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Uniform approximation on manifolds

By Alexander J. Izzo

Dedicated to John Wermer on the occasion of his 80th birthday

Abstract

It is shown that if A is a uniform algebra generated by a family Φ of

complex-valued C1 functions on a compact C1 manifold-with-boundary M ,

the maximal ideal space of A is M , and E is the set of points where the

differentials of the functions in Φ fail to span the complexified cotangent

space to M , then A contains every continuous function on M that vanishes

on E. This answers a 45-year-old question of Michael Freeman who proved

the special case in which the manifold M is two-dimensional. More general

forms of the theorem are also established. The results presented strengthen

results due to several mathematicians.

1. Introduction

In 1965 John Wermer [24] showed that if f is a complex-valued continu-

ously differentiable function on the closed unit discD such that the graph of f is

polynomially convex and E is the zero set of ∂f/∂ z, then the uniformly closed

algebra generated by z and f contains every continuous function on D that van-

ishes on E. The following year, Michael Freeman [8] generalized this result to

the context of uniform algebras on two-dimensional manifolds by proving that if

A is a uniform algebra generated by a family Φ of complex-valued C1 functions

on a compact two-dimensional real C1 manifold-with-boundary M , the maxi-

mal ideal space of A is M , and E = {p ∈M : df1∧df2(p) = 0 for all f1, f2 ∈ Φ},
then A contains every continuous function on M that vanishes on E, or equiva-

lently that A = {g ∈ C(M) : g|E ∈ A|E}. (Here A|E denotes the collection of

functions obtained by restricting the functions in A to E.) Freeman then asked

whether this theorem continues to hold if M is taken to be an m-dimensional

manifold and E = {p ∈ M : df1 ∧ · · · ∧ dfm(p) = 0 for all f1, . . . , fm ∈ Φ}. In

this paper we will prove that the answer to Freeman’s question is affirmative.

In the case when M is a submanifold of Cn and Φ = {z1, . . . , zn}, and

hence A = P (M) (the uniform closure on M of the polynomials in z1, . . . , zn),
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the question has been studied by many mathematicians and has been settled

for some time. In this setting, it is easily seen that E is exactly the set of

points where M has a complex tangent. (This is discussed in [1, p. 190] for

instance.) In addition, it is well known that the maximal ideal space of P (M)

can be naturally identified with the polynomially convex hull M̂ of M , defined

by

M̂ = {z ∈ Cn : |p(z)| ≤ sup
x∈M
|p(x)| for all polynomials p},

and hence the condition that the maximal ideal space of A = P (M) is M is

precisely the condition that M is polynomially convex (that is, that M̂ = M).

The following theorem is well known.

Theorem 1.0. Let M be a smooth submanifold of Cn, and let X be a

compact subset of M that is polynomially convex. Let E be the set of points of X

where M has a complex tangent. Then P (X) = {g ∈ C(X) : g|E ∈ P (X)|E}.

Note that the conclusion is equivalent to the statement that P (X) contains

every continuous function on X that vanishes on E. Note also that when E is

empty, the conclusion is that P (X) = C(X).

Under various degrees of smoothness (and other conditions) the above

theorem is due to several different mathematicians. The case when M is of

class C∞ and E is empty is in papers by Nirenberg and Wells [17], [18]. The

case when M is an m-dimensional manifold of class Cr with r ≥ (m/2) + 1

(and E is arbitrary) is in a paper of Hörmander and Wermer [12]. The case

when M is just of class C1, and E is empty, can be found in papers by Čirka

[6], Harvey and Wells [11], and Berndtsson [5]. The case when M is a C1 graph

(and E is arbitrary) is in a paper of Weinstock [22]. Finally, the full theorem is

in a paper of O’Farrell, Preskenis, and Walsh [19]. In fact, the theorem there

is more general than what is stated above.

The original form of Freeman’s question (in which A is a uniform algebra

on an abstract manifold) has also been studied. Freeman himself gave an

affirmative answer in the case when the manifold M and the functions in Φ

are real-analytic [9]. Fornæss [7] showed that the answer remains affirmative

under the weaker condition that M and the functions in Φ are just of class Cr

with r ≥ (m/2) + 1, where m is the dimension of M . In the present paper

we will show that class C1 is enough, thus fully answering Freeman’s question.

Specifically, we have the following theorem.

Theorem 1.1. Let M be an m-dimensional C1 manifold-with-boundary,

and let X be a compact subset of M . Suppose A is a uniform algebra on X gen-

erated by a family Φ of complex-valued functions C1 on M , the maximal ideal

space of A is X , and E = {p ∈ X : df1∧· · ·∧dfm(p) = 0 for all f1, . . . , fm ∈ Φ}.
Then A = {g ∈ C(X) : g|E ∈ A|E}.
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Although this settles Freeman’s question, it is sometimes desirable to have

a theorem along these lines in which the space X is not required to be a subset

of a manifold. Also the theorem of O’Farrell, Preskenis, and Walsh mentioned

earlier deals with algebras on spaces more general than subsets of a manifold.

In order to give a single theorem that encompasses all of the various cases the

author is aware of and that is as widely applicable as possible, we formulate

our main theorem as follows.

Theorem 1.2. Let A be a uniform algebra on a compact Hausdorff space

X . Suppose the maximal ideal space of A is X . Suppose also that E is a closed

subset of X such that each point p ∈ X\E has a neighborhood Up imbeddable

in a C1 manifold Mp of dimension m = m(p) such that

(i) there exist functions f1, . . . , fm ∈ A whose restrictions to Up extend to

be C1 on Mp so that df1 ∧ · · · ∧ dfm(p) 6= 0, and

(ii) the functions in A whose restrictions to Up extend to be C1 on Mp

separate points on X .

Then A = {g ∈ C(X) : g|E ∈ A|E}.

Theorem 1.1 is obviously a special case of Theorem 1.2. The following

special case of Theorem 1.2 is also worth noting.

Theorem 1.3. Let A be a uniform algebra on a compact Hausdorff space

X . Suppose the maximal ideal space of A is X . Suppose also that E is a closed

subset of X such that X\E is an m-dimensional manifold and such that

(i) for each point p ∈ X\E there are functions f1, . . . , fm ∈ A that are C1

on X\E and satisfy df1 ∧ · · · ∧ dfm(p) 6= 0, and

(ii) the functions in A that are C1 on X\E separate points on X .

Then A = {g ∈ C(X) : g|E ∈ A|E}.

In proving Theorem 1.2, we will not use the full strength of condition

(ii). All we will use is that the functions in condition (ii) separate every pair

of points of X at least one of which lies in X\E. It of course follows that

condition (ii) of Theorem 1.3 can also be weakened in the analogous way.

The results of this paper can be used to extend the peak point theorems

of Anderson, Wermer, and the author for certain uniform algebras on subsets

of complex euclidean space [3], [4] to an abstract uniform algebra setting. This

is begun in [2] and will be continued in a subsequent paper. Applications to

uniform algebras invariant under group actions are given in [14]. (See also

[15].) The results of this paper can also be applied to the problems concerning

approximation in the plane treated in [13]. In fact [13, Th. 5.4] is the two-

dimensional case of Theorem 1.3 above with condition (ii) replaced by the

stronger condition that the functions in A that are C1 on X\E are uniformly
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dense in A. Thus by the preceding paragraph it is actually enough to assume

in [13, Th. 5.4] that the functions in A that are C1 on X\E separate every pair

of points of X at least one of which lies in X\E. It follows that condition (iii)

can be omitted from [13, Th. 5.1]. Theorems 3.1 and 5.3 in [13] do not seem

to follow from the results of the present paper but do follow under suitably

strengthened hypotheses. These theorems contain the condition that for almost

every point a in a certain planar set Ω there exists a function f in A that is

differentiable at a and such that (∂f/∂ z)(a) 6= 0. If we make the further

requirement that this function f is C1 on Ω, then Theorem 1.3 above can be

applied to prove the theorems by an argument similar to how [13, Th. 5.1]

is obtained from [13, Th. 5.4]. In the applications given in [13], this further

requirement is satisfied.

The present paper owes a great deal to the work of Barnet Weinstock.

In particular, the paper relies heavily on ideas from [22], and I would like to

thank Weinstock for sending me a copy of that paper without which I certainly

would never have found the proof presented here.

It is a pleasure to dedicate this paper to John Wermer on the occasion of

his 80th birthday. As discussed above, the long line of research continued here

was initiated by him in his papers [23], [24]. In addition, the general areas of

uniform algebras and several complex variables owe a great deal to the work

of Wermer. On a personal level, Wermer has been a great inspiration to me,

and I feel tremendously privileged and honored to have had opportunities to

work with him. It is a pleasure to express my thanks for all he has done for

me over the years.

2. Preliminaries

The proof of Theorem 1.2 is based on Weinstock’s proof of the following

theorem alluded to in the introduction.

Theorem 2.0 (Weinstock [22]). Let X be a compact set in Cn, and

let f1, . . . , fk be complex-valued C1 functions on a neighborhood of X . Let

E = {z ∈ X : rank(∂fi/∂ zj) < n}, and let ‹X = {
Ä
z, f1(z), . . . , fk(z)

ä
∈

Cn+k : z ∈ X}. Assume ‹X is polynomially convex. Let A be the algebra

of functions on X that can be approximated uniformly by polynomials in the

functions z1, . . . , zn, f1, . . . , fk. Then A = {f ∈ C(X) : f |E ∈ A|E}.

This theorem of Weinstock can be reformulated as a theorem about approx-

imation on a graph: If U denotes the neighborhood of X on which f1, . . . , fk are

defined, M = {
Ä
z, f1(z), . . . , fk(z)

ä
: z ∈ U}, and ‹E = {

Ä
z, f1(z), . . . , fk(z)

ä
:

z ∈ E}, then M is a smooth graph in Cn+k, the set ‹X is a polynomially con-

vex subset of M , and the conclusion of the theorem becomes P (‹X) = {g ∈
C(‹X) : g|‹E ∈ P (‹X)|‹E}. It turns out that the more general case of polynomial
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approximation on a polynominally convex subset of a smooth manifold in CN

that is not assumed to be a graph follows from the graph case. The trick is

not to attempt to apply a local to a global argument (as would seem natural)

but instead to take the whole manifold and imbed it in a higher-dimensional

complex euclidean space so as to make it into a graph. Since this trick is one of

the main ingredients in the proof of Theorem 1.2, as motivation for the proof

of Theorem 1.2 we demonstrate how it is used to obtain approximation on gen-

eral submanifolds of CN from the graph case. Here is the precise statement of

the result.

Theorem 2.1. Let M be a C1 submanifold of Cn, and let X be a compact

subset of M that is polynomially convex. Let E be the set of points of X where

M has a complex tangent. Then P (X) = {g ∈ C(X) : g|E ∈ P (X)|E}.

Before showing that this follows from Weinstock’s result quoted above, we

establish a lemma that will be useful in the proof of Theorem 1.2.

Lemma 2.2. Let Y be a subset of Cn. Suppose p is a point of Y and there

is a neighborhood N of p in Cn such that Y ∩ N is a C1 submanifold of Cn

with no complex tangents. Then there exist real-valued C1 functions h1, . . . , hn
on Cn that vanish on Y such that the matrix ((∂hi/∂ zj)(p)) is nonsingular.

Proof. Clearly it suffices to show that we can find real-valued C1 func-

tions h1, . . . , hk (with k ≥ n) on Cn that vanish on Y such that the matrixÄ
(∂hi/∂ zj)(p)

ä
has rank n. For this, choose real-valued C1 functions h1, . . . , hk

on a neighborhood V of p with linearly independent differentials at p such that

the common zero set of h1, . . . , hk in V is exactly Y ∩V . Since we can multiply

h1, . . . , hk by a real-valued C1 function that is identically 1 on a neighborhood

of p and has support in V , we can assume that h1, . . . , hk are defined on all of

Cn and vanish on Y . A vector v is then tangent to the submanifold Y ∩N at

p if and only if dhj(v) = 0 for every j. Consequently, v is a complex tangent

to Y ∩N at p if and only if dhj(v) = dhj(iv) = 0 for every j. Since hj is real-

valued, we have dhj = ∂hj + ∂hj = 2 Re ∂hj , and since ∂hj is complex-linear,

we have Re[∂hj(iv)] = Re[i∂hj(v)] = − Im[∂hj(v)]. So a vector v is a complex

tangent to Y ∩N at p if and only if ∂hj(v) = 0 for every j. Since Y ∩N has

no complex tangents, we conclude that ∂h1, . . . , ∂hk span an n-dimensional

space. Since h1, . . . , hk are real-valued, the same conclusion holds then also for

∂h1, . . . , ∂hk, and so the matrix
Ä
(∂hi/∂ zj)(p)

ä
has rank n. �

Proof of Theorem 2.1. Suppose f1, . . . , fk are C1 functions on a neigh-

borhood of X that vanish on X. Then of course the uniform algebra on X

generated by z1, . . . , zn, f1, . . . , fk is just P (X), and setting‹X =
¶Ä
z, f1(z), . . . , fk(z)

ä
∈ Cn+k : z ∈ X

©
,
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we have ‹X = X×{0}k, so that ‹X is polynomially convex. Thus Weinstock’s re-

sult (quoted as Theorem 2.0 above) will apply to give us the desired conclusion

provided we can find functions f1, . . . , fk as above with rank (∂fi/∂ zj) = n

everywhere on X\E.

For each point p in M , choose real-valued C1 functions g1, . . . , gr on Cn

vanishing on M such that the differentials dg1, . . . , dgr span the annihilator of

the tangent space TpM to M at p in the cotangent space (TpC
n)∗ to Cn. Then

dg1, . . . , dgr span the annihilator of TqM in (TqC
n)∗ at all points q in some

neighborhood of p. Hence by a compactness argument, we can obtain real-

valued C1 functions f1, . . . , fk on Cn that vanish on M such that df1, . . . , dfk
span the annihilator of TpM in (TpC

n)∗ at every point p in X. As in the proof

of Lemma 2.2, we conclude that at each point of X\E, the forms ∂f1, . . . , ∂fk
span an n-dimensional space, and hence the matrix

Ä
(∂fi/∂ zj)(p)

ä
has rank

n everywhere on X\E. �

Theorem 1.2 is proved in the next section by a duality argument; we start

with a measure µ on X that annihilates A and seek to show that µ = 0 on

X\E. To this end we fix a point p in X\E and seek to show that µ = 0 on a

neighborhood of p. In order to apply results from several complex variables, we

need to map X into Cn by a map F having certain properties (see Step 1 of the

proof). Then to show that µ = 0 on a neighborhood of p, it is enough to show

that the push forward measure F∗(µ) is 0 on a neighborhood of F (p). Next we

apply the trick discussed above to, in effect, reduce to the case where F (X) lies

on a graph. Then we imitate Weinstock’s proof. One of the difficulties that

arises in trying to carry over Weinstock’s argument is that we do not know that

F (X) is polynomially convex. This difficulty is handled by applying the Arens-

Calderon lemma. This involves the introduction of certain auxiliary functions

and leads to additional complications. In particular, it seems that it is no

longer possible to apply the Cauchy-Fantappié formula used by Weinstock. To

overcome this obstacle, we generalize this Cauchy-Fantappié formula to include

dependence on parameters. Specifically, the result we will need is the following:

Theorem 2.3. Let U , V , and M be open sets in Cn, Ck, and Cn+k

respectively with M ∩ (U × Ck) = U × V . Write points in M as (z, u) with

z ∈ Cn and u ∈ Ck. Let G1, . . . , Gn ∈ C1(U ×M) and define G on U ×M by

G(ζ, z, u) =
n∑
j=1

(ζj − zj)Gj(ζ, z, u).

Suppose that

(i) G(ζ, z, u) vanishes only when ζ = z, and

(ii) for each j, the function ζ 7→ Gj(ζ, z, u)G(ζ, z, u)−n belongs to L1
loc

uniformly for (z, u) in compact subsets of M .
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Define Ω(ζ, z, u) by

Ω(ζ, z, u)

= (n− 1)!(2πi)−n(−1)n(n−1)/2G(ζ, z, u)−n
n∑
j=1

[
(−1)jGj(ζ, z, u)

∧
r 6=j

∂ζGr ∧ α
]
,

where α = dζ1 ∧ · · · ∧ dζn. Then every φ ∈ C∞(Cn+k) whose support lies in a

set of the form K×Ck with K a compact subset of U admits the representation

(∗) φ(z, u) =

∫
ζ∈U

Ω(ζ, z, u) ∧ ∂ζφ(ζ, u)

with equality for all (z, u) ∈ M . (In particular, both sides vanish whenever

(z, u) ∈M\(U × V ).)

Proof. We verify (∗) separately at points in U×V and not in U×V . First

consider an arbitrary point (z0, u0) in U × V . Define G′1, . . . , G
′
n, G′, and Ω′

on U ×U by setting the value of each of these at a point (ζ, z) to be the value

of the corresponding unprimed object at the point (ζ, z, u0). It follows from

(i) and (ii) that

(i′) G′(ζ, z) vanishes only when ζ = z, and

(ii′) for each j, the function G′j(·, z)G(·, z)−n belongs to L1
loc uniformly for

z in compact subsets of U .

Thus if we define φ′ ∈ C∞c (U) by φ′(z) = φ(z, u0), we get from the usual

Cauchy-Fantappié formula as given in [22] that

φ′(z) =

∫
ζ∈U

Ω′(ζ, z) ∧ ∂φ′(ζ).

(A factor (−1)n(n−1)/2 is missing in [22].) Substituting z0 for z and going back

to the unprimed objects we see that

φ(z0, u0) =

∫
ζ∈U

Ω(ζ, z0, u0) ∧ ∂ζφ(ζ, u0).

Thus (∗) holds for points in U × V .

Now let (z0, u0) be an arbitrary point in M\(U × V ). Then Ω(·, z0, u0) ∧
φ(·, u0) is a smooth form on U . Set wj(ζ) = Gj(ζ, z

0, u0)/G(ζ, z0, u0). Then

in the notation of [20, Lemma IV.3.1] we have Ω(ζ, z0, u0) = Ω0(W )(ζ). Thus

∂ζΩ(ζ, z0, u0) = 0 by [20, Lemma IV.3.1 and its addendum]. Consequently,

dζ
Ä
Ω(ζ, z0, u0) ∧ φ(ζ, u0)

ä
= −Ω(ζ, z0, u0) ∧ ∂ζφ(ζ, u0).

(Note that ∂ζ
Ä
Ω(ζ, z0, u0)∧φ(ζ, u0)

ä
= 0 because the form Ω(·, z0, u0)∧φ(·, u0)

is of bidegree (n, n−1).) Thus since φ(·, u0) has compact support in U , Stokes’

theorem gives that ∫
ζ∈U

Ω(ζ, z0, u0) ∧ ∂ζφ(ζ, u0) = 0.

Thus (∗) holds for points in M\(U × V ). �
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The next lemma is essentially [24, Lemma 3], and the simple proof we give

follows [25]. (Here arg z denotes the argument of z.)

Lemma 2.4. Let T = {z ∈ C : 3π/4 ≤ arg z ≤ 5π/4, 0 < |z| ≤ ε}. Then

there is a sequence (αr)
∞
r=1 of functions each holomorphic on a neighborhood

of C\T and a positive constant c such that

(i) αr(z)→ 1/z for z ∈ C\(T ∪ {0}), and

(ii) |αr(z)| ≤ c/|z| for z ∈ C\T .

Proof. Set αr(z) = 1
z+(1/r) . Then for large r, we have that α is holomor-

phic on a neighborhood of C\T. Clearly (i) holds. Also, a little thought shows

that there is a positive constant c1 such that for all r large and z ∈ C\T , we

have ∣∣∣1 + 1
rz

∣∣∣ ≥ c1
or equivalently ∣∣∣z + 1

r

∣∣∣ ≥ c1|z|.
Thus setting c = 1/c1 gives (ii). �

We conclude this section with three more lemmas that will be used in the

proof of Theorem 1.2.

Lemma 2.5. Let M be a C1 manifold and f1, . . . , fn be C1 complex-valued

functions on M . Let F : M → Cn be given by F (x) =
Ä
f1(x), . . . , fn(x)

ä
. If

df1, . . . , dfn span the complexified cotangent space to M at a point p, then the

image of some neighborhood of p is a submanifold of Cn with no complex

tangents.

Proof. Since df1, . . . , dfn span the complexified cotangent space to M at

p, the same is true on a neighborhood U of p. Write fj = uj + ivj with uj
and vj real-valued. Then du1, . . . , dun, dv1, . . . , dvn also span the complexified

cotangent space on U , and hence span the real cotangent space there. Conse-

quently, the derivative dF is injective on the tangent space to M at all points

of U . Hence shrinking U if necessary, we have that F is an embedding on U ,

so F (U) is a submanifold of Cn.

For the no-complex tangents condition, fix q ∈ U and consider the pull

back F ∗ : T ∗F (q)F (U) → T ∗q U on complexified cotangent spaces. Note that

F ∗(dzj) = d(zj ◦ F ) = dfj . Since df1, . . . , dfn span T ∗q U , and F ∗ is an isomor-

phism, we get that dz1, . . . , dzn span T ∗F (q)F (U). This gives that F (U) has no

complex tangents (see [3, Lemma 2.5] for instance). �

Lemma 2.6. Let Y be a compact polynomially convex set in Cn+k, let

p = (p1, . . . , pn) ∈ Cn, let N be a compact subset of Ck, and let L = {p} ×N .

Then (Y ∪ L)̂ ⊂ Y ∪
Ä
{p} ×Ck

ä
.
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Proof. We must show that if ζ 6= p and (ζ, w) /∈ Y , then there is a poly-

nomial q such that q(ζ, w) > supx∈Y ∪L |q(x)|. Choose j such that ζj 6= pj .

Then the function g = (zj − pj)/(ζj − pj) is 0 on L and 1 at (ζ, w). Let

M = supx∈Y |g(x)|. By the polynomial convexity of Y , there is a polynomial

f such that f(ζ, w) = 1 and supx∈Y |f(x)| < 1. Replacing f by a sufficiently

high power of f , we may assume that supx∈Y |f(x)| < 1/M . Then f · g is a

polynomial such that (f · g)(ζ, w) = 1, (f · g)(L) = 0, and |f · g| < 1 on Y .

Thus (f · g)(ζ, w) > supx∈Y ∪L |(f · g)(x)|. �

Lemma 2.7. Let X and Y be regular spaces, let Z be a compact subset of

X×Y , and let N be a neighborhood of Z in X×Y . Let (p, q) ∈ Z be arbitrary.

Then there exists a neighborhood W of Z contained in N and neighborhoods U

of p in X and V of q in Y such that W ∩ (U × Y ) = U × V.

Proof. Step 1: We show there exist neighborhoods U ′ of p in X and V of

q in Y such that

Z ∩ (U ′ × Y ) ⊂ U ′ × V ⊂ N.
Let Zp = {y ∈ Y : (p, y) ∈ Z}. Then Zp is compact. Hence by the

“generalized tube lemma” [16, §26, Ex. 9] there are open sets U ′′ and V in X

and Y respectively, such that Z∩ ({p}×Y ) = {p}×Zp ⊂ U ′′×V ⊂ N . Now it

suffices to show that there is a neighborhood U ′′′ of p such that Z∩(U ′′′×Y ) ⊂
U ′′′ × V for then setting U ′ = U ′′ ∩ U ′′′ gives Z ∩ (U ′ × Y ) ⊂ U ′ × V ⊂ N , as

desired.

Let Y1 = π2(Z), where π2 : X × Y → Y is projection onto the second

coordinate. Then Y1 is compact. Let S =
î
(X × Y )\Z

ó
∪ (X × V ). Then S

is open in X × Y . Furthermore, S ⊃ {p} × Y . In particular, S ⊃ {p} × Y1.
Hence by the “generalized tube lemma” again, there is a neighborhood U ′′′ of

p in X such that U ′′′ × Y1 ⊂ S. Then Z ∩ (U ′′′ × Y ) ⊂ U ′′′ × V , as the reader

can check.

Step 2: We prove the lemma. By the regularity of X, we can choose a

neighborhood U of p with U ⊂ U ′. Then Z ∩ (U × Y ) ⊂ U × V ⊂ N. Set

W = N\
î
U × (Y \V )

ó
. Then W is a neighborhood of Z contained in N and

W ∩ (U × Y ) = U × V. �

3. Proof of Theorem 1.2

It suffices to show that if µ is a regular complex Borel measure on X such

that
∫
fdµ = 0 for all f ∈ A, then µ = 0 on X\E, or equivalently that each

point of X\E has a neighborhood on which µ = 0. Throughout the proof we

will let µ be a regular complex Borel measure on X such that
∫
fdµ = 0 for

all f ∈ A and let p ∈ X\E be fixed. Our goal is to show that µ = 0 on some

neighborhood of p. The proof will be divided into several steps.
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Step 1: We show that there exists a neighborhood U of p in X, finitely

many functions f1, . . . , fn in A, and a neighborhood N of
Ä
f1(p), . . . , fn(p)

ä
in

Cn, such that the map F : X → Cn given by F (x) =
Ä
f1(x), . . . , fn(x)

ä
maps

U one-to-one into a C1 submanifold of N with no complex tangents and maps

X\U outside of N .

Let Up and Mp be as in the statement of the theorem. We regard Up as

a subset of Mp as well as regarding Up as a subset of X. In addition, when

f is a function in A whose restriction to Up extends to be C1 on Mp, we

will, for notational simplicity, also use the symbol f to denote a fixed such C1

extension.

Using condition (i) and Lemma 2.5 choose a neighborhood Vp of p in

Mp and functions f1, . . . , fm in A that are C1 on Mp and such that df1 ∧
· · · ∧ dfm is nowhere zero on Vp and the map x 7→

Ä
f1(x), . . . , fm(x)

ä
takes Vp

diffeomorphically onto a submanifold of Cm with no complex tangents. Using

condition (ii) we can find functions fm+1, . . . , fn in A that are C1 on Mp such

that the set U = {x ∈ X : |fj(x)| < 1 for all j = m + 1, . . . , n} satisfies

p ∈ U ⊂ Up ∩ Vp. Set N = {z ∈ Cn : |zj | < 1 for all j = m+ 1, . . . , n}.
Now under the map x 7→

Ä
f1(x), . . . , fn(x)

ä
, the set Vp is taken diffeo-

morphically onto a submanifold of Cn with no complex tangents. Obviously,

F (U) ⊂ N and F (X\U) ⊂ Cn\N , so F has the desired properties.

Step 2: Let p̃ = F (p). Let Y be the union of F (X) and the submanifold

of N with no complex tangents containing F (U). Then applying Lemma 2.2

gives the existence of real-valued C1 functions h1, . . . , hn on Cn that vanish on

F (X) such that the matrix
Ä
(∂hi/∂ zj)(p̃)

ä
is nonsingular. Let T (z) denote the

matrix
Ä
(∂hi/∂ zj)(z)

ä
, and let S(z) denote the matrix

Ä
(∂hi/∂zj)(z)

ä
. Also

set h = (h1, . . . , hn). Define g : C3n → Cn by

g(ζ, z, w) =
Ä
T (p̃)

ä−1Ä
h(ζ)− w − S(p̃)(ζ − z)

ä
.

Step 3: We show that there is a neighborhood U1 of p̃ such that if ζ, z ∈ U1,

then
∣∣∣g(ζ, z, h(z))− (ζ − z)

∣∣∣ ≤ 3
4 |ζ − z|.

Let R(ζ, z) be defined by the equation

h(ζ) = h(z) + S(z)(ζ − z) + T (z)(ζ − z) +R(ζ, z).

Let C = ‖T (p̃)−1‖. Choose U1 to be an open ball centered at p̃ small enough

that ‖S(z) − S(p̃)‖ ≤ (4C)−1 and ‖T (z) − T (p̃)‖ ≤ (4C)−1 for z ∈ U1 and

|R(ζ, z)| ≤ (4C)−1|ζ − z| for ζ, z ∈ U1. Then for ζ, z ∈ U1,∣∣∣g(ζ, z, h(z))− (ζ − z)
∣∣∣ =

∣∣∣∣T (p̃)−1
î
h(ζ)− h(z)− S(p̃)(ζ − z)

ó
− (ζ − z)

∣∣∣∣
=

∣∣∣∣T (p̃)−1
[
S(z)(ζ − z) + T (z)(ζ − z) +R(ζ, z)− S(p̃)(ζ − z)

]
− (ζ − z)

∣∣∣∣
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=

∣∣∣∣∣T (p̃)−1
[Ä
S(z)− S(p̃)

ä
(ζ − z) +

Ä
T (z)− T (p̃)

ä
(ζ − z) +R(ζ, z)

]∣∣∣∣∣
≤ ‖T (p̃)−1‖

[
‖S(z)− S(p̃)‖ |ζ − z|+ ‖T (z)− T (p̃)‖ |ζ − z|+ |R(ζ, z)|

]
≤ 3

4 |ζ − z|.

Step 4: Define Γ : C3n → C by Γ(ζ, z, w) = (ζ − z) · g(ζ, z, w) where α · β
denotes the standard bilinear form on Cn. Using the result of Step 3, we may

easily verify the following properties of Γ:

(i) Γ is holomorphic in z and w for fixed ζ, and Γ is of class C1;

(ii) |Γ(ζ, z, h(z))| ≥ 1
4 |ζ − z|

2 for ζ, z ∈ U1;

(iii) Re Γ(ζ, z, h(z)) > 0 for ζ, z ∈ U1 with ζ 6= z;

(iv)
∣∣∣Γ(ζ, z, h(z))

∣∣∣ ≤ 7
4 |ζ − z|

2 for ζ, z ∈ U1.

Step 5: We show that there exist finitely many functions l1, . . . , lk in A, a

domain of holomorphy M̃ in C2n+k that contains

σ(f1, . . . , fn, h1 ◦ F, . . . , hn ◦ F, l1, . . . , lk) = σ(f1, . . . , fn, 0, . . . , 0, l1, . . . , lk)

(the joint spectrum of the indicated functions) and also contains {p̃}× {0}n×
(l1, . . . , lk)(X), a neighborhood U2 of p̃, and a function ‹G of class C1 on U2×M̃
such that

(i) for each fixed ζ ∈ U2, ‹G is holomorphic on M̃ ;

(ii) for each fixed ζ ∈ U2, there exists an ε > 0 such that for x ∈ X, the

point ‹GÄζ, f1(x), . . . , fn(x), 0, . . . , 0, l1(x), . . . , lk(x)
ä

lies in the sector

{z ∈ C : 3π
4 ≤ arg z ≤ 5π

4 , |z| ≤ ε} only if‹GÄζ, f1(x), . . . , fn(x), 0, . . . , 0, l1(x), . . . , lk(x)
ä

= 0;

and

(iii) for each pair of compact sets E and E′ in U2 and M̃ respectively, there

exists a λ > 0 such that
∣∣∣‹G(ζ, z, h(z), u)

∣∣∣ ≥ λ|ζ−z|2 for (ζ, z, h(z), u) ∈
E × E′.

Choose a neighborhood U2 of p̃ with U2 ⊂ U1 and U2 compact. Let

W1 = U1 ×Cn and let

W2 =
(
(Cn\U2)×Cn

)
⋂(î

(Cn\U1)×Cn
ó
∪
¶

(z, w) ∈ C2n : Re Γ(ζ, z, w) > 0 ∀ζ ∈ U2

©)
.

Let ‹X = {
Ä
z, h1(z), . . . , hn(z)

ä
: z ∈ F (X)} = F (X)× {0}n. Then

(a) W1 ∪W2 ⊃ ‹X;

(b) if z ∈ U1, then
Ä
z, h(z)

ä
∈W1;

(c) if z ∈ U2, then
Ä
z, h(z)

ä
/∈W1 ∩W2;

(d) Re Γ(ζ, z, w) > 0 on U2 × (W1 ∩W2).
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The functions f1, . . . , fn are in A, and the functions h1 ◦ F, . . . , hn ◦ F
are identically zero and hence are also in A. Since the maximal ideal space

of A is X, we have σ(f1, . . . , fn, h1 ◦ F, . . . , hn ◦ F ) = ‹X. By the Arens-

Calderon lemma [10, Lemma III.5.2] there exist functions l1, . . . , lk in A such

that π
Ä
σ̂(f1, . . . , fn, h1 ◦ F, . . . , hn ◦ F, l1, . . . , lk)

ä
⊂W1 ∪W2 where σ̂ denotes

the polynomially convex hull of the joint spectrum and π : C2n+k → C2n is

projection onto the first 2n coordinates. Henceforth we shall write (f1, . . . , lk)

for (f1, . . . , fn, h1 ◦ F, . . . , hn ◦ F, l1, . . . , lk). Let L(x) =
Ä
l1(x), . . . , lk(x)

ä
. By

Lemma 2.6[
σ̂(f1, . . . , lk) ∪

Ä
{p̃} × {0}n × L(X)

ä]̂
⊂ σ̂(f1, . . . , lk) ∪

Ä
{p̃} ×Cn+k

ä
.

Since π−1(W1) and π−1(W2) cover σ̂(f1, . . . , lk), and π−1(W1) contains {p̃} ×
Cn+k, we get[

σ̂(f1, . . . , lk) ∪
Ä
{p̃} × {0}n × L(X)

ä]̂
⊂ π−1(W1) ∪ π−1(W2).

Consequently, there is a domain of holomorphy M̃ in C2n+k such that[
σ̂(f1, . . . , lk) ∪

Ä
{p̃} × {0}n × L(X)

ä]̂
⊂ M̃ ⊂ π−1(W1) ∪ π−1(W2).

Extend Γ to C3n×Ck by making it independent of the last k coordinates.

Obviously {π−1(W1) ∩ M̃, π−1(W2) ∩ M̃} is an open covering of M̃ . Further-

more, for fixed ζ ∈ U2, note that log Γ is holomorphic on π−1(W1)∩π−1(W2)∩
M̃ . Thus we can apply [21, Prop. 2] to get that there exist C1 functions P on

U2 × (π−1(W1) ∩ M̃) and Q on U2 × (π−1(W2) ∩ M̃) that are holomorphic in

π−1(W1) ∩ M̃ and π−1(W2) ∩ M̃ respectively for fixed ζ ∈ U2 and satisfy

log Γ = Q− P on U2 × (π−1(W1) ∩ π−1(W2) ∩ M̃).

If we now define ‹G by‹G =

ΓeP on U2 × (π−1(W1) ∩ M̃)

eQ on U2 × (π−1(W2) ∩ M̃),

then ‹G is a well-defined C1 function on U2×M̃ . Furthermore, ‹G is holomorphic

on M̃ for fixed ζ ∈ U2, and so (i) holds.

To prove (iii), suppose E and E′ are compact sets in U2 and M̃ re-

spectively. Choose compact sets E1 and E2 such that E′ = E1 ∪ E2 and

E1 ⊂ π−1(W1) and E2 ⊂ π−1(W2). We establish (iii) separately for points in

E × E1 and E × E2.

On E × E1 ⊂ U2 × (π−1(W1) ∩ M̃), by definition ‹G = ΓeP . Note that

(z, h(z), u) ∈ E1 ⊂ π−1(W1) implies z ∈ U1. Hence given (ζ, z, h(z), u) ∈
E × E1, Step 4 (ii) gives

∣∣∣Γ(ζ, z, h(z), u)
∣∣∣ ≥ 1

4 |ζ − z|
2. Since by compactness

|eP | is bounded below on E × E1, this gives (iii) on E × E1.
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On E × E2 ⊂ U2 × (π−1(W2) ∩ M̃), by definition ‹G = eQ. Note that

(z, h(z), u) ∈ E2 ⊂ π−1(W2) implies z /∈ U2. Thus for (ζ, z, h(z), u) ∈ E × E2

we have ζ 6= z. Hence |‹G|/|ζ − z|2 = |eQ|/|ζ − z|2 is a continuous function on

E×E2 that is never zero. Consequently, (iii) holds on E×E2 by compactness.

It remains to establish (ii). We may assume without loss of generality

that P
Ä
p̃, p̃, 0, L(p)

ä
= 0. Then for all points (ζ, z, w, u) in some neighborhood

of
Ä
p̃, p̃, 0, L(p)

ä
we have

|eP (ζ,z,w,u) − 1| < 1/
√

2.

Consequently, if we replace U2 by a sufficiently small neighborhood of p̃, then

there is a neighborhood U ′ of p such that the inequality

|eP (ζ,F (x),0,L(x)) − 1| < 1/
√

2

holds for all ζ ∈ U2 and all x ∈ U ′. By choosing U ′ small enough, we may

assume that F (U ′) ⊂ U1. Since p is the only point mapped by F to p̃, there

is a neighborhood of p̃ disjoint from F (X\U ′). Thus by shrinking U2 again if

necessary, we may assume F (X\U ′) is disjoint from U2.

Now fix ζ ∈ U2. Consider a point x ∈ U ′. Note that if F (x) = ζ, then‹GÄζ, F (x), 0, L(x)
ä

= Γ
Ä
ζ, F (x), 0, L(x)

ä
eP (ζ,F (x),0,L(x)) = 0, while if F (x) 6= ζ,

then multiplying the preceding inequality by Γ gives∣∣∣∣‹GÄζ, F (x), 0, L(x)
ä
− Γ
Ä
ζ, F (x), 0, L(x)

ä∣∣∣∣ < (1/
√

2)

∣∣∣∣ΓÄζ, F (x), 0, L(x)
ä∣∣∣∣.

This inequality together with Step 4(iii) gives that ‹GÄζ, F (x), 0, L(x)
ä

lies

outside the sector 3π
4 ≤ θ ≤

5π
4 .

Now to show there exists an ε > 0 such that (ii) holds, it suffices by

the compactness of X\U ′ to show that ‹GÄζ, F (x), 0, L(x)
ä

is never 0 for x ∈
X\U ′. So consider x ∈ X\U ′. If F (x) ∈ U1, then ‹GÄζ, F (x), 0, L(x)

ä
=

Γ
Ä
ζ, F (x), 0, L(x)

ä
eP (ζ,F (x),0,L(x)) 6= 0 by Step 4(iii). If F (x) /∈ U1, then‹GÄζ, F (x), 0, L(x)
ä

= eQ(ζ,F (x),0,L(x)) 6= 0.

Step 6: There exist a neighborhood U3 of p̃ contained in U2 ⊂ Cn, a

neighborhood M of (F,L)(X) = {
Ä
f1(x), . . . , fn(x), l1(x), . . . , lk(x)

ä
: x ∈ X}

in Cn+k, and an open set V in Ck such that

(i) (z, u) ∈M ⇒ (z, h(z), u) ∈ M̃ ,

(ii) ζ ∈ U3, (z, u) ∈M ⇒ (ζ, h(z), u) ∈ M̃ , and

(iii) M ∩ (U3 ×Ck) = U3 × V .

Since M̃ contains the set {
Ä
F (x), h(F (x)), L(x)

ä
: x ∈ X}, there is a

neighborhood M1 of (F,L)(X) such that (i) holds with M1 in place of M .

Since M̃ also contains the set
¶Ä
p̃, h(F (x)), L(x)

ä
: x ∈ X

©
, there is a neigh-

borhood W of {p̃} × (F,L)(X) such that (ζ, z, u) ∈ W ⇒ (ζ, h(z), u) ∈ M̃ .
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By compactness of (F,L)(X), there exist neighborhoods U ′ of p̃ and M2 of

(F,L)(X) such that U ′ ×M2 ⊂W . Then with M1 ∩M2 in place of M and U ′

in place of U3, both (i) and (ii) hold. Finally, applying Lemma 2.7 we obtain

a neighborhood M ⊂ M1 ∩M2 of (F,L)(X), a neighborhood U3 of p, and an

open set V in Ck, such that (iii) holds. We may assume U3 ⊂ U ′ ∩ U2, and

then all conditions are satisfied.

Step 7: Define G on U3 ×M by

G(ζ, z, u) = ‹G(ζ, z, h(z), u)

for ζ ∈ U3 and (z, u) ∈M . By Step 5(iii), for each pair of compact sets E and

E
′′

in U3 and M respectively, there exists a λ > 0 such that∣∣∣G(ζ, z, u)
∣∣∣ ≥ λ|ζ − z|2

for (ζ, z, u) ∈ E × E′′
.

Step 8: We show that there exist functions G1, . . . , Gn ∈ C1(U3×M) such

that

(i) G(ζ, z, u) =
∑n
j=1(ζj − zj)Gj(ζ, z, u);

(ii) for fixed ζ ∈ U3, the function x 7→ Gj
Ä
ζ, F (x), L(x)

ä
is in A, 1 ≤ j ≤ n;

(iii) for fixed ζ ∈ U3, the function x 7→ ∂
∂ζr
Gj
Ä
ζ, F (x), L(x)

ä
is in A, 1 ≤

j, r ≤ n;

(iv) for each pair of compact sets E and E′′ in U3 and M respectively, there

exists a constant C such that
∣∣∣Gj(ζ, z, u)

∣∣∣ ≤ C|ζ − z| for (ζ, z, u) ∈
E × E′′; and

(v) for each j, the function ζ 7→ Gj(ζ, z, u)G(ζ, z, u)−n belongs to L1
loc

uniformly for (z, u) in compact subsets of M .

By [21, Prop. 4] there exist functions R1, . . . , Rn, S1, . . . , Sn, T1, . . . , Tk of

class C1 on U2× (M̃ × M̃), holomorphic on M̃ × M̃ for fixed ζ ∈ U2 such that‹G(ζ, z, w, u)− ‹G(ζ, z′, w′, u′) =
∑

(zj − z′j)Rj(ζ, z, w, u, z′, w′, u′)(1)

+
∑

(wj − w′j)Sj(ζ, z, w, u, z′, w′, u′)

+
∑

(uj − u′j)Tj(ζ, z, w, u, z′, w′, u′)

for all ζ ∈ U2 and (z, w, u), (z′, w′, u′) ∈ M̃ . Recall from Step 6 that for ζ ∈ U3

and (z, u) ∈ M we have (z, h(z), u) ∈ M̃ and (ζ, h(z), u) ∈ M̃ . Thus setting

w = h(z), z′ = ζ, w′ = h(z), and u′ = u in (1) and applying the definition of

G from Step 7, we get

G(ζ, z, u) = ‹G(ζ, z, h(z), u)

= ‹G(ζ, ζ, h(z), u) +
∑

(zj − ζj)Rj(ζ, z, h(z), u, ζ, h(z), u)
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for all (ζ, z, u) ∈ U3×M . Now note that ‹G(ζ, ζ, h(z), u) = 0 for ζ ∈ U3 by the

definition of ‹G and Γ. Thus setting Gj(ζ, z, u) = −Rj(ζ, z, h(z), u, ζ, h(z), u)

we have that (i) holds and G1, . . . , Gn ∈ C1(U3 ×M).

Condition (ii) that the map

x 7→ Gj
Ä
ζ, F (x), L(x)

ä
= −Rj

Ä
ζ, F (x), h(F (x)), L(x), ζ, h(F (x)), L(x)

ä
is in A follows from the functional calculus in several variables since Rj is

holomorphic on M̃ × M̃ for fixed ζ ∈ U3, and the components of F , h ◦F , and

L all lie in A. It is well known that the conditions that Rj is of class C1 and

holomorphic on M̃ × M̃ for fixed ζ imply that each first partial derivative of

Rj is holomorphic on M̃ ×M̃ for fixed ζ. Therefore, condition (iii) also follows

from the functional calculus in several variables.

With E and E′′ as in (iv), we see from the definitions of G and ‹G in

Steps 7 and 5, that Step 4(iv) implies that there exists a constant C ′ such that∣∣∣G(ζ, z, u)
∣∣∣ ≤ C ′|ζ − z|2

for all (ζ, z, u) ∈ E×E′′. In view of (i), it follows that Gj(ζ, z, u) = 0 for ζ = z

and now (iv) follows from the continuous differentiability of Gj .

Finally, (iv) and Step 7 give the existence of a constant C ′′ such that∣∣∣Gj(ζ, z, u)G(ζ, z, u)−n
∣∣∣ ≤ C ′′|ζ − z|1−2n

for all (ζ, z, u) ∈ E × E′′
, and this implies condition (v).

Step 9: Define the form Ω(ζ, z, u) on U3 × M in terms of the func-

tions G,G1, . . . , Gn by the formula given in Theorem 2.3. Define functions

Kj(ζ, z, u) on U3×M by the equation Ω(ζ, z, u) =
∑n
j=1Kj(ζ, z, u)

∧
r 6=j

dζr ∧α

where α = dζ1 ∧ . . . ∧ dζn. We show that

(2)

∫
Kj(ζ, z, u) d(F,L)∗(µ)(z, u) = 0

for almost all ζ ∈ U3. Here d(F,L)∗(µ) denotes the push forward of µ under the

map (F,L). (Recall from the beginning of the proof that µ is an annihilating

measure for A.)

Each of the functions Kj is the product of GjG
−n with some ζ-derivatives

of the functions Gr. Thus Step 8(v) gives, for an arbitrary compact set E in

U3, that

sup(z,u)∈(F,L)(X)

∫
E

∣∣∣Kj(ζ, z, u)
∣∣∣ dm(ζ) <∞

where m denotes Lebesgue measure on Cn. Hence∫
(F,L)(X)

∫
E

∣∣∣Kj(ζ, z, u)
∣∣∣ dm(ζ) d(F,L)∗(µ)(z, u)
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is finite, so an application of Fubini’s theorem gives that

(3)

∫
(F,L)(X)

∣∣∣Kj(ζ, z, u)
∣∣∣ d(F,L)∗(µ)(z, u) <∞

for almost all ζ in U3. Thus it suffices to establish (2) for those ζ satisfying (3).

Furthermore, it is easily seen that

(4)
∣∣∣(F,L)∗(µ)

∣∣∣({ζ} ×Ck) = 0

for almost all ζ ∈ U3, so that we may further restrict our attention to only

these ζ. Now fix ζ ∈ U3 satisfying (3) and (4).

As previously noted, each of the functions Kj is the product of GjG
−n

with some ζ-derivatives of the functions Gr. Consequently, Step 8(ii) and (iii)

give that the function on X given by x 7→ Kj

Ä
ζ, F (x), L(x)

ä
·Gn
Ä
ζ, F (x), L(x)

ä
is in A. Let (αr) be the sequence of holomorphic functions given by Lemma 2.4.

Then the map (z, w, u) 7→ (αr◦‹G)(ζ, z, w, u) is holomorphic on a neighborhood

of σ(f1, . . . , fn, 0, . . . , 0, l1, . . . , lk). Hence the functional calculus in several

variables shows that the function

x 7→ αr
Ä‹GÄζ, F (x), 0, L(x)

ää
= αr

Ä
G
Ä
ζ, F (x), L(x)

ää
is in A. We conclude that regarding Kj , G, etc. as functions of x ∈ X in the

obvious way, we have KjG
n(αnr ◦G) ∈ A.

Now note that for all (z, u) in (F,L)(X) with z 6= ζ we have

Kj(ζ, z, u)Gn(ζ, z, u)αnr
Ä
G(ζ, z, u)

ä
→ Kj(ζ, z, u) as r →∞,

and ∣∣∣Kj(ζ, z, u)Gn(ζ, z, u)αnr (G(ζ, z, u))
∣∣∣ ≤ cn|Kj |,

where c is the constant in Lemma 2.4. Thus by (3) and (4) we can apply the

Lebesgue dominated convergence theorem to get∫
Kj(ζ, z, u)d(F,L)∗(µ)(z, u)

= lim
r→∞

∫
Kj(ζ, z, u)Gn(ζ, z, u)αnr

Ä
G(ζ, z, u)

ä
d(F,L)∗(µ)(z, u)

= lim
r→∞

∫
Kj

Ä
ζ, F (x), L(x)

ä
Gn
Ä
ζ, F (x), L(x)

ä
αnr
Ä
G(ζ, F (x), L(x)

ä
dµ(x).

Since we showed that the integrand on the last line is in A, the expression on

the last line is 0. Thus (2) holds.

Step 10: We show that µ = 0 on some neighborhood of p in X, thus

completing the proof.

From Step 1 we have that F maps the neighborhood U of p one-to-one

into the neighborhood N of F (p) and maps X\U outside of N . Consequently,

to show that µ = 0 on a neighborhood of p in X, it suffices to show that the



UNIFORM APPROXIMATION ON MANIFOLDS 71

push forward measure F∗(µ) is 0 on a neighborhood of F (p) in Cn. We show

that F∗(µ) = 0 on U3 by showing that

(5)

∫
φ(z) dF∗(µ)(z) = 0

for every φ ∈ C∞c (U3) (C∞ functions with compact support in U3).

By Steps 6, 7, 8, and 9, the hypotheses of Theorem 2.3 are satisfied (with

U3 as U), and so regarding φ as a function on Cn ×Ck that is independent of

the second variable, the representation (∗) given in that theorem holds. Thus

by an application of Fubini’s theorem we have (with the notation of Step 9)∫
φ(z) dF∗(µ)(z) =

∫
φ(z) d(F,L)∗(µ)(z, u)

=

∫ ñ∫
ζ∈U3

∑
j

Kj(ζ, z, u)
∧
r 6=j

dζr ∧ α ∧ ∂φ(ζ)

ô
d(F,L)∗(µ)(z, u)

=
∑
j

∫
ζ∈U3

ï∫
Kj(ζ, z, u) d(F,L)∗(µ)(z, u)

ò ∧
r 6=j

dζr ∧ α ∧ ∂φ(ζ).

By Step 9, the expression in square brackets on the last line is 0 for almost all

ζ ∈ U3. Hence (5) holds. This completes the proof. �

References

[1] J. T. Anderson and A. J. Izzo, A peak point theorem for uniform algebras

generated by smooth functions on two-manifolds, Bull. London Math. Soc. 33

(2001), 187–195. MR 1815422. Zbl 1041.32021. doi: 10.1112/blms/33.2.187.

[2] , Peak point theorems for uniform algebras on smooth manifolds,

Math. Z. 261 (2009), 65–71. MR 2452637. Zbl 1166.46030. doi: 10.1007/

s00209-008-0313-x.

[3] J. T. Anderson, A. J. Izzo, and J. Wermer, Polynomial approxima-

tion on three-dimensional real-analytic submanifolds of Cn, Proc. Amer. Math.

Soc. 129 (2001), 2395–2402. MR 1823924. Zbl 0976.32008. doi: 10.1090/

S0002-9939-01-05911-1.

[4] , Polynomial approximation on real-analytic varieties in Cn, Proc. Amer.

Math. Soc. 132 (2004), 1495–1500. MR 2053357. Zbl 1058.32006. doi: 10.1090/

S0002-9939-03-07263-0.

[5] B. Berndtsson, Integral kernels and approximation on totally real submanifolds

of Cn, Math. Ann. 243 (1979), 125–129. MR 0543722. Zbl 0394.41012. doi:

10.1007/BF01420419.
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