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Galois representations arising from
some compact Shimura varieties

By Suc W00 SHIN

Abstract

Our aim is to establish some new cases of the global Langlands cor-
respondence for GL,,. Along the way we obtain a new result on the de-
scription of the cohomology of some compact Shimura varieties. Let F' be
a CM field with complex conjugation ¢ and II be a cuspidal automorphic
representation of GL.,(Ar). Suppose that IIY ~ IT o ¢ and that Il is
cohomological. A very mild condition on Il is imposed if m is even. We
prove that for each prime [ there exists a continuous semisimple representa-
tion R;(TT) : Gal(F/F) — GL,,(Q,) such that IT and R;(IT) correspond via
the local Langlands correspondence (established by Harris-Taylor and Hen-
niart) at every finite place w 1 [ of F' (“local-global compatibility”). We also
obtain several additional properties of R;(Il) and prove the Ramanujan-
Petersson conjecture for II. This improves the previous results obtained by
Clozel, Kottwitz, Harris-Taylor and Taylor-Yoshida, where it was assumed
in addition that IT is square integrable at a finite place. It is worth not-
ing that the mild condition on Il in our theorem is removed by a p-adic
deformation argument, thanks to Chenevier-Harris.

Our approach generalizes that of Harris-Taylor, which constructs Galois
representations by studying the l-adic cohomology and bad reduction of
certain compact Shimura varieties attached to unitary similitude groups.
The central part of our work is the computation of the cohomology of the
so-called Igusa varieties. Some of the main tools are the stabilized counting
point formula for Igusa varieties and techniques in the stable and twisted
trace formulas.

Recently there have been results by Morel and Clozel-Harris-Labesse in
a similar direction as ours. Our result is stronger in a few aspects. Most
notably, we obtain information about R;(IT) at ramified places.
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1. Introduction
A version of the global Langlands conjecture states:

CONJECTURE 1.1. Let F' be a number field and 11 be a cuspidal auto-
morphic representation of GL,,(Ar) which is algebraic in the sense of [Clo90,
Def. 1.8]. For each prime l, with the choice of an isomorphism v : Q; = C, there
exists an irreducible continuous semisimple representation Ry, (I1) : Gal(F/F)
— GL,(Q;) such that Ry, (I1) is potentially semistable at every place y of F
dividing | and

(1.1) WD(RZ,Lz (H)|Gal(fy/py))F_ss = Lflgm,Fy (ILy)
for every finite place y of F (including y|l).

Here WD(-) denotes the associated Weil-Deligne representation for lo-
cal Galois representations and (-)¥~% means the Frobenius semisimplification.
(See [TYO07, §1] for instance, to review these notions.) The notation %, g, (II,)
means the local Langlands image of II,, where the geometric normalization is
used (§2.3). Since II is unramified at all but finitely many places, the conjec-
ture implies that R;,, (II) has the same property. The representation R;,, (II)
is unique up to isomorphism by the Cebotarev density theorem, if it exists.
For simplicity of notation, we write R;(II) for Ry, (II) later on.

When m = 1, Conjecture 1.1 is completely known by class field theory.
If m = 2 and F is totally real, a lot is known about the conjecture. (See
[BR93], [Tay89], [Sai09] and the references therein.) We will be mostly con-
cerned with the case m > 3. In general the conjecture is still out of reach, but
there are favorable circumstances where more tools are available in attacking
the conjecture. Let F' be a CM field. Use ¢ to denote the complex conjugation.
Suppose that IV ~ IT o ¢ and that II is regular algebraic ([Clo90, Def. 3.12]).
The latter is equivalent to the condition that Il is cohomological for an irre-
ducible algebraic representation of GL,,. These assumptions on II essentially
ensure that II “descends” to a representation of a unitary group and that the
descended representation can be “seen” in the [-adic cohomology of a relevant
PEL Shimura variety of unitary type. In particular many techniques in arith-
metic geometry become available. There are some solid results in this setting.
If we further assume that

e II is square integrable at some finite place,
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then Conjecture 1.1 is known by a series of works [Kot92a], [Clo91], [HT01]
and [TYO07] for every y {1 I. More precisely, the assertions of Theorem 1.2
below, without any condition on I, when m is even, are known under the
additional assumption on II as above. (Although the assertion (vi) is not
explicitly recorded, it follows easily from the contents of [TY07].)

It has been conjectured for some time that the additional condition on II
might be superfluous. However, it has also been realized by many people that
it would require techniques in the trace formula and a better understanding of
endoscopy to remove the superfluous assumption on II. One of the most con-
spicuous obstacles was the fundamental lemma, which had only been known in
some special cases. Thanks to the recent work of Laumon-Ng6 ([LNO08]), Wald-
spurger ([Wal97], [Wal06]) and Ng6 ([Ngo610]) the fundamental lemma (and the
transfer conjecture of Langlands and Shelstad) are now fully established. This
opened up a possibility for our work.

Our paper is aimed at proving Conjecture 1.1 at y { [, without assuming
that II is square integrable at a finite place, but with a very mild assumption
on Il when m is even. (See the third assumption on II of Theorem 1.2.)
This last assumption has been removed by a p-adic deformation argument by
Chenevier and Harris ([CH, Th. 3.2.5]), so it should not be regarded as a serious
condition. (However, the equality (i) of the theorem is preserved only up to
semisimplification in the p-adic deformation argument.) No such assumption
on Il is necessary when m is odd.

The main theorem is the following. (See Remark 7.6 for the case where
F' is a totally real field.) Note that we also prove the assertions (v) and (vi)
below, which are predicted by Conjecture 1.1 at y|l, as well as a few additional
properties of Ry(IT). Unfortunately we do not prove that R;(II) is irreducible.
(If II is square integrable at a finite place, the irreducibility is known by [TY07,
Cor. 1.3].)

THEOREM 1.2 (Theorem 7.5, Theorem 7.11, Corollary 7.13). Let m €
Z>o. Let F' be any CM field. Let II be a cuspidal automorphic representation
of GLp,(AFp) such that

o [IV~Tloc.
o Il has the same infinitesimal character as some irreducible algebraic
representation ZV of the restriction of scalars Rp/gGLp.
o = is slightly regular, if m is even.
Then for each prime | and an isomorphism v : Q; = C, there exists a continu-
ous semisimple representation Ri(I1) = Ry, (II) : Gal(F/F) — GL,,,(Q;) such
that (i) For any place y of F not dividing l, there is an isomorphism of Weil-
Deligne representations

WD(R(ID) 17, 1)) = 17 Lo 1, (1),
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(ii) Suppose y t 1. For any o € WF,, each eigenvalue o of Ri(Il)(o)
satisfies |a|? € |k(y)|* under any embedding Q — C.

(iii) Let y be a prime of F not dividing [, where IL, is unramified. Then
Ry(I1) is unramified at y, and for all eigenvalues o of R;(II)(Frob,)
and for all embeddings Q — C we have |a|?> = |k(y)|™ L.

(iv) For every y|l, R;(I1) is potentially semistable at y with distinct Hodge-
Tate weights, which can be described explicitly.

(v) If Iy is unramified at y|l, then R(II) is crystalline at y.

(vi) IfIL, has a nonzero Iwahori fized vector at y|l, then Ry(II) is semistable
at y.

In fact, our method allows us to prove a stronger assertion that there exists
a compatible system of A-adic representations associated to II. That is to say,
for each II as above, there is a number field L such that the representations
Ry, (IT) for varying [ and ¢; are realized on Ly-vector spaces for varying finite
places A of L. This can be done by realizing £ on an L-vector space (where
L is large enough to contain the field of definition of II, cf. [Clo90, 3.1]) and
% as a smooth Ly-sheaf rather than a Qj-sheaf (cf. [Kot92a, p. 655]), where
¢ and .Z; are as in Section 5.2.

It is standard that the theorem implies the Ramanujan-Petersson conjec-
ture for II as above, but it is worth noting the order of proof. First we prove
Theorem 1.2 with a weaker version of the first assertion, namely that (i) holds
only up to semisimplification. This is enough for deducing the corollary be-
low. Then the temperedness of II, among others, is used to strengthen the
statement of (i).

COROLLARY 1.3 (Corollary 7.9). Let m, F, II be as in the previous theo-
rem. Then I, is tempered at every finite place w of F'.

We sketch the strategy of proof of Theorem 1.2. In fact we content our-
selves with explaining the proof of only the first assertion as the proof of other
parts are more or less standard. Our strategy relies on the theory of Shimura
varieties, whose cohomology is expected to realize the global Langlands cor-
respondence in an appropriate sense. Since there are no Shimura varieties for
GL,, if n > 2, the next best thing is to use the Shimura variety for a uni-
tary similitude group G. Suppose that the CM field F' contains an imaginary
quadratic field E. We find a Q-group G such that

e (5 is quasi-split at all finite places,
e G(R) is isomorphic to U(1,n — 1) x U(0,n)F*@/2=1 up to multiplier
factor, and
L] G(AE) ~ GLl(AE) X GLn(AF).
Note that the first assumption is not satisfied by the groups considered in
[Kot92a], [Clo91] and [HTO01]. When n is odd, such a group G always exists.
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When n is even, G exists if and only if n = 2 (mod 4) and [F' : Q]/2 is odd.
In our work it is enough to consider the case when n is odd. Indeed, in order
to construct m-dimensional Galois representations, we use n = m if m is odd
and n = m + 1 if m is even. In case m is odd (resp. even), R;(II) will be
realized in the stable (resp. endoscopic) part of the cohomology of Shimura
varieties attached to G as above. These correspond to (Case ST) and (Case
END) below. Before elaborating on this point, let us give more details about
the setup.

Consider a projective system of Shimura varieties, denoted by Sh, whose
associated group is G. If F # FE, then Sh is a projective system of smooth
projective varieties over F' which arise as the moduli spaces of abelian schemes
with additional structure. The projectivity of Sh and the fact that G/Z(G)
is anisotropic over QQ are related to each other and essential in our argument.
Let ¢ be an irreducible algebraic representation of G over Q;, which gives rise
to a lisse [-adic sheaf .Z; on Sh. The étale cohomology space H*(Sh, L) =
H¥(Sh x p F, %) is a smooth representation of G(A>) x Gal(F/F). We have
a decomposition

H*(Sh, %) = @77 ® R (7™)

as m>° runs over the set of irreducible admissible representations of G(A>).
Write H(Sh, %) := S n(—1)*H*(Sh, %).

Fix a prime p split in E as well as a place w of F above p. The Shimura va-
riety Sh has an integral model over O, and its special fiber Sh has the Newton
(b)

p-divisible groups with additional structure. We can define a smooth variety Ig,

polygon stratification into Sh'’, where b is a parameter for an isogeny class of

over [, (which is also a projective system of varieties) from ﬁ(b). Also defined
is a Qp-group J, which is an inner form of a Levi subgroup of Gg,. The co-
homology space H (Ig,,.Z;) is naturally a virtual representation of G(A*P) x
Jp(Qp). On the other hand, there is a functor Manty , : Groth(J,(Qp)) —
Groth(G(Qp) x Wk, ), which is defined in terms of the cohomology of a cer-
tain moduli space of p-divisible groups. Mantovan’s formula ([Man05, Th. 22],
[Man, Th. 1]) is the following identity in Groth(G(A>) x Wg, ), which gener-
alizes [HTO01, Th. IV.2.8]:

(1.2) H(Sh, %) = ZManth c(Igp, Z¢)).

An important point is that Mant, , is purely local in nature and well-under-
stood thanks to Harris and Taylor. (See §2.4).

Consider a regular algebraic automorphic representation II = ¢ @ II' of
G(Ag) ~ GLi1(Ag) x GL,(AFr) where Il is determined by . We deal with
two possibilities for IT' as follows (§6.1).
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e (Case ST) IT! is cuspidal, or
e (Case END) IT! = n-ind(II; ® IT5) where II; is a cuspidal automorphic
representation of GL,,(Ar) and n; > ng > 0. (n1 +ng =n).

For simplicity of exposition, we assume that the local base change from the
representations of G(A*°) to those of G(AY) is well-defined at every finite
place. (In practice we work under simplifying assumptions to make sense of
base change unconditionally, as in Section 4.1. To our knowledge, this idea is
due to Harris and Labesse (e.g. [Lab]).) We would like to define the “II°%:P-
part” of H.(Igy, Z¢). Write

Ho(lgy, L) = Y n(m™P @ pp) - [1°°7 @ pp,

TP R

where n(m*? ® p,) € Z and the sum runs over irreducible admissible repre-
sentations of G(A*P) x J,(Qp). Then define

He(lgy, ZO{I™P} = Y a(x™P®@pp) - [py).
7P Qpp
BC(m%0:P)~I100:P
Also define Ry(T) := 3 e Re¢ (%) where 7 are representations such that
BC(7P) ~ [1>°P.

We are ready to state our results on the cohomology of Igusa varieties and
Shimura varieties. First, H.(Ig,, Z){II°°?} is explicitly described in terms
of II,. (For a precise statement, see Theorem 6.1.) In fact, in (Case END),
the description depends on not only II, but also II; , and II5 ;. This result,
together with (1.2) and our knowledge of Manty ,, leads to a description of
Ry(IT) in Groth(Wp,). (In fact, as a by-product, we know not only R;(II)
but also the contribution to EZ(H) from each Newton polygon stratum.) Up
to some explicit nonzero multiplicity and character twist, it turns out that
(Theorem 6.4)

e (Case ST) E(H)\WFW is the local Langlands image of II'.
e (Case END) EZ(HNWFw is the local Langlands image of II; or IIs.

In particular dim R;(IT) = n in (Case ST) whereas dim R;(II) = n; or ns in
(Case END), up to multiplicity. Moreover, it can be shown that Ry(II) is a
true representation concentrated in H"1(Sh, %). So far we indicated how the
local-global compatibility is established at w on the condition that p = w|g
splits in E. This can be extended to all places not dividing [. (See the proof
of Proposition 7.4.)

With the above result on the cohomology of Shimura varieties, it is not too
difficult to deduce Theorem 1.2. Harris proposed a strategy generalizing [BR93|
(which may be regarded as the case with m = 2 and n = 3) and its outline is
as follows. As the notation II is already being used, let TI° denote the cuspidal
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automorphic representation of GL,,(AF) in the theorem. If m is odd, use n =
m and IT' = T1°. Then E(H) is essentially the desired Galois representation.
If m is even, use n = m + 1 and II; = II'. In this case, it is possible to
choose Iy so that E;(H) is essentially the desired representation, namely it
corresponds to II; rather than to Ily. To prove this, we carry out explicit
computation of signs in real endoscopy. The slight regularity assumption of
Theorem 1.2 ensures that a good choice of Il exists. Actually our construction
of Galois representations a priori relies on additional assumptions on F' and
II, for technical reasons including the issue of local base change. To remove
these assumptions we apply a “patching” argument as in [BR89] and [HTO01].
(See the proof of Theorem 7.5.)

We have explained how a result on H,(Igy,, Z){II°>P} implies a result
on EZ(H), thus enabling us to prove Theorem 1.2. The remaining problem is
the computation of H.(Igy, Z){II°*?}, which is at the core of our work. The
starting point is the following stable trace formula ([Shi09a]), which stabilizes
the counting point formula for Igusa varieties ([Shi09b)):

(1.3)  tr (o™ ¢|uHo(Igy, L)) = |ker' (Q, G)| Y UG, G)STE (1, ).
Gy

The notation should be explained. The function ¢> - ¢, € C2°(G(A®P) x
Jp(Qp)) is any acceptable function in the sense of [Shi09a, Def. 6.2]. The sum
is taken over elliptic endoscopic groups Gj; for G (§3.2). The test functions qﬁfg
away from p, oo are the Langlands-Shelstad transfer of ¢°P. See Section 5.3
for qSIﬁgm and (bg ~- We remark that an analogous formula for Shimura varieties
was obtained earlier by Kottwitz ([Kot92b], [Kot90]) and plays a central role
in the computation of Frobenius action on the cohomology of Shimura varieties
at the primes of good reduction. Kottwitz’ formula is a key input in [Kot92a],
[Mor10], [CHLa], to name a few. However, his formula is not needed in [HT01]
and our work, where the trace formula for Igusa varieties is importantly used.

We can proceed from (1.3) using similar techniques as in work of Clozel,
Harris and Labesse ([Lab], [CHLD]) on the base change and endoscopic transfer
for unitary groups. The point is that each summand in (1.3) is (up to a
constant) equal to the geometric side of the twisted trace formula for G xg E
with respect to the Galois action of the nontrivial element § € Gal(E/Q).
This in turn equals the spectral side of the trace formula, expanded in terms
of f-stable automorphic representations of Gz(Ag). By a result of Jacquet-
Shalika, we can separate a string of Hecke eigenvalues, or the II°*P-part from
the spectral expansion. It turns out that this process singles out a unique
term in the spectral expansion in (Case ST) and two terms in (Case END).
Using various character identities, an explicit description of H(Ig,, Z¢){11°°"}
is finally obtained. In doing so, the most interesting and perhaps mysterious
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character identities are those at p (Lemma 5.10). These arise naturally from
the stabilization process for (1.3) at p and reflect the structure of Newton
stratification of Sh.

So far we sketched the proof of Theorem 1.2. We end by mentioning the
latest work of others in a similar direction. Recently Morel announced a result
([Mor10, Cor. 8.4.9, 8.4.10]) similar to Theorem 1.2 and its corollary, as an ap-
plication of her study of noncompact unitary Shimura varieties. (In contrast,
our work offers no information about the geometry or cohomology of those
Shimura varieties.) When m is odd, she constructed R;(II) up to multiplicity
and proved (i) of Theorem 1.2 at the places y where II, is unramified, as well
as (iii). Now suppose that m is even. If m = 2 mod 4 and [FT : Q] is odd,
she obtains the same result as in the case of odd m. Otherwise, she can still
construct A2R;(IT) up to multiplicity and prove an analogue of (i) and (iii) at
unramified places. (Actually Morel states the main results only in the case
FT = Q, but it seems that her results extend to the cases mentioned above
without much difficulty.) Perhaps the most important input in Morel’s work is
the counting point formula (and its stabilization) for the special fibers of non-
compact Shimura varieties (cf. [Mor05], [Mor08]), which generalizes [Kot92b]
and [Kot90] to the noncompact setting. On the other hand, Clozel, Harris
and Labesse ([CHLa]) have succeeded in constructing even dimensional Galois
representations attached to II as in our work under a similar restriction on Il..
Their method shares some common features with ours in that they use the same
compact Shimura varieties and the endoscopic transfer from U(m) x U(1) to
U(m+ 1) as well as the twisted trace formula. The essential difference is that
they employ (the stabilization of) Kottwitz’ counting point formula ([Kot92b],
[Kot90]) and obtain information only at unramified (good) places. In contrast,
our method makes use of the counting point formula for Igusa varieties and can
deal with bad places. Actually we can even describe the compact support co-
homology of each Newton stratum (at a possibly bad place) in the endoscopic
setting, in a suitable sense.

It is worth noting that there has been a precise conjecture about the
cohomology of PEL Shimura varieties of type (A) or (C) for many years. (See
the formula on page 201 of [Kot90]. Compare with [LR92, Th. B, p.293] in the
case of U(3).) If fully established, the conjecture would imply our result on R
as well as our main theorem. So the issue has been not to speculate what should
be true in general but to justify what is already expected about the cohomology
of Shimura varieties, in as many cases as possible. To our knowledge, our
work is the first to describe unconditionally the Galois representations in the
endoscopic part of the cohomology at bad places, even in the case of U(3).

We briefly outline the structure of the article. We review background
materials in Sections 2-6. In Section 2 we define the functor Mant;, and
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recall the results of [HT01] on Manty, ,. Sections 3 and 4 are devoted to the
discussion of endoscopy, local base change and the twisted trace formula for
unitary similitude groups. It is worth remarking that the functions at infinity
reviewed in Sections 3.5 and 4.3 play an important role in the study of the
cohomology of Shimura varieties and Igusa varieties. In (Case END), the
sign calculation of Section 3.6 is crucial. On the other hand, the functions at
infinity allow us to simplify the geometric and the spectral sides of the twisted
trace formula (§4.5). In Section 5 we recall the definitions of Shimura varieties
and Igusa varieties, Mantovan’s formula and the stable trace formula for Igusa
varieties (Propositions 5.2 and 5.3) as well as some other facts. It is important
to allow the prime p (where the local structure is to be analyzed) to be ramified
in F. As some of our references ([Man05], [Shi09a] and [Shi09b]) assume that
p is unramified in F', we explain how the results there can be extended to
our setting. We also need a stable trace formula for G, which will be used to
control automorphic multiplicity (Corollary 6.5(iv).) This is essentially used
in obtaining later corollaries. Sections 5.5 and 5.6 are devoted to an explicit
version of “endoscopy for Igusa varieties” at p. Although the local endoscopy
of G at p is banal, our discussion clarifies how the global endoscopy for G
interacts with the Jy,(Q))-representations in H.(Ig;, %), which encode certain
information about bad reduction. The main body of argument is given in
Sections 6 and 7. We mainly consider (Case ST) and (Case END), which are
introduced in the beginning of Section 6.1. (See Remark 6.11 for a comment
on other cases.) The stable trace formula and the twisted trace formula are
combined in the proof of Theorem 6.1, which is a key result of our paper. It is
pleasant to see that Theorem 6.4 is derived from Theorem 6.1. Although this
may not be very surprising in (Case ST), the computation is more curious in
(Case END). In Section 6.2, we deduce several consequences from Theorem 6.1,
Mantovan’s formula and the known facts about the functor Manty ,,.

In the proof of Corollaries 6.5, 6.7, 6.8 and 6.10 we borrow important
ideas from Harris and Taylor. The last two corollaries yield the desired Galois
representation by removing an unwanted multiplicity (and multiplying an ob-
vious character), under the technical assumptions made in Sections 5 and 6. In
Sections 7.1 and 7.2, we prove the main results on R;(II). In the case of even-
dimensional Galois representations, it is crucial to make a good choice of an
auxiliary Hecke character (Lemma 7.3). This relies on our computation of Sec-
tion 3.6. Another important idea is to remove all extra technical assumptions
by using patching argument for many quadratic extensions, due to [BR89] and
[HTO01]. In Corollary 7.9 we prove relevant cases of the Ramanujan-Petersson
conjecture. Finally in Section 7.3, we imitate the argument of [T'Y07] to prove
a stronger result on the local-global compatibility and the last assertion of
Theorem 1.2.
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1.1. Notation and Convention. Suppose that F'is a number field or a local
field. By this we mean that F' is a finite extension of Q or QQ, for some place v
of Q. (We allow v = 00.) The Weil group Wr of F' is defined in [Tat79]. Let
G be a connected reductive group over F'. Denote by G the dual group of G,
which is a complex Lie group. Define the L-group *G := G x Wr of G via a
semi-product. (See [Bor79] for precise definition.) If F' is a finite extension of
K, then Rp/ G denotes the Weil restriction of scalars (whose set of K-points
is the same as G(F)). Let H'(F,G) := HY(Gal(F/F),G(F)). When F is
a number field, write ker!(F,G) for the kernel of H'(F,G) — [[, H'(F,,G)
where v runs over all places of F. Similarly define ker! (F, H) for any complex
Lie group H equipped with the action of Gal(F/F) factoring through a finite
quotient.

Let F be a number field and y be a place of F. Write k(y) for the
residue field of F),. Let I, denote the inertia group of Wg,. Denote by Frob,
the geometric Frobenius element of Wg, /I, namely the element inducing

x> 2~ *O in Gal(k(y)/k(y)).
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When L is a finite extension of a number field F', we denote by Ramp,
(resp. Unry,p, Sply, / ) the set of finite places of F' which are ramified (resp.
unramified, completely split) in L. When II € Irr(G(A)), let Ramg(II) denote
the set of primes p of Q such that there exists a place v dividing p where II,
is ramified.

Suppose that F' is a local non-archimedean field. Denote by Dp y the
central division algebra over F' with Hasse invariant A\ € Q/Z. Let Artp :
F* 5 W2 be the local Artin map normalized so that a uniformizer of F*
maps to a lift of a geometric Frobenius element. Let |- |p : F* — RZ, denote
the character which is trivial on O and maps the inverse of any uniformizer
to the cardinality of the residue field. Set |- |y, := |- |r o Arty'. There is a
unique way to choose | - \};/2 : F* = RZ,. When ¢ : Q; = C is fixed, we often
write | - };/ % for ot };/2 by abuse of notation.

Keep assuming that F' is a local non-archimedean field. We denote by
Irr(G(F)) (resp. Irr;(G(F'))) the set of all isomorphism classes, irreducible ad-
missible representations of G(F') on vector spaces over C (resp. Q;). When 7 is
an irreducible unitary representation of G(F') (modulo split component in the
center), m may also be viewed as an irreducible admissible representation by
taking smooth vectors; so we may say m € Irr(G(F)). The subset Irr?(G(F))
of Irr(G(F')) is the one consisting of (essentially) square-integrable represen-
tations. Let C2°(G(F')) denote the space of smooth and compactly supported
C-valued functions on G(F'). Let P be an F-rational parabolic subgroup of
G with a Levi subgroup M. For each mp; € Irr(M(F)) and « € Irr(G(F)),
we can define the normalized Jacquet module J§ () and the normalized para-
bolic induction n-ind%(mys) so that JG (7) (resp. n-ind%(myy)) is an admissible
representation of M(F) (resp. G(F)). The induced representation n-ind% ()
will often be written as n-ind{;(myr) when working inside of Groth(G(F)) or
computing traces, since different choices of P give the same result. Define a
function DG/M on M(F) by Dg/M(m) = det(l — ad(m))\Lie (@)/Lie (M) and a
character dp : M(F) — RZ, by dp(m) = |det(ad(m))|ric (p)/Lic (m)|F- In case
G = GL,, and M = [[; GL,, (32;ni = n), consider m; € Irr(GLy,(F')). De-
note by B;m; the Langlands subquotient of n-ind%(®;m;) (cf. [BW00, Ch. IV],
[Sil78]), which is independent of the choice of P. For any s € Z~( and a super-
cuspidal 7 € Irr(GL,(F)), let Sp,(n) € Irr?(GLg,(F)) denote the generalized
Steinberg representation ([HTO01, p. 32]). Let e(G) € {£1} denote the Kot-
twitz sign defined in [Kot83]. When F = Q,, we often write e,(G) for e(G).
The definitions in this paragraph make sense for F' = R (except Sp,(m)) with
the usual absolute value | - | on R and the infinitesimal equivalence between
representations of G(R).

Assume that G is an unramified group over a non-archimedean field F'.
Choose a hyperspecial group K C G(F'). Define a Haar measure on G(F) so
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that K has volume 1. Define s (G(F')) to be the C-subspace of C2°(G(F))
consisting of bi-K-invariant functions. The convolution equips " (G(F))
with C-algebra structure with char g the multiplicative identity. Let Irr"™(G(F))
denote the subset of Irr(G(F')) consisting of unramified representations of
G(F). For each 7 € Irt" (G(F)), define xr : " (G(F)) — C by f — tro(f).
The association 7 +— X, gives a natural bijection from Irr™(G(F')) onto the
set of C-algebra morphisms " (G(F')) — C. (To see that the inverse exists,
use [Bor79, 7.1, 9.5].)

For a number field F' and a finite set .S consisting of places of F', we denote
by A% the restricted product of F, for v ¢ S. In case F = Q, write A® for
A% and Ag for [Jyes Qy. Define Irr(G(A2)), C(G(AZ)) and 2% (G(AL))
via restricted product, where the last one makes sense under the assumption
that G, is unramified for all v ¢ S. The normalized induction is defined in
this adelic context. Let Artp : AR/F* 5 Wf}b denote the global Artin map,
which is compatible with the local Artin map defined above.

Let G be a connected reductive group over Q. Write Ag for the maximal
Q-split torus in the center of G and define Ag o = Ac(R)?. Let Ky be a
maximal compact subgroup of G(R). Let £ be an irreducible finite dimensional
representation of G(C). Then the restriction of £ to A~ gives a character
Xe¢ : Ag,co = C*. Define C2°(G(R), x¢) to be the space of smooth C-valued bi-
K o-finite functions f on G(R) which are compactly supported modulo Ag
and such that f(ag) = x¢(a)f(g) for all @ € Ag,o and g € G(R).

We frequently confuse an isomorphism class or an equivalence class with
its member. For instance, when we write 7 € Irr;(G(Q))), it means that 7 is
an irreducible admissible representation of G(Q,) on a Q;-vector space.

Finally let us agree that (z/Z)V/? (N € Z) denotes ¢N? for z = re'? € C*
with r € Ry and 0 € R/27miZ.

2. Rapoport-Zink spaces of EL-type

Let p and [ be prime numbers such that p # [. The aim of Section 2
is to recollect the description of the cohomology of certain Rapoport-Zink
spaces, which will be incorporated into various versions of “Mant” functors
defined below. We describe these functors in terms of the local Langlands
correspondence and study their properties in the cases which are relevant to the
Shimura varieties of Section 5. We will freely adopt notation from Section 3.1
such as I,,, Py_p n, GLy_p 5, and so on.

2.1. B(G) and isocrystals. Let G be a connected reductive group over Q,,.
Let L := FracW (F,). Denote by o the Frobenius on L which induces the p-
th power map on the residue field. Define B(G) to be the set of equivalence

classes in G(L) where z,y € G(L) are equivalent if there exists ¢ € G(L)
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such that = g~ !yg°. The set B(G) classifies the isomorphism classes of
isocrystals (over F,) with G-structure in the sense of Rapoport and Richartz
([RR96, 3.3, 3.4(i)]). For a Q,-morphism x : G,, = G, Kottwitz defined a
finite subset B(G,u) of B(G). The set B(G,u) often provides parameters
for the Newton polygon stratification in the context of Shimura varieties (cf.
[Har01, §4], [Man05], [Shi09a, §5]).

Let T be a maximal torus of G defined over Q,. Let Q = Q(G,T) be the
Weyl group over Q,. Put N(G) := ((X.(T) ®z Q)/Q)C24Q/Q) " There is a
Newton map ([Kot85, §4], [RR96, 1.7-1.9])

76 : B(G) = N(G)

which is useful in describing the set B(G).
Suppose that G is a finite product of connected reductive Q,-groups Gj.
Write p = []; ps for p; : G, = G;. Then we have a natural identification

B(G,p) = HB(GuMi)~

2.2. Manty,, functor. Let n € Zsg and ®,(F) := Homg, (F,Q,). Consider
a quadruple (F,V, u,b), where
(i) F is a finite extension of Q,. (We do not assume that F' is unramified
over Qp.)
(ii) V = F" is an F-vector space. Let G := Resp,q, GLr(V).
(iii) p : Gy, — G is a homomorphism over Q, (up to G(Q,)-conjugacy)
which induces a weight decomposition V ®@p F' = V@ V1, defined over
a finite extension of Q, where p(z) acts on V; by 2 for i =0, 1.
(iv) b € B(G, —p).
Giving u is equivalent to giving a pair of nonnegative integers (p,, g, ) for
each o € ®,(F) such that p, + g, = n. Given such data, the corresponding p
is represented by the homomorphism @; = [loca,(F) GLn(@p) given by

Z Hdiag(z,...,z,l,...,l).
p ——— ———
Po 9o
Roughly speaking, B(G, —u) classifies isocrystals with F-action up to isomor-
phism (or Barsotti-Tate groups with Op-action up to isogeny, via covariant
Dieudonné theory) whose Hodge polygons are determined by u. Note that
N(G) may be identified with the set of unordered n-tuples of rational num-
bers. In fact g is injective; thus each b € B(G) is uniquely characterized by
its image under the Newton map
DG(b) = (>\17"'>>\17)\27'"a>\27"'7>\7"a"'7)\7‘)7

—_————
m1 ma mr
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where r € Z~g, A; € Q, and m; € Z~¢ for 1 <1i < r. We may and will assume
A1 < -+- < Ap. See [Shi09a, Ex. 4.3] for the explicit condition on r, {\;} and
{m;} in order that b € B(G, —pu).

The reflex field E is by definition the fixed field in @p of the stabilizer in
Gal(Q,/Qy) of the pairs {(po, 4o ) }oca, (7). We will be only concerned with the
case > ,po < 1. If p, = 0 for all o, then E = Q. If p, =1 for a unique o,
then E is identified with o(F) C @p.

The datum (F,V, u,b) gives rise to a formal scheme My, over Spf O,
representing a moduli problem for Barsotti-Tate groups with Op-action. In
fact My, ,, is noncanonically isomorphic to Z-copies of the Lubin-Tate defor-
mation space for formal Op-modules of dimension 1 and height n (the latter
is studied in [Car90], [HG94] and [HTO01, Ch. 2]). (See [RZ96, 3.78-3.79] for
details. In the description of M, , in Proposition 3.79, replace Spf W (F,)
with Spf OFur Although Rapoport and Zink discuss the same moduli space
as in our case, there is a difference in the choice of b. See (1.47) there. The
source of the difference is that Barsotti-Tate groups of Op-slope A correspond
to isocrystals of slope —A in our convention but to isocrystals of slope 1 — A in
that book.)

There is a standard construction to obtain a tower of rigid analytic spaces
le,i,U over F' for open compact subgroups U of GL,(Op) ([RZ96, Ch. 5)),

where Mﬁi GLn(OF) coincides with the rigid analytic space attached to M ,.
(Here GL,,(Op) is regarded as the stabilizer of the standard lattice O% in-
side V.) We consider the étale cohomology of Rapoport-Zink spaces in the
sense of Berkovich ([Ber93]), for which we use the following abbreviated nota-
tion:
HI(ME ) = HIMGE | x— B, Q).
This @Q;-vector space has the structure of a smooth representation of J,(Q,) x
Wg. The last action commutes with the action of G(Q,) on the tower of
./\/l};lg U via Hecke correspondences. Details about these actions can be found
in [RR96 Ch. 5], [Far04, Ch. 4] and [Man04].
Define! the functor Manty, , : Groth(J,(Q,)) — Groth(G(Q,) x Wg) by

(21) Mantb,u(p) = Z (_1)i+j h_r>nEth]b(Qp)-smooth( (Mll;li U) ))(_D)
i,j>0 U

in the notation of [Man05] and [Man]. (Our J,(Qp) is denoted by T}, in [Man05].

Our Manty, ,, is & in [Man].) Here D is the dimension of lei y and (=D) is the

Tate twist. The Ext-groups are taken in the category of smooth representations

1Although we named this functor after Mantovan’s work clarifying its relationship with
the cohomology of Shimura varieties, it should be noted that (variants of) Mants , were
considered previously by several authors, as in [Rap95], [Har01], [Far04].
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of J4(Qp) and the limit is over open compact subgroups U as above. Since the
Ext-groups in (2.1) vanish beyond a certain degree and yield finite length
representations for each U ([Far04, §4.4]), Manty, ,, is well-defined.

2.3. Local Langlands correspondence. Let F' be a finite extension of Q.
Harris-Taylor ([HT01]) and Henniart ([Hen00]) proved that there is a natural
bijection

recy, p : Irr(GLy, (F')) — WD-Rep,, (W)
where WD-Rep,, (W) is the set of isomorphism classes of Frobenius semisimple
n-dimensional Weil-Deligne representations of W on C-vector spaces. See
[HTO01, p. 2] for the characterizing properties of rec, p. We will often use the
following normalization:

aan(W) = recn,p(ﬂv) ® |- ’;{}:—1)/2_

2.4. The case of dimension 0 and 1. Let n € Z~¢. Fix a finite extension
F over Q,, an embedding 0 F < @p and an isomorphism ¢; : Q; = C. By
abuse of notation, ;'] - |¥2 : F* — Q,° will be denoted by | - |};/2 or | -|'/2.

Write Gy, := Rp)q,GLn. Let piy, -0 : Gy — Gn Xq, Q, ~ Ho.eq;.p(F)(GLn)@p
be the Q,-morphism given by

z 0
Z = (( 0 In—l )U:To, (In)a;zéT()) .

Let pnet : G — Gn Xq, @p denote the trivial map. Define by o, b0, € B(Gr)
so that vg, (bno) = (—1/n,...,—1/n) and by, = 1. Observe that b, €
B(Gny —pin o) and b, € B(Gn, —fing). For 1 < h < n —1, define b,_pp €
B(Gn) to be the image of (b,—p.0,0bo,,) under the block diagonal embedding
Gn-n X Gn = Gn. Then by_np € B(Gn, —pin0). Forany 0 < h < n —1,
define an F-group Jy,_p p = D;ﬁl/(n_h) x GLjy, where D;’l/(n_h) is an inner
form of GL,,_j, coming from a division algebra with invariant 1/(n — h). Set
Jon = GL,. We see that RF/QpJn_h,h is isomorphic to J, for b = b,_pn
(0 £ h <n). Let P,_pp be the parabolic subgroup of GL, whose (i, j)-
component is zero exactly when ¢ > n — h and j < n — h. Define a character

51/2 : Jn,]%h(F) — @lx

P _nn

by the relation ci,ﬁhyh(g) = 5},{3hyh(g*), where g* € GL,,_p, ,(F) is any element
whose conjugacy class is transferred from that of g.

Let us write Mant,,_p 5 (0 < h < n — 1) and Mantg,, for Mant;, ,, when
(b, 1) = (b—n,hy i 7o) and (b, ) = (bo,n, fin st ), Tespectively. For each 0<h<n,
define n-Mant,,_j,j, by the relation
(2.2) n-Mant,_p (p) := e(Jp—pn) - Mant,_p p(p ® 52 )

Pr_pn
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for every p € Groth(J,,—p (F)). Note that the Kottwitz sign e(J,_p) equals
(-1 lifo<h<n-—Tland 1if h=n.

LEMMA 2.1. For each 7 € Irr;(GL, (F)), Mantg ,(7m) = [r][1] where 1 is
the trivial character of Wg.
Proof. This follows from [Far04, Ex. 4.4.8]. O

Recall that there exists a natural bijection

JL, : Ir®(Dy;, ) 5 Trr?(GL, (F))

uniquely characterized by a character identity ([DKV84]).
PROPOSITION 2.2. (i) If m € Irr)(GL, (F)) is supercuspidal,
n-Mant,, o(JL, (7)) = [7][Zn.r(T)].
(ii) For s € Zso, g = n/s € Zso and a supercuspidal m € Irr)(GLg4(F)),
n-Mant,, o(JL, *(Spy(7))) equals

> ([Spj(m) Br|det | B Br|det|" ] @ [Z p(r|det ) @] - [9072/2))
j=1

(iii) For each p1 € Irry(Jy—no(F)) and p2 € Irr(Jo p(F)),

n-Mant,,_p n(p1 ® p2)

B ey (n-Mant,,  o(p1) ® n-Manto,(p)) @ | - [
in Groth(GL,,(F) x Wg).

Proof. Both (i) and (ii) follow from a reinterpretation of [HT01, Th.VII.1.3,

VII.1.5] in our language. We elaborate on this point.
Let J := D}, . According to [Har05, Th. 4.3.11], in his notation,

Fl/n
Un(p) ==Y _(~1)"Hom, (¥, p)

)

= n-ind

coincides with [7][.%, ()] if p = JL,;*(7) for a supercuspidal representation 7.
On the other hand, ¥, (p) is identified with Mant,, o(p) for any p € Irr;(J) by
adapting [Man04, Th. 8.7] to our case. Indeed, in the identity of that theorem,
the right-hand side is nothing but Mant,, o(p) whereas the left-hand side is
easily seen to be the same as W, (p) since the special fibers of the relevant
Rapoport-Zink spaces are zero dimensional. Let us compare

Vrin(p) = Z(—l)n_l_i‘wﬁl,n(f))
of [HTO01, pp. 87-88] with ¥, (p) above. Note that Ug;,(p) (resp. ¥y(p))
is defined via the Lubin-Tate deformation spaces (resp. the Rapoport-Zink
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spaces). Note that the Rapoport-Zink space of each fixed level is noncanon-
ically isomorphic to Z-copies of the Lubin-Tate space of the same level and
that one of the copies is canonically isomorphic to the Lubin-Tate space.
([Str05, 2.3], cf. [Har05, p. 49].) From this fact, it is not difficult to prove
that \Il%ln(p) = Hom, (V% ,, p). In other words,

Upin(p) = (=1)" "W, (p) = (=1)""'Mant, o(p) = n-Manty, o(p)

in Groth(GL,,(F) x Wg). Therefore [HT01, Th. VIL.1.3, VIL.1.5] imply our
first two assertions. Note that r;(m) in their notation is isomorphic to %, p()
in view of the relation of r; with rec,  on page 237 of [HT01].

It remains to prove the third assertion. This result can be derived from
[Har05, Props. 4.3.14, 4.3.17] (where p is allowed to ramify in F'), which is
already implicit in [HTO01]. For simplicity of notation, we derive it from [Man08,
Cor. 5] (in case p is unramified in F'), which implies in our case that

GLn(F
Mant,-na(p1 ® p2) = Indp " ) (Mant, 1, 0(p1) ® Manto(p2))-

Here Ind is the nonnormalized parabolic induction. From the above formula it
is straightforward to deduce the assertion (iii) in view of Lemma 2.1 and the

fact that (cf. [HT01, Lemma I1.2.9])
n-Mant,,_p,o(p1 ® [Nm|"/?) = n-Mant,,_n0(p1) @ | det |2 @ | -3,/

where Nm : D;l Sty ~ F* denotes the reduced norm map. O

We define a morphism Red™ " as the composition

Groth(GL, (F))
JGLn ®61/2
poP Pp_h,n i
Groth(GLu_pn(F)) 222" Groth(Jy_pn(F)),

where Jg’!;)" is the normalized Jacquet module and L.J,,_j : Groth(GL,,_,(F)
n—h,h
— Groth(J,—p,0(F)) is the map defined by Badulescu ([Bad07]), which extends

the inverse of the usual Jacquet-Langlands correspondence JL,_;. Define

n-Red" " .= Red" " @ 5;1/2

n—h,h’

Equivalently, n-Red” " = (LJ,_, @ id) o Jg;" . It is easy to see that
h

n—nh,
Mant,,_p p, © Red" ™" = e(Jn—nn) - n-Mant,,_p, 5, 0 n-Red”™ ™" for 0 < h < n.

PROPOSITION 2.3. For any m € Irr)(GL,(F)), the following holds in
Groth(GL,(F) x Wg):

n—1

(2.3) Z n-Mant,,_p, (n-Red" """ (7)) = [7][Z.r(7)].
h=0
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Proof. 1t is enough to check the proposition when 7 is the full para-
bolic induction from (essentially) square integrable representations of Levi
subgroups (including GL, (F) itself), since such representations m generate
Groth(GL,(F)) as a Z-module ([Zel80, Cor. 7.5]). By using Lemma 2.1 and
Proposition 2.2, the left-hand side of (2.3) can be computed in terms of
the Jacquet module and parabolic induction with the help of the Bernstein-
Zelevinsky classification. The computational detail is essentially the same as
in the proof of [HT01, Th. VIL.1.7]. O

3.1.

3. Endoscopy of unitary similitude groups

Setting. We use the following notation.
i = (Ni)ig[1,, Where n;, 7 € Zsg and [1,7] :={1,2,...,7}.
GL7 := [Liep1,r) GLn, and iz : GLz — GLy (N = Y7;n;) is the em-

bedding

A 0 - 0
0 Ay -~ 0
(Al,...,Ar)l—) . X
0 --- 0 A,

Define det : GL; — GL; by det(g) := det(iz(g)).

®,, and I,, are the matrices in GL,, with entries (®,,);; = (—1)""18; 415
and (In)zj = 5i,j~ Put (pﬁ = iﬁ(q)nl, ey (I)nr)-

g denotes the transpose when ¢ is a matrix.

P5 is the upper triangular parabolic subgroup of GL, containing
i7(GL7) as a Levi subgroup.

€:7Z — {0,1} is the unique map such that ¢(n) =n mod 2.

F = EFT where F* (resp. E) is a totally real (resp. imaginary qua-
dratic) extension of Q.

Splp/p+ @ s the set of all rational primes p such that every place of
FT above p splits in F.

Unrg/q (resp. Rampq) is the set of all primes p which are unramified
(resp. ramified) in F.

7: F — C is a Q-algebra embedding and 75 := 7|g.

¢ denotes the complex conjugation on C or any CM field.

®¢ := Homg(F,C), @ := Homp -, (F,C) and ®¢ := cP¢.

w* is a fixed element in Wo\Wg.

w : Ap/E* — C* is any Hecke character such that w|yx,gx equals
the composite of Artg and the natural surjective character Wg —
Gal(E/Q) = {£1}. Using the Artin map Artg, we view w also as a
character Wg — C*.
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e Ramg(w) is the set of all primes p such that w is ramified at some
place above p.

Define a Q-group Gz by
(3.1) Ga(R) :={(\,g9) € GL1(R) x GLz(F ®g R) : ¢®5'¢° = \®;}
for any Q-algebra R, where g; € GL7(F ®g R). Note that Gy is quasi-split
over Q. Also define
Gﬁ = RE/Q(Gﬁ XQ E)
and let 6 denote the action on Gj induced by (id,c) on G xg E. We can
identify the dual groups as follows.

(3.2) Gz~C*x J] GL#(C)  and ~C* x C* x [] GLs(C).

O’€<I>+ ced¢

&)
St

The L-group “Gj = = Gz ¥ W is defined by the relation that w(}, g,)w™! =
(XN, g.), where

N,gl) = (N gy1,) oOrF A H det g5, ® ngcw 1UQL

o€®+

according as w € Wg or w ¢ WE, respectively. Similarly, *Gy := (Gw X Wo
requires that w(A, A\_, go)w™! equal

(A, A=, Guw-15)  OF - H det go, At H det g», Py gcw 10.(1)-'

— +
oE@C oefbc

according to whether w € Wg or w ¢ Wg, respectively. Consider the map
BCﬁ : LGﬁ — LG’ﬁ given by

()‘7 (ga,i)aecpér) X w (A, )\7 (ga,i)aeq;érv (gccr,i>06<p6) Xw.

Note that (G, *Gy,1,BCy) is an endoscopic datum for (G, 6, 1) in the con-
text of twisted endoscopy ([KS99, §2.1]).

Note that (3.1) may be used to equip Gz with a Z-scheme structure by
allowing R to be a Z-algebra, and the same is true for G5. For each prime p, put
KI’} = Gj(Zy) and Kg =GO ®zZ,) = Gz(Zy). Ifp € Splp;p+ @, then KZT:L
(resp. K;f) is a special subgroup of G5(Qy) (resp. Gz(Qp)). In case p € Unrp q,
KI’? (resp. Kﬁ) is a hyperspecial subgroup of G7(Qp) (resp. Gz(Qp)). In that
case we define unramified Hecke algebras 5" (G7(Qp)) and " (Gz(Qp))
using KI’:L and Kg (81.1).

Let us fix Haar measures. For every prime p, choose measures [Gq.p ON
G7(Qp) and pgyp on Gi(Qp) such that uGﬁ,p(Kg) 1 and pg, »(Kj 7 = 1.
Choose Haar measures piag_ . on Ag;oco RZ, and PAg 0o ON Agy0
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(RZ,)"™! using the standard measure dz/z on RZ. Finally choose Haar mea-
SUTes fiG;,00 A0 UG ;00 SUCh that the quotient measures ([T, Hay,0)/HAg.. o, and
(ITo #G0)/ B Ag.. o, are the Tamagawa measures ([Ono66, §2]) on Gz (A)7AGF“OO
and Gz(A) /AG;OO, respectively.

LEMMA 3.1. Let r be the number of components in . Then
7(Gy) =27 or 27! and 7(Ggz) = 1.
Proof. For any reductive group Gy over Q,
(3.3) m(Go) = |mo(Z(Go) /D) /| ker! (Q. Go)|

([Kot88, p. 629]). It is casy to see that 7(Gz) = 1. Indeed, Z(Gz)Gal(@/Q jg
a product of copies of C* and ker'(Q, Gj) is trivial by Shapiro’s lemma and
Hilbert 90.

Recall from [Kot84, (4.2.2)] that | ker'(Q, G)| = | ker'(Q, Z(G7))|. Using
the description of G in (3.2) we identify Z(Gj) with C* x [1s: C* where o runs
over @} and i over {1,...,r}. It is easy to see that Z(Gz)% @/ s identified
with the set of (X, (g;)) where A € C¥, g; € {1} and A([[; /)" ¥ = 1.
Therefore

. = r +. : ‘
Gy - £, AP G o
On the other hand, ker!(E,G5) is trivial by Shapiro’s lemma and Hilbert 90,
which implies that ker!(E, Z(Gy)) is also trivial. So we have an injection

ker' (Q, Z(Gr)) — Hl(E/Q,Z(aﬁ)Gal(@/E))

via the inverse of the inflation map for H!. Note that Z(G7)(@/E) ig iso-
morphic to CX x (C*)". The group Z' of 1-cocycles consists of those (), (g;))
which satisfy A\2(T]; g;”)[F "Ql = 1. The group B! of 1-coundaries precisely
contains (A, (¢g;)) which has the form A = ([]; a?")[Fﬂ@] and g; = a; 2 for some
a; € C* (1 <i<r). Both Z! and B! surject onto (C*)" via projection maps.
Comparing the numbers of fibers for these projection maps, we obtain

2, 2|[F*:Q) or Vi, 2|n;,
1, otherwise.

WRWQzﬁa%@ww:{

Therefore 7(G5) equals 2" or 271, O

Remark 3.2. Although we have not pursued the precise value of 7(Gp),
it can be easily determined in some cases. If 2|n; for all i, we can prove that
ker! (Q, G#) = 1 using the argument in the second paragraph of [Kot92b, §7].
So 7(Gj) = 2" if every n; is even. In case [F'T : Q] is odd and some n; is odd,
the above proof shows that ker!(Q,Gz) = 1 and 7(Gy) = 2" L.
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3.2. Endoscopic triples and L-morphisms. Let £(G,,) be a set of repre-
sentatives for isomorphism classes of endoscopic triples for G,, over Q ([Kot84,
§7]). We can identify £(G,,) with the set of triples

{(Gnvsnvnn)} U {(Gn17n278n1,n27nn1,n2 N + ng =n,ny 2 ng > 0}7

where (n1,n2) may be excluded in some cases if both n; and ng are odd num-
bers. (This is to satisfy the condition (7.4.3) of [Kot84]. As we will mainly
work with odd n, we will not be concerned with the possible exclusion of
such (ny,n3).) Here s, = 1 € é\n, Spime = (1,(Iny, —In,)) € é\m,nz and

—~

Nt Gp — é\n is the identity map whereas 7, ,, is the embedding

Y9o,1 0
()\7 (90,179072)) = (A’ < 0 9o,2 >> .

The above description of £°'(G,,) can be verified as Proposition 4.6.1 of [Rog90],
which deals with the case of unitary groups.
We can extend 7, n, to an L-morphism 7, n, by2

e(n—nq) .
w € Wg (w(w)N("l’"2)7 (w(w) Iny 0 >) X w,

0 w(w)""2) . I,

* -1 *
w” (an17n2,®n17n2@n ) X w”,

where N (ny,ng2) := [FT : Q](n1e(n — n1) + n2e(n — na))/2 € Z. The constant
(ny ny 18 chosen to be a square root of the number (—1)~N™1:m2) det(D,,, ., Py).
It is readily checked that 7, », is indeed an L-morphism.

Let ﬁnw : LGmm — LG, be the map defined on @m,nz by

o 0
()\+7 >\75 (907179072)) = ()\+’ >\7’ ( gO’l ))
90,2

and sending w € Wg and w* respectively to

e(n—n1) |
(w(w)—N(m,m)’w(w)—N(m,nz), (w(w) . Vo In, w(w)e(n9n2) I )) X w,
1,

-1 *
(am,nz,am,nzv Py Py ) N w

2We chose to write n — n1 and n — ng rather than ns and ni so that the formula readily
generalizes when one defines 75 for arbitrary @ = (n1,...,n,) such that Si_ini =n. Cf
[Rog92, §1].
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We have the following commutative diagram of L-morphisms:

TInq,ng

(3.4) LGy —= G,
Bcnlmi chn

L L
Gnl,nz P Gn

ni,ng

3.3. Constant terms for GLz. We record a well-known lemma, which will
be applied later to explicit endoscopic transfer. For simplicity we state the
lemma only for general linear groups. In Section 3.3 only, we use the following
notation. Let L be a nonarchimedean field of characteristic 0. For r > 1,
fix 7 = (n1,...,n,) such that Y ;n; = n. Let G := GL, and M := GLj.
(Later we will also consider a group G which is a finite product of general
linear groups. The lemma below obviously extends to this case.) Let P be any
conjugate of Py containing M. Denote by N the unipotent radical of P. For
each f € C°(G(L)), define the constant term along P by

L 1/2 _
35)  fP(m) = 6Y%(m) /N(L) /G(OL)f(kmnk: Yakdn, me M(L).

Let i3 : “M < L@ be the L-morphism which trivially extends iz : M < G.

LEMMA 3.3. The following are true.
(i) For any semisimple m € M (L) which is reqular in G(L),

(3.6) OM@(fPY = Dgypr(m) V205D ().

(ii) For any m € Trr(M (L)), trw(fF) = trn-ind§; (7)(f).
(iii) If f € A (G(L)), then f¥ is the image of f under the map (G (L))
— A (M(L)) which is dual to i5.

Proof. The first assertion is Lemma 9 of [vD72] and the second assertion is
the first formula on page 237 thereof. The last assertion is an easy consequence
of the Satake transform for general linear groups (cf. [AC89, pp. 32-33]). O

This lemma is a special case of the Langlands-Shelstad transfer, with
respect to the L-morphism i5. Indeed, it is easy to verify that Dg/M(m)l/2

coincides with the transfer factor of [LS87] up to a constant.

3.4. Eaxplicit transfer at finite places. We begin with a brief reminder of
the Langlands-Shelstad transfer in general. Let (H, s,n) be an endoscopic triple
for a connected reductive Q-group G. Suppose that there is an L-morphism
7: P H — LG. Langlands and Shelstad ([LS87], [LS90]) defined a complex-
valued function A,(-,-)%, called the (local) transfer factor, on a pair (yu,7)
where vy € G7(Qy) is a semisimple (G,,, Gz)-regular element and v € G(Q,)



GALOIS REPRESENTATIONS 1667

is such that the stable conjugacy classes of vz and v are matching. Such a
pair (yg,7) will be called a matching pair for convenience. The local transfer
factor is well-defined up to constant. Moreover, it depends not only on (H, s,7)
but also on 77. Langlands and Shelstad conjectured that for each function
by € CX(G(Qy)), there exists ¢l € CX(H(Q,)) satisfying an identity about
the transfer of orbital integrals ([LS90, 2.1], [Kot86, Conj. 5.5]). We will refer
to ¢ as a A,-matching function for ¢, or simply a A,-transfer of ¢,. In
the unramified situation, Langlands ([Lan83, II1.3]) proposed a more precise
conjecture about the transfer, called the fundamental lemma. (See also [Hal95,
§2], which states the fundamental lemma for unramified Hecke algebras and
reduces its proof to the case of unit elements.)

Before going further, we point out that the Langlands-Shelstad conjecture
on the existence of A,-transfer is proved as well as the fundamental lemma (for
unit elements) in all cases, due to Waldspurger, Laumon-Ngo and Ngo (|[LNO0§],
[Wal97], [Wal06], [Ng610]).

Remark 3.4. Actually Walspurger and Ngo6 prove the fundamental lemma
(for any Qp-group Gg) over Q,, only if p is large enough (with respect to the
rank of G). But the results of Hales (in particular, [Hal95, Th. 6.1]) can be
used to prove the fundamental lemma for all primes p, by induction on the
rank of Gy. Although the paper of Hales is somewhat sketchy, its main results
are reproved by Section 9 of [Morl0] which is more detailed.

However, one can avoid the use of the fundamental lemma for small primes
p, if one wishes, without weakening our main results. Let Py be the set of
all primes p < N for a sufficiently large V. Impose an additional assumption
that Pn C Splgp/p+ g throughout Sections 5 and 6. The point is that if p €
Splp/p+ @, the fundamental lemma for G(Qp) is known without appeal to
Hales, as G(Q,) is a product of general linear groups. In Section 7 we can
remove the additional assumption, by adding a condition on E € £(F) in the
proof of Theorem 7.5 that every p € Py splits in E.

Let us return to the situation of Sections 3.1 and 3.2. Let Gz € £(G).
Let v be a finite place of Q. Below we will give a particular normalization of the
transfer factor A, (-, )g;j, which is a complex-valued function on a pair (vg,7)
where vy € G7(Q,) is a semisimple (G,,, G7)-regular element and v € G(Q,)
is such that the stable conjugacy classes of vz and v are matching. We will
also define a map 7, ,,,, which gives the A, (-, -)g;j—transfer (or simply A,-
transfer). Moreover, we present an explicit representation-theoretic transfer
Ty ma,x, Which is tied to 7y, ,,, via character identity.

For later use in Cases 2 and 3, we record a natural isomorphism for v €
SplF/ p+,@- Fix an isomorphism ¢, : Q, ~ C. Let V.t be the set of places x

of F' such that the composite map F' & Q, 2 C belongs to @Z:r . (This is the
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same definition as in the paragraph below (4.1).) Suppose either 77 = (n) or
7l = (n1,n2). The group G(Qy) is a subgroup of Q;F x GLjz(F ®g Q) and the
projection map onto Q; X [],c+ GL7(F) induces an isomorphism

wEVJ

Using the above isomorphism, fix an embedding Gy, n, <= Gy Vvia iy, n,. Set
@niny = QF X L, cp+ Py, the parabolic subgroup of Gy, containing G, n,
as a Levi subgroup.

Case 1: v € Unrp/g and v ¢ Ram(w). In this case, 7y, », induces a
C-algebra map of unramified Hecke algebras

e A (Gr(Qu)) — '%pur(Gnth (Qyv))

and a transfer of unramified representations

77* : Irrur(Gnl,nz (QU)) — Irrur(Gn(Qv))‘

By the proof of the fundamental lemma ([Ng610]) and an earlier work of Hales
([Hal95]), Ay(+,-) can be normalized so that

B =T (60)

is a A,-transfer of ¢, for any ¢, € " (G(Q,)). Denote this normalization
by AY(.,-). Then for every m € Irr™ (G, 1, (Qy)), we have

(3.8) tr (7 (¢o)) = tr () (dv)-

Case 2: v € Splg g Let dy, € C°(Gn(Qy)). Let u := z|p for any x € V.
Define a character x , : G, n,(Qy) = C* by

X;,u()\a (gm,lag:v,2)) = Wy ()\—N(n1,n2) H H NFm/Eu (det(gm,i))e(n_m)> .

sV} 1<i<2

(We view A as an element of ES via Q) ~ E<.) Denote by gbUQ"I‘"Q the constant
term along Qp, n, (83.3). Define

ning . 1 @ning T
v T ¢v Xw,u'

For any (G, Gp, n,)-regular semisimple g € Gy, n,(Qy), define

1/2

A5 9) = 1D, )Gy DI X0 (9)-

(Recall that we fix an embedding of Gy, n, into G, as a Levi subgroup.) Note
that the above formula pins down the value of AY(-,-) on every matching
pair. It is not hard to show that AY(-,-) is equal, up to a constant, to the
Langlands-Shelstad transfer factor with respect to 7. We sketch the argument.
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Let7y : & Gning — L@, be an L-morphism (canonical up to (A;n—conjugacy) cor-
responding to the fixed Levi embedding Gy, n, < G, via [Bor79, §3]. We may
arrange that 7/ and 7 are identical on é\mm by conjugating 77 by an element
of G, so that 7 = aif’ for a € H*(Wy,, Z(Gnymy)). Let Xa : Gnyny (Qy) = C*
denote the character corresponding to a. (As Z (é\m,na) is the dual torus of the
maximal abelian quotient of G, n,, the cohomology class a determines x, via
[Bor79, §9].) Let A! (g, g) denote the transfer factor with respect to 77/. The fol-
lowing facts (which are true after normalization up to a constant) are standard

and deduced directly® from the definition of transfer factors ([LS87, §3]):

o 8(9:9) =D, /Gy ny (@)
o AY(g.9) = AL(9,9) - Xal9)-
Finally, one checks that y, = X;’u by explicitly working out the duality for

—~

the torus Z(Gp, n,)-
For any m, € Irr(Gp, n,), define

_ e
N (my) 1= n-indgy" (m) ® X;,u> .

It is easily deduced from Lemma 3.3 that the following identities hold for any
g and 7, as above. In particular ¢?1"2 is a Al-transfer of ¢,,.

(3.9) Og(dy""?) = Au(9,9) - Og(¢v),
(3.10) trmy (") = tr 7 (my) (B

Case 3: v € Splp/p+ g and v ¢ Splg g We retain the same notation as in
Case 2, but write v for the unique place of E¥ above v by abuse of notation.
Things are very similar to Case 2 except that the character X;,w defined below,
is slightly different from x% , of Case 2.

+

Xw,v()‘v (gz,laga:,Z)) =Wy < H H NFZ/Ev(det(g:c,i))E(nm)> s

zevy} 1<i<2

Quym
&y "2 (g) = du " (g) - X (9),
AY(9:9) = Dg, 1y g (D - X5 0(9),
. . 1Gn
M (my) i= n-indgy” (m ® X;,v> .

The same argument as in Case 2 shows that AY(-,-) is the Langlands-Shelstad
transfer factor with respect to 7, n, (up to a constant). As in Case 2, it is

3The value IDé,, /Gy iy (9)|*? (resp. xa(g)) comes from the factor Ary (resp. Arrr,) of
[LS87]. In the unramified situation, we remark that the first identity in the bullet list is
a special case of [Hal93, Lemma 9.2] and that the second identity appears in the proof of
[Hal95, Lemma 3.3].
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easy to check that the same identities as in (3.9) and (3.10) hold. So ¢ is
a AV-transfer of ¢,.

Remark 3.5. There are overlaps between Cases 1 and 2 and between
Cases 1 and 3, namely when v € Unrg/q N Splp/p+ g, v € Ramg(w@), ¢v €
(G (Qy)) and m, € Irt™ (G, (Q,)). However it is not hard to see that the
definitions are consistent: Consider such v, ¢, and m,. Then ¢)*"? in Case 2
or Case 3 is the same as in Case 1. This follows from the fact that constant
terms are compatible with Satake transform (cf. [AC89, p. 33]). By the same
fact we check the consistency of the definition of A%(g, g) and 7. (7).

3.5. Transfer of pseudo-coefficients at infinity. Here we review Shelstad’s
results on real endoscopy ([She82]) for discrete series representations, based
on the summary of Kottwitz ([Kot90, §7]). We will freely use the Langlands
correspondence for real reductive groups ([Lan89]). Let G be an R-inner form
of Gy. Set (H,s,n) := (Gg,si,n5) € EM(G,), which is also an endoscopic
triple for G.

Let & be an irreducible algebraic representation of G¢. Define x¢ : Ag oo —
C* to be the character obtained by restricting £ to Ag . Define Irr(G(R), Xgl)
to be the set of m € Irr(G(R)) whose restriction to Ag o is Xgl.

Let it (G(R),£Y) denote the set of m € Irr(G(R)) which are unitary
(modulo Ag ) and have the same infinitesimal character and central char-
acter as ¢V. Denote by Irrtemp(G(R),Xgl) (resp. Igisc(G(R),£Y)) the subset
of Irr(G(R),Xgl) (resp. ynit(G(R),€Y)) consisting of those representations
which are tempered (resp. square-integrable) modulo Ag . Choose any max-
imal compact subgroups Ko, C G(R) and Ko, C G(R) which are admissible in
the sense of [Art88b, §1]. Define an integer

(3.11) 4(G) = %dim(G(R) K Acioc).

Fix real elliptic maximal tori 7' C G and Ty C H along with an R-
isomorphism j : Ty — T. Also fix a Borel subgroup B of G over C such
that B D T¢. Let ¢¢ : Wg — L@ be the discrete L-parameter for ¢ which
corresponds to the L-packet Igis.(G(R),£Y). Let Q (resp. Qp) denote the
complex Weyl group for T in G (resp. Ty in H) and Qg the real Weyl group
for T

For each 7 € Ilgisc(G(R), £Y), there exists ¢ € C°(G(R), x¢) such that
for any 7’ € Irremp(G(R), Xgl),

1, if o' ~m,

w69 ={ o

otherwise.
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Such a function ¢, is called a pseudo-coefficient for m. Whenever we write the
expression ¢, in the future, let us agree that choice of a pseudo-coefficient for
7 is implicit.

The members 7 of Igis.(G(R),£Y) are parametrized by w, € Q/Qg so that
each m = 7(pe,wy ! B) is characterized by the character formula of [Kot90,
p. 183], which is due to Harish-Chandra. We want to describe the transfer
of ¢ to H(R) as a linear combination of pseudo-coefficients for discrete se-
ries of H(R). Shelstad defined the transfer factor A; p (depending on 7) on
elliptic regular elements, which is enough for our purpose. (Note that pseudo-
coefficients have trivial orbital integrals on nonelliptic semisimple elements and
that the case of elliptic singular elements is covered by [LS90, 2.4].)

Remark 3.6. (A similar remark appears in [Shi09b, Rem. 5.5].) In princi-
ple, we have to be careful about the different conventions for transfer factors
when we refer to [Kot90] and work of Langlands and Shelstad at the same
time. The convention in [Kot90] differs from that of Langlands and Shelstad
by s — s7!, as explained on page 178 of that article. Fortunately there is
no danger for us to confuse the two conventions, as s = s~! holds for every
endoscopic triple in £(G,,).

For any discrete L-parameter @ for H(R) and its associated L-packet
(pn), let

1
(3.12) by == D Oy
e, 2
(In [Kot90, §7], ¢, was denoted by h(pp).) Define
(3'13) ¢7rH = (_1>q(G) Z <aw*(gaH)w7r73> det(w*(SOH» ) chpH?
NPH~Pg

where the sum runs over equivalence classes of @y such that 7y is equivalent
to p¢. We remind the reader that we adopted notations of [Kot90]. (In that
article, see page 185 for w.(¢p) and page 175 for ay, (4w, -)

LEMMA 3.7. Let m = w(p¢e, wy ' B).
(i) For any discrete L-parameter op for H(R),
G ep o~
Z tr 7TH(¢7}1-I) — (_1)q( )<aw*(g@H)w7ras> det(w*(cpH)), Zf nexn .N 23
0, otherwise.
T €ll(om)
(ii) ¢ is a A; p-transfer of ¢y
Remark 3.8. Compare with [Clo, Th. 3.4], which proves a similar result

with a somewhat different approach. It seems that our proof is general enough
to work for other groups with little change.
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Proof. Note that (i) follows immediately from the definition of .
Let us prove (ii). It suffices to prove that for any elliptic regular vy €

H(R) and v := j(vm),

(3.14) SOy, (0F) = Ajs(va,v0) Y (Inv(70,7), 8) - O4(¢x),

Yst Y0

where inv(yp,) is defined in [Kot86, 6.7] and the sum runs over the set of
v € G(R) (up to G(R)-conjugacy) which are stably conjugate to ~y. We
import notation and facts from pages 183-186 of [Kot90]. By the third formula
of page 186 and the formula for A; g of page 184,

SOn1 (dr) = (=)™ Dvol ™ 3™ N8y (V") - Doy (B Vi) ™

wHEQH

= (—1)1@vol ! > A e (VHY0)

wHENY
* Xwpws(B) (’7(;1) : AUJH(U*(B) (7(;1)_17

where we wrote wy for w.(pp). Since A, ., (p) = det(ws)Aj g, we see that
SO, (¢X) equals (recalling from [Kot90, p. 185] that there is a bijection be-
tween €2, and the set of pp)

(D" Dvol™ 3 3" (w8

W €N wHEQH

: Aj,B(’YHv’YO) ! XwHw*(B)(’Y()_l) : AwHw*(B)(’yo_l)il'

Using the equality (Gw,w,,$) = (Qwyw.w.,S) and the bijection Qg x Q. —
mapping (wr,ws) to whyws, we can simplify the above expression as

(—1)1Dvol ' A p(va, Y0) > awen ) X3 (0 ) - Dm0 )
weN

On the other hand, using the computation of orbital integrals in [Kot92a,
p. 659],

> (inv(70,7):8)05(dr) = D {w,8)Ouno(¢)

YstY0 UJGQ/QR

= X (awspvol ™ - trm((wy) ).

UJGQ/QR

Using the formula of [Kot90, p. 183] for tr 7((w7o)~!), the last expression can
be written as
(3.15)

(_1)q(G)VO]‘71 Z aW? Z Xwow w ’70 ) Awow,il(B)(wilfyo_l)il‘
wEQ/Q]R UJOGQR
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Since (ay, $) = (Guww,,s) and the last summand is equal to Xwows (B) (voh) -

A owst(B) (70171, (3.15) is the same as

(_1)q(G)V0171 Z <aww,ﬂ 5) * Xw(B) (70_1) ’ Aw(B) (’Y(]_l)il
we

Hence (3.14) is proved. O

Remark 3.9. Note that each ¢y such that nog ~ ¢ corresponds to an
L-packet of the form g (H (R), £(¢p)Y) where (o) is a suitable irreducible
algebraic representation of H. The function ¢, is often called an Euler-
Poincaré function in the following sense: for each wy € II(H (R), X&LH)), the
trace trmy(dp,) computes the Euler-Poincare characteristic of the relative
Lie algebra cohomology of 7y ® £(wm). The existence of an Euler-Poincaré
function was proved by Clozel-Delorme ([CD90]). Its explicit realization as
(3.12) was used by several authors ([Kot92a, Lemma 3.2]; cf. [Art89, (3.1)]).
The twisted analogue was obtained by Labesse ([Lab91]) (cf. §4.3.)

In view of Remark 3.9, we will sometimes write ¢ ¢(pp) f0r @py -

3.6. Explicit computation of real endoscopic signs. We wish to make the
discussion of the last subsection explicit in case G = G(U(1,n—1) x U(0,n) x
---U(0,n)), which is an inner form of G,, xg R. A precise definition of G is
given below. As in Section 3.5, we use the notation of [Kot90, §7] without
recalling it here. Note that a similar computation to ours was obtained earlier
by Clozel ([Clo]).

For each o € ®f let

J(,::<(1) 0 >ifa:7' and Jy,=I1,ifc#7
—in—-1

and define an R-group G and its maximal R-elliptic torus 7' (via the obvious
diagonal embedding) by

(3.16) G(A) :={(\ (g5)) € A x M (C®R A)*C | Yo, goJo'gt = Mo},
T(A) = {(\ (tri) € A% X (C @R A)")®C | Yo,i, teitl; = A}
for any R-algebra A, where o € @E and 1 <i < n.

Let ni,no € Zsg be such that n; > ns and ny + ny = n. The group
(H,s,m) = (Gnino»>Snines Mnane) (defined in §3.2) is an endoscopic triple for
G, equipped with 7, p, : LH — LG. For our purpose, we may identify H with
the R-group given by

H(A) :={(\, (ho)) € A% X My 1, (C @g A% | Vo, hoJilRG = AL}

for R-algebras A, where J! is a suitable diagonal matrix with entries +1 and
—1 such that H is quasi-split. Let Ty := T, which obviously embeds into
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H diagonally. Take j : Ty = T to be the identity. There is an obvious
isomorphism (induced by the map z; ® z3 +— 2129 from C ®g C to C, in view
of (3.16))

(3.17) G(C) ~ GL1(C) x GL,(C)%

and similarly for H, with GL,, replaced by GL;, »,. Let B C G¢ and By C Hc¢
be the Borel subgroups consisting of upper triangular matrices. Note that
B D1t and By D (TH)(C'

Let Sy denote the symmetric group in N variables. There are natural
identifications

¢ +
Q= SSC’ QH = (Sm X SnQ)q)ga QR = Sn,1 X SSC \rt

so that any w = (w,) € Q acts on T as (A, (to;:)) € T = (A, (tgw,(5))), and
similarly for Qg acting on Ty. Of course Qp is identified with a subgroup of
Q via j. The component S,_1 of Qg is viewed as the group which permutes
the sub-indices for (t;2,t73,...,trn). The set Q, is a subset of (w,) €  such
that wy(1) < -+ < we(n1) and we(ng + 1) < -+ < wy(n) for every o € Of.
The multiplication induces a bijection Qp x Q, — Q.

Let £ be an irreducible algebraic representation of G¢. To € there is a
way to attach ag(¢) € Z and @(§), € (Z)" for each o € ®¢ by the following
condition: &|qr, is « + 2%©) and @(&)y = (a(€)e1,- - ., a(€)s.n) is the highest
weight for the restriction of £ to the o-component GL,,, with respect to (3.17),
where a(§)s1 > -+ > a(€)sn. (This is different from the convention of [HTO01,
pp. 97-98] in that the inequalities are reversed.) Define w(&) € Z and (&), €
%Z by
n+1—21

(3.18) w(€) := —2a0(&) =) a(€)ois  E)osi = —a(E)ont1-i+ 5

o,
View ws as a character C* — C* by identifying F ®g R ~ C via 7.
Note that we(2) = (2/Z)%/? for an odd number § € Z, as we, extends the sign

character on R*. Let (v(£)s;) be any permutation of ((§)s,;) by an element
of € such that

Y(&)oa1 > > Y()oms Y(&)omi1 > > Y(E)om

and put

)

@i —e(n—m1)- 5, if1<i<my,
All)os = { V(€)oi — €(n —ng) - ;, if ny <i<n.

Consider a discrete L-parameter oz : Wr — L sending z € W¢ to

<(Zg)—w(é)/?(Z/g)(1\/(111,712)5—20,1-a(ﬁ)m-)/27 ((Z/g)ﬂ(é)a,i)

Xz
ae¢g,1§i§n> ’
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where ((z/2)?©94), <<, for each ¢ embeds into the diagonal of GLy, n,(C) in
an obvious way. So ¢ := 170 ¢y sends z € W to

(Zz)fw(f)/Q (Z/?)_ ZU,'L a(f)a,i/27

(Z/g)v(ﬁ)o,l 0 e 0
Z)7(&)o, :
0 (2/%) 20 s
: 0 0
0 e 0 (2/z)7@on

UE@é

It is not hard to check that ¢ is (up to equivalence) the discrete L-parameter
for Igisc (G(R), £Y), which justifies our notation for ¢. (Use the characterizing
properties of y¢ in §4.3.)

The element w, = w.(pn) € 2 is easy to describe in terms of v(§)4,’s.
It is the unique element of {2, such that

(319) 7(&)0,&)*(1) > > y(g)a,w*(n% Vo € q>(é

This description of w, easily follows from the discussion of [Kot90, pp. 184—
185].

Recall that m € Tgise(G(R), V) are parametrized by w, € Q/Qr. (We will
confuse w, with any of its representatives in 2.) Note that |Q/Qgr| = n. We
may write

Haise (G(R), &Y = {x!, ..., 7"},
where 7’ is characterized as follows: if we write wyi = (wyi ;) ceat then wi . is
an element of the permutation group S, that takes 1 to i. (The last condition
determines w,; as an element of Q/Qp.)
We will consider h : Rc/rGr, — G factoring through 7. Suppose that on
R-points h : C* — T'(R) is given by (compare with (5.1))

2= (2,(2,2,. .., Z)o=rs (Z, -, D) otr)-
——— ———

n—1 n

We have a natural identification TG (C/B) = ¢x x ({:l:l}")q’g so that up €
X*(TGNC/R)) (defined on page 167 of [Kot90]) sends each element (X, (£,;))
of T' to At; 1. In particular,

(3.20) (Ith, Snymg) = 1.
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Recall from [Kot90, p. 175] that for each w €2, the character a,, € X* (fGal(C/R))
is defined by a,, := wup — pp- Hence

au (A (tai)) = 1t w(1):
The following computation is immediate.

1, if1<i<n,
21 ovenrima) ={ & S

4. Twisted trace formula and base change

In this section we review the twisted trace formula and the base change
for the groups Gz and Gz. The twisted trace formula is due to Arthur and
various results on base change are due to Clozel and Labesse, who also studied
the case of unitary groups in more detail. Our strategy basically follows theirs
with minor differences for unitary similitude groups. Throughout Section 4 we
assume that

(4.1) Ramp;q U Ramg(w@) C Splp/p+ g-

For each prime p, fix a field isomorphism ¢, : @p 5 C. Also fix an
embedding ¢ : Q < C, which gives an embedding Ly 1,:Q— @p for each p.
Choose 7 : F' < C and define <I>(§ and ®; as in the last section. For each
prime p € Splp/p+ g, define @, := Homg(F, @p), <I>Z‘f = szlfl%, P, = L;1<I>(E.
Let V, be the set of places of F' above p. Let V;‘ be the image of @; under
the natural map ®, — V. Then V, = V[ [TcV,.

Let # : Rp/oGLji — Rp)oGLj denote the map g — @5 tg_c<I>;ll. Define

(4.2) G = (Rp/gGL1 X Rp/gGLj) % {1,6},

where 0(), g)0~1 = (A%, A\°g7). Denote by G% and G%6 the cosets of {1} and
{6} in G} so that G = G%][G%. Recall that G; was defined in the last
section. There is a natural Q-isomorphism Gz —+ Goﬁ which may be described
on the R-points (for any Q-algebra R) of the underlying groups as

(43) (E®gR)* x GLz(F @g E ®@g R) — (E ®g R)* x GLz(F @g R)

induced by the linear map f ® e — fe from F' ®q £ to F'. The isomorphism
Gi = GY extends to Gz x Gal(E/Q) = G} so that ¢ € Gal(E/Q) maps
to 0, where Gal(E/Q) acts on Gy in the obvious way. So we will use Gz, G0
interchangeably with (G%, G%H by abuse of notation.

From now on, we often write G for Gz, G for Gz, ® for ®; and BC for
BCj until the end of this section, unless we specify otherwise. We caution the
reader that from Section 5, the symbol G denotes an inner form of G,,.



GALOIS REPRESENTATIONS 1677

4.1. G-stable representations. Let v be a place of Q. We say that (II,, V) €
Irr(G(Qy)) is O-stable if (11, V) ~ (II, 0 6, V) as representations of G(Q,). In
that case an easy application of Schur’s lemma enables us to choose Ay, : V=5V
which induces II, — II, o 8 and satisfies A%[v = id. The last condition pins
down Ap, up to sign. We will say that such Ay, is normalized. In Sections 4.2
and 4.3, a specific normalization AOHU will be introduced.

Let S be a finite set of places of Q. Similarly IT° € Trr(G(A)) is called
f-stable if TIS ~ I1% 0 6, in which case we denote by Ays an intertwining oper-
ator such that AZs = id. Denote by I (G(Qy)) (resp. Irr? Y (G(AY))) the
subset of Irr(G(Qy,)) (resp. Irr(G(A®))) consisting of §-stable representations.

Given a f-stable representation (II,,V) and A, : IT, = I, o §, we can
produce a representation (IL7, V) of Gt(Q,) by setting IIf (g) := II,(g) and
I} (0) := Ap,. Conversely, a representation I} of GT(Q,) yields I, :=
I |g.,) € Irr?*'(G(Q,)) and a normalized operator A, := IT}(6).

We may write II € Irr(G(A)) as IT = ¢ @ II* for a continuous character
Y AY/E* — C* and II' € Irr(GL7z(AF)), corresponding to the isomorphism
G(A) ~ GL1(Ag) x GL;z(Ap). Denote by 1 the central character of IT'.
Corresponding to 7 = (ny,...,n,), write Y = 1 ® -+ ® . It is easy to
verify that II is f-stable if and only if

o ()Y ~1I'ocand
* [[iza ¢z‘|A§ = /1.

4.2. Local base change and BC-matching functions at finite places. For
each finite place v, we say that f, € C°(Gz(Qy)) and ¢, € CX(Gr(Q,)) are
BC-matching functions, or ¢, is a BC-transfer of f,, if they are “associée” in
the sense of [Lab99, 3.2]. (This is nonstandard terminology.) Similarly we will
define in Section 4.3 the notion of BC-matching for a pair of functions f., on
Gn(R) and ¢oe on G(R) which are compactly supported modulo Ag . The
notion of BC-matching functions obviously extends to the adelic case.

We are going to explain case-by-case how to find a BC-transfer ¢, of each
fv and how to define the local base change map BCz;. The BC-transfer and
BCj; are closely related via character identities. We will define normalized
intertwining operators A%U for f-stable representations II, in each case.

Case 1: v € Unrg/g and v ¢ Ramg(w). Let BC; : 22"(G(Qy)) —
A" (G(Qy)) be the dual map of the L-morphism BCj defined in Section 3.1.
Define a map BCj : It (G(Q,)) — Irr"%*(G(Q,)) which is uniquely char-
acterized by the following identity: for each m, € Irr"(G(Q,)) and f, €
A (G(Qy)),

(4'4) XBCﬁ(m,)(fv) = Xmy (BC%(fv))
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It is routine that BCz(m,) is f-stable, but it is not always true that BCy is sur-
jective onto Irr'"™?*(G(Q,)). (The reason for the latter is essentially the same
as in [Min, Rem. 4.3], which treats unitary groups.) If v € Unrp,q N Splg /Qs
the injectivity of BCj is easily checked. (For instance, use formula (4.8) for
BCj;.) However BCj; is not injective in general.* When II, € I (G(Q,)),
we define AOHU : II, 5 II, 0 A as the one acting on Hff” as +1 (rather than
—1). (The hyperspecial subgroup K, defined in §3.1 is clearly f-stable.) If
I, = BC(m,), then (4.4) implies

tr (I, (fo) AR, ) = X1, (fo) = X, (BCH(f0))-
Suppose a finite set of places S contains Ramp,g U Ramg(w) U {oc}.
For each II% € Irr"%(G(A%)), denote by A%S : I8 5 TI° 0 0 the unique
intertwining operator which acts on (HS)KS as +1. If II¥ = BCx(7), then
(4.4) implies that
(4.5) tr (1% (%) Afs) = X5 (BCH(f))-

Case 2: v € Splp/p+ g (v € Splg/g or v & Splg/g). There are natural
isomorphisms

(4'6) G(QU)ZQ;; X H GLﬁ(Fm)a
JCEVU+

(4.7) G(Qu)~ES x [] GLa(Fy) x [] GLa(Fy).
eV z€V,

If v ¢ Splg/q, then 6 acts on G(Qy) as (N, g4,9-) (/\C,)\Cgf&,/\cgf). If
v € Splg g, then write A = (A4, A_) under E)f ~ E x Ej. where u = z|g for
any = € V,f. Then 6 sends (A, A_, g+, 9-) to (/\_,)\+,)\_gi#,)\+gf).

We define BCy : Irr(G(Qy,)) — It Y(G(Q,)). Write m, € Irr(G(Q,))

as Ty, ® Ty 4+ on the underlying vector space Wy @ W. Define BCz(m,) on
Wo@ W @ W by

(4.8) Tp,0 & Tp,0Vm, 4 @ Ty 4+ @ 7TZ%+’ ifve SplE/Q,
(4.9) (700 © N, jg,) V%, . © Tot ® w41 0 ¢ Splg/g,
where 7rff+(g) = Ty 4(g7). In particular 7731 ~ m, oc. Define AOBC(M) :

BC(m,) = BC(m,) 00 by wo @ wy @ w_ +— wy @ w_ & wi.
More generally consider II, =11, o ® I, + ® II,, — € Irr(G(Q,)), according
to (4.7). If v € Splgq, write I, o = Iy 0+ @11, 0~ in view of E)f ~ E x E..

4Suppose that v is not split in E and that the multiplier map G(Q,) — Q; is surjective.
Then © % m ® Xg,,0, but BCz(r) ~ BCxz(7 ® xg,/0,), Where xg,/q, is the quadratic
character of Q;f with kernel ES, viewed as a character of G(Q,) via the multiplier map.
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We see that I, is #-stable if and only if
(4.10) o4 = Moo —tm, , Myq ~ 107, if v € Spl /g,
(4.11) Moo =I5 ofy,  m, . Ty ~ 107, if v & Splg)q.

For a @-stable II,, choose 3 : II, 1 —+ Hﬁ _. The same map on the underlying
vector spaces induces B7% : HU"%Jr = II,—. Define A%v by wo ® wy ® w— —
wo @ (%) Hw-) ® B(wy). It is easy to check that Af; is an isomorphism
from II, to II, o  and that (A} )* =id.

Consider f, € C°(Gz(Qy)) of the form f, = fy 0 fo+ - fo,— with respect
to the decomposition (4.7). If v ¢ Splg q, define ¢, = BC*(f,) by

P (AN, 9)

= Foo(@™IN) fo (@I Gh™) fu (W) dadh
E;/Q) X[ L eyt CLa(Fz)
and ¢, (Ao, g) = 0if Ao ¢ Ng, /g, (E). If v splits in E, define ¢, by the same
formula except that the integrand is replaced by

Fo0(@IN) fu 4 (@A ghTh) fo - (BF).

The Haar measure used above is chosen to be compatible with the Haar mea-
sures on G(Q,) and G(Q,) fixed in Section 3.1. More concretely, the quotient
measure on X /Q is given by the Haar measures on E) and Q) for which
(’)Ev and Z) have volume 1, respectively. The measure on each GL7z(F};) is
such that GL7(OF,) has volume 1.

It is shown by an elementary calculation exactly analogous to the proof of
[Rog90, Prop. 4.13.2(a)] (but our case is a little more tedious as it is necessary
to take care of similitude), that ¢, and f, are BC-matching functions and that

(4.12) trmy(¢y) = trmy (BC*(f)) = tr (BC(m0) (f0) ABc(r,)

for every m, € Irr(G(Qy)). If v splits in E, it is straightforward to check that
BC is injective and that BC* is surjective.

Remark 4.1. The above discussion is consistent in the following sense.
Suppose v € Unrp/oNSplp p+ g and v¢ Ramg(w). For every m, € rr™ (G(Qy)),
BCj(my) is isomorphic in Cases 1 and 2. If IT, € Irr"™ (G(Q,)) is #-stable, it is
easily verified that the two definitions of AOHU coincide. Furthermore, for each
fo € H"(G(Qy)) there is no ambiguity about ¢, since the two definitions of
¢y in Cases 1 and 2 coincide.

4.3. Base change of discrete series at infinity. Recall that throughout
Section 4 our convention is to write G = Gz and G = Gy unless stated
otherwise. Let £ be an irreducible algebraic representation of G¢. Consider
the natural isomorphism G(C) = G(C ®q E) ~ G(C) x G(C), induced by
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C®gp E = C x C mapping z ® e to (27(e), 27(e)). Define a representation =
of G¢ by Z := £ ® €. We can extend Z to a representation =t of GT(C) by
defining =27 () as vy ® ve — v9 ® v1 on the underlying vector space for £ ® &.

We say that I, € Irt?(G(R)) is O-discrete (cf. [AC89, p. 17]) if Tl
is tempered and not a subquotient of any parabolic induction from a #-stable
tempered representation of a proper f-stable Levi subgroup of G(R). For a
maximal torus T of G contained in K., define d(Gg) := ©(T,G;R) in the
notation of [Lab99, 1.8]. The value of d(Gg) is independent of the choice of T.

Denote by Agg the split component of the centralizer of 6 in Ag. So Agg is
a QQ-torus contained in Ag. Set Agp oo = Agy(R)?. Note that AGo0o = AG,0o
via the inclusion G(R) < G(R). Let C2°(G(RR), x¢) denote the space of smooth
functions G(R) — C which are bi-K.-finite, compactly supported modulo
A o0 and transforms under Ag o by xe¢. Let Irr(G(R), Xgl) denote the subset
of Irr(G(R)) whose central character is the same as Xgl on Ag so-

There exists a function f£*f € C2°(G(R), x¢) ([Lab91, Prop. 12], cf. [CL99,
Th. A.1.1]), which is a twisted analogue of the Euler-Poincaré function in Re-
mark 3.9, characterized by the following property: for each IT} € Irr(G™(R))
whose restriction to Ag o is Xgl,

(413) I (A = 3(~ 1)kt (B1H* (Lie (G(R)/Ag o), Koo, I, @ ),
k

where T} (fL°f) = Jom)/a6.o. Lef(g)TIL (g6)dg. 1f the infinitesimal characters
of I, and = do not coincide, then the right-hand side of (4.13) is zero since
the cohomology vanishes in all degrees (cf. [Wal88, Prop. 9.4.6]). Computing
the right-hand side of (4.13) as in [Lab, Lemma 4.10], we can prove that
there exists a unique irreducible §-stable generic unitary representation Ilz €
Irr(G(R), Xf_l) such that trITX(fLef) # 0 for any extension 111 of TIz. We
remark that an alternative proof of the existence of the function fL°f may be
given by the results of Delorme and Mezo ([DMO08, Th. 3]). By the computation

as in the proof of [Clo91, Prop. 3.5], we have
(4.14) tr ITE (fLef) = £2nlF"Q]

where the sign depends on the choice of an extension IIE of II=. Let AOHE :

Iz = IIz o § denote the operator ITL (6), where IIZ is chosen so that the sign
in (4.14) is positive. Set

foz = fE/d(Gg) = fLef jonlF -1,

(A direct computation with Galois cohomology shows d(Gg) = 27F Q-1
The function fgz is a stabilizing function in the sense of [Lab99, Def. 3.8.2]
and a cuspidal function in the sense of [Art88b, p. 538] by [CL99, Th. A.1.1].
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Remark 4.2. There is a direct product decomposition G(A) = G(A)! x
AGQ’OO ([Art86, §1]) Put G(R)l = G(R) ﬂG(A)l and f((l}ﬁ = fG,E‘G(R)l- Note
that the inclusion induces G(R)! = G(R)/Ag o and that IIE (fLef) in (4.13)
is the same as ITL (f£|gg)1) = Jomy Lef(g)TTE (96)dg. Hence

(4.15) tr (T=(f& =) 0 AL) = 2,

where the trace is computed with respect to the action of G(R)!. We also see
that tr (IT3,(f¢ =)) = 0 for any I}, € Irr(G*(R)) such that IT. is generic and
nonisomorphic to Iz as a representation of G(R)!. (Here we need not assume
that Tl € Irr(G(R), x¢ ').)

We claim that Ilz is the base change of the L-packet Hgisc(G(R),£Y) in
the following sense. Let ¢ : Wr — LG be the L-parameter (unique up to
equivalence) corresponding to Igisc(G(R),£Y) ([Lang9, §3]). Let ¢= := ¢¢|w,.
Then it is easy to see that Ilz is the unique generic representation correspond-
ing to ¢z via the local Langlands classification for G(C) (cf. [Kna94]). The fact
that ¢¢ is a discrete L-parameter implies that IIz is 6-discrete. Conversely, @¢
is uniquely characterized by II=z and x¢ in the sense that there is a unique ¢
(up to equivalence) such that

e ©¢|w, corresponds to Il= by the local Langlands correspondence and

e R KLg L A corresponds to a character of Ag(R) which restricts
to Xf_l on Agco. (The L-morphism LG — L'Ag is induced by the
canonical injection Ag — G.)

Recall the notation ¢g¢ = ¢y, from Section 3.5. We are about to ex-
plain that fg=z and ¢g¢ are BC-matching functions. Let § € G(R) be any
f-semisimple element (i.e. 6 is semisimple in GT(R)) and v € G(R) be the
norm of ¢ ([Lab99, 2.4]). For such ¢ and ~, a direct computation shows that

(4.16) tr 27 (50) = tr ().

Indeed, write 6 = (d1,02) € G(C) ~ G(C) x G(C) so that v = d15. Let
Ay = Z(61), Ay := E(62) and C := =Z1(0) so that Ay, A2 € End(§) and
C € End(§ ® £). Recall that C is given by v; ® vg — v ® v1. Then (4.16)
boils down to the identity tr (A1 ® Az) o C = tr A A, which is an elementary
exercise in linear algebra.

Let Isg (resp. I,) denote the neutral component of the centralizer of §6
in G(R) (resp. v in G(R)). The R-groups Isp and I, are inner forms of each
other ([Lab99, Lemma 2.4.4]). Let Is (resp. I,) denote an inner form of
Isg (resp. I,) which is compact modulo the center. Then Isy ~ I,. Choose
compatible measures ps,, pir. G and piz, on Isg, I, 150 and Tw respectively.
We fixed a Haar measure HAG o ON Ag.0o in Section 3.1. Thus we obtain
quotient measures fisy,/pAc o, and pir /pag .- We can compute stable orbital
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integrals as in [CL99, Th. A.1.1]. (They consider analogues of d(Gr)¢q,¢ and
d(Gr) fg,z, in case & and Z are trivial. For the computation of SOS’(R)(@;@),
one may also use [Kot92a, Lemma 3.1].) Since our normalization of Haar
measures is different from that of [CL99], we need to include the volume factors
in the values of stable orbital integrals:

SOT ™ (bae) = 17, /1ac o (T5(R)/Ag.oo) M tré(7),
O5s ) (fo2) = 17, /1. T50(R)/Ac,00) " Ltr Z*(86).

We wrote SOV ((ﬁg,g) and SO%R)(J‘GE) for @é(R)(’y, ba¢) and @%}(R)(é, fc=9),
respectively, in the notation of [CL99]. Observe that for any ¢ and « as above,
SOM (f@ ) and SO,CY:(R)(gbG,g) have the same value. Hence the functions fg =
and ¢g ¢ are BC-matching in the sense of Section 4.2.

4.4. Transfer for Em ny and compatibility of transfers. Fix n1 and no with
ni+mng =mn, ny > ny > 0. Recall that Cny o LGpymy — LGy, was defined
in Section 3.2. Often <n1 np Will be written as ¢ in this subsection. We would
like to give an explicit recipe for the transfer of functions and representations
with respect to @le. Since Gy, n, and G, are essentially products of general
linear groups, it is easy to work explicitly. Recall that we have given a Q-iso-
morphism G ~ Rp/gGL1 X Rp/gGLj for 7i = (n) and 7 = (n1,n2). For each
place v of Q,

Gﬁ(@v) = qu x GLfi(Fv)'
Let Qnyny = Rp/qGL1 X Rp/gPn, n,, a parabolic subgroup of Gy,. Let X :
Gnyny(A) = C* be a character such that

(A g1,92) € Ay x GLy, (Ap) X GLy, (Ap)
2
— w (A_N(m’m) 11 NF/E(det(gi))e(n_ni)> :
i1

For each f, € C2°(Gn(Qy)) and Iy, € Trr(Gnyn,(Qy)), define C*(f,) €
C%(Gnyny (Qu)) and Cu(arw) € Irr(Gr(Qu)) by

g*(fv) = fgan * Xw,vs Z*(HM,U) = H-indgzlm (HM,v & Xw,v)'

(Here det is the product of the component for E* with the determinant of the
component for GlLp, n,(F).) If f, € " (Gn(Qy)), then *(f,) is no other
than the image of the unramified Hecke algebra morphism which is dual to 5 .
Lemma 3.3 implies that for every v,

(4'17) trHM,v (g*(fv)) =tr (g*(HM,v)) (fv)

Now we check whether the transfers for 7, ., Emm, BCy, m, and BC,
are compatible, case by case.
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Case 1. v € Unrp/p and v ¢ Ramg(w). We have two commutative
diagrams as follows. The first one is the dual of the diagram (3.4), thus com-
mutative. Then the commutativity of the second one is easy to deduce from
the character relation (3.8), (4.5) and (4.17).

(4.18)

K (Gn(Qy)) == A Gy (@) T (G (@) < Tr™ (G iy (Q)

Bc;l iBC;M2 Bch TBCNM2

A (Gr(Qy)) — t%&ur(Gm,nz (Qv)) ™ (G (Qy)) <= Ir™ (G 0y (Qu))-

n T+

Case 2: v € Splp/p+ g (v € Splg g or v ¢ Splg/g). Here we have similar
diagrams as in Case 1. All the maps are previously defined and we are inter-
ested in the commutativity. Note that we prefer to use Grothendieck groups
rather than the sets of isomorphism classes since parabolic induction (involved

in z* and 7),) can be reducible.

(4.19)

C2(Gn(Qu)) —> CZ (G oy (@) Groth(Gn(Qy)) <= Groth(Go, 1y (@)
Bc;i lBC,ﬁm2 BCHT TBCM,R2
Cgo (Gn (Qv)) — Cgo (Gm,ng (Qv)) GrOth(Gn (Qv)) <~ GrOth(Gnl,nQ (Qv))

n MNx

It follows without difficulty from the definition of maps that the second
diagram is commutative. We claim that the first diagram is commutative (not
as functions but) as invariant distributions, in the following sense: for every

fo € C(G(Qy)) and m, € Irr(Gpy .y (Q)),
(4.20) tr 7y (BC), 0y (CF(£0))) = trmy (77 (BCh(f))) -

To prove this, using earlier character identities, we may instead show that

tr (BO(m)(C(fu)) @ Abcin,)) = tr (BCGE(m)) (o) © AYei ) -

This follows from Theorem 2 of [Clo84], when we note that AOBC(M) gives

. 0 . . .
rise to ABC 7. () as in Section 6.2 of that article.

Remark 4.3. Again, Cases 1 and 2 are compatible if v € Unrz/oNSplp,p+ s
v ¢ Ramg(w) and representations are unramified.

Remark 4.4. When v = oo, there is the following analogue of (4.18) and
(4.19) on the representation side. Let ¢m oo be a discrete L-parameter of
Gy no(R) and ¢o be the L-parameter of Gy, (R) given by oo = N0 H 00. Write
BC(¢H,0) (resp. BC(¢oo)) for the image of base change, namely the represen-
tation of Gy, n,(C) (resp. Gy (C)) corresponding to @i oo|we (resp. Qoolwe)-
Then we have g*(BC(¢H7m)) = BC(y). This is a simple consequence of the
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fact that (3.4) is commutative. As for test functions, we do not need an exact
analogue of (4.18) or (4.19). (We have a loose analogue.) The discussion of
Remark 4.4 remains valid if GG, is replaced with any inner form.

4.5. Simplification of the twisted trace formula. The twisted trace formula
by Arthur ([Art88al, [Art88b]) is unconditional thanks to work of Kottwitz and
Rogawski ([KR00]) and recent work of Delorme and Mezo ([DMO08]). (The two
issues were the trace Paley-Wiener theorem over archimedean fields for non-
connected groups and whether the distributions in the invariant trace formula
are supported on characters; cf. [Art88a, p. 330].) Let f € C°(G(A), x¢). The
function f6 on GO(A) is simply defined as the right translation of f by 6. The
twisted trace formula for G0 is an equality between

(4.21) I50.(10) = I .(f9),

spec geom
where each side is as defined in Sections 3 and 4 of [Art88b]. Recall from
Remark 4.2 that there is a natural isomorphism G(A) ~ G(A)! x Agg - Let
f! denote the restriction of f to G(A)!. Actually both sides of (4.21) can be
evaluated in terms of f!, as remarked in [Art88b, p. 504].

Let ¢ and = be as in Section 4.3. Define STY (¢) for ¢ € C2°(G(A), x¢) by

(422) STE (9) := 3 _7(G) -SOT™(9),

vy
where  runs over a set of representatives for Q-elliptic semisimple stable con-
jugacy classes in G(Q).

Fix a finite set S C Splg,p+ g containing Ramp/gURamg(w@). (See (4.1).)
From here until the end of Section 4, we assume that ¢° € " (G(AS)) (resp.
b5, € CX(G(Ag,,))) is a BC-transfer of f (resp. fs, ) according to Case 1
(resp. Case 2) of Section 4.2. The functions

¢ =% dg,, - bae and  fi=f7 fo. - fos

are BC-matching functions.

PROPOSITION 4.5. Suppose that [Ft : Q] > 2. Then
It (£0) = 3 vol (T (Q) Ao oo\ a0 () O3 (£).
é

where § runs over a set of representatives for 0-elliptic 8-conjugacy classes in

G(Q). (Here Isg := Z5(00)°.)

Remark 4.6. In case F* = Q, the right-hand side has to include more
terms. See [Morl0, Prop. 8.2.3].

Proof. We know that f is cuspidal at co and that O?’Q(A)( f)=0if ¢ is not

-elliptic in G(R) by [CL99, Th. A.1.1]. This is a twisted analogue of the first
condition of [Art88b, Cor. 7.4].
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To prove the proposition, it suffices to show that I{I\;}f(éﬁ, f0) = 0 for every
proper Levi subset M C G# and semisimple element 6 € M(Q). Once we
have done this, we can use the argument in the proof of Theorem 7.1(b) and
Corollary 7.4 of [Art88b] to finish the proof, even though f is not necessarily
cuspidal at any other place than co. (The assumption that f is cuspidal at
two places was imposed by Arthur to guarantee that I¢ (56, f6) = 0.)

Since fg = is a cuspidal function, the splitting formula ([Art88a, Prop. 9.1])
implies that

I (80, 10) = > dif (L, G) I3 (30, (f<0)1) It (66, fc,=0)
L

in Arthur’s notation, where the sum is taken over the Levi subsets L of G con-
taining M. (Note that I (86, fe.=0) = fl%e(ée, fc=0); cf. [Art88a, Cor. 8.3].)
The point is that I¢ (86, fg=0) = 0 unless M is a cuspidal Levi subset of
G0, as shown in the proof of [Morl0, Prop. 8.2.3]. So it suffices to prove that
GO does not have any proper cuspidal Levi subset. By the very definition of
proper cuspidal Levi subsets ([Mor10, §8.2]), we can reduce the proof to show-
ing that G has no proper cuspidal Q-Levi subgroups in the sense of [Morl0,
Def. 3.1.1]. Recall that a Levi subgroup M C G is cuspidal if My has no
maximal tori which are anisotropic modulo (A )r. Suppose that M & G.
Let G1 denote the kernel of the multiplier map G — G,,. Consider the Levi
subgroup My := M N G of GG1. For notational convenience we prove that M
is not cuspidal, as the same proof will show M is not cuspidal. The fact that
My & Gi implies that M contains a direct factor of the form D = Rp,gGL,
for some a € Z~g. But the center of D xg R contains a split torus of rank
[F*:Q] > 1 whereas Ap is a rank 1 torus. So M; cannot be cuspidal. O

COROLLARY 4.7 ([Lab, Th. 4.13]; cf. [Lab99, Th. 4.3.4]). Let 7(G) be the
Tamagawa number of G (cf. Lemma 3.1). Suppose that [F* : Q] > 2. Then

Lgom(f8) = 7(G)~" - ST (9).

Proof. We use the notation of [Lab99]. (The only unfortunate difference
is that his use of the symbols f and ¢ is opposite to ours.) By Théoreme 4.3.4
of Labesse,

7(G)Jz(9)

T = S ode.©)

ST (9).

Comparing the definition of 75 ([Lab99, §4.1]) with the formula of Proposi-
tion 4.5, we see that T%( £0) equals JZ(H)-Igf)m(fH). By Lemma 3.1, 7(G) = 1.
Since H'(R,G) is trivial, d(G,G) = 1 (which is defined on [Lab99, p. 45]). So
the proof is complete. O
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In view of (4.2), fix a minimal Levi subgroup
My := RpjGLi x Rpjg(iq,....1)(GL1 x -+ x GLy))

Doimi
of G = Gz. Let M be a Q-Levi subgroup of G containing My. (We do not
assume that M is f-stable.) Choose a parabolic subgroup ) containing M as
a Levi subgroup. The group W% (ay)eq defined on [Art88b, p. 517] acts on
the set of parabolic subgroups which have M as a Levi component. For each
5 € W (aps)req, let Q° denote 5(Q). Choose a representative w € G(Q) of s.
Note that @716 acts on G by (), g) — (A, Afg7¢). So 716 preserves any
M containing My. In particular, ®~ 0 defines an element of W(G’e(a]\/[)reg for
each M.
Consider the regular representation Rz qisc of M (A) on

Liiee(M(Q)Anr,oc\M (A)).

Noting that s acts on M, let Rpsgisc(s) denote the action ¢ — ¢ o s on the
underlying space for Rjsqisc. Let & — pg(s,0,2) denote the representation
n—indg(RM,disc) of G(A). Arthur defined the operators pg(s,0,z6) (for z €
G(A)) and

,OQ(S, 0, f10) : n—indg(RMmsc) — n—indgs (RM,disc)

on page 516 of [Art88b]. These operators are G(A)!-equivariant if the G(A)!-
action on the target is twisted by 6. The decomposition Rys disc = @1,
into irreducible subrepresentations yields a decomposition of operators

pQ(3707 fla) = EBHZ\/IPQ(S?O’ fle; ITar).

If I/ is such that ITy; ~ I15,, then pg(s, 0, f10;11)/) can be seen as a compo-
sition of the following operations

(4.23)
pQ(s,0,0;IIas) n‘indgs (HM)(fl)

n-indg (1) n-ind3. ()Y,

n—indg’s (Ipr)?

where the first arrow is described as follows. Let V(IIs) be the underlying
vector space for IIps. Then pg(s,0,6;1157) is an isomorphism sending 1 :
G(A) — V(IIp) to ¢ which is defined by ¢'(g) = R gisc(s)(¢¥(w™1g#)). This
map does not depend on the choice of w. Here n—indgs (ITps)? denotes the
representation n-ind, (IIy;) o 6. It is easy to see from Arthur’s description of
po(s,0, f10) that the following also holds:

(4.24) pQ(s,0, £16;TIa) = pq(s, 0,05 o n-ind (T ) (f1).
The intertwining operator Mg os(0) sends
(4.25) n-indgs (Iyy)? — n-ind§ (M)’
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As Tl is unitary, n—indg’(HM)a is irreducible for any choice of Q D M and
Mg|@+(0) is an isomorphism (cf. [MW89, p. 607 (3)]).

PROPOSITION 4.8.

Lipec(f0)

spec

W _
Z‘WM’Hd 6@ — 1) 0|~ Ztr (Mgygo-10(0)p(@716,0, £16:T1r) ),

where M runs over the Levi subgroups of G containing My and Iy runs over
the irreducible ®~10-stable subrepresentations of Rig disc- (By the multiplicity-
one theorem for general linear groups, each isomorphism class of lly; con-
tributes to Ras gisc only once.)

Remark 4.9. Tt is easy to check that n—indg(HM) is O-stable if IIp; is
O 1h-stable.

Remark 4.10. Let r be the number of (nonzero) components in 7, where
G = Gj. If M = G, the term |det(®~10 — 1)aq1{,49] in Proposition 4.8 is equal
to 2". The same term equals 2"+ if M is a maximal proper Levi subgroup
of G.
Proof. By Theorem 7.1(a) of [Art88b] (cf. pp. 516-517),
1£0.(£9) Va5~ ge M Lo;11
spec f Z |W | Z| t G9| Ztr ( QlQS( )pQ(S,O,f ) M))7

115}

where M is as above, s runs over WGe(a M )reg, and IIs runs over the irreducible
subrepresentations of Rz qisc. The Weyl set W‘G’a(aM)reg is defined on page
517 of [Art88b] by the condition

(4.26) [ det(s — 1)qe| # 0

and a description of its elements will be recalled as the proof proceeds. It is
easy to see from Arthur’s description of pg(s,0, f16) that only those I, such
that II); ~ 113, contribute to the sum. The proof is complete if we show that

(4.27) tr (Mgg:(0)pq(s,0, f& 20; Ih,00)) = 0

for any s # @710 (which may occur only when M # G). By (4.24), the left
side may be rewritten as

tr (Mgi+ (0) © p (5,0, 65 Tlar ) © (neind S (Mg o)) (fL.2).
Put II := n—indgﬁ (Ipz,00)- Let A : 1T — 1% denote the operator

M5 (0)pq(s,0,0; o0 ).-
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As noted earlier, II is irreducible and A is an isomorphism. Hence Ao A is a
scalar operator on II. Let A : II? = TI be a normalized intertwining operator
(which can also be viewed as II = T1%). To prove (4.27), we may instead show

(4.28) tr (T1°(f& =) Ape) = 0.

We claim that if ITy; ~ IT5, for s # ®160, then the infinitesimal character
of I is not regular. For convenience of notation, we prove the claim when
G = G, as the proof is identical in the more general case G = Gy. In this
case M is isomorphic to Gy, . m, with >7_;m; = n (m; > 0). There is an

R-vector space
S ~RORD---®R
T
which is a quotient of Hom(X*(Ays),R) by Hom(X*(Age),R). An element
s € W ap)eq can be represented by s = w(®16), where 710 acts as
multiplication by —1 on a(]\;}[e

and w acts as an element of the symmetric group
S, which naturally acts on a}\Gf by permutation. By the assumption s # ®~10,
we see that w is nontrivial. Write

Mo = ® (o1 @ - @ Mpg o)
oedc
and w = ¢1--- ¢, (k > 1), where ¢; are mutually disjoint nontrivial cycles in
S;. The condition (4.26) implies that every ¢; is an odd cycle. By rearranging
m;’s if necessary, let ¢; be the cycle 1 -2 — --- — a — 1 for an odd number
a > 3. Then 1I); ~ 113, implies that

6 ]
Harie > My pe ~ Harge = Iy ge -

This proves the claim since the isomorphism Il 1, ~ Iy 3, indicates that
the infinitesimal character of II is not regular.

By the claim, if s # ®~10 and T, ~ II3,, then the infinitesimal character
of TIY is not equal to that of any irreducible finite-dimensional representation
of Gz. In view of Remark 4.2 and the remark below (4.13), we conclude that
(4.28) holds. O

LEMMA 4.11. Suppose that M and Iy are as in Proposition 4.8. Set

/ o -1 .
An—indg(HM) T MQ|Q¢719(O) OpQ(CD 6,0,0; HM)v

which is an operator from n—indg(HM) to n-indg’ (Tar)? (cf Remark4.9). Then

/ ; ; ; / / _
n-indG (ITyr) is normalized, i.e. An_indg(HM) o An_indg(HM) =id.

Remark 4.12. If M =G, things are simpler. Let us write II for n—indg(HM)
= M. It is easy to see that Af; is given by Ry gisc(®10), from the paragraph
between (4.23) and (4.24).
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Remark 4.13. The sign of an analogous intertwining operator in the case of
unitary groups is precisely computed in [CHLbD] (especially §4.4) by a different
method where we rely on the so-called Whittaker normalization.

Proof. For simplicity we write s = ®~16 and II = n—ind%(ﬂ ). We know
Afy is an isomorphism since pg(s, 0,60;1Ix)? = id and Mggs(0) is an isomor-
phism. (See the paragraph above Proposition 4.8.)

For ease of reference, we use [Art05] and its notation. Recall that Mg qs(A)
for A € ag, ¢ is defined by a precise global analogue of the first displayed for-
mula of page 135. (Also see page 128 of that article.) If A lies in a certain
chamber, then the integral formula for Mg)qs (\) absolutely converges ([Art05,
Lemma 7.1]), and Mg|gs(A) is defined by analytic continuation in general. It
is a standard fact that the functional equation Mggs(A) Mgs|g(—A) = id holds
for any A € ag) ¢ (page 129). So the lemma is proved if we show

Mo)qs (A) 0 pg(s,0,0;Ia) = pg(s,0,0;I) o MQS‘Q(—)\)

for A = 0. It suffices to check this equality in the range of absolute conver-
gence. Now this is an easy exercise using our earlier explicit description of
pq(s,0,0;11) and the integral formula for Mggs(A). O

Recall that Ag oo = AGo,c0 C AG,0o- Let ag oo : G(A) - Ag oo denote the
natural surjection. Define x¢ : G(A) — C* by X¢ := X¢0ag,00- In the notation
of the above lemma, set

(4.29) n-indg (Tas )¢ := n-indg; (Iar) @ Xg

If IT; is @~ '6-stable, then n—indg (ITar)e is B-stable. Observe that A]'n_indg(HM)s
= A

. . .. . G
neind (I1,) SCTVES a5 a normalized intertwining operator for n-indg (Il )e.

The following is easily deduced from Lemma 4.11.

COROLLARY 4.14. The second summand in Proposition 4.8 is computed as
tr (MQ‘QQI,AQ(O)pQ(cI)—lQ, 0, f16; HM)) =tr (n—indg(HM)g(f) o A;—indg(HMk) .

5. Shimura varieties and Igusa varieties

Throughout Sections 5 and 6, we fix a prime [ and an isomorphism ¢; :
g3C
5.1.PEL datum for Shimura varieties. Consider a quintuple (F,*,V, (-, ), h),
called a PEL datum, given as follows:
e Fis a CM field with an involution % = c.
e V = F™is an F-vector space.

e (,-) : VxV — Q is a nondegenerate Hermitian pairing such that
(fur,v2) = (v1, fCve) for all f € F, v1,v9 € V.
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e h:C — Endp(V) ®g R is an R-algebra homomorphism such that
the bilinear pairing (vi,ve) — (v, h(i)ve) is symmetric and positive
definite.

Define a Q-group G by

G(R) ={(\,9) € R* x Endpgyr(V @ R) | (g1, gv2)
= A(g)(v1,v) for all v1,v2 € V ®q R}

for any Q-algebra R. We see that the group G, defined in Section 3 is a
quasi-split Q-inner form of G.

Fix an embedding 7 : F — C. Suppose that F' contains an imaginary
quadratic field E so that F = EFT, where F* := F=l. Define ®¢ as in
Section 3.1. Until the end of Section 6 we further assume that

() E Z>3 is odd,

(ii) [FT:Q] >2,

(iii) Ramp/@ - SplF/F+ o (cf. (4.1)),

(iv) Gg, is quasi-split at every finite place v, and

(v) for o € L, (pr,qo) is (1,n — 1) if 0 = 7 and (0,n) otherwise. (See

§3.1 for ®f.)

We list a few (but not all) implications of the above assumptions to guide
readers. The assumptions (ii) and (v) imply that G is anisotropic modulo the
center over Q and the reflex field for the PEL datum is F' (viewed as a subfield
of C via 7). The assumption (iii) ensures that the local (quadratic) base change
is unconditional at every finite place, if ramification is suitably controlled, as
it may be defined in an elementary manner as in Section 4.2. (In general the
local base change should involve local L-packets and has not been established
yet.) By (iv) there is an isomorphism G xg A® ~ G,, xg A*°, which we fix.

The following lemma is standard. (cf. [HT01, Lemma 1.7.1].) All the nec-
essary results in Galois cohomology that go into its proof are found in [Clo91,
§2]. The point is that when n is odd, there is no cohomological obstruction for
finding a global unitary (similitude) group with prescribed local isomorphism
classes.

LEMMA 5.1. As above, let F = EF' be a CM field. For any 7 : F — C,
there exists a PEL datum (F,,V,{,-,-,),h) such that the associated group G
satisfies (iv) and (v) above.

More explicitly, we will choose h such that under the natural R-algebra
isomorphism Endp (V)R =~ Ha@g M,,(C), the map h sends

I
(5.1) 2 ( Zé’” ,19 )
s U€<I>é'
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for some pg,q, € Z>o such that p, + g = n. There is a standard way to
associate a C-morphism py, : G, — G ([Kot92b, Lemma 4.1(2)]). Under the
natural isomorphism G¢ ~ GL1 X Hae(bé GL,,, we may describe uj, as

2z | 2 oy 0
’ 0 I, '

Fix a prime p € Splg g such that p # [. Also fix a place w of F" above p. (In
fact the case p = [ is considered once, only in establishing Proposition 5.3(v),
where we refer to Harris-Taylor for the proof.) Choose ¢y, : @p 5 C such that
-1

Ly T F — @p induces w. We will keep 7, p, w and ¢, fixed until the end of

Section 6.1. Define V; as in the beginning of Section 4. For convenience, write
Vi :;{wl,;.,wr}, where w; = w. Define ®,, := Homg, (Fy,,Q,). Using
L;llﬁ@‘%@p we get

Wr, < Gal(Q,/F,) — Gal(Q/F).

Write p = p,, for the @p—morphism Ph X =1 @p. Let po : G, — Gy,
tp
denote the identity map. For each w; define pu, : Gy, — (RFw_/QpGLn) XQ,
Q,~ [loco., (GLn)@p by

(zIp(, 0 )
zZ= | Z,
0 qu O'G@wi

so that pu = (po, (fw;)1<i<r). We have p, = 1 if o is induced by L;IT and
ps = 0 otherwise.
Let us describe the finite set B(Gq,, —p). Using the isomorphism

(5.2) GQP ~ GL1 X H RFw,/QpGLm
1<i<r '
we identify
B(GQpa _M) = B(GL17 _:U’p,o) X H B(RFwi/QpGLny _Nwi)
1<i<r
and write b € B(Gg,,—u) as (bo, (bw,)). In view of [Shi09a, Ex. 4.3], there is
a bijection
(5.3) (heZ:0<h<n-1} &5 B(Gg,,—n),
where h corresponds to b(h) = (bo, (by,)) which is given by by = b1, by =
by—n.p and by, = by, for i > 1 in the notation of Section 2.4. When b = b(h),
(5.4) To(Qp) = Q) % (Dg, 1 ynpy X GLa(Fu)) x [T GLa(Fu,).
i>1
Recall from Section 3.1 that we defined the groups K, C Gy, (Qy,) (v # o0)
and the measures pg, » on G,(Q,) for every v as well as p Ag, s ON Ag, 00 =
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AG,co- For each v € Unrp)q, define a hyperspecial subgroup Ubs of G(Q,) to
be the image of K, under the isomorphism G(Q,) ~ G7(Q,) which was fixed
earlier. We transport ug,, , to a Haar measure pug, on G(Q,) for each v # oo
via the last isomorphism. To fix a Haar measure on J,(Q)), denote by M,
(cf. §5.5) the quasi-split inner form of Jj, over Q,. We may identify M;(Q,)
with Q X GLy—pn(Fuw) X [Ti>1 GLn(Fu,). Choose a Haar measure on My(Q,)
so that Z; x GLy—pn(OF,) X [li>1 GLn(OF,,) has volume 1. The measure
on Jy(Qp) is chosen to be compatible with the one on Mj(Q,) in the sense of
[Kot88, p. 631]. Also choose a Haar measure pig oo 50 that [T, pigw/pAg o 18
the Tamagawa measure.

5.2. Shimura varieties and Igusa varieties. For each open compact sub-
group U C G(A*), consider the following moduli problem:

connected locally noetherian

F-schemes — (Sets)
with a geometric point
(S, s) = AN L)~

where the quadruples on the right consist of

e A is an abelian scheme over S.

e \: A— AV is a polarization.

i: F — End(A4) ®z Q such that Ao i(f) =i(f)V o\, forall f € F.

e 7 is a w1 (5, s)-invariant U-orbit of isomorphisms of F'®g A*-modules
n:V ®gA® = VA which take the pairing (-, -) to the A\-Weil pairing
up to (A>)*-multiples. (See [Kot92b, §5] for more explanation.)

e An equality of polynomials detog(f |Lie A) = detg(f|V?!) holds for

all f € F, in the sense of [Kot92b, §5].

Two quadruples (A1, A1,i1,71) and (Ag, Ao, i9,72) are equivalent if

there is an isogeny A; — Ag taking Aj,i1,71 to yAe,ia, 72 for some

v € Qx.

Note that for each S and two geometric points s and s’ of S, the values of
(S,s) and (S, s") under the above functor are canonically identified. So we can
remove the reference to geometric points. And then the above functor can be
extended to a functor on the category of all F-schemes in an obvious way. If U
is sufficiently small, this functor is representable by a quasi-projective variety
over F' ([Kot92b, p. 391]), which we denote by Shy;.

Recall that we fixed p and w in Section 5.1 such that p € Splg,q and
wl|p. For each i (including i = 1), let A; be a U;s—stabilized Op,,-lattice in
V @ Fy,. It can be assumed that A; is self-dual with respect to (-,-). For
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m = (mq,...,m,), define

UP(ii) := UP x S x [[ ker(GLo,, (A:i) = GLo,, (Ai/mE Ay)) C G(A™),

where mp,, is the maximal ideal of Op, . We can construct an integral model
of Shypmy over OF,, via the following analogue of the moduli problem in
[HTO01, pp. 108-109]. (The (A, i)-compatibility condition there corresponds to
our determinant condition.)

connected locally noetherian

Op,,-schemes — (Sets)
with a geometric point
(‘S’a 5) = {(A>)‘viv77p’ {al};n:l)}/ ~

where the tuples on the right consist of

A is an abelian scheme over S.

A: A — AV is a prime-to-p polarization.

i: Op — End(A) ®z Z,) such that Aoi(f) =i(f)Y o\, Vf € Op.

7 is a w1 (S, s)-invariant UP-orbit of isomorphisms of F' ®gp A*P-modules,

n:V ®gA>®P 5 VP A, which take the pairing (,-) to the A-Weil pairing

up to (A°P)*-multiples.

e (Determinant condition) An equality of polynomials detpg(f|Lie A) =
detg(f|V?!) holds for all f € O, in the sense of [Kot92b, §5].

o oy :w ™A /A1 — AJw™] is a Drinfeld w™!-structure.

e Fori > 1, a; : (w; ™A;/A;) = A[w]™] is an isomorphism of S-schemes
with Op,, -actions.

e Two tuples (A1, A1, i1, 7}, {ei1}i_1) and (A, Ao, ia, 75, {i2}r_) are equiv-

alent if there is a prime-to-p isogeny A; — Ao taking Al,il,ﬁf,am to

Y2, 12, 5, @i 2 for some v € ZE;).

Because of our assumption on (p;, ¢;) and the determinant condition, if p
is locally nilpotent in S then A[w®™] (resp. A[w®] for i > 1) is a Barsotti-Tate
group of dimension 1 (resp. 0) if A is as above. (cf. [HT01, p. 108].) This
moduli problem is representable by a quasi-projective scheme over Op, (by
the argument of [Kot92b, p. 391]), which will be denoted by Shyr 7. In fact,
Shyre 3 is projective and flat over Op,, for all m and smooth if m; = 0. The
smoothness and flatness are proved exactly as in [HT01, Lem IIL.4.1]. The
projectivity follows from [Lan08, Th. 5.3.3.1, Rem 5.3.3.2].

The special fiber %Upﬁ i= Shyyy 5 X0p, k(w) admits a Newton-polygon

h

stratification into k(w)-varieties ﬁgﬁ) g» Where the integer i runs over 0 < h <

n — 1. The stratification can be described as in [HTO01, p. 111] or [Man05,

p. 580]. (Roughly speaking, Sihglp) G is the locus where the Barsotti-Tate Op,,-

module A[w] has étale height h in the sense of [HTO01, p. 59].) To compare
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the index sets for strata in two different references, note that each 0 < h <
n—1 bijectively corresponds to an element b € B(Gq,, —u) under the bijection

described in (5.3). When b corresponds to h, we write %SZ), g for ﬁgﬁ? i

We may consider Igusa varieties in the sense of [Man057]. On pagé 576 of
that paper the so-called unramified hypothesis was imposed, which is equiva-
lent to assuming that p is unramified in F' in our situation. The unramified
hypothesis ensures that Shimura varieties have smooth integral models over
OF, when no level structure is imposed at p. However the results of that
paper carry over to our case (where p may be ramified in F'): we substitute
ShUpﬁ and SihUpﬁ for Xy»(o) and YUP(O) in Mantovan’s paper. (The same
applies to the Newton-polygon strata.) As remarked above, ShUpf) is smooth
over Op,. We use the results of Drinfeld as in [HT01, Ch. II] instead of the
Grothendieck-Messing theory. It is worth emphasizing that we can work with-
out the unramified hypothesis since we are in the special case where p splits in
E and the condition (v) of Section 5.1 is satisfied.

Let us briefly recall the definition of Igusa varieties. Choose any Barsotti-
Tate group X, over I, whose associated isocrystal with G-structure corre-
sponds to b in the sense of [Shi09a, §4] (cf. [RR96, 3.3-3.5]). Since any two
isogenous one-dimensional Barsotti-Tate groups over F, with O, -actions are
isomorphic, for each b there is a unique choice of ¥, up to isomorphism (with
additional structure). As a consequence, each central leaf Cy, = Cy, yr de-

fined in [Man05, §3] coincides with the corresponding stratum Sh® . We write

Ur,0°
Igy, v i for the Igusa variety Jp ., (which depends on U?) defined in [Man05,
§4]. In general Igusa varieties depend on the choice of ¥, but Igy, s, only

depends on b in our case (up to isomorphism) since ¥ is unique up to isomor-
phism. By [Man05, Prop. 4], Ig;, y» ,,, are finite étale Galois coverings of Sihg?,ﬁ
and smooth over [F,.

An important point for us is that Theorem 22 of [Man05] (also [Man,
Th. 1]), stated as Proposition 5.2 below, works in our case. (We need to make

a small change: the Rapoport-Zink spaces should be viewed over the base Oz,

rather than Z;;r.) This should not be surprising since Proposition 5.2 is a close
analogue (but formulated in a different language) of [HT01, Th. IV.2.9] which
works even when p is ramified in F.%

Even though the unramified hypothesis mentioned above is imposed in
[Shi09a] and [Shi09b], the results of those papers also carry over to our situation
without the hypothesis. Again, this is possible as the conditions (iii) and

°In our case, it is appropriate to say that Proposition 5.2 is essentially due to Harris and
Taylor. The beauty of Mantovan’s work lies in its nice reformulation and generalization of
their result.
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(v) in Section 5.1 are satisfied. In fact, the only place where the unramified
hypothesis is necessary is the proof of [Shi09a, Lemma 11.1]. In that proof, in
our setting without the unramified hypothesis, we know that dim(Lie A[w*])
is 1if i = 1 and 0 if ¢ > 1. Then we can argue as in the proof of [HT01, Lemma
V.4.1] (in which p may be ramified in F') to prove Lemma 11.1 of [Shi09a]. (If
the dimensions of the Lie algebras were arbitrary, the argument would not
work.) Careful readers may check that the rest of the arguments in [Shi09a]
and [Shi09b] go through and the results of those papers remain true in our
situation.

Let ¢ be an irreducible algebraic representation of G' over Q;. Such a &
gives rise to a lisse [-adic sheaf on each Shyy as well as on each Igy, ;p ,,,- Let
Z¢ denote those [-adic sheaves by abuse of notation. We write Ig, and Sh for
the projective systems of varieties {Igy, ;» ,,,} and {Shy }, respectively, where m
runs over Zq and UP (resp. U) over sufficiently small open compact subgroups
of G(A*P) (resp. G(A*)). Define

H*(Sh, Z2) i= lim H*(Shy o T 22), HE(lgye ) = lim HE(Lgy 100 20),
U UP,m

which are admissible representations of G(A™) x Gal(F'/F) and G(A*?) x

Jp(Qp), respectively. Define

H(Sh, %) =) (-1)"H"(Sh, %), He(lgy, %) := Y (-1)*H (g, Ze),
k k

which belong to Groth(G(A™) x Gal(F/F)) and Groth(G(A>®?) x J,(Q,)),

respectively. The space H*(Sh, %) is a semisimple G(A>)-module and admits
a decomposition (cf. [HT01, p. 103])

(5.5) H*(Sh, %) = P 7™ @ RE (7™),

where 7°° runs over Irr(G(A*°)) and Rf}l (m°°) is a continuous finite dimensional
representation of Gal(F/F). Define Re;(7) := Zk(—l)leg’l(woo), viewed in
Groth(Gal(F/F)).

Let S be a finite set of places of Q containing p and co. Set Sg, := S\{oc0}.
Let R € Groth(G(A%) x G'), where G’ is a topological group. A typical
situation is R = H(Sh, %) with G’ = G(Ag,,) x Gal(F/F) or R = H(lgy, %)
with G' = G(Ag,\ 1) X Jo(Qp). Write R = Y s, (% @ p) - [7°][p] where
n(m® ® p) € Z, and ©° and p run over Irr)(G(A%)) and Irr(G’), respectively.
For a given 77, define R[r°] € Groth(G(A®) x G’) and R{n°} € Groth(G’) by

R[x°]:= n(@®@p)- [x°]p],  R{x°}:=) na(x®®p)-[o,
P P

where p runs over Irr;(G’). This way we define H(Sh, %)[7°], H(Sh, %){r"},
H(Igy, Z¢)[n°] and H(Igy, Ze){m"}.
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Define a functor Manty, ,, : Groth(J,(Q,)) — Groth(G(Q,) x W, ) using
the notation of [Man05] by (cf. §2.2)
Manty, ,(p) := Z (—1)" lim Eth]b(Qp)—smooth(Hg(Mzt;gx,Up)’p))(_D)'
4,520 UpCG(Qp)
Here D is the dimension of /\/lz Uy (—D) denotes a Tate twist, and the limit

is taken over open compact subgroups Up of G(Qp). The following proposition
is Theorem 22 of [Man05] ([Man, Th. 1]), which holds in our case as explained
above.

PRroPOSITION 5.2. With the notation as above, there is an equality in
Groth(G(A>) x Wg,):

H(Sh, Z)= > Manty,(Heo(lg, %)).
beB(Gay,—H)

The Rapoport-Zink spaces er;i,i,Up admit product decompositions into
Rapoport-Zink spaces of EL-types, corresponding to the decompositions (5.2),
b = (bo, (bw,)) and u = (uo, (tw;)) (cf. [Far04, 2.3.7.1, Ex. 2.3.21]). This
induces a corresponding decomposition of Manty, ,. Namely, if we write each
p € Irr(Jp(Qp)) as po ® (Vipw,) according to (5.4), then

(5.6) Manty,,(p) = Manty, ., (o) ® <®i Manty,, .., (Pw)) :

To the irreducible representation &, there is a way to attach ao(§) € Z,
@(€)s € Z™ and w(&) € Z for each o € ®f as in (3.18) and the paragraph pre-
ceding (3.18). The following proposition is an analogue of [HT01, Prop. I11.2.1],
except the last assertion comes from [HT01, Lemma I11.4.2] (for which we allow
p =1). The proof of Harris and Taylor works in our case and will be omitted.

PROPOSITION 5.3. Recall that 7 : F < C and ¢; : Q; = C. Let Uy, be the
centralizer of h in G(R).

(i) The following holds where Too Tuns over ynit(G(R), y€Y). We denote
the (discrete) automorphic multiplicity by m(-).
]ker QG |Zm 1 (1) @ oo ) dim H*(Lie G(R), Uso, Too @ 1E)

(ii) Let y be a prime of F' not dividing l. For any o € Wg,, each eigen-
value o of R’gl(woo)(a) satisfies a € Q and |a|? € |k(y)|? under any
embedding Q — C.

(iii) For almost all primes y of F, for all eigenvalues v of ng,l and for all
embeddings Q — C, we have |a|? = |k(y)|Ft*(©).

(iv) R’gl(woo) is potentially semistable at every y|l.
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v) Suppose that a prime q splits in E and that q € {p,l}. Write 7, =

S that ; lits in E and that l}. Write
g0 ®£®vevjﬂv) and let y € V} be the place determined by v;'7 :
F — Q. If mq0 and m, are unramified, then Rél(woo) is crystalline
at y if ¢ =1 and unramified at y if ¢ = p.

5.3. Stable trace formula for Igusa varieties. Recall that the Haar mea-
sures on G(A™), J4(Qp) and G7(A)/Ag, .~ are fixed (§§3.1 and 5.1), where
G5 denotes elliptic endoscopic groups for G. The goal of this subsection is to
state the stable trace formula for Igusa varieties, which was the main result
of [Shi09b].

We need to pin down transfer factors. For each Gy, fix AJ(. )g; as in
Section 3.4 at each v # oo, where we take AY = 1 for every v # oo if 77 = (n).
Choose the transfer factor A, (-, )gﬁ (v # 00) so that

(5.7) Dol )G, = A )En

via the isomorphism G' xg A* ~ G, xg A* that was fixed in Section 5.2. We
choose the unique A (-, )gﬁ such that the product formula

[TAa(wmE. =1

holds ([LS87, (6.4)]) for any matching pair (vg,v) with v € G(Q), i.e., for any
semisimple v € G(Q) and any (G, H)-regular semisimple vy € Gz(A) with
matching stable conjugacy classes.

Fix (j, B) as in Section 4.3, once and for all. Recall that A; p was defined
in Section 3.5. Let e3(As) € C* denote the constant such that

(5.8) Ao, 78 = ei(Doc) A, (Y1, 7)

for any matching pair (ym,7v) € Gz(R) x G(R). Note that ez(As) = 1 for
7i = (n). We claim that for each 7@ = (n1,n2),

(5.9) er(As) € (C),

namely that |e;(Asx)| = 1. The argument is as follows. It is not hard to
see from the definition (§3.4) that for every v # oo, Av(’YH,’Y)gﬁ is equal to
Arve(ym,y) up to (C*)Y, the latter being the ratio of Weyl discriminants at
v defined in [LS87, §3.6]. By the product formula (5.7), the same is true for
v = 00. On the other hand, A; g(vm, ) is also equal to Ay oo(yH,y) up to
(C*)Y, as can be seen from the definition of [Kot90, p. 184]. (Note that x¢ g
in that article is a unitary character in our case.) Hence the claim is proved.

Remark 5.4. Although a more careful analysis of transfer factors would
show that e;3(As) € {£1}, we have not attempted to show it here. Instead, we
prove the same fact with an ad hoc argument later in the proof of Theorem 6.1.
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There e;3(As) shows up in the coefficient of a spectral identity, which must be
a real number, hence +1 or —1.

Let ¢>P . ¢, € CF(G(A®P) x Jy(Qp)) be a complex-valued function.
Assume that ¢°? - ¢/, is an acceptable function ([Shi09a, Def. 6.2]). For each
elliptic endoscopic group Gz for G, we recall the construction of the function
qSIﬁg on Gz(A). We may assume that ¢°>P has the form ¢°P =[], o0 ¢ as
the general case follows via finite linear combination.

For each place v # p, oo, let (b?gﬂ} € C(Gr(Qy)) be a A, (-, -)gﬁ—transfer
of ¢, (§3.4). Set H := G in order to make the notation compatible with some
references. Put

(5.10) oL, , = hlt,

where hll is the function constructed from ¢/, in Section 6.3 of [Shi09b], with

the convention of Section 8.1 of that paper. (The construction of hf is briefly
recalled in (5.32).) Set

(5.11) Bl oo = €it(Doo) - (1)1 Dy, 5) Y~ det(wilon)) - by
oH

in the notation of Section 3.5, where ¢y runs over the equivalence classes of
L-parameters such that 7oy ~ ¢¢. Observe that gi)?gm is the function hy of
[Kot90, p. 186] multiplied by ez(Ax).

The latter constant is multiplied to make up for the difference between
Aoo and Aj,B'

The following stable trace formula is proved in [Shi09b, Th. 7.2]. It is
worth noting that the proof uses the fundamental lemma in an essential way.

PROPOSITION 5.5. If P - ¢f) € C(G(A®P) x Jp(Qp)) is acceptable,

(5.12) (87 x ¢y He(Igy, ) = |ker' (Q,G)| Y (G, G7)STE 7 (41),
Gn

where the sum runs over the set £V (Q) of elliptic endoscopic triples (G, 55, M)

Let us explain the constants (G, G7). By definition,
UG, Gr) = 7(G)T(Gr) ! |Out(Ga, s, )|~

Recalling that n is odd, |Out(Gz, si, n7)| equals 1 for any 7 = (n) or (n1,n2).
(It equals 2 if n is even and 7 = (n/2,n/2); cf. [Rog90, Prop. 4.6.1] in the case
of unitary groups.) Now it is easy to compute, by (3.3),

B 1, if A= (n),
UG, Gr) = { 1/2, if @ = (n1,na).
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5.4. Stable trace formula for L%-automorphic spectrum of Gz(A). Keep
the convention from the last subsection. In particular we use the same Haar
measures and the same transfer factors as in Section 5.3.

By Rg,¢, we denote the regular representation of G(A) on the space
LZ(G(Q)\G(A),XL_ZE) consisting of those functions G(Q)\G(A) — C which
transform under Ag o by XL_lgl and are square integrable modulo Ag . Let
7% € Maise(G(R),£Y). For any ¢ € C(G(A™)), let (¢™) be a A(+, )& -
transfer of ¢*°. Denote by qﬁﬁgo the product of ez(A) with <Z>fgo given by
(3.13). Then (;5?0 isa A(, -)gﬁ—transfer of ¢ro . (We have to multiply e;(Aco)
due to the difference of transfer factors. See formula (5.8).) The following
proposition is an analogue of Proposition 5.5, which is derived from the trace
formula for compact quotients by stabilizing geometric terms after Langlands
and Kottwitz ([Lan83], [Kot86]; especially Theorem 9.6 of the latter). Note
that Proposition 5.6 is unconditional, as is Proposition 5.5. Although the
stabilization of Langlands and Kottwitz relies on the fundamental lemma and
the transfer conjecture, these were settled by a recent proof of Ngo ([Ngo10]),
building on work of Waldspurger and others.

ProproOSITION 5.6. The following equality holds, where the first sum is
taken over the set of isomorphism classes of m € Irr(G(A)) and the second is
over the set E(Q) of elliptic endoscopic triples (G, 55,17

(5.13) tr Rz e (6% by ) = Zm tr (8 dro )
=ZLG,Gﬁ>ST§n<<¢”>°°- T )-

Gr
Remark 5.7. The number | ker! (Q, G)| shows up in the formula (5.12) but
not in (5.13). This comes from the fact that our moduli varieties Shyy over F
are | ker!' (Q, G)|-copies of the usual canonical models of Shimura varieties. See
[Kot92b, §8] for explanation.

Remark 5.8. Proposition 5.6 will not be used in this paper until the proof
of Corollary 6.5.

5.5. Definition of n—Redl}L. In Section 5.5 we will freely use notation and
terminology from [Shi09b], especially Section 6 there.

For each (H,s,n) = (Gg, si,n7) in E(G), recall that there is a finite set
S;’H(Jb, G; H) consisting of (isomorphism classes of) triples (Mg, sg,ng). Such
an (Mpy, sg,nm) is a G-endoscopic triple for J,. The Q,-group My is equipped
with a Qp-morphism vy, : D — My and a finite set Z(Mpy, H) consisting of
certain Qp-embeddings My — H whose images are Levi subgroups of H. We
will use the normalization of transfer factors A(-, )J\]‘g and A(-, ) My as in
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[Shi09b, Eq. (8.6)]. The constant cps,, € {£1}, assigned to each (Mg, si, nm),
may be evaluated as in Section 8.1 of the same paper. As the numbers cyr,,
intervene in the definition (5.32) of ngngm, they will be included in the definition

of n-Red% (thus also Red%), which is motivated by Lemma 5.10 below.
Define n—Red% to be the composition of the following maps:

GB;I'H,*

(5.14) Groth(H(Qp)) — €D  Groth(Mp(Qp)) — Groth(M(Qy))
(Mp,su,nm)
Ly

— Groth(J,(Qp)).

The first map is the direct sum of Groth(H(Q,)) — Groth(Mg(Q))) for all
(Myg,sg,nm) € E;’H(Jb,G; H), where the map for each (Mpy, sy, ng) is given
by @i cmy, - J}Ij(iVMH)op as @ runs over Z(My, H). In fact, Z(Mpy, H) is always
a singleton in our case; so we will simply write Py, for P(ivar, ). (See Cases
1 and 2 below.) As for 7+, an explicit definition is given below case by case.
This map 7z« should be seen as the functorial transfer with respect to the
L-morphism 7). Noting that M;(Q)) is a product of general linear groups,
LJ%Z’ is the “Jacquet-Langlands” map on Grothendieck groups defined by
[Bad07] (cf. §2.4).
Define Red% by

Red’(7y,) := n-Red%(rp,) ® 5};./5/17).

Case 1: 1 = (n), i.e. (H,s,n) = (Gp,1,id). In this case ESH(JI,,G; H) has
a unique isomorphism class represented by (My, sy, ng) = (Mp, 1,id). So we
may take 7y = id and 7y = id. In that case cpr, = ep(Jp) ([Shi09b, Rem.
6.4]). There are isomorphisms
(5.15)

G(Qy) =~ QF x GLn(Fu) X [Tis1 GLn(Fu,),

Mb(@p) = @; X GLn—h(Fw) X GLh(Fw) X Hi>1 GLn(Fwi)'

An analogous decomposition for J,(Q),) was given in (5.4). The set Z(My, H)
contains a unique element, which may be represented by the Levi embedding
inv, @ My — G which is the obvious block diagonal embedding on the F,-
component with respect to (5.15). (The G(Qp)-conjugacy class of iy, is canon-
ical.) Let h € [0,n — 1] be the integer corresponding to b as in (5.3). We see
that e,(Jp) = (=1)" "1 in view of (5.4). If 7, = 70 @ (Rimw,) € Irr)(G(Qp)),
then it is clear that

(5.16) n-Red’ (m,) = (—1)" "7, 0 @ n-Red" """ (1) @ (Ris17w;),

where n-Red” " is as defined in Section 2.4. An analogue of (5.16) holds for
Red? (7,) if n-Red” " is replaced by Red” " on the right-hand side.
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Case 2: 7i = (n1,n2); i.e., (H,s,m) = (Gning» Snymes i me)- 10 this case
we have the following isomorphisms over Qy:

(5.17)

G =~ GL; x HiZIRFwi/QpGLm

H =~ CGLi % [ls1 Rey /0,CLo s,

My, ~ GLi X Rpg,/0,GLn—hn X [li>1 Rr,, /q,GLn,
Jy = GLi x Bp,g, (D), 1/ ¥ GLa) % ILis1 Rr, /g,GLa.

Consider the following two groups which will be viewed as Levi subgroups of H
via the natural block diagonal embeddings, which are to be denoted by ips,;
and iz, ,-

(5.18)

MH71 = GL1 X RFw/QpGLnfh,hfnz,nz X H’i>1 RFwi/QpGL’VZLTQ (lf h 2 TLQ),
MH72 = GL1 X RFw/QpGLnfh,hfnhnl X H’i>1 RFwi/QpGL’VZLTQ (lf h 2 nl).
The dual groups are described as follows. The L-groups are given by an obvious
action of E/Qp on the dual groups. Namely Wg, permutes the index sets

Hom(F,, Qp).

(5.19)

G = C* x [[j»1 GLp(C)omFui By,

H =C* x [Ti>1 GLm,nz(C)Hom(Fw“@p)»

M, = C* x GLy_;(C)Hom(Fu.Qy) X [Tis1 GLy (C)Hom(Fu; Q)
M\H,l = C* x GLy—p,h—nans (C)Hom(Fw’@p) X li>1 GLn, ny (C)Hom(Fw“@p)v

Mua = C* X GLy_hhnym ((C)Hom(Fw,@p) « HDlGLm,m(@)Hom(Fwi,@p).

We give the maps npy ; : ]\/J\H,j — M\b (7 = 1,2) so that ng; is the iden-
tity on C* and the obvious block diagonal embedding on the F},,-component
(1 >1). Extend ng 1 to 7m1 : LMH’l — LM, by sending z € Wq, to

(w(z)*N(mm), (w(2) ™) o (z) <=M p(z)e(nn2)),

(@ (), () ) 02,
Similarly define 1y : LMH,Q — LMy, which maps z € Wa, to
(w(z)*N(mm), (w(2) ") o (z)<(Pm2) p(z)e(nm)),

(@ (), () ) 0,
With respect to (5.19), let

sary, = (1,(1,1,-1),(1,1)) € Z(Mg,),
siys = (1,(~1,-1,1),(1,1)) € Z(Mpp).
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Recall that the sets £ (M,, G; H) and £°(J,, G; H) are defined in [Shi09b,
§6.2]. Certainly (Mpj,sny,,,nm,5) (7 = 1,2) belong to E¥(My, G; H). (In
general £ (M, G; H) has other elements, but they do not concern us since they
are not contained in £ (.J,, G; H).) Using the fact that Jj has D}X,w’l/(n_h) X
GL,(Fy) in its product decomposition, we see easily that

0, if h < ng,
(5.20) geH(Jb,G; H) = {(MHJ,SMH’I,?]HJ)}, if no<hx ni,
{(MH,jysMHJ-vnH,j)v .7 = 172}7 if h > ni.

(In order that (Mg, sy, ,ne) lies in £ (J,, G; H), the element sy, should
transfer to jb = ]\//fb via ng so that it is either +1 or —1 in the GL,_;(C)
block of the F,-component, since D, 1 /(,—p) is a division algebra.) From now
on, whenever we consider (Mg ;, s My nH,;), we assume the condition on h of
(5.20) so that the triple belongs to £ (.J,, G; H).

Let TMH,J- : LMH,J- — LH (j = 1,2) be the obvious embedding, except that
ZNMH2 on the F,,-component is given by

A 0
(A17A27A3) € GLn—h,h—nl,n1 = <A3, ( 01 A2 )) € GLnl,ng-
Then one can directly check that ZMb - LMy — LG can be chosen to be a
G-conjugate of the obvious embedding so that the following commutes:

(5.21) LMy, —= L@

For each j € {1,2}, the set Z(Mp ;, H) has a single element, which may
be represented by the Levi embedding iry, ; : Mp; < H. The parabolic
subgroup Py, ; C H is generated by My ; and upper triangular matrices of
GLy, n, at the Fy,-component.

We are about to define 7 ;. : Groth(Mpy j(Qp)) — Groth(M,(Q,)) and
give a relevant trace identity, in a way similar to Case 2 of Section 3.4. Let
u := w|g. Define a unitary character X:;j : My ;(Qp) — C* such that
(5.22)

Xij()‘) = @, (A) TNV (m1m2),
Wy (NFW/EU, (det((gw}lng)e(n—nl)9151)(2))*712)))) s j =1,
Ty (NFw/Eu (det((gw,lgw,2)€(n_n2)g'z)(,ginl)))) y J =2,
Xi,j(gwi,lvgwi,Q) = 1,

XI,j(9w7179w,279w,3) =

where (X, (Gw,1, 9w,2, 9w,3)s (Gw;,1> Gw;,2)) denotes an element of My ;(Q,) with
respect to (5.18). For each ¢ € C°(My(Qp)) and mary, . € Irry(Mp ;(Qp)),
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define

My . _ .M
(5'23) D = (¢;)QJ : thj and nH,j,*(ﬂ-MH,j) = n'lndQ; (T‘—MH,j ® X;:j)’

where (); is any parabolic subgroup of M}, which has My ; as a Levi subgroup.
As in Section 3.4, we can normalize Ap(, )%l;, ; with respect to 1g; so that

¢£/[H’j is a Ap(:, ‘)%Zj—transfer of ¢. Note that 7y ;. is independent of the
choice of ;. We have the following identity analogous to (3.10). The first
equality holds by definition and the second by Lemma 3.3(ii).

(5.24)

temary, (dp ) = tr (Taggs © X )(65) %) = tr (T w(mar,)) (65) -

The next job is to compute cpry, . € {£1}. We use the result and notation

—~

from [Shi09b, §8.1]. Note that our sy, n, is the element s € Z(H) of that

article. We may take the decomposition s = s1s9 with s € Z (I/-f )Gal(@z’/ Qp)
and sy = 1. It is easy to compute v, as in [Shi09a, Ex. 4.3]. From this we see
that I?éwH’j . Z(Mp ;)%(@/%) — % can be described as
(5.25) - -

C* % ((CX)S)Hom(Fw,@p)X Hi>1((CX)2)H0m(Fwi’QP) N (CX,

Zzwi1, ifj=1,

(z,  (Zw1s2w2, 2w3), (Zw; 15 Zw;.2)) { zzz; if;' — 9.
(Note that the number of copies of C* may be smaller in (5.25). Namely in
case h = n—mnj for j € {1,2}, (5.25) is correct after we erase the corresponding
copy of C* from the F,-component.) Now [Shi09b, Eq. (8.7)] tells us that

o ~Mpy ; -1 _ ep(‘]b)a lfj = 1,
(5.26) cMy; = ep(Jp)pa(s2)(, 7, s1) " = { e (), ifj=2.
Of course we know that e,(.Jy) = (—1)" "L
Recall the definition of n—Rethnz from (5.14). In the current case, we see

from (5.20) and (5.26) that n—Rethn2 is equal to

O, h < na,
My  ~
ep(Jo) X2y (—1 LI} 0 gy, o J;%Ip ., h>ny.
Hj

We set up notation for Lemma 5.9. Let 7y, be any representation of
Irr;(H(Qp)) and set mazyp == Tpp ® X4, Where xb , is as defined in Case 2 of
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Section 3.4.5 Put 7, := 7. (7pp), or equivalently
7p = n-ind$ (mar,p).
Here H is viewed as a Levi subgroup of G (over Q). Write

TMp = Tp,o @ ® (ﬂ-M’wi,l ® WM,wiQ) ) Tp = Tp,o & ®7rwi’
i>1 i>1
where 7,0 € Irr)(Q) ), Tarw;,5 € Irry(GLy, (Fy,;)) and my,; € Groth(GLy,(Fy,)).
(As a parabolic induction, m,, may be reducible.) Let us write the following
Jacquet modules as finite sums of irreducible representations.

(5.28)
GL GL

Tpow'  (Tarw) =Y k1 @k, Jpon  (Tarw2) =D Br1 @ Bra.
n—h,h—ng & n—h,h—nq &

Define X1 (h, map), Xo(h, mHp) € Groth(DEU 1) X GL(Fy)) as follows.

Sk Ldp—n(ou,1) @ n-ind(ag 2 ® marw,2), if h > no,
Xl(h’”H’p):{ 0 if b < no
Sk LJn—n(Br1) @ n-ind(Br2 @ Tarw,1), if h > n,
X2(h’7”“’):{ 0 if h < .

It is immediately checked that (5.29) below provides an equivalent defini-
tion for Xi(h,7g ) when h > no and Xo(h, 7h ) when h > ng.

(520)  Xu(h,map) = windGry o (0-Red"™M 2 (T 1) € Masw2)
Xg(h, '/TH,p) = n_indgsznl,nl (H—Redn_h7h_n1 (7TM,w,2) &® WM,w,l) .

LEMMA 5.9. Put ourselves in Case 2 as above. The following hold in
Groth(J,(Qp)):
(1) n'RedZ(ﬂp) = ep(Jp) - Tp0 @ (X1(h, Thp) + Xo(h, THp)) @ (Ris1Tw,)-
(ii) n-Red},, o, (wrp) = ep(Jh) - mp0 @ (X1 (B, 71 p) — Xo (b T p)) @ (Rin17m0s,)-

Proof. We will present a proof when h > nj. The same proof works in
the other cases if the terms involving h — ny (resp. h — ny and h — ngy) are
disregarded in case ny < h < nj (resp. h < ng).

The proof of (i) goes as follows. Recall from (5.16) that

n-Red’ (1) = ep(Jp) - Tpo @ X ® (Rin17w,),

6There is no Levi subgroup M in this subsection. The notation mas,, is justified by the
fact that BC(mas,p) should appear as the p-component of ITxs of Section 6.1. (The same holds
for BC(7H,p) and Ig.) The use of M in the subscript is intended to reflect the fact that m,
is parabolically induced from masp. (In contrast, m, is viewed as an endoscopic transfer of

TH,p-)
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where X € GrOth(D});w,l/(n—h) x GLp(Fy)) is described as
X =n-Red" ™"(r1,) = LJ,_,, ( S (neind(Tagw ® wM,w,Q)))
n—h,h
. 1GL GLn
=LJ,_p <n—1ndGLZ%2m2 <JP7CL)phl,hn2 (WM,w,1)>
. GL GLn
+ n_deLanl,nl (JP’:L)EhQ,h—TLl (ﬂ'M,w,2)) + Y) .
The last identity is implied by the geometrical lemma ([BZ77, p. 448]), where Y
is a certain linear combination of irreducible representations of GL,,_p(Fy,) X
GLp(F,) of which each GL,,_;(F,)-component is a full parabolic induction
from a proper Levi subgroup. It follows from [Bad07, Prop. 3.3] that L.J,,_,(Y)
= 0. Therefore X = Xy (h, 7y )+ X2(h, 7H ) and the proof of (i) is complete.
To demonstrate (ii), we use the identity
~ H < 1M, H
(5.30) MMy ;% © JP]‘\D/FH, , (THp) = n—1ndML © JP;\’/}’HJ (Tarp)

which is verified from the definition of s, ; «. By (5.27) and (5.30),

2
n-Red’) ,, (THp) =ep(Jy) Y (—1Y ' LJ}" o n-ind}p’ o J;f;p (7arp)

j=1
=ep(Jy) o @ X @ (@ (n-ind (7 ar,w;,1 @ 7TM,wi,z))> :
i>1
where X € Groth(Dj, 1/(n—n) X GLn(Fw)) is given by
(5.31)  LJy_po (n-indﬁ_n2 ns © Jgi"l’”
’ n—h,h—ng,ng
. GLny,n
—n—1ndﬁhh,nl o Jpop * th > (TMw,1 @ TaMw,2)-
ni,n—h,h—nq

Plugging in (5.28), we obtain

X =) LJ(o1) ®n-ind(po ® Tasw2) — Y LI (Br,1) @ n-ind (maz,0,1 @ Br.2)
k k

which is nothing but Xy (h, 7p ) — Xo(h, mH ). O

5.6. n-Red% and qb?g’p. The following lemma shows that the construction
of gbgp is “dual” to the representation-theoretic operation Redbﬁ. Lemma 5.10

is a key input in the analysis of the p-part of representations in the proof of
Theorem 6.1.

LEMMA 5.10. Let (H,s,n) = (Gg,si,n5) € ENG). For any my, €
Groth(H(0,)). ﬁ b
tr 7 p (Al p) = tr (Redy(mr,p)) (¢)-

(Here test functions are Q;-valued.)
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Proof. We freely use the results and notation of [Shi09b, §6.3]. Recall that
by definition (see the formula above Lemma 6.6 of [Shi09b])

(532) ¢Iﬁg,p = Z CMy * &;‘;4}1
(Mu,smnm)
as functions on H(Q,), where the sum is taken over EeH(Jb, G; H). As noted

earlier, Z(Mp, H) is a singleton, so we chose to write qﬁMH rather than &g/[H i
with ¢ € Z(Mpy, H). By [Shi09b, Lemma 3.8],

(5.33) tr T (Q31H) = tr (Jpop (wH’p)) (pplm).

Here qﬁé\/[H € CX(My(Qp)) is a Ap(-,-)]\}H-transfer of <Z>g = &, €
C(Jp(Qp)). The normalization of [Shi09b, (8.6)] is adopted for transfer fac—
tors, namely

(5‘34) Ap(’VMHv 5)%?[}1 = ep(‘]b) ) AP(VMHfYO)J\J\gZI
if 0 and g are transfers of vy, € My (Q)).
We claim that the transfer from qbg to qbéVIH factors through as
$p € CX(I(Qp))  ~ ¢y € CX(My(Q)) ~ &' € CZ(Mpu(Qy))
in the sense that if ¢ is a transfer of ¢ via A (-, )j}b = ¢,(Jp), then @)1 is a
Ay, )%b -transfer of ¢’. To prove the claim, we check the transfer identity for
H P

orbital integrals on regular semisimple elements. Since gbi‘,/[H is a Ap(-, -)}@H—

1/2

transfer of qﬁg,

(5.35) OM (@) (M) = Ay (yagy,, 6)3 - OF %) (¢0)

TMy

for any (Jp, Mpr)-regular vz, and its transfer 6. (Recall that a stable conjugacy
class is the same as a conjugacy class in the groups J;(Q,) and Mg (Q,) as
well as My(Q,).) On the other hand, as ¢}, is a transfer of ¢, Lemma 2.18(i)

of [Shi09b] tells us that 039" (¢7) = e,(Jy) - 07" @) (40) if there exists 6 €
Jp(Qp) matching vy and O%” Qp)(d);) = 0 if otherwise. Together with (5.34)

and (5.35), the last fact implies that qﬁé\/[H is a Ap(-,-)%;—transfer of ¢y as
claimed.
It follows from (5.24), Lemma 3.3 and [Shi09b, Lemma 2.18(ii)] that for

Tt € Ir(Mi (@),
(5:36)  trmary p(@y") = tr (i1 (Taty ) (93) = 0 (LT (i1 (Tate ) ()
= tr (LI (1« (ot ) @ 3, ) ().

(When H = Gy, the first identity holds trivially since g, = id and we
may take gZ)MH = ¢,.) The identities (5.32), (5.33) and (5.36) complete the
proof. O
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6. Computation of cohomology

We keep the notation and assumptions from Section 5. The prime p,
the place w of F' and the isomorphism ¢, are fixed in Section 6.1 (they were
fixed soon after Lemma 5.1), but allowed to vary in Section 6.2 under certain
constraints.

6.1. Cohomology of Igusa varieties. The main goal of this subsection is to
compute part of the cohomology of Igusa varieties after quadratic base change.
The main ingredients are the stable trace formula for Igusa varieties and the
twisted trace formula.

Choose the character w : Wgr — C* (introduced in §3.1) such that
Ramgq(w@) C Splp/p+ - (This is possible by Lemma 7.1 which will be proved
later but which does not depend on this section. Recall that the last condition
on w is assumed throughout §4.) Let Z be the algebraic representation of (G,,)c
given by ;¢ as in Section 4.3. (Put (€ in place of ¢ there.) Let IT = ¢ ® II!
be an automorphic representation of G, (A) ~ GLi(Ag) x GL,(Ap). Assume
that

o [IT~Tlod,

e I is generic and Z-cohomological (in particular, the central charac-

ters of IT and Z¥ coincide on Ag,,9.00),

e Ramg(Il) C Splp;p+ g
where Ramg(II) denotes the set of finite primes p where II is ramified. By
Z-cohomological we mean that there exists k such that H*(Lie G, (R), K., o
® =) # 0, where K/ is as in Section 4.3. In particular I, is isomorphic to
II= as in Section 4.3.

Recall that Ramp/q is contained in Splp/p+ g by our previous assumption
in Section 5.1. Let Sg, be a finite set of places of Q such that

(6.1) Ramp,/q U Ramg(Il) U Ramg(@) U {p} C Sin C Splp/p+ g
and put S := Sgp U {o0}.
We will consider two cases for II.

Case ST (“stable”). Assume that II is cuspidal.

Case END (“endoscopic”). Let my, mg € Z~¢ be such that m; > mo and
my1 + mg = n. (Recall that n € Z>3 is odd.) Let II; (¢ = 1,2) be a cuspidal
automorphic representation of GL,,,(Ar) and Z; be an irreducible algebraic

2

representation of GLy,, (F ®g C). We will set ¢y := ¢ ® @V (mm2) and
My ==Yy @1 @1, H::gmhm%*(HH)’
My =1L ® (@ 0 Npyg o det) "™ T i=¢ @ My @ Mpyo.

In addition to the previous assumptions on II, suppose that (for i = 1,2)
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(i) Iy ~1I; o ¢,

(ii) Ymm, = V5 /vu,

(iii) II; o is cohomological for an irreducible algebraic representation =;.
By (i) and (ii), Iy is a #-stable cuspidal representation of Gy, m,(A). De-
note by g, € Irry(Gimym,(Qp)) the unique representation (up to isomor-
phism) such that BC(ynpp) ~ Iy, Denote by ¢ the discrete parameter
for G, m,(R) such that BC(py) ~ Iy (with the notation BC(¢g) as in
Remark 4.4).

Observe that II ~ n—ind%jﬂ1 sy (ITp7). (The last parabolic induction is
irreducible; for general linear gréups, any parabolic induction of a unitary
representation is irreducible.) Let 119, denote the twist of IIj; by a character
of AG,,, m,.c0 (Via the canonical surjection G, m, (A) — Ag ) such that
H?\/[ is trivial on Ag

mq,mg 0
. Then it is easy to see that

mq,mg ;00

ué

Let us define certain parameters in (Case END). For i € {1,2}, let b}, ; >
- > bl . (0 € Homg(F, C)) be the integers parametrizing the highest weight
attached to =; and put

(6.2) II ~ n—indg;m2 1I1%,) @ X, L.

63) By = Bymery + T = B e my) -
where § is the odd integer such that we.(z) = (2/Z)%/2. (The numbers 'yfm»
should be thought of as parameters for II5;.) Recall that we defined a(¢;€)s,;
(0 € <I>E, 1 <j < n)from 4§ in (3.18). For any o and j < n, we have
a(y€)e; > a(y€)sj+1. Since Il ~ n-ind(Ilpys), it is easy to see that for
each o € @E,

{a(u)o; : 1 <j<n}= {7;7]- 1< < ml}H{yij 11 <j<ma}.

Thus there is a unique partition {1,...,n} = W2][]W2 with the following
property for each i € {1,2}: a(y€)or =7, for some j € [1,m;] if and only if
ke W

We are through with describing the two cases for II. Let us set up
more notations before stating the main result of Section 6.1. For any R €
Groth(G(A®) x G') (over Q;), where G' = G(Ag, ) x Gal(F/F) or G' =
G(Asﬁn\{p}) X Jb(Qp) define

(6.4) R{II°} := Y R{#°} and R[I"]: ZR

s
where each sum runs over 7° € Irr}"(G(A®)) such that BC(ym®) ~ I1°. (The
right-hand sides of (6.4) are defined as in §5.2.) An easy observation is that

H(Sh, %){I1°} and H.(Igy, % ){I1°} are virtual admissible representations of
the corresponding G’. Let BCp : Groth(G(Ar)) — Groth(G, (Ar)) denote the
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Z-linear extension of the base change map defined in Section 4.2, where T' C
Splp/p+ g is a finite set. (A priori, BCr is defined on virtual C-representations
but also defined on virtual Q;-representations via ¢; : Q; ~ C.)

THEOREM 6.1. Define an integer Cg := |ker' (Q,G)| - 7(G). Denote by
mp € Irr)(G(Qp)) a representation such that BC(ymy,) ~ II,. (Such a m, is
unique up to isomorphism as p splits in E; cf. §4.2.) For each b € B(Gg,, —),
the following equalities hold in Groth(Gn(Agy \(py) X Jo(Qp))-

(i) (Case ST) There is a constant eg € {£1}, independent of b, such that

(6.5)  BCgy\(py (He(Igy, Ze){TI°}) = C - eq - 1) 'Tlgy,\ (3] [Red?, ()]

(ii) (Case END) There are constants ey, ea € {£1}, independent of b, such
that

(6.6) BCs,\(py (He(lgy, Z){II7})
1
= Cq ([Ll—lr{sﬁn\{p}] 5 (e1Red; (1)) + esRedy, o, (wH,p))D :

Remark 6.2. A priori the sign ey depends on II. The signs e; and es
depend not only on II but also on II and other data, at least a priori. However
it turns out that ey and e; always have the same value, as we will see later in
Corollary 6.5(ii). As for eg, refer to Remark 6.3 in case mg = 1.

Proof. In the first three paragraphs, we explain the choice of test functions
to be used in the trace formula. Choose (f")° and fgﬁn\ (p} 8BS any functions
in (G, (A%)) and Cé’o(Gn(ASﬁn\{p})), respectively. Let ¢° := BCx((f™)®)
(resp. dsy\{p} = BC:;(fgﬁn\{p})) as in Case 1 (resp. Case 2) of Section 4.2.
Set P := ¢S¢Sﬁn\{p}. Choose any ¢, € C°(Jp(Qp)) such that ¢°>P¢), is an
acceptable function. We construct other test functions from these.

For each elliptic endoscopic group Gy for G, let ( ?g)s (resp. qﬁlﬁg St {p})
be the A(:, -)gﬁ—transfer of ¢° (resp. Psga\{py) defined in Section 3.4. Define

(fren2)S = *((f™)°) and fg;:(?p} = (*(f§,,\(py) as in Cases 1 and 2 of
Section 4.4. Recall from (4.18) and (4.19) that BCZlm((f”l’”?)S) = (¢pmm2)S
and that BCy, ., ( fg;:@p}) and qb?gl’g;n\ (p) have the same trace against every
admissible representation of G, n, (Ag,, \(p})-

Let qﬁ?‘gW (resp. q&}?gpo) be the function arising from ¢, (resp. &) in (5.10)
(resp. (5.11)). Choose f]? so that BCZ(f;‘) = Iﬁg,p- (This is possible because
BC;, is surjective at p. See §4.2.) Define

(6.7) FL = ei(Doo) - (= 1)1 un, 8) >~ det(wa(en) * fomz(on)
Yn

where the sum runs over ¢; : Wg — “Gjy (up to equivalence) such that
nypn ~ @¢. Observe that ¢(G) = n — 1 (cf. (3.11)). Here Z(p5) denotes the
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algebraic representation of Gy arising from £(¢5) (defined in Remark 3.9) as in
the beginning of Section 4.3. Recall that fg_ =(,,) Was defined there. Again,
by Section 4.3 and the comparison of (5.11) and (6.7), it is verified that f7
and (ﬁfigm are BC-matching functions. Put f7 := (f7)° - fgﬁ“\{p} : f[’? - f.
Consider the formula of Proposition 5.5. By Corollary 4.7, the formula
(4.21), Proposition 4.8 and Corollary 4.14, we see that (recalling the notation

A’(.) from Lemma 4.11)

(6.8) tr (™) | H (Igp, L))

Gn g
:cG< Ztr AT +f Z T2 (i)

+ E M‘ |d t(d10 — 1)aGn0|_1
M
MCGy,

X Z tr (n—ind(]%f (H/ ) (fn) ° A; de" (H,]\4)§)> ’

’
H]bf

where the first sum runs over #-stable (equivalently, ®~!6-stable) subrepresen-
tations I of Rg,, disc, the second over the groups Gy, », coming from elliptic
endoscopic groups G, n, for G (with n; > ng > 0), the third over proper
Levi subgroups M of G,, containing My and the fourth over ®~!§-stable sub-
representations IT', of Ry disc. Keep in mind that Proposition 5.5 works on
the condition that ¢oo,p¢1/0 is acceptable. So the same condition is imposed on
(6.8). However, we claim that (6.8) holds without such a condition.

Let us prove the claim. Fix test functions outside the p-component.
Fix any ¢, without assuming ¢>>P¢;, is acceptable. As shown in [Shi09a,
Lemma 6.3], there is a certain element fr® in the center of J,(Q,) such that
qboo’p(gb;)(N) is acceptable for any N > 0, where (d)%)(N)(g) = ¢ (g(fr5)™N).
So (6.8) is true if ¢y, is replaced by (gb;)(N) (and if at the same time fl’j and
¢§7g7p are constructed from (qﬁ;)(N ) rather than ¢y,), for any N >> 0. In other
words, by (4.12), Corollary 4.14 and Lemma 5.10, both sides of (6.8) are finite
linear combinations of the terms which have the form tr p((qﬁ;)(N )) for some
p € Irr(Jy(Qp)). Now the argument in the proof of [Shi09a, Lemma 6.4] shows
that the equality (6.8) holds for ¢°>P(¢, YN) for every integer N, in particular
for N = 0. Hence the claim is proved.

Now that (6.8) is known to be true without acceptability assumption, we
may work with arbitrary test functions qboo’qu;,. To proceed, we divide into
two cases.
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(Case ST). Choose a decomposition A} = A/(H)SAiIsﬁ Ajp_ as a product

of normalized intertwining operators. Set

/

Al rs Amg Al
(6.9) o IR Son T ¢ (4],
AT OAYs Ay, A

(For the definition of the denominators on the right side, see §§4.2 and 4.3.
By definition AOHsﬁn = [lvess, Al,-) In the formula (4.14), any term in-
volving f™™ may be rewritten as the trace of an induced representation
against f™, by using (4.17). This fact together with Corollary 4.14 guaran-
tees that tr IT°((f™)¥) appears only in the first sum of (6.8), according to the
multiplicity-one result of Jacquet and Shalika ([JS81b], [JS81al; see [ACS89,
p. 200] for summary), which implies that the string of Satake parameters
outside a finite set S of a cuspidal automorphic representation of GL,(AF)
unramified outside S does not occur as that of automorphic representations of
GL,(Ar) which are subquotients of induced representations from proper Levi
subgroups of GL,,(Ar). Thus the right side of (6.8) has the following form:

Al
(6.10) CG@;JXHS«JM)S)H (TLs(f3)A%,)
1I
S expression in
+ (H/)SZ%HS X(H/)S((f ) ) X ( terms of fg' ))7

where (IT')® runs over a set of unramified representations of G(A®) not isomor-
phic to IT¥. (Note that (IT')% = IT% implies that I = H’®X:l§1 is isomorphic to
IT by the strong multiplicity-one and the fact that H’g and IT transform by the
same character on Ag, ~. Hence the first summand in (6.8) for (IT')% = I1°
equals tr (TII(f™)Am), which is the first term in (6.10).)

On the other hand, we can write tr (¢>°P¢j,[, H (Igy,, Z¢)) in the following
form using (4.5).

(6.11) trII¥((f")%) tr (Ssa,\ () PplaH (I8, Ze){T1°})
+ 3 rBO(() ) (")) tr (D 1oy Dl H (g, Zo){(7)5)) -

()8

The above sum runs over (7/)% € Trr™(G(A®)) such that BC((n")%) 2 TI°.
If the test functions on S are fixed, both (6.10) and (6.11) are finite sums
(as (f™)° varies in 2" (G,(A®))). We deduce from linear independence of
characters that

Co A

(6.12)  tr (G EpluH (Igy, L) {TT%}) = 5 -t (s (f5) A )-
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Recall that I1 ~ II=z. In view of (4.15), the construction of fI. implies that

(6.13) tr (oo (f3) Afy, ) = 2(=1)7.
On the other hand, by Lemma 5.10 and (4.12),
(6.14) tr (Hp(fg)A%p) = tr me(gb?g’p) =tr LlRedz(wp)(qﬁ;).

Therefore if we set e := (—1)%(%) A} /AY, then tr ((ﬁsﬁn\{p}(ﬁﬂbzﬂ(lgb, iﬂg){ﬂs})
equals

(615)  Ca-eo-tr (Mg () (P o) Al L,y ) - truReds (m)(8)).

Applying (4.12) to the places in Sg,\{p}, we finish the proof of the assertion (i).
(Use the fact that the twisted characters of nonisomorphic é-stable represen-
tations are linearly independent; cf. [AC89, Lemma 6.3, p. 52].) Obviously eq
is independent of b.

(Case END). We imitate the previous argument for (Case ST). By the
multiplicity one principle for Satake parameters by Jacquet and Shalika, (6.8)
may be rewritten as

C
(6.16) tr ((boo’p(b;mH(Igb,éﬂg)) = TG(X1 + Xo + X3),
where
_ 3 Gn 0 n /
X1 =tr (n—deMLM (ITap)e(f™) o An_indg;th (H?w)s) )
X2 =tr (HH(fml’mQ) @) Ai‘[;{)

and X3 is a linear combination of evaluation against f° of unramified Hecke
characters of " (G,,(A%)) different from xps. Note that X comes from the
last term in (6.8) in the case where the standard Levi subgroups M of G,
are conjugate to Gy, m,. (There are |Wg, |/|Was| such Levi subgroups.) The
term Xo appears in the second summation on the right side of (6.8), namely
those terms in the expansion of Iggé’mze(fmhm?) where the Levi subgroup of
Gy mse 18 Gy m, itself. As there is no danger of confusion, let us agree to

write n-ind(I13,) instead of n—indg;1 (119,). Define the signs (+1 or —1)

,MQ

A;—ind(Hg)M) ¢ / Ag-md(ng)w) . and Aty /AT,

as in (6.9). Define e; := (_1)q(G)Ail—ind(ﬂ?u)g/A?I—ind(n%j)f' Recall from (6.2)
and (4.29) that there is an isomorphism II ~ n-ind(II3,)¢, under which we
transport A’n_md(n%){ to Af;. So we may rewrite X as
(6.17)

X1 = (=)D o () AY) = er (=17 xns ((f")) - tr (s (£§) A,
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whereas (4.17) implies that

Al . n
(6.18) Xy = A%Z xns (F7)%) - tr (s 0\ ) (£ o) Al )

s tr (T (™) A, ) -t (T (F102) AD,, ).
By Lemma 5.10 and (4.12), we have the following analogue of (6.14):
(6.19) tr (T (£ ) ARy, ) = tr (uRedy i, (711)) ().

Moreover the expression (6.7) along with (4.15) implies that, since only
v = @pg in the sum of (6.7) contributes nontrivially (where pg was defined
in §6.1),

(6.20) tr (Moo (f217™2) A ) = 2e2 - (Afy,, /AR,
if we set
(6.21) ez = (=1)" D, my (Doo)(tin, 5) det(wa(0r)) - (Afr,, /AT,)-

By linear independence of unramified Hecke characters outside S, the
identity (6.16) becomes, in view of (6.13)—(6.21),

C,
(6.22) tr (Ssp\ iy SpluH (18, Z{T1°}) = =7 (Vi + Y2),

where
Yi=e-tr (Hsﬁn\{p}(fgﬁn\{p})Angﬁn\{p}) 1 (uRedy (mp)) (}),

Yo=ep-tr <HSﬁn\{p}(fgﬁn\{p})A%Sﬁn\{P}) tr (uRedy,, o, (Tr,)) (6)).

In view of (4.12), the above identities imply the assertion (ii).

Clearly e; belongs to {£1} by definition but we only know ey € (C*)!
a priori. The fact that e; € {£1} can be proved as follows. Observe that the
definition of ey (as well as e;) does not depend on b. If Redqbnhmz (tap) =0
for all b € B(Ggq,, —u), then (6.6) remains valid for all b with any choice of e;
in particular we may choose ez in {+1}. Otherwise there exists b such that
Redfnlm2 (mH,p) is not trivial. We see from (6.6), which was proved a priori
with C-coefficients, that es € {£1} since the multiplicities of representations
on the left side of (6.6) are certainly integers. O

Remark 6.3. Recall that the sign ey is defined in (6.21). We note the
dependence of e on the @ ~10-stable representation Il € Irr(Gyy, iy (A)) when
mg = 1. Note that e, m,(As) depends only on the choice of transfer factors
and not on IIy. The same is true for (up,s). In fact, according to (3.20),
(i, s) = 1 with the convention of Section 3.6. Recall that Iy = ¢y ®11; ®11s.
Using the fact that both ¢y and Ils are one-dimensional characters, we easily
prove that Ap,, /AOHH depends only on II;, and not on ¥y and Ily. Therefore
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if II; remains the same, it is only det(w.(¢m)), a factor coming from real
endoscopy, which may vary on the right side of (6.21).

6.2. Galois representations in the cohomology of Shimura varieties. We
remind the reader that we keep assuming (i)—(v) of Section 5.1 and that II is
as in the beginning of Section 6.1. All results of this subsection rely on these
assumptions. (Some of them can be strengthened by the results of §7.)

In the last subsection we fixed p, w and S. Here we want to allow p,
w and S to vary. (For each p € Splg/g\{l}, we freely change the choice of
Lp @p ~ C to consider all the places w above p. Recall from Section 5.1 how
1, was chosen.) Define Z%,(I1) to be the set of 7 = ° @ 7g, € Irr)(G(A™))
such that

R’gl(w"o) # 0 for some £,
7 is unramified,
BC(y7m®) ~ II°, and
BC(yms,,) ~ I, .
Note that the definition of %;(II) does not involve the choice of the prime p.
It is easy to see that the definition of Z;(II) is independent of S, as long as S
satisfies (6.1). (We use the following fact about m, € Irr;(G(Qy)): Suppose II,
is unramified. If v € Unrp g N Splp/p+ g, then BC(ym,) ~ II, implies that m,
is also unramified.)

Define a representation Ef (I1) of Gal(F/F) and R;(IT) € Groth(Gal(F /F))

by
(6.23) Rf(I):= > RE(@™),  R(I):= > (-1)*RF(1).
w e (1) k

THEOREM 6.4. Let p € Splg g be a prime different from I and w be any
place dividing p. Let m, be as in Theorem 6.1 and write T, = my ® (Q;Tw,) as
usual. Then the following holds in Groth(Wg,).

(i) (Case ST)
Ri(0)|wy,, = Ca - eo - [(my 6 0 Artg ) wp, ® 1 L, m(11,)] -
(ii) (Case END)

Rl(H)|WFw
Cq-er- (w4 o Arto? -l II JTm2/2] e =
| Ca-er |(myp 0 Artg Mwp, @1 Lrym (Mariw)l -y, 7|5 if er=ea,
- — — — - 2 .
CG €1 |:(7Tp,é (¢] ArtQ;”WFw ®Ll 1ZFw,m2 (HM,Q,w)| . ‘WT;/ :| , Zf e1=—es.

Proof. For the proof we may fix p and w|p as in the theorem. Choose
tp : Q, ~ C such that ¢ '7 induces w. (Note that RF(T0) for each k is defined
independently of ¢,.)



GALOIS REPRESENTATIONS 1715

Consider (Case ST). Let us take the {II}-parts of the identity in Propo-
sition 5.2 and apply BCgj \fpy- In view of Theorem 6.1 the following holds in
GI‘Oth(Gn(ASﬁn\{p}) X G(Qp) X WFw)

(6.24) > BC(ms, \ u)llmpl[Rea (7)) =

(")

= Cq - [y Mg\ (1] Y [Manty,,(Red)(mp))] |,

where the first sum runs over (7)* € Irr;(G(A>)) such that (7/)° is unramified
and BC(y(n')%) ~ TI%. Of course we are using the same 7, as in Theorem 6.1.
Observe that [Manty, ,(Red® (7,))] equals

n-Mant; o(mp0) ® n—Mantn_hﬁ(n—Red"_h’h(ﬂ'w)) ® (®ji>1n-Mantg (7, )

by (2.2) and (5.6), if h = h(b). Proposition 2.3 implies that the right-hand
side of (6.24) is
(6.25) Ca - [y Mg\ gpllmp] (0 0 Artg ) lwi, © ¢ 'L, n(IL)] -
By comparing the left side of (6.24) with (6.25), we see that the summands in
the left side of (6.24) which do not satisfy BC(ﬂfgﬁn\ {p}) o LZ_IHSﬁn\{p} must
be canceled out. Hence the first sum in (6.24) can be replaced by a sum over
(7")>° € Z,(I1) without disturbing the equality.

In (Case END) a similar argument works, so we only indicate changes.
The same identity as (6.24) holds if we replace [Manty, ,(Red® (r,))] by

1
(6.26) iManthM(elRede(ﬁp) + ezRedfnh,m (THp))| -

Consider the case e; = e2. By Lemma 5.9, the formula (6.26) equals
e1 - n-Manty o(7p0) ® n-Mant,_p (X1 (h, THp)) ® (®i>10-Mantg (7w, ))

for h = h(b). By (5.29), n-Mant,,_p, 4(X1(h,7pp)) vanishes if h < mgo. If
h > mg, it equals

. — — - 2
n—lndgiﬁwz,mz((n-Mantn—mh—mz(H-Red" Pl m2(HM,Lw))®HM,2,w)>®|‘|WT;§/

by Proposition 2.2(iii). Proposition 2.3 implies that
> e Manty (X (7)) = [ Tl l L ()] @ |12
0<h<n—1

From this the conclusion easily follows in (Case END) with e; = ea. The case
e1 = —eg is proved in the same way. O

COROLLARY 6.5 (cf. [HTO01, Cor. VI.2.7]). Recall the assumptions made
at the start of Section 6.2. For each m°° € Z)(I1) the following are true:
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(i) R’gl(ﬂoo) # 0 if and only if k = n — 1. Similarly Ef(ﬂ) # 0 if and
only if k=n— 1.
(i) ep = (=1)"! in (Case ST) and e; = (—1)"~! in (Case END).
(ili) Bvery Too € Munit(G(R), 4€Y) is y&-cohomological. If such a moo sat-
isfies m(u(7°) @ m)oo) > 0, then T € Igise(G(R), 1€Y).
(iv) Write Tgise(G(R), &) = {rl.,..., 7%} as in Section 3.6. Then

Z m(y(7™°) @ ')

7(G), for all 1, in (Case ST),
=1 7(G), ifi<my, ej =ez, or i>my, eg=—ey, in (Case END),
0, ifi>mi, eg =ez, or i<mp, e =—ez, in (Case END).

(Recall that 7(G) = 7(Gy) equals 1 or 2 by Lemma 3.1. In some cases
we computed this number in Remark 3.2.)

Remark 6.6. In the proofs of Corollaries 6.5 and 6.7 we largely borrow
argument from Harris and Taylor, who attribute their result to Clozel. (Es-
pecially the second assertion of (iii) is due to Clozel.) In doing so, it is worth
remarking that the two conditions in [HT01, Cor. VI.2.7, Cor VI.2.8] are not
necessary in our situation. For instance we do not assume that 7°° is generic
at a finite prime split in F. In the setting of Clozel and Harris-Taylor, the
base change of 7°° is an automorphic representation of a nonquasi-split inner
form of G, and the genericity condition ensures that the image of the base
change transfers to a cuspidal automorphic representation of G,,. However, we
work directly with G,, and a cuspidal representation II is given at the outset
in (Case ST), so no such assumption is necessary. (In (Case END), use the
cuspidality of II;.) We also note that we use the strength of the stable trace
formula and the twisted trace formula in order to prove (iv) of Corollary 6.5.
The proof of its counterpart in corollary VI.2.7 of Harris-Taylor was simpler.

Proof. The first assertion of (i) follows from the second at once. To prove
the second assertion of (i), we argue exactly as in [HT01, p. 207], appealing to
our Theorem 6.4 instead of their corollary V.6.3. (Part (iii) of Proposition 5.3
is also used.)

Note that (ii) is an immediate consequence of (i). Let us prove (iii). The
first part of (iii) follows from [SR99, Th. 1.8] (which identifies every ms €
it (G(R), 4€Y) with a unitary representation studied in [VZ84]) and the
computation of the Lie algebra cohomology in [VZ84]. Observe that (i) and
Proposition 5.3 imply that if m(y(7%°) ® 7o) > 0, then

H*(Lie G(R), Uso, Too ® 11(€)) # 0
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if and only if K = n — 1. The second part of (iii) can be deduced from this and
the results of [VZ84]. (See [HT01, pp. 207—208] for detailed argument.)
Finally we prove (iv). The argument goes in a way similar to the proof
of Theorem 6.1. Let (f)>® = ()% - fg. € CX(Gy(A%)) be any function
such that (f*)° € (G, (A%)). Obtain (fr1:m2)5, (™), (¢pm1m2)5, for™,

¢, and ¢l from (f")>, as in the beginning of the proof of Theorem 6.1,
except that Sﬁn\{p} should now be replaced by Sg,. Define

(6:27) fri = ealBoo) - (=1)"D Y (o, 5) det(wal9n)) - fomz(on):
i

where the sum runs over o5 such that 1y is equivalent to ¢,,¢. Then 7’}1 and
7. are BC-matching. (See (3.13) and the last paragraph of §4.3. Refer to the

7r’L
paragraph above Proposition 5.6 for the definition of ¢" and for the reason
why e;(As) appears.) Applying the results of Section 4. 5 to Proposition 5.6,
we see that

(6.28)
tr Rg e (¢Oo : ¢7T?>o> Zm )-tr (- “Gri_ ) = ZL(G,G )Ié%ece;((fn)oo' ;rlg,o)

Gz

By construction of f7 |

tr (Moo (£ ) ARy ) = 2(—1)4),
whereas

tr (Hoo(f:;n2)AOH ) = (_1)q(G)en1,n2 (AOO)<aw*(g0H)wﬁéoas> det(w*(SOH))'

oo

Let
(Moo (F7) A ) (Gun(om s +5)

T o (e(RAR) T ()
where fI'"™2 is as in Section 6.1. Using the convention of Section 3.6 we can
compute that e(i) = 1 if ¢ < m; and e(i) = —1if ¢ > my. (See (3.20) and

(3.21).)
Arguing as in the proof of Theorem 6.1, we obtain in (Case ST)

(629)  trRGue{I1%H sy, - dmo ) = 7(G) - o - tr (s, (5, ) ARy ).
n (Case END),
(6.30) tr Ree{TI°}(dsy, - drg. ) = 7(G) - (e1 +e(i) - e2) - tr (Isy, (£, ) Al )-
Formula (6.29) along with (iii) of the corollary implies that
Zm u(7) ® 1) = 7(Q),
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where the sum runs over 7€ Irr;(G(A™)) such that BC(y7%) ~11% BC(yms,, )
~ g, and Rg;(m°) # (0). This proves (iv) in (Case ST). Similarly, assertion
(iv) in (Case END) easily follows from (6.30). O

Recall that we defined integers ag(y€) and a(y€)q,; for o € @E and 1 <
i < m in the paragraph preceding (3.18). Let x : F < Q; be a Q-algebra
embedding. For each integer k € [1,n], set

]n(k) =k—-1- a(blg)Lm,k - aO(’/lf)-

(Note that j. (k1) # jx(k2) if k1 # k2.) Let W, (resp. WY) be the set of j, (k)
(resp. k —1 —a(u&),xk) for those k € [1,n] such that

e (Case ST) any k is allowed.
e (Case END) k € W}, if e; = eq; k € W2

Ur UK
and W2, were defined in §6.1.)

if e = —ey. (The sets W,

COROLLARY 6.7 ([HTO1, Cor. VI.2.8]). Let = ¢; ‘7. Then

Co if w e Wi,
0, ifwé¢Ws.

Proof. The proof of [HT01, Cor. VI.2.8] works almost verbatim in our
case, if we use the results of Corollary 6.5 instead of [HT01, Cor. VI.2.7]. We
only need to work consistently with the sum over all 7°° € R;(II), rather than
with a single 7°°. For instance, the last two identities of [HTO01, p. 209] become
in our case

dimsn® Do (7 10) = |

dim g9 Dpp o (R~ (TT)) = ket (Q,G)| Y. m(u(x™) @ 7k) = Cq.
weeR(II)

In the course of the proof, we use an analogue of part 6 of [HT01, Prop I11.2.1],
which is also true in our case. Note that our j. (k) is different from jj, of Harris-
Taylor since we have put {a(¢;€)s,i}1<i<n in decreasing order. O

COROLLARY 6.8. There exists a (true) continuous semisimple represen-
tation R)(I1) of Gal(F/F) on a Q;-vector space which is
e (Case ST) n-dimensional,
e (Case END) mj-dimensional if e = es; mo-dimensional if e = —ea,

such that for any place w of F satisfying w|g € Splg/q and wlg # 1,
(6.31)
y ' L r, (L), (Case ST),
RE(H)\WFW = Lfl(gml,Fw(HM,Lw) ® |- |I;/n;j/2), e1 = ey, (Case END),
i (Lono e (Mag2) ® |- [72/%), €1 = —e2, (Case END)
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in Groth(Wg, ). In particular, Rj(I1) is independent of T and . Moreover,
for every k : F — Q,

1, ifwe Wy

(6.32) dim gr" Dpr (R (I1)) = { 0, if w¢ WY,

Proof. Consider the semisimplification R of (—1)”*11??_1(1'[). Then R is
a true representation of Gal(F'/F) whose dimension is C¢ times the expected
dimension of Rj(II) in the corollary. We deduce from Theorem 6.4 and the
Cebotarev density theorem that Ris independent of the choice of 7. (A priori
the construction of EZ"_I(H) depends on 7 as the PEL datum does.) Thus an
obvious analogue of (6.32) for R is true for every k : F' < Q; by Corollary 6.7.
The proof of [HT01, Prop. VIL.1.8] (see Remark 6.9 below) shows that there

exists a semisimple representation Rj(IT) such that
R=Cg - R)II).
Define
R(I1) := EZ(H) @ Tecy, (¢)|Ga1(F/F)’
where rec; ,, (1) denotes the continuous l-adic character Gal(E/E) — GL1(Q))
corresponding to ¢ via class field theory. (See [HTO01, p. 20].) The identity

(6.31) for each w follows from Theorem 6.4. The last two assertions are easy
to see. O

Remark 6.9. When importing argument from the proof of [HT01, Prop.
VII.1.8], the two conditions in that proposition are not necessary for the same
reason as in Remark 6.6. In the proof of proposition VII.1.8, the use of Corol-
laries VI.2.7 and VI.2.8 of Harris-Taylor can simply be replaced by the use of
their counterparts, namely Corollaries 6.5 and 6.7.

In (Case END), define
WE = {k—l—bfmykzlgkgmi}.

COROLLARY 6.10. In (Case END), there exists a continuous semisimple
representation

R/(IT) : Gal(F/F) — GLn, (Q),
where i = 1 if e = eg and 1 = 2 if e; = —es, such that for any place w of F
satisfying w|g € Splg,q and wlg # I,

(R ()i, ] = 4" L, py (W)
and for every k : F' — Q,

1, ifwe W,

dim gr"’ Dpr,«(R; (1)) = { 0, ifw¢ W/
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Proof. Define R}/ (IT) := Rj(IT) ® recy,, <(w o NF/E)E(”—mz‘) ® |- |(n—mi)/2>7
where |- | : Aj/F* — RZ, is the modulus character. With this definition, the
current corollary is easily deduced from the previous one. As for the Hodge-
Tate numbers, we use the fact that

W,i:{w—i-e cw € WO,

(n—m;) -0 —(n—my)
2

which is easily seen from the discussion in the paragraph preceding (6.2). O

Remark 6.11. We end this section with a remark on generalization. Re-
garding the results of this section, it is natural to ask whether one can work
with more general II than those considered in (Case ST) or (Case END). (We
restricted ourselves to these two cases since they are enough for the purpose
of proving our main results in Section 7. We have not discovered a promising
way to strengthen the results in Section 7 by considering more general II.)

The method of this paper mostly works if II is induced from a cuspidal
automorphic representation ¢ ® (®!_,I1;) of Gz(A) for 7 of any length r where
each II; is f-stable. For instance, we can define EI(H) in the same manner
and prove analogues of most results of Section 6.2, including Theorem 6.4. A
drawback is that we have less control over the sign factors such as eg, e; and eo,
which show up in the twisted trace formula. (Compare with Corollary 6.5(ii)
and Lemma 7.3. It is expected that the sign factors would be precisely com-
puted by means of the Whittaker normalization of intertwining operators as in
[CHLb]. For instance, one would be able to compute the sign of the intertwin-
ing operator of our Lemma 4.11.) Apart from that, there is no new difficulty
other than complication in book-keeping. We have pursued only the case r < 2
mainly because that is enough for our application to the construction of Galois
representations.

We have not tried to deal with the case where II is induced from a discrete
but not cuspidal representation of Gz(A). This case may present new difficul-
ties and the computation would be more complicated. We merely remark that
Corollary 6.5(i) is not expected to be true in that case.

7. Construction of Galois representations

In this section we establish some instances of the global Langlands cor-
respondence and prove the local-global compatibility as an application of our
computation of the cohomology of Shimura varieties in Section 6.2.

Let L be a number field, L’ a finite soluble extension over L and II' an
automorphic representation of GLy,(Ar). We frequently write BCy, . (I") for
the base change lifting of II! in the sense of [AC89, Ch. 3].



GALOIS REPRESENTATIONS 1721

7.1. Constructing Galois representations under technical assumptions. Let
E be an imaginary quadratic field, F' be a CM field, and F be the maximal
totally real subfield of F'. Let m € Z>g. Let II° be a cuspidal automorphic
representation of GL,,(Ar). Consider the following assumptions on (E, F, 11°):
o ' =FEFT,
o [FT:Q] > 2,
e Ramp g U Ramg(I1°) C Splp/p+ @
o (II°)Y ~T%0c¢,
e 112 is cohomological for an irreducible algebraic representation =° of
GL,,(F ®q C).
Let us associate highest weight integers (as,1 > -+ > agm) to =0, where
o runs over Homg(F,C). For 1 <k < m, let

(7.1) Jo(k) =k —1—agp.
If m is even, assume in addition that

e there exist o9 € Homg(F,C) and an odd number k such that ay, j >
Aoo,k+1-
If the above assumption is satisfied, we will say that =0 is slightly regular
(at 0p). If 20 is slightly regular at o, then it is also slightly regular at of§ since
()Y ~ %o c.
If m is odd, set

n:=m, H':=1° and =!':=="
If m is even, set
n:=m+1, Il := m° and My = HO®(woNF/Eodet)

and choose any algebraic Hecke character IIy = Ipso : Ay /F* — C* which
satisfies the following:

L] RamQ(HMVQ) C SplF/F+,Q7

[ ] HM,QH?\/[Q = 1, and

o 111 .= n-ind(ITps1 ® Ips2) is such that II!, is cohomological for an

irreducible algebraic representation =!.

Allow m to be odd or even, fixing an embedding 7 : F' < C. Choose a PEL
datum (F,*,V,(-,-),h) as in Lemma 5.1 (in particular dimp V' = n) and write
G for the associated group. Observe that the assumptions (i)—(v) in Section 5.1
are verified. Choose a character w : A /E* — C* as in Section 3.1, namely
w has the property that w|yx is the quadratic character for F/Q coming from
class field theory. Let § denote the odd integer such that we(2) = (2/2)%/?
(using the identification (E ®g R)* ~ C* via 7|g). In fact we choose w as in
the following lemma.
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LEMMA 7.1. The Hecke character w : Aj/E* — C* can be chosen so
that

o w|yx is as described above,
e § is sufficiently large,” and
e Ramg(w@) C Splp/p+ g-

Proof. 1t is standard that w can be chosen to satisfy the first two condi-
tions. If Ramg(w) € Splp/p+ @ let R be the set of primes ¢ € Ramg(w) which
are not contained in Spl; /F+ Q- By our initial assumption, such ¢ must be inert
in E. Suppose that there exists a continuous character @ : AL /E* — C*
such that

.wo

is unramified outside Splp,p+ g U RU {0},
. w2|O§ = WQ|O,§Q and wg(q) =1 for each ¢ € R,
o w) =1and @y« = 1.

Then @/ is the desired character of the lemma.

It remains to prove that @” as above exists. Let T (resp. S) denote the
set of places v of E such that v|g € Splp/p+ g U R (resp. v|g € R). De-
fine TV} .= [TogT, vioo OF, and Us := [[yes Of,. Choose a sufficiently
small open compact subgroup Upg C A}XE,T\S so that (UTU{OO}UT\SUS) N
E* = (1). (This is possible since |Of| < o0.) Define a finite character
w’ on (UTU{OO}UT\SUSEX)/E>< so that @'|y, = w|yy and @’ is trivial on
U TU{‘X’}UT\ g- It is elementary to check that @’ extends (uniquely) to a finite
continuous character on

(U U shf, g BXAY EX)/E,

which is an open subgroup of Ap/E*, so that @'|;x ,« = 1 and wy(q) = 1 for
every prime ¢ € R. Finally we extend this character to Aj/E* to obtain a
desired @, (]

The following lemma is an exact analogue of [HT01, Lemma VI.2.10] ex-
cept that the condition (iv) is new. This additional condition is guaranteed by
an argument which is very similar to the proof of Lemma 7.1. Thus we omit
the proof of Lemma 7.2.

LEMMA 7.2. Let IT' and Z' be as above. (Allow m to be either odd or
even.) We can find a character i : A, /E* — C* and an algebraic represen-
tation & of G over C satisfying (1), (ii), (iii), and (iv) below.

(i) Ym = 9°/1h;

"We included this condition on & just in case, but later realized that it was not used in
the later argument.
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(i) B! is isomorphic to the restriction of E to (Rp/gGLy) xq C, where 2
is constructed from &c as in Section 4.3;
(i) gelyL = vee: and
(iv) Ramg(¥) C Splgp/p+ q-
Moreover if | splits in E, then (for any choice of v;) we may require that 1
satisfy the following as well as (i)—(iv):
(v) woéu = 1, where u is the place above | induced by Lf17'|E.

Suppose that a prime [ and ¢; : Q; = C are fixed. Choose {c and ¥
as in Lemma 7.2 and put ourselves in the situation of (Case ST) or (Case
END) of Section 6.1, according as m is odd or even, by setting £ := Ll_lf(c and
II := ¢ ® II'. These data prepare us to run the argument of Sections 5 and 6.

We need another lemma before stating results on Galois representations.
If m is even, consider the numbers b},? ; and 'y;, ; defined in Section 6.1. Thus the
numbers {brlw'} correspond to the highest weight for =! = E° and a,; = b}w-
for all 0 € Homg(F,C) and 1 < j < m. Moreover,

1 1 1 1
Vo5 = Vojr1 = (boj = bgj11) + 1= (a0 — agj41) + 1,

where the first equality follows from (6.3). As =0 is slightly regular, there exist
oo : F'— C and an odd k such that as, 1 — agy k+1 = 1, which implies

1 1
fYO'o,k - 700,]{:4»1 Z 2.

Since Z° is also slightly regular at o as we observed before, it may be assumed
that o9 € <I>g without loss of generality. (Recall that og € <I>(E is equivalent
to oglp = 7|g.) Let x and X’ be algebraic Hecke characters of GLi(Ap) such
that xx© = 1 and x/(x')¢ = 1. Denote by ¢y, ¢, € Z the integers such that
Xo(2) = (2/2)¢ and X\ (2) = (/%)% for each o € Homg(F,C). We are always
able to choose x and x’ such that

1 1 / 1
’700,m > Cog» VJo,m—k > Cop > /700,m—k+1

and for all o € @E different from oy,

1 1 /
Yo.m > Cor Vom > Co-

LEMMA 7.3. If m is even, suppose that x and X' are chosen as above.
Then in Theorem 6.1, we have es = ey for either Iy = x or Iy = x'. This is
independent of the choice of T : F' — C (which was fized in §5.1 and remained
to be fized in §85 and 6) whether Iy = x or Ily = x' works.

Proof. By Corollary 6.5(i), e; = (=1)""!. By Remark 6.3, the sign ez
depends only on the factor det(wy(pp)) € {1}, where ¢ is by definition the
discrete L-parameter such that

BC(¢n) ~ Y00 ® 1 00 @ Ip 0.
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To prove the first assertion, it suffices to show that det(w.(pm)) has different
signs for Iy = x and Iy = x’. Let us compute det(w.(pp)) using the explicit
description of wy(¢x) in (3.19). We adopt the notation of Section 3.6 so that

for each o € @E, V;,j =7(§)s,; for 1 < j <m and y(§)gms1 = 'yg 1-

)

If TI, = x, then for every o € ®,

(7.2) Yo > > () om > V(E)om+1 = co;

hence wy(¢p) = 1 and det(wi(¢m)) = 1. Now suppose Il = x’. For every
o € ®L\{o0}, (7.2) still holds if ¢, is replaced with ¢/,. On the other hand,

7(5)00,1 > > ’Y(g)do,mfk > 7(§)oo,m+1
= CQO > ’7(5)00,m—k+1 > > ’7(5)00,171'

Thus ws(¢m) is represented by an element of (Sm+1)¢g whose o-component is
trivial if o # 0 and

(L...o.m+1)—(1,....m—km+1m—Ek+1,...,m)

if 0 = 0¢. In particular, det(w,(pg)) = —1 since k is odd and m is even. This
completes the proof of the first assertion of the lemma.

As for the independence of the choice of 7, it is enough to show that the
above computation of det(w.(¢p)) does not depend on the choice of 7. The
above argument depends only on 7|p in that 7| determines the subset @g of
®c. So we are done if we get the same value of det(wy(pg)) for 7 and 7¢. This
follows from the evenness of m and the fact that every parameter flips sign if
T is changed to 7¢ (and o to ¢¢) by conjugate self-duality. O

PROPOSITION 7.4. Let m > 2 be any integer. Keep the assumptions on
(E, F,TI°) as in the beginning of Section 7.1. For each prime | and an iso-
morphism 1 : Q; = C, there exists a continuous semisimple representation

Ry (1% : Gal(F/F) — GL,,(Q;) such that
(i) At every place y of F' such that y {1 and ylg ¢ Ramgq,

(7.3) (B () wi,] = [ L., (IT)]

in Groth(WEg,).

(i) Suppose y { . For any o € Wg,, each eigenvalue o of R;(11°)(0)
satisfies o € Q and |a|? € |k(y)|? under any embedding Q — C.

(iii) Let y be a prime of F' not dividing 1, where Hg 1s unramified. Then
R(I1°) is unramified at y, and for all eigenvalues o of Ry(I1)(Frob,)
and for all embeddings Q — C we have |a|?* = |k(y)|™ L.

(iv) For every y|l, Ry(II°) is potentially semistable at y.

(v) Ifl splits in E, then for every y|l such that HS is unramified, Ry(T1°)
is crystalline at y.
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(vi) For each o : F — Q (recall the definition of j,»() from (7.1)),

1, if j =j,0(k) for some k € [0,m — 1],
0, otherwise.

dim gr’ Dpg - (R;(11°)) = {

Proof. Fix | and ¢ : Q@ = C throughout the proof. Given (E,F,IIY),
define IT', Z! and n depending on the parity of m. In particular, choose IT M,2
if m is even. Let ¢ be a character satisfying (i)—(iv) of Lemma 7.2. Let {c and
= be as in that lemma. Set £ := Ll—lgc and I := ¢ ®II'. With these definitions
and the notation, we have put ourselves in (Case ST) (resp. (Case END)) of
Section 6.1 when m is odd (resp. even). The assumptions of Section 6.1 in
each case are easily verified.

Now we can run the argument of Section 6 to obtain R;(II) as in Corol-
lary 6.8 if m is odd and Ry (II) as in Corollary 6.10 if m is even. If m is even,
we may freely change the choice of IlIy; 2 using Lemma 7.3, if necessary, to
ensure that the case e; = eg occurs. With the definitions

(74)  Ry(TY) := R)(T) (m:0dd) and R;(II°) := R/(I) (m : even),

the condition (7.3) is already verified at every y { I such that y|g splits in E.
The properties (ii)—(v) of R;(II°) follow from Proposition 5.3 and (vi) from
Corollaries 6.8 and 6.10. We remark that the proof of (v), in which we suppose
that [ splits in F, requires that choices be made such that

e 1) satisfies all (i)—(v) of Lemma 7.2,

e w satisfies an exact analogue of (v) of Lemma 7.2, and

e if m is even, I, is unramified at places of F' dividing u (where u is as
in Lemma 7.2).

(Obviously there exists w which satisfies the above condition as well as the
conditions in Lemma 7.1.)

It remains to prove (7.3) for y such that y|g is inert in E and y { [. Set
p :=y|g. We can find infinitely many real quadratic fields A not contained in
F such that p is inert in A and Ram g C Splg/q- (So Ram,q C Splp/p+ g-)
Choose one such A. Let E’ be the quadratic subfield of AE different from A
and E. Then E’ is an imaginary quadratic field where p splits. Let F’ := AF
and (F')* := AF*. We claim that A can be chosen so that BCp,p(I1%) is
cuspidal. To prove the claim, assume to the contrary that BCpr, #(I1°) is not
cuspidal for some F' = AF. Then by [AC89, Th. 4.2, p.202], it must be the
case that m is even and that II° is an automorphic induction from a cuspidal
automorphic representation of GL,,/2(Ags). This can happen for only finitely
many quadratic extensions F’ of F'. Hence there exists a choice of A (satisfying
the previous conditions on A) such that BC4p, #(I1°) is cuspidal.

By strong multiplicity-one, we deduce that BCF//F(HO)V:BCF//F(HO) oc.
It is easy to verify that (E', F',BCp// #(I1°)) satisfies the assumptions in the
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beginning of Section 7.1. So there exists R;(BCp/, #(T1°)), defined as previously
in the current proof, with the property that for any place z of F’ such that z|g
splits in ' and z 11,

(7.5) [Ri(BCp ) p () |w.] = [t "L (112))].

The Cebotarev density theorem implies that R;(BC /(1)) is isomorphic to
the restriction of R;(II) to Gal(F/F’). We know that y splits in F’ since p
splits in E’. Let 3 be a place of F’ above y. Applying (7.5) to z = ¢/, we
deduce that

RO, ] = 17 Lo, (9] 0

7.2. Removing assumptions from Section 7.1. We are going to improve
Proposition 7.4 by removing the first three assumptions in the beginning of
Section 7.1.

THEOREM 7.5. Let m € Z>o be an integer and F' be any CM field. Let
1Y be a cuspidal automorphic representation of GLy,(Ar) satisfying
° (HO)V ~ HO oc,
e 119, is cohomological for some irreducible algebraic representation =
and
e in addition, Z° is slightly regular (§7.1) if m is even.

0

For each prime | and an isomorphism v : Q) = C, there exists a continuous
semisimple representation Ry(I1°) : Gal(F/F) — GL.,,(Q;) such that for any
place y of F' not dividing 1,

(7.6) (R |y, ] = [t Lo, (I1)]

holds in Groth(WTF,). Moreover (ii)~(vi) of Proposition 7.4 are verified, with
(v) replaced by

(v)! For every y|l such that Hg is unramified, R)(11°) is crystalline at y.

Remark 7.6. Let m € Z>y. Let F be any totally real field and TI° a cus-
pidal automorphic representation of GL,,(Ar) such that 112 is cohomological
and II° ~ 11 ® (1 o det) for some character ¢ : A%/F* — C*. Suppose that
1Y, is cohomological for a slightly regular representation if m is even. (Slight
regularity is defined analogously as in the case when F' is a CM field.) Then a
precise analogue of Theorem 7.5 (along with Theorem 7.11 and Corollary 7.13)
for F' and TI° can be proved in the same way Theorem 3.6 of [Tay04] (which
considers the case F' = Q for simplicity) was deduced from [HT01, Th. VIL.1.9].
See [Tay04] for more detail.

Remark 7.7. One may compare the theorem with [Clo91, Th. 5.7], [HT01,
Th. VII.1.9] and [Morl0, Cor. 8.4.9]. See also [CHLa|. Refer to Section 1 for
more details.



GALOIS REPRESENTATIONS 1727

Remark 7.8. The method of proof is to construct Galois representations
of Gal(F'/F’) for many quadratic extensions F’ of F' (for which technical as-
sumptions are satisfied) by using Proposition 7.4, and then to “patch” them
to produce a representation of Gal(F/F). This type of argument was used in
[BR89] and [HTO01], and generalized to soluble extensions ([Sor]).

Proof. We may fix [ and ; : Q; = C throughout the proof. Let II° be
as in the theorem. In what we call Step (I), we prove the theorem under the
following assumptions on (E, F, II°), with an exception that (7.6) is established
only at ylg ¢ Ramp/,g (We get rid of the conditions on (FE, F, 1) and y in
Step (I1).):

F is an imaginary quadratic field.

F=FEF+.

[ splits in FE.

Ramg(11°) C Splgq-

Ramp,g C Rampg,q[] SplE/Q.

Any finite place y of F'* is unramified in F if y|g is ramified in E.

Let .Z(F) be the set of all imaginary quadratic extensions F’ over F'*

such that

e Any finite place y of F'* splits in F” if y|g is ramified in E.

e If y € Ramps p+, then any place ¢ of F* such that y'|q = ylg splits

in F.

° BCFF//F(HO) is cuspidal.
Note that the last condition excludes finitely many F’. (See the proof of
Proposition 7.4 where the cuspidality of a quadratic base change is discussed.)
For each F' € Z(F), it is verified that (E, FF',BCpp /(1)) satisfies the
assumptions in the beginning of Section 7.1. So there exists R(BCpp/p(I17))
as in Proposition 7.4. Moreover, for any finite extension M over F', it is clearly
possible to find F’ € #(F) such that F”’ is linearly disjoint from M over F. In
this situation we may use the argument of [HT01, pp. 230-231] to construct
a representation Ry(TI°) : Gal(F/F) — GL,(Q;). Moreover, there is a certain
finite extension My over F' (which depends on a choice made in the course of
constructing R;(I1°)) such that for any F’ € .#(F) which is linearly disjoint
from My over F', we have

(7‘7) [Rl (HO) ’Gal(f/FF’)] = [Rl (BCFF’/F(HO))]‘

(Note that our F'; FF' and M play the roles of L, Fy and M A; in the notation
of [HTO01, pp. 230-231], respectively.) The properties (ii), (iii), (iv) and (vi)
of R;(I1°) are inherited from those of Rl(BCFF//F(HO)). To verify (7.6) for
R,(I1°), let us fix a finite place y { I of F such that y|g does not ramify in E.
Choose F' € % (F) such that
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e I is linearly disjoint from My over F,
e y|p+ splits in F.

Then y splits as y'y” in FF'. We deduce (7.6) from
[Rl(BCFF’/F(HO))‘WFF//] = [Lz_l-iﬂn,FF;, (BCpp, p(11°))]
Yy

and the restriction of (7.7) to Wy, = Wg,. To show (v)’ for R;(II"), let y be
Yy

a place of F above [. Choose F' € .Z (F) which satisfies the two conditions in

the above bullet list so that y = y'y” in FF’. By (7.7) we have that [R;(II°) |y, |

is the same as [R;(BCpp/p(I1°)) |y ] where the latter is crystalline by (v) of
Y

Proposition 7.4. This finishes Step (I).

Step (II) is to prove the theorem in general. Let F' and II° be as in the
theorem. Let &(F') be the set of all imaginary quadratic fields E not contained
in F' such that

[ splits in FE.
If a finite place y of F'T is such that y|g € Rampg/q, theny € Unrp/p+.
BCEF/F(HO) is cuspidal.

As before, the last condition excludes only finitely many E. For each E €
&(F), it is verified that (E, EF, BCgp,p(I1°)) satisfies the assumptions in Step
(I) of the current proof. So there exists R;(BCgp/p(I1°)) satisfying (i)-(vi)
of Proposition 7.4. For any finite extension M over F, we can find F €
&(F) such that E'F is linearly disjoint from M over F. As before we use the
argument of [HTO1, pp. 230-231] to construct R;(II). A similar argument as
in Step (I) shows that (7.6) and the assertions (ii)—(vi) of Proposition 7.4 (with
(v) replaced by (v)') hold for R;(II°), by reducing to the case considered in
Step (I). (To verify (7.6) for Ry(II)|yy,._ at an arbitrary place z of F', we choose
E € &(F) such that z|g splits in E and imitate the argument in Step (I), with
EF in place of FF'.) O

The Ramanujan-Petersson conjecture for GL,, states that every non-archi-
medean local component of a cuspidal automorphic representation of GL,,(Ar)
for a number field F' is (essentially) tempered.

COROLLARY 7.9. Let m, F, TI° be as in Theorem 7.5. Then 119 is tem-
pered at every finite place w of F.

Remark 7.10. Compare the corollary with [Clo91, Cor. 5.8], [HT01, Cor.
VII.1.11] and [Morl0, Cor. 8.4.10] (cf. Remark 7.7).

Proof. This follows from (ii) of Theorem 7.5 and [HT01, Cor. VII.2.18].
U
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7.3. Strengthening of the local-global compatibility. The aim of this last
subsection is to improve the identity (7.6) of Theorem 7.5 as in the following
theorem. It is worth pointing out that we make use of Corollary 7.9 in the
proof, among others. Fix a prime [ and an isomorphism ¢; : Q; = C throughout
Section 7.3.

THEOREM 7.11. In the setting of Theorem 7.5, we have the following
isomorphism of Weil-Deligne representations at every y 1 1.

(7.8) WD (R(IO)| gz, i) = 0 o, (1),

Taylor and Yoshida proved the above result ([TYO07, Th. 1.2]) in the setting
of [HT01]. Boyer ([Pas09]) proved the weight monodromy conjecture for the
vanishing cycle complexes arising from Shimura varieties in the same setting,
providing an alternative approach to work of Taylor and Yoshida.) To prove
Theorem 7.11, it suffices to prove an analogue of [TY07, Th. 1.5] in our setting,
namely that WD(R;(I1°) |Ga1(fy / Fy)) is pure for every y t [, by the remark above
the cited theorem. For this, we basically repeat the argument of Sections 3 and
4 of Taylor-Yoshida’s paper with only minor changes. Note that we only need
to consider the case “l # p” in that paper (except a temporary digression to
the case [ = p in Lemma 7.12 and Corollary 7.13). We devote this subsection
to sketch the proof of Theorem 7.11, which amounts to explaining how their
argument should be modified. Obviously we claim no originality.

First of all, we briefly recall the Shimura varieties were used earlier. This
replaces the beginning of Section 2 of [TY07]. (We do not need the later part
of that section.) We put ourselves in the situation of Section 7.1. So we begin
with a triple (E, F,11°) satisfying the assumptions there and choose a PEL
datum and other data. Recall that we consider (Case ST) with n = m if m is
odd and (Case END) with n = m + 1 if m is even. In the latter case, choose
a2 so that R/(II) has dimension m (rather than 1) in Corollary 6.10. Such
a choice is possible by Lemma 7.3.

For each sufficiently small open compact subgroup K of G(A>), let X
denote the Shimura variety Shy constructed from the above PEL datum (§5.2).
We list the modifications to be made in Section 3 of [TY07] so that things
make sense in our setting. The notation B, Op, B° and O%p there should
be replaced by F, Op, M,(F) and M, (OF), respectively. Fix a prime p €
SplE/Q and a place w of F' above p. Choose ¢, : @p 5 C such that 1,;;17'
induces the place w. We also fix 4 : @ = C. The groups Uy’ (m), Ma(m)
and Iw(m) can be defined as obvious analogues, as well as Uy := UP x Ma(m)
and U := UP x Iw(m). Set ¥4 := A[w™] for abelian schemes A in the moduli
problem of our Shimura variety (without multiplying the idempotent € as in
Taylor-Yoshida). Let ¢ denote the Barsotti-Tate O, -module associated to
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the universal abelian scheme for Xy, . We explained in Section 5.2 that Xy,
has a smooth projective integral model over O, . Recall that the special fiber

Xy, over Spec k(w) admits a stratification into Yg? for 0 < h <n—1. Note

that YS’O) is nonempty of dimension 0 as we can exhibit an F,-point in the

corresponding Igusa variety which is a covering of YS)O) , as was done in [HT01,

Lemma II1.4.3, Cor V.4.5]. By analogues of [HT01, Lemma III.4.1.2] and
[TY07, Lemma 3.1] in our setting (which are proved in the same way), 7,(};)
are of pure dimension h for 0 < h < n—1. The integral model for Xy over Op,,
and the schemes Yy ;, Y7 » and Y& & over Spec k(w) are defined as in [TY07].
Notice that m and S in their paper are denoted by m and .¥, respectively,
in order to avoid conflict with our notation. Apart from the changes already
mentioned, the material in Section 3 of Taylor-Yoshida’s paper goes through
without further modification.

This is a good place to record a useful fact, which will not be needed
in the proof of Theorem 7.11. Only in this paragraph, assume that w|l and
[l = p. We know that Xy is a proper scheme over Op, with semistable re-
duction ([TY07, Prop. 3.4]), so the universal abelian scheme < over Xy
also has semistable reduction over O, . Since H*(Xys XOp, Fw,,i’g) is a di-
rect summand of H*+7 (o X0, F,Q;) up to a Tate twist for an integer
me ([TY07, p. 477]), we deduce that H*(Xy xo, Fu, %) is a semistable

representation of Gal(F,/F,) ([Tsu99]). Write each m € Irri(G(Qy)) as
T =T @ Ty @ (Qi>1Tw, ), following our previous convention.

LEMMA 7.12. Let 7> € Irrj(G(A*)) and assume that ﬂ'lZ(l) # 0. If
T # 0 and R]g?l(woo) # 0 for some k, then R]g’l(woo) is a semistable repre-

sentation of Gal(Fy,/Fy).

Proof. Recall U = UP x (Iwyy x Uy'(m) x Z,). We can arrange that
(m>)Y # 0 by choosing sufficiently small UP and UY(m). Then Rf}l(ﬂoo) is
semistable since it appears with nonzero multiplicity as a subrepresentation of
HY( Xy %0y, Fu, Z). O

COROLLARY 7.13. In the setting of Theorem 7.5, if Hg has a nonzero
Twahori fized vector at y|l, then Ry(II°) is semistable at y.

Proof. The proof is the same as in the crystalline case. Namely, the corol-
lary is derived from Lemma 7.12 in the same way as the assertion (v) of
Theorem 7.5 was deduced from Proposition 5.3(v). O

We return to the case [ # p. Now we adapt section 4 of Taylor-Yoshida to
our situation. We work under the setting of Section 6 of our paper, in either
(Case ST) or (Case END), depending on the parity of m. Choose a finite
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set S under the assumptions in the beginning of Section 6. (In addition, we
already assumed that the conditions (i)—(v) above Lemma 5.1 are satisfied.)
All additional assumptions will be removed at the end. In fact, let us consider
only (Case ST) for now. In particular IT = ¢ ® II" is cuspidal. (The argument
is essentially the same in (Case END), which will be briefly discussed in Re-
mark 7.16.) Let m, € Irr;(G(Q))) be such that BC(ym),) ~ II,, as before. Write
Tp = Tp,0 @ Ty @ (Rj>1Ty, ) so that ymyo = 1y, for v = w|g and ym,, ~ H%Ui
for all i.

Let I(U};),m be the Igusa variety of the first kind defined in [HT01, p. 121].
(Substitute our Shimura varieties in the definition.) The Iwahori-Igusa variety
I((Jh) over Yg(? is defined as on page 487 of [TYO07]. The results of page 487
carry over without change. If 0 < h < n — 1 corresponds to b as in (5.3), we
will write Ig®) for Ig, and J")(Q,) for J,(Q,).

At this point we need to mention that we will follow the sign conven-
tion of [TYO07] in order to minimize confusion. This means that the signs of
H.(I™, %) (and its variants) and H(X,.%) differ from the usual convention
by (—1)" and (—1)""!, respectively. Accordingly, we change the definition of
H,(Ig™, %) by multiplying (—1)".

One major change occurs in the middle of page 488, where Theorem V.5.4
of [HTO01] is cited. Let us elaborate on this point. Put D := Dp, /(,—p). Write
Op for the maximal order in D. Tt follows from the definition of H,(I"), %)
that

Hc(I(h)ﬂ g&) = Hc(Ig(h)aa%)Z; XOE7
where Z) x O, is viewed as the subgroup Z,* x (Of; x (1)) x[T;>1(1) of JM(Qp)
via the expression (5.4). Applying Theorem 6.1, we have (cf. (5.16))
BOP(HL(1%, ) 1)
= (~1)"Coly TP [ @ Red™ " (1,)95 @ (@121 )]
in Groth(G(A>?) x J("(Q,)), where BCP denotes the local base change at the
places away from p and oo (§4.2). We remark that e,(J") does not show up

in the formula as we are following the sign convention of [TYO07]. According
to page 488, Frob,, acts on HC(I(h),.ZS) as

(1,p~ Bl ot 1,1)

€ G(A>™P) x (Q;/Z;) X (D*/Of) x GLy(Fy) x <H GLn(Fwi)> ,
i>1
where wp is any uniformizer of D. It is easy to check that g
h w W
BCP(HC(II(W)(m)’gﬁ)[HSD = BCP(HC(I(h)v"%E)[HS])Up (m)>Iwh,

= (=1)""Caly ' TI™7][Red™ (yy © my,0)] - dim[(@s17m,) V7 ™)
in Groth(G(A*P) x FrobZ), where Red™ is as defined on page 488.
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It is easy to deduce the following analogue of [TY07, Lemma 4.3].
(7.9)

BCP(H(YIw(m),y,iﬂg)[HS]) _ (—1)"_ng[Lf1H°°’p] dim[(®i>177wi)U;’U(m)]
n—#. _
x ( > <—1>“‘#y"‘(” 7 y) it Red ™ (IT, ®wu>]> .

h=0

We proceed to prove the following analogue of [TYO07, Prop. 4.4] by imitating
the original argument.

PROPOSITION 7.14. Keep the previous notation. Suppose that W,I,W(m) # 0.
Then

BCP(H (Yiy(m), 7> %) [1°]) = 0
forj#n—#57.

Proof. Let D(IT):=(—1)""1Cg - dim(®;>111,,;)% ™ for each 7> € Z(II).
(Note that our D(II) differs from D of [TY07] by the dimension of the Iwahori
invariants at w.) The assumption implies that D(II) # 0. By (7.9),

BCP(H (Yiw(m), 7, Ze) ) {IT>P}
n—#.
=D() Y (—U”_#y_h(n _h#y) i Red ™ (IT], @ by,)]

h=0

in Groth(FrobZ). We will be done if the above expression is shown to be zero.
The initial assumption says that IT} has a nonzero Iwahori fixed vector.
Moreover II}, is tempered by Corollary 7.9. So II}, has the form

GLy (Fuw)

n—indP(Fw) (Spg, (1) ® - - - @ Spy, ()

for unramified characters ; : FX — C* and ; s; = n. Then Red™ (IT} @1,
can be computed as in [TY07]. We obtain

(710)  BO(H(Ypymp L)y = D) 3 )

Vil
si=#. HJ’#Z’ Sj!

where V; is as defined on page 490 of [TY07]. Since V; are strictly pure of
weight mg — 2te + (n — #.7) (m¢ and t¢ are defined in [HTO01, p. 98]), the Weil
conjecture implies that

BCY(H (Yiw(m), 7 L) {17} = 0

for j £n — #.7. O
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So far we have considered BCP on the level of Grothendieck groups. Now
we work with genuine admissible representations. For each k > 0, define (cf.

(5:5))

BCP(H* (X1 (m), Ze)11°]) == €D dim(my* ™) - BC(n™?) ® RE (x*),

o0

where the sum runs over 7 € Irr;(G(A™)) such that 7% is unramified and
BC(yn®) ~ 1%, Theorem 6.4 and its proof show that

(7.11)  BCP(H" ™M (Xiy(m), -Z)[I1°]) = (dim ™) - 1P @ RrY(M)

as admissible representations of G(A>®P) x Gal(F/F).

QOROLLARY 7.15. In the setting of Proposition 7.14, the representation
WD(Rln_l(H)‘Gal(Fw/Fw)) is pure of weight m¢ — 2t +n — 1.

Proof. In view of [TY07, Lemmas 1.4(1) and 1.7], it suffices to show that
WD(E?_I(H)SS\Gal(Fw/Fw))F*SS is pure and of the designated weight. Here the
superscript “ss” means the semisimplification of the Gal(F/F)-action.

We use a slightly different form of the spectral sequence of [TY07, Prop.
3.5], which can be derived from its proof. With the notation of that proposition,
consider the spectral sequence
(1.12)

BOP (B} (Tw(m), €)[11]) = BCA(W D(H™ (Xig(mys 26 i)

Here each side is viewed as a semisimple representation of G(A*P) x Frob,,
(after semisimplifying the action of G(A®>P) x Frob,, on the left-hand side)
with a nilpotent operator IN. The above spectral sequence can be obtained in
the following way. First, we semisimplify the action of G(A°P) x Frob,, in the
Rapoport-Zink weight spectral sequence, which is the second last formula of
[TYO7, p. 485]. Next, separate the [II%]-part and apply BCP to the spectral
sequence. N

Proposition 7.14 tells us that BCP(E}” (Iw(m), £)[I1°]) vanishes unless i +
j =n — 1. So the semisimplified spectral sequence (7.12) degenerates at E;
and

(7.13) WD(BCP(H" ™ Xty (), Ze) [I1°]) )i

” ’Gal(ﬁﬂ /Fw)
is pure of the desired weight. This concludes the proof in view of (7.11). O

Remark 7.16. So far we have been dealing with (Case ST) and odd m.
In (Case END) with even m, Proposition 7.14 and Corollary 7.15 are still
valid. In (7.9) and the proof of Proposition 7.14, we apply (ii) of Theorem 6.1
to compute BCP(H (Yiy(m),#» Ze)[II°]). The proof of Proposition 7.14 mostly
goes through except that one of the V;’s will be missing on the right side of
(7.10). Corollary 7.15 in (Case END) is proved similarly as in (Case ST).
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We are ready to complete the proof of Theorem 7.11. Allow m to be either
odd or even. Let us forget the additional assumptions of Sections 5 and 6 and
put ourselves in the situation of Section 7.2, but let L denote the CM field
to begin with, instead of F. So II° is a cuspidal automorphic representation
of GL,,(AL). (Of course, unlike [TY07], we do not assume that IV is square
integrable at a finite place.) Let R;(II°) : Gal(L/L) — GL,,(Q;) be given by
Theorem 7.5. Our plan is to imitate page 492 of [T'Y07] to find a certain finite
soluble extension F over L so that the proof for L and II° can be reduced to
the proof for F' and BCF/L(HO).

Fix a place v of L above p where p # [. Recall the remark below the
statement of Theorem 7.11 that it suffices to prove WD(Rl(HO)|Gal(E / Fv)) is
pure. Find a CM field F such that (as usual F+ := F¢=1)

[F*: Q] is even,

F = EF™ for an imaginary quadratic field £ in which p splits,

F is soluble and Galois over L,

Ram /g URamg(11%) C Splp/p+ @

% := BCp / £ (IT%) is a cuspidal automorphic representation of GLy,(Ar),
and

e there is a place w of I’ above v such that H%w has an Iwahori fixed vector.

We show that it is possible to choose F' as above. As a first step, we find
a CM field F;y which is soluble and Galois over L and a place wg of Fy above v
such that the last two conditions in the list are satisfied for Fjy and wq in place
of I and w. Next we find F' from Fj by taking quadratic extensions of Fy twice
as in the proof of Theorem 7.5. We elaborate on this point. Choose E € &(Fp)
such that p splits in £ and £ C Fy. Since EFy verifies the assumptions of
Step (I) in that proof, we may choose F' € % (EFy) different from EF, and
take I’ := F'EF,. Let w be any place of F' above wg. It is easy to see that F
satisfies every condition in the above list.

With (E, F,11%) in hand, consider the setting of Section 7.1. Let Ilp
denote the representation IT of Section 7.1 obtained by substituting IT% for I1°
in that section. The proofs of Corollaries 6.8 and 6.10 tell us that

Ca - Ri(T1)| /iy = Ca - Ri(g) =~ By~ (Ip)* @ Ri(y) "

Corollary 7.15 and [TY07, Lemma 1.7] imply that WD(RZ(HO)’Gal(E,/Lv)) is
pure. The proof of Theorem 7.11 is concluded.
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