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Absence of mixing in area-preserving
flows on surfaces

By Corinna Ulcigrai

Abstract

We prove that minimal area-preserving flows locally given by a smooth

Hamiltonian on a closed surface of genus g ≥ 2 are typically (in the

measure-theoretical sense) not mixing. The result is obtained by con-

sidering special flows over interval exchange transformations under roof

functions with symmetric logarithmic singularities and proving absence of

mixing for a full measure set of interval exchange transformations.

1. Definitions and main results

1.1. Flows given by multi-valued Hamiltonians. Let us consider the fol-

lowing natural construction of area-preserving flows on surfaces. On a closed

connected orientable surface S of genus g ≥ 1 with a fixed smooth area form ω,

consider a smooth closed real-valued differential 1-form η. Let X be the vector

field determined by η = iXω = ω(η, ·) and consider the flow {ϕt}t∈R on S

associated to X. Since η is closed, the transformations ϕt, t ∈ R, are area-

preserving. The flow {ϕt}t∈R is known as the multi-valued Hamiltonian flow

associated to η. Indeed, the flow {ϕt}t∈R is locally Hamiltonian; i.e., locally

one can find coordinates (x, y) on S in which it is given by the solution to the

equations ẋ = ∂H/∂y, ẏ = −∂H/∂x for some smooth real-valued Hamilton-

ian function H. A global Hamiltonian H cannot be in general be defined (see

[NZ99, §1.3.4]), but one can think of {ϕt}t∈R as globally given by a multi-valued

Hamiltonian function.

The study of flows given by multi-valued Hamiltonians was initiated by

S. P. Novikov [Nov82] in connection with problems arising in solid-state physics

i.e., the motion of an electron in a metal under the action of a magnetic field.

The orbits of such flows arise also in pseudo-periodic topology, as hyperplane

sections of periodic surfaces in Tn (see e.g. Zorich [Zor99]).

From the point of view of topological dynamics, a decomposition into min-

imal components (i.e., subsurfaces on which the flow is minimal) and periodic

components on which all orbits are periodic (elliptic islands around a center

and cylinders filled by periodic orbits) was proved independently by Maier

[May43], Levitt [Lev82] (in the context of foliations on surfaces) and Zorich

1743

http://annals.math.princeton.edu/annals/about/cover/cover.html
http://dx.doi.org/10.4007/annals.2011.173.3.10


1744 CORINNA ULCIGRAI

[Zor99] for multi-valued Hamiltonian flows. We consider the case in which the

flow is minimal ; i.e., all semi-infinite trajectories are dense. This excludes the

presence of periodic components.

From the point of view of ergodic theory, one is naturally led to ask

whether the flow on each minimal component is ergodic and, in this case,

whether it is mixing. Ergodicity is equivalent to ergodicity of the Poincaré first

return map on a cross section, which is isomorphic to a minimal interval ex-

change transformation (see §1.2 for definitions). A well-known and celebrated

result asserts that typical 1 IETs are uniquely ergodic ([Vee82], [Mas82]).

In this paper we address the question of mixing. Let µ be the area asso-

ciated to ω, renormalized so that µ(S) = 1. Let us recall that {ϕt}t∈R is said

to be mixing if for each pair A, B of Borel-measurable sets one has

(1) lim
t→∞

µ(ϕt(A) ∩B) = µ(A)µ(B).

We assume that the 1-form η is Morse; i.e., it is locally the differential

of a Morse function. This condition is generic in the space of perturbations

of closed smooth 1-forms by closed smooth 1-forms. Thus, all zeros of η cor-

respond to either centers or simple saddles, and, in particular, if the the as-

sociated flow {ϕt}t∈R is minimal, then all zeros are simple saddles. Let us

hence consider the space of multi-valued Hamiltonian flows with only simple

saddles. A measure-theoretical notion of typical is defined as follows by us-

ing the Katok fundamental class (introduced by Katok in [Kat73]; see also

[NZ99]). Let Σ be the set of fixed points of η (in our case simple saddles) and

let k be the cardinality of Σ. Let γ1, . . . , γn be a base of the relative homology

H1(S,Σ,R), where n = 2g + k − 1. The image of η by the period map Per is

Per(η) = (
∫
γ1
η, . . . ,

∫
γn
η) ∈ Rn. The pull-back Per∗ Leb of the Lebesgue mea-

sure class by the period map gives the desired measure class on closed 1-forms.

When we use the expression typical below, we mean full measure with respect

to this measure class.

The main result is the following. Let us recall that a saddle connection

is a flow trajectory from a saddle to a saddle and a saddle loop is a saddle

connection from a saddle to the same saddle.

Theorem 1.1. Let {ϕt}t∈R be the flow given by a multi-valued Hamil-

tonian associated to a smooth closed differential 1-form η on a closed surface

of genus g ≥ 2. Assume that {ϕt}t∈R has only simple saddles and no saddle

loops homologous to zero. For a typical such form η, the flow {ϕt}t∈R is not

mixing.

1The notion of typical here is measure-theoretical; i.e., it refers to almost every IET in

the sense defined before the statement of Theorem 1.2.
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The assumption that there are no saddle loops homologous to zero ex-

cludes for typical flows the presence of periodic components and implies min-

imality by a result of Maier [May43]. In fact, a typical flow has no saddle

connections other than saddle loops homologous to zero and periodic compo-

nents are bounded by saddle connections.

Thus, Theorem 1.1 settles the open question (which appears, for example,

in Forni [For02] and in the survey [KT06, §6.3.2] by Katok and Thouvenot)

of whether a typical minimal multi-valued Hamiltonian flow with only simple

saddles is mixing. Even if nonmixing, such flows are nevertheless typically

weakly mixing2 ([Ulc09]; see also §1.3). The asymptotic behavior of Birkhoff

sums and its deviation spectrum for this class of flows was described by Forni

in [For02].

Let us remark that both assumptions of Theorem 1.1 (i.e., simple saddles

and no saddle loops homologous to zero) are crucial for the absence of mixing.

Indeed, if a minimal flow has multi-saddles, corresponding to higher-order zeros

of η, then ϕt is mixing, as proved by Kochergin [Koč75]. On the other hand,

flows with saddle loops homologous to zero form an open set in the space of

multi-valued Hamiltonians, and if there are such saddle loops, then one can

typically produce mixing in each minimal component using the mechanism

developed in [SK92] for genus one and in [Ulc07b] for higher genus.

In the next section we recall the definitions of interval exchange transfor-

mations and special flows and formulate the main theorem in the setting of

special flows. (Theorem 1.2, from which Theorem 1.1 will be deduced.) Pre-

vious results on ergodic properties of special flows over IETs are recalled in

Section 1.3.

1.2. Special flows with logarithmic singularities. Special flows give a use-

ful tool to describe area-preserving flows on surfaces. When representing a flow

on a surface (or one of its minimal components) as a special flow, it is enough

to consider a transversal to the flow: the first return, or Poincaré map, to the

transversal determines the base transformation T , while the function f gives

the first return time of the flow to the transversal. Different functions f de-

scribe different time-reparametrizations of the same flow; hence they give rise

to flows which, topologically, have the same orbits. Interval exchange transfor-

mations arise naturally as first return maps (up to smooth reparametrization);

see Section 5. flows over IETs with this type of singularities, we get as a

Corollary the following.

2Let us recall that a flow {ϕt}t∈R preserving a probability measure µ is weakly mixing if

for each pair A, B of measurable sets, 1
T

∫ T
0
|µ(ϕt(A) ∩B)− µ(A)µ(B)| dt converges to zero

as T tends to infinity.
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Interval exchange transformations. Let I(0) = [0, 1), let π ∈ Sd, d ≥ 2, be

a permutation3 and let ∆d−1 denote the simplex of vectors λ ∈ Rd+ such that∑d
i=1 λi = 1. The interval exchange transformation (IET) of d subintervals

given by (λ, π) with λ ∈ ∆d−1 is the map T : I(0) → I(0) given by4

T (x) = x−
j−1∑
i=1

λi +
j−1∑
i=1

λπ−1(i) for x ∈ I(0)
j = [

j−1∑
i=1

λi,
j∑
i=1

λi), j = 1, . . . , d.

In other words T is a piecewise isometry which rearranges the subintervals

of lengths given by λ in the order determined by π. We shall often use the

notation T = (λ, π). Let Σλ,π = {∑j
i=1 λi, j = 1, . . . , d} ∪ {0} be the set of

discontinuities of T together with the endpoints of I(0). We say that T is

minimal if the orbit of all points are dense. We say that the permutation

π ∈ Sd is irreducible if, whenever the subset {1, 2, . . . , k} is π-invariant, then

k = d. Irreducibility is a necessary condition for minimality. Recall that T

satisfies the Keane condition if the orbits of all discontinuities in Σλ,π\{0, 1}
are infinite and disjoint. If T satisfies this condition, then T is minimal [Kea75].

Special flows. Let f ∈ L1(I(0), dx) be a strictly positive function and as-

sume that
∫
I(0) f(x)dx = 1. Let Xf + {(x, y) ∈ R2 | x ∈ I(0), 0 ≤ y < f(x)}

be the set of points below the graph of the roof function f and µ be the re-

striction to Xf of the Lebesgue measure dx dy. Given x ∈ I(0) and r ∈ N+

we denote by Sr(f)(x) +
∑r−1
i=0 f(T i(x)) the rth nonrenormalized Birkhoff

sum of f along the trajectory of x under T . By convention, S0(f)(x) + 0.

Let t > 0. Given x ∈ I(0) denote by r(x, t) the integer uniquely defined by

r(x, t) + max{r ∈ N | Sr(f)(x) < t}.
The special flow built over5 T under the roof function f is a one-parameter

group {ϕt}t∈R of µ-measure-preserving transformations of Xf whose action is

given, for t > 0, by

(2) ϕt(x, 0) =
Ä
T r(x,t)(x), t− Sr(x,t)(f)(x)

ä
.

For t < 0, the action of the flow is defined as the inverse map and ϕ0 is the iden-

tity. Under the action of the flow a point (x, y) ∈ Xf moves with unit velocity

along the vertical line up to the point (x, f(x)), then jumps instantly to the

3We are using here the notation for IETs classically introduced by Keane [Kea75] and

Veech [Vee78], [Vee82]. We remark that recently Marmi-Moussa and Yoccoz introduced a new

labeling of IETs (see the lecture notes by Yoccoz [Yoc06] or Viana [Via]), which considerably

facilitates the analysis of Rauzy-Veech induction. We do not recall it here, since it does not

bring any simplification to our proofs.
4The sums in the definition are by convention zero if over the empty set, e.g., for j = 0.
5One can define in the same way special flows over any measure-preserving transformation

T of a probability space (M,M , µ); see e.g., [CFS82].
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point (T (x), 0), according to the base transformation. Afterward it continues

its motion along the vertical line until the next jump and so on. The integer

r(x, t) gives the number of discrete iterations of the base transformation T ,

which the point (x, 0) undergoes when flowing up to time t > 0.

Logarithmic singularities. We consider the following class of roof func-

tions with logarithmic symmetric singularities. The motivation for considering

special flows over IETs under such roofs is explained in Section 5.

Let 0 ≤ z+
0 < z+

1 < · · · < z+
s1−1 < 1 be the s1 points where the roof

function is right-singular (i.e., the right limit is infinite) and 0 < z−0 < z−1 <

· · · < z−s2−1 ≤ 1 the s2 points where the roof function is left-singular (i.e., the

left limit is infinite). Let us denote by {{x}} the fractional part of x, that is a

periodic function of period 1 such that {{x}} = x if x ∈ [0, 1).

Definition 1.1. The function f has logarithmic singularities at the set of

points {z+
0 , . . . , z

+
s1−1, z

−
0 , . . . , z

−
s2−1}, where 0 ≤ z+

0 , . . . , z
+
s1−1 < 1 are right

singularities and 0 < z−1 , . . . , z
−
s2−1 ≤ 1 are left singularities, if f ∈ C 2 on

[0, 1]\{z+
0 , . . . , z

+
s1−1, z

−
0 , . . . , z

−
s2−1}

and there exist constants C+
i i = 0, . . . , s1−1 and C−i for i = 0, . . . , s2−1 and

a function w of bounded variation on [0, 1] such that

f = f0 + w, f0(x) =
s1−1∑
i=0

C+
i

∣∣∣ln{{x− z+
i }}

∣∣∣+ s2−1∑
i=0

C−i

∣∣∣ln{{z−i − x}}∣∣∣ .
The logarithmic singularities are called symmetric if, moreover,

∑s2−1
i=0 C−i =∑s1−1

i=0 C+
i .

We remark that the derivative f ′ of a function with symmetric logarithmic

singularities is not integrable. Indeed, to express the derivative, let us introduce

two auxiliary functions u, v defined on (0, 1) as follows:

u(x) :=
1

x
, v(x) :=

1

1− x
and extended to the whole real line so that they are periodic of period 1, i.e., for

x ∈ R, u(x) = u({{x}}) and v(x) = v({{x}}). Let us denote ui(x) = u(x− z+
i )

for i = 0, . . . , s1 − 1 and vi(x) = v(x − z−i ), i = 0, . . . , s2 − 1. Then, we can

write f ′ = f0 +w′ where w′ is integrable since w has bounded variation, while

(3) f ′0 =
s2−1∑
i=0

C−i vi −
s1−1∑
i=0

C+
i ui

is not integrable since it has singularities of type 1/x.
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Absence of mixing. The main theorem that we prove in this context is the

following. Here and in the rest of the paper we will say that a result holds

for almost every IET if it holds for any irreducible permutation π on d ≥ 2

symbols and almost every choice of the length vector λ ∈ ∆d−1 with respect

to the restriction of the d-Lebesgue measure to the simplex ∆d−1.

Theorem 1.2. For almost every IET T = (λ, π), the special flow {ϕt}t∈R,

built over T under a roof function f with symmetric logarithmic singularities

at a subset of the discontinuities Σλ,π of T , is not mixing.

It is worth remarking that nevertheless special flows with logarithmic sin-

gularities over typical IETs are weakly mixing,6 as proved by the author in

[Ulc07a] and [Ulc09]. We show in Section 5 that flows on surfaces given by

multi-valued Hamiltonians can be represented as flows over IETs with loga-

rithmic singularities and that Theorem 1.1 can be deduced from Theorem 1.2.

1.3. Ergodic properties of logarithmic special flows.

Flows over rotations. Assume first that the base transformation is a ro-

tation of the circle (i.e. the map Rαx = x + α (mod 1)), which can be seen

as an interval exchange of d = 2 intervals. Kochergin proved in [Koč76] that

special flows with symmetric logarithmic singularities [Koč76] are not mixing

for almost every α. Recently, in [Koč07], he shows that absence of mixing

holds indeed for all α. An intermediate result for s1 = s2 = 1 and C−0 = C+
0

is a consequence of [Lem00]. In [FL03] Fra̧czek and Lemańczyk consider the

roof function f(x) = | lnx|/2 + | ln(1− x)|/2 and show that the corresponding

special flow over Rα is weakly mixing for all α. They also push the investiga-

tion to more subtle spectral properties, showing in [FL05] that such flows are

spectrally disjoint from all mixing flows.

On the other hand, if the roof has asymmetric logarithmic singularities,

Khanin and Sinai proved in [SK92] that, under a diophantine condition on

the rotation angle which holds for a full measure set of α, the corresponding

special flow is mixing, answering affirmatively to a question asked by Arnold

in [Arn91]. The diophantine condition of [SK92] was weakened by Kochergin

in a series of works ([Koč03], [Koč04a], [Koč04b], [Koč04c]).

Flows over IETs. In [Ulc07a] and [Ulc07b] the author proved that special

flows over typical IETs under a roof function f having a single asymmetric log-

arithmic singularity at the origin (i.e., as in Definition 1.1 with s1 =s2 =1 and

C+
0 6= C−0 ) are mixing. The same techniques can be applied to the situation

6The definition of weak mixing was recalled in footnote 2 (page 1745).
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of several logarithmic singularities as long as the roof satisfies the asymme-

try condition
∑
C+
i 6=

∑
C−i . Let us also recall that if the singularities are

power-like (i.e., f blows up near singularities as 1/xα for α > 0) rather than

logarithmic, then mixing was proved by Kochergin in [Koč75].

If the singularities are symmetric, two results in special cases were recently

proved. In [Ulc07a], the author showed the absence of mixing if the IET on the

base satisfies a condition which is similar to α being bounded type for rota-

tions (which in particular holds only for a measure zero set of IETs). Scheglov

recently showed in [Sch09] that if π = (54321), then for almost every λ the

special flow over (λ, π) under a particular class of functions with symmetric

logarithmic singularities7 is not mixing. From his result it follows that Theo-

rem 1.1 holds in the special case in which g = 2 and the flow has two isometric

saddles. Unfortunately, his methods do not seem to extend to higher genus,

for the reasons explained in the remark at the end of Section 4.2.

It is worth recalling also that IETs are never mixing and that special

flows over IETs are never mixing if the function f is of bounded variation

(both results were proved by Katok in [Kat80]). On the other side, Avila and

Forni [AF07] showed that IETs which are not of rotation-type are typically

weakly mixing and that special flows over IETs with piecewise constant roofs

are also typically weakly mixing.

2. Background on cocycles and Rauzy-Veech induction

2.1. Some properties of cocycles. Let (X,µ, F ) be a discrete dynamical

system, where (X,µ) is a probability space and F is a µ-measure-preserving

map on X. A measurable map A : X → SL(d,Z) (d × d invertible matrices)

determines a cocycle A on (X,µ, F ). If we denote by An(x) = A(Fnx) and by

AnF (x) = An−1(x) · · ·A1(x)A0(x), then the following cocycle identity

(4) Am+n
F (x) = AmF (Fnx)AnF (x)

holds for all m,n ∈ N and for all x ∈ X. If F is invertible, let us set A−n(x) =

A(F−nx). The map A−1(x) = A(x)−1 gives a cocycle over F−1 which we call

inverse cocycle.

If Y ⊂ X is a measurable subset with µ(Y ) > 0, then the induced cocycle

AY on Y is a cocycle over (Y, µY , FY ) where FY is the induced map of F on

Y , µY = µ/µ(Y ), and AY (y) is defined for all y ∈ Y which return to Y and is

7A function f with symmetric logarithmic singularities, as defined in [Sch09], is such that

f ′ is a linear combination of the functions fi(x) = 1/(bi − x) − 1/(x − ai) defined on the

interior of the IET subintervals I
(0)
i = [ai, bi) for i = 1, . . . , d and the function 1/(1−x)−1/x.

In particular, s1 = s2 and constants come in pairs {C+
i , C

−
i } such that C+

i = C−i . Thus, this

class is more restrictive than the one given by Definition 1.1.
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given by

AY (y) = A(F rY (y)−1y) · · ·A (Fy)A (y) ,

where rY (y) = min{r | F ry ∈ Y } is the first return time. The induced cocycle

is an acceleration of the original cocycle, i.e., if {nk}k∈N is the infinite sequence

of return times of some y ∈ Y to Y (i.e., Tny ∈ Y if and only if n = nk for

some k ∈ N and nk+1 > nk), then

(5) (AY )k(y) = Ank+1−1(y) · · ·Ank+1(y)Ank(y).

We say that x ∈ X is recurrent to Y if there exists an infinite increasing

sequence {nk}k∈N such that Tnkx ∈ Y . Let us extend the definition of the

induced cocycle AY to all x ∈ X recurrent to Y . If the sequence {nk}k∈N is

increasing and contains all n ∈ N+ such that Tnx ∈ Y , let us say that x recurs

to Y along {nk}k∈N. In this case, let us set

AY (x) := AY (y)An0
F (x), where y := Fn0x ∈ Y,

(AY )n(x) := (AY )n(y), for n ∈ N+.

If F is ergodic, then µ-almost every x ∈ X is recurrent to Y , and hence AY is

defined on a full measure subset of X.

In the rest of the paper, we will use the norm ||A|| = ∑
ij |Aij | on matrices

(more in general, the same results on cocycles hold for any norm on SL(d,Z)).

With this choice one has ||A|| = ||AT ||. A cocycle over (X,F, µ) is called inte-

grable if
∫
X ln ||A(x)||dµ(x) <∞. Integrability is the assumption which allows

us to apply Oseledets Theorem. Let us recall the following properties of inte-

grable cocycles.8

Remark 2.1. If A is an integrable cocycle over (X,F, µ) assuming values

in SL(d,Z), then

(i) the dual cocycle (A−1)T and, if F is invertible, the inverse cocycle A−1

over (X,F−1, µ) are integrable;

(ii) any induced cocycle AY of A on a positive-measure subset Y ⊂ X is

integrable.

8The integrability of the dual cocycle stated in Remark 2.1(i) is proved in Zorich [Zor97],

and since ||A−1|| = ||(A−1)T ||, the integrability of the inverse cocycle follows. The proof of

Remark 2.1(ii) if F is invertible follows from Kac’s lemma representation of the space as

towers and the noninvertible case can be reduced to the invertible one by considering the

natural extension of F .



ABSENCE OF MIXING IN AREA-PRESERVING FLOWS ON SURFACES 1751

In Section 2.2 we will consider the Rauzy-Veech Zorich cocycle for IETs,

and in Section 4 we will use various accelerations constructed using the follow-

ing two lemmas. For m < n, let us denote by9

A(m,n) = AmAm+1 · · ·An−1.

Lemma 2.1. Let A−1 be an integrable cocycle over an ergodic and invert-

ible (X,µ, F ). There exist a measurable E1 ⊂ X with positive measure10 and

a constant C1 > 0 such that for all x ∈ X recurrent to E1 along the sequence

{nk}k∈N we have

(6)
ln ‖A(n,nk)(x)‖

nk − n
≤ C1, ∀ 0 ≤ n < nk.

Proof. Since A−1 is integrable, by Remark 2.1(i), also the inverse co-

cycle A over (X,µ, F−1) is integrable. Hence, by Oseledets Theorem, the

functions ln ‖AmF−1‖/m converge pointwise. There exists a set E1 of positive

measure such that by Egorov’s theorem the convergence is uniform, so that

ln ‖AmF−1(x)‖ ≤ cm for some c > 0 and all x ∈ E1 and all m ≥ m > 0, and

at the same time ||A−m(x)|| for 0 ≤ m < m are uniformly bounded. Thus,

if Fnkx ∈ E1, we have ln ||AmF−1 (Fnkx) || ≤ Cm for some C > 0 and all

m ≥ 0. Hence, since AmF−1 (Fnkx) = A(nk−m+1,nk+1)(x), changing indexes by

n = nk −m+ 1, we get (6). �

Lemma 2.2. Under the same assumptions of Lemma 2.1, for each ε > 0

there exist a measurable E2 ⊂ X with positive measure and a constant C2 > 0

such that if x ∈ X is recurrent to E2 along the sequence {mk}k∈N, we have

(7) ‖Amk−n(x)‖ ≤ C2e
εn, ∀ 0 ≤ n ≤ mk.

Proof. Recall that since F−1 is ergodic, if f is integrable, then the func-

tions {f ◦F−m/m}m∈N converge to zero for almost every x ∈ X and hence, by

Egorov’s theorem, are eventually uniformly less than ε on some positive mea-

sure set form > m. SinceA−1 is integrable, alsoA is integrable (Remark 2.1(i))

and applying this observation to f = ln ‖A‖, we can find a smaller positive

measure set E2 and C2 > 0 (in order to bound also ||A(F−mx)|| for x ∈ E2,

0 ≤ m ≤ m) such that if y ∈ E2, we have ||A(F−ny)|| ≤ C2e
εn for all n ≥ 0.

When y = Fmkx ∈ E2, this gives (7). �

9The reader should remark that here the order of the matrices in the product is the inverse

order than the one used in (4). This notation is convenient since we will apply it to matrices

Z where Z−1 is the Rauzy cocycle.
10The same proof gives that for each ε > 0 there exists E1 with µ(E1) > 1− ε.
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2.2. Rauzy-Veech-Zorich cocycle.

Rauzy-Veech and Zorich algorithms. The Rauzy-Veech algorithm and the

associated cocycle were originally introduced and developed in the works of

Rauzy and Veech ([Rau79], [Vee78], [Vee82]) and proved since then to be a

powerful tool to study interval exchange transformations. If T = (λ, π) satisfies

the Keane’s condition recalled in Section 1.2, which holds for almost every IET

by [Kea75], then the Rauzy-Veech algorithm produces a sequence of IETs which

are induced maps of T onto a sequence of nested subintervals contained in I(0).

The intervals are chosen so that the induced maps are again IETs of the same

number d of exchanged intervals. For the precise definition of the algorithm,

we refer, e.g., to the recent lecture notes by Yoccoz [Yoc06] or Viana [Via]. We

recall here only some basic definitions and properties needed in the proofs.

Let us use, here and in the rest of the paper, the vector norm |λ| = ∑d
i=1 λi.

If I ′ ⊂ I(0) is the subinterval associated to one step of the algorithm and T ′ is

the corresponding induced IET, then the Rauzy-Veech map R associates to T

the IET R(T ) obtained by renormalizing T ′ by Leb(I ′) so that the renormalized

IET is again defined on an unit interval. The natural domain of definition of

the map R is a full Lebesgue measure subset of the space X := ∆d−1 × R(π),

where R(π) is the Rauzy class11 of the permutation π.

Veech proved in [Vee82] that R admits an invariant measure µV which is

absolutely continuous with respect to Lebesgue measure, but this measure is

infinite. Zorich showed in [Zor96] that one can accelerate12 the map R in order

to obtain a map Z, which we call Zorich map, that admits a finite invariant

measure µZ. Let us also recall that both R and its acceleration Z are ergodic

with respect to µR and µZ respectively [Vee82]. Let us recall the definition of

the cocycle associated by the algorithm to the map Z.

Lengths-cocycle. Let us consider the Zorich map Z on X = ∆d−1 × R(π).

We denote by {I(n)}n∈N the sequence of inducing intervals for T correspond-

ing to the Zorich acceleration of the Rauzy-Veech algorithm (well defined if

T satisfies the Keane’s condition). Let T (n) = Zn(T ) be the renormalized in-

duced IET, which is given by T (n) := (π(n), λ(n)/λ(n)), where λ(n) = |λ(n)| =

Leb(I(n)). For each T = T (0) for which Z(T ) = (π(1), λ(1)/λ(1)) is defined, let

us associate to T the matrix Z = Z(T ) in SL(d,Z) such that λ(0) = Z · λ(1).

11Let us recall that the Rauzy class of π is the subset of all permutations π′ of d symbols

which appear as permutations of an IET T ′ = (λ′, π′) in the orbit under R of some IET

(λ′, π) with initial permutation π.
12The acceleration of a map is obtained by defining almost everywhere an integer valued

function z(T ) which gives the return time to an appropriate section. The accelerated map is

then given by Z(T ) := Rz(T )(T ).
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The map Z−1: X → SL(d,Z) is a cocycle over (X,µZ,Z) , which we call the

Zorich lengths-cocycle. Zorich proved in [Zor96] that Z−1 is integrable.

Defining Zn = Zn(T ) + Z(Zn(T )) and Z(n) + Z0 · · ·Zn−1 and iterating

the lengths relation, we get

(8) λ(n) =
Ä
Z(n)

ä−1
λ, where Zn(T ) :=

(
λ(n)

λ(n)
, π(n)

)
.

For more general products with m < n we use the notation

Z(m,n) + ZmZm+1 · · ·Zn−1.

By our choice of the norm |λ| =
∑
i |λi| on vectors and ||A|| =

∑
i,j |Aij | on

matrices, from (8),

(9) |λ(m)| = λ(m) ≤ ||Z(m,n)||λ(n).

Moreover, if Z(n,m) = A1 · · ·AN where each of the matrices Ai has strictly

positive entries, then

(10) λ(m) ≥ dNλ(n).

The natural extension Ẑ of the map Z is an invertible map defined on

a domain “X such that there exists a projection p : “X → X for which pẐ =

Zp (see [Yoc06] and [Via] for the explicit definition of “X, which admits a

geometric interpretation in terms of the space of zippered rectangles). The

natural extension Ẑ preserves a natural invariant measure µ
Ẑ
, which gives µZ

as pull back by p. The cocycle Z−1 can be extended to a cocycle over (“X,µ
Ẑ
, Ẑ)

by defining the extended cocycle, for which we will use the same notation Z−1,

to be constant on the fibers of p.

Towers and induced partitions. The action of the initial interval exchange

T can be seen in terms of Rohlin towers over T (n) := Zn(T ) as follows. Let

h(n) ∈ Nd be the vector such that h
(n)
j gives the return time of any x ∈ I(n)

j to

I(n). Define the sets

Z
(n)
j +

h
(n)
j −1⋃
l=0

T lI
(n)
j .

Each Z
(n)
j can be visualized as a tower over I

(n)
j ⊂ I(n), of height h

(n)
j , whose

floors are T lI
(n)
j . Under the action of T every floor but the top one (i.e., every

T eI
(n)
j with 0 ≤ l < h

(n)
j −1) moves one step up, while the image by T of the

last one (corresponding to l = h
(n)
j −1) is T (n)I

(n)
j .

Let us denote by φ(n) the partition of I(0) into floors of step n, i.e., intervals

of the form T lI
(n)
j . We say that F ∈ φ(n) is of type j, where 1 ≤ j ≤ d, if it is a
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floor of Z
(n)
j . The following well-known fact is proved for example in [Yoc06],

[Via].

Remark 2.2. If T satisfies the Keane’s condition, then the partitions φ(n)

converge as n tends to infinity to the trivial partitions into points.

We recall also that the entry Z
(n)
ij of the matrix Z(n) equals the number

of visits of the orbit of any point x ∈ I(n)
j to the interval I

(0)
i of the original

partition before its first return to I(n). Moreover, the height vectors h(n) can

be obtained by applying the dual cocycle to the column vector h(0) with all

entries equal to 1, i.e.,

(11) h(n) = (ZT )(n)h(0).

Balanced return times. Consider an orbit {Zn(T )}n∈N of a T satisfying

Keane’s condition. Let us say that a sequence {nl}l∈N is a sequence of balanced

times for T if there exists ν > 1 such that the following hold for all l ∈ N:

(12)
1

ν
≤ λ

(nl)
i

λ
(nl)
j

≤ ν, 1

ν
≤ h

(nl)
i

h
(nl)
j

≤ ν, ∀ 1 ≤ i, j ≤ d.

If n is such that the tower representation over Zn(T ) satisfies (12), then we

call n a balanced return time. Lengths and heights of the induction towers are

approximately of the same size if n is a balanced return time or, more precisely:

(13)
1

dν
λ(n) ≤ λ(n)

j ≤ λ(n),
1

νλ(n)
≤ h(n)

j ≤ ν

λ(n)
, ∀j = 0, . . . , d.

Hilbert metric and projective contractions. Consider on the simplex ∆d−1a

⊂ Rd+ the Hilbert distance dH , defined as follows:

dH(λ, λ′) + log

Ñ
maxi=1,...,d

λi
λ′i

mini=1,...,d
λi
λ′i

é
.

Let us write A ≥ 0 if A has nonnegative entries and A > 0 if A has strictly

positive entries. Recall that to each A ∈ SL(d,Z), A ≥ 0, one can associate a

projective transformation ‹A : ∆d−1 → ∆d−1 given by‹Aλ =
Aλ

|Aλ|
.

When A ≥ 0, dH(‹Aλ, ‹Aλ′) ≤ dH(λ, λ′). Furthermore, if A > 0, then we get a

contraction. More precisely, if A > 0, since the closure ‹A (∆d−1) is contained

in ∆d−1, we have

(14)

dH(‹Aλ, ‹Aλ′)≤(1−e−D(A))dH(λ, λ′), where D(A)+ sup
λ,λ′∈∆d−1

dH(‹Aλ, ‹Aλ′)<∞.
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3. Rigidity sets and the Kochergin criterion

3.1. A condition for absence of mixing.

Rigidity sets. Interval exchange transformations present some type of rigid-

ity, which was used by Katok in [Kat80] to show that they are never mixing.

Let us formalize it in the following definition.

Definition 3.1 (Rigidity sets and times). The sequence {Ek}k∈N of mea-

surable subsets Ek ⊂ I forms a sequence of rigidity sets if there exist a corre-

sponding increasing sequence of rigidity times {rk}k∈N, rk ∈ N+, a sequence

of finite partitions {ξk}k∈N converging to the trivial partition into points and

a constant α > 0 such that

(i) Leb(Ek) ≥ α for all k ∈ N;

(ii) for any F ∈ ξk, T rk(F ∩ Ek) ⊂ F .

Condition (ii) is a way to express that T rk is close to identity on Ek.

In order to show absence of mixing for a special flow whose base presents

this type of rigidity, it is enough to verify the following criterion, which was

proved in [Koč76] by Kochergin and there applied to flows over rotations.

Lemma 3.1 (Absence of mixing criterion). If there exist a sequence

{Ek}k∈N of rigidity sets Ek ⊂ I with corresponding rigidity times {rk}k∈N
and a constant M > 0 such that

(iii) for all k ∈ N, for all y1, y2 ∈ Ek, |Srk(f)(y1)− Srk(f)(y2)| < M ,

then the special flow {ϕt}t∈R is not mixing.

Condition (iii) is described sometimes by saying that Birkhoff sums Srk(f)

“do not stretch”. Stretching of Birkhoff sums is the main mechanism which

produces mixing in special flows over rotations or over interval exchange trans-

formations when the roof function has logarithmic asymmetric singularities (see

e.g. [SK92], [Ulc07b]). Lemma 3.1 shows that stretching of the Birkhoff sums

is also a necessary condition to produce mixing, when there is rigidity in the

base.

We use Lemma 3.1 to prove Theorem 1.2. In Section 3.2 we describe the

construction of a class of sequences of rigidity sets Ek and times rk for typical

IETs, which are used in the proof of Theorem 1.2. The sets that we construct

are analogous to the type of sets used by Katok in [Kat80] to show that IETs

are never mixing, but are constructed with the help of Rohlin towers for Rauzy-

Veech induction. A variation of this construction is used by the author also in

[Ulc09], for the proof of weak mixing for this class of flows. The heart of the

proof of absence of mixing is the proof that (iii) holds, given in Section 4.
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3.2. Construction of rigidity sets. Assume that T satisfies Keane’s con-

dition. Let {nk}k∈N be a sequence of balanced times for T . Consider the

corresponding towers Z
(nk)
j for j = 1, . . . , d. By the pigeon hole principle,

since
∑
j h

(nk)
j λ

(nk)
j = 1, we can choose j0 such that

(15) h
(nk)
j0

λ
(nk)
j0
≥ 1

d
.

The map T ′ which is obtained inducing on T on I
(nk)
j0

is an IET of at most

d + 2 intervals (see for example [CFS82]), which we denote (I
(nk)
j0

)l, where

0 ≤ l ≤ d + 2. Let h
(nk)
j0,l

be the first return time of (I
(nk)
j0

)l to I
(nk)
j0

under T .

Choose l0 so that

(16) Leb (I
(nk)
j0

)l0 ≥
1

d+ 2
Leb I

(nk)
j0

.

Let Jk ⊂ (I
(nk)
j0

)l0 be any subinterval such that Leb Jk ≥ β Leb (I
(nk)
j0

)l0 for

some 0 ≤ β ≤ 1. Define

(17) Ek :=

h
(nk)

j0
−1⋃

i=0

T iJk; rk := h
(nk)
j0,l0

;

i.e., Ek is the part of the tower Z
(nk)
j0

which lies above Jk. Let ξk = φ(nk) be

the sequence of partitions into floors corresponding to the considered balanced

steps.

Lemma 3.2. The sequences {ξk}k∈N, {rk}k∈N and {Ek}k∈N defined above

satisfy the assumptions (i) and (ii) of Definition 3.1.

Remark 3.1. For any 0 ≤ j < h
(nk)
j0

, all T i(T j(I
(nk)
j0

)l0) with 0 ≤ i < rk

are disjoint intervals, which are rigid translates of (I
(nk)
j0

)l0 . The same is true

for T iJk, 0 ≤ i < rk.

The proof of Lemma 3.2 and of Remark 3.1 can be found in [Ulc09].

4. Upper bounds on Birkhoff sums of derivatives.

The key ingredient to show condition (iii) of the absence of mixing criterion

(Lemma 3.1) are upper bounds on the Birkhoff sums |Srk(f ′0)| on some rigidity

set Ek, where f0 is the pure logarithmic part of f = f0 +w (see Definition 1.1)

and rk is the rigidity time corresponding to Ek (see definitions in §3.1). Let

us first consider Birkhoff sums of the form Srk(f ′0)(z0) where z0 ∈ I(nk)
j and

rk = h
(nk)
j is exactly the return time. We call this type of sums Birkhoff sums

along a tower, since the orbit segment {Tiz0}rk−1
i=0 has exactly one point in each

floor of the tower Z
(nk)
j .
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Let us denote by xmin
i , for i = 0, . . . , s1 − 1, the minimum distance from

the singularity z+
i of the orbit points to the right of z+

i and by ymin
i , for

i = 0, . . . , s2 − 1, the minimum distance from the singularity z−i of the points

to the left of z−i . In formulas, denoting by (x)pos the positive part of x defined

by (x)pos = x if x ≥ 0 and (x)pos = +∞ if x < 0, these minimum distances are

given by

xmin
i := min{(T jz0 − zi)pos, 0 ≤ j < rk}, i = 0, . . . , s1 − 1,(18)

ymin
i := min{(zi − T jz0)pos, 0 ≤ j < rk}, i = 0, . . . , s2 − 1.(19)

We adopt the convention that 1/∞ = 0.

Proposition 4.1. For almost every IET T there exist a constant M and

a sequence of balanced induction times {cl}l∈N such that, if z0 ∈ I
(cl)
j and

rl = h
(cl)
j ,

(20)
∣∣Srl(f ′0)(z0)

∣∣ ≤Mrl +
s1−1∑
i=0

C+
i

xmin
i

+
s2−1∑
i=0

C−i
ymin
i

.

Remark that if xmin
i = +∞ (and similarly if ymin

i = +∞), since by con-

vention 1
∞ = 0, the term 1

xmin
i

does not contribute to the sum (in other words,

only the closest visits from the side of the singularity contribute to the sum).

The proof of Proposition 4.1 is given in Section 4.2, using the lemmas

proved in Section 4.1. The estimate of Proposition 4.1 for Birkhoff sums along

towers is then used in Section 4.3 to give bounds on more general Birkhoff

sums.

Let us remark that the linear growth in (20) is essentially due to a principal

value phenomenon of cancellations between symmetric sides of the singularities,

which is peculiar to the symmetric case. A similar principal value phenomenon

was used, in the case of rotations, in [SU08]. In presence of an asymmetric

singularity, as shown in [Ulc07b], Srk(f ′0) grows as rk log rk on a set of measure

tending to 1 as k tends to infinity.

4.1. Deviations estimates. In order to estimate deviations of ergodic av-

erages, it is standard to first consider deviations for the number of elements of

φ(n) of type j inside I
(m)
i , i.e. for the quantities

N
(m,n)
ij + #{h | T hI(n)

j ⊂ I(m)
i , 0 ≤ h < h

(n)
j }.

In terms of the cocycle matrices, N
(m,n)
ij = Z

(m,n)
ij also gives the cardinality of

elements of φ(n) of type j inside each element of φ(m) of type i. Let us recall that

in [Zor97] Zorich proved an asymptotic result on deviations of ergodic averages

for characteristic functions of intervals of φ(0) (hence on the asymptotic growth

of N
(m,n)
ij ).



1758 CORINNA ULCIGRAI

4.1.1. Balanced acceleration. Let Z be the Zorich cocycle over the natural

extension Ẑ (see §2.2). Let K̂ be a compact subset of “X and denote by A := Z
K̂

the induced cocycle of Z on K̂. If “T is recurrent to K̂, denote by {an}n∈N the

sequence of visits of “T to K̂. One can choose the compact set13 K̂ so that,

considering the acceleration corresponding to return times to K̂, the following

properties hold (the notation is the one introduced in Section 2.2 and more

details can be found in [Ulc07a] and [AGY06]).

Lemma 4.1. There exists D > 0 and ν > 1 depending only on K̂ such

that

(i) An = A(ZanT ) > 0 for each n ∈ N;

(ii) D(An) + supλ,λ′∈∆d−1
dH(‹Anλ, ‹Anλ′) ≤ D;

(iii) the return times {an}n∈N to K̂ are ν-balanced times.

4.1.2. Deviations estimates for partition intervals. Using the balanced ac-

celeration A we can control quantitatively the convergence of N
(m,n)
ij corre-

sponding to m,n which belong to the sequence {ak}k∈N of visits to K̂.

Lemma 4.2. Let (NA)
(m,n)
ij := N

(am,an)
ij . There exists CD > 0 such that

for each recurrent “T ∈ K̂ , for each pair am < an of return times, we have

(21) (NA)
(m,n)
ij = δ

(an)
j

λ
(am)
i

λ
(an)
j

(
1 + ε

(am,an)
ij

)
,

∣∣∣ε(am,an)
ij

∣∣∣ ≤ CD(1− e−D)
n−m

,

for all 1 ≤ i, j ≤ d, where δ
(an)
j = h

(an)
j λ

(an)
j .

Let us remark that the leading term in (21) is h
(an)
j Leb(I

(am)
i ), as expected

by ergodicity. The form of the leading term in (21) shows that it is proportional

to the ratio of lengths of the intervals where the density δ
(an)
j depends only

on j. The error, i.e., the deviations from this leading behavior, decreases

exponentially in the number of visits to K̂.

Proof. Let us denote εn := (1− e−D)n−1D where D > 0 is as in Property

(ii) in Lemma 4.1. Let us prove first that for each 1 ≤ i, j ≤ d and m < n we

have

(22) e−2εn−mλ
(am)
i ≤

A
(m,n)
ij

h
(an)
j

≤ e2εn−mλ
(am)
i .

13Using the notation in [AGY06], we can, for example, choose “K to be a subset of the

Zorich cross-section contained in ∆γ ×Θγ , where γ is a path in the Rauzy class of π starting

and ending at π, chosen to be positive and neat (see §§3.2.1 and 4.1.3 in [AGY06] for the

corresponding definitions).
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Let us consider the sets ‡A(m,l)∆d−1 ⊂ ∆d−1 for l > m and let us remark that

give a sequence of nested sets. Since by (8) we have λ(am) = A(m,l)λ(al), we

also have

λ(am)

λ(am)
∈
⋂
l>m

‡A(m,l)∆d−1.

When l = n, since D(Ai) ≤ D for each i ∈ N by in Property (ii) in Lemma 4.1,

applying n−m− 1 times the contraction estimate (14), we get

(23) D(A(m,n)) ≤ (1− e−D)n−m−1D ≤ εn−m.

Let us denote by ej the unit vector (ej)i = δij (δ is here the Kronecker symbol).

Since both vectors ·�A(m,n)ej and λ(m)

λ(m) belong to the closure of ·�A(m,n)∆d−1, it

follows by (23), using compactness, that

dH

(
λ(am)

λ(am)
, ·�A(m,n)ej

)
= log

maxi=1,...,d
A

(m,n)
ij

λ
(am)
i

mini=1,...,d
A

(m,n)
ij

λ
(am)
i

≤ εn−m,

where we also used the invariance of the distance expression by multiplication

of the arguments by a scalar. Equivalently, for each 1 ≤ i, k ≤ d,

(24) e−εn−m
(
A

(m,n)
kj λ

(am)
i

)
≤ A(m,n)

ij λ
(am)
k ≤ eεn−m

(
A

(m,n)
kj λ

(am)
i

)
and summing over k or respectively multiplying (24) by h

(am)
i and then sum-

ming over both k and i and using that
∑
i h

(am)
i λ

(am)
i = 1 and (11), we get

respectively

(25) e−εn−m ≤
A

(m,n)
ij λ(am)∑

k A
(m,n)
kj λ

(am)
i

≤ eεn−m , e−εn−m ≤
h

(an)
j λ(am)∑
k A

(m,n)
kj

≤ eεn−m .

Producing the estimates in (25) gives (22). Since, for n−m sufficiently large,

εn−m ≤ 1/2 and |1 − e±2εn−m | ≤ 4εn−m, the lemma follows from (22) by

remarking that (NA)
(m,n)
ij = A

(m,n)
ij and setting δ

(an)
j := h

(an)
j λ

(an)
j . �

4.1.3. Power form of the deviation. Let us show that, for times corre-

sponding to a further appropriate acceleration of the cocycle A, the deviations

can be expressed as a small power of the main order.
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Lemma 4.3. For almost every T there exist a subsequence {bk := ank}k∈N
⊂ {an}n∈N and 0 < γ < 1 such that for all k ∈ N, for all 0 ≤ k′ < k, we have

(NB)
(k′,k)
ij := (NA)

(nk′ ,nk)
ij = δ

(bk)
j

Ñ
λ

(bk′ )
i

λ
(bk)
j

+ E
(bk′ ,bk)
ij

é
,

∣∣∣E (bk′ ,bk)
ij

∣∣∣ ≤ const

Ñ
λ

(bk′ )
i

λ
(bk)
j

éγ

.

Proof. By Lemma 2.1, there exist a measurable set EB ⊂ K̂ with positive

measure and C1 > 0 such that if “T ∈ EB is recurrent to EB along {ank}k∈N
(which is a subsequence of the visits to K̂ since EB ⊂ K̂), then (6) holds.

By ergodicity of Ẑ, almost every “T ∈ “X is recurrent to EB. Thus for almost

every T , there exists “T ∈ p−1(T ) recurrent to EB (indeed a full measure set

of “T in the fiber is recurrent), and we can define {ank}k∈N to be the sequence

along which “T is recurrent.

Since (NA)
(nk′ ,nk)
ij satisfies, by Lemma 4.2, the estimate (21) and δ

(bk)
j ≤ 1,

it is enough to prove that, for some14 γ < 1 and const > 0,

(26)

Ñ
λ

(bk′ )
i

λ
(bk)
j

é
ε

(bk′ ,bk)
ij ≤ const

Ñ
λ

(bk′ )
i

λ
(bk)
j

éγ

.

By (9) and (13), λ
(bk′ )
i ≤dν‖A(nk′ ,nk)‖λ(bk)

j . Let 1−γ :=− log(1−e−D)/C1>0,

so that γ < 1 and, recalling the estimate of ε
(ank′ ,ank )

ij = ε
(bk′ ,bk)
ij and using (6),

we haveÑ
λ

(bk)
j

λ
(bk′ )
i

é1−γ

≥
Ç

1

dν‖A(nk′ ,nk)‖

å1−γ
≥ (dν)γ−1Ä

eC1(nk−nk′ )
ä1−γ

= (dν)γ−1(1− e−D)nk−nk′ ≥ c
∣∣∣ε(bk′ ,bk)
ij

∣∣∣
for some constant c > 0, which is exactly (26). �

We will denote by B the induced cocycle of A corresponding to this ac-

celeration. In particular, for k ∈ N, let Bk(T ) = Bk(“T ) = A(bk,bk+1)(T ), where

{bk}k∈N is the sequence of visits of a chosen lift “T ∈ p−1(T ), which is recurrent

to EB.

14In the statement of Lemma 4.3 we require 0 < γ < 1, but if (26) holds for some γ ≤ 0,

since λ
(bk′ )
i /λ

(bk)
j ≥ 1, then, by positivity, it also holds for 0 < γ′ < 1.
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4.1.4. Deviations for any interval. Let T , {bk}k∈N and 0 < γ < 1 be as

in Lemma 4.3. Let us now consider an interval I ⊂ I(0) and let us denote the

number of intervals of type j of φ(bk) contained in I by

(NB)
(k)
j (I) + #{l | T lI(bk)

j ⊂ I, 0 ≤ l < h
(bk)
j }.

In order to describe the deviations from ergodic averages, set by convention

B−1(T ) := B0(T ) and introduce, for any 0 ≤ k′ < k, the quantity

(27) Θk
k′ = Θk

k′(T ) :=
k−k′∑
n=0

‖Bk′+n−1(T )‖
dγn

.

The following lemma shows that the deviations of (NB)
(k)
j (I) can be estimated

in terms of Θk
k(I), where

(28) k(I) := min{k | there existsF ∈ φ(bk) such thatF ⊂ I}.

Lemma 4.4. For almost every T and for all k ∈ N and all 1 ≤ j ≤ d,

given any interval I of length Leb(I) ≥ λ(bk)
j , we have

(NB)
(k)
j (I)=δ

(bk)
j

Ñ
Leb(I)

λ
(bk)
j

+ E
(k)
j (I)

é
,
∣∣∣E (k)
j (I)

∣∣∣ ≤ const Θk
k(I)(T )

Ñ
Leb(I)

λ
(bk)
j

éγ

,

where {bk}k∈N, 0 < γ < 1 and δ
(bk)
j are the same as in Lemma 4.3.

Proof. Let us decompose I into elements of the partitions φ(bk), k ≥ k(I),

as follows. Consider all intervals of φ(bk(I)) which are completely contained

in I. By definition of k(I), this set is not empty and, moreover, I is contained

in at most two intervals of φ(bk(I)−1). Hence, if we denote by #
k(I)
i the number

of intervals of φ(bk(I)) of type i contained in I, if k(I) > 0, then we have

#
k(I)
i ≤ 2 max1≤l≤d(Bk(I)−1)li ≤ 2‖Bk(I)−1‖. If k(I) = 0, since I(0) contains∑
1≤l≤d(B0)li elements of φ(b0) of type i, we have #0

i ≤ ||B0||. Thus, if by

convention we set B−1 := B0, we have

Leb(I) =
d∑
i=1

#
k(I)
i λ

(bk(I))

i + δ(I, k(I)),

#
k(I)
i ≤ 2‖Bk(I)−1‖, δ(I, k(I)) ≤ 2 max

1≤i≤d
λ

(bk(I))

i ,

where δ(I, k(I)) is the length of the remainder (possibly empty), given by

the two intervals (at the two ends) left after subtracting from I all interval

of φ(bk(I)) completely contained in it. Decompose in the same way the two

remainders into intervals of φ(bk(I)+1) (if any) completely contained in it and

two new remainder intervals and so on by induction, until decomposing into

elements of φ(bk). As before, if #k′
i is the number of intervals of φ(bk′ ) of type
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i involved in the decomposition, then #k′
i ≤ 2‖Bk′−1‖ since by construction

each of the two remainders is contained in an interval of φ(bk′−1). Thus, we get

(29)

Leb(I)=
k∑

k′=k(I)

d∑
i=1

#k′
i λ

(bk′ )
i +δ(I, k), #k′

i ≤ 2‖Bk′−1‖, δ(I, k) ≤ 2 max
1≤i≤d

λ
(bk)
i .

Using this decomposition to estimate (NB)
(k)
j (I) in terms of (NB)

(k′,k)
ij and

then applying Lemma 4.3, we get

(NB)
(k)
j (I)=

k∑
k′=k(I)

d∑
i=1

#k′
i (NB)

(k′,k)
ij = δ

(bk)
j

k∑
k′=k(I)

d∑
i=1

#k′
i

Ñ
λ

(bk′ )
i

λ
(bk)
j

+ E
(bk′ ,bk)
ij

é
.

Recalling (29), we have

(30) (NB)
(k)
j (I) = δ

(bk)
j

Leb(I)

λ
(bk)
j

+ δ
(bk)
j

k∑
k′=k(I)

d∑
i=1

#k′
i E

(bk′ ,bk)
ij − δ(bk)

j

δ(I, k)

λ
(bk)
j

.

In order to conclude, let us show that the contribution to the error coming

from the last two terms in (30) is of the desired form. The very last term in

(30) is less then 2ν by (29) and balance (13) and hence, since Leb(I)/λ
(bk)
j ≥ 1

by assumption, it is controlled by choosing the constant appropriately. For the

other term, applying Lemma 4.3,

k∑
k′=k(I)

d∑
i=1

#k′
i E

(bk′ ,bk)
ij ≤ const

Ñ
Leb(I)

λ
(bk)
j

éγ
k∑

k′=k(I)

‖Bk′−1‖

Ñ
λ

(bk′ )
i

Leb(I)

éγ

.

Since by definition of k(I), (10) and balance (13) we have Leb(I) ≥ 1
dνλ

(bk(I)) ≥
1
dν d

k′−k(I)λ
(bk′ )
i , the sum is controlled as desired by

k∑
k′=k(I)

‖Bk′−1‖

Ñ
λ

(bk′ )
i

Leb(I)

éγ

≤ (dν)γ
k∑

k′=k(I)

‖Bk′−1‖
dγ(k′−k(I))

= (dν)γ Θk
k(I). �

In Section 4.2.1 we consider more in general intervals I = (a, b) ⊂ R,

such that Leb(I) ≤ 1 and either a or b belong to the set of singularities

{z+
0 , . . . , z

+
s1−1, z

−
0 , . . . , z

−
s2−1}. We consider I as a subset of I(0) modulo one;

i.e., if a < 1 < b we consider the union (a, 1) ∪ (0, b − 1), and if a < 0 < b we

consider (0, b)∪(a+1, 1). One can also decompose this type of intervals so that

(29) holds. Indeed, if I modulo one is a disjoint union, then one can decompose

any interval of this type so that k(I) = 0 since one of the two intervals ((a, 1)

or (0, b) respectively) is a union of elements of φ(b0), whose total number is

bounded by ‖B0‖, and the other interval can be decomposed as before. Thus,

the same proof that shows Lemma 4.4 gives also the following remark.
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Remark 4.1. Lemma 4.4 also holds for intervals I modulo one such that

Leb(I) ≤ 1 and one of the endpoints of I is a singularity of f .

4.2. Cancellations. Let bk be an induction time of the sequence {bk}k∈N
of Lemma 4.4. Let x0 ∈ I(bk)

j0
and let rk := h

(bk)
j0

. Consider the distances of

the points in the orbit segment {T ix0}rk−1
i=0 from the right singularity z+

i , for

i = 0, . . . , s1 − 1, taken modulo one15 (i.e. T jz0 − z+
i (mod 1), 0 ≤ j < rk),

and, respectively, consider the distances from the left singularity z−i , for i =

0, . . . , s2−1, taken modulo one (i.e. z−i −T jz0 (mod 1), 0 ≤ j < rk). Rearrange

each group in increasing order, renaming by xi(j) (or respectively yi(j)) the

jth distance from the right (respectively from the left), so that the following

equalities of sets hold:16

rk−1⋃
j=0

{xi(j)} =
rk−1⋃
j=0

¶
T jz0 − z+

i (mod 1)
©
, xi(j1) < xi(j2) ∀j1 < j2(0 ≤ i < s1),

(31)

rk−1⋃
j=0

{yi(j)} =
rk−1⋃
j=0

¶
z−i − T

jz0 (mod 1)
©
, yi(j1) < yi(j2) ∀j1 < j2(0 ≤ i < s2).

(32)

4.2.1. Deviations from an arithmetic progression. As a consequence of

Lemma 4.4, we have the following. For j = 0, . . . , rk − 1, let I+
i (j), for

i = 0, . . . , s1−1, be the interval (z+
i , z

+
i +xi(j)) considered modulo one and let

I−i (j), for i = 0, . . . , s2 − 1 be the interval (z−i − yi(j), z
−
i ) considered modulo

one. For brevity, let k±i (j) := k
Ä
I±i (j)

ä
(see the definition given in (28)).

Corollary 4.1. For all 1 ≤ j < rk, we have

xi(j) =
λ

(bk)
j0

δ
(bk)
j0

(
j +O

(
Θk
k+i (j)

(‖Bk‖ j)γ
))
, i = 0, . . . , s1 − 1,(33)

yi(j) =
λ

(bk)
j0

δ
(bk)
j0

(
j +O

(
Θk
k−i (j)

(‖Bk‖ j)γ
))
, i = 0, . . . , s2 − 1.(34)

Proof. Consider the interval I+
i (j). Since by definition xi(j) is the distance

of the jth closest point to the right of z+
i , there are j points of the orbit in I+

i (j),

15For example, if T jz0 < z+i , then T jz0 − z+i = 1 + T jz0 − z+i (mod 1). In this way,

since ui(x) and vi(s) are 1-periodic, the quantity T jz0 − z+i (mod 1) (respectively z−i −
T jz0 (mod 1)) gives the value of 1/ui(T

jz0) (respectively 1/vi(T
jz0)).

16Here the notation {x} denotes the singleton set containing x ∈ R as its element and

should not be confused with the fractional part which we denote by {{x}}.
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so that (NB)
(k)
j0

(I+
i (j)) = j. Hence, Lemma 4.4 together with Remark 4.1 give

j = δ
(bk)
j0

Ñ
xi(j)

λ
(bk)
j0

+ E
(k)
j0

(I+
i (j))

é
,
∣∣∣E (k)
j0

(I+
i (j))

∣∣∣ = O

Ñ
Θk
k+i (j)

Ñ
xi(j)

λ
(bk)
j0

éγé
,

for some 0 < γ < 1, or, rearranging the terms,

xi(j) = λ
(bk)
j0

Ñ
j

δ
(bk)
j0

− E
(k)
j0

(I+
i (j))

é
.

This gives (33) if we show that xi(j)/λ
(bk)
j0
≤ c‖Bk‖j for some constant c. Since

by definition {bk}k∈N is a subsequence of a balanced sequence, we have Bk > 0.

Thus, inside each element of φ(bk−1) there is at least one element of φ(bk) of

type j0, or, equivalently, one point of the orbit {T ix0}rk−1
i=0 . Since a lower

bound for the number of elements of φ(bk−1) in I+
i (j) is given by [xi(j)/λ

(bk−1)],

where [·] denotes the integer part, we get j ≥ xi(j)/λ
(bk−1) − 1. Using that

λ(bk−1) ≤ ‖Bk‖λ(bk), we get xi(j) ≤ ‖Bk‖(j + 1)λ(bk). Together with the

elementary inequality δ
(bk)
j0
≤ 1 (recall that δ

(bk)
j0

= h
(bk)
j0

λ
(bk)
j0

; see Lemma 4.2),

this concludes the proof of (33). In the same way, the proof of (34) follows by

applying Lemma 4.4 together with Remark 4.1 to the interval I−i (j). �

Let us remark that, in the special case in which the permutation π is

(54321) and z±i are the endpoints of a subinterval I
(0)
i of T (see footnote 7,

p. 1749), Scheglov [Sch09] shows that for almost every λ one can find a subse-

quence of times {bk}k∈N and a constant K > 0 such that the |xi(j)− yi(j)| ≤
Kλ

(bk)
j0

. This stronger form of control of the deviations, which presumably

holds for all combinatorics of the form (nn−1 · · · 21), crucially exploits the

symmetry of the permutation and hence can be used to prove Theorem 1.1

only for g = 2 (see footnote 21, p. 1775).

4.2.2. Acceleration for cancellations. Let us now accelerate one more time

in order to prove Proposition 4.1.

Proof of Proposition 4.1. By Lemma 2.2 applied to17 ε = γ ln(2d/3) ≥ 0

where γ := min{γ, 1− γ} ≥ 0, we can find EC ⊂ EB such that if “T ∈ p−1(T )

is recurrent to EC along {bkl}l∈N (which is a subsequence of the return times

{bk}k∈N to EB), we have

(35) ‖Bkl−m‖ ≤ C2(2d/3)γm, ∀0 ≤ m ≤ kl.

17One can set ε = γ ln(d/t), where t is any number 1 < t < 2, so that d ≥ 2 > t gives

ε > 0. Later we need t > 1. Here, for concreteness, we choose t = 3/2.
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We remark that almost every T has a lift “T recurrent to EC , by ergodicity

of Ẑ. Let us set cl := bkl and let x0 ∈ I(cl)
j0

, rl = h
(cl)
j0

. Recall that f ′0 is of the

form (3).

For clarity, let us first give the proof in the special case s2 = s1 = 1 and

f ′0(x) = −C+
0 /x+C−0 /(1−x) with C+

0 = C−0 = C, since the notation is heavier

in the general case. Using the relabeling of (31) and (32) for s = 1, let x0(j)

and y0(j) denote the distances of the jth orbit point from 0 and 1 respectively,

so that

Srl(f
′
0)(z0) =

rl−1∑
j=0

Å
C

1− T jz0
− C

T jz0

ã
=

rl−1∑
j=0

Ç
C

y0(j)
− C

x0(j)

å
= C

rl−1∑
j=0

x0(j)− y0(j)

x0(j)y0(j)
.

We remark that the points in {T iz0}rl−1
i=0 belong to distinct floors of Z

(cl)
j0

and

have the same relative position within the floors. Hence, mini 6=j |T iz0−T jz0| ≥
λ

(cl)
j0

and we can estimate the denominator by using that x0(j), y0(j) ≥ jλ(bkl )

j0
when j ≥ 1. To estimate the numerator, let us apply Corollary 4.1. By (33)

and (34) the leading term in j in x0(j) and y0(j) for j ≥ 1 are the same and

cancel out. Moreover, 1/δ
(cl)
j0
≤ dν2 by balance (12). So, setting aside the

contribution of the two closest points x0(0) = xmin
0 and y0(0) = ymin

0 , we get

∣∣∣∣∣Srl(f ′0)(z0)− C

ymin
0

+
C

xmin
0

∣∣∣∣∣ ≤
rl−1∑
j=1

jγλ
(bkl )

j0
‖Bkl‖γ

Å
O

Å
Θkl
k+0 (j)

ã
+O

Å
Θkl
k−0 (j)

ãã
j2(λ

(bkl )

j0
)2

.

Let us first bound the part of the above sum which involves Θkl
k−0

(j). Let Ik1−

be the interval of φ(bk) which contains 1 as a right endpoint. Set by convention

I
(−1)
1− := I(0). The intervals {Ik1−}k∈N are nested and we can use them to

rearrange the sum over j as follows. Let us remark that if y0(j) ∈ Ik′−1
1− \I

k′

1− ,

then, by definition of k−0 (j), we have k−0 (j) = k′. Moreover, since we kept aside

the closest point to 1, there are no orbit points in Ikl1− . Thus, recalling also

that ‖Bkl‖ ≤ C2 by (35), we obtain

rl−1∑
j=1

‖Bkl‖γO
Å

Θkl
k−0 (j)

ã
j2−γλ

(bkl )

j0

≤ const
kl∑
k′=0

∑
y0(j)∈Ik′−1

1−
\Ik′

1−

Θkl
k′

j2−γ λ
(bkl )

j0

≤ const rl

kl∑
k′=0

Θkl
k′

d(1−γ)(kl−k′)
,
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where in the last inequality we used that λ
(bkl )

j0
≥ const(rl)

−1, which follows by

balance, and that, if jk′ denotes the minimum j such that y0(j) /∈ Ik′1− , using

balance and positivity as in the proof of Corollary 4.1, we get

(36) ∑
y0(j)∈Ik′−1

1−
\Ik′

1−

1

j2−γ = O

(
1

j1−γ
k′

)
and jk′ ≥

minj λ
(bk′ )
j

λ(bkl−1)

 ≥ const dkl−k
′
.

Recall that γ = min{γ, 1 − γ} and recall the definition of Θkl
k′ given in (27).

Changing indexes by k = kl−k′ first and m = k−n later in order to rearrange

the sums, since kl by (35) is such that ‖Bkl−m−1‖ ≤ const
Ä

2d
3

äγm
, we have

kl∑
k′=0

Θkl
k′

d(1−γ)(kl−k′)
≤

kl∑
k=0

Θkl
kl−k
d(γ)k

≤
kl∑
k=0

k∑
n=0

‖Bkl−k+n−1‖
dγ(n+k)

=
kl∑
k=0

k∑
m=0

‖Bkl−m−1‖
dγ(2k−m)

≤
kl∑
k=0

const

dγ(2k)

k∑
m=0

Ç
2γ(d2)γ

3γ

åm
.

Since (2d2/3)γ > 1 and thus
∑k
m=0(2d2/3)γm = O(d2γk(2/3)γk), the latter

expression is bounded by const
∑kl
k=0(2/3)γk, which is uniformly bounded in-

dependently on l.

The proof that also the sum involving Θkl
k+0

(j) is uniformly bounded in l is

analogous and gives also an upper bound by a fixed constant. This concludes

the proof in this case.

In the general case, when f ′0 =
∑s2−1
i=0 C−i vi −

∑s1−1
i=0 C+

i ui, reducing to a

common denominator, and denoting byX(j) :=
∏s1−1
l=0 xl(j), Y (j) :=

∏s2−1
l=0 yl(j)

and by Xi(j) :=
∏

1≤1≤s1−1
l 6=i

xl(j), Yi(j) :=
∏

1≤1≤s2−1
l 6=i

yl(j), we get

(37) Srl(f
′
0)(z0) =

rl−1∑
j=0

∑s2−1
i=0 C−i Yi(j)X(j)−∑s1−1

i=0 C+
i Y (j)Xi(j)

X(j)Y (j)
.

By Corollary 4.1, recalling that ‖Bkl‖ ≤ const, we have

X(j) =

(
λ
(cl)
j0

δ
(cl)
j0

)s1Ñ
js1 +

s1∑
m1=1

js1−m1+γm1

∑
1≤i1<···<im1

≤s1

Θkl
k+
i1

(j)
· · ·Θkl

k+
im1

(j)

é
,

Xi(j) =

(
λ
(cl)
j0

δ
(cl)
j0

)s1−1Ü
js1−1 +

s1−1∑
m2=1

js1−1−m2+γm2

∑
i1<···<im2

∈
{1,...,s1}\{i}

Θkl
k+
i1

(j)
· · ·Θkl

k+
im2

(j)

ê
and analogous expressions hold for Y (j) and Yi(j) with Θi

k−i (j)
and s2 in-

stead of Θi
k+i (j)

and s1. Thus, since the coefficients of js1+s2−1 in Y (j)Xi(j)
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and Yi(j)X(j) are the same, by symmetry of the constants, the main or-

der in j of the numerator of the right-hand side of (37) cancels out. More-

over, using as before the minimum distance between points, we have X(j) ≥
(jλ

(cl)
j0

)s1 , Y (j) ≥ (jλ
(cl)
j0

)s2 when j ≥ 1. Thus, from balance (13) we can esti-

mate (λ
(cl)
j0

)s1+s2−1/(λ
(cl)
j0

)s1+s2 by const rl. Producing the lower-order terms,

for each 1 ≤ m1 ≤ s1 and 1 ≤ m2 ≤ s2 − 1 (or 1 ≤ m1 ≤ s1 − 1 and 1 ≤ m2

≤ s2), we are left with a bounded number of terms to estimate. Each one,

after simplifying the power of j which is (s1−m1 +γm1)+(s2−1−m2 +γm2)

at numerator and s1 + s2 at denominator, is of the form

rl−1∑
j=1

Θkl
k+1

(j) · · ·Θkl
k+m1

(j)Θkl
k−1

(j) · · ·Θkl
k−m2

(j)

j1+m1+m2−(m1+m2)γ

≤
rl−1∑
j=1

Θkl
k±i0

(j)

j2−γ

Ö
max

1≤j<rl
max

0≤i+≤s1−1
0≤i−≤s2−1

Ö
Θkl
k±
i±

(j)

j1−γ

èèm1+m2−1

,

where k±i0 is any index among k+
1 , . . . , k

+
m1

, k−1 , . . . , k
−
m2

. Let us conclude the

proof by showing that each of these terms is bounded (uniformly in l). Let

Iki+ (respectively Iki−) be the interval of the partition φ(bk) which has z+
i as

left endpoint (respectively z−i as right endpoint). The sum over j is estimated

exactly as before, decomposing the sum using the nested intervals Ik−1
i0±
\Ik
i0±

.

To estimate the maximum, we remark that if xi(j) (respectively yi(j)) belongs

to Ik−1
i+ \I

k
i+ (respectively Ik−1

i− \I
k
i−), then k+

i (j) = k (or respectively k−i (j) = k)

and j ≥ const dkl−k (see (36)), so that

Θkl
k±i (j)

j1−γ ≤
Θkl
k

dγ(kl−k)
≤

kl−k∑
n=0

||Bk+n−1||
dγ(n+kl−k)

=
kl−k∑
m=0

||Bkl−m−1||
dγ(2(kl−k)−m)

≤ const

d2γ(kl−k)

kl−k∑
m=0

Ç
2d2

3

åγm
,

where, reasoning as before, we changed the indexes by m = kl−k−n and used

(35). Since the sum in the last expression is O
Ä
d2γ(kl−k) (2/3)γ(kl−k)

ä
, we get

a uniform bound for all 0 ≤ k ≤ kl, which concludes the proof. �

4.3. Decomposition into Birkhoff sums along towers. From the estimate of

Birkhoff sums along a tower given by Proposition 4.1, let us derive an estimate

for more general Birkhoff sums.

Proposition 4.2. For almost every T , there exist a constant M ′ and

sequence of induction times {nk}k∈N such that, whenever z0 ∈ I(nk)
j0

for some
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k and 0 < r ≤ h(nk)
j0

, we have

(38)
∣∣Sr(f ′0)(z0)

∣∣ ≤M ′r +
s1−1∑
i=0

C+
i

xmin
i

+
s2−1∑
i=0

C−i
ymin
i

,

where xmin
i and ymin

i are the closest points to the singularities defined in (18)

and (19).

Comparing Proposition 4.1 below with Proposition 4.2, the difference is

that the time r considered here is any 0 ≤ r ≤ h(nk)
j0

.

Proof. Let {cl}l∈N be the sequence associated to almost every T in Propo-

sition 4.1 and let B be the induced cocycle defined at the end of Section 4.1.3.

Let us denote by C the accelerated cocycle over the first return map of Z

to EC (defined at the beginning of Proposition 4.1) so that Cl := B(cl,cl+1).

Let ED ⊂ EC be given by Lemma 2.2 for ε = ln(d/2). For almost every T

we can assume that the chosen lift “T is recurrent to ED along a subsequence

{nk := clk}k∈N. Then, by Lemma 2.2, we have

(39) ‖Clk−l‖ ≤ C3(d/2)l, ∀ 0 ≤ l ≤ lk.

Without loss of generality, we can assume that h
(clk−1)

j1
≤ r ≤ h

(clk )

j0
for some

j1 and z0 ∈ I
(clk−1)

j1
. (Indeed, if not, since I

(clk′
)

are nested, we can define jk′

for 0 ≤ k′ < k such that z0 ∈ I
(clk′

)

jk′
. Since h

(clk′
)

jk′
are increasing in k′, we can

then substitute k with the unique k′ for which h
(clk′−1)

jk′−1
< r < h

(clk′
)

jk′
.)

Let us use the following notation: Let us denote the orbit segment

{z0, T z0, . . . , T
r−1z0}

by Or(z0). On Or(z0) introduce an ordering ≺ and a distance dO using the

natural ordering given by T as follows. If z1, z2 ∈ Or(z0) and z1 = T i1z0,

z2 = T i2z0 for i1, i2 > 0, let z1 ≺ z2 if and only if i1 < i2 and let dO(z1, z2) = k

if and only if |i1 − i2| = k.

Let us decompose the orbit Or(z0) into Birkhoff sums along towers as

follows. Consider first Birkhoff sums along the towers of φ(clk−1). Let z
(lk−1)
j ,

for 0≤ j ≤ alk−1, be the elements of Or(z0) which are contained in I(clk−1) in

increasing order with respect to ≺. More precisely, define by induction z
(lk−1)
0

= z0 and z
(lk−1)
j+1 =T (clk−1)z

(lk−1)
j , so that z

(lk−1)
j+1 is the smallest z � z(lk−1)

j such

that z ∈ Or(z0)∩I(clk−1). The last step of the induction is alk−1 where alk−1 =

max{j | z(lk−1)
j ≺ T rz0}. Let us also define r

(lk−1)
j = dO(z0, z

(lk−1)
j ). Since r ≥

h
(clk−1)

j1
, alk−1 ≥ 1. Moreover, since dO(z

(lk−1)
j , z

(lk−1)
j+1 ) ≥ minl h

(clk−1)

l , using
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balance (12) and (11) and r ≤ h(clk )

j0
, we also have that alk−1 ≤ r/minl h

(clk−1)

l

≤ ν‖Clk‖. So far we can write

Sr(f
′
0)(z0)

=

alk−1−1∑
j=0

S
r
(lk−1)

j+1 −r(lk−1)

j

(f ′0)(z
(lk−1)
j ) + Sr′(f

′
0)(z(lk)

alk−1
), alk−1 ≤ ν‖Clk‖,

where r′ = r − r(lk−1)
alk−1 and each term in the sum is by construction a Birkhoff

sum along a tower of φ(clk−1) while the last term is a remainder that cannot

be decomposed any more into Birkhoff sums along towers of the same order.

Let us continue by induction to decompose the remainder into Birkhoff

sums along the towers of φ(cl) with 0 ≤ l < lk − 1. To get from step l + 1

to step l, let z
(l)
0 = z

(l+1)
al+1 and z

(l)
j+1 = T (cl)z

(l)
j ∈ I(cl) for j = 0, . . . , al with

al = max{j | z(l)
j ≺ T rz0}. In this way again z

(l)
1 ≺ · · · ≺ z

(l)
al are all elements

z ∈ Or(z0) with z � z
(l+1)
al+1 for which z ∈ I(cl). Letting r

(l)
j = dO(z0, z

(l)
j ), we

have

(40)

Sr(f
′
0)(z0)=

lk−1∑
l=0

al−1∑
j=0

S
r
(l)
j+1−r

(l)
j

(f ′0)(z
(l)
j )+Sr′(f

′
0)(z(0)

a0 ), r′=r−r(0)
a0 ≤max

l
h

(c0)
l ,

where, if al = 0 (it might happen for l < lk − 1), the sum over j is taken

by convention to be zero. Moreover, as before, by construction we have al ≤
ν‖Cl+1‖, 0 ≤ l ≤ lk − 1.

Let us apply Proposition 4.1 to each addend in the double sum in (40),

denoting, in each Birkhoff sum along a tower, the points which are closest to

right and left singularities (recalling that ( · )pos denotes the positive part) by

(xmin
i )

(l)
j = min

0≤s<r(l)j+1−r
(l)
j

(T sz
(l)
i − z

+
i )pos, i = 0, . . . , s1 − 1,

(ymin
i )

(l)
j = min

0≤s<r(l)j+1−r
(l)
j

(z−i − T
sz

(l)
i )pos, i = 0, . . . , s2 − 1.

We get

∣∣Sr(f ′0)(z0)
∣∣ ≤ lk−1∑

l=0

al−1∑
j=0

Ñ
s1−1∑
i=0

C+
i

(xmin
i )

(l)
j

+
s2−1∑
i=0

C−i

(ymin
i )

(l)
j

+M(r
(l)
j+1 − r

(l)
j )

é(41)

+
∣∣∣Sr′(f ′0)(z(0)

a0 )
∣∣∣ .

Since the sum
∑lk−1
l=0

∑al−1
j=0 (r

(l)
j+1 − r

(l)
j ) is telescopic, it reduces to r

(0)
a0 ≤ r.

Moreover, the last term in (41) can be estimated by Mr′ +
∑s1−1
i=0

C+
i

xmin
i

+
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∑s2−1
i=0

C−i
ymin
i

with r′ ≤ maxj h
(c0)
j , which is a constant. Hence, to conclude

the proof of (38), we are left to estimate the sums of contributions from closest

points to the singularities in each cycle. Let us show that their contributions

decrease exponentially in the order k of the towers, thanks to the choice (39)

of the times {clk}k∈N.

Given any 0 ≤ i ≤ s1 − 1, let us consider the contribution to (41) coming

from the points

(42)
{

(xmin
i )

(l)
j , j = 0, . . . , al − 1

}
.

Assume first that 0 ≤ l < lk − 1. We remark that all these points belong

by construction to a unique tower of order l + 1, the tower Z
(cl+1)
j(l+1) such that

z
(l)
0 = z

(l+1)
al+1+1 ∈ I

(cl+1)
j(l+1). Thus the minimum spacing between them is by balance

(12) at least λ(cl+1)/dν, and if we consider separately the minimum of (42), each

of the other al − 1 points of (42) gives a contribution less than C+
i dν/λ

(cl+1).

Since the minimum of (42) is bigger than the minimum (xmin
i )

(l+1)
al+1+1 of the level

l + 1 orbit segment of length h
(cl+1)
j(l+1), which contains all points in (42), it can be

included in the analogous estimate corresponding to l+ 1, by considering al+1

contributions equals to C+
i dν/λ

(cl+2) rather than al+1−1. When l = lk−1, the

minimum is simply given by xmin
i and the contributions of all the other points

are again estimated by C+
i dν/λ

(clk ) since they are all contained in different

floors of the tower Z
(clk )

j0
.

Hence, first recalling that al ≤ ν‖Cl+1‖, then using the fact that λ(cl+1) ≥
dlk−l−1λ(clk ) and setting l′ := lk − l − 1, we get

(43)
lk−1∑
l=0

al−1∑
j=0

C+
i

(xmin
i )

(l)
j

≤ C+
i

xmin
i

+
lk−1∑
l=0

ν‖Cl+1‖
C+
i dν

λ(cl+1)
≤ C+

i

xmin
i

+
C+
i dν

2

λ(clk )

lk−1∑
l′=0

‖Clk−l′‖
dl′

,

where the last series is uniformly bounded for all k by (39). Since by (12) and

(13) we have 1/λ(clk ) ≤ ν2 h
(clk )

j0
and h

(clk )

j0
≤ ‖Clk‖ν2h

(clk−1)

j1
≤ C3ν

2r (where

the last inequality uses again (39)), we get a bound of the desired form.

Since, for any 0 ≤ i ≤ s2 − 1, the contribution from (ymin
i )

(l)
j , j = 0, . . . ,

al − 1 is estimated in the same way, this concludes the proof. �

4.4. Birkhoff sums variations and proof of absence of mixing. In this sec-

tion we complete the proof of Theorem 1.2.

Proof of Theorem 1.2. Let us verify the assumptions of the criterion for

absence of mixing (Lemma 3.1). Given a typical T , consider the subsequence

{nk}k∈N of balanced times for which Proposition 4.2 holds. In Section 3.2 we

already defined, starting from {nk}k∈N, a corresponding class of sets Ek and
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times rk which verify conditions (i) and (ii) of Definition 3.1 of rigidity sets.

Let us hence define the subintervals Jk introduced in Section 3.2 in such a way

that condition (iii) is also satisfied. Referring to the notation in Section 3.2, if

(I
(nk)
j0

)l0 = [a, b), and λ = b− a is its length, define Jk = [a+ λ/4, b− λ/4).

Let us consider any two points y1, y2 ∈ Ek. By definition of Ek, we can

write y1 = T k1z1, y2 = T k2z2 where z1, z2 ∈ Jk are two points in the base and

0 ≤ k1, k2 < h
(nk)
j0

. In order to prove (iii), let us decompose the Birkhoff sums

of the roof function f as

Srk(f)(y1)− Srk(f)(y2) =
Ä
Srk(f)(T k1z1)− Srk(f)(z1)

ä(44)

+ (Srk(f)(z1)− Srk(f)(z2)) +
Ä
Srk(f)(z2)− Srk(f)(T k2z2)

ä
.

Remark, moreover, that the first and the last term in (44) can be written, for

ν = 1, 2, as

Srk(f)(T kνzν)− Srk(f)(zν) = (Srk−kν (f)(T kνzν) + Skν (f)(T rkzν))(45)

− (Skν (f)(zν) + Srk−kν (f)(T kνzν)) = Skν (f)(T rkzν)− Skν (f)(zν).

Recall that f = f0 + w, where f0 is the pure logarithmic part and w has

bounded variation (see Definition 1.1). Thus, we can write Srk(f) = Srk(f0) +

Srk(w). We will first estimate the terms in (44) coming from w, then the

ones from f0. Consider first the central term in (44) coming from w. Since

z1, z2 ∈ Jk, the iterates T i for 0 ≤ i < rk of the interval between z1 and z2 are

disjoint since rk is the first return time of Jk to (I
(nk)
j0

)l0 . Thus,

|Srk(w)(z1)− Srk(w)(z2)| ≤ Var(w).

Similarly, since zν ∈ Jk which by construction is contained in (I
(nk)
j0

)l0 and

since T rkzν ∈ T rkJk ⊂ T rk(I
(nk)
j0

)l0 ⊂ I
(nk)
j0

, 0 ≤ kν < h
(nk)
j0

and the iterates

T iI
(nk)
j0

for 0 ≤ i < h
(nk)
j0

are disjoint, we can estimate

|Skν (w)(T rkzν)− Skν (w)(zν)| ≤ Var(w), ν = 1, 2.

We know have to estimate the terms in (44) coming from f0. Let us again

consider first the central term in (44). Since Jk is by construction contained in

a continuity interval of T i for 0 ≤ i < rk, the mean value theorem gives that

there exists some z0 in Jk such that

(46) |Srk(f0)(z1)− Srk(f0)(z2)| ≤ |Srk(f ′0)(z0)||z1 − z2| ≤ |Srk(f ′0)(z0)|λ/2.

The return time rk is in particular a return time to I
(nk)
j0

and hence to I(nk);

assume that it is the nth return to I(nk), where n =
∑d
j=1 a

k
j and akj is the

number of returns to I
(nk)
j (so akj0 ≥ 1). Hence we can write rk =

∑d
j=1 a

k
jh

(nk)
j .
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Let us decompose the Birkhoff sum into Birkhoff sums along the towers of φ(nk)

as

(47) Srk(f ′0)(z0) =
d∑
j=1

akj∑
l=1

S
h
(nk)

j

(f ′0)(zjl ),

where the intermediate points18 are zj01 = z0 and zjl ∈ I
(nk)
j for l = 1, . . . , akj ,

and for j 6= j0 one can have akj = 0, in which case the corresponding sum is

empty.

To each of the Birkhoff sums in (47) let us apply Proposition 4.1. Let us

remark that T i(I
(nk)
j0

)l0 for i = 0, . . . , rk−1 are all disjoint and rigidly translated

by T and that the singularities z±j are all contained in the boundary of the

floors of the towers, so that, since z0 belongs to a central subinterval Jk ⊂
(I

(nk)
j0

)l0 , the distance of each point in each orbit segment {T izjl }i=0,...,h
(nk)

j −1

from the singularities z+
j , 0 ≤ j < s1 and z−j , 0 ≤ j < s2 is at least λ/4.

Moreover, we have
∑
j a

k
j ≤ 2d(d + 2)ν, as it follows by combining that, by

disjointness of T i(I
(nk)
j0

)l0 , we have
∑
j a

k
jh

(nk)
j λ/2 ≤ 1 and that, by balance

(12) and construction (15), (16) of Jk, we have h
(nk)
j ≥ 1/(λd(d+ 2)ν). Hence,

setting C =
∑s1−1
j=0 C+

j +
∑s2−1
j=0 C−j , we have

(48) |Srk(f ′0)(z0)| ≤ 2d(d+ 2)ν

Ç
M max

j
h

(nk)
j +

4C

λ

å
.

The combination of equations (46) and (48), using again balance (13), gives

the bound on the central term of (44) coming from f0 by a constant. Each

of the other two terms of (44) coming from f0, as in (45), can be written, for

ν = 1, 2, as

Srk(f0)(T kνzν)− Srk(f0)(zν) = Skν (f0)(T rkzν)− Skν (f0)(zν)(49)

= Skν (f ′0)(uν)(T rkzν − zν),

where uν is a point in I
(nk)
j0

between zν and T rkzν . Since zν ∈ Jk and, by

construction of Jk, Jk ⊂ (I
(nk)
j0

)l0 and T rkzν ∈ T rkJk ⊂ T rk(I
(nk)
j0

)l0 ⊂ I
(nk)
j0

,

uν has distance at least λ/4 from both endpoints of I
(nk)
j0

. Moreover, T iI
(nk)
j0

18To construct the intermediate points and show (47) one can use induction on n. For

brevity, let h := h
(nk)
j0

. If n = 1, then Th(z0) ∈ Jk and there is nothing to prove, since

rk = h and setting akj0 = 1 and akj = 0 for j 6= j0, (47) becomes an identity. Otherwise,

if n > 1, let j be such that Thz0 ∈ I
(nk)
j and define z1j = Th(z0) so that Srk (f ′0)(z0) =

Sh(f ′0)(z0) + Sr′(f
′
0)(z1j ), with r′ = rk − h. Since for r′ the number of return times is by

construction n−1, the definition of the remaining intermediate points zjl follows by induction.
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for 0 ≤ i < h
(nk)
j0

are disjoint and are rigid translates of I
(nk)
j0

, so that all the

points T iuν for 0 ≤ i ≤ kν have distance at least λ/4 from both endpoints of

T iI
(nk)
j0

and hence, in particular, from the singularities z+
j , j = 0, . . . , s1 − 1,

z−j , j = 0, . . . , s2 − 1.

Hence, we can apply Proposition 4.2 with xmin
i , ymin

i ≥ λ/4 to get

(50)
∣∣Skν (f ′0)(uν)(T rkzν − zν)

∣∣ ≤ ÄM ′kν + 4C/λ
ä
λ

(nk)
j0
≤M ′ + 8C(d+ 2),

where in the last inequality we used that λ ≥ λ
(nk)
j0

/2(d + 2), by (16) and

definition of Jk and that kνλ
(nk)
j0
≤ h

(nk)
j0

λ
(nk)
j0
≤ 1. Thus, combining (49) and

(50) we get the upper bound of the other two terms in (44) coming from f0 by

a constant. This concludes the proof that Ek and rk satisfy also Property (iii)

of Lemma 3.1 and hence, using Lemma 3.1, the proof of Theorem 1.2. �

5. Reduction to special flows.

In this section we derive Theorem 1.1 from Theorem 1.2.

Proof of Theorem 1.1. Let us assume that the multi-valued Hamiltonian

flow associated to η has only simple saddles and no saddle loops homologous

to zero. In the set of multi-valued Hamiltonian flows without saddle loops

homologous to zero, the flow associated to a typical η in the sense defined

before Theorem 1.1 does not have saddle connections. Thus, from a result

by Calabi [Cal69] or by Katok [Kat73], there exists a holomorphic 1-form

(or Abelian differential) α whose associated vertical flow determines the same

measured foliation.

For any γ cross-section transversal to the flow, the Poincaré first return

map T on γ preserves the measure induced by the area form on the transver-

sal. Up to reparametrization (using the smooth conjugacy that sends the in-

duced invariant measure to the Lebesgue measure on an interval of unit length

parametrizing γ) we can assume that T is an IET (λ, π) on I(0) = [0, 1). Since

we assume that the flow is minimal, π is irreducible. The flow {ϕt}t∈R is iso-

morphic (up to the smooth conjugacy above) to a special flow over T under a

roof function f which is given by the first return time to the transversal. Using

the representation of typical Abelian differentials as zippered rectangles (for

which we refer for example to [Yoc06] or [Via]), one can see that a full measure

set of IETs gives a set of full measure of Abelian differentials. Moreover, since

the transverse measure of the multi-valued Hamiltonian flow {ϕt}t∈R and of

the vertical flow of the Abelian differential α are the same (in other words

the horizontal components of the periods
∫
γi
α are the same then

∫
γi
η), a full

measure set of IETs also gives a full measure set of multi-valued Hamiltonian

flows. Thus, in order to deduce Theorem 1.1 from Theorem 1.2, it is enough

to check that f satisfies the assumptions of Theorem 1.2.
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Let us choose the transversal γ so that the backward flow orbits of the

transversal endpoints both contain a saddle, but the endpoints are not at sad-

dles, for example, by considering a standard cross-section chosen for the zip-

pered rectangle representation of the corresponding Abelian differential and

shifting it by a sufficiently small t0 < 0 along the flow direction. Both discon-

tinuities of T and singularities of f occur at points zi which lie on a separatrix,

hence whose forward orbit under ϕt limit toward a saddle. By our choice of

the transversal endpoints, the IET exchanges d = 2g + s − 1 intervals, where

g is the genus and s the number of saddles, and since the saddles are simple,

by Gauss-Bonnet formula19 d = 4g − 3 = 2s+ 1.

Since the parametrization is locally Hamiltonian, trajectories are slowed

down more and more the closer they come to a saddle. The one-sided limit

limx→z+i
f(x) (or limx→z−i

f(x)) of the return time f(x) blows up near zi if

the forward trajectories of the nearby points x > zi (or x < zi) under the

vertical flow of the Abelian differential, considered up to their return time,

come arbitrarily close to a saddle. From the canonical form of a simple saddle,

one can show (see [Koč76]) that the singularities are in this case logarithmic,

i.e., of the form Ci| log(x − zi)| for x ≥ zi (or x ≤ zi) up to a function w of

bounded variation, where the constant Ci depends on the saddle.20

One can see, for example, by using the zippered rectangle representation,

that out of the 2d = 4s+ 2 (two for each interval) one-sided limits of the form

limx→z±i
f(x), where zi is either a discontinuity of T or an endpoint of I(0),

exactly 4s are infinite and give discontinuities of f , since the corresponding

zippered rectangle boundary contains a saddle. The remaining two limits are

finite and the corresponding return times for nearby x > zi or x < zi are

bounded. Each of the s saddles has two incoming separatrices, each of which

generates a left and a right logarithmic singularity of f with the same constant

Ci depending on the saddle. Thus, the number of right and left singularities

is s1 = s2 = 2s and each constant Ci appears four times, twice in a right-

side singularity and twice in a left-side one. In particular, the logarithmic

singularities are symmetric. �

Remark 5.1. From the proof of Theorem 1.1 one can see that the class of

special flows which are used to represent multi-valued Hamiltonian flows is less

general than the class considered in Theorem 1.2. The permutations π that

19If ki, for i = i, . . . , s, denote the orders of the zeros, the Gauss-Bonnet formula gives∑s
i=1 ki = 2g − 2 (we refer for example to [Yoc06] or [Via]) and since we are assuming that

ki = 1 for all k = 1, . . . , s, we have s = 2g − 2.
20The logarithmic nature of the singularities was first remarked by Arnold in [Arn91]. A

detailed calculation which gives more information on the function w can be found in [FU].
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arise are not all irreducible ones, but only the ones which correspond to Abelian

differentials in the principal stratum H (1, . . . , 1) of Abelian differentials with

simple zeros,21 and the roof functions have symmetric logarithmic singularities

in which s1 = s2 and all constants appear in quadruples C+
i1
, C+

i2
, C−j1 , C

−
j2

(for

some 0 ≤ i1 6= i2 < s1 = s, 0 ≤ j1 6= j2 < s2 = s) such that C+
i1

= C+
i2

= C−j1
= C−j2 .
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