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On the spectral side of Arthur’s trace
formula — absolute convergence

By Tobias Finis, Erez Lapid, and Werner Müller

Abstract

We derive a refinement of the spectral expansion of Arthur’s trace for-

mula. The expression is absolutely convergent with respect to the trace

norm.
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1. Introduction

The trace formula is an important tool for the study of automorphic forms

on arithmetic quotients. It was introduced by Selberg, who mostly considered

the case of quotients of the upper half-plane ([Sel56]), and later developed by

Arthur in his groundbreaking work on the subject, which deals with the adelic

quotients G(F )\G(A) for a general reductive group G defined over a number

field F . (See [Art05] for an excellent survey on the theory.) In essence, the

trace formula is an equality between a sum of geometric distributions which

are certain weighted orbital integrals and a sum of spectral distributions which

are suitably defined weighted traces of representations. For applications, it is

important to have an explicit description of these distributions. In [Art82b]

Arthur derived an expression for the spectral side of the noninvariant trace
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formula in terms of certain limits of intertwining operators. In this paper we

explicate these terms further and write them as linear combinations of products

of first-order derivatives of intertwining operators. The basis for this refinement

is provided by the combinatorial identities for certain piecewise power series

proved in the companion paper [FL]. Applying these identities in the context

of the trace formula we obtain Theorems 1 and 2 below, which are then used

to explicate the spectral side in Corollary 1. We also explicate special cases

of the Maass-Selberg relations in Theorem 4. We emphasize that our formula

relies on Arthur’s original expansion. We do not provide any shortcut for the

derivation of the latter.

A key feature of our refined spectral expansion is its absolute conver-

gence with respect to the trace norm. This relies on previous work by the

third named author and generalizes earlier results in this direction ([Lan90],

[Mül89], [Mül98], [Ji98], [Mül00], [Mül02], [MS04]). Remarkably, Arthur was

able to finesse this difficulty in his work. This is partly because his emphasis

is on comparing trace formulas on two different groups. However, for other

applications of the trace formula the absolute convergence may be indispens-

able. An example is the work of the second and third named authors on Weyl’s

law with remainder for the groups GL(n) [LM09]. (Note that in this case the

absolute convergence had been already obtained in [MS04] by a different argu-

ment, which is special to GL(n).) Another possible application of the refined

spectral expansion is to the problem of limit multiplicities for GL(n), which

we plan to consider in a future paper.

A preliminary announcement of some of the results of this paper and [FL]

was made in [FLM09].1
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2. Combinatorial formulas

2.1. Notation. Let G be a reductive group defined over a number field F .

All algebraic subgroups of G considered in the following will be tacitly assumed

to be defined over F . We will mostly use, with some minor modifications, the

notation and conventions of [Art82a], [Art82b]. In particular:

• A is the ring of adeles of F , Af the ring of finite adeles and F∞ =

R⊗Q F .

• U(gC) is the universal enveloping algebra of the complexified Lie algebra

of G(F∞).

• z is the center of U(gC).

• T0 is a fixed maximal F -split torus.

• M0 is the centralizer of T0, which is a minimal Levi subgroup defined

over F .

• A0 is the identity component of T0(R), which is viewed as a subgroup

of T0(A) via the diagonal embedding of R into F∞.

• L is the set of Levi subgroups containing M0, i.e. the (finite) set of

centralizers of subtori of T0.

• W0 = NG(F )(T0)/M0 is the Weyl group of (G,T0), where NG(F )(H) is

the normalizer of H in G(F ).

• For any s ∈W0 we choose a representative ws ∈ G(F ).

• W0 acts on L by sM = wsMw−1
s .

For M ∈ L we use the following additional notation:

• TM is the split part of the identity component of the center of M .

• W (M) = NG(F )(M)/M , which can be identified with a subgroup of

W0.

• AM = A0 ∩ TM (R).

• a∗M is the R-vector space spanned by the lattice X∗(M) of F -rational

characters of M ; a∗M,C = a∗M ⊗R C.

• aM is the dual space of a∗M , which is spanned by the co-characters of

TM .

• HM : M(A) → aM is the homomorphism given by e〈χ,HM (m)〉 =

|χ(m)|A =
∏
v |χ(mv)|v for any χ ∈ X∗(M).

• M(A)1 ⊂M(A) is the kernel of HM .

• L(M) is the set of Levi subgroups containing M .

• P(M) is the set of parabolic subgroups of G with Levi part M .

• F(M) = FG(M) =
∐
L∈L(M) P(L) is the (finite) set of parabolic sub-

groups of G containing M .

• W (M) acts on P(M) and F(M) by sP = wsPw
−1
s .

• ΣM is the set of reduced roots of TM on the Lie algebra of G.

• For any α ∈ ΣM we denote by α∨ ∈ aM the corresponding co-root.
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• L2
disc(AMM(F )\M(A)) is the discrete part of L2(AMM(F )\M(A)),

i.e. the closure of the sum of all irreducible subrepresentations of the

regular representation of M(A).

• Πdisc(M(A)) denotes the countable set of equivalence classes of irre-

ducible unitary representations of M(A) which occur in the decompo-

sition of L2
disc(AMM(F )\M(A)) into irreducibles.

For any L ∈ L(M) we identify a∗L with a subspace of a∗M . We denote by aLM
the annihilator of a∗L in aM . For any integer i ≥ 0 let

Li(M) = {L ∈ L(M) : dim aLM = i}

and

Fi(M) =
⋃

L∈Li(M)

P(L),

so that F(M) =
∐d
i=0Fi(M) where d is the co-rank of M . We endow aM0 with

the structure of a Euclidean space by choosing a W0-invariant inner product.

This choice fixes Haar measures on the spaces aLM and their duals (aLM )∗. We

follow Arthur in the corresponding normalization of Haar measures on the

groups M(A) ([Art78, §1]).

For any P ∈ P(M) we use the following notation:

• aP = aM .

• NP is the unipotent radical of P and MP is the unique L ∈ L(M) (in

fact the unique L ∈ L(M0)) such that P ∈ P(L).

• ΣP ⊂ a∗P is the set of reduced roots of TM on the Lie algebra of NP .

• ∆P is the subset of simple roots of P , which is a basis for (aGP )∗.

• a∗P,+ is the closure of the Weyl chamber of P , i.e.

a∗P,+ = {λ ∈ a∗M :
〈
λ, α∨

〉
≥ 0 for all α ∈ ΣP }

= {λ ∈ a∗M :
〈
λ, α∨

〉
≥ 0 for all α ∈ ∆P }.

• δP is the modulus function of P (A).

• v∆P
is the co-volume of the lattice spanned by ∆P in (aGP )∗ and

θP (λ) = v−1
∆P

∏
α∈∆P

〈
λ, α∨

〉
, λ ∈ a∗M,C.

• P ◦ ∈ P(M) is the parabolic subgroup opposite to P (with respect to

M), i.e. ΣP ◦ = −ΣP and ∆P ◦ = −∆P .

• Ā2(P ) is the Hilbert space completion of

{φ ∈ C∞(M(F )NP (A)\G(A)) : δ
− 1

2
P φ(·x)∈L2

disc(AMM(F )\M(A)) ∀x∈G(A)}

with respect to the inner product

(φ1, φ2) =

∫
AMM(F )NP (A)\G(A)

φ1(g)φ2(g) dg.
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Let α ∈ ΣM . We say that two parabolic subgroups P,Q ∈ P(M) are

adjacent along α, and write P |αQ, if ΣP ∩ΣQ◦ = {α}. Alternatively, P and Q

are adjacent if the closure PQ of PQ belongs to F1(M). Any R ∈ F1(M) is

of the form PQ for a unique unordered pair {P,Q} of parabolic subgroups in

P(M), namely P and Q are the maximal parabolic subgroups of R, and P |αQ
with α∨ ∈ Σ∨P ∩ aRM . Switching the order of P and Q changes α to −α.

2.2. Intertwining operators. Fix a maximal compact subgroupK =K∞Kf

of G(A) = G(F∞)G(Af ) which is admissible with respect to M0. For any

P ∈ P(M) let

• HP : G(A) → aP be the extension of HM to a left NP (A)- and right

K-invariant map;

• A2(P ) the dense subspace of Ā2(P ) consisting of its K- and z-finite

vectors, i.e. the space of automorphic forms φ on NP (A)M(F )\G(A)

such that for all k ∈ K the function δ
− 1

2
P φ(·k) is a square-integrable

automorphic form on AMM(F )\M(A);

• ρ(P, λ), λ ∈ a∗M,C, the induced representation of G(A) on Ā2(P ) given

by

(ρ(P, λ, y)φ)(x) = φ(xy)e〈λ,HP (xy)−HP (x)〉;

it is isomorphic to Ind
G(A)
P (A)

Ä
L2

disc(AMM(F )\M(A))⊗ e〈λ,HM (·)〉
ä
.

For P,Q ∈ P(M) let

MQ|P (λ) : A2(P )→ A2(Q), λ ∈ a∗M,C

be the standard intertwining operator [Art82b, §1], which is the meromorphic

continuation in λ of the integral

[MQ|P (λ)φ](x)

=

∫
NQ(A)∩NP (A)\NQ(A)

φ(nx)e〈λ,HP (nx)−HQ(x)〉 dn, φ ∈ A2(P ), x ∈ G(A).

These operators satisfy the following properties:

(1) MP |P (λ) ≡ Id for all P ∈ P(M) and λ ∈ a∗M,C.

(2) For any P,Q,R ∈ P(M) we have MR|P (λ) = MR|Q(λ) ◦MQ|P (λ) for

all λ ∈ a∗M,C. In particular, MQ|P (λ)−1 = MP |Q(λ).

(3) MQ|P (λ)∗ = MP |Q(−λ) for any P,Q ∈ P(M) and λ ∈ a∗M,C. In partic-

ular, MQ|P (λ) is unitary for λ ∈ ia∗M .

(4) If P |αQ, then MQ|P (λ) depends only on 〈λ, α∨〉.
Arthur’s expression for the spectral side of the trace formula involves

certain limits of these intertwining operators. Let P ∈ P(M) and λ ∈ ia∗M .

For Q ∈ P(M) and Λ ∈ ia∗M define

MQ(P, λ,Λ) = MQ|P (λ)−1MQ|P (λ+ Λ) = MP |Q(λ)MQ|P (λ+ Λ).
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Then (MQ(P, λ, ·))Q∈P(M) is a (G,M)-family with values in the space of op-

erators on A2(P ) [Art82b, p. 1310]. Therefore the limit

MM (P, λ) = lim
Λ→0

∑
Q∈P(M)

MQ(P, λ,Λ)

θQ(Λ)

exists. More generally, for any L ∈ L(M) and Q ∈ P(L) the restriction

MQ(P, λ, ·) of MQ1(P, λ, ·) to ia∗L does not depend on Q1 ∈ P(M) provided

that Q1 ⊂ Q, and the limit

ML(P, λ) = lim
Λ∈ia∗L
Λ→0

∑
Q∈P(L)

MQ(P, λ,Λ)

θQ(Λ)

exists.

2.3. The main formulas. Our main result is an explicit evaluation of the

limitML(P, λ) in terms of first-order derivatives of the intertwining operators

MP1|P2
. To describe our two formulas we need some more notation.

A flag f is an ascending chain Q0 ⊂ · · · ⊂ Qm = G of parabolic sub-

groups of G such that Qi−1 is maximal in Qi for i = 1, . . . ,m (or equivalently

dim aQi = dim aQi−1−1). The length m of the chain is therefore the co-rank of

Q0. We denote by G(L) the set of flags with Q0 ∈ P(L). For any flag f ∈ G(L)

choose for i = 0, . . . ,m − 1 an auxiliary vector µi in the relative interior of

a∗Qi,+ such that the lattice spanned by µ0, . . . , µm−1 has co-volume one in the

vector space (aGQ0
)∗.

Let s : F(M) → P(M) be a map such that s(Q) ⊂ Q for all Q; in

particular s(P ) = P for P ∈ P(M). We call s a selector. For any smooth

function f on a∗M and µ ∈ a∗M denote by Dµf the directional derivative of f

along µ ∈ a∗M . Then the expression

∂sf (P, λ) =
1

m!
Ms(Q0)|P (λ)−1Dµ0Ms(Q0)|s(Q1)(λ) · · ·

DµiMs(Qi)|s(Qi+1)(λ) · · ·Dµm−1Ms(Qm−1)|s(Qm)(λ)Ms(G)|P (λ)

does not depend on the choice of the auxiliary vectors µi (cf. [FL, §§4, 7]),

although it depends in general on the choice of s.

Theorem 1. For M ∈ L, P ∈ P(M), L ∈ L(M) and any selector s :

F(M)→ P(M) we have

ML(P, λ) =
∑

f∈G(L)

∂sf (P, λ).

A consequence of this formula is thatML(P, λ) can be expressed in terms

of first-order derivatives of the operators MP1|P2
for pairs of adjacent parabolic
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subgroups P1 and P2. Indeed, for any Q, Q′ ∈ P(M) there exists a sequence

Q = P0|α1P1 · · ·Pk−1|αkPk = Q′

of adjacent parabolic subgroups starting with Q and ending with Q′. By the

product rule, this implies

(2.1) DµMQ|Q′(λ) =
k∑
j=1

MQ|Pj−1
(λ)DµMPj−1|Pj (λ)MPj |Q′(λ).

We now give a more elegant expression for ML(P, λ) which has the same

feature. Let again m = dim aGL be the co-rank of L in G. Denote by BP,L

the set of m-tuples β = (β∨1 , . . . , β
∨
m) of elements of Σ∨P whose projections to

aL form a basis for aGL , and let vol(β) be the co-volume in aGL of the lattice

spanned by this basis. For any β = (β∨1 , . . . , β
∨
m) ∈ BP,L let

ΞL(β) = {(Q1, . . . , Qm) ∈ F1(M)m : β∨i ∈ aQiM , i = 1, . . . ,m}

= {(P1P ′1, . . . , PmP
′
m) : Pi|βiP ′i , i = 1, . . . ,m}.

For a pair P1|αP2 of adjacent parabolic subgroups in P(M) write

δP1|P2
(λ) = D$MP1|P2

(λ) : A2(P2)→ A2(P1),

where $ ∈ a∗M is such that 〈$,α∨〉 = 1. Equivalently, if MP1|P2
(λ) =

Φ(〈λ, α∨〉) for a meromorphic function Φ of one complex variable, we have

δP1|P2
(λ) = Φ′(〈λ, α∨〉).

For any m-tuple X = (Q1, . . . , Qm) ∈ ΞL(β) with Qi = PiP ′i , Pi|βiP ′i ,
denote by ∆X (P, λ) the expression

vol(β)

m!
MP1|P (λ)−1δP1|P ′1(λ)MP ′1|P2

(λ)

· · · δPm−1|P ′m−1
(λ)MP ′m−1|Pm(λ)δPm|P ′m(λ)MP ′m|P (λ).

We need one further combinatorial ingredient. Let µ = (µ1, . . . , µm) ∈
(a∗M )m. Then for any β = (β1, . . . , βm) ∈ BP,L there exists an m-tuple

(Q1, . . . , Qm) ∈ ΞL(β) and µ ∈ a∗L such that µ−µi ∈ a∗Qi,+ for all i = 1, . . . ,m.

The vector µ ∈ a∗L is in fact uniquely determined by the linear equations

〈µ, β∨i 〉 = 〈µi, β∨i 〉, i = 1, . . . ,m. Moreover, for µ in general position (i.e. away

from a finite set of hyperplanes) the m-tuple (Q1, . . . , Qm) is unique. More

precisely (cf. [FL, Rem. 8.3]), a nontrivial linear dependency modulo aLM

v := c1α
∨
1 + · · ·+ ckα

∨
k ∈ aLM , c1, . . . , ck ∈ Z, α1, . . . , αk ∈ ΣM , k ≥ 1,
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is called minimal if any proper subsequence of (α∨1 , . . . , α
∨
k ) is linearly indepen-

dent modulo aLM .2 The conditions on µ are that for any minimal dependency

as above we have

(1)
∑k
i=1 ci

¨
µπ(i), α

∨
i

∂
6= 0 for any nonconstant function π : {1, . . . , k} →

{1, . . . ,m}, and

(2) if v 6= 0, then 〈µj , v〉 6= 0 for j = 1, . . . ,m.

For such an m-tuple µ we obtain a map XL,µ : BP,L → F1(M)m with

XL,µ(β) ∈ ΞL(β) for all β ∈ BP,L. The second formula for ML(P, λ) is

Theorem 2. Let M ∈ L, P ∈ P(M), L ∈ L(M) and µ ∈ (a∗M )m be in

general position. Then we have

(2.2) ML(P, λ) =
∑

β∈BP,L

∆XL,µ(β)(P, λ).

Remark 1. The theorem is in fact easy to prove for m = 1, where it

reduces to the calculation of a first-order derivative by the product rule (2.1).

In this case, the image of a∗L in a∗M/a
∗
G is a line and the set P(L) consists of

two elements R and R◦. For Q, Q′ ∈ P(M) with Q ⊂ R, Q′ ⊂ R◦ we can

writeML(P, λ) = MP |Q(λ)D|α∨R|$RMQ|Q′(λ)MQ′|P (λ), where αR is the unique

element of ∆R and $R ∈ a∗L is such that 〈$R, α
∨
R〉 = 1. If now

Q = P0|α1P1 · · ·Pk−1|αkPk = Q′

is a sequence of adjacent parabolic subgroups, then we obtain from (2.1) that

ML(P, λ) =
k∑
j=1

MP |Pj−1
(λ)D|α∨R|$RMPj−1|Pj (λ)MPj |P (λ).

Here, only the terms with αj /∈ ΣL
M contribute to the sum, and if P0, . . . , Pk

is a minimal sequence of adjacent parabolic subgroups (a gallery), then each

root α ∈ ΣQ\ΣL
L∩Q appears precisely once. In this case we can rewrite the

result as

ML(P, λ) =
∑

β∈ΣP \ΣLL∩P

∆Q1(β)(P, λ),

where Q1(β) = Pj−1Pj for the unique 1 ≤ j ≤ k with αj = ±β. In Theo-

rem 2 the minimal sequence of parabolic subgroups is obtained by taking the

chambers a∗Pj ,+ intersected by −µ1 + a∗L.

On the other hand, the case m = 2 is already much less evident. In this

case, we can rewrite (2.2) in a more geometric way. Note that the space a∗L/a
∗
G

is two-dimensional and for each root β ∈ ΣL the line 〈λ, β∨〉 = 0 is the union

of two rays a∗Q,+, Q ∈ F1(L). Assume for simplicity that L = M . Suppose

2Of course, the integrality assumption on c1, . . . , ck entails no loss of generality.
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that µ1 − µ2 ∈ a∗P0,+
. We can write a∗M as the union of closed convex cones

a∗P0,+
∪ a∗P ◦0 ,+

∪ C ∪ C′, where no two cones intersect in their interior. We can

then reorder the right-hand side of (2.2) as the sum over all unordered pairs

{β1, β2} of roots in ΣP , where for each such pair we sum ∆X (P, λ) over the

two pairs X = (Q1, Q2) ∈ ΞM (β1, β2) for which the associated rays a∗Qi,+ are

both contained in either C or C′.

Remark 2. There is also an important special case considered already in

[Art82b, §7]. Namely, suppose that the operators MQ|P (λ) act as scalars and

moreover that there exist meromorphic functions φα : C → C, one for each

α ∈ ΣP , such that MP ′|P (λ) = φα(〈λ, α∨〉) for all pairs P |αP ′ adjacent along

α. In this case the expression ∆X (λ) does not depend on X ∈ ΞL(β) and

Theorem 2 reduces to [Art82b, Cor. 7.3].

2.4. Deduction of the main formulas. Before going further, we first verify

that Theorems 1 and 2 are direct consequences of the combinatorial results of

[FL]. We refer to [ibid.] for terminology and facts about polyhedral fans which

will be used below.

For each pair (G,M) of a reductive group G over F and a Levi subgroup

M ∈ L of co-rank d we consider the hyperplane arrangement H = H(G,M) in

a∗M given by the root hyperplanes

Hα = {λ ∈ a∗M :
〈
λ, α∨

〉
= 0}, α ∈ ΣM .

Recall that this gives rise to a polyhedral fan Σ(G,M) whose chambers are the

closures of the connected components of a∗M \ ∪α∈ΣMHα. In fact, P 7→ a∗P,+
defines an order reversing bijection between FG(M) and Σ(G,M). Under this

bijection the set Fi(M) corresponds to the set Σi(G,M) of cones of codimen-

sion i. In particular, the chambers of Σ(G,M) correspond to P(M) and two

chambers a∗P,+ and a∗Q,+ are adjacent if and only if P and Q are adjacent; for

P |αQ the hyperplane Hα is spanned by the wall a∗P,+ ∩ a∗Q,+ = a∗
PQ,+

. The

fan Σ(G,M) is simplicial: for each P ∈ P(M) there are exactly d adjacent

parabolic subgroups, indexed by ∆P . The core of Σ(G,M) is a∗G.

Dually, we can also think of Σ(G,M) as the normal fan of the root zono-

tope Z(G,M) which is by definition the Minkowski sum of the intervals [0, α∨],

α ∈ ΣM . The faces of Z(G,M) correspond to the cones of Σ(G,M), namely

to F(M). For example, when G = GL(n) and M is a maximal torus, the

root zonotope is the well-known permutahedron (cf. [Zie95, pp. 17–18, 200],

[Pos09]).

Changing G and M is reflected by standard operations on the fan Σ(G,M)

or dually on Z(G,M). Namely, for any Q ∈ F(M) with Levi subgroup L the

restricted fan Σ(G,M)⊃a
∗
Q,+ with respect to a∗Q,+ ([FL, §2]) is Σ(L,M). Dually,

Z(L,M) is up to translation the face corresponding to Q in Z(G,M) (viewed
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as a zonotope in its own right). On the other hand, if U = aLM for L ∈ L(M),

then the induced fan Σ(G,M)] on U⊥ = a∗L ([FL, §7]) is Σ(G,L). Once again,

Z(G,L) is the projection of Z(G,M) along U .

In the language of [FL], Arthur’s notion of a (G,M)-family becomes a

Σ(G,M)-piecewise smooth function, i.e. a Σ(G,M)-piecewise element of the

ring of smooth functions on a∗M (considered as a flat module over Sym(aM )).

The push-forward δΣ(G,M) of a (G,M)-family (cP (λ))P∈P(M) (viewed as a

Σ(G,M)-piecewise smooth function) is precisely the function denoted by cM (λ)

on [Art82b, p. 1297]. Moreover, the operations described subsequently in

[loc. cit.] correspond to the restriction of a Σ(G,M)-piecewise smooth function

c to Σ(G,M)⊃a
∗
Q,+ = Σ(MQ,M) and the operation c] with respect to U = aLM .

Recall the notion of a compatible family with respect to a fan [FL, Def. 4.1].

In the case of the fan Σ(G,M), a compatible family is a collection A =

(AP )P∈P(M) of power series AP ∈ E [[aM ]], where E is a finite-dimensional

C-algebra, subject to the conditions AP (0) = 1E for all P ∈ P(M) and

AP1A−1
P2
∈ E [[α∨]] for all pairs P1|αP2 of adjacent parabolic subgroups. Fix

λ ∈ a∗M,C in general position. For each Q ∈ P(M) let AQ be the Taylor ex-

pansion at Λ = 0 of the restriction of the operator MQ(P, λ,Λ) to a fixed

(finite-dimensional) (z,K)-isotypic subspace V of A2(P ). By the functional

equations we obtain a Σ(G,M)-compatible family with values in the algebra

E = End(V ) and

AP1A−1
P2

= MP1|P (λ)−1MP1|P2
(λ+ Λ)MP2|P (λ), P1, P2 ∈ P(M).

Using the dictionary above, Theorems 1 and 2 are then obtained by applying

[FL, Th. 7.4] and [FL, Th. 8.2] respectively to A, Σ(G,M) and U = aLM .

3. A refined spectral expansion

In this section, we apply Theorems 1 and 2 to derive a refinement of

the spectral side of Arthur’s trace formula. Fix an open subgroup K0 of Kf .

The space G(A)/K0 is a discrete union of countably many copies of G(F∞)

and in particular a differentiable manifold. Let C∞(G(A);K0) be the space

of smooth functions on G(A)/K0, viewed as right-K0-invariant functions on

G(A). We consider the topological vector space C(G(A),K0) of all functions

h ∈ C∞(G(A),K0) such that |h ∗X|L1(G(A)) < ∞ for all X ∈ U(gC) with the

topology induced by the seminorms |h ∗X|L1(G(A)). For any h ∈ C(G(A),K0)

the image of the operator ρ(P, λ, h) lies in the smooth and K0-invariant part

of Ā2(P ).

The main technical statement of this paper is the following theorem.
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Theorem 3. Fix K0 ⊂ Kf and let M ∈ L, P ∈ P(M) and L ∈ L(M).

Then for any β ∈ BP,L and X ∈ ΞL(β) the seminorm∫
ia∗L

‖∆X (P, λ)ρ(P, λ, h)‖1 dλ

on C(G(A),K0) is continuous, where ‖·‖1 denotes the trace norm on Ā2(P ).

Similarly, for any selector s : F(M) → P(M) and any flag f ∈ G(L) the

seminorm ∫
ia∗L

‖∂sf (P, λ)ρ(P, λ, h)‖1 dλ

is continuous.

Implicit here is that for almost all λ ∈ ia∗L the operator ∆X (P, λ)ρ(P, λ, h)

extends to a trace class operator on Ā2(P ).

Remark 3. The case P = G essentially amounts to the trace-class conjec-

ture of Selberg which asserts that ρ(G, h) is of trace class. It was settled in

[Mül89] for K-finite test functions and independently in [Mül98] and [Ji98] in

the general case.

Recall that L2
disc(AMM(F )\M(A)) splits as the completed direct sum of

its π-isotypic components for π ∈ Πdisc(M(A)). We have a corresponding

decomposition of Ā2(P ) as a direct sum of Hilbert spaces ⊕̂π∈Πdisc(M(A))Ā2
π(P ).

Similarly, we have the algebraic direct sum decomposition

A2(P ) = ⊕π∈Πdisc(M(A))A2
π(P ),

where A2
π(P ) is the K-finite part of Ā2

π(P ). We further decompose

A2
π(P ) = ⊕

τ∈K̂∞
A2
π(P )τ

according to isotypic subspaces for the action of K∞. Let A2
π(P )K0 be the

subspace of K0-invariant functions in A2
π(P ), and similarly for A2

π(P )K0,τ for

any τ ∈ ‘K∞. The latter space is always finite-dimensional. For any π ∈
Πdisc(M(A)) let λπ denote the Casimir eigenvalue of π∞. Let also λτ be the

Casimir eigenvalue of τ ∈‘K∞.

Theorem 3 will be proved by reducing it to the following statement in the

co-rank one situation.

Proposition 1. Let P,Q ∈ P(M) with P |αQ and let $ ∈ a∗M be such

that 〈$,α∨〉 = 1. Then there exist C > 0 and N,N1 ∈ N such that

(3.1)

∫
iR
‖δP |Q(s$)

∣∣∣
A2
π(Q)K0,τ

‖(1 + |s|)−N ds ≤ C(1 + λ2
τ + λ2

π)N1

for any τ ∈‘K∞ and π ∈ Πdisc(M(A)).
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The following refinement of Arthur’s spectral expansion is a consequence

of Theorem 3. Let C(G(A)) be the inductive limit of C(G(A),K0) over the

open subgroups K0 of Kf . For any s ∈ W (M) let Ls be the smallest Levi

subgroup in L(M) containing ws. It is also characterized by the condition

aLs = {H ∈ aM | sH = H} ([Art82b, p. 1299], cf. [OT92, Th. 6.27]). We set

ιs =

∣∣∣∣det(s− 1)
aLsM

∣∣∣∣−1

.

For P ∈ F(M0) and s ∈ W (MP ) let M(P, s) : A2(P ) → A2(P ) be as in

[Art82b, p. 1309]. This is a unitary operator which commutes with the opera-

tors ρ(P, λ, h) for λ ∈ ia∗Ls .

Corollary 1. For any h ∈ C∞c (G(A)) the spectral side of Arthur ’s trace

formula is given by

∑
[P ]

1

|W (MP )|
∑

s∈W (MP )

ιs

∫
ia∗Ls

tr(ML(P, λ)M(P, s)ρ(P, λ, h)) dλ,

where the sum is over representatives in F(M0) of associate classes of parabolic

subgroups. We can also write it as

∑
[P ]

1

|W (MP )|
∑

s∈W (MP )

ιs
∑

β∈BP,Ls

∫
ia∗Ls

tr(∆XLs,µ(β)(P, λ)M(P, s)ρ(P, λ, h)) dλ

or as∑
[P ]

1

|W (MP )|
∑

s∈W (MP )

ιs
∑

f∈G(Ls)

∫
ia∗Ls

tr(∂sf (P, λ)M(P, s)ρ(P, λ, h)) dλ

with µ and s as in Theorem 1 and 2 above. In all these expressions the sums

are finite and the integrals are absolutely convergent with respect to the trace

norm and define distributions on C(G(A)).

We note that in the case G = GL(n) the absolute convergence statement

of Corollary 1 (however without the more explicit formulas) was established

by a different method in [MS04].

Remark 4. It is natural to ask whether there is an analogous result for the

geometric side, namely whether the sum of weighted orbital integrals extends

continuously to C(G(A)). This would yield a trace formula identity for a large

class of test functions. Such functions play a role in Langlands’ idea of “beyond

endoscopy.” At any rate, at least for the semisimple part of the geometric side

the answer is positive [FL11b] (cf. also [FL11a], where the full geometric side

is discussed for G = GL(2)).
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4. The Maass-Selberg relations

As a byproduct of Theorems 1 and 2 we also get an explication of the

Maass-Selberg relations in the so-called singular case. Let χ be a cuspidal

datum of G (i.e. a G(F )-conjugacy class of pairs (L, σ) consisting of a Levi

subgroup L of G defined over F and an irreducible cuspidal representation σ

of L(A)1). Furthermore, let M ∈ L be of co-rank d in G, P ∈ P(M) and π a

representation of M(A)1. We also need to fix a minimal parabolic subgroup

P0 ∈ P(M0). Let T0 ∈ aM0 be the vector defined in [Art81, Lemma 1.1].

Recall the definition of the operator ωTχ,π(P, λ) on A2
χ,π(P ) for T ∈ aM0 and

λ ∈ ia∗M ([Art82a, p. 1278], [Art82b, §2]). It is given as the sum over all

s ∈W (M,π) := {s ∈W (M) : sπ = π} of

lim
Λ→sλ−λ

∑
Q∈P(M)

e〈Λ,YQ(T )〉MQ|P (λ)−1MQ|P (s, s−1(λ+ Λ))

θQ(Λ)
.

Here, MQ|P (s, λ) are the variants of the intertwining operators defined in

[Art82b, p. 1292], and YQ(T ) is the projection of t−1(T − T0) + T0 to aM ,

where t ∈W0 is such that tQ ⊃ P0.

For ϕ ∈ A2
χ,π(P ) let E(g, ϕ, λ) be the Eisenstein series associated to ϕ

and λ, which is given by the meromorphic continuation of∑
γ∈P (F )\G(F )

ϕ(γg)e〈λ,HP (γg)〉.

By Arthur’s asymptotic inner product formula for truncated Eisenstein series

([Art82c, Cor. 9.2], [Art82a, p. 1279]) we haveÄ
ΛTE(·, ϕ1, λ), E(·, ϕ2, λ)

ä
G(F )\G(A)1

=
Ä
ωTχ,π(P, λ)ϕ1, ϕ2

ä
A2
χ,π

+e(ϕ1, ϕ2, λ, T )

for all ϕ1, ϕ2 ∈ A2
χ,π(P ), where the error term e(ϕ1, ϕ2, λ, T ) is exponentially

small in minα∈∆0 〈α, T 〉 for T in the positive Weyl chamber with respect to

P0. In the case where π is cuspidal (and χ is the cuspidal datum associated

to M and π) we have e(ϕ1, ϕ2, λ, T ) = 0 for T sufficiently regular ([Lan76],

[Art80, §4]). (An alternative approach to these results is contained in [JLR99]

for cuspidal π and in [Lap11] for the general case.)

As before, by the functional equations for the operatorsMQ|P (s,λ) [Art82b,

(1.2)] the Taylor expansionsAQ ofMQ|P (λ)−1MQ|P (s, s−1(λ+Λ))MP |P (s−1, λ)

at Λ = 0 form a compatible family (when restricted to a finite-dimensional K0-

fixed and τ -isotypic subspace as before), and we have

AP1A−1
P2

= MP1|P (λ)−1MP1|P2
(λ+ Λ)MP2|P (λ).
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For adjacent parabolic subgroups Q|βQ′ in P(M) let t ∈W0 be such that

tQ ⊃ P0. Then tβ ∈ a∗tM lifts to a unique simple root αQQ′ ∈ ∆0, and we have

YQ(T )− YQ′(T ) =
¨
αQQ′ , T − T0

∂
β∨.

Therefore, the collection Y (T ) = (YQ(T ))Q∈P(M) defines a piecewise linear

function on the fan Σ(G,M), and the Taylor series cQ of e〈Λ,YQ(T )〉 at Λ = 0

form a scalar-valued compatible family. If 〈α, T − T0〉 > 0 for all α ∈ ∆0, as

we may assume, the YQ(T ) form even a positive AM -orthogonal set, i.e. they

are precisely the vertices of their convex hull, which is a polytope in aM . (Cf.

[FL, §4] and also [Art81, §7] for more details.)

We conclude that (the restrictions to suitable finite-dimensional subspaces

of) the operators cQAQ form a compatible family. Using [FL], we can evaluate

the limit in the definition of ωTχ,π(P, λ) at the point Λ = 0, or equivalently

in the case where sλ = λ for all s ∈ W (M,π). The resulting expressions are

explicit, although combinatorially complicated polynomials in T .

To describe them, let s : F(M)→ P(M) be a selector and f ∈ G(M). Set

∂s;Tf (P, λ) =
1

d!
Ms(Q0)|P (λ)−1

d∏
i=1

î
Dµi−1Ms(Qi−1)|s(Qi)(λ)

+
¨
µi, Ys(Qi−1)(T )− Ys(Qi)(T )

∂
Ms(Qi−1)|s(Qi)(λ)

ó
Ms(G)|P (λ)

with µi ∈ a∗Qi,+ as in Section 2.3. We can rewrite this expression as the sum

over all 0 ≤ k ≤ d and all indices 1 ≤ i1 < · · · < ik ≤ d of

1

d!

∏
i 6=i1,...,ik

¨
µi, Ys(Qi−1)(T )− Ys(Qi)(T )

∂
Ms(Qi1−1)|P (λ)−1

k−1∏
j=1

(
Dµij−1Ms(Qij−1)|s(Qij )(λ)Ms(Qij )|s(Qij+1−1)(λ)

)
Dµik−1Ms(Qik−1)|s(Qik )(λ)Ms(Qik )|P (λ).

For T = T0 only k = d contributes and we get ∂s;T0f (P, λ) = ∂sf (P, λ). Also,

define

∆T
X (P, λ)

=
vol(β)

d!
MP1|P (λ)−1

d∏
i=1

ñ(
δPi|P ′i (λ)+

〈
α
PiP ′i

, T − T0

〉
MPi|P ′i (λ)

)
MP ′i |Pi+1

(λ)

ô
,

where in the last factor Pd+1 is replaced by P . We can rewrite this analogously

as the sum over all 0 ≤ k ≤ d and all indices 1 ≤ i1 < · · · < ik ≤ d of

vol(β)

d!

∏
i 6=i1,...,ik

〈
α
PiP ′i

, T − T0

〉
MPi1 |P (λ)−1

k∏
j=1

Å
δPij |P

′
ij

(λ)MP ′ij
|Pij+1

(λ)

ã
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with the convention that Pik+1
should be replaced by P in the last factor.

This gives a combinatorial expression for the polynomial ∆T
X (P, λ) as a sum

of monomials in the root coordinates 〈α, T − T0〉, α ∈ ∆0. Again we have

∆T0
X (P, λ) = ∆X (P, λ). We can now apply the combinatorial formulas of [FL,

Cor. 4.3 and Th. 8.1] to the operators cQAQ, Q ∈ P(M), to get the following

result.

Theorem 4. Assume that λ ∈ ia∗M is singular in the sense that sλ = λ

for all s ∈W (M,π). Then

ωTχ,π(P, λ) =
∑

s∈W (M,π)

∑
f∈G(M)

∂s;Tf (P, λ)M(P, s)

=
∑

s∈W (M,π)

∑
β∈BP,M

∆T
XM,µ(β)(P, λ)M(P, s).

The leading term of this polynomial is simply the volume of the convex

hull of the YQ(T ) times the operator
∑
s∈W (M,π)M(P, s), and the theorem

provides a combinatorial formula for this volume (cf. [FL], [Pos09]). On the

other hand, the value at T = T0 is given by the formulas of Theorems 1 and 2

for L = M .

5. Proof of absolute convergence

In this section we give the proofs of our analytic results Theorem 3 and

Corollary 1.

5.1. Reduction of Theorem 3 to Proposition 1. Fix M ∈ L, P ∈ P(M),

L ∈ L(M) as above and let m be the co-rank of L in G. Using (2.1) the

operators ∂sf (P, λ) can be expressed as linear combinations of the operators

∆X (P, λ). Therefore it is enough to show the first part of Theorem 3.

Fix β ∈ BP,L and X ∈ ΞL(β). Let

∆ = Id−Ω + 2ΩK∞ ,

where Ω (resp. ΩK∞) is the Casimir operator of G(F∞) (resp. K∞). The

operator ∆X (P, λ)ρ(P, λ,∆2k)−1, k ∈ N, is defined on A2(P ). We will show

the convergence of

(5.1)

∫
ia∗L

‖∆X (P, λ)ρ(P, λ,∆2k)−1‖1 dλ

for sufficiently large k. In particular for almost all λ, ∆X (P, λ)ρ(P, λ,∆2k)−1

extends to a trace-class, and a fortiori bounded, operator on Ā2(P ). Since

‖∆X (P, λ)ρ(P, λ, h)‖1≤‖∆X (P, λ)ρ(P, λ,∆2k)−1‖1‖ρ(P, λ,∆2k ∗ h)‖
≤ ‖∆X (P, λ)ρ(P, λ,∆2k)−1‖1

∣∣∣h ∗∆2k
∣∣∣
L1(G(A))

,

this will imply Theorem 3.



188 T. FINIS, E. LAPID, and W. MÜLLER

It remains to show the convergence of (5.1). The operator ρ(P, λ,∆) acts

on A2
π(P )K0,τ by the scalar µ(π, λ, τ) = 1+‖λ‖2−λπ+2λσ. By [Mül02, (6.9)],

this scalar satisfies

(5.2) |µ(π, λ, τ)|2 ≥ 1

4
(1 + ‖λ‖2 + λ2

π + λ2
τ ).

Suppose that X = (P1P ′1, . . . , PmP
′
m) with Pi|αiP ′i , i = 1, . . . ,m. Using

the inequality

‖A‖1 ≤ dimV ‖A‖
for any linear operator A on a finite-dimensional Hilbert space V , and the
unitarity of MQ|P (λ), we reduce the problem to the convergence of∑
τ∈”K∞ ∑

π∈Πdisc(M(A))

dim(A2
π(P )K0,τ )

∫
ia∗
L

|µ(π, λ, τ)|−2k
m∏
i=1

‖δPi|P ′i (λ)
∣∣
A2
π(P ′

i
)K0,τ

‖ dλ

for sufficiently large k. By integrating first over ia∗G we may replace the inte-

gral over ia∗L by an integral over i(aGL )∗. Recall that δPi|P ′i (λ) depends only on

〈λ, α∨i 〉. Let $1, . . . , $m be the basis of (aGL )∗ dual to α∨1 , . . . , α
∨
m; thus, the co-

ordinates of λ with respect to $1, . . . , $m are 〈λ, α∨i 〉. Using these coordinates

Proposition 1 reduces the statement to the convergence of∑
τ∈K̂∞

∑
π∈Πdisc(M(A))

dim(A2
π(P )K0,τ )(1 + λ2

π + λ2
τ )−k

for k sufficiently large. This in turn follows from [Mül98, Cor. 0.3].

5.2. Proof of Proposition 1. The operator MQ|P (λ) depends only on s =

〈λ, α∨〉. For convenience we denote its restriction to A2
π(P ) by MQ|P (π, s).

Since MQ|P (λ) is unitary for λ ∈ ia∗M we may replace the left-hand side of

(3.1) by ∫
iR
‖MQ|P (π, s)−1M ′Q|P (π, s)

∣∣∣
A2
π(P )K0,τ

‖(1 + |s|)−N ds.

We have a canonical isomorphism of G(Af )× (gC,K∞)-modules

jP : Hom(π, L2(AMM(F )\M(A)))⊗ Ind
G(A)
P (A)(π)→ A2

π(P ).

The operator MQ|P (π, s) admits a normalization by a global factor nα(π, s)

which is a meromorphic function in s. We write

MQ|P (π, s) ◦ jP = nα(π, s) · jQ ◦ (Id⊗NQ|P (π, s)),

where NQ|P (π, s) = ⊗vNQ|P (πv, s) is the product of the locally defined normal-

ized intertwining operators and π = ⊗vπv ([Art82b, §6]; cf. [Mül02, (2.17)]).

Consequently we have

MQ|P (π, s)−1M ′Q|P (π, s) =
n′α(π, s)

nα(π, s)
Id + jP ◦(Id⊗NQ|P (π, s)−1N ′Q|P (π, s))◦j−1

P .
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By [Mül02, Th. 5.3] there exist C > 0, N , N1 ∈ N such that∫
iR

∣∣∣∣∣n′α(π, s)

nα(π, s)

∣∣∣∣∣ (1 + |s|)−N ds ≤ C(1 + Λ2
π)N1

for all π ∈ Πdisc(M(A)) with A2
π(P )K0 6= 0. Here, as in [ibid.],

Λπ = min
τ∈WP (π∞)

»
λ2
π + λ2

τ ,

where WP (π∞) denotes the set of minimal K∞-types of the induced represen-

tation IndGP (π∞).

To deal with the term involving the normalized intertwining operator,

we may assume, by passing to a finite index subgroup if necessary, that K0 =∏
v<∞Kv, whereKv is an open compact subgroup ofG(Fv) andKv is hyperspe-

cial for almost all v. Let NQ|P (πv, s)Kv denote the restriction of NQ|P (πv, s) to

the subspace ofKv-invariant vectors, and for τ =⊗v|∞τv ∈‘K∞ letNQ|P (πv, s)τv
be the restriction of NQ|P (πv, s) to the τv-isotypic subspace. We recall from

[Art89] that there exists a finite set S of places of F , which contains the

archimedean ones and depends only on K0, such that

NQ|P (πv, s)Kv = Id, v /∈ S.

Thus

NQ|P (π, s)−1N ′Q|P (π, s) =
∑
v∈S

NQ|P (πv, s)
−1N ′Q|P (πv, s)

on Ind
G(A)
P (A)(π)K0 . Let Π(M(Fv)) be the set of equivalence classes of irreducible

representations of the local group M(Fv). Using the unitarity of NQ|P (πv, s)

for s ∈ iR it remains to show the existence of C > 0 and N,N1 ∈ N such that

for all v ∈ S and π ∈ Π(M(Fv))

(5.3)

∫
iR
‖N ′Q|P (πv, s)Kv‖(1 + |s|)−N ds ≤ C

if v is non-archimedean, and

(5.4)

∫
iR
‖N ′Q|P (πv, s)τv‖(1 + |s|)−N ds ≤ C(1 + ‖τv‖)N1

for all τv ∈ ”Kv if v is archimedean.

Since ‖(aij)‖ ≤
Ä∑ |aij |2ä 1

2 ≤∑ |aij |, the left-hand sides of (5.3) and (5.4)

are bounded by ∑
i,j

∫
iR

∣∣∣(N ′Q|P (πv, s)ei, ej)
∣∣∣ (1 + |s|)−N ds,

where ei is an orthonormal basis for Ind(πv)
Kv (in the p-adic case) or Ind(πv)

τ

(in the archimedean case). Note that dim Ind(πv)
Kv is bounded independently

of πv in the p-adic case and dim Ind(πv)
τv ≤ (deg τv)

2 for v|∞. Let ‖τv‖ be



190 T. FINIS, E. LAPID, and W. MÜLLER

the norm of the highest weight of τv. By Weyl’s dimension formula, deg τv is

bounded polynomially in ‖τv‖.
We now appeal to the following lemma.

Lemma 1. Let C be either the imaginary axis or the unit circle. Let f(z)

be a scalar valued rational function of degree ≤ m such that |f(z)| ≤ 1 for all

z ∈ C . Then

(5.5)

∮
C

∣∣f ′(z)∣∣ |dz| ≤ 8m.

We are grateful to Benjamin Weiss for communicating to us the following

simple proof.

Proof. Assume first that f takes real values on C. Then the left-hand side

of (5.5) is the total variation of f on C, i.e.
∑k
j=1 |f(zj)− f(zj−1)|, where zj ,

j = 1, . . . , k are the extrema of f on C and we set z0 = zk. Since k ≤ 2m, we

get ∮
C

∣∣f ′(z)∣∣ |dz| ≤ 4m

in this case. The general case follows immediately. �

Remark 5. Let C be as in Lemma 1. Borwein and Erdélyi proved the

following stronger inequality ([BE96]). Let a1, . . . , am ∈ C and define

φ≷(z) =
∏

j:|aj |≷1

1− ājz
z − aj

if C is the unit circle and

φ≷(z) =
∏

j:Re aj≷0

z − āj
z + aj

if C is the imaginary axis. Then for any f such that |f(z)| ≤ 1 on C and∏m
j=1(z − aj)f(z) is a polynomial of degree ≤ m we have∣∣f ′(z)∣∣ ≤ max(

∣∣φ′>(z)
∣∣ , ∣∣φ′<(z)

∣∣)
on C. Estimating the maximum by the sum and integrating over C we obtain

Lemma 1 with 8 replaced by 2π which is best possible.

Going back to the proof of Proposition 1 we recall that the operators

NQ|P (πv, s)Kv are unitary on the imaginary axis, and therefore their matrix

coefficients are bounded by 1. Using Lemma 1 and the preceding discussion,

it remains to show the following

Lemma 2. Let P |αQ ∈ P(M) and πv ∈ Π(M(Fv)).
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(1) Suppose that v is p-adic and (IndGP πv)
Kv 6= 0. Then any matrix coef-

ficient

(NQ|P (πv, s)ϕ1, ϕ2), ϕ1, ϕ2 ∈ (Indπv)
Kv ,

is of the form f(qs) for a rational function f with deg f bounded in

terms of Kv only.

(2) Suppose that v is archimedean and let τ ∈ ”Kv . Then any matrix coef-

ficient

f(s) = (NQ|P (πv, s)ϕ1, ϕ2), ϕ1, ϕ2 ∈ (Indπv)
τ ,

is a rational function with deg f ≤ c(1 + ‖τ‖), where c depends only

on G.

Proof. We argue as in [MS04]. The rationality of f in both cases follows

from [Art89, Th. 2.1]. Suppose first that v is p-adic. In the following, the

notation will be relative to Fv. (In particular, M0 is a minimal Levi subgroup

defined over Fv and so on.) We will also consider the normalized intertwining

operators NP2|P1
(π, λ) for general P1, P2 ∈ P(M) and λ ∈ a∗M . This differs a

little from our previous notation since the operator NQ|P (π, s) is now written

as NQ|P (π, s$), where $ ∈ a∗M is such that 〈$,α∨〉 = 1. Note that P and

Q are not necessarily adjacent anymore, since the split rank may grow under

base field extension. Write πv as a Langlands quotient JMP1
(σv, µ), where P1 ∈

FM (M0), σv is a tempered representation of MP1 and µ is in the relative

interior of a∗P1,+
⊂ (aM0 )∗. Therefore, πv is a quotient of IndMP2

(δv, µ), where

P2 ∈ FM (M0), P2 ⊂ Q, δv is a square-integrable representation of MP2 and

µ ∈ a∗P2,+
. Let P ′ = P2NP ∈ F(M0) and Q′ = P2NQ. Then, as explained in

[Art89, p. 30], we have a commutative diagram

IndP ′(δ, µ+ s$)
NQ′|P ′ (δ,µ+s$)
−−−−−−−−−−→ IndQ′(δ, µ+ s$)y y

IndP (π, s$)
NQ|P (π,s$)
−−−−−−−→ IndQ(π, s$).

Therefore, any matrix coefficient of NQ|P (πv, s) is also a matrix coefficient

of NQ′|P ′(δv, µ + s). Hence, we are reduced to the case where π is square-

integrable. However, up to a twist by an unramified character there are only

finitely many square-integrable representations such that (Indπ)Kv 6= 0. The

p-adic case follows.

In the archimedean case deg f is the number of poles of f since |f(s)| ≤ 1

on the imaginary axis. By [MS04, Prop. A.2] this number is bounded by

c(1 + ‖τ‖), where c depends on G only. �

This completes the proof of Proposition 1, and therefore also of Theorem 3.
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Remark 6. For applications of the trace formula, such as the problem

of limit multiplicities, it will be of interest to make the bounds of Lemma 2

effective in Kv in the p-adic case.

5.3. Finally we show Corollary 1. Consider the spectral side of Arthur’s

trace formula whose fine expansion was obtained in [Art82b]. For a test func-

tion f ∈ C∞c (G(A)) it is given by an absolutely convergent sum

(5.6)
∑
χ∈X

Jχ(f),

where χ ranges over the set X of all cuspidal data of G. To describe the

distributions Jχ we recall that the decomposition

L2(M(F )\M(A)1) =
‘⊕
χ∈X

L2(M(F )\M(A))χ

according to cuspidal data gives rise to a decomposition A2(P ) = ⊕A2
χ(P ).

Arthur’s expansion for Jχ is

(5.7)

Jχ(h) =
∑

[P ],s∈W (MP )

ιs
|W (MP )|

∫
ia∗Ls

tr

Å
MLs(P, λ)M(P, s)ρ(P, λ, h)

∣∣∣
Ā2
χ(P )

ã
dλ

for any bi-K-finite h ∈ C∞c (G(A)), where P ranges over parabolic subgroups

up to association and the integral is absolutely convergent with respect to the

trace norm. Implicit here is that the operator MLs(P, λ)ρ(P, λ, h) extends to

a trace class operator on Ā2
χ(P ).

This expression is a slight reformulation of [Art82b, Theorems 8.1 and

8.2].3 To explain this, suppose that t ∈ W0 and P ∈ P(M). The map t :

A2(P ) → A2(tP ) given by tφ(x) = φ(w−1
t x) is an isometry which intertwines

ρ(P, λ) with ρ(tP, tλ) and satisfies tA2
χ(P ) = A2

χ(tP ) for all χ ∈ X. We also

have tMQ|P (λ) = MtQ|tP (tλ)t for any Q ∈ P(M). For any s ∈ W (M) we

have tst−1 ∈W (tM), Ltst−1 = tLs and tM(P, s) = M(tP, tst−1)t (cf. [Art82b,

(1.4), (1.5)]). Hence,

MLtst−1 (tP, tλ)M(tP, tst−1)ρ(tP, tλ, h)t(5.8)

= tMLs(P, λ)M(P, s)ρ(P, λ, h), λ ∈ ia∗L.

Also, for all Q ∈ P(L) and P ′ ∈ P(M) we have

MP |P ′(λ)MQ(P ′, λ,Λ) =MQ(P, λ,Λ)MP |P ′(λ+ Λ)

3Cf. [Art05, p. 137] for the reason for the restriction to bi-K-finite functions.
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and therefore

MP |P ′(λ)MLs(P
′, λ)M(P ′, s)ρ(P ′, λ, h)(5.9)

=MLs(P, λ)M(P, s)ρ(P, λ, h)MP |P ′(λ).

The equivalence between (5.7) and [Art82b, Ths. 8.1 and 8.2] now follows from

(5.8), (5.9) and the fact that the orbit of M under W0 is of size |W0|
|WM

0 |
|W (M)|−1.

Corollary 1 now follows from (5.6), (5.7) and Theorem 3. The passage

from bi-K-finite functions to compactly supported functions is explained in

[Art82b, p. 1326] using [Art82a, Prop. 2.3].

Remark 7. It is tempting to contemplate whether one can use our results

to simplify the argument of [Art82a], [Art82b] for the derivation of the spectral

side of the trace formula. However, this will probably require a more flexible

formula for the Maass-Selberg relations which is valid not only for singular

parameters. Moreover, some control over the error term in Arthur’s asymptotic

inner formula for truncated Eisenstein series is also necessary. Fortunately, for

the upshot of the spectral expansion this is not essential.

References

[Art78] J. Arthur, A trace formula for reductive groups. I. Terms associated to

classes in G(Q), Duke Math. J. 45 (1978), 911–952. MR 0518111. Zbl 0499.

10032. doi: 10.1215/S0012-7094-78-04533-7.

[Art80] , A trace formula for reductive groups. II. Applications of a truncation

operator, Compositio Math. 40 (1980), 87–121. MR 0558260. Zbl 0499.

10033.

[Art81] , The trace formula in invariant form, Ann. of Math. 114 (1981),

1–74. MR 0625344. Zbl 0495.22006. doi: 10.2307/1971376.

[Art82a] , On a family of distributions obtained from Eisenstein series. I. Ap-

plication of the Paley-Wiener theorem, Amer. J. Math. 104 (1982), 1243–

1288. MR 0681737. Zbl 0541.22010. doi: 10.2307/2374061.

[Art82b] , On a family of distributions obtained from Eisenstein series. II.

Explicit formulas, Amer. J. Math. 104 (1982), 1289–1336. MR 0681738.

Zbl 0562.22004. doi: 10.2307/2374062.

[Art82c] , On the inner product of truncated Eisenstein series, Duke Math.

J. 49 (1982), 35–70. MR 0650368. Zbl 0518.22012. doi: 10.1215/

S0012-7094-82-04904-3.

[Art89] , Intertwining operators and residues. I. Weighted characters, J.

Funct. Anal. 84 (1989), 19–84. MR 0999488. Zbl 0679.22011. doi: 10.

1016/0022-1236(89)90110-9.

[Art05] , An introduction to the trace formula, in Harmonic Analysis, the

Trace Formula, and Shimura Varieties, Clay Math. Proc. 4, Amer. Math.

Soc., Providence, RI, 2005, pp. 1–263. MR 2192011. Zbl 1152.11021.

http://www.ams.org/mathscinet-getitem?mr=0518111
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0499.10032
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0499.10032
http://dx.doi.org/10.1215/S0012-7094-78-04533-7
http://www.ams.org/mathscinet-getitem?mr=0558260
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0499.10033
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0499.10033
http://www.ams.org/mathscinet-getitem?mr=0625344
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0495.22006
http://dx.doi.org/10.2307/1971376
http://www.ams.org/mathscinet-getitem?mr=0681737
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0541.22010
http://dx.doi.org/10.2307/2374061
http://www.ams.org/mathscinet-getitem?mr=0681738
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0562.22004
http://dx.doi.org/10.2307/2374062
http://www.ams.org/mathscinet-getitem?mr=0 650368
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0518.22012
http://dx.doi.org/10.1215/S0012-7094-82-04904-3
http://dx.doi.org/10.1215/S0012-7094-82-04904-3
http://www.ams.org/mathscinet-getitem?mr=0999488
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0679.22011
http://dx.doi.org/10.1016/0022-1236(89)90110-9
http://dx.doi.org/10.1016/0022-1236(89)90110-9
http://www.ams.org/mathscinet-getitem?mr=2192011
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1152.11021


194 T. FINIS, E. LAPID, and W. MÜLLER
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