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O-minimality and the
André-Oort conjecture for Cn

By Jonathan Pila

Abstract

We give an unconditional proof of the André-Oort conjecture for arbi-

trary products of modular curves. We establish two generalizations. The

first includes the Manin-Mumford conjecture for arbitrary products of el-

liptic curves defined over Q as well as Lang’s conjecture for torsion points

in powers of the multiplicative group. The second includes the Manin-

Mumford conjecture for abelian varieties defined over Q. Our approach uses

the theory of o-minimal structures, a part of Model Theory, and follows a

strategy proposed by Zannier and implemented in three recent papers: a

new proof of the Manin-Mumford conjecture by Pila-Zannier; a proof of

a special (but new) case of Pink’s relative Manin-Mumford conjecture by

Masser-Zannier; and new proofs of certain known results of André-Oort-

Manin-Mumford type by Pila.

1. Introduction

In this paper we give an unconditional proof of the André-Oort conjecture

for arbitrary products of modular curves. Under the Generalized Riemann

Hypothesis for imaginary quadratic fields this result is due to Edixhoven [32],

[34]; for n = 2 it is an unconditional result of André [3]. Our approach uses the

theory of o-minimal structures, a part of Model Theory. It leads naturally to a

more general result that is an “André-Oort-Manin-Mumford-Lang” statement

for varieties of the form

X = Y1 × · · · × Yn × E1 × · · · × Em ×G`,

where n,m, ` are nonnegative integers, Y1 = Γ1\H, . . . , Yn = Γn\H are modular

curves corresponding to the quotient of the upper half-plane H by congruence

subgroups Γi of SL2(Z), E1, . . . , Em are elliptic curves defined over Q, and

G = Gm(C) is the multiplicative group of nonzero complex numbers. (In this

paper complex algebraic varieties will be identified with their sets of complex-

valued points.) Combining the methods of this paper with those of Pila and

Zannier [71] we prove an “André-Oort-Manin-Mumford” statement for varieties
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of the form

X = Y1 × · · · × Yn ×A
where Yi are modular curves as above and A is an abelian variety defined

over Q.

It is well known ([33], [35]) that level structure is inessential for the André-

Oort conjecture. Here too the case in which each Γi = SL2(Z), so that Yi = C,

exhibits all the essential features, and we restrict to this case for the latter part

of the introduction. In particular, the definitions of “special point” and “special

subvariety” are given for X of this special form in Definitions 1.2 and 1.3 below.

The definitions in the general case are given in Definition 6.7. One observes

that a “special point” is the same as a “special subvariety of dimension 0”, and

that special subvarieties of positive dimension contain infinitely many — even

a Zariski dense set of — special points (see Aside 1.4). Thus if V ⊂ X contains

a special subvariety of positive dimension then V will contain infinitely many

special points.

A weak version of the “André-Oort-Manin-Mumford-Lang” statement for

a variety X is the converse of the above statement:

If V ⊂ X contains infinitely many special points, then it con-

tains a special subvariety of positive dimension.

When such a result is known it is generally known in a more refined version

asserting:

A subvariety V ⊂ X contains a finite number of special sub-

varieties of X (of dimension 0 or greater) that contain all the

special points of X lying in V .

We establish our result in this stronger form, and since any special subvariety

contained in V is contained in some maximal special subvariety contained in

V we can state our main result as follows.

1.1. Theorem. Let

X = Y1 × · · · × Yn × E1 × · · · × Em ×G`,

where n,m, ` ≥ 0 and Yi = Γi\H are modular curves corresponding to congru-

ence subgroups Γi of SL2(Z) and Ej are elliptic curves defined over Q. Suppose

V is a subvariety of X . Then V contains only a finite number of maximal spe-

cial subvarieties.

Note that the subvariety V need not be irreducible, nor need it be defined

over Q, but since special points are algebraic the proof reduces immediately to

this case.

Another way of stating this result concerns the Zariski closure of an ar-

bitrary set Σ of special points of X. Let VΣ be the Zariski closure of Σ. By
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Theorem 1.1, VΣ contains finitely many maximal special subvarieties. Then it

coincides with their union. As special subvarieties are irreducible (see Defini-

tion 1.3; this holds also generally Shimura varieties — but note that varieties

as in Theorem 1.1 are not in general Shimura varieties, even mixed ones), one

concludes the following.

1.1*. Theorem. Suppose X is as in Theorem 1.1. Let Σ be an arbi-

trary set of special points of X with Zariski closure VΣ. Then the irreducible

components of VΣ are special subvarieties.

In fact this second version is equivalent to the first. For suppose V is

a subvariety of X. We may apply the second version to the set Σ of special

points of X contained in V . The Zariski closure of Σ then comprises a finite

union of irreducible components, which (as special points are Zariski dense in

a special subvariety) are just the maximal special subvarieties contained in V .

In Section 12 we prove the assertion of Theorem 1.1 for subvarieties V ⊂ X

for X = Y1×· · ·×Yn×A, where A is an abelian variety of arbitrary dimension

defined over Q. This is again equivalent to the assertion of Theorem 1.1* for

arbitrary sets Σ of special points of X.

For fixed X, the number and “complexity” of maximal special subvari-

eties contained in V is bounded uniformly for subvarieties V of given degree

and degree over Q of field of definition. A precise statement is formulated

in Section 13. Theorem 1.1 is ineffective in the j aspects due to its reliance

on lower bounds for class numbers. Siegel’s well-known result [84], which is

nearly as good as would follow from Generalized Riemann Hypothesis (GRH),

is in fact stronger than we need. Landau’s weaker lower bound [47] suffices

(see Remark 5.9.1) though it too is ineffective, as are all known bounds of the

requisite form. Unlike the proofs in [34], [92], which depend on the existence

of a small split prime, and so rely on GRH, a suitable lower bound for class

numbers is all we require. In Section 13 we explicate what would be required

to make the rest of our argument effective, and give a further statement that

would follow.

The André-Oort conjecture (AO) is the assertion in Theorem 1.1 (more

usually stated in the form Theorem 1.1*) for an arbitrary Shimura variety

X (see e.g. [62], [97]). It is trivial if dimX = 1, since X is irreducible as a

variety and so a proper V ⊂ X reduces to a finite set of points. AO is the

compositum of a conjecture of Oort [63] (AO for subvarieties of the moduli

space Ag of principally polarized abelian varieties) and one of André [2] (AO

for curves in an arbitrary Shimura variety). As already mentioned, André [3]

proved AO unconditionally for a product of two modular curves. Indepen-

dently, Edixhoven [32] proved the same under GRH for imaginary quadratic

fields, and later, under the same GRH assumptions, for an arbitrary product of
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modular curves [34] (see also [92]). Under GRH for suitable CM fields, Yafaev

[95] affirms AO for products of two Shimura curves, Edixhoven [33] for Hilbert

modular surfaces, and Yafaev [96] for curves in an arbitrary Shimura variety.

In the subsequent work, equidistribution results (see e.g. [23], [90]) have played

a major role. By combining the Galois- and equidistribution-theoretic meth-

ods, a proof of the André-Oort conjecture in full, under GRH for CM fields,

has been announced in work of Klingler, Ullmo, and Yafaev [46], [91].

Unconditional results have been obtained for certain X and V under ad-

ditional hypotheses on the special points Σ. In particular if the points in Σ lie

in one Hecke orbit, then Theorem 1.1* is affirmed in [33] for Hilbert modular

surfaces, in [34] for products of modular curves, and these results are further

strengthened and generalized in [35], [96], [46]; see also Zhang [99]. Moonen

[60] affirms Theorem 1.1* for Ag under different conditions on the points in Σ.

Theorem 1.1 affirms AO in the case of a product X = Y1 × · · · × Yn
of modular curves (the more general X we consider in Theorem 1.1 are not

Shimura varieties). To the knowledge of the author, these are the only Shimura

varieties X (with dimX ≥ 2) for which AO is known unconditionally. (For

mixed Shimura varieties one has also the result of André [4] on elliptic pencils,

for which a proof along the present lines is given in [68].)

For X = E1 × · · · × Em, Theorem 1.1 is a special case of the Manin-

Mumford conjecture (MM) for subvarieties of abelian varieties and our proof

is a variant of the one in [71] for abelian varieties over Q. (The Manin-Mumford

conjecture was originally proved by Raynaud [76], [77]. For a survey see [88]).

For X = G` the result is a special case of a theorem of Laurent [50] (see also

Sarnak-Adams [82]), generalizing earlier cases due to Liardet [52] to affirm for

G` a conjecture of Lang on the intersection of a subvariety of a semi-abelian

variety with the division points of a finitely generated subgroup. For torsion

points (i.e. division points of the trivial subgroup) weak forms of the conjecture

go back to Chabauty (see Lang [49]), while proofs of it in the simplest case of

plane curves, due to Ihara-Serre-Tate, are given in [48]. For X = E1 × · · · ×
Em × G` our result is a special case of Hindry’s theorem [42] affirming the

torsion point case of Lang’s conjecture for subvarieties of commutative group

varieties. MM became part of the Mordell-Lang conjecture (ML, proved by

Faltings, Vojta,. . . ) on the one hand, and a special case of the Bogomolov

conjecture on the other. It has a great variety of proofs, some in conjunction

with these other problems, including a proof by Hrushovski [43] using the

model theory of difference fields (quite a different flavour of Model Theory to

that employed here).

For X = C×A a much stronger result than ours, allowing finite generation

and points of small height (as in the Bogomolov conjecture) in the abelian

variety A, is due to Buium-Poonen [21] (see also [22]), who further allow the
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modular curve C to be replaced by a Shimura curve. An earlier result along

these lines is due to Nekovar-Schappacher [61], and a proof in the case of C×E
is in [68].

In making their conjectures, André and Oort were mindful of the analogy

between AO and MM, and there has been an interplay of methods used for

AO and MM and related problems. Notably, equidistribution played a key

role in the proof by Ullmo [89] and Zhang [98] of the Bogomolov conjecture.

In the other direction, Ratazzi-Ullmo [75] give a proof of MM using methods

developed for AO. A conjecture of Pink [73], [74] combines AO, MM and

ML in a far-reaching generalization. A related conjecture in the semi-abelian

setting (encompassing MM and ML but not AO) had been earlier proposed

by Zilber [100] and, independently, Bombieri-Masser-Zannier [14] proposed a

similar conjecture for G`. In [15] it is shown that, for G`, all the formulations

are equivalent if taken in sufficient generality. The aforementioned result of

André on elliptic pencils is contained in Pink’s conjecture, as is the result of

Masser-Zannier [56]. Theorem 1.1 (Theorem 12.1) combines AO for products of

modular curves with MM for products of elliptic curves and linear tori (abelian

varieties), treating the various factors in a uniform manner, although we also

exploit incompatibilities in the underlying geometries.

For the rest of the introduction we restrict consideration to varieties

X = Cn × E1 × · · · × Em ×G`,

where n,m, ` ≥ 0 and Ei are elliptic curves defined over Q, except that, for

convenience (and brevity), the following definitions are given with E1×· · ·×Em
replaced by an arbitrary abelian variety.

1.2. Definition. 1. Let n ≥ 0. A special point of Cn is a point c =

(c1, . . . , cn) such that each ci is the j-invariant of an elliptic curve with complex

multiplication. By convention the point C0 is special.

2. Let A be an abelian variety of dimension m ≥ 0. A special point of A is

a point a ∈ A of finite order, i.e. a torsion point. So if m = 0, then A consists

of a single point, which is special.

3. Let ` ≥ 0. A special point of G` is a point g = (g1, . . . , g`) ∈ G` of

finite order, i.e., such that each gi is a root of unity. By convention the point

G0 is special.

4. Let
X = Cn ×A×G`,

where n, ` ≥ 0 and A is an abelian variety of dimension m ≥ 0. A special point

of X is a point (c, a, g) ∈ X such that c is a special point of Cn, a is a special

point of A, and g is a special point of G`.

1.3. Definition. 1. A special subvariety in Cn is an irreducible component

of a cartesian product of fibred products of modular curves and special points,
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which we detail more precisely as follows: For N ≥ 1 let ΦN ∈ Z[x, y] denote

the classical modular polynomial (see e.g. [58]; ΦN is symmetric for N ≥ 2,

e.g. Φ2 = x3 + y3 − x2y2 + 1488xy(x + y) − 162000(x2 + y2) + 40773375xy +

8748000000(x + y) − 157464000000000, and we take Φ1(x, y) = x − y). Let

n ≥ 0. Let S0 ∪ S1 ∪ · · · ∪ Sw be a disjoint partition of {1, . . . , n} with w ≥ 0

and S0 only permitted to be empty. Let ji be a special point of C for each

i ∈ S0. Let si be the smallest element of Si for each i > 0 and for each

j ∈ Si, j 6= si choose a positive integer Nij . A special subvariety of Cn is an

irreducible component Y of a subvariety of the form

{(c1, . . . , cn)∈Cn : ci=ji, i ∈ S0, ΦNij (csi , cj)=0, j∈Si, j 6=si, i=1, . . . , w}

associated to some choice of data Si, ji, Nij as indicated. The dimension of the

special subvariety is equal to w. Note that for n = 0 one must have w = 0.

2. Let A be an abelian variety of dimension m ≥ 0. A special subvariety

of A is a subvariety of the form

a+B,

where B is an abelian subvariety of A (possibly trivial) and a is a torsion point.

3. Let ` ≥ 0. A special subvariety of G` is a subvariety of the form

gH,

where H is an irreducible algebraic subgroup (which may be trivial) and g =

(g1, . . . , g`) is a torsion point (i.e. gi are roots of unity).

4. Let X = Cn × A × G`, where n, ` ≥ 0 and A is an abelian variety of

dimension m ≥ 0. A special subvariety of X is a subvariety of the form

Y × (a+B)× gH,

where Y is a special subvariety of Cn, a+ B is a special subvariety of A, and

gH is a special subvariety of G`.

1.4. Aside. We give a brief indication of the assertion that special points

are Zariski dense in special subvarieties. In an abelian variety, the density of

torsion points in the analytic topology is evident when A is viewed as a complex

torus, the torsion points being the division points of the lattice. This is clearly

preserved for torsion cosets of abelian subvarieties. In G, torsion points are

Zariski dense because there are infinitely many of them. As an irreducible

algebraic subgroup of G` is isomorphic to Gλ for some λ ≤ `, one gets Zariski

denisty in an irreducible algebraic subgroup, and thence in any torsion coset.

In C as a modular variety the Zariski density again follows from there being

infinitely many special points, but here they are also dense in the analytic

topology being the images of quadratic points under the uniformisation j :

H → C by the elliptic modular function. If an elliptic curve has CM, then so
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does any isogenous elliptic curve. Thus if ΦN (x, y) = 0 and x is special, then

y is also special. This gives the (analytic) density of special points in modular

curves, and density in all special subvarieties of Cn follows.

Our method of proof of Theorem 1.1 follows the same basic strategy orig-

inally proposed by Zannier and worked out by the present author and Zannier

to give a new proof [71] of the Manin-Mumford conjecture. The same strategy

has been exploited in two further papers. Masser and Zannier [56] prove a spe-

cial case of Pink’s relative Manin-Mumford conjecture, and Pila [68] gives new

proofs of some simple results of André-Oort-Manin-Mumford type (including

the X = C2 and X = C×E cases of Theorem 1.1). It relies on results from the

theory of o-minimal structures over R, a part of Model Theory. O-minimality

is used at three distinct junctures in our argument. The definition of an o-

minimal structure over R, and the key examples, are set out in Section 2. For

some remarks on further prospects for this approach see Remark 11.4.2.

With X = Cn×E1×· · ·×Em×G`, let H denote the upper half-plane and,

for j = 1, . . . ,m, let Λj ⊂ C be a lattice such that C/Λj is complex analytically

isomorphic to Ej by means of the Weierstrass ℘-function ℘j corresponding to

Λj and its derivative ℘′j . Let

U = Hn × Cm × C`.
The starting point for this strategy is the transcendental uniformization

π : U → X,

where π is given by applying the j function on the factors of Hn, the functions

℘j , ℘
′
j , j = 1, . . . ,m on the factors of Cm, and the exponential function on the

factors of C`. The map π is invariant under a discrete group Γ of isometries of

U , generated by the action of SL2(Z)n on Hn, translation by the lattices Λj on

the respective factors of Cm, and translation by 2πiZ on the factors of C`. The

discrete group Γ is a subgroup of a suitable algebraic group G of isometries

of U (G is a product of copies of SL2(R),R2, and R). Let F be a standard

fundamental domain for the action of Γ on U . (In §4, these definitions are

set out formally and more generally for X as in Theorem 1.1. The notation

X,V, U,G, π,Γ,F above and Z, Z below remain fixed from §4 onwards, except

that we take X to be of more or less restricted form at various places).

Call the pre-images in U of special points of X pre-special points. They

have certain rationality properties. Specifically, if π(τ1, . . . , τn, z1, . . . , zm,

ζ1, . . . , ζ`) is special, then the τi are quadratic algebraic points in H, the zj
are division points with respect to the lattices Λj , and the ζj are rational

multiples of 2πi. Let

Z = π−1(V ) and Z = Z ∩ F.

To count special points in V we may count instead their pre-images in Z.
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We consider

U ⊂ RN , X ⊂ RN , N = 2(n+m+ `)

in suitable real coordinates so that pre-special points are algebraic of bounded

degree. All the sets being considered may then be viewed as subsets of RN . By

work of Gabrielov [38] and van den Dries [26] on projections of semi-analytic

sets, Wilkie [93] on the exponential function, Peterzil-Starchenko [64] on the

Weierstrass ℘-function, and others, the set

Z ⊂ RN

is a definable set in a suitable o-minimal structure over R (a “definable set”;

see §2). (In contrast Z is generally not so definable, due to the Γ-periodicity.)

We apply a result of Pila-Wilkie [70] concerning the distribution of rational

points on definable sets in Rν (more precisely a refinement [67] of it applicable

to algebraic points of bounded degree stated as Theorem 3.2 below). This

gives an upper bound for the number of pre-special points in Z up to a given

height that do not lie on some connected semialgebraic subset of Z of positive

dimension.

On the other hand, special points of V are algebraic, so their suitable

Galois conjugates lie again on V , and are also special points. Siegel’s lower

bound for class numbers of imaginary orders gives, via the theory of complex

multiplication, a lower bound for the degree of a special point of C in terms

of the size of the discriminant of the corresponding order. Masser [54] gives

a lower bound for the degree of a torsion point of an abelian variety (i.e.

the degree over Q of a field of definition for the point) in terms of its order

of torsion. The degree φ(n) of a primitive nth root of unity has elementary

lower bounds. In combination these give (as in [71], [68]) a lower bound for the

number of conjugates of a special point, and hence for the number of pre-special

points in Z in terms of the“complexity” (size of discriminant of corresponding

quadratic order, minimal order of torsion, or maximum of these; see §5) of one

such point in V . It is elementary to bound the height of a pre-special point in

F in terms of its complexity.

The crux of the strategy is the incompatibility of the upper and lower

bounds once the complexity of the pre-special point is too large, unless Z con-

tains semi-algebraic subsets of positive dimension. Looking back one finds an

antecedent of this strategy of opposing Galois lower bounds to archimedean

upper bounds used by Sarnak in an unpublished manuscript [81] to reprove

Lang’s conjecture (on torsion points) for subvarieties of G`. In the published

version [82] this proof is replaced by a slicker argument. It was in fact this man-

uscript [81] that raised the questions about diophantine properties of smooth

and analytic curves that led to the paper [16], whose ideas developed ultimately

into [70].
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To conclude the proof of Theorem 1.1 we must identify the possible semi-

algebraic subsets of Z = π−1(V ). It turns out that they correspond (in the

complex coordinates) almost exactly to components of pre-images of special

subvarieties of V (the “almost” is explained in Section 6: there are some ad-

ditional possible components but they contain no pre-special points). This

identification amounts to proving the algebraic independence of certain func-

tions, namely the composition of the component functions of π with algebraic

functions, under suitable hypotheses. The main work and the main novelty in

this paper occur at this juncture. We make further use of the conjunction of

definability and diophantine properties with a second and independent appli-

cation of the Pila-Wilkie result (with a further slight refinement established

here as Theorem 3.6 below)

For X = G` the result we need is the following. Let W ⊂ C` be an

irreducible algebraic variety, and ζ1, . . . , ζ` the restrictions of the coordinate

function on C` to W , i.e., their images in the function field C(W ). Then the

functions

exp(ζ1), . . . , exp(ζ`),

mapping W → C, are algebraically independent (over C) provided that the ζi
are linearly independent over Q modulo constants, i.e. provided there do not

exist qi ∈ Q, not all zero, such that
∑
qiζi = c ∈ C. (Note that if this condition

fails, then the exp(ζi) are indeed algebraically dependent over C.) This follows

from the results of Ax [5] establishing power series and differential field versions

of Schanuel’s conjecture, the results known as “Ax-Schanuel”. More precisely

it is the part of Ax-Schanuel corresponding to the Lindemann-Weierstrass The-

orem (which asserts the algebraic independence of the exponentials of algebraic

numbers that are linearly independent over Q), and accordingly we call this

“Ax-Lindemann-Weierstrass” (ALW). It was remarked in [71] that the method

of proof there should give a new proof of Lang’s conjecture on torsion points

on subvarieties of G` using Ax-Schanuel. Such a proof is included in the proof

of Theorem 1.1, but our method introduced here for studying algebraic subsets

of Z also reproves the required ALW part of Ax-Schanuel.

For the case X = Cn the result we must prove is equivalent (as we show)

to the analogue of ALW for the j function. Namely, suppose W ⊂ Cn is

an irreducible algebraic variety having a nonempty intersection with Hn (so

W∩Hn is Zariski dense in W ) and that τ1, . . . , τn are the images in the algebraic

function field C(W ) of the coordinate functions on Cn. Let P ∈W ∩Hn. Then

the functions

j(τ1), . . . , j(τn),

mapping W ∩∆→ C for some open neighbourhood ∆ of P , are algebraically

independent over C, unless some τi is constant or there is a relation of the

form τa = gτ b where a 6= b and g ∈ GL2(Q)+ (where “+” indicates positive
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determinant and GL2(Q)+ acts on H by fractional linear transformations).

Note again that if the condition on the τi fails, then the j(τi) are algebraically

dependent over C, by a suitable modular relation ΦN (j(τa), j(τb)) = 0 if τa =

gτb with g ∈ GL2(Q)+. This result appears to be new (cf. the very special

cases treated by Amou [1]). (For a generalization of Schanuel’s conjecture

encompassing the j-function, the exponential function and more see [8].)

For a product X = E1 × · · · × Em of elliptic curves (defined over C),

the corresponding ALW result required is for the composition of Weierstrass

℘-functions with algebraic functions

℘1(z1), . . . , ℘m(zm),

where zi are the images of the coordinate functions in some algebraic func-

tion field, under suitable (and necessary) “linear independence” conditions

(see Definition 1.5.2). This follows (even for X = E1×· · ·×Em×G`) from the

“Ax-Schanuel” results for Weierstrass functions of Brownawell-Kubota [20],

though again we reprove the ALW part directly by our methods.

For X = A an abelian variety (over C) the corresponding characterization

of the “algebraic part” proved in [71] is likewise equivalent (by the argument

given here) to an ALW-type result. An Ax-Schanuel result for abelian and

indeed semi-abelian varieties is established in work of Ax [6] and Kirby [45], (see

also [9], [10]), which thus includes all of the results discussed above except the

one concerning the j-function. Of course ALW for the j function is the crucial

ingredient required to admit products of modular curves in Theorem 1.1.

To prove Theorem 1.1 we must establish a functional algebraic inde-

pendence result encompassing all the Ax-Lindemann-Weierstrass results men-

tioned, which we now frame.

1.5. Definition. Let n,m, ` be nonnegative integers. Let X = Cn × E1 ×
· · · × Em × G`, where Ei are elliptic curves over C corresponding to lattices

Λi ⊂ C with Weierstrass ℘-functions ℘i. Let Λ = Λ1 ⊕ · · · ⊕ Λm ⊂ Cm. Let

U = UX . Let W ⊂ Cn+m+` be an irreducible algebraic variety, closed in X,

having a nonempty intersection with U . Let

τ1, . . . , τn, z1, . . . , zm, ζ1, . . . , ζ`

be the coordinate functions on Cn+m+` and

τ1, . . . , τn, z1, . . . , zm, ζ1, . . . , ζ`

their images in C(W ). A subset of these, which for simplicity we take to be

τ1, . . . , τν , z1, . . . , zµ, ζ1, . . . , ζλ,

where 0 ≤ ν ≤ n, 0 ≤ µ ≤ m, 0 ≤ λ ≤ `, will be called geodesically independent

if all of the following conditions hold.
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1. The functions τ1, . . . , τν , are nonconstant and there are no relations of

the form τa = gτb where a 6= b and g ∈ GL2(Q)+. If ν = 0, then we consider

this condition to be satisfied.

2. The functions z1, . . . , zµ do not satisfy any system of µ − h linearly

independent equations
∑µ
j=1 αijzj = ci, i = 1, . . . , µ − h, h < µ, where ci ∈

C and the h-dimensional linear subspace L defined by
∑µ
j=1 αijzj = 0, i =

1, . . . , µ− h contains L∩Λ as a lattice (i.e. of full rank 2h). That is, the locus

(z1, . . . , zµ) is not a coset of a proper subtorus of C/Λ. If µ = 0, then we

consider this condition to be satisfied.

3. The functions ζ1, . . . , ζλ are Q-linearly independent modulo constants;

i.e., there do not exist q1, . . . , qλ ∈ Q, not all zero, such that
∑λ
i=1 qiζi ∈ C. If

λ = 0, we consider this condition to be satisfied.

The term “geodesic” here is suggested by the notion of a totally geodesic

subvariety studied by Moonen [59]; see Remark 6.4 below. As observed, the

geodesic independence of the arguments is a necessary condition for the com-

positions with the respective j, ℘i, exp to be algebraically independent over C.

The required result is the sufficiency of this condition.

1.6. Theorem. Let the notation (and assumption W ∩ UX 6= ∅) be as in

Definition 1.5. If the functions

τ1, . . . , τν , z1, . . . , zµ, ζ1, . . . , ζλ

in C(W ) are geodesically independent, then the functions

j(τ1), . . . , j(τν), ℘1(z1), . . . , ℘µ(zµ), exp(ζ1), . . . , exp(ζλ),

defined locally on W ∩ UX , are algebraically independent over C.

This result is equivalent to the characterization of semi-algebraic subsets

of Z required to prove Theorem 1.1 (see Theorems 9.1 and 9.2). Another

way of stating the conclusion of Theorem 1.6 is that under the associated map

π : U → X, where U = Hν×Cµ×Cλ and X = Cν×E1×· · ·×Eµ×Gλ, the image

π(W ) is Zariski dense in X. In fact we can prove a stronger version, namely

that under the same conditions these functions are algebraically independent

over C(W ) (see Theorem 9.6 et seq.). One can rephrase the statement of

Theorem 1.6 to consider arbitrary elements a1, . . . , aν , b1, . . . , bµ, c1, . . . , cλ
in an algebraic function field C(W ). The conclusion of Theorem 1.6 then holds

provided that these functions are geodesically independent as in Definition 1.5,

and there is a point P ∈W such that (a1, . . . , aν , b1, . . . , bµ, c1, . . . , cλ)(P ) ∈ U ,

so that the required compositions are all defined locally on W .

With the identification of the maximal algebraic subsets of Z and the up-

per and lower bounds for prespecial points in Z we can establish the AOMML

statement in its weak form: V ⊂ X contains only finitely many special points

unless it contains a special subvariety of positive dimension. The deduction of
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the stronger form enunciated in Theorem 1.1 is by an induction that requires

knowing that only finitely many different (up to “translation”) maximal spe-

cial subvarieties occur. Here we make a third, though quite elementary, use of

o-minimality properties in conjunction with rationality. Essentially, we use the

fact that a definable set consisting only of rational points is finite. Probably

this step could be effected by elementary means, as is the corresponding result

in the case of abelian varieties (see e.g. the corresponding deduction in [71]

recalling arguments from [17]), however the argument using o-minimality is

quite transparent.

The paper is organized as follows. The definition and key examples of

o-minimal structures over R are recalled in Section 2. The upper bound result

for the height density of algebraic points of bounded degree on definable sets

is given in Section 3. In Section 4 we set up some notation with respect to the

uniformization π : U → X and the discrete group Γ for which π is invariant.

We specify the real coordinates that we will use on U , and observe the defin-

ability of the key sets. In Section 5 we introduce some height-like quantities,

including the “complexity” of a pre-special point alluded to above. Sections 6,

7, and 8 are devoted to proving Theorem 6.8, which characterizes the algebraic

part of Z = π−1(V ) when X is of the form Cn ×E1 × · · · ×Em ×G`, and are

the heart of the paper. In Section 9 we show that Theorem 1.6 is equivalent to

Theorem 6.8, and deduce more general forms of both statements. After some

further preparations in Section 10 relating to the maximal algebraic compo-

nents of Z, the proof of Theorem 1.1 is given in Section 11. In Section 12 we

show how to combine the present methods with the results of [71] to establish

the “André-Oort-Manin-Mumford” statement for varieties Y1 × · · · × Yn × A,

where A is an abelian variety over Q. Finally, Section 13 addresses uniformity

and effectivity.
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2. o-minimal structures over R
An o-minimal structure over R is a collection of subsets of Rν , ν = 1, 2, . . .

that is closed under some basic operations corresponding to definability in a

suitable first-order language (i.e. a “structure” in the sense of first-order Model
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Theory), but which also enjoys strong finiteness properties. The notion grew

out of work of van den Dries [25], [26] on Tarski’s problem concerning the

decidability of the real ordered field with the exponential function, and was

studied in the more general context of linearly ordered structures by Pillay and

Steinhorn [72], to whom the term “o-minimal” (“order-minimal”) is due.

2.1. Definition. A pre-structure is a sequence S = (Sν : ν ≥ 1) where each

Sν is a collection of subsets of Rν . A pre-structure S is called a structure (over

the real field) if, for all ν, µ ≥ 1, the following conditions are satisfied:

(1) Sν is a boolean algebra (under the usual set-theoretic operations);

(2) Sν contains every semi-algebraic subset of Rν ;

(3) if A ∈ Sν and B ∈ Sµ, then A×B ∈ Sν+µ;

(4) if µ ≥ ν and A ∈ Sµ, then π(A) ∈ Sν , where π : Rµ → Rν is projection

onto the first ν coordinates.

If S is a structure, and, in addition,

(5) the boundary of every set in S1 is finite,

then S is called an o-minimal structure (over the real field).

If S is a structure and Z ⊂ Rν , then we say Z is definable in S if Z ∈ Sν .

A function f : A→ B is definable in S if its graph is definable, in which case

the domain A of f and image f(A) will also be definable by the definitions.

Sets that are definable in an o-minimal structure are well-behaved. For

example, they have finitely many connected components and admit cell decom-

position. Indeed, o-minimal structures over R can be considered as candidates

for Grothendieck’s idea of “topologie modérée” [40], [27], [79]. For the theory

of o-minimal structures we refer to [27], [31], which we reference as needed.

We now describe the key examples.

The collection of all semi-algebraic subsets of Rν , ν = 1, 2, . . . is a struc-

ture, and is o-minimal. Here a semi-algebraic set in Rν is a the set of solutions

to a finite collection of equations and inequalities (<,≤) involving polynomials

in R[X1, . . . , Xν ]. Equivalently, it is the collection of subsets of Rν , ν = 1, 2, . . .

definable with parameters in the language of ordered fields. Conditions (1),

(2), and (3) are evidently satisfied, while (4) follows from the Tarski-Seidenberg

Theorem. The collection Ran of globally subanalytic sets in Rν , ν = 1, 2, . . .

is an o-minimal structure. These are the subsets of Rν that are subanalytic

when considered as subsets of Pν(R); the o-minimality follows from Gabrielov’s

Theorem [38], as observed by van den Dries [26]. The collection Rexp of sub-

sets of Rν , ν = 1, 2, . . . that are definable using the exponential function (or,

alternatively, the smallest structure containing the graph

Γexp = {(x, y) ∈ R2 : y = ex, x ∈ R}
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of the exponential function) is o-minimal. This follows from the work of Wilkie

[93] in conjunction with Khovanskii’s finiteness results [44]. Neither of the

structures Ran,Rexp contains the other. For example (see e.g. [30]) the set Γexp

is not subanalytic at infinity, so is not contained in Ran, while Ran contains the

graphs of restricted analytic functions such as {(x, y) ∈ R2 : y = sin(x), x ∈
[−1, 1]} that are not definable in Rexp (see [12]). However the structure Ran,exp

generated by the union of Ran and Rexp is o-minimal (van den Dries and Miller

[31]; see also [28]).

Further examples may be found described in [80], [86], [79]. The lat-

ter surveys methods of constructing o-minimal structures and discusses the

connections with “topologie modérée”. In particular [80], there exist pairs of

o-minimal structures that are incompatible in that their union is not contained

in any o-minimal structure, and consequently there does not exist a “largest”

o-minimal structure over R. Examples are given in [29] of natural functions

that are not definable in Ran,exp. For example the error function
∫ x

0 exp(−t2)dt

and the logarithmic integral
∫∞
x exp(−t)dt/t on (0,∞) are not definable in

Ran,exp, though their restrictions to any compact subinterval are, and they are

definable in the o-minimal structure RPfaff generated by Pfaffian functions (see

e.g. [94], [79]).

However, Ran,exp contains all the sets that are required in this paper.

Therefore, from Section 4 onwards, “definable” will mean “definable in Ran,exp”.

The reader who is unfamiliar with these notions need only be content to ac-

cept that certain sets are definable in the structure Ran,exp and that, as a

consequence of this and the o-minimality of the structure, various properties,

notably the diophantine properties set out in Theorem 3.6, hold for those sets.

3. Rational (and algebraic) points of definable sets

Let S be an o-minimal structure over R, fixed for this section, so that

“definable” will, in this section, mean “definable in S”. The distribution of

rational points on definable sets is studied in [70], with some refinement to

deal with algebraic points of bounded degree in [67].

We first state the basic result to the effect that, if Z ⊂ Rν is definable in an

o-minimal structure over R, then Z contains only “few” rational (or algebraic

of bounded degree) points of height ≤ T , in a suitable sense, as T →∞, unless

Z contains a semi-algebraic subset of positive dimension. More precisely, we

consider the distribution of rational (or algebraic of bounded degree) points

that lie outside the algebraic part of a set Z ⊂ Rν , defined as follows.

3.1. Definition. Let Z ⊂ Rν . The algebraic part of Z, which we denote

Zalg, is the union of all connected positive-dimensional semi-algebraic subsets

of Z.
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For a set Z ⊂ Rν , an integer k ≥ 1 and a real number T ≥ 1, we set

Z(k, T ) = {z = (z1, . . . , zν) ∈ Z : max
i

[Q(zi) : Q] ≤ k,max
i
H(zi) ≤ T},

where H(α) is the absolute multiplicative height of an algebraic number, as

defined in e.g. [13], and

Nk(Z, T ) = #Z(k, T ).

3.2. Theorem ([70] for k = 1 and [67] in general). Let Z ⊂ Rν be de-

finable, let k ≥ 1 and ε > 0. There is a constant c(Z, k, ε) such that, for all

T ≥ 1,

Nk(Z − Zalg, T ) ≤ c(Z, k, ε)T ε.

This statement suffices for our first application to the algebraic points

of Z. In fact Theorem 3.2 is proved in [70], [67] in a more elaborate form;

in particular, it is proved for definable families of sets (see below), which is

the source of the uniformity mentioned for Theorem 1.1, and using a variant

height. In considering the semi-algebraic subsets of Z we need a more refined

version.

Let us note for definiteness that, for a rational number q = a/b in low-

est terms ((a, b) = 1)) we have H(q) = max{|a|, |b|}. For a ν-tuple q =

(q1, . . . , qν) ∈ Qν we will adopt a coordinate-wise height (rather than projec-

tive height) setting H(q) = maxiH(qi).

3.3. Definition. Let k be a positive integer. The polynomial height (of

degree k), denoted Hpoly
k (α) of a real number α is given by

Hpoly
k (α) = min{H(q) : q = (q0, . . . , qk) ∈ Qk+1 − {(0, . . . , 0)},

k∑
i=0

qiα
i = 0}

if [Q(α) : Q] ≤ k. Otherwise we take Hpoly
k (α) = ∞. For a ν-tuple z =

(z1, . . . , zν) we set Hpoly
k (z) = maxiH

poly(zi). The relation between absolute

height and Mahler measure ([13, 1.6.5, 1.6.6]) implies that, when [Q(α) : Q]≤k,

Hpoly
k (α) ≤ 2kH(α)k.

Let us put, for a set Z ⊂ Rν ,

Zpoly(k, T ) = {z ∈ Z : Hpoly
k (z) ≤ T}, Npoly

k (Z, T ) = #Zpoly(k, T ).

Then Theorem 3.2 may be proved using Hpoly rather than H. That is, there

is a constant cpoly(Z, k, ε) such that, for T ≥ 1,

Npoly
k (Z − Zalg, T ) ≤ cpoly(Z, k, ε)T ε.

This version evidently implies Theorem 3.2 in view of the above exhibited

relation between the two heights.
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By a definable family of sets we mean a definable set in Rν×Rµ, considered

as the family of fibres

Zy = {x ∈ Rν : (x, y) ∈ Z}, y ∈ Rµ.

The set Y = {y ∈ Rµ : Zy 6= ∅} is then definable, so it will be immaterial

whether we consider quantifications over Y or Rµ. Note that we consider the

fibre Zy to be a subset of Rν , so any rationality considerations relate to the

Rν-coordinates and not to the coordinates of the parameter y ∈ Rµ.

For a definable set Z and each pair κ, p ∈ N = {0, 1, 2, . . .} we define the

p-regular points of Z of dimension κ, denoted regpκ(Z), to be the set of x ∈ Z
such that there is an open neighbourhood U of x with U ∩ Z a Cp embedded

submanifold of Rν of dimension κ. Then each regpκ(Z) is definable, and indeed

this is true over a family, i.e. for a definable family Z the set

{z = (x, y) ∈ Z : x ∈ regpκ(Zy)}

is definable ([30, B.10]). A regular point of dimension κ will mean a 1-regular

point of dimension κ. The dimension of a definable set Z is the maximum κ

such that Z has a regular point of dimension κ. Therefore, if Z has dimension κ,

then Z − reg1
κ(Z) has dimension ≤ κ− 1. A regular point of a definable set of

dimension κ will mean a regular point of dimension κ.

The term “definable block” which we now introduce was termed a “basic

block” in [67]. However, our purpose here is to eliminate the need for what was

termed a “block” in [67], so here we will just use the term “definable block”.

We also explicate the degree in our definitions.

3.4. Definition. 1. A definable semialgebraic block or definable block of

dimension w and degree d in Rν is a connected definable set W ⊂ Rν of

dimension w, regular at every point, such that there is a semialgebraic set

A ⊂ Rν , of dimension w and degree ≤ d, regular at every point, with W ⊂ A.

2. A definable semialgebraic block family or definable block family of di-

mension w and degree d is a definable family W ⊂ Rν × Rµ such that every

nonempty fibre Wy, y ∈ Rµ is a block of dimension w and degree ≤ d.

Note that dimension 0 is allowed: a point is a definable block. Further,

a definable block of positive dimension is a union of connected semi-algebraic

sets of positive dimension (the intersection of the definable block with small

neighbourhoods of each point), and so if such a definable block is contained

in a set Z, it is contained in Zalg. In the following lemma, a semi-algebraic

map means a definable function in the structure of semi-algebraic sets, i.e.

f : B → Rµ, where B ⊂ Rν and {(x, f(x)) ∈ Rν+µ : x ∈ B} are semi-agebraic

sets. If W ⊂ Rν , then f(W ) will mean f(W ∩B).
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3.5. Lemma. Suppose B ⊂ Rκ is a semi-algebraic set and φ : B → Rν is

a semialgebraic map.

1. If W ⊂ Rκ is a definable block, then φ(W ) is a finite union of definable

blocks.

2. If W ⊂ Rκ×Rµ is a definable block family, then φ(W ) is a finite union

of definable block families in Rν × Rµ.

Proof. 0. Suppose W ⊂ Rκ is a definable block with respect to a semi-

algebraic set A ⊂ Rκ, and B ⊂ Rκ is a semi-algebraic set. Let A′ be the set

of regular points of A ∩ B and W ′ a connected component of W ∩ A′. Then

W ′ is a definable block with respect to A′, since locally at each point of W

it coincides with A. Since W ∩ A′ is definable it has finitely many connected

components (see the remarks following Definition 2.1), it suffices to consider

the intersection of W ′ with the set of singular points of A ∩ B. This set has

lower dimension. Thus, by induction on dimension, W ∩B is a finite union of

definable blocks.

1. By the above, φ(W ) = φ(W ∩ B), and W ∩ B is a finite union of

definable blocks. So we reduce to the case that φ is defined on A, and by the

same argument we reduce further to the case that φ is continuous on A. Now

we look at the image. The image φ(A) is semi-algebraic, and has some degree

d′ and dimension w′. There is a semialgebraic set S ⊂ A, closed in A and

of lower dimension, such that, on A − S, the image of φ is a regular point of

dimension w′. The set A− S consists of finitely many connected components,

as does W ∩(A−S), and we can reduce to the case that A−S and W ∩(A−S)

are connected. Then W ′ = W ∩ (A − S) is a definable block with respect to

A − S and φ(W ′) is a definable block with respect to φ(A − S) of dimension

w′ and degree d′. Further W ∩ S is a finite union of definable blocks, and the

proof of assertion 1 is completed by induction.

2. We need only observe that all the steps above can be carried out in

definable families. �

We can now state our refinement of Theorem 3.2, incorporating the re-

finements of the versions in [70], [67].

3.6. Theorem. Let Z ⊂ Rν × Rµ be a definable family, k ≥ 1 and ε > 0.

There is a finite number J = J(Z, k, ε) of definable block families

W (j) ⊂ Rν × (Rµ × Rλ), j = 1, . . . , J,

of dimension wj and degree dj , and a constant cpoly(Z, k, ε) with the following

properties :

1. For all (y, η) ∈ Rµ × Rλ, we have W
(j)
(y,η) ⊂ Zy .
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2. For all y ∈ Rµ and T ≥ 1, Zpoly
y (k, T ) is contained in the union of

at most cpoly(Z, k, ε)T ε definable blocks of the form W
(j)
(y,η) for some

j = 1, . . . , J and η ∈ Rλ.

3.7. Remarks. 1. Since each definable block in Zy of positive dimension is

contained in Zalg
y , Theorem 3.6 implies that

Npoly
k (Zy − Zalg

y , T ) ≤ cpoly(Z, k, ε) T ε

for all y ∈ Rν and T ≥ 1, thus giving a uniform version of Theorem 3.2.

2. However, the main point of this version is that not just the number of

points outside the algebraic part is T ε bounded, but that the “connected semi-

algebraic pieces”, i.e., definable blocks required to contain the rational points

are similarly controlled in number and come from finitely many definable block

families. Further all the points of all the definable blocks are regular.

3. Let WZ,k,ε ⊂ Rν × Rµ be the family whose fibre at y ∈ Rν is the

union over all j = 1, . . . , J(Z, k, ε) and η ∈ Rλ of the fibres of W
(j)
(y,η) of positive

dimension. Then WZ,k,ε is definable,

WZ,k,ε
y ⊂ Zalg

y ,

and

Npoly
k (Zy −WZ,k,ε

y , T ) ≤ cpoly(Z, k, ε)T ε.

Since the algebraic part of a definable set may not be definable, this shows that

the T ε bound may be achieved by removing a definable subset of the algebraic

part, and this may be done uniformly over families. Corresponding assertions

appeared in [70], [67]. Indeed, the degrees dj are bounded by some d(n, k, ε),

independent of Z (but not so the J(Z, k, ε)).

4. The result for Hpoly implies the same result using H (with possibly

different constants J, c and fibres W ).

Proof. We need to elaborate the proof of [67, Th. 5.3], which gives the

conclusion for a finite number of families of semi-algebraic images of definable

block families. Here we just need to apply Lemma 3.5 above at a suitable

juncture to get the additional refinement of the conclusion required. For k = 1

(i.e. for rational points), however, the required conclusion is established in , in

which a “basic block family” is precisely our present “definable block family”.

We did not explicate there that the definable blocks have degrees, but this

follows from the proof. For k > 1, a slightly weaker result is established in [67,

Th. 3.5]. In the course of the proof of [67, Th. 3.5], a definable family

Y ⊂ R(k+1)ν × Rµ
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(depending on Z, k) is constructed, together with a finite number of definable

maps Y → Z, preserving the fibres, such that the algebraic points of the fibres

Zy are images of rational points on the corresponding fibre Yy. Moreover,

the definable maps alluded to are the restrictions of semi-algebraic maps φi,

defined and continuous on semi-algebraic subsets Bi ⊂ R(k+1)ν (depending

only on ν, k) such that:

1. For all y ∈ Rµ, Yy is the union of pre-images of Zy under the maps φi.

2. If x ∈ Rν with Hpoly
k (x) ≤ T , then there is an index i and a preimage

ξ of x under φi with H(ξ) ≤ T .

Now [67, Th. 3.5] establishes the conclusion of the theorem for the rational

points on the fibres of Y : we have a finite number of definable block families

V (j) ⊂ R(k+1)ν × (Rµ × Rλ) satisfying the desired conclusions for Y . We have

only to show that these conclusions regarding block families are preserved

under the semialgebraic maps φi. This is afforded by the present Lemma 3.5:

the φi images of the V (j) can be decomposed into a finite number of definable

block families satisfying the required conclusions for Z. �

4. Uniformization, group actions, fundamental domains,

real coordinates, and definability

In this section we give formally the definition of the uniformizing space U

associated to the variety X, an associated real algebraic group G of isometries

of U and a discrete subgroup Γ such that the map π : U → X is Γ-invariant. We

normalize the definition in such a way that Γ < G(Z) in each case. We specify

a fundamental domain. We specify real coordinates on U , and observe the

definability properties that will be crucial to the application of Theorem 3.6.

The variety X is specified in the notation as it determines U and Γ (while U

does not determine Γ). However it will be omitted when the intended variety

X is clear from the context.

4.1. Notation. 1. Let X be a modular curve Γ\H. Then UX = H and

πX : U → X is an embedding of the quotient as a quasiprojective curve given

by a suitable choice of modular functions for Γ. The group GX = SL2(R)

acts on H by fractional linear transformations and ΓX = Γ. The fundamental

domain FX is taken to be a suitable finite union of SL2(Z) translates of the

standard fundamental domain for the modular group (see e.g. Serre [83]).

2. Let X = A be an abelian variety of dimension m. Let Λ be a lat-

tice in Cm such that Cm/Λ is complex analytically isomorphic to A. (For

definiteness we could specify that Λ corresponds a point in some chosen fun-

damental domain of moduli, so e.g. for an elliptic curve that Λ has generators

1, τ , where τ is in the usual fundamental domain for SL2(Z), but this is not
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necessary.) Then UX = Cm and πX : Cm → A is the composition of the quo-

tient map Cm → Cm/Λ with the isomorphism Cm/Λ→ A. Let {λ1, . . . , λ2m}
be a Z-basis for Λ. We take GA = R2m, acting as translations of Cm as

follows. If g = (r1, . . . , r2m) ∈ GA, then g(z) = z + t for z ∈ Cm where

t =
∑2m
i=1 riλi. Then ΓA = GA(Z) = Z2m corresponds to translations by ele-

ments of Λ. We take FA to be the fundamental parallelogram for Λ given by

{∑ tiλi : 0 ≤ ti < 1, i = 1, . . . , 2m}.
3. Let X = G. Then UX = C and πX : U → X is the exponential

function. We take GX = R acting as translations in the imaginary direction,

where g = r ∈ R acts by g(z) = z + 2πir, and ΓX = G(Z) = Z acts as

translations by 2πiZ. We take FX = {z ∈ C : 0 ≤ Im(z) < 2π}.
4. For a cartesian product X = Y1 × · · · × Yn × A × G`, where n, ` ≥ 0,

Yi = Γi\H are modular curves with uniformisations πi : H = Ui → Yi and

fundamental domains Fi, and A is an abelian variety of dimension m ≥ 0, we

take the cartesian product of the uniformisations, groups, and fundamental

domains. Thus UX = U1 × · · · × Un × UA × (UG)` and πX : U → X, πX =

π1 × · · · × πn × πA × (πG)`. We take GX = SL2(R)n × GA × (GG)`, ΓX =

Γ1 × · · · × Γn × ΓA × Γ`G, and FX = F1 × · · · × Fn × FA × F`G.

We adopt real coordinates on the spaces UX in such a way that pre-special

points have suitable algebraicity properties. By giving real coordinates for an

open domain U ⊂ Ck we mean giving functions x1, . . . , x2k : U → R such that

the assignment z 7→ x(z) = (x1(z), . . . , x2k(z)) gives a bijection of U with an

open domain in R2k. We identify subsets of U (including U itself) with their

images in R2k.

4.2. Real coordinates. 1. For X = Γ\H we put real coordinates on UX =

H using the real and imaginary parts. If we write τ = u+ iv, then pre-special

points; i.e., quadratic τ ∈ H are then certain points (u, v) with u ∈ Q and v of

degree ≤ 2.

2. For X = A, an abelian variety, we put real coordinates on UX = Cm
using a basis of Λ. Then the pre-special points are rational points. If πA(z) =

P ∈ A is special (i.e. torsion), then the minimal order of P is equal to the

minimal denominator z.

3. For X = G we put real coordinates on UX = C by using

Re(z) and Im(z)/2π. Then the set of pre-special points is {(0, q) : q ∈ Q}.
4. For X = Y1× · · · ×Yn×A×G`, where n, ` ≥ 0, Yi = Γi\H and A is an

abelian variety of dimension m ≥ 0, we put real coordinates on UX using the

real coordinates on the cartesian factors.

We observe that, with the real coordinates we have adopted, the restriction

πX : FX → X is definable (in Ran,exp).
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4.3. Proposition. Let X = Y1 × · · · × Yn × A × G`, where n, ` ≥ 0,

Yi = Γi\H are modular curves, and A is an abelian variety of dimension m ≥ 0.

Then the restriction of πX to FX is definable in Ran,exp.

Proof. For X = C, the restriction of πC = j to FC is definable by the

results of Peterzil-Starchenko [64]. Hence it is definable on any other fixed

SL2(Z) translate of FC, and on any finite union of such domains. Then for

a modular curve X = Γ\H definability follows since j is definable on the

fundamental domain, and so any algebraic function of j is too. For X = A,

the restriction of πA to F is definable in Ran, since, in the real coordinates,

the map is real analytic on (a neighbourhood of the closure of) the bounded

semi-algebraic set FA. For X = G, the restriction of πG = exp to FG is

given by a polynomials in the real exponential function and the restrictions

of the sine and cosine function to [0, 2π). The former is definable in Rexp,

the latter in Ran, so πX on F is definable in Ran,exp. For the cartesian product

X = Y1×· · ·×Yn×A×G`, the restriction of πX to FX is the cartesian product

of the corresponding maps on the factors, and so is definable in Ran,exp by the

basic properties of structures. �

4.4. Remark. Peterzil and Starchenko [64] establish a definability result

for ℘(τ, z) as a function of both variables. Here only the definability j on FC
is required, which follows easily from the q-expansion.

5. Intricacy and complexity

We introduce a notion of intricacy for the points of U , and of complexity

for pre-special points in U . The former will be used in the arguments in

Section 8 characterizing the maximal algebraic subsets of π−1(V ). The latter

is the natural quantity to which we relate the lower bound for the number of

conjugates of a special point, and the height of a corresponding pre-special

point lying in FX .

5.1. Definition. Let X = Y1 × · · · × Yn × A × G`, where n, ` ≥ 0, Yi are

modular curves, and A is an abelian variety of dimension m ≥ 0. Let F be a

fundamental domain for the action of ΓX on UX and u ∈ UX . We define the

ΓX-intricacy of u with respect to F, denoted IXF (u), by

IXF (u) = H(g),

where g ∈ ΓX is the unique element such that g(u) ∈ F.

5.2. Proposition. Let X = C, with F = FC and D any fundamental

domain of the form gF, g ∈ Γ. Let τ ∈ H. Then there is a bivariate polynomial

P = PD with positive real coefficients such that

ID(τ) ≤ P
Ç
|τ |, 1

Im(τ)

å
.
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Proof. For D = F we observe the quantitative statement we need from the

proof that F is a fundamental domain given e.g. in Serre [83]. For g =
(
a b
c d

)
∈ Γ

we have

Im(gτ) =
Im(τ)

|cτ + d|2
.

Therefore, Im(gz) has a maximum as g varies over Γ, and it is attained for

some g with

|c| ≤ 1

Im(τ)
;

otherwise we could take c = 0, d = 1, and

|d| ≤ |c||Re(τ)| ≤ Re(τ)

Im(τ)
≤ |τ |

Im(τ)
.

Then a, b can be chosen with

|a|, |b| ≤ |τ |
Im(τ)2

.

We next take a translation h = ( 1 n
0 1 ) such that hgτ has real part between -1/2

and 1/2. As shown in [83], hgτ ∈ F, so that

IF(τ) = H(hg).

We estimate the height of h and then of hg. If c 6= 0, then

|n| ≤ |gτ | ≤ |aτ + b|
|c||τ + d/c|

≤ |τ |(|τ |+ 1)

Im(τ)3
,

while if c = 0 we have d 6= 0 and

|n| ≤ |gτ | ≤ |aτ + b|
|d|

≤ |τ |(|τ |+ 1)

Im(τ)2
.

Then

H(hg) = H(a+ nc, b+ nd, c, d) ≤ |τ |(|τ |+ 1)2

Ç
1

Im(τ)
+

2

Im(τ)4

å
,

which gives what we need for F. For general D we need only observe that there

is a fixed element g0 ∈ Γ with D = g0F, so that

ID(τ) = H(g0hg) ≤ CH(hg)

for some constant C depending only on D. �

The result we need is that the intricacy of a point is not increased too

much by application of an algebraic function, under suitable conditions. By

a (complex) algebraic function on C we will mean a function φ(x) defined

and univalent on some connected open domain in C formed by removing some

branch points and cuts (which we can always assume are line segements be-

tween branch points or rays joining a branch point to ∞) that satisfies an
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algebraic relation P (x, φ(x)) = 0, where P ∈ C[X][Y ] is nonconstant in Y and

absolutely irreducible over C(X).

5.3. Proposition. Let X = Γ\H. Suppose that φ is an algebraic function

on C, real-valued on R. Let P ∈ R, and B an open disk centred at P . Suppose

that the closure of B is at positive distance from any components of {τ ∈ C :

φ(τ) ∈ R} other than R, and from the poles of φ. Suppose that φ(B ∩H) ⊂ H.

Suppose that D is a fundamental domain for ΓX of the form gFX , g ∈ Γ, and

that τ ∈ B. There is a univariate polynomial P = PX,B,τ,φ with positive real

coefficients with the following property. If g ∈ ΓX is such that gτ ⊂ B, then

ID(φ(gτ)) ≤ PX,B,τ,φ(H(g)).

Proof. Since FX is a finite union of gFC for some fixed g ∈ ΓC, and the

conclusion is easily seen to be true for gF, for a fixed g, if it is true for F, it

suffices to assume that X = C and D = F = FC. We have then

IF(φ(gτ)) ≤ PF

Ç
|φ(gτ)|, 1

Im(φ(gτ))

å
.

Since B is away from the poles of φ, we see that φ is bounded on B, and so

φ(gτ) is bounded by a quantity depending on B and φ under our assumptions.

Since B is away from all loci apart from R where φ is real, we have that the

zero-set of Im(φ(z)) in the closure B is contained in the zero set of Im(z) on B.

Both functions Im(φ(z)) and Im(z) are continuous on B. Since the structure

of semi-algebraic sets is polynomially bounded, we can apply the Lojasiewicz

inequality [30, 4.14(2)] to get positive constants C(B,φ), c(B,φ), that

Im(φ(z)) ≥ C
Ä
Im(z)

äc
for z ∈ B.

If g =
(
a b
c d

)
, we see that

1

Im(φ(gτ))
≤ 1

C

Ç
|cτ + d|
Im(τ)

åc
≤ C ′H(g)c

which gives the required form of dependence on H(g). �

The corresponding results when X is an elliptic curve or X = G are more

trivial, but we give the statements we will use later.

5.4. Proposition. Let X = E be an elliptic curve, U = UE = C, and D
a fundamental domain for ΓE of the form gFE , g ∈ ΓE .

1. There is a (linear) polynomial P = PE,D with positive real coefficients

such that, for z ∈ C,

ID(z) ≤ P (|z|).
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2. Suppose Λ is a lattice with E = C/Λ, with a chosen basis, and that

λ ∈ Λ. Let φ be an algebraic function, z ∈ C. There is a polynomial

P = PE,D,λ,z,φ such that, for sufficiently large |t| (depending on Λ (with

its basis), D, φ, z),

ID(φ(z + tλ)) ≤ P (|t|).

Proof. 1. ΓE = Z2 acts by translations by Λ, the identification being

provided by the chosen basis. The size of the element of Z2 required to translate

a given z into the D is evidently bounded by C max{1, |z|} for some suitable

C = C(Λ), where this dependence assumes a choice of basis.

2. By the first part of the proof we have

ID(φ(z + tλ)) ≤ C max{1, |φ(z + tλ)|}.

But |φ(z+λt)| grows polynomially (depending on φ, λ, z) in |t| for large |t|. �

5.5. Proposition. Let X = G, U = UG = C and D a fundamental

domain for ΓG of the form gFG, g ∈ ΓG.

1. There is a (linear) polynomial P = PG,D with real coefficients such that,

for ζ ∈ C,

ID(ζ) ≤ P (|Im(ζ)|).
2. Let φ be an algebraic function and ζ ∈ C. There is a polynomial P =

PG,D,φ,ζ such that, for sufficiently large t (depending on G,D, φ, ζ),

ID(φ(ζ + 2πit)) ≤ P (|t|).

Proof. 1. Now ΓG = Z acting as translations, with 1 ∈ Z acting as

translation by 2πi. For D = FG we then have ID(ζ) ≤ max{1, Im(ζ)/2πi}. For

general D we need only add a bounded quantity to the height.

2. Combine part 1 with the polynomial growth (for sufficiently large |t|)
of the imaginary part of φ(ζ + 2πit). �

We next formalize our notion of “complexity” of a pre-special point. For

a complex quadratic τ ∈ H we have that τ is the root of a unique polynomial

aτ2 + bτ + c with a, b, c ∈ Z, (a, b, c) = 1, a > 0. The discriminant D(τ) of τ is

then the discriminant b2 − 4ac of this polynomial.

5.6. Definition. Let X = Y1×· · ·×Yn×E1×· · ·Em×G`, where n,m, ` ≥ 0,

Yi = Γi\H, and Ei are elliptic curves. Let u = (τ1, . . . , τn, z1, . . . , zm, ζ1, . . . , ζ`)

∈ UX be a pre-special point. Let Di be the discriminant of τi, i = 1, . . . , n, let

T be the order of the image of (z1, . . . , zm) in Cm/Λ1⊕ · · · ⊕Λm and let N be

the order of the image of (ζ1, . . . , ζ`) in (C/2πiZ)`. We define the complexity

of u to be

∆(u) = max(|D1|, . . . , |Dn|, T,N).
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Observe that, given X and a positive B, there are only finitely many

special points of X corresponding to pre-special points u with ∆(u) ≤ B.

5.7. Proposition. Let X = Y1 × · · · × Yn × E1 × · · ·Em × G`. There is

a positive constant cheight(X) such that if u = (τ1, . . . , τn, z1, . . . , zm, ζ1, . . . , ζ`)

∈ FX be a pre-special point. Then

H(u) ≤ cheight(X)∆(u).

Proof. Write τj = uj + ivj , j = 1, . . . , n. Consider some τj , the root of a

quadratic polynomial aτ2 + bτ + c = 0 as above. Since u ∈ FX , we have τj
belongs to one of finitely many gFC, g ∈ SL2(Z). Suppose that τj ∈ FC, which

is equivalent to the triple (a, b, c) being reduced , namely |b| ≤ a ≤ c and b ≥ 0

if a = |b| or a = c. Then

4ac = b2 −D(τj) ≤ ac−D(τj),

whence

3ac ≤ |D(τj)|.

We have

uj =
−b
2a
, vj =

»
|D(τj)|
2a

so that v is a root of the polynomial 4a2v2−|D|. Then, using [13, 1.6.5, 1.6.6],

H(u) ≤ max{b, 2a} ≤ 2a ≤ |D(τj)| ≤ ∆(u),

H(v) ≤ max{4a2, |D(τj)|} ≤ 4|D(τj)|/3 ≤ 2∆(u).

In general, these inequalities hold for some gτ , where g ∈ SL2(Z) are from a

finite set. If gτ satisfies aτ2 + bτ + c = 0, then g−1τ satisfies Aτ2 +Bτ +C = 0

where A,B,C are bounded by some fixed constant multiple (depending on g) of

max(|a|, |b|, |c|). Then the height of τ as a real point is at most some constant

multiple of the height of gτ , and we conclude

H(u), H(v) ≤ cheight(X)∆(u).

Since zj ∈ FE is pre-special we have that the real coordinates of zj are rational

fractions ≤ 1 with denominator T , and hence of height ≤ T ≤ ∆(u). Similarly

for ζj ∈ FG and pre-special, the corresponding real point is rational with height

≤ N ≤ ∆(u). �

It is convenient to record here the results we will use for the lower bound

on the number of conjugates of a special point. This combines results that are

rather deep for the cases X = C and X = E, with the elementary one required

for the case X = G.
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5.8. Proposition. Let X = Y1 × · · · × Yn × E1 × · · · × Em × G`, where

n,m, ` ≥ 0, Yi = Γi\H, and E1, . . . , Em are elliptic curves defined over Q.

There is a positive constant cdegree(X) such that if u ∈ UX be a pre-special

point, then

[Q(π(u)) : Q] ≥ cdegree(X)∆(u)1/7.

Proof. Write

u = (τ1, . . . , τn, z1, . . . , zm, ζ1, . . . , ζ`).

By the theory of Complex Multiplication (see e.g. [18]) for the equality and

Siegel (see e.g. [39] for the statement for maximal orders, [51] for the general

version) for the inequality we have, if ν > 0,

[Q(j(τi)) : Q] = h(D(τi)) ≥ cSiegel(ν)|D(τi)|1/2−ν .

The modular curve Yi is some finite cover of C, and we get a similar lower

bound up some constant depending on Yi.

By the results of Masser [54] we have (effectively), if Pi ∈ Ei is the image

of zi, that

[Q(Pi) : Q] ≥ c(Ei)T 1/7.

Finally, according to [41, Th. 327] we have (effectively)

φ(n)

n1−ν →∞

for every positive ν. �

5.9. Remarks. 1. In the proof of Proposition 5.8 we have appealed to

Siegel’s lower bounds [84] for class numbers of imaginary quadratic fields. In

fact any bound of the form h(D) ≥ c|D|δ with c, δ > 0 would suffice for

the eventual proof of Theorem 1.1. In particular at the cost of replacing the

exponent 1/7 by 1/8 we could use Landau’s [47] bound h(D) ≥ c|D|1/8. This

highlights the fact that the present proof requires only rather weaker bounds

than are afforded by GRH. I thank Peter Sarnak for this observation and the

reference to Landau. Of course Landau’s result is ineffective, and the known

effective lower bounds for h(D) due to Goldfeld-Gross-Zagier (see [39]) are of

the form h(D) ≥ C(log |D|)c while our argument requires a lower bound by a

positive power of |D|.
2. The results of Masser [54] appealed to in 5.8 hold for abelian varieties.

For elliptic curves they have been improved subsequently by Masser [55] and

David [24], and there are alternative bounds available. Masser [54] mentions

results of P. B. Cohen. Ineffectively one has even better results from Serre’s

open image theorem, in the non-CM case, while for CM elliptic curves one

has results of Silverberg [85]. However, for us it suffices to have any positive

exponent of ∆(u) (even one depending on X would suffice), and since the
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constant is anyway ineffective due to the Landau/Siegel bound, there seems

little point optimizing the exponent at this juncture.

3. Apart from the lower bound for class numbers, the other ingredients of

the lower bound are effective.

6. The algebraic part: preliminaries

In this and the subsequent sections we characterize maximal algebraic

subsets of

Z = π−1(V ) ⊂ U = UX .

It is convenient to do this first (in §§6–8) for X of the special form X =

Cn × E1 × · · · × Em × G`. The same result for X of the more general form

required in Theorem 1.1 is deduced in Section 9.

We have defined the map π : U → X by means of Weierstrass ℘-functions

for the elliptic curve factors. These are meromorphic, but the maps may be

alternatively given by entire (theta-)functions. Then Z ⊂ U is a complex

analytic subset of U (i.e. it is defined in a neighbourhood of each point P ∈ U
by the vanishing of a finite number of regular functions depending on P ), indeed

it is defined by the vanishing of finitely many polynomials in the coordinate

functions of π, which may be taken to be regular on U (the j-function has a

natural boundary on the real line).

First we will observe that, in studying Zalg, we may reduce to considering

complex algebraic sets rather than real semi-algebraic subsets. Suppose that

W is an irreducible complex algebraic set in Cn+m+`. Then W ∩U consists, as

a complex analytic set, of finitely many connected components (since W ∩U is

semi-algebraic as a real set), and (since U is open in Cn+m+`) these components

are then complex analytic subsets of U all having the same dimension as W .

If Y is such a component, and Z contains the intersection of Y with any open

disc, then, by analytic continuation, Y ⊂ Z. The union of such components

we call the complex algebraic part of Z.

6.1. Definition. Let U be an open domain in CM that is semi-algebraic

considered as a subset of R2M , and let Z ⊂ U be a complex analytic subset.

We define a complex algebraic component of Z to be a connected component Y

of positive dimension of W ∩U with Y ⊂ Z, where W is an irreducible closed

complex algebraic set W ⊂ CM . The complex algebraic part of Z, denoted

Zca, is the union of complex algebraic components of Z.

Let again Z = π−1(V ) ⊂ U = UX , where X is as above. With the

real coordinates described in Section 4 we have Z ⊂ U ⊂ RN , where N =

2(n+m+ `) and we have then the algebraic part Zalg as defined in Section 3.
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6.2. Proposition. Let X = Cn×E1×· · ·×Em×G`, V ⊂ X a subvariety,

and Z = π−1(V ) ⊂ U = UX . Then Zalg = Zca.

Proof. This follows from Lemma 2.1 of [68] as the complex coordinates

are polynomial functions of the real coordinates on U . �

To study Zalg for Z as in Proposition 6.2 we may thus study its complex

algebraic components. We will call such a component Ymaximal if it is not

contained in a complex algebraic component Y ′ of larger dimension. Every

constituent component Y of Zca is contained in some maximal component. The

main result of this and the following two sections describes the possible form

of such maximal algebraic components of Z = π−1(V ): They are components

of the inverse image of a subvariety of V ⊂ X that is almost special.

6.3. Definition. 1. A quasi-special subvariety of X = Cn is a subvariety

as set out in Definition 1.2.1 except that the points ji for i ∈ S0 need not be

special.

2. A quasi-special subvariety of X = A, an abelian variety, is a translate

of an abelian subvariety (i.e. by a not-necessarily special point).

3. A quasi-special subvariety of X = G` is a translate of an absolutely

irreducible algebraic subgroup.

4. A quasi-special subvariety of X = Cn × A × G` is a subvariety of the

form Y ×(a+B)×gH, where Y is a special subvariety of Cn, a+B is a special

subvariety of A, and gH is a special subvariety of G.

6.4. Remark. For X = Cn the notion of quasi-special subvariety coincides

with the notion of totally geodesic subvariety studied for general Shimura va-

rieties by Moonen [59].

The following definitions are given for more general X than those un-

der consideration in the present section, so that we have them in hand when

considering more general X in Sections 9–13.

6.5. Definition. (The use of the word “basic” here adapts the usage in

[100].)

1. Let n ≥ 0. Let S0 ∪ S1 ∪ · · · ∪ Sk be a disjoint partition of {1, . . . , n}
with k ≥ 0 and S0 only permitted to be empty. Let hi ∈ H for each i ∈ S0

be an arbitrary point. Let si be the smallest element of Si for each i ≥ 1 and

for each j ∈ Si, j 6= si, choose an element gij ∈ GL2(Q)+. A quasi-pre-special

subvariety of Hn is a subvariety

N={(τ1, . . . , τn)∈Hn : τi = hi, i ∈ S0, τj = gij(τsi), i = 1, . . . , k, j ∈ Si, j 6= si}

for some choice of data Si, hi, gij as indicated. If S0 is empty, then we will call

the corresponding quasi-special subvariety basic. The data {1, . . . ,m}−S0, gij
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determine a basic quasi-special subvariety of the product of upper half-planes

in the variables indexed by {1, . . . , n} − S0, and we will say that the quasi-

special subvariety N with data Si, hi, gij is the translate by hi, i ∈ S0 of the

basic quasi-special subvariety N0 (in the smaller set of coordinates) specified

by {1, . . . ,m} − S0, gij .

2. Let Λ be a lattice in Cm satisfying the Riemann relations, so that

Cm/Λ is an abelian variety. A quasi-pre-special subvariety of Cm (with respect

to Λ) is a subvariety of the form b+L, where L is a linear subspace of Cm (i.e.

through the origin) in which L∩Λ is a lattice (i.e. of maximal rank 2 dimC L),

and b = (b1, . . . , bm) ∈ Cm. Thus L/(L∩Λ) is an abelian subvariety of Cm/Λ,

and b+L is its translate by the (arbitrary) point b. If b+L = L, then we call

the corresponding quasi-pre-special subvariety basic, and we will refer to an

arbitrary quasi-pre-special subvariety b + L as the translate by b of the basic

quasi-pre-special subvariety L.

3. Let ` ≥ 0. A quasi-pre-special subvariety in C` (with respect to exp) is

a subvariety of the form

b+ L,

where L is a linear subspace defined over Q, and b ∈ C` is arbitrary. If

b + L = L, then we call the corresponding quasi-pre-special subvariety basic,

and we refer to a quasi-pre-special subvariety b+L as the translate by b of the

basic quasi-pre-special subvarietyL.

4. Let n, ` ≥ 0 and A an abelian variety of dimension m ≥ 0. Let

X = Y1 × · · · × Yn × A×G`, where Yi = Γi\H. A quasi-pre-special subvariety

for X in Hn × Cm × C` is a subvariety of the form

N × (b+ L)× (c+M),

where N, b+L, c+M are quasi-pre-special subvarieties of Hn,Cm, (with respect

to Λ), and C` (with respect to exp) respectively. If N is the translate by

hi, i ∈ S0 of the basic quasi-pre-special subvariety N0, then we will refer to

N × (b + L) × (c + M) as the translate by (hi, i ∈ S0, b, c) of the basic quasi-

pre-special subvariety N0 × L×M .

6.6. Definition. With the same conditions as in Definition 6.5, if the trans-

lation data hi, i ∈ S0 in 6.5.1 (or if S0 is empty), a in 6.5.2, b in 6.5.3 and all

these in 6.5.4 are pre-special points, we call the subvariety pre-special . (So a

basic quasi-pre-special subvariety is always pre-special.)

6.7. Definition. Let n, ` ≥ 0 and A an abelian variety of dimension m ≥ 0.

Let X = Y1 × · · · × Yn × A×G`, where Yi = Γi\H. A special subvariety of X

is the image under π : UX → X of a pre-special subvariety of UX .
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According to [34, 3.1], this definition of a special subvariety coincides with

the one given in Definition 1.3 when X = Cn ×A×G`.

If Z contains an algebraic component Y , then, by Γ-periodicity, it contains

all its translates gY under Γ. The union ∪ggY is not generally algebraic as it

has, generally, infinitely many components (the exception is if Y = U) and we

will refer to it as a locus. Thus the inverse image of a quasi-special subvariety

of X is a quasi-pre-special locus, and this in turn is the union of translates

under Γ of a quasi-pre-special subvariety as above. (In my earlier paper [68], I

called such subvarieties “quasi-special” but here I prefer to include the “-pre-”

for the objects in U corresponding to objects in X.) The preimage in U of a

special subvariety in X is a pre-special locus.

The following is our key result identifying the possible maximal algebraic

components of Z.

6.8. Theorem. Let Y ⊂ Z be a maximal complex algebraic component.

Then Y is quasi-pre-special.

The proof of this theorem is carried out over the next two sections. As it

is somewhat involved in detail, we sketch the main idea to highlight our second

use of the Pila-Wilkie result (in the form of Theorem 3.6).

Suppose that Y is a complex algebraic component of Z. Since Z is Γ-invar-

iant, we see that

gY ⊂ Z
for any g ∈ Γ, and therefore

gY ∩ F ⊂ Z,
though gY ∩ F will be empty for “most” g. Now Γ is a discrete arithmetic

subgroup of some real algebraic group G and, with the normalization we have

adopted, such g are integer points of a semi-algebraic (hence definable) set G.

Let Y be a maximal complex algebraic component of Z. The proof proceeds

by considering the set of g ∈ G such that gY ∩ Z has the full dimension of

Y . (Actually we will consider g ∈ H for certain subsets H of G.) This is a

definable set, and we show that, as a consequence of the results on intricacy in

Section 5, it contains “many” rational points — specifically it contains at least

� T δ integer points up to height T for some fixed δ > 0 and implied constant.

Therefore, by Theorem 3.6, it contains a positive dimensional semi-algebraic

subset. Such an algebraic set of translates of Y contained in Z gives one of two

possible outcomes. If Y is not invariant as a set under these translations, then

we get an algebraic subset of Z containing Y but of strictly larger dimension,

contradicting the assumption that Y is maximal. Otherwise Y is invariant as

a set under an algebraic family of translations in G, which results in suitable

identities being satisfied by the algebraic functions parametrizing Y . Enough

such identities entail Y being of the sought form.
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In the next section we isolate some technical results that we require to

carry out the plan sketched above. Theorem 6.8 is then proved in Section 8.

6.9. Remark. In [71], the corresponding result ([71, Th. 2.1]) is also proved

using o-minimality in the form of Gabrielov’s theorem for subanalytic sets (ap-

pealed to in [71, Lemma 2.2]). In [56] and [68], which use upper bounds on

rational points from o-minimality in the same strategy of opposing them with

Galois lower bounds, o-minimality is not used in obtaining the analogous re-

sults characterizing the algebraic part. In [68] these are obtained by elementary

arguments and in [56] by monodromy. As said in Section 1, Theorem 6.8 is

equivalent to a suitable Ax-Lindemann-Weierstrass result which, apart from

the modular curve aspects, follows from known Ax-Schanuel results [5], [20],

[45], proved by differential-algebraic methods.

7. The algebraic part: technicalities

Families containing maximal algebraic components. Let X = Cn × E1 ×
· · ·×Em×G` with U = UX = Hn×Cm×C` and G = GX as previously defined

in 4.1. Suppose V ⊂ X and Z = π−1(V ) ⊂ U , and W an irreducible algebraic

set in Cn+m+` of dimension w. We wish to study maximal complex algebraic

components of Z. We begin with some observations. If Y is a component of

W ∩U , then, for any g ∈ G, gY is a component of gW ∩U . If Y is a complex

algebraic component of Z, then, as already noted, so is gY for any g ∈ Γ.

Moreover, if Y is maximal, then gY is also maximal for any g ∈ Γ.

In our proof of Theorem 6.8, we will assume that Y is a maximal complex

algebraic component and we will show that a translate gY , for some g ∈ Γ,

lies in a semi-algebraic family of complex algebraic components of Z. We will

have need of the following result showing that a maximal algebraic component

cannot be a fibre in a nonconstant family of components.

We keep all the above notation, but one may observe that Proposition 7.1

holds under the weaker assumption that Z is a complex analytic subset of U ,

which need not be of the form π−1(V ) or even Γ-invariant.

7.1. Proposition. Suppose that W is an irreducible closed algebraic sub-

set of Cn+m+` of dimension w and that Y is a component of W ∩ U . Let g :

(−1, 1)→ G be a semialgebraic map which is regular (analytic) for t ∈ (−1, 1).

Suppose that g(t)Y ⊂ Z for all t ∈ (−1, 1) and that g(0)Y is a maximal com-

plex algebraic component of Z . Then g(t)Y = Y for all t ∈ (−1, 1).

Proof. Suppose P ∈ Y . Then g(t)P ∈ g(t)Y ⊂ Z for all t ∈ (−1, 1). The

map t 7→ g(t)P ∈ U extends to a complex algebraic map on some complex

neighbourhood of 0, and since Z is analytic we have that g(t)P ∈ Z for such

complex t. If we do not have g(t)Y = g(0)Y for all t ∈ (−1, 1), then there is a
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point P ∈ Y and some t ∈ (−1, 1) such that g(t)P does not belong to g(0)Y ,

and hence (by analyticity) g(t)P ∈ g(0)Y for only finitely many t in some

complex neighbourhood of 0. We can take a suitable complex neighbourhood

of t = 0 so that g(t)P does not belong to g(0)Y except for t = 0. Then

for some equation F = 0 defining Y we have that F (g(t)P )/tp is nonzero

in a complex neighbourhood of t = 0 for some positive integer p, and hence

there is a neighbourhood D of P and a complex neighbourhood of t = 0

such that, for all Q ∈ D ∩ Y , and t in the neighbourhood, g(t)Q is not in

g(0)Y . Therefore the union of g(t)(D ∩ Y ) contains a complex algebraic set

of dimension w + 1 contained in Z. Then Z contains a complex algebraic

component Y ′ of dimension w + 1 containing Y , contradicting the hypothesis

that Y was maximal. �

7.2. Proposition. Retaining all the hypotheses of Proposition 7.1, sup-

pose that x1, . . . , xw is a subset of the variables

{τ1, . . . , τn, z1, . . . , zm, ζ1, . . . , ζ`}

consisting of w distinct elements, with y1, . . . , yn+m+`−w the complementary

set of variables. Let us write, for t ∈ (−1, 1),

g(t) = (g1(t), . . . , gw(t), h1(t), . . . , hn+m+`−w(t)) ∈ G

with respect to the variables (x1, . . . , xw, y1, . . . , yn+m+`−w) so that each gi(t),

hi(t) is an element of SL2(R),R2, or R according as xi, yj is a τ -variable or a

z-variable, or a ζ-variable. Suppose that g(t)Y contains the graph

y = φ(x), x = (x1, . . . , xw), y = (y1, . . . , yn+m+`)

given by

yj = hj(t)φj(g
−1
1 (t)x1, . . . , g

−1
w (t)xw), j = 1, . . . , n+m+ `,

where φj are algebraic functions, for (x1, . . . , xw) ∈ D, where D is the product

of some open disk in each variable. Then each of the functions

hj(t)φj(g1(t)x1, . . . , gw(t)xw)

is independent of t.

Proof. Under the hypotheses of Proposition 7.1, the set g(t)Y = g(0)Y for

all t. For a given choice of x1, . . . , xw there are some finite number of points

(x1, . . . , xw, y1, . . . , yn+m+`−w) belonging to g(0)Y , and so as t varies the point

(x1, . . . , xw, y1, . . . , yn+m+`−w, z) with

yj = hj(t)φj(g1(t)x1, . . . , gw(t)xw)

varies over a finite set. Since t 7→ g(t) is smooth, it is continuous. Away from

some lower-dimensional set where the algebraic functions φj may be discon-

tinuous, the yj are constant as t varies and equal the value they take at t = 0.
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So the functions are locally constant near t = 0 on some dense set, and hence,

being algebraic, are constant identically. �

Algebraic functions satisfying identities. Recall our convention on complex

algebraic functions above Proposition 5.3.

7.3. Proposition. Let g, h ∈ SL2(R) and suppose x0, x1 ∈ C with g(x0) =

x0 and x1 6= x0. Let φ be an algebraic function of degree ≤ k, with φ(gx) =

hφ(x) on some nonempty connected open domain D ⊂ C. Suppose φ is not

branched at x0, g
−1(x1), x1, g(x1), g2(x1), . . . gk(x1), and that φ(x1) = φ(x0).

Then either φ is constant or x1 is preperiodic under g (with orbit of length

≤ k).

Proof. We can connect x0, x1 by a path avoiding the branch points. By

changing the domain on which φ is defined (introducing suitable branch cuts

that avoid the path connecting x0, x1), we can assume that φ(x) and φ(gx) are

single valued on a domain containing x0, x1, g(x1), . . . , gk(x1), that φ(x0) =

φ(x1), and the relation φ(gx) = hφ(x) holds. Then

φ(gx1) = hφ(x1) = hφ(x0) = φ(gx0) = φ(x0),

and so inductively φ(gnx1) = φ(x0) for n = 1, 2, . . . , k. If φ is nonconstant,

then it is at most k-to-one, and so the points x1, g(x1) · · · , gk(x1) cannot be

distinct. �

7.4. Proposition. Let φ be an algebraic function. Let gn, hn be elements

of SL2(R) for n = 1, 2, . . . such that φ(gnx) = hnφ(x) on some nonempty

connected open domain Dn ⊂ C. Suppose the gn are all parabolic with distinct

fixed points. Then φ is constant or one-to-one.

Proof. Suppose that φ is nonconstant and generically k-to-one for some

k ≥ 2. Let b1, . . . , bK be the branch points, including any points where φ is

not k-to-one.

The function φ satisfies some irreducible algebraic relation P (x, φ(x)) = 0.

Let us call an algebraic function ψ satisfying the same algebraic relation as φ

but on a possibly different domain a re-definition of φ. Any such ψ will be

nonconstant and generically k-to-one. There are only finitely many points in

C where φ or any re-definition of it takes the same value as one of φ(gi(bj)) for

i = 1, . . . , k, j = 1, . . . ,K. If x0 is not one of those points, any point x1 with

φ(x1) = φ(x0) is also not one of those points.

Since we have infinitely many gn with distinct fixed points, we can find g =

gn with fixed point x0 and x1 ∈ C such that the hypotheses of Proposition 7.3

are satisfied. This leads to a contradiction as g has no preperiodic points other

than its fixed points. �
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8. The algebraic part: conclusion

8.1. Proof of Theorem 6.8. Suppose that Y is maximal complex algebraic

component of Z = π−1(V ), so that Y is a connected component W ∩ U for

some irreducible algebraic W ⊂ Cn+m+`.

The proof is in several stages, which we separate for the convenience of the

reader. We choose suitable variables to give a parametrization of Y in which

the dependencies between variables of different type occur only in specified

ways. We restrict to a suitable subdomain where the parametrizing functions

are well behaved. We then produce definable subsets R of G such that the

corresponding translates of Y intersect a definable subset of Z in their full

dimension (i.e. of Y ). Due to the periodicity of Z these sets R contain “many”

Γ-translates . Then Theorem 3.6 gives positive dimensional semi-algebraic

families of G-translates of Y contained in Z. Since Y is maximal we derive

identities for the parametrizing functions. These identities force Y to have the

required form.

Choosing suitable variables to parametrize Y . We take variables (τ1, . . . , τn)

for Hn, (z1, . . . , zm) for Cm, and (ζ1, . . . , ζ`) for C .̀ SupposeW is w-dimensional.

We can choose some w variables

(τf,i, zf,j , ζf,k), i = 1, . . . , n′, j = 1, . . . ,m′, k = 1, . . . , `′

(the subscript f stands for “free”) to parametrize Y locally by means of some

algebraic functions

τd,a = φa(τf,i, zf,j , ζf,k), zd,b = θb(τf,i, zf,j , ζf,k), ζd,c = ψc(τf,i, zf,j , ζf,k)

(the subscript d stands for “dependent”), defined on some connected open

subset of

U ′ = Hn′ × Cm
′ × C`

′

on the “free” coordinates. I.e. the functions on W induced by these “free”

variables are a transcendence basis for the function field C(W ).

The variables τ . . . , z . . . , ζ . . . play different roles with respect to the map

π : U → X, but from the point of view of parametrizing Y any choice of

w algebraically independent variables will do. We show that we can make a

choice of independent variables such that certain dependencies are avoided.

Some of the dependant variables may be constant. We exchange some

of the nonconstant dependent variables and free variables using the Steinitz

exchange property (see e.g. [36, Th. A1.1, et seq.]). Suppose u, v, w1, . . . , wk, y

are elements of some field L containing C. We will say that v depends on

u over w1, . . . , wk if v is a nonconstant algebraic element over K(u), where

K = C(w1, . . . , wk). In that case, u depends on v over w1, . . . , wk. Fur-

ther, if y is algebraic over C(w1, . . . , wk, u), then it will be algebraic over
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C(w1, . . . , wk, v). In particular if w1, . . . , wk, u are a transcendence basis of L,

then so are w1, . . . , wk, v.

We use this property to exchange elements in our transcendence basis of

C(W ) given by the “free” variables above. First, if some τd,a depends on some

zf,j , we interchange them. So we may assume that any dependent variables τd,a
are independent of any free variables zf,j . Next, we do the same for dependent

τd,a and free ζf,k, and finally we do the same for dependant zd,b and free ζf,k.

After these interchanges we have Y parametrized, locally on some open

region in the free variables, by algebraic functions

τd,a = φa(τf,i), zd,b = θb(τf,i, zf,j), ζd,c = ψc(τf,i, zf,j , ζf,k).

A suitable subregion of U ′. We can analytically continue these functions

(perhaps with some branching) through a subregion U ′′ of U ′ bounded by the

following loci corresponding to the boundary of U :

Lf,i = {(τf,i, zf,j , ζf,k) : Im(τf,i) = 0}, Ld,a = {(τf,i, zf,j , ζf,k) : Im(τd,a) = 0}.

If the region U ′′ is bounded only by loci Ld,a, then some τd,a depends on

some τf,i (i.e. “over” the others, as before) and we can interchange them (and

renumber the τf,i) to get that U ′′ has some nontrivial boundary in Lf,1. Some

of the loci Ld,a may contain Lf,1, and we will denote by τd,α the variables whose

loci Ld,α contain Ld,a, but other loci Ld,a may not contain Lf,1, and we will

denote those variables τd,β with corresponding loci Ld,β. These Ld,β intersect

Lf,1 in some lower dimensional set, and so a suitable product of open disks

in each variable inside U ′′ can be taken having some boundary in Lf,1 while

being at positive distance from all other boundary components. That is, we

can take a point P ∈ Lf,1 and a product of disks centred at the coordinates of

P such that if U τf,1 is the open half-disk in the τf,1 variable lying in its upper

half-plane, and U τf,i, i 6= 1, U zf,j , U
ζ
f,k are the disks in the other variables, then

U∗ =
∏
i

U τf,i ×
∏
j

U zf,j ×
∏
k

U ζf,k ⊂ U
′′

has a part

∂U τf,1 ∩ {τf,1 : Im(τf,1) = 0} ×
∏
i 6=1

U τf,i ×
∏
j

U zf,j ×
∏
k

U ζf,k

of its boundary that is contained in Lf,1, while all of U∗ is at positive distance

from all the other Lf,i, Ld,β and components of any Ld,α besides Lf,1.

We may further assume (taking smaller discs if need be) that the algebraic

functions φa, θb, ψc are all bounded and univalent on U∗, and we denote the

image regions

V τ
d,a = φa(U

∗), V z
d,b = θb(U

∗), V z
d,c = ψc(U

∗).
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Let us write

Ψ = (φa, a = 1, . . . , θb, b = 1, . . . , ψc, c = 1, . . .)

for the tuple of functions parametrizing Y , and write

Y ∗ = {(u,Ψ(u)) : u ∈ U∗} ⊂ Y

for the graph of the parametrization on the set U∗. The set Y ∗ will play a key

role.

A definable set. We can now take fundamental domains (or finite unions

thereof)

Dτf,1 ⊂ U τf,1,

Dτf,i ⊃ U τf,i, i 6= 1, Dzf,j ⊃ U zf,j , Dζf,j ⊃ U
ζ
f,k.

We have arranged that the algebraic functions parametrizing Y are bounded

on U∗. The τd,α become real on the part of the boundary of U∗ described

above corresponding to Im(τf,1) = 0 while no other τf,i or τd,β do. So for the

image domains we can choose fundamental domains (or finite unions thereof)

with

Dτd,α ⊂ V τ
d,α,

Dτd,β ⊃ V τ
d,β, Dzd,b ⊃ V z

d,b, Dζd,k ⊃ V
ζ
d,c.

Then

D∗ =
∏
i

Dτf,i ×
∏
j

Dzf,j ×
∏
k

Dζf,k ×
∏
α

Dτd,α ×
∏
β

Dτd,β ×
∏
b

Dzd,b ×
∏
c

Dζd,c

is a finite union of fundamental domains for the action of Γ on U ; whence

Z∗ = Z ∩ D∗

is definable.

Definable sets of G translates of Y . The set Y is semi-algebraic, hence

definable. The set U∗ is semi-algebraic, hence definable. Thus Y ∗ is definable

as a graph over the region U∗ in which, crucially, there are infinitely many

fundamental domains for the variable τf,1. (So we restricted further to one of

them to make Z∗ definable.)

Likewise G is definable, and the translations of Y by g ∈ G is given by a

definable subset of G× RN , N = 2(n+m+ `) (the fibre at g ∈ G is gY ). Let

G′ be a definable subset of G, Y ′ a definable subset of Y , Z ′ a definable subset

of Z, and w′ ≥ 0. By the properties in [30, B.10], the set

R(G′, Y ′, Z ′) = {g ∈ G′ : dim(gY ′ ∩ Z ′) = w′}

is a definable set. Note that if Y ′ ⊂ Y has dimension w, then g ∈ R(G′, Y ′, Z ′)

implies that there is a neighbourhood of a regular point of gY contained in Z;

whence by analytic continuation we will have gY ⊂ Z.
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While G, Y are definable in their entireties, it is convenient to work with

subsets of both: on subsets of Y ∗ the parametrization is controlled, while

restricting to different one parameter subsets of G generates different identities.

We consider translates of Y ∗ by certain elements g ∈ G whose elements

we denote by

g = (gτf,i, g
z
f,j , g

ζ
f,k, g

τ
d,a, g

z
d,b, g

ζ
d,c)

acting on the corresponding variables in the obvious way. Put

E = Dτf,1 ×
∏
i 6=1

U τf,i ×
∏
j

Uλf,j ×
∏
k

U zf,k.

Since U τf,1 borders the real τf,1-axis, it contains infinitely many SL2(Z) trans-

lates of Dτf,1. If g ∈ Γ and gE ⊂ U∗, then the graph

Yg,E = {(u,Ψ(gu)) : u ∈ E} ⊂ Y ∗

is contained in Z, and a suitable Γ-translate of the dependent variables will

give a translate (of a part of) Y ∗ into D, which will then be contained in Z∗.

Fix

g0 =

Ç
a b

c d

å
∈ SL2(Z)

and consider

G(g0) =
{
g ∈ G : gτf,1 =

Ç
a b+ ta

c d+ tc

å
, some t ∈ R,

gτf,i = 1, all i 6= 1, gzf,j = gζf,k = 1, all j, k
}
,

with no restriction on the group elements corresponding to the dependent

variables.

We now consider definable sets of the form

R(G(g0), Y ∗, Z∗).

Rational points on R(G(g0), Y ∗, Z∗). Suppose a/c ∈ ∂U τf,1 ∩R. For every

sufficiently large positive t ∈ Z (depending on g0) we have

gf,1Dτf,1 ⊂ U τf,1.

Then

{(τf,i, zf,j , ζf,k,Ψ(gf,1τf,1, τf,i, i 6= 1, zf,j , ζf,k) : (τf,i, zf,j , ζf,k) ∈ E} ⊂ Z

and so also its translation by any element of Γ. We can choose an element of Γ,

trivial on all the free variables, to bring some regular point of the translation

into D∗ — in fact into the interior of the factor of D∗ corresponding to any

nonconstant variable — and moreover by Propositions 5.3, 5.4, and 5.5 we can

do so with an element of height

� tc
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for some positive c, where c and the implied constant depend on the choice

of g0, Y
∗, Z∗, but is independent of t. Such a translate intersects Z∗ in full

dimension.

Therefore, for all large T ,

N(R(G(g0), Y ∗, Z∗), T )� T δ

for some δ > 0 (with a constant depending on g0, Y
∗, Z∗), indeed this holds

for integer points. So, by [70], R(G(g0), Y ∗, Z∗) contains semi-algebraic sets

of positive dimension. Moreover, by Theorem 3.6, for any choice of ε > 0 it

contains such sets that contain at least

� T δ−ε

integer points, all regular. Such sets may have t constant, or variable. We

show that there must be such sets with t variable.

Fix ε = δ/2 say. Then the semi-algebraic subsets have bounded degree

independent of T . Their intersections with the subvariety of G with gτf,1 (i.e. t)

constant have bounded degree, and so the number of singular points on them

is bounded, say by B. Suppose that, for some fixed t, there is a positive di-

mensional semi-algebraic subset of translations of the τd,a, zd,b, ζd,c that brings

{(τf,i, zf,j , ζf,k,Ψ(gf,1τf,1, τf,i, i 6= 1, zf,j , ζf,k) : (τf,i, zf,j , ζf,k) ∈ E}

into D∗ and contains more than B integer points. Then there exists such

containing an integer point as a smooth point of a one-dimensional arc. The

integer translate of Y is maximal, and since the arc gives a family that is

clearly not constant, we contradict the conclusion of Proposition 7.2.

Therefore we may assume that, for all sufficiently large t (depending on

g0, Y
∗, Z∗), there is a connected positive-dimensional semi-algebraic family of

translations of Y ∗ by elements of G(g0) containing arbitrarily many regular

integer points with t varying. The integer (Γ-) translates of Y ∗ are maximal,

so by Proposition 7.2 the corresponding algebraic functions are constant.

Dependent variables τd,β, zd,b, ζd,c. Consider then some τd,β. For large t,

gτf,1Dτf,1 ⊂ U τf,1 and so τd,β = φβ(gf,1τf,1, τf,i) remains in Dτd,β, and there is a

fixed finite set of translations on the τd,β variable that stay inside Dτd,β. By the

constancy of the family, we conclude that

φβ(gf,1τf,1, τf,i)

is constant, so that τd,β is in fact independent of τf,1. The same argument

shows that the zd,b, ζd,c are independent of τf,1.



O-MINIMALITY AND THE ANDRÉ-OORT CONJECTURE FOR Cn 1817

Dependent variables τd,α. Consider now some τd,α. Write gf,1(t) = gf,1.

As t varies, we have some h(t) ∈ SL2(R) varying semialgebraically in t over an

interval I as described above such that

h(t)φα(gf,1(t)τf,1, τf,i)

belongs to some fixed maximal algebraic component corresponding to some

integer t0 ∈ I, where gf,1, h are smooth. Given a choice of τf,i there are only

finitely many τd,α corresponding to points of this component. So

h(t)φα(gf,1(t)τf,1, τf,i) = h(t0)φα(gf,1(t0)τf,1, τf,i)

identically for τf,1 ∈ U τ (where there is no branching of the algebraic func-

tions), and hence identically on some subregion of the τf,1-plane obtained by

removing branch loci.

We now fix the τf,i, i 6= 1; put

g = gf,1(t)gf,1(t0)−1 =

Ç
1− ac(t− t0) a2(t− t0)

−c2(t− t0) 1 + ac(t− t0)

å
,

which is parabolic with fixed point a/c, and h = h(t)−1h(t0) and we find that

φα satisfies
φα(gτ) = hφα(τ)

locally, and hence this relation holds globally by analytic continuation. We

have infinitely many different possible choices for a/c, and so we can apply

Proposition 7.4 to conclude that φα is constant or one-to-one (i.e. under any

choice of cuts). However φα is not constant, therefore it is one-to-one.

Since τf,1 and τd,α depend on each other, we can interchange them, and we

find that φ−1
α is also one-to-one. Then φα is a fractional linear transformation,

and since τd,α is real on the real line for τf,1, we see that (having fixed the

other τf,i) φα ∈ SL2(R).

Now as the τf,i, i 6= 1 vary, φα is an element of SL2(R) that depends

complex algebraically on τf,i, i 6= 1. Therefore it is constant (consider e.g.

the images of 0, 1,∞, which must be real numbers varying algebraically in the

complex parameters τf,i, i 6= 1).

Therefore φα depends on τf,1 alone and is an element of SL2(R). We

conclude that the τd,β depend on τf,1 alone, and by elements of SL2(R), while

the τd,α are independent of τf,1. We may repeat the above arguments to show

that all the dependencies among the τ -variables are of this form, and so we

may take U ′′ = U ′, and for the parametrization of Y we may allow each τf,i to

range over its upper half-plane.

From SL2(R) to GL2(Q)+. We can repeat our argument above for any

nonconstant φα in the neighbourhood of any point on the real axis to show

that
φαgφ

−1
α = λh, λ ∈ R, h ∈ GL2(Q)+
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for suitable matrices g as above with integer entries: namely for any g0 ∈
SL2(Z) (i.e. with any a/c) and for at least � T δ/2 choices of s = t− t0 ∈ Z up

to T . We show elementarily that this implies that the φα, up to scaling, are in

fact in GL2(Q)+, i.e. that the ratio of any two entries of φα is rational.

Write φα =
(
A B
C D

)
, AD − BC = 1. Taking a = 1, c = 0 in g we find

that
Ä

1−sAC sA2

−sC2 1+sAC

ä
is of the form λh, λ ∈ R, h ∈ GL2(Q)+ for suitable choices

of s as above and so the ratio of any two entries is rational. If C = 0, we

find that A2 ∈ Q and then AD = 1 implies A/D ∈ Q. Similarly, A = 0

leads to B/C ∈ Q. Otherwise (if A,C 6= 0) we see that A2/C2 ∈ Q and

(1 − sAC)/sC2 ∈ Q giving A/C ∈ Q. Taking a = 0, c = 1 in g we find thatÄ
1−sBD sB2

−sD2 1+sBD

ä
is of the form λh, λ ∈ R, h ∈ GL2(Q)+. Now B = 0 leads

to A/D ∈ Q and D = 0 leads to B/C ∈ Q, otherwise (B,D 6= 0) we get

B/D ∈ Q.

Suppose C = 0, so that A/D ∈ Q. If B = 0, then A/D ∈ Q and φα
has the required form. Having D = 0 is excluded by AD − BC = 1, and

B,D 6= 0 gives B/D ∈ Q and φα is again of the required form. Similarly, if

any of A,B,D = 0, we conclude that φα has the required form.

Therefore we may assume A,B,C,D 6= 0, so that C/A = q ∈ Q, D/B =

r ∈ Q and φα =
Ä

1 α
q rα

ä
, up to scaling, with r 6= q. Then ψ =

Ä
A′ B′

C′ D′

ä
=Ä

1 0
−q 1

ä
φα =

Ä
1 α
0 (r−q)α

ä
has the same property as φα (i.e. ψgψ−1 = λh, λ ∈

R, h ∈ GL2(Q)+ for the same matrices g), but now C ′ = 0 and we conclude as

above that ψ, and hence φα, has the required form.

This shows that the τ -variables have the required form of dependencies,

and we have also shown that the z-variables and ζ-variables do not depend on

the τ -variables.

The zf,j dependencies. Next we consider the zf,j variables, considering in

particular dependencies on zf,1 say. Here we will just consider the intersection

of translates of Y itself (definable) with Z = Z ∩ FX . There being no τ

dependencies, we can suppress the τ variables. We take bounded disks

U zf,j , U ζf,k

such that the algebraic functions parametrizing Y are univalent and bounded

on the product

U [ =
∏
j

U zf,j ×
∏
k

U ζf,k.

We consider now translations of Y . Fix an element λ1 of the period

lattice Λ1 = Z ⊕ Zτ1 of E1. So ΓE1 = Z ⊕ Z and let sf,1 be element of ΓE1

corresponding to translation by λ1. Fixing the other free variables zf,j , j 6= 1,

ζf,k, the algebraic functions can all be defined univalently for zf,1 + λ1t for
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sufficiently large t. So for large integer t we have{
(zf,1 + tλ1, zf,j , ζf,k, θd,b(zf,1 + tλ1, zf,j , ζf,k),

ψd,c(zf,1 + tλ1, zf,j , ζf,k) : (zf,1, zf,j , ζf,k) ∈ U [
}
⊂ Z

and therefore, by the ΓX - invariance of Z,{
(zf,j , ζf,k, θd,b(zf,1 + tλ1, zf,j , λf,k)

−λd,b, ψd,c(zf,1 + tλ1, zf,j , λf,k)− kd,c2πi : (zf,j , ζf,k) ∈ U [
}
⊂ Z

for any λd,b ∈ Λd,b and kd,c ∈ Z. Set

G(λ1) =
{
g ∈ G : gzf,1 = tsf,1, g

z
f,j = 1, j 6= 1, gλf,c = 1

}
with no restriction on the group elements corresponding to the dependent

variables. Put

R(G(λ1), Y, Z) = {g ∈ G(λ1) : dim(gY ∩ Z) = w}.

Then R(G(λ1), Y, Z) is definable, and by Proposition 5.4 contains an integer

point of size at most � tc for every large integer t, where c and the implied

constant depend on λ1, U
[. Therefore,

N(R(G(λ1), Y, Z), T )� T δ

for some positive δ, and R(G(λ1), Y, Z) contains connected semi-algebraic sub-

sets of positive dimension. As before, if, for a fixed t, there is a positive-

dimensional set of translations of the dependent variables with full dimensional

intersection with Z, then there is one-dimensional such family with a smooth

integer point, and this contradicts the maximality of Y . So we may assume

that the semi-algebraic subsets are curves with varying t, and that, given ε > 0,

there exist such curves containing� T δ−ε regular integer points for all large T .

Consider some dependent z variable zd,b. We then have identities of the

form (suppressing the fixed variables)

θd,b(zf,1 + tλ1)− θd,b(zf,1 + t0λ1) = λd,b(t, t0),

where λd,b(t, t0) is a semi-algebraic function, valid for intervals of t contain-

ing � T δ−ε integers t, t0 for which λd,b(t, t0) is in the period lattice. Taking

derivatives with respect to zf,1, the algebraic function with a period must be

constant, so that

θd,b(zf,1) = qzf,1 + b

for some q, b ∈ C. Further, the existence of integer points t, t0 for which such

an identity holds implies that, for suitable nonzero integer N , Nqλ1 ∈ Λd,b.
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Since we can repeat this argument with any λ1 ∈ Λf,1 we see that, for suitable

nonzero integer N ,

NqΛf,1 ⊂ Λd,b.

Now as we vary the other free variables, such q cannot vary continuously, and

we see that

θd,b(zf,1) = qzf,1 + b(zf,j , j 6= 1).

Repeating the argument with the other variables shows that

θd,b(zf,j) =
∑
j

qjzf,j + b,

where b ∈ C is independent of all the variables, and, for suitable nonzero

integer Nj ,

NjqjΛf,j ⊂ Λd,b.

Such a locus is then quasi-special.

If we consider now the dependence of one of the ζd,c variables on one of

the zf,j variables (the others being fixed), then we find that such dependencies

must also be linear of the form

ψd,c = qzf,j + b,

where q, b ∈ C and

NqΛf,j ⊂ 2πiZ
for some nonzero integer N . This is however impossible for nonzero q, and we

find that the ζd,c are independent of the zf,j .

The ζf,j dependencies. Finally we consider the dependence of the ζd,b on

the ζf,j . These must again, by similar arguments, be linear and of the form

ζd,c =
∑
k

qkζf,k + b,

where qk ∈ Q. Thus Y is quasi-pre-special, as required. �

In fact we can prove a more general form of Theorem 6.8. This is not

needed for proving Theorem 1.1 but gives a natural extension Theorem 9.6

of Theorem 1.6 which shows that, under the hypotheses of Theorem 1.6, the

functions are algebraically independent over the underlying algebraic function

field C(W ). We consider varieties

X = Cn × E1 × · · · × Em ×Gm × Ck

(with the elliptic curves Ei over C) uniformized by

UX = Hn × Cm × C` × Ck

in which the uniformization π : UX → X is trivial on the variables t1, . . . , tk
of Ck. (So ΓCk is trivial, the fundamental domain FCk = Ck, and algebraic

subvarieties of FCk are definable.) A quasi-pre-special component of UX is
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now a cartesian product of quasi-pre-special components in the factors where

a quasi-pre-special component of Ck is simply an irreducible algebraic subva-

riety. We then have the following result, which leads to a stronger version of

Theorem 1.6 stated as Section 9.3 below.

8.2. Theorem. With X and UX as above, let V ⊂ X be a subvariety and

Z = π−1(V ) ⊂ UX . Suppose that Y is a maximal complex algebraic component

of Z . Then Y is quasi-pre-special.

Proof. We follow the same procedure as in the proof of Theorem 6.8.

We parametrize Y by means of some algebraic functions on some choice of

free variables. We can rearrange the variables so that no dependant τi, zi, ζi
depends on any free tj . The proof now shows that the tj are in fact independent

of all the other variables. �

9. Ax-Lindemann-Weierstrass

We deduce the equivalence of the functional algebraic independence state-

ment Theorem 1.6 to Theorem 6.8, and establish both in more general form.

We consider now X of the more general form required for Theorem 1.1, namely

X = Y1 × · · · × Yn × E1 × · · · × Em ×G`,

where n,m, ` ≥ 0, Yi = Γi\H, i = 1, . . . , n are modular curves and Ej are

elliptic curves defined over C. Let U = UX and π : U → X.

9.1. Theorem. Let V ⊂ X and Z = π−1(V ) ⊂ U . Let Y be a maximal

complex algebraic component of Z . Then Y is geodesic.

9.2. Theorem. Let W be an irreducible algebraic subvariety of Cn+m+`

such that W ∩ U 6= ∅. If the (locally defined) functions

τ1, . . . , τν , z1, . . . , zµ, ζ1, . . . , ζλ

in C(W ) are geodesically independent, then π(W ) is Zariski-dense in Y1×· · ·×
Yν × E1 × · · · × Eµ ×Gλ.

Let us first observe the equivalence of these two statements.

9.3. Proof of Theorem 9.2 from Theorem 9.1. We prove the contrapositive

statement. Suppose that W ⊂ Cν+µ+λ is an irreducible algebraic variety with

W ∩U 6= ∅. Suppose that π(W ) is not Zariski dense in X. Then it is contained

in some algebraic subvariety V ⊂ X, V 6= X, where V is defined by some

equation on the images of the indicated variables only (i.e. V is a cylinder

on these variables). Then W ∩ U is contained in some maximal algebraic

component Y of Z = π−1(V ) with Y 6= U . We have that Y is also a cylinder

on the indicated variables, and is quasi-pre-special by Theorem 9.1. So Y
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is a cylinder on a product of quasi-pre-special subvarieties of Hν , Cµ, Cλ,

at least one of which is proper. If the quasi-pre-special component of Hν is

proper, then we have either some τi is constant, or some relation τa = gτb
holding with a 6= b and g ∈ GL2(Q)+, so that the τi are not geodesically

independent. If the quasi-pre-special component of Cµ is proper, then the

functions zi satisfy nontrivial linear relations as in Definition 1.5.2 and are not

geodesically independent. If the quasi-pre-special component of Cλ is proper,

then the functions ζi satisfy nontrivial linear relations as in Definition 1.5.3

and are not geodescially independent . So the functions are not geodesically

independent �

9.4. Proof of Theorem 9.1 from Theorem 9.2. Suppose V ⊂ X, Z =

π−1(V ) and Y a maximal complex algebraic component. We show, assuming

Theorem 9.2, that Y is quasi-pre-special. Let W be the Zariski closure of Y

in Cn+m+`, which is then an irreducible algebraic variety with a nonempty

intersection with U . Take a subset of

τ1, . . . , τn, z1, . . . , zm, ζ1, . . . , ζ`

maximal with the property that the restriction of π to the factors corresponding

to these variables is Zariski dense in the corresponding product of modular

curves, elliptic curves and linear tori. By Theorem 9.2, each of the remaining

τα is either constant or is related by an element of GL2(Q)+ to one of the τa.

Likewise, each of the remaining zβ, ζγ are dependent on the zb, ζc respectively

in the manner prescribed in Definition 1.5. Thus V contains the quasi-special

variety T defined by these equations on the selected maximally algebraically

independent coordinates, and W is contained in a component of π−1(T ). Since

Y is maximal, it coincides with this component . �

9.5. Proof of Theorems 9.2 and 9.1. In proving Theorem 6.8 we have es-

tablished Theorem 9.1 in the case where each modular curve is C = SL2(Z)\H.

By 9.3 above we conclude then Theorem 9.2 holds in such a situation, i.e., that

Theorem 1.6 holds. Now we establish Theorem 9.2 in general simply by field

theory, as every modular function is algebraically dependent on j. Suppose

X = Y1 × . . .× Yν × E1 × . . .× Eµ ×Gλ

and W as in the hypotheses of Theorem 9.2 with the images of the coordinate

functions in C(W ) geodesically independent. Then the corresponding

j(τ1), . . . , j(τν), ℘1(z1), . . . , ℘µ(zµ), exp(ζ1), . . . , exp(ζλ)

are algebraically independent (over C), and this set of functions has transcen-

dence degree ν + µ + λ over C. However this set of functions is algebraically

dependent (over C) on the coordinate functions of π : U → X, which must
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then have the same transcendence degree (the maximum possible), and since

X is irreducible, the image of W in X is Zariski dense. �

Using Theorem 8.2 in place of Theorem 6.8 we get a more general version of

Theorem 1.6. With X = Cn×E1×. . .×Em×G`×Ck and UX as in Theorem 8.2,

we take t1, . . . , tk for the variables in Ck and ti their images in C(W ) for some

irreducible subvariety W ⊂ Cn+m+`+k. Extending Definition 1.5 we will say

that

τ1, . . . , τν , z1, . . . , zµ, ζ1, . . . , ζλ, t1, . . . , tκ

(where 0 ≤ κ ≤ k) are geodesically independent if the τi, zi, ζi are geodesically

independent as previously (i.e. as in Definition 1.5) and, in addition, the ti are

algebraically independent over C.

9.6. Theorem. With the notation as above (and W ∩ UX 6= ∅), if

τ1, . . . , τν , z1, . . . , zµ, ζ1, . . . , ζλ, t1, . . . , tκ

in C(W ) are geodesically independent then the functions

j(τ1), . . . , j(τν), ℘1(z1), . . . , ℘µ(zµ), exp(ζ1), . . . , exp(ζλ), t1, . . . , tκ

on W ∩ UX are algebraically independent over C.

Proof. This follows exactly the deduction of Theorem 1.6 from Theo-

rem 6.8 in Theorem 9.1 above. �

We can take additional variables ti that are set equal to any of the τj , zj , ζj
whose images in C(W ) are algebraically independent of t1, . . . , tκ over C, giving

(assuming geodesic independence) the algebraic independence of the functions

j(τa), ℘b(zb), exp(ζc) over the algebraic function field (over C) generated by

their arguments. The corresponding statement can be proved for modular

functions. Following 9.4 shows that Theorem 8.2 may also be deduced from

Theorem 9.6, and so these statements are essentially equivalent.

Note added in revision. In forthcoming work by the author the conclu-

sion of Theorem 9.6 is strengthened to include the algebraic independence of

j′(τ1), . . . , j′(τν) and j′′(τ1), . . . , j′′(τν) in addition to the exhibited functions.

This is the natural strengthening, given that j, j′, j′′ : H→ C are algebraically

independent while j′′′ ∈ Q(j, j′, j′′); see [53], [11].

10. Basic pre-special components

Here we show that, given V ⊂ X as in Theorem 1.1, there are only

a finite number of basic quasi-pre-special loci that have a translate that is

a maximal quasi-pre-special locus contained in Z. This is evidently implied

by Theorem 1.1, and though much weaker it enables an inductive proof of

Theorem 1.1. As observed in [71], for abelian varieties this follows by relatively



1824 JONATHAN PILA

elementary considerations given in [17, Lemma 2]. Our argument is also quite

elementary, but uses o-minimality. The most arduous part is spelling out the

required new definition. The argument hinges on the simple observation that

a countable definable set is a finite set , and hence a definable set all of whose

points are rational (or even algebraic) is finite.

10.1. Definition. 1. Let n ≥ 0 and let Y1 = Γ1\H, . . . , Yn = Γn\H be

modular curves. Let S0 ∪ S1 ∪ . . . ∪ Sw be a disjoint partition of {1, . . . , n}
with w ≥ 0 and S0 only permitted to be empty. Let hi ∈ H for each i ∈ S0 be

an arbitrary point. Let si be the smallest element of Si for each i ≥ 1 and for

each j ∈ Si, j 6= si, choose an element gij ∈ SL2(R). A linear subvariety of Hn

is a subvariety

Y ={(τ1, . . . , τn)∈Hn : τi = hi, i∈S0, τj =gij(τsi), i=1, . . . , k, j∈Si, j 6= si}

for some choice of data Si, hi, gij as indicated. The union of gY over g ∈
Γ1×· · ·×Γn we call a linear locus for Hn (with respect to Γ1×· · ·×Γn) If S0 is

empty, we will call the corresponding linear subvariety (locus) basic. The data

{1, . . . ,m}−S0, gij determine a basic linear component of the product of upper

half-planes in the variables indexed by {1, . . . ,m} − S0, and we will say that

the linear locus with data Si, hi, gij is the translate by hi, i ∈ S0 of the basic

linear locus (in the reduced set of coordinates) specified by {1, . . . , n}−S0, gij .

Note that, in specifying the locus, the hi, gij are not uniquely determined.

2. Let Λ be a lattice in Cm. A linear subvariety of Ck is a subvariety of

the form

a+ L,

where L is a C-linear subspace of Cm (i.e. through the origin) and a ∈ Cm.

With the same conditions we call a+L+ Λ a linear locus in Cm (with respect

to Λ). If a + L = L + Λ, we call the corresponding linear locus basic, and we

will refer to an arbitrary linear locus a + L + Λ as the translate by a of the

basic linear locus L+ Λ. (Note a is only determined up to elements of L+ Λ.)

3. Let n ≥ 0. A linear component in C` is (just as above) a subvariety of

the form

b+M,

where M is a C-linear subspace, and b ∈ C` is arbitrary. With the same

conditions, a linear locus in C` (with respect to exp) is a locus of the form

b + M + 2πiZ. If b + M + 2πiZ = M + 2πiZ, then we call the corresponding

linear locus basic, and we refer to a linear locus b+M+2πiZ as the translate by

b of the basic linear locus M+2πiZ. (So in specifying a translation b+M+2πiZ
of the basic linear locus M + 2πiZ the translation b is determined only up to

M + 2πiZ.)
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4. Let n, ` ≥ 0 and A an abelian variety of dimension m ≥ 0. Let

X = Y1 × · · · × Yn × A × G` where Yi = Γi\H. A linear subvariety in UX =

Hn × Cm × C` is a subvariety of the form

Y × (a+ L)× (b+M),

where Y is a linear subvariety of Hn, a + L is a linear subvariety in Cm, and

b+M is a linear subvariety in C`. With the same conditions we call the union

of g(Y × (a + L) × (b + M)) over g ∈ ΓX a linear locus in X (with respect to

ΓX). If the set of variables S0 in the data for Y is empty, a + L = L + Λ,

and b + M + 2πiZ = M + 2πiZ, then we call the linear locus basic. We note

that the data for a locus are not uniquely determined. We refer to an arbitrary

linear locus as the translate by (hi, i ∈ S0, a, b) of the corresponding basic linear

locus. We note that the hi are not uniquely determined.

10.2. Proposition. Let X = Y1 × · · · × Yn × A × G`, where n, ` ≥ 0,

Yi = Γi\H are modular curves and A is an abelian variety of dimension m ≥ 0

defined over C. Let V ⊂ X be a subvariety and Z = π−1(V ). Then there

are only finitely many basic quasi-pre-special loci having a translate that is a

maximal quasi-pre-special locus contained in Z .

Proof. Let Z = Z ∩ FX . If Y is a quasi-pre-special locus contained in Z,

consisting of translates of a basic pre-special subvariety B, then it has a com-

ponent subvariety that intersects Z in full dimension. Further, Y and B are

linear. Conversely, if Y is a linear locus contained in Z, a union of translates

of a basic linear subvariety B, then it has a component subvariety that inter-

sects Z in full dimension, and B and the components of such Y are algebraic

components of Z. Therefore the set of basic pre-special subvarieties that have

a translate maximal among quasi-special subvarieties contained in Z coincides

with the set of basic linear subvarieties that have a translate maximal among

linear subvarieties contained in Z. The sets of linear subvarieties and basic lin-

ear subvarieties are semialgebraic (a product of copies of SL2(R) and certain

Grassmann varieties), hence definable, and the set M of basic linear subva-

rieties that have a translate occurring maximally among linear subvarieties

contained in Z is a definable subset (there is always a translate intersecting

the definable set Z in full dimension). However, these maximal linear subvari-

eties are quasi-pre-special, so correspond to algebraic points (the corresponding

points in SL2(R) are in the image of GL2(Q), the points in the Grassmann va-

rieties are rational in suitable coordinates). Thus the definable set M consists

entirely of algebraic points, and so is finite. �

10.3. Remarks. 1. It follows that, for fixed X, the same conclusion holds

over any definable family of subvarieties V : there are only finitely many basic

pre-special subvarieties that have translates that are contained in Z for any

variety V in the family. This is formally framed in Section 13.
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2. Let us briefly compare the method of proof of Proposition 10.2 with the

corresponding proof for abelian varieties in [17, Lemma 2]. Both arguments use

the fact that the varieties in question (basic pre-special subvarieties/ abelian

subvarieties) do not have moduli (in [17, Lemma 1]: only finitely many abelian

subvarieties up to a given degree). The argument in [17] leads to a degree

bound. Our argument seems to give no information about this (which corre-

sponds to the height of the rational numbers), we get only a bound for the

number of them. The argument in [17] looks more likely to yield an effective

version. Effectivity would be needed for Proposition 13.5.

11. Proof of Theorem 1.1

We begin with an intermediate version of the AOMML statement that

assumes that only finitely many maximal special subvarieties of positive di-

mension are contained in V .

11.1. Definition. Let V ⊂ X. The special set of V , which we denote V sp,

is the union of special subvarieties of positive dimension contained in V .

Special subvarieties are algebraic varieties (irreducible). If V sp consists of

a finite union of special subvarieties, then it is an algebraic variety (generally

reducible). Otherwise it is not, as a variety cannot consist of infinitely many

irreducible components. Special subvarieties are defined over Q. If X is defined

over a numberfield K, then the conjugate over K of a special subvariety is again

a special subvariety. If X and V are defined over K, then such a conjugate is

again contained in V , so that V sp is defined over K as well.

11.2. Theorem. Suppose X is as in the hypotheses of Theorem 1.1 and

that V is a subvariety of X defined over a number field K that contains a field

of definition for X . Suppose that V sp is a variety. Then V −V sp contains only

finitely many special points.

Proof. Let Z = π−1(V ). Then Zalg consists of Zps = π−1(V sp) together

with other quasi-pre-special loci that contain no pre-special points. Put Zps =

Zps ∩ F. We have Zalg = Zalg ∩ F. If we let

Nprespecial
2 (W,T )

denote the number of pre-special points in a set W up to height T , then, for

all ε > 0 and T ≥ 1, we have

Nprespecial
2 (Z−Zps, T )=Nprespecial

2 (Z−Zalg, T )≤N2(Z−Zalg, T )≤c(Z, 2, ε)T ε,

where c(Z, 2, ε) is provided by Theorem 3.2. Suppose that Z − Zps contains

a pre-special point u of complexity ∆ = ∆(u). Then x = π(u) ∈ V − V sp is
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special and has at least

[K : Q]−1cdegree(X)∆1/7

conjugates x′ which also lie in V − V sp. These conjugates have distinct pre-

images u′ ∈ Z − Zps, having complexity

∆(u′) = ∆(u) = ∆,

and hence

H(u′) ≤ cheight(X)∆

by Proposition 5.7. Put T = cspecial(X)∆. Then (finally opposing the upper

bound from o-minimality with the lower bound from Galois conjugates) we

have

[K : Q]−1 cspecial(X)

cheight(X)1/7
T 1/7 ≤ N2(Z − Zps, T ) ≤ c(Z, 2, ε)T ε

and, choosing ε = 1/8 (say), the inequalities are untenable once T , and hence

∆, is sufficiently large. Hence ∆(u) is bounded for a prespecial point in Z−Zps,

and the special points of V − V sp come from a finite set. �

11.3. Proof of Theorem 1.1. There is a subvariety V ⊂ V (not necessarily

irreducible), defined over Q, that contains all the algebraic points of V . So we

may assume that V is defined over Q.

We prove the theorem by induction on dimX as a complex variety. The

result clearly holds if dimX = 1, since we have then V = X or V is a finite set

of points. We can also argue directly that it holds if dimX = 2, for then V , if

proper, has dimension ≤ 1 and can contain only finitely many components of

dimension 1, so that V sp is certainly a subvariety and the conclusion holds by

Theorem 11.2.

Let then X be of dimension n ≥ 3, and V ⊂ X. Since the conclusion

holds by Theorem 11.2 if V sp is a variety, it suffices to prove this for V ⊂ X

under the inductive assumption that Theorem 1.1 holds for all X ′ of smaller

dimension. So we may assume that V is a proper subvariety of X.

Now there are just finitely many basic special subvarieties whose translates

occur as maximal special subvarieties. So it suffices to show that, given a basic

special subvariety Y ×B×H of positive dimension, that there are only finitely

many translates of it that occur as maximal special subvarieties of V .

Suppose B has dimension h ≤ m. Then we can choose h of the elliptic

curves, which we may assume to be E1, . . . , Eh, such that B is the image under

Cm → E1 × · · · × Em
of a basic pre-special component L of the form

L =
{

(z1, . . . , zm) : zj =
h∑
i=1

qijzi, j = h+ 1, . . . ,m
}
,
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where qij ∈ C and there exist nonzero integers Nij are such that NijqijΛi ⊂ Λj .

A translate of B inside E1 × · · · × Em is the image of some

L+ (a1, . . . , ah, ah+1, . . . , am) ⊂ Cm,

and if (a1, . . . , am) is a torsion point with respect to Λ1 ⊕ · · · ⊕ Λm, then

φ(a1, . . . , ah) = (a′h+1, . . . , a
′
m) is torsion in Cm−h with respect to Λh+1⊕ · · ·⊕

Λm, and so the same translate is given by

L+ (0, . . . , 0, ah+1 − a′h+1, . . . , am − a′m).

Therefore: the translate of B by a torsion point of E1× · · · ×Em is equal

to translate of B by a torsion point of the form (0, . . . , 0, ah+1, . . . , am).

Similarly, suppose H has dimension p ≤ `. We can choose p of the factors

of C`, say the first p, such that H is the image of a basic pre-special component

of C` defined as in Definition 6.5. Then we see that a translate gH can be given

in the form g′H, where g′ = (1, . . . , 1, g′′) for some g′′ ∈ G`−p, and that if g is

torsion, we can take g′′ to be torsion.

A translate of Y is given by some element s ∈ C#S0 for the S0 in the

underlying partition.

The variety

X ′ = C#S0 × Eh+1 × · · · × Em ×Gn−`

parametrizes the possible “translations” of the basic special subvariety Y ×
B ×H, and might be termed the “quotient” of X by Y × B ×H. The set of

points

V ′={(s, a, g)∈X ′ : the translate of Y ×B×H by (s, a, g) is contained in V }

is an algebraic subvariety V ′ ⊂ X ′, defined over Q. The translates of Y ×B×H
which are maximal special subvarieties of V are the special points of V ′−(V ′)sp.

However, X ′ has lower dimension than X, as Y ×B×H has positive dimension,

and so by induction we have that V ′ has only finitely many such special points.

Therefore only finitely many translates of Y × B ×H occur as maximal

special subvarieties of V , and since there are only finitely many possibilities

for Y × B × H we see that V sp is a subvariety. But then the conclusion of

Theorem 1.1 holds for it by Theorem 11.2, and the proof is complete. �

11.4. Remarks. 1. One may observe that Theorem 1.1 holds more gener-

ally when the factors Yi = Γi\H are quotients by finite index subgroups Γi of

SL2(Z), where a “special subvariety” means just the image in Yi of a pre-special

subvariety in Hn.

2. In work in progress I affirm AO unconditionally for the product of

two Shimura curves associated to indefinite quaternion algebras over Q (under

GRH this is due to Yafaev [95]). In view of this one can reasonably aspire in
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the first instance to replace the C factors in Theorems 1.1 and 12.1 by Shimura

curves (one need only provide the Ax-Lindemann-Weierstrass statement). One

can of course seek to adapt the present methods much more generally. However,

suitable lower bounds for the degree of special points are not presently available

in general (apparently even under GRH; see [96]). A conjectural strengthening

of Theorem 3.2 for sets definable in Rexp proposed by Wilkie (in [70]) could, if

extended to an o-minimal structure containing the j-function, enable the proofs

to go through using substantially weaker lower bounds for the degree of special

points. For some discussion of this conjecture, see [69]. Definability results

generalizing [64] would also be required in general (though in several interesting

cases such as nonmodular Shimura curves they would not be needed).

11.5. Note added in revision. Peterzil-Starchenko [66] have generalized

their result [64] on the Weierstrass ℘-function to show definability in Ran exp

for theta-functions (in both sets of variables) restricted to suitable fundamental

domains.

12. AOMM for Cn ×A

12.1. Theorem. Let X = Y1 × · · · × Yn × A, where n ≥ 0, Yi = Γi\H
are modular curves, and A is an abelian variety of dimension m ≥ 0 defined

over Q. Let V ⊂ X be a subvariety. Then V contains only a finite number of

maximal special subvarieties.

Proof. We may assume that V is defined over Q. Let U = UX and Z =

π−1(V ). Repeating the start of the proof of Theorem 6.8, we see that for

a maximal algebraic component of Z the z variables are independent of the

τ variables, and the dependencies among τ variables are of quasi-pre-special

form. By the results of [71], the dependencies among the z variables are also

of quasi-pre-special form, so Y is quasi-pre-special.

By Proposition 10.2 there are only finitely many basic quasi-special sub-

varieties having translates that are maximal among translates of quasi-linear

subvarieties contained in Z.

We now repeat the proof procedure of Section 11. First, if V sp is a variety,

the result holds by comparing the upper and lower estimates for pre-special

points in Z = Z ∩ FX . Finally we prove inductively that V sp is indeed a sub-

variety, as we need consider only translates of a finite number of basic special

subvarieties, for which the problem reduces to special points on a lower dimen-

sional set of the same form. Here the translates of a basic special subvariety

(i.e. abelian subvariety) B of A are parametrized by A/B. �

12.2. Remarks. 1. The characterization of maximal algebraic components

of Z in the course of the proof of Theorem 12.1 can also be phrased as an ALW

statement relative to a suitable notion of “geodesic independence”.
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2. Peterzil and Starchenko [65] have extended a (simplification) of the

method of [71] to prove MM for semiabelian varieties S over Q, in the course

of which they reprove in effect the ALW part of Ax-Schanuel for semi-abelian

varieties by o-minimal methods. It seems likely that by combining the various

approaches one can encompass both Theorems 1.1 and 12.1 in a result for

varieties X = Y1 × · · · × Yn × S.

13. Uniformity and effectivity issues

Let X be as in Theorem 1.1. We may consider X to be embedded as

a quasi-projective variety in some projective space PN . If V is a subvariety

of X, we denote by d(V ) the degree of V , meaning the degree of its Zariski

closure V as a subvariety of PN , where, for a reducible projective variety W

we take d(W ) to be the sum of the degrees of its irreducible components. If a

subvariety V is defined over Q, let δ(V ) denote the minimal degree over Q of

a field of definition for V .

For definability purposes we identify PN with a subset of unit length ele-

ments in CN+1, which is real semi-algebraic in real coordinates given by real

and imaginary parts. By a definable family of subvarieties of X we mean a

definable family V whose fibres are relatively closed complex subvarieties of X.

We do not insist that the parameter space be complex, though in the cases of

interest it will be. Thus such V ⊂ PN ×Rν with V = Vy a subvariety of X for

each y ∈ Rµ. Then the subvarieties V ⊂ X of given degree form a definable

family of subvarieties (their dimension being bounded by dimX).

13.1. Proposition. Let X = Y1 × · · · × Yn × A × G`, where n, ` ≥ 0,

Yi = Γi\H are modular curves and A is an abelian variety of dimension m ≥ 0

defined over C. Let V be a definable family subvarieties of X . Then the set of

basic pre-special subvarieties Y of X having a translate that is maximal among

quasi-pre-special subvarieties of Z = π−1(V ) for some V ∈ V is a finite set.

Proof. Since V is a definable family, the set of such Y is a definable subset

of the appropriate Grassmannian parametrizing basic linear subvarieties of X.

As in Proposition 10.2, it consists entirely of algebraic points, and so must be

a finite set. �

Let us call a variety X as in Theorem 1.1 a variety of AOMML type. If Y

is a basic special subvariety of a variety X of AOMML type, then the translates

of Y in X are prameterized by another variety XY of AOMML type (possibly

empty), and, as in Section 11.3, we may take XY to be a product over some

subset of the constituent varieties of X. (The parametrization is not unique:

there may be several (but finitely many) y ∈ XY giving the same translate of

Y in X.) Such an XY will be called an AOMML subvariety of X, and the

translate of a basic Y by a point a ∈ XY will be denoted tr(Y, a) ⊂ X.
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We may think of a special point in X as a translate of the trivial basic

special subvariety, which we denote 0, consisting of the trivial subgroup of any

elliptic and multiplicative factors of X and the empty subset of the modular

variables.

13.2. Theorem. Let X be variety as in Theorem 1.1 and V a definable

family of subvarieties of X . Let δ be a positive integer. There is a finite family

Y of basic special subvarieties Y of X , and for each Y ∈ Y there is an AOMML

subvariety XY of X and a constant C(X,V, δ, Y ) with the following property.

Let V be a variety in the family V with δ(V ) ≤ δ, Y ∈ Y , and a ∈ XY a

special point. Suppose that tr(Y, a) is a maximal special subvariety of V ; then

∆(a) ≤ C(X,V, δ, Y ), and δ(tr(Y, a)) ≤ C(X,V, δ, Y ).

In particular, the number of maximal special subvarieties is uniformly bounded

for V ∈ V with δ(V ) ≤ δ.
Proof. We prove the theorem by induction on dimX. It is evidently true

if dimX = 1, in which case a subvariety of X is X itself or a finite number of

points whose number is uniformly bounded as a consequence of the definability

of the family. Suppose then that dimX ≥ 2 and the theorem holds for all X

of smaller dimension. By Proposition 13.1 there is a finite collection Y of basic

special subvarieties of X containing all those that have a translation that is a

maximal quasi-special subvariety of any V ∈ V. Each Y ∈ Y is defined over Q.

By increasing δ by some bounded factor depending on V we may assume that

X and all the Y ∈ Y are defined with V over a number field K of degree ≤ δ.
Suppose Y ∈ Y has positive dimension. Then maxmimal translates of Y in

subvarieties V ⊂ X correspond to maximal special subvarieties of dimension

0 (i.e. special points outside the special set) of a suitable subvariety V ′ of

X ′ = XY as in the proof of Section 11.3. For V ∈ V the subvarieties V ′

form a definable family, and dimX ′ < dimX, and since X ′ and V ′ may be

defined over K, we get by induction a bound C(X ′,V′, δ,0) for the complexity

of maximal translates of the trivial basic special subvariety, i.e. the translates

of Y that occur maximally in V , and for the degree of a field of definition

for them over Q. This gives a uniform bound on the complexity and degree

(over Q) of V sp for V ∈ V. Now the proof of Theorem 11.2 gives a uniform

upper bound on the complexity of a translate of the trivial basic subvariety

in V , and thence on the complexity and degree over Q of a field of definition

for all special subvarieties of V ∈ V . �

For MM for semi-abelian varieties (even for commutative algebraic groups)

defined over a number field, explicit uniform bounds are given by Hrushovski

[43]. Explicit uniform bounds for the number of special subvarieties in ML for

an abelian variety (over Q) are given by Rémond [78]. For explicit bounds for

ML in G`, see Evertse [37].
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13.3. Aside. Let V ⊂ PN defined over C. Then V has a maximal sub-

variety V defined over Q whose total degree (sum of degrees of components)

is bounded in terms of d(V ) and N . This can be phrased as an analogue

of AO/MM: if we call irreducible subvarieties defined over Q special , then V

contains finitely many maximal special subvarieties, whose number and com-

plexity (=degree) are uniformly bounded in terms of d(V ) and the ambient

space PN . If V is in a definable family, then V also lies in a definable family,

and the conclusion of Theorem 13.2 holds for all V ∈ V with δ = δ(V ).

Let us finally make some comments on effectivity. The question arises

whether the ineffective lower bound for class numbers is the only ineffective

element in the proof. The upper bound for rational points, which comes via

the reparametrization in [70], would seem to be effective if one has effective

o-minimality of the structure involved, as defined in Berarducci-Servi [7]. It

seems an interesting — by no means trivial — problem to establish effective o-

minimality for the structure Rj generated by the graph of the modular invariant

j on its fundamental domain considered as a subset of R4. Note that Rexp ⊂ Rj
by a result of Miller [57]. The result of Peterzil-Starchenko establishes the o-

minimality of this structure by showing it is contained in Ran,exp, but the latter

is too big to expect any reasonable form of effectivity. In Rj , the definable sets

lie in countably many families that are definable without parameters, and one

would try to bound the number of connected components of a set X in such

a family (or the somewhat finer invariant γ(X) of [7]) by an effective function

of the defining formula.

Siegel’s lower bound for class numbers can be made effective if one admits

one possible exceptional quadratic field (Tatuzawa [87] see e.g. [39]): if ε > 0,

there is an effective constant c(ε) > 0 such that

h(D) ≥ c(ε)|D|1/2−ε

for all negative discriminants D except possibly those corresponding to orders

in one imaginary quadratic field. (I thank a referee for the suggestion to explore

the consequences of this result.)

13.4. Definition. For ε > 0, an ε-restricted special point in a product of

modular curves Y1 × · · · × Yn will mean a special point such that each pre-

special coordinate is not in the quadratic field that is exceptional for ε in a

bound as above. An ε-restricted special subvariety is a special subvariety such

that all the special points in the defining data are ε-special.

Equivalently, an ε-restricted special subvariety is a subvariety that con-

tains at least one (equivalently a Zariski-dense set of) ε-restricted special

points.



O-MINIMALITY AND THE ANDRÉ-OORT CONJECTURE FOR Cn 1833

If we now assume that Theorem 3.6 (for Rj) and Proposition 13.1 (for

X = Y1 × · · · × Yn) can be made effective, then we get an (unconditional and)

effective version of Theorem 13.2 for ε-restricted special points.

13.5. Proposition. Suppose an effective version of Theorem 3.6 for sets

definable in Rj , and an effective version of Proposition 13.1 for algebraic fam-

ilies of subvarieties of products of modular curves. Let X be a product of

modular curves, V ⊂ X defined over Q, and ε > 0. Then there is an effective

upper bound on the number (and complexity) of maximal ε-restricted special

subvarieties of V . Moreover, this bound depends only on X, ε, d(V ), δ(V ).

For special points and subvarieties corresponding to any fixed given qua-

dratic field, one has effective lower bounds for the class number of orders, and

the result would also be effective under the assumptions of Proposition 13.5.

Note that in this case the results of Edixhoven [34] are unconditional and surely

effective as well. Under GRH, the uniformity in the conclusion for curves of

fixed degree was observed in [32], and this was shown to be effective and ex-

tended to curves in Cn by Breuer [19].
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algébrique plane non modulaire, J. Reine Angew. Math. 505 (1998), 203–208.

MR 1662256. Zbl 0918.14010. doi: 10.1515/crll.1998.118.

[4] , Shimura varieties, subvarieties, and cm points, six lectures at the

Franco-Taiwan arithmetic festival, Aug.–Sept. 2001.

[5] J. Ax, On Schanuel’s conjectures, Ann. of Math. 93 (1971), 252–268.

MR 0277482. Zbl 0232.10026. doi: 10.2307/1970774.

[6] , Some topics in differential algebraic geometry. I. Analytic subgroups

of algebraic groups, Amer. J. Math. 94 (1972), 1195–1204. MR 0435088. doi:

10.2307/2373569.

[7] A. Berarducci and T. Servi, An effective version of Wilkie’s theorem of the

complement and some effective o-minimality results, Ann. Pure Appl. Logic 125

(2004), 43–74. MR 2033418. Zbl 1046.03021. doi: 10.1016/j.apal.2003.08.

001.

[8] C. Bertolin, Périodes de 1-motifs et transcendance, J. Number Theory 97

(2002), 204–221. MR 1942957. Zbl 1067.11041. doi: 10.1016/S0022-314X(02)

00002-1.

http://www.ams.org/mathscinet-getitem?mr=1738805
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0966.11031
http://www.ams.org/mathscinet-getitem?mr=0990016
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0688.10032
http://www.ams.org/mathscinet-getitem?mr=1662256
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0918.14010
http://dx.doi.org/10.1515/crll.1998.118
http://www.ams.org/mathscinet-getitem?mr=0277482
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0232.10026
http://dx.doi.org/10.2307/1970774
http://www.ams.org/mathscinet-getitem?mr=0435088
http://dx.doi.org/10.2307/2373569
http://dx.doi.org/10.2307/2373569
http://www.ams.org/mathscinet-getitem?mr=2033418
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1046.03021
http://dx.doi.org/10.1016/j.apal.2003.08.001
http://dx.doi.org/10.1016/j.apal.2003.08.001
http://www.ams.org/mathscinet-getitem?mr=1942957
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1067.11041
http://dx.doi.org/10.1016/S0022-314X(02)00002-1
http://dx.doi.org/10.1016/S0022-314X(02)00002-1


1834 JONATHAN PILA

[9] D. Bertrand, Schanuel’s conjecture for non-isoconstant elliptic curves over

function fields, in Model Theory with Applications to Algebra and Analysis.

Vol. 1, London Math. Soc. Lecture Note Ser. 349, Cambridge Univ. Press,

Cambridge, 2008, pp. 41–62. MR 2441374. Zbl 05364142. doi: 10.1017/

CBO9780511735226.004.

[10] D. Bertrand and A. Pillay, A Lindemann-Weierstrass theorem for semia-

belian varieties over function fields, manuscript dated October 19, 2008.

[11] D. Bertrand and V. V. Zudilin, Derivatives of Siegel modular forms, and

exponential functions, Izv. Ross. Akad. Nauk Ser. Mat. 65 (2001), 21–34.

MR 1857708. doi: 10.1070/IM2001v065n04ABEH000345.

[12] R. Bianconi, Nondefinability results for expansions of the field of real numbers

by the exponential function and by the restricted sine function, J. Symbolic Logic

62 (1997), 1173–1178. MR 1617985. Zbl 0899.03026. doi: 10.2307/2275634.

[13] E. Bombieri and W. Gubler, Heights in Diophantine Geometry, New Math.

Monogr. 4, Cambridge Univ. Press, Cambridge, 2006. MR 2216774. doi: 10.

1017/CBO9780511542879.

[14] E. Bombieri, D. Masser, and U. Zannier, Anomalous subvarieties—

structure theorems and applications, Int. Math. Res. Not. 2007, no. 19, Art.

ID rnm057, 33. MR 2359537. Zbl 1145.1049.

[15] , On unlikely intersections of complex varieties with tori, Acta Arith. 133

(2008), 309–323. MR 2457263. Zbl 1162.11031. doi: 10.4064/aa133-4-2.

[16] E. Bombieri and J. Pila, The number of integral points on arcs and ovals,

Duke Math. J. 59 (1989), 337–357. MR 1016893. Zbl 0718.11048. doi: 10.

1215/S0012-7094-89-05915-2.

[17] E. Bombieri and U. Zannier, Heights of algebraic points on subvarieties of

abelian varieties, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 23 (1996), 779–792

(1997). MR 1469574. Zbl 0897.11020. Available at http://www.numdam.org/

item?id=ASNSP 1996 4 23 4 779 0.

[18] A. Borel, S. Chowla, C. S. Herz, K. Iwasawa, and J.-P. Serre, Seminar

on Complex Multiplication, Lecture Notes in Math. 21, Springer-Verlag, New

York, 1966. MR 0201394. Zbl 0147.03902.

[19] F. Breuer, Heights of CM points on complex affine curves, Ramanu-

jan J. 5 (2001), 311–317. MR 1876703. Zbl 1115.11034. doi: 10.1023/A:

1012982812988.

[20] W. D. Brownawell and K. K. Kubota, The algebraic independence of

Weierstrass functions and some related numbers, Acta Arith. 33 (1977), 111–

149. MR 0444582. Zbl 0356.10027.

[21] A. Buium and B. Poonen, Independence of points on elliptic curves aris-

ing from special points on modular and Shimura curves. I. Global re-

sults, Duke Math. J. 147 (2009), 181–191. MR 2494460. doi: 10.1215/

00127094-2009-010.

[22] , Independence of points on elliptic curves arising from special points

on modular and Shimura curves. II. Local results, Compos. Math. 145 (2009),

566–602. MR 2507742. doi: 10.1112/S0010437X09004011.

http://www.ams.org/mathscinet-getitem?mr=2441374
http://www.zentralblatt-math.org/zmath/en/search/?q=an:05364142
http://dx.doi.org/10.1017/CBO9780511735226.004
http://dx.doi.org/10.1017/CBO9780511735226.004
http://www.ams.org/mathscinet-getitem?mr=1857708
http://dx.doi.org/10.1070/IM2001v065n04ABEH000345
http://www.ams.org/mathscinet-getitem?mr=1617985
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0899.03026
http://dx.doi.org/10.2307/2275634
http://www.ams.org/mathscinet-getitem?mr=2216774
http://dx.doi.org/10.1017/CBO9780511542879
http://dx.doi.org/10.1017/CBO9780511542879
http://www.ams.org/mathscinet-getitem?mr=2359537
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1145.1049
http://www.ams.org/mathscinet-getitem?mr=2457263
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1162.11031
http://dx.doi.org/10.4064/aa133-4-2
http://www.ams.org/mathscinet-getitem?mr=1016893
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0718.11048
http://dx.doi.org/10.1215/S0012-7094-89-05915-2
http://dx.doi.org/10.1215/S0012-7094-89-05915-2
http://www.ams.org/mathscinet-getitem?mr=1469574
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0897.11020
http://www.numdam.org/item?id=ASNSP_1996_4_23_4_779_0
http://www.numdam.org/item?id=ASNSP_1996_4_23_4_779_0
http://www.ams.org/mathscinet-getitem?mr=0201394
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0147.03902
http://www.ams.org/mathscinet-getitem?mr=1876703
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1115.11034
http://dx.doi.org/10.1023/A:1012982812988
http://dx.doi.org/10.1023/A:1012982812988
http://www.ams.org/mathscinet-getitem?mr=0444582
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0356.10027
http://www.ams.org/mathscinet-getitem?mr=2494460
http://dx.doi.org/10.1215/00127094-2009-010
http://dx.doi.org/10.1215/00127094-2009-010
http://www.ams.org/mathscinet-getitem?mr=2507742
http://dx.doi.org/10.1112/S0010437X09004011
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