such that

(4.1) Aσ(0) = 1E for all σ ∈ Σ0,

so that in particular, Aσ is invertible in E [[V ]] for all σ ∈ Σ0, and

(4.2) Aσ1→σ2 := Aσ1A−1
σ2 ∈ E [[(σ1 ∩ σ2)⊥]] for any σ1, σ2 ∈ Σ0.

For a directed wall ω : σ
τ−→ σ̃ we write Aω = Aσ→σ̃ ∈ E [[τ⊥]].
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Usually we suppress E if it is clear from the context. Note that it suffices

to check condition (4.2) for σ1, σ2 adjacent.

A compatible familyA is in particular a Σ-piecewise E-valued power series.

Indeed, if ω : σ
τ−→ σ̃, then Aω(0) = 1E and therefore

(4.3) Aω − 1E ∈ τ⊥E [[τ⊥]] ⊂ τ⊥E [[V ]].

Hence,

Aσ −Aσ̃ = (Aω − 1E)Aσ̃ ∈ τ⊥E [[V ]].

If Σ is simplicial, we can therefore consider δΣA and the canonical derivative

DΣA. Since δΣ is S-linear, we have DΣA = DΣAσ→σ0 for any σ0 ∈ Σ0.

Important examples of scalar-valued compatible families, i.e. with E = C,

are given by Aσ = expXσ, σ ∈ Σ0, for Σ-piecewise linear forms X ∈ P1⊗C. In

particular, suppose that Σ = Σ(P ) for a polytope P ⊂ V . Then AP = expHP

is a scalar-valued compatible family with respect to Σ. If P is simple, then by

Brion’s formula (1.1) the push-forward δΣAP is the Taylor series of

λ 7→
∫
P
e〈λ,v〉 dv,

where the measure on P is obtained from the measure on µ⊥ by translation.

In particular, DΣ(P )AP = volP .

We now turn to the task of expressing DΣA in terms of first-order deriva-

tives of the power series Aσ1→σ2 . If C ∈ Σ and λ ∈ V(C), then for any σ0 ∈ Σ0

the derivative [DλAσ→σ0 ] (0) is independent of the choice of a chamber σ ∈ Σ0

containing C. We will write this derivative as [DλAC→σ0 ] (0).

The following proposition generalizes the inductive formula (1.4) for the

computation of volumes of polytopes. Note that if A is a compatible family

with respect to Σ and C ∈ Σ, then A⊃C is a compatible family with respect to

Σ⊃C .

Proposition 4.2. Suppose that Σ is a simplicial fan with core µ and A
is a compatible family with respect to Σ. For any ray ρ ∈ Σd−1 fix a vector

λρ ∈ relint ρ. This choice identifies µ⊥/ρ⊥ with R and determines a Haar

measure on ρ⊥ such that the induced quotient measure on µ⊥/ρ⊥ is the standard

Lebesgue measure on R. Using these measures to normalize DΣ⊃ρ , we have

DΣA =
1

d

∑
ρ∈Σd−1

DΣ⊃ρ(A⊃ρ)
î
DλρAρ→σ0

ó
(0)

for any σ0 ∈ Σ0.

Proof. For a Σ-strongly regular element λ ∈ V ∗/µ we can write

DΣA =
1

d!

∑
σ∈Σ0

Dd
λAσ→σ0
θσ(λ)

(0).
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Note that the numerator is well defined since Aσ→σ0 ∈ E [[µ⊥]]. For any

ray ρ ∈ Σd−1 fix an auxiliary chamber σρ ∈ Σ0 containing ρ. Writing λ =∑
ρ∈R(σ) prσ;ρ λ and Aσ→σ0 = Aσ→σρAσρ→σ0 we get

1

d!

∑
σ∈Σ0

Dd−1
λ

∑
ρ∈R(σ)Dprσ;ρ(λ)(Aσ→σρAσρ→σ0)

θσ(λ)
(0).

Note that

prσ;ρ(λ) =
θσ(λ)

θ⊃ρσ⊃ρ(λ)
λρ,

where we write θ⊃ρσ⊃ρ = θΣ⊃ρ
σ⊃ρ . We obtain

1

d!

∑
σ∈Σ0

∑
ρ∈R(σ)

Dd−1
λ Dλρ(Aσ→σρAσρ→σ0)

θ⊃ρσ⊃ρ(λ)
(0).

Since Aσ→σρ ∈ E [[ρ⊥]], this equals

1

d!

∑
σ∈Σ0

∑
ρ∈R(σ)

Dd−1
λ (Aσ→σρDλρAσρ→σ0)

θ⊃ρσ⊃ρ(λ)
(0),

which we can rewrite as the sum over ρ ∈ Σd−1 of

1

d!

∑
σ∈Σ⊃ρ0

Dd−1
λ (A⊃ρ

σ→σ⊃ρρ
DλρAσρ→σ0)

θ⊃ρσ (λ)
(0).

Applying the Leibniz rule we get

1

d!

∑
ρ∈Σd−1

d−1∑
i=0

Ç
d− 1

i

å ∑
σ∈Σ⊃ρ0

[Dd−1−i
λ A⊃ρ

σ→σ⊃ρρ
](0)

θ⊃ρσ (λ)
[Di

λDλρAσρ→σ0 ](0).

By (3.2) (applied to Σ⊃ρ), only i = 0 contributes and we obtain

DΣA =
1

d

∑
ρ∈Σd−1

[δΣ⊃ρA⊃ρσ→σ⊃ρρ ](0)
î
DλρAσρ→σ0

ó
(0)

=
1

d

∑
ρ∈Σd−1

DΣ⊃ρA⊃ρ
î
DλρAρ→σ0

ó
(0)

as required. �

A selector s of a fan Σ is a map Σ→ Σ0 with s(C) ⊃ C for all C ∈ Σ. One

way to specify s is as follows: fix a Σ-strongly regular λ0 ∈ V ∗ and define sλ0
by the property that sλ0(C) is the unique chamber σ ∈ Σ0 containing C such

that σ ∩ (λ0 + V(C)) 6= ∅.
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A flag f of Σ is a chain ρ0 ⊃ ρ1 ⊃ · · · ⊃ ρd with ρi ∈ Σi. In particular,

ρd = µ(Σ). We denote by G = G(Σ) the set of flags of Σ. For any flag f we set

∂fA = ∂sfA =
1

d!

î
Dλρ0

Aρ0→s(ρ1)

ó
(0) . . .

î
Dλρd−1

Aρd−1→s(ρd)

ó
(0)

β∗(λρ0 ∧ · · · ∧ λρd−1
)

with auxiliary vectors λρi ∈ relint ρi. Note that since Aρi−1→s(ρi) ∈ E [[ρ⊥i ]],

the directional derivative [Dλρi−1
Aρi−1→s(ρi)](0) depends only on the image of

λρi−1 in the one-dimensional space V(ρi−1)/V(ρi). For a different choice of the

vectors λρi these images clearly change by positive factors, and therefore the

entire expression ∂sfA is independent of the choice of the λρi ’s. However, it

depends on the choice of s.

By applying Proposition 4.2 inductively we infer the following formula for

DΣA which generalizes (1.5) (in the case where u(F ) is a vertex of F ).

Corollary 4.3. For any compatible family A with respect to a simplicial

fan Σ and any choice of a selector s : Σ→ Σ0 we have

DΣA =
∑

f∈G(Σ)

∂sfA.

5. The second formula

Let Σ be a fan. We say that a d-tuple of cones C = (C1, . . . , Cd) is transver-

sal if the sum
∑d
i=1 C⊥i is direct. Suppose that τ = (τ1, . . . , τd) ∈ Σd

1 is a

transversal d-tuple of walls of Σ. For each i = 1, . . . , d choose a directed wall

ωi : σi
τi−→ σ̃i and a directed normal vi for ωi; by assumption v1, . . . , vd are

linearly independent. Let A be a compatible family with respect to Σ. Using

(4.3) we may set

∆τA =
1

d!
β(v1 ∧ · · · ∧ vd)

Aω1 − 1E
v1

(0) · · · Aωd − 1E
vd

(0) ∈ E .

Note that ∆τA depends only on τ and not on the choice of the ωi’s or the vi’s.

For later use it will be convenient to rewrite this definition as

∆τA =
1

d!

β(v1 ∧ · · · ∧ vd)
〈λ1, v1〉 . . . 〈λd, vd〉

Dλ1Aω1(0) · · ·DλdAωd(0),

where λi ∈ V ∗ are arbitrary subject to 〈λi, vi〉 6= 0 for all i.

Given a fan Σ in a vector space U and a linear surjective map p : U → U ′,

the quotient fan in U ′ is defined as the common refinement of the collection

of cones p(σ), σ ∈ Σ (cf. [KSZ91], [BS94]). In the case where U = V ∗ and

Σ = Σ(P ) for some polytope P ⊂ V , the quotient fan is the normal fan of the

fiber polytope of P , in the sense of Billera-Sturmfels ([BS92]), with respect to

the projection V → V/(Ker p)⊥ = (Ker p)∗ ([KSZ91, Prop. 2.3]).

Consider V ∗ embedded diagonally in (V ∗)d and let p : (V ∗)d → (V ∗)d/V ∗

be the canonical projection. We identify the set Σd of d-tuples of faces of
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Σ with a fan in (V ∗)d where the face corresponding to C = (C1, . . . , Cd) is

π(C) = C1 × · · · × Cd. Note that

(5.1)

the faces of a cone p(π(C)) are of the form p(π(C′)) for C′i ⊂ Ci, i = 1, . . . , d.

Denote by Σ♣ the quotient fan of Σd under p, i.e. the common refinement

of the cones p(π(C)), C ∈ Σd. It is a fan in the vector space (V ∗)d/V ∗. An

equivalent way to describe this fan is obtained by noting that λ = (λ1, . . . , λd)

(mod V ∗) ∈ p(π(C)) if and only if ∩di=1(Ci − λi) 6= ∅. This means that the

partition of (V ∗)d/V ∗ obtained from Σ♣ is given by the fibers of the map

attaching to any λ ∈ (V ∗)d/V ∗ the set {C ∈ Σd : ∩di=1(Ci − λi) 6= ∅}.
We have

codim p(π(C)) =
d∑
i=1

codim Ci − dim
d∑
i=1

C⊥i =
d∑
i=1

dim C⊥i − dim
d∑
i=1

C⊥i .

Therefore, the chambers of Σ♣ are obtained from the cones p(π(C)) for transver-

sal C by forming minimal intersections not contained in any linear subspace.

Analogously, the walls of Σ♣ are obtained from the d-tuples C ∈ Σd such that

dim
∑d
i=1 C⊥i =

∑d
i=1 dim C⊥i − 1 by forming minimal intersections which span

a hyperplane.

For any σ ∈ Σ♣0 set

Xσ = {τ ∈ Σd
1 transversal : p(π(τ)) ⊃ σ}.

Equivalently, for any λ ∈ relintσ we can write

Xσ = {τ ∈ Σd
1 transversal : ∩di=1(τi − λi) 6= ∅}.

Moreover, if τ ∈ Xσ, then ∩di=1(τi − λi) is a translate of µ. Also,

(5.2)

if τ ∈ Σd
1 is transversal, then p induces an isomorphism of vector spaces

between V(π(τ))/µd and (V ∗)d/(V ∗ + µd).

Theorem 5.1. Let A be a compatible family with respect to a simplicial

fan Σ. Then for any choice of σ ∈ Σ♣0 we have

(5.3) DΣA =
∑
τ∈Xσ

∆τA.

Remark 5.2. In the case where Σ = Σ(P ) for a polytope P ⊂ V and

A = expHP , (5.3) reduces to the expression (1.6) for the volume of P (for

P1 = · · · = Pd = P ).

Denote the right-hand side of (5.3) by RσA. We first show the following.

Lemma 5.3. RσA is independent of σ ∈ Σ♣0 .
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Proof. Suppose that σ̃
Ω−→ σ̂ with σ̃, σ̂ ∈ Σ♣0 and a wall Ω of Σ♣. We will

show that Rσ̃A = Rσ̂A. Consider C = ∪di=1C
i, where

Ci = {ν = (ν1, . . . , νd) ∈ Σd : νi ∈ Σ2, νj ∈ Σ1 for all j 6= i,

dim
∑
j 6=i

ν⊥j = d− 1,
∑
j

ν⊥j = µ⊥ and Ω ⊂ p(π(ν))}.

For any ν ∈ C set

D(ν) = {τ ∈ Σd
1 transversal : τj ⊃ νj for all j}

and define

D = ∪ν∈CD(ν) = {τ ∈ Σd
1 transversal : Ω lies on a proper face of p(π(τ))}.

Here the second equality follows from (5.1). We first claim that

Xσ̃ \D = Xσ̂ \D.(5.4)

The sets D(ν), ν ∈ C, are disjoint.(5.5)

D is the disjoint union of Xσ̃ ∩D and Xσ̂ ∩D.(5.6)

Suppose that τ is transversal. To prove (5.4), we will show that τ ∈
Xσ̃ ∪ Xσ̂ \D implies τ ∈ Xσ̃ ∩ Xσ̂. Indeed, if τ ∈ Xσ̃ ∪ Xσ̂, then p(π(τ)) ⊃ Ω.

Moreover, if also τ /∈ D, then relint Ω ⊂ relint p(π(τ)). On the other hand,

since τ is transversal, p(π(τ)) is a union of chambers of Σ♣. Therefore we have

σ̃, σ̂ ⊂ p(π(τ)) as well. Hence, τ ∈ Xσ̃ ∩ Xσ̂. This proves (5.4).

To prove (5.5), assume on the contrary that τ ∈ D(ν(1))∩D(ν(2)) with dis-

tinct ν(1), ν(2) ∈ C. Then Ω ⊂ p(π(ν(1)))∩p(π(ν(2))) and since π(ν(1)), π(ν(2)) ⊂
π(τ) we get from (5.2) that Ω ⊂ p(π(ν̃)) for ν̃j = ν

(1)
j ∩ ν(2)

j . However,

codim p(π(ν̃)) ≥ 2, which is a contradiction.

Finally, suppose that τ ∈ D. Then (2.1) implies that

p(π(τ)) ∩ relint(σ̃ ∪ σ̂) 6= ∅.

But relint(σ̃ ∪ σ̂) is open in (V ∗)d/V ∗, and therefore also relint p(π(τ)) ∩
relint(σ̃ ∪ σ̂) 6= ∅. However, relint p(π(τ)) ∩ Ω = ∅ because Ω is assumed to lie

on a proper face of p(π(τ)). Hence, relint p(π(τ)) intersects relint σ̃ or relint σ̂.

It follows that p(π(τ)), being a union of chambers of Σ♣, necessarily contains

σ̃ or σ̂, or equivalently that τ ∈ Xσ̃ ∪ Xσ̂. On the other hand, p(π(τ)) cannot

contain both σ̃ and σ̂, since otherwise relint p(π(τ)) ⊃ relint(σ̃ ∪ σ̂) ⊃ relint Ω.

Hence, Xσ̃ ∩ Xσ̂ ∩D = ∅ and we obtain (5.6).

In order to prove the lemma it remains to show that

(5.7)
∑

τ∈Xσ̃∩D(ν)

∆τA =
∑

τ∈Xσ̂∩D(ν)

∆τA

for all ν ∈ C. For this fix 1 ≤ i ≤ d and ν ∈ Ci and consider λ̃ ∈ relint σ̃

and λ̂ ∈ relint σ̂. The image of the intersection Ĩ = ∩j 6=i(νj − λ̃j) in V ∗/µ is
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either a ray or an interval. Also, Ĩ + λ̃i does not intersect any face of Σ of

codimension ≥ 2 since λ̃ is Σ♣-regular. Choose a direction δ ∈ ∩j 6=iV(νj)\µ
for Ĩ and let σ̃1, . . . , σ̃k be the chambers of Σ intersecting Ĩ+ λ̃i, enumerated in

the order of intersection with respect to δ. Thus, σ̃n and σ̃n+1 are adjacent for

n = 1, . . . , k − 1, the walls τ̃ intersecting Ĩ + λ̃i are precisely the intersections

σ̃n+1 ∩ σ̃n, and 〈δ, wn〉 > 0 for a directed normal wn for σ̃n+1 → σ̃n.

Note that Ĩ + λ̃i intersects a chamber containing νi. In fact, C(νi) :=

∪σ∈Σ0:σ⊃νiσ is a convex cone in V ∗ with relint νi ⊂ relint C(νi). Since Ω ⊂
p(π(ν)), we have

relint Ω ⊂ p(relint ν1 × · · · × relint νd)

⊂ p(relint ν1 × · · · × relint C(νi)× · · · × relint νd)

⊂ relint p(ν1 × · · · × C(νi)× · · · × νd).

Since p(ν1 × · · · × C(νi) × · · · × νd) is a union of chambers of Σ♣, it therefore

has to contain σ̃, which means that σ̃ is contained in p(ν1× · · · × σ× · · · × νd)
for some chamber σ ⊃ νi. This is in turn equivalent to (Ĩ + λ̃i) ∩ σ 6= ∅.

If now ñ1 (resp. ñ2) is the first (resp. last) index n with σn ⊃ νi, then

Xσ̃ ∩D(ν) = {(ν1, . . . , νi−1, σ̃n+1 ∩ σ̃n, νi+1, . . . , νd) transversal : ñ1 ≤ n < ñ2}.

For j 6= i let ωj be a directed wall with underlying wall νj , vj a directed

normal for ωj and ξj ∈ V ∗ with 〈ξj , vj〉 = 1. Then there exists a unique

positive multiple ξ of δ with

|〈ξ, v〉| = β(v1 ∧ · · · ∧ vi−1 ∧ v ∧ vi+1 ∧ · · · ∧ vd), v ∈ V.

We therefore have

∆τA =
1

d!
Dξ1Aω1(0)

· · ·Dξi−1
Aωi−1(0)DξAσ̃n+1→σ̃n(0)Dξi+1

Aωi+1(0) · · ·DξdAωd(0)

for τ = (ν1, . . . , νi−1, σ̃n+1 ∩ σ̃n, νi+1, . . . , νd) transversal, ñ1 ≤ n < ñ2. By the

Leibniz rule we can sum this to∑
τ∈Xσ̃∩D(ν)

∆τA =
1

d!
Dξ1Aω1(0)

· · ·Dξi−1
Aωi−1(0)DξAσ̃ñ2→σ̃ñ1 (0)Dξi+1

Aωi+1(0) · · ·DξdAωd(0).

We define Î, σ̂1, . . . , σ̂l and n̂1, n̂2 analogously with respect to σ̂ and λ̂ and

obtain similarly∑
τ∈Xσ̂∩D(ν)

∆τA =
1

d!
Dξ1Aω1(0)

· · ·Dξi−1
Aωi−1(0)DξAσ̂n̂2→σ̂n̂1 (0)Dξi+1

Aωi+1(0) · · ·DξdAωd(0).
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Consider the chambers of Σ containing νi, which correspond to the cham-

bers of the two-dimensional restricted fan Σ⊃νi . Among them are the chambers

σ̃n, ñ1 ≤ n ≤ ñ2, and σ̂n, n̂1 ≤ n ≤ n̂2, intersecting Ĩ + λ̃i and Î + λ̂i, respec-

tively. Note that the images of Ĩ+ λ̃i and Î+ λ̂i in the plane V ∗/V(νi) are two

parallel segments lying on different sides of the line ∩j 6=iV(νj) (mod V(νi)).

By (5.6), any wall τi ⊃ νi for which (ν1, . . . , νi−1, τi, νi+1, . . . , νd) is transver-

sal intersects either Ĩ + λ̃i or Î + λ̂i. It follows that every chamber of Σ

containing νi intersects Ĩ + λ̃i or Î + λ̂i, and that moreover σ̃ñ1 and σ̂n̂1 are

either equal or adjacent along a wall τ such that τ⊥ ⊂ ∑
j 6=i ν

⊥
j , and simi-

larly for σ̃ñ2 and σ̂n̂2 . We infer that DξAσ̂n̂1→σ̂ñ1 (0) = DξAσ̃ñ2→σ̂n̂2 (0) = 0

and hence DξAσ̃ñ2→σ̃ñ1 (0) = DξAσ̂n̂2→σ̂n̂1 (0), which implies (5.7). The lemma

follows. �

Proof of Theorem 5.1. We use induction on d, the case d = 1 being trivial.

Assume that (5.3) is true in dimension d − 1. By Lemma 5.3 it is enough to

prove (5.3) in dimension d for a particular choice of σ, or equivalently for a

particular choice of Σ♣-regular λ ∈ (V ∗)d/V ∗. Fix λ1, . . . , λd−1 in general

position and analyze the limiting case where λd is sufficiently regular (i.e. far

away from all walls) in a fixed chamber σ0 ∈ Σ0. Let σ be the chamber of

Σ♣ containing λ. The sum defining Rλ = Rσ breaks up as follows. For any

ρ ∈ Σd−1 ∪ {µ} let

Zρ =

®
(τ1, . . . , τd−1) ∈ Σd−1

1 : dim
d−1∑
i=1

τ⊥i = d− 1,
d−1⋂
i=1

τi = ρ

´
and set

Yρ =
∑

(τ1,...,τd−1)∈Zρ

X(τ1,...,τd−1)

with

(5.8) X(τ1,...,τd−1) =
∑

τd∈Σ1:∩di=1(τi−λi) 6=∅

∆(τ1,...,τd)A.

Then we can write

RλA = Yµ +
∑

ρ∈Σd−1

Yρ.

First note that Yµ = 0. Indeed, for any (τ1, . . . , τd−1) ∈ Zµ the set I :=

∩d−1
i=1 (τi−λi) is compact modulo µ. Hence, by our condition on λd the translate

I + λd is contained in the interior of σ0, and therefore does not intersect any

wall. So, in this case the sum in (5.8) is empty.

Fix ρ ∈ Σd−1 and (τ1, . . . , τd−1) ∈ Zρ. Also fix linearly independent

directed normals v1, . . . , vd−1 for τ1, . . . , τd−1 and let I be as before. If I is

nonempty, then it is a translate of ρ. Hence the chambers intersecting I + λd
form a sequence σ0, . . . , σk starting at σ0, where σi−1 and σi are adjacent, a
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directed normal wi for σi → σi−1 is positive with respect to ρ, and σk ⊃ ρ.

Therefore, the sum in (5.8) is over the walls σi∩σi−1, i = 1, . . . , k. Fix a vector

ξ ∈ ρ, which is unique modulo µ, such that

|〈ξ, v〉| = β(v1 ∧ · · · ∧ vd−1 ∧ v), v ∈ V.

Then we can write

β(v1 ∧ · · · ∧ vd−1 ∧ wi)
Aσi→σi−1 − 1E

wi
(0) = DξAσi→σi−1(0).

Therefore

X(τ1,...,τd−1) =
1

d!

Aω1 − 1E
v1

(0) · · ·
Aωd−1

− 1E

vd−1
(0)

k∑
i=1

DξAσi→σi−1(0).

Note that
k∑
i=1

DξAσi→σi−1(0) = DξAσk→σ0(0) = DξAρ→σ0(0).

We also remark that for (τ1, . . . , τd−1) ∈ Zρ the condition ∩d−1
i=1 (τi − λi) 6= ∅ is

equivalent to ∩d−1
i=1 (τ⊃ρi − λi) 6= ∅. Therefore,

Yρ =
1

d!

∑
τ1,...,τd−1∈Σ⊃ρ1 :

∩d−1
i=1 (τi−λi)6=∅

β⊃ρ(v1 ∧ · · · ∧ vd−1)
A⊃ρω1

− 1E

v1
(0)

· · ·
A⊃ρωd−1

− 1E

vd−1
(0)
î
DλρAρ→σ0

ó
(0),

where λρ ∈ relint ρ is arbitrary and β⊃ρ is determined by

(5.9)

β(w1∧· · ·∧wd) = β⊃ρ(w1∧· · ·∧wd−1)|〈λρ, wd〉|, w1, . . . , wd−1 ∈ ρ⊥, wd ∈ V.

We can now apply the induction hypothesis and Proposition 4.2 to complete

the proof. �

6. Nonsimplicial fans

We now generalize the results of the previous sections to arbitrary (not

necessarily simplicial) fans by considering simplicial refinements. We say that

a fan ‹Σ is a refinement of a fan Σ if they have the same core and every chamber

of ‹Σ is contained in a (necessarily unique) chamber of Σ. In other words, every

chamber of Σ is a union of chambers of ‹Σ. In this case we write ‹Σ ≺ Σ and

observe that every face of Σi is the union of the faces in ‹Σi contained in it.

It is well known that any fan admits a simplicial refinement. One way to see

this is by barycentric subdivision of the faces, starting with the chambers and

proceeding in order of increasing codimension (cf. [Ewa96, §III.2], for example).
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If ‹Σ ≺ Σ, then any Σ-piecewise polynomial is a ‹Σ-piecewise polynomial

and we therefore obtain a canonical injection κ
Σ;Σ̃

: PΣ → PΣ̃
. Thus, for any

f ∈ PΣ we have (κ
Σ;Σ̃

f)σ′ = fσ whenever σ′ ⊂ σ. If M is any S-module,

then κ
Σ;Σ̃;M

: MΣ → M
Σ̃

is defined by extension of scalars. Likewise, it is

clear that if A is a compatible family with respect to Σ, then κ
Σ;Σ̃;E[[V ]]

(A) is

a compatible family with respect to ‹Σ.

By [Bri97, §2.3] we have the basic compatibility relation

(6.1) δΣ = δ
Σ̃
◦ κ

Σ;Σ̃

if both Σ and ‹Σ are simplicial. Therefore, for any fan Σ we can now define

δΣ := δ
Σ̃
◦ κ

Σ;Σ̃
,

where ‹Σ is an arbitrary simplicial refinement of Σ and (6.1) continues to hold

without any restriction on Σ and ‹Σ. Similarly, we define δM ;Σ : MΣ → M

for any fan Σ and S-module M . We remark that with this definition Brion’s

formula generalizes to arbitrary polytopes P : the push-forward δΣ(P ) expHP

is the Taylor series of λ 7→
∫
P e
〈λ,v〉 dv for any polytope P ([Bri97, Prop. 5.3]).

Suppose that ‹Σ ≺ Σ. For any face C̃ of ‹Σ let ι(C̃) be the smallest face of

Σ containing C̃. Clearly codim ι(C̃) ≤ codim C̃ for all C̃ ∈ ‹Σ and ι is monotonic

with respect to inclusion. Let ‹Σ[ = {C̃ ∈ ‹Σ : codim C̃ = codim ι(C̃)} and let

G[(‹Σ) be the set of flags f̃ : ρ̃0 ⊃ · · · ⊃ ρ̃d = µ such that ρ̃i ∈ ‹Σ[
i for all i.

Given a selector s : Σ → Σ0 we can choose a selector s̃ : ‹Σ → ‹Σ0 such that

C̃ ⊂ s̃(C̃) ⊂ s(ι(C̃)) for any face C̃ of ‹Σ. In this case we write s̃ ≺ s.

Lemma 6.1. Suppose that ‹Σ ≺ Σ and s̃ ≺ s. Then

(1) ‹Σ[ ⊃ ‹Σ0 and µ ∈ ‹Σ[.

(2) Suppose that C̃1 ∈ ‹Σ[
i and let C1 = ι(C̃1). Then for any C2 ∈ Σi−1

containing C1 there exists a unique C̃2 ∈ ‹Σ[
i−1 containing C̃1 such that

ι(C̃2) = C2.

(3) The map

f̃ : ρ̃0 ⊃ · · · ⊃ ρ̃d 7→ ι(̃f) : ι(ρ̃0) ⊃ · · · ⊃ ι(ρ̃d)

defines a bijection between G[(‹Σ) and G(Σ).

(4) If f̃ /∈ G[(‹Σ), then there exists 1 ≤ i ≤ d such that ι(ρ̃i) = ι(ρ̃i−1) and

hence s̃(ρ̃i), s̃(ρ̃i−1) ⊂ s(ι(ρ̃i)).

(5) If A is a compatible family with respect to Σ, then

∂ s̃
f̃
(κ

Σ;Σ̃
A) =

∂
s
ι(̃f)
A if f̃ ∈ G[(‹Σ),

0 otherwise.
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Proof. The first part is clear. By considering ‹Σ⊃C̃1 ≺ Σ⊃C1 , the second

part reduces to the case where C1 = C̃1 is the core. In this case every ray of Σ

is also a ray of ‹Σ.

To prove the third part we construct the inverse map as follows. Given

f : ρ0 ⊃ · · · ⊃ ρd ∈ G(Σ) we define ρ̃i inductively by setting ρ̃d = µ and letting

ρ̃i−1 be the unique face in ‹Σi−1 containing ρ̃i such that ι(ρ̃i−1) = ρi−1.

The fourth part is evident. The last part follows from parts (3) and (4).

�

We can now generalize our previous results.

Proposition 6.2. Proposition 4.2, Corollary 4.3 and Theorem 5.1 hold

for compatible families with respect to arbitrary fans.

Proof. By passing to a simplicial refinement ‹Σ ≺ Σ and considering κ
Σ;Σ̃
A

we infer that Corollary 4.3 holds without restriction on Σ. From this we deduce

that the same is true for Proposition 4.2. Then the proof of Theorem 5.1 shows

that it too holds for any Σ.

Alternatively, one easily sees that the right-hand side of (5.3) is compatible

with refinement. Indeed, if Ã = κ
Σ;Σ̃
A, then (τ̃1, . . . , τ̃d) ∈ X Σ̃

λ contributes only

if τ̃i ∈ ‹Σ[ for all i. (Otherwise the two chambers of ‹Σ which are adjacent along

τ̃i are both contained in the same chamber of Σ.) On the other hand, for

any (τ1, . . . , τd) ∈ XΣ
λ there exists a unique (τ̃1, . . . , τ̃d) ∈ X Σ̃

λ with τ̃i ⊂ τi for

all i. �

7. Generalization to the relative case

In this section we provide a relative setup for Corollary 4.3 and Theo-

rem 5.1. Instead of the push-forward of a compatible family, we consider more

generally the push-forward of its restriction to a subspace of V ∗.

Let U be an arbitrary subspace of V and ] : V → V ] := V/U be the

canonical projection. We extend ] to homomorphisms ] : S = Sym(V )→ S] :=

Sym(V/U) and ] : C[[V ]] → C[[V ]]]. Thus ] corresponds to the restriction of

linear forms (respectively, polynomial functions or power series) from V ∗ to

U⊥ ' (V ])
∗
. If V ′ ⊂ V is a subspace, we denote its image under ] by V ′]. The

image of Sym(V ′) (resp., C[[V ′]]) under ] is Sym(V ′]) (resp., C[[V ′]]]).

The following is standard.

Lemma 7.1. Suppose that Σ is a fan in V ∗. Then

(1) The set of cones Σ] = Σ](U) := {C] := C ∩U⊥ : C ∈ Σ} forms a fan in

the subspace U⊥ of V ∗. We call it the induced fan.

(2) We have µ(Σ]) = µ(Σ)] and µ(Σ])⊥ = (µ(Σ)⊥)
]

inside V ] = V/U .
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(3) The map C 7→ C] is a bijection between

S := {C ∈ Σ : C ∩ U⊥ ) C′ ∩ U⊥ for all C ) C′ ∈ Σ}

and Σ]. The inverse map is given by C̃ 7→ ∩C∈Σ:C⊃C̃C for C̃ ∈ Σ].

(4) For any C ∈ S we have (Σ⊃C)
]

= (Σ])⊃C
]
.

(5) The image of Σ0 under ] contains Σ]
0 (the chambers of Σ]).

For instance, if Σ = Σ(P ) for a polytope P ⊂ V , then Σ] = Σ(P ]) where

P ] is the image of P under ] and for any face F of P , the face F \
]

of Σ(P ])

corresponds to the minimal face of P ] containing the image F ] of F under ].

In particular, S corresponds to the set of preimages of faces of P ].

We have a canonical homomorphism

f 7→ f ] := f |U⊥ , PΣ → PΣ] .

Thus, for any σ ∈ Σ0 such that σ] ∈ Σ]
0 we have f ]

σ]
= (fσ)]. Given an

S]-module M ] and a homomorphism of S-modules M →M ] we get a canonical

map MΣ →M ]
Σ]

which we also denote by m 7→ m]. In particular, applying this

to the restriction map E [[V ]]→ E [[V ]]] we obtain from any Σ-compatible family

A a Σ]-compatible familyA]. Clearly, for any C ∈ S we have (A])⊃C] = (A⊃C)].
Set

m = dimµ(Σ])⊥ = dimU⊥ − dimµ(Σ) ∩ U⊥.

Fix a Haar measure on U⊥/µ] and define β] :
∧m(µ⊥

]
) → R≥0 and β]

∗
:∧m(U⊥/µ])→ R≥0 as in §3. Let τ = (τ1, . . . , τm) ∈ Σm

1 . For each i = 1, . . . ,m

choose a directed wall ωi : σi
τi−→ σ̃i and a directed normal vi for ωi. We

say that τ is relatively transversal if (
∑m
i=1 τ

⊥
i )

]
= (µ⊥)

]
, i.e. if v1, . . . , vm are

linearly independent modulo U . Let A be a compatible family with respect to

Σ. Then
Aωi−1E

vi
∈ E [[τ⊥i ]] for all i and we set

∆]
τA =

1

m!
β](v]1 ∧ · · · ∧ v

]
m)
Aω1 − 1E

v1
(0) · · · Aωm − 1E

vm
(0) ∈ E .

Note that ∆]
τA depends only on τ and not on the choice of the ωi’s or the vi’s.

Consider U⊥ embedded diagonally in (V ∗)m. Let p] : (V ∗)m → (V ∗)m/U⊥

be the canonical projection. We identify the set Σm of m-tuples of faces of

Σ with a fan in (V ∗)m where the face corresponding to C = (C1, . . . , Cm) is

π(C) = C1×· · ·×Cm. Denote by Σ♠ the quotient fan in (V ∗)m/U⊥. Note that

λ = (λ1, . . . , λm) (mod V ∗) ∈ p](π(C)) if and only if ∩mi=1(Ci − λi) ∩ U⊥ 6= ∅.
The partition of (V ∗)m/U⊥ obtained from Σ♠ is given by the fibers of the map

sending λ ∈ (V ∗)m/U⊥ to the set {C ∈ Σm : ∩mi=1(Ci − λi) ∩ U⊥ 6= ∅}. For

σ ∈ Σ♠0 set

X ]σ = {τ ∈ Σm
1 relatively transversal : p](π(τ)) ⊃ σ}.
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Equivalently, if λ ∈ relintσ, then

X ]σ = {τ ∈ Σm
1 relatively transversal : ∩mi=1(Ci − λi) ∩ U⊥ 6= ∅}.

Note that if τ ∈ X ]σ, then ∩mi=1(τi − λi) ∩ U⊥ is a translate of µ].

Theorem 7.2. Let A be a compatible family with respect to a fan Σ and

U ⊂ V a subspace. Then for any σ ∈ Σ♠0 we have

(7.1) DΣ]A] =
∑
τ∈X ]σ

∆]
τA.

Proof. The proof is very similar to the proof of Theorem 5.1. Denote

the right-hand side of (7.1) by RσA. We first observe that the analogue of

Lemma 5.3 applies, namely that RσA is independent of σ ∈ Σ♠0 . Since the

proof of this fact is exactly the same as before, we omit it.

We can now prove the theorem by induction on m, starting with the trivial

case m = 0. Assume that (7.1) is true in dimension m−1. It is enough to prove

(7.1) in dimension m for a particular choice of σ ∈ Σ♠0 . Let σ be the unique

chamber of Σ♠ containing λ ∈ (V ∗)m/U⊥, where λ1, . . . , λm−1 ∈ V ∗ are fixed

in general position and λm is sufficiently regular (i.e. far away from all walls) in

a fixed chamber σ0 of Σ. Given τ1, . . . , τm−1 ∈ Σ1 such that directed normals

v1, . . . , vm−1 are linearly independent modulo U and I=∩m−1
i=1 (τi−λi)∩U⊥ 6=∅,

we have to sum over all τm ∈ Σ1 which intersect I + λm. Only τ1, . . . , τm−1

such that ∩m−1
i=1 τ

]
i ∈ Σ]

m−1 contribute. Otherwise, ∩m−1
i=1 τ

]
i = µ] and therefore

I is compact modulo µ]. By our condition on λm, I + λm is contained in the

interior of σ0, and hence does not intersect any wall.

We can therefore suppose that ∩m−1
i=1 τ

]
i = ρ] ∈ Σ]

m−1 for ρ ∈ S. If I is

nonempty, it is a translate of ρ] and hence the chambers intersecting I + λm
form a sequence σ0, . . . , σk starting at σ0 where σi−1 and σi are adjacent, a

directed normal for σi → σi−1 is positive with respect to ρ], and σk ⊃ ρ]. Since

ρ ∈ S, we get σk ⊃ ρ. Therefore the τm’s which contribute are the precisely

the walls σi ∩ σi−1, i = 1, . . . , k, and their total contribution is

1

m!

Aω1 − 1E
v1

(0) · · ·
Aωm−1 − 1E

vm−1
(0)

k∑
i=1

DξAσi→σi−1(0),

where ξ ∈ ρ] is given by |〈ξ, v〉| = β](v]1 ∧ · · · ∧ v
]
m−1 ∧ v]), v ∈ V . Note that

k∑
i=1

DξAσi→σi−1(0) = DξAσk→σ0(0) = DξAρ→σ0(0)

since ξ ∈ ρ] ⊂ ρ. We also remark that given τ1, . . . , τm−1 with ∩m−1
i=1 τ

]
i = ρ] we

have ∩m−1
i=1 τi ⊃ ρ. Therefore the condition ∩m−1

i=1 (τi−λi)∩U⊥ 6= ∅ is equivalent
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to ∩m−1
i=1 (τ⊃ρi − λi) ∩U⊥ 6= ∅. All in all, RλA = RσA is equal to the sum over

ρ] ∈ Σ]
m−1 of

1

m!

∑
τ1,...,τm−1∈Σ⊃ρ1 :

∩m−1
i=1 (τi−λi)∩U⊥ 6=∅

(β])⊃ρ
]
(v]1 ∧ · · · ∧ v

]
m−1)

A⊃ρω1
− 1E

v1
(0)

· · ·
A⊃ρωm−1

− 1E

vm−1
(0)Dλ

ρ]
Aρ→σ0(0),

where λρ] ∈ relint ρ] is arbitrary and (β])⊃ρ
]

is obtained from λρ] as in (5.9)

above. On the other hand, take σ0 ∈ Σ0 such that σ]0 ∈ Σ]
0. Then Proposi-

tion 4.2 applied to A] yields

(7.2) DΣ]A] =
1

m

∑
ρ]∈Σ]m−1

D
(Σ])⊃ρ]

(
(A])⊃ρ]

) î
Dλ

ρ]
A]
ρ]→σ]0

ó
(0)

=
1

m

∑
ρ]∈Σ]m−1

D(Σ⊃ρ)](A
⊃ρ)

]
î
Dλ

ρ]
Aρ→σ0

ó
(0).

Comparing with the above we deduce the induction step. �

Remark 7.3. The proof also shows that the relation (7.2) holds for any

σ0 ∈ Σ0 (regardless of whether or not σ]0 ∈ Σ]
0).

Note that if C] ∈ Σ] and λ ∈ V(C]), then for any σ0 ∈ Σ0, [DλAσ→σ0 ] (0)

does not depend on σ ∈ Σ0 with σ ⊃ C]. We denote this derivative by[
DλAC]→σ0

]
(0).

Fix a selector s] : Σ] → Σ0 such that s](C]) ⊃ C] for all C] ∈ Σ]. For any

flag f] : ρ]0 ⊃ · · · ⊃ ρ]m of Σ] define

∂f]A = ∂s
]

f]A =
1

m!

î
Dλ

ρ
]
0

A
ρ]0→s](ρ]1)

ó
(0) . . .

î
Dλ

ρ
]
m−1

A
ρ]m−1→s](ρ]m)

ó
(0)

β]
∗
(λ
ρ]0
∧ · · · ∧ λ

ρ]m−1
)

with auxiliary vectors λ
ρ]i
∈ relint ρ]i . Note that since A

ρ]i−1→s](ρ]i)
∈ E [[(ρ]i)

⊥]]

for all i, ∂s
]

f]
A is independent of the choice of the λ

ρ]i
’s. However, it depends

on the choice of s].

Using (7.2) and the remark above we obtain by induction on m the fol-

lowing.

Theorem 7.4. For any Σ-compatible family A, any subspace U ⊂ V and

any choice of selector s] : Σ] → Σ0 as above we have

DΣ]A] =
∑

f]∈G(Σ])

∂s
]

f]A.
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8. Hyperplane arrangements

An important class of fans is obtained by hyperplane arrangements. We

will now specialize Theorems 5.1 and 7.2 to this situation. Suppose that H is

a finite set of hyperplanes in V ∗. Each hyperplane H ∈ H defines two closed

half-spaces H± in V ∗ with H+ ∩H− = H. For any f ∈ ∏H∈H{H+, H−, H} we

can form the intersection ∩H∈Hf(H), which is a cone in V ∗. These cones (for

all possible choices of f) form a fan Σ = Σ(H) in V ∗ with µ(Σ) = ∩H. The

chambers of Σ are the closures of the connected components of V ∗ \ ∪H. For

any H ∈ H we have H = ∪{τ ∈ Σ1 : τ ⊂ H}. We remark that Σ(H) is the

normal fan of any zonotope which is the Minkowski sum of arbitrary intervals

in H⊥ for each H ∈ H (cf. [Zie95, Ch. 7]).

In the case Σ = Σ(H) we may rewrite Theorem 5.1 (or more precisely, its

generalization provided by Proposition 6.2) as follows. Denote by B = B(H)

the set of d-tuples H = (H1, . . . ,Hd) of hyperplanes in H such that ∩di=1Hi = µ.

For any H ∈ B let

Ξ(H) = {τ ∈ Σd
1 : τi ⊂ Hi, i = 1, . . . , d}.

Then we have

(V ∗)d/V ∗ = p(H1 × · · · ×Hd) =
⋃

τ∈Ξ(H)

p(τ).

Thus for any λ ∈ (V ∗)d/V ∗ and H ∈ B there exists τ ∈ Ξ(H) such that

λ ∈ p(τ). Moreover, if λ is Σ♣-regular, then this d-tuple τ ∈ Ξ(H) is uniquely

determined for all H ∈ B, and we may denote it by τλ(H). We get

Theorem 8.1. Let A be a compatible family with respect to Σ(H). Then

for any choice of Σ♣-regular λ we have

DΣ(H)A =
∑

H∈B(H)

∆τλ(H)A.

Suppose that U =
∑
H∈S H

⊥ for some subset S ⊂ H and let m = d −
dimU . Let ] : V → V/U be the canonical projection as in the previous

section. Let H] be the hyperplane arrangement {H] = H ∩ U⊥ : H 6⊃ U⊥} in

U⊥. Then Σ] = Σ(H]). Let

B] = {H = (H1, . . . ,Hm) : Hi ∈ H, Hi 6⊃ U⊥, (H]
1, . . . ,H

]
m) ∈ B(H])}

= {H = (H1, . . . ,Hm) : Hi ∈ H, Hi 6⊃ U⊥,
m⋂
i=1

Hi ∩ U⊥ = µ}

and for any H ∈ B] let

Ξ(H) = {τ ∈ Σm
1 : τi ⊂ Hi, i = 1, . . . ,m}.
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As before, for any λ ∈ (V ∗)m/U⊥ and H ∈ B] there exists τ ∈ Ξ(H) such that

λ ∈ p](τ). Moreover, if λ is Σ♠-regular, this m-tuple τ ∈ Ξ(H) is unique and

we denote it by τ ]λ(H). Theorem 7.2 becomes

Theorem 8.2. For any Σ(H)-compatible family A, any subspace of V of

the form U =
∑
H∈S H

⊥ for some S ⊂ H and any Σ♠-regular λ we have

(8.1) DΣ](H)A] =
∑

H∈B](H)

∆]

τ ]
λ

(H)
A.

Remark 8.3. The condition of Σ♠-regularity can be explicitly described

as follows. By a minimal dependency in H modulo U we mean a linear relation

of the form

v1 + · · ·+ vk ∈ U, k ≥ 1,

where v1, . . . , vk ∈ ∪H∈HH⊥ and any proper subsequence of (v1, . . . , vk) is lin-

early independent modulo U . Clearly, up to scaling there are only finitely

many minimal dependencies. (In the language of matroids, the minimal de-

pendencies correspond to the circuits in the matroid associated with H], where

the latter is regarded as a multiset.) Then λ ∈ (V ∗)m/U⊥ is Σ♠-regular if and

only if for any minimal dependency v := v1 + · · ·+ vk ∈ U we have

(1)
∑k
i=1

¨
λπ(i), vi

∂
6= 0 for any nonconstant function π : {1, . . . , k} →

{1, . . . ,m}, and,

(2) if v 6= 0, then 〈λj , v〉 6= 0 for j = 1, . . . ,m.
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