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Galois representations arising from
some compact Shimura varieties

By Sug Woo Shin

Abstract

Our aim is to establish some new cases of the global Langlands cor-

respondence for GLm. Along the way we obtain a new result on the de-

scription of the cohomology of some compact Shimura varieties. Let F be

a CM field with complex conjugation c and Π be a cuspidal automorphic

representation of GLm(AF ). Suppose that Π∨ ' Π ◦ c and that Π∞ is

cohomological. A very mild condition on Π∞ is imposed if m is even. We

prove that for each prime l there exists a continuous semisimple representa-

tion Rl(Π) : Gal(F/F )→ GLm(Ql) such that Π and Rl(Π) correspond via

the local Langlands correspondence (established by Harris-Taylor and Hen-

niart) at every finite place w - l of F (“local-global compatibility”). We also

obtain several additional properties of Rl(Π) and prove the Ramanujan-

Petersson conjecture for Π. This improves the previous results obtained by

Clozel, Kottwitz, Harris-Taylor and Taylor-Yoshida, where it was assumed

in addition that Π is square integrable at a finite place. It is worth not-

ing that the mild condition on Π∞ in our theorem is removed by a p-adic

deformation argument, thanks to Chenevier-Harris.

Our approach generalizes that of Harris-Taylor, which constructs Galois

representations by studying the l-adic cohomology and bad reduction of

certain compact Shimura varieties attached to unitary similitude groups.

The central part of our work is the computation of the cohomology of the

so-called Igusa varieties. Some of the main tools are the stabilized counting

point formula for Igusa varieties and techniques in the stable and twisted

trace formulas.

Recently there have been results by Morel and Clozel-Harris-Labesse in

a similar direction as ours. Our result is stronger in a few aspects. Most

notably, we obtain information about Rl(Π) at ramified places.
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1. Introduction

A version of the global Langlands conjecture states:

Conjecture 1.1. Let F be a number field and Π be a cuspidal auto-

morphic representation of GLm(AF ) which is algebraic in the sense of [Clo90,

Def. 1.8]. For each prime l, with the choice of an isomorphism ιl : Ql
∼→C, there

exists an irreducible continuous semisimple representation Rl,ιl(Π) : Gal(F/F )

→ GLm(Ql) such that Rl,ιl(Π) is potentially semistable at every place y of F

dividing l and

(1.1) WD(Rl,ιl(Π)|Gal(F y/Fy))
F−ss ' ι−1

l Lm,Fy(Πy)

for every finite place y of F (including y|l).

Here WD(·) denotes the associated Weil-Deligne representation for lo-

cal Galois representations and (·)F−ss means the Frobenius semisimplification.

(See [TY07, §1] for instance, to review these notions.) The notation Lm,Fy(Πy)

means the local Langlands image of Πy, where the geometric normalization is

used (§2.3). Since Π is unramified at all but finitely many places, the conjec-

ture implies that Rl,ιl(Π) has the same property. The representation Rl,ιl(Π)

is unique up to isomorphism by the Cebotarev density theorem, if it exists.

For simplicity of notation, we write Rl(Π) for Rl,ιl(Π) later on.

When m = 1, Conjecture 1.1 is completely known by class field theory.

If m = 2 and F is totally real, a lot is known about the conjecture. (See

[BR93], [Tay89], [Sai09] and the references therein.) We will be mostly con-

cerned with the case m ≥ 3. In general the conjecture is still out of reach, but

there are favorable circumstances where more tools are available in attacking

the conjecture. Let F be a CM field. Use c to denote the complex conjugation.

Suppose that Π∨ ' Π ◦ c and that Π is regular algebraic ([Clo90, Def. 3.12]).

The latter is equivalent to the condition that Π∞ is cohomological for an irre-

ducible algebraic representation of GLm. These assumptions on Π essentially

ensure that Π “descends” to a representation of a unitary group and that the

descended representation can be “seen” in the l-adic cohomology of a relevant

PEL Shimura variety of unitary type. In particular many techniques in arith-

metic geometry become available. There are some solid results in this setting.

If we further assume that

• Π is square integrable at some finite place,
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then Conjecture 1.1 is known by a series of works [Kot92a], [Clo91], [HT01]

and [TY07] for every y - l. More precisely, the assertions of Theorem 1.2

below, without any condition on Π∞ when m is even, are known under the

additional assumption on Π as above. (Although the assertion (vi) is not

explicitly recorded, it follows easily from the contents of [TY07].)

It has been conjectured for some time that the additional condition on Π

might be superfluous. However, it has also been realized by many people that

it would require techniques in the trace formula and a better understanding of

endoscopy to remove the superfluous assumption on Π. One of the most con-

spicuous obstacles was the fundamental lemma, which had only been known in

some special cases. Thanks to the recent work of Laumon-Ngô ([LN08]), Wald-

spurger ([Wal97], [Wal06]) and Ngô ([Ngô10]) the fundamental lemma (and the

transfer conjecture of Langlands and Shelstad) are now fully established. This

opened up a possibility for our work.

Our paper is aimed at proving Conjecture 1.1 at y - l, without assuming

that Π is square integrable at a finite place, but with a very mild assumption

on Π∞ when m is even. (See the third assumption on Π of Theorem 1.2.)

This last assumption has been removed by a p-adic deformation argument by

Chenevier and Harris ([CH, Th. 3.2.5]), so it should not be regarded as a serious

condition. (However, the equality (i) of the theorem is preserved only up to

semisimplification in the p-adic deformation argument.) No such assumption

on Π∞ is necessary when m is odd.

The main theorem is the following. (See Remark 7.6 for the case where

F is a totally real field.) Note that we also prove the assertions (v) and (vi)

below, which are predicted by Conjecture 1.1 at y|l, as well as a few additional

properties of Rl(Π). Unfortunately we do not prove that Rl(Π) is irreducible.

(If Π is square integrable at a finite place, the irreducibility is known by [TY07,

Cor. 1.3].)

Theorem 1.2 (Theorem 7.5, Theorem 7.11, Corollary 7.13). Let m ∈
Z≥2. Let F be any CM field. Let Π be a cuspidal automorphic representation

of GLm(AF ) such that

• Π∨ ' Π ◦ c.
• Π∞ has the same infinitesimal character as some irreducible algebraic

representation Ξ∨ of the restriction of scalars RF/QGLm.

• Ξ is slightly regular, if m is even.

Then for each prime l and an isomorphism ιl : Ql
∼→ C, there exists a continu-

ous semisimple representation Rl(Π) = Rl,ιl(Π) : Gal(F/F ) → GLm(Ql) such

that
(i) For any place y of F not dividing l, there is an isomorphism of Weil-

Deligne representations

WD(Rl(Π)|Gal(F y/Fy))
F−ss ' ι−1

l Lm,Fy(Πy).
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(ii) Suppose y - l. For any σ ∈ WFy , each eigenvalue α of Rl(Π)(σ)

satisfies |α|2 ∈ |k(y)|Z under any embedding Q ↪→ C.

(iii) Let y be a prime of F not dividing l, where Πy is unramified. Then

Rl(Π) is unramified at y, and for all eigenvalues α of Rl(Π)(Froby)

and for all embeddings Q ↪→ C we have |α|2 = |k(y)|m−1.

(iv) For every y|l, Rl(Π) is potentially semistable at y with distinct Hodge-

Tate weights, which can be described explicitly.

(v) If Πy is unramified at y|l, then Rl(Π) is crystalline at y.

(vi) If Πy has a nonzero Iwahori fixed vector at y|l, then Rl(Π) is semistable

at y.

In fact, our method allows us to prove a stronger assertion that there exists

a compatible system of λ-adic representations associated to Π. That is to say,

for each Π as above, there is a number field L such that the representations

Rl,ιl(Π) for varying l and ιl are realized on Lλ-vector spaces for varying finite

places λ of L. This can be done by realizing ξ on an L-vector space (where

L is large enough to contain the field of definition of Π, cf. [Clo90, 3.1]) and

Lξ as a smooth Lλ-sheaf rather than a Ql-sheaf (cf. [Kot92a, p. 655]), where

ξ and Lξ are as in Section 5.2.

It is standard that the theorem implies the Ramanujan-Petersson conjec-

ture for Π as above, but it is worth noting the order of proof. First we prove

Theorem 1.2 with a weaker version of the first assertion, namely that (i) holds

only up to semisimplification. This is enough for deducing the corollary be-

low. Then the temperedness of Π, among others, is used to strengthen the

statement of (i).

Corollary 1.3 (Corollary 7.9). Let m, F , Π be as in the previous theo-

rem. Then Πw is tempered at every finite place w of F .

We sketch the strategy of proof of Theorem 1.2. In fact we content our-

selves with explaining the proof of only the first assertion as the proof of other

parts are more or less standard. Our strategy relies on the theory of Shimura

varieties, whose cohomology is expected to realize the global Langlands cor-

respondence in an appropriate sense. Since there are no Shimura varieties for

GLn if n > 2, the next best thing is to use the Shimura variety for a uni-

tary similitude group G. Suppose that the CM field F contains an imaginary

quadratic field E. We find a Q-group G such that

• G is quasi-split at all finite places,

• G(R) is isomorphic to U(1, n − 1) × U(0, n)[F :Q]/2−1 up to multiplier

factor, and

• G(AE) ' GL1(AE)×GLn(AF ).

Note that the first assumption is not satisfied by the groups considered in

[Kot92a], [Clo91] and [HT01]. When n is odd, such a group G always exists.
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When n is even, G exists if and only if n ≡ 2 (mod 4) and [F : Q]/2 is odd.

In our work it is enough to consider the case when n is odd. Indeed, in order

to construct m-dimensional Galois representations, we use n = m if m is odd

and n = m + 1 if m is even. In case m is odd (resp. even), Rl(Π) will be

realized in the stable (resp. endoscopic) part of the cohomology of Shimura

varieties attached to G as above. These correspond to (Case ST) and (Case

END) below. Before elaborating on this point, let us give more details about

the setup.

Consider a projective system of Shimura varieties, denoted by Sh, whose

associated group is G. If F 6= E, then Sh is a projective system of smooth

projective varieties over F which arise as the moduli spaces of abelian schemes

with additional structure. The projectivity of Sh and the fact that G/Z(G)

is anisotropic over Q are related to each other and essential in our argument.

Let ξ be an irreducible algebraic representation of G over Ql, which gives rise

to a lisse l-adic sheaf Lξ on Sh. The étale cohomology space Hk(Sh,Lξ) :=

Hk(Sh×F F ,Lξ) is a smooth representation of G(A∞)×Gal(F/F ). We have

a decomposition

Hk(Sh,Lξ) =
⊕
π∞

π∞ ⊗Rkξ,l(π∞)

as π∞ runs over the set of irreducible admissible representations of G(A∞).

Write H(Sh,Lξ) :=
∑
k(−1)kHk(Sh,Lξ).

Fix a prime p split in E as well as a place w of F above p. The Shimura va-

riety Sh has an integral model over OFw and its special fiber Sh has the Newton

polygon stratification into Sh
(b)

, where b is a parameter for an isogeny class of

p-divisible groups with additional structure. We can define a smooth variety Igb
over Fp (which is also a projective system of varieties) from Sh

(b)
. Also defined

is a Qp-group Jb which is an inner form of a Levi subgroup of GQp . The co-

homology space H(Igb,Lξ) is naturally a virtual representation of G(A∞,p)×
Jb(Qp). On the other hand, there is a functor Mantb,µ : Groth(Jb(Qp)) →
Groth(G(Qp) ×WFw), which is defined in terms of the cohomology of a cer-

tain moduli space of p-divisible groups. Mantovan’s formula ([Man05, Th. 22],

[Man, Th. 1]) is the following identity in Groth(G(A∞)×WFw), which gener-

alizes [HT01, Th. IV.2.8]:

(1.2) H(Sh,Lξ) =
∑
b

Mantb,µ(Hc(Igb,Lξ)).

An important point is that Mantb,µ is purely local in nature and well-under-

stood thanks to Harris and Taylor. (See §2.4).

Consider a regular algebraic automorphic representation Π = ψ ⊗ Π1 of

G(AE) ' GL1(AE) × GLn(AF ) where Π∞ is determined by ξ. We deal with

two possibilities for Π1 as follows (§6.1).
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• (Case ST) Π1 is cuspidal, or

• (Case END) Π1 = n-ind(Π1⊗Π2) where Πi is a cuspidal automorphic

representation of GLni(AF ) and n1 > n2 > 0. (n1 + n2 = n).

For simplicity of exposition, we assume that the local base change from the

representations of G(A∞) to those of G(A∞E ) is well-defined at every finite

place. (In practice we work under simplifying assumptions to make sense of

base change unconditionally, as in Section 4.1. To our knowledge, this idea is

due to Harris and Labesse (e.g. [Lab]).) We would like to define the “Π∞,p-

part” of Hc(Igb,Lξ). Write

Hc(Igb,Lξ) =
∑

π∞,p⊗ρp
n(π∞,p ⊗ ρp) · [π∞,p ⊗ ρp],

where n(π∞,p ⊗ ρp) ∈ Z and the sum runs over irreducible admissible repre-

sentations of G(A∞,p)× Jb(Qp). Then define

Hc(Igb,Lξ){Π∞,p} :=
∑

π∞,p⊗ρp
BC(π∞,p)'Π∞,p

n(π∞,p ⊗ ρp) · [ρp].

Also define ‹Rl(Π) :=
∑
π∞ Rξ,l(π

∞) where π∞ are representations such that

BC(π∞,p) ' Π∞,p.

We are ready to state our results on the cohomology of Igusa varieties and

Shimura varieties. First, Hc(Igb,Lξ){Π∞,p} is explicitly described in terms

of Πp. (For a precise statement, see Theorem 6.1.) In fact, in (Case END),

the description depends on not only Πp but also Π1,p and Π2,p. This result,

together with (1.2) and our knowledge of Mantb,µ, leads to a description of

Rl(Π) in Groth(WFw). (In fact, as a by-product, we know not only ‹Rl(Π)

but also the contribution to ‹Rl(Π) from each Newton polygon stratum.) Up

to some explicit nonzero multiplicity and character twist, it turns out that

(Theorem 6.4)

• (Case ST) ‹Rl(Π)|WFw
is the local Langlands image of Π1.

• (Case END) ‹Rl(Π)|WFw
is the local Langlands image of Π1 or Π2.

In particular dim ‹Rl(Π) = n in (Case ST) whereas dim ‹Rl(Π) = n1 or n2 in

(Case END), up to multiplicity. Moreover, it can be shown that ‹Rl(Π) is a

true representation concentrated in Hn−1(Sh,Lξ). So far we indicated how the

local-global compatibility is established at w on the condition that p = w|Q
splits in E. This can be extended to all places not dividing l. (See the proof

of Proposition 7.4.)

With the above result on the cohomology of Shimura varieties, it is not too

difficult to deduce Theorem 1.2. Harris proposed a strategy generalizing [BR93]

(which may be regarded as the case with m = 2 and n = 3) and its outline is

as follows. As the notation Π is already being used, let Π0 denote the cuspidal
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automorphic representation of GLm(AF ) in the theorem. If m is odd, use n =

m and Π1 = Π0. Then ‹Rl(Π) is essentially the desired Galois representation.

If m is even, use n = m + 1 and Π1 = Π0. In this case, it is possible to

choose Π2 so that ‹Rl(Π) is essentially the desired representation, namely it

corresponds to Π1 rather than to Π2. To prove this, we carry out explicit

computation of signs in real endoscopy. The slight regularity assumption of

Theorem 1.2 ensures that a good choice of Π2 exists. Actually our construction

of Galois representations a priori relies on additional assumptions on F and

Π, for technical reasons including the issue of local base change. To remove

these assumptions we apply a “patching” argument as in [BR89] and [HT01].

(See the proof of Theorem 7.5.)

We have explained how a result on Hc(Igb,Lξ){Π∞,p} implies a result

on ‹Rl(Π), thus enabling us to prove Theorem 1.2. The remaining problem is

the computation of Hc(Igb,Lξ){Π∞,p}, which is at the core of our work. The

starting point is the following stable trace formula ([Shi09a]), which stabilizes

the counting point formula for Igusa varieties ([Shi09b]):

(1.3) tr (φ∞,p · φ′p|ιlHc(Igb,Lξ)) = | ker1(Q, G)|
∑
G~n

ι(G,G~n)STG~n
e (φ~nIg).

The notation should be explained. The function φ∞,p · φ′p ∈ C∞c (G(A∞,p) ×
Jb(Qp)) is any acceptable function in the sense of [Shi09a, Def. 6.2]. The sum

is taken over elliptic endoscopic groups G~n for G (§3.2). The test functions φ~nIg
away from p,∞ are the Langlands-Shelstad transfer of φ∞,p. See Section 5.3

for φ~nIg,p and φ~nIg,∞. We remark that an analogous formula for Shimura varieties

was obtained earlier by Kottwitz ([Kot92b], [Kot90]) and plays a central role

in the computation of Frobenius action on the cohomology of Shimura varieties

at the primes of good reduction. Kottwitz’ formula is a key input in [Kot92a],

[Mor10], [CHLa], to name a few. However, his formula is not needed in [HT01]

and our work, where the trace formula for Igusa varieties is importantly used.

We can proceed from (1.3) using similar techniques as in work of Clozel,

Harris and Labesse ([Lab], [CHLb]) on the base change and endoscopic transfer

for unitary groups. The point is that each summand in (1.3) is (up to a

constant) equal to the geometric side of the twisted trace formula for G×Q E
with respect to the Galois action of the nontrivial element θ ∈ Gal(E/Q).

This in turn equals the spectral side of the trace formula, expanded in terms

of θ-stable automorphic representations of G~n(AE). By a result of Jacquet-

Shalika, we can separate a string of Hecke eigenvalues, or the Π∞,p-part from

the spectral expansion. It turns out that this process singles out a unique

term in the spectral expansion in (Case ST) and two terms in (Case END).

Using various character identities, an explicit description of Hc(Igb,Lξ){Π∞,p}
is finally obtained. In doing so, the most interesting and perhaps mysterious
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character identities are those at p (Lemma 5.10). These arise naturally from

the stabilization process for (1.3) at p and reflect the structure of Newton

stratification of Sh.

So far we sketched the proof of Theorem 1.2. We end by mentioning the

latest work of others in a similar direction. Recently Morel announced a result

([Mor10, Cor. 8.4.9, 8.4.10]) similar to Theorem 1.2 and its corollary, as an ap-

plication of her study of noncompact unitary Shimura varieties. (In contrast,

our work offers no information about the geometry or cohomology of those

Shimura varieties.) When m is odd, she constructed Rl(Π) up to multiplicity

and proved (i) of Theorem 1.2 at the places y where Πy is unramified, as well

as (iii). Now suppose that m is even. If m ≡ 2 mod 4 and [F+ : Q] is odd,

she obtains the same result as in the case of odd m. Otherwise, she can still

construct ∧2Rl(Π) up to multiplicity and prove an analogue of (i) and (iii) at

unramified places. (Actually Morel states the main results only in the case

F+ = Q, but it seems that her results extend to the cases mentioned above

without much difficulty.) Perhaps the most important input in Morel’s work is

the counting point formula (and its stabilization) for the special fibers of non-

compact Shimura varieties (cf. [Mor05], [Mor08]), which generalizes [Kot92b]

and [Kot90] to the noncompact setting. On the other hand, Clozel, Harris

and Labesse ([CHLa]) have succeeded in constructing even dimensional Galois

representations attached to Π as in our work under a similar restriction on Π∞.

Their method shares some common features with ours in that they use the same

compact Shimura varieties and the endoscopic transfer from U(m) × U(1) to

U(m+ 1) as well as the twisted trace formula. The essential difference is that

they employ (the stabilization of) Kottwitz’ counting point formula ([Kot92b],

[Kot90]) and obtain information only at unramified (good) places. In contrast,

our method makes use of the counting point formula for Igusa varieties and can

deal with bad places. Actually we can even describe the compact support co-

homology of each Newton stratum (at a possibly bad place) in the endoscopic

setting, in a suitable sense.

It is worth noting that there has been a precise conjecture about the

cohomology of PEL Shimura varieties of type (A) or (C) for many years. (See

the formula on page 201 of [Kot90]. Compare with [LR92, Th. B, p.293] in the

case of U(3).) If fully established, the conjecture would imply our result on ‹Rl
as well as our main theorem. So the issue has been not to speculate what should

be true in general but to justify what is already expected about the cohomology

of Shimura varieties, in as many cases as possible. To our knowledge, our

work is the first to describe unconditionally the Galois representations in the

endoscopic part of the cohomology at bad places, even in the case of U(3).

We briefly outline the structure of the article. We review background

materials in Sections 2–6. In Section 2 we define the functor Mantb,µ and
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recall the results of [HT01] on Mantb,µ. Sections 3 and 4 are devoted to the

discussion of endoscopy, local base change and the twisted trace formula for

unitary similitude groups. It is worth remarking that the functions at infinity

reviewed in Sections 3.5 and 4.3 play an important role in the study of the

cohomology of Shimura varieties and Igusa varieties. In (Case END), the

sign calculation of Section 3.6 is crucial. On the other hand, the functions at

infinity allow us to simplify the geometric and the spectral sides of the twisted

trace formula (§4.5). In Section 5 we recall the definitions of Shimura varieties

and Igusa varieties, Mantovan’s formula and the stable trace formula for Igusa

varieties (Propositions 5.2 and 5.3) as well as some other facts. It is important

to allow the prime p (where the local structure is to be analyzed) to be ramified

in F . As some of our references ([Man05], [Shi09a] and [Shi09b]) assume that

p is unramified in F , we explain how the results there can be extended to

our setting. We also need a stable trace formula for G, which will be used to

control automorphic multiplicity (Corollary 6.5(iv).) This is essentially used

in obtaining later corollaries. Sections 5.5 and 5.6 are devoted to an explicit

version of “endoscopy for Igusa varieties” at p. Although the local endoscopy

of G at p is banal, our discussion clarifies how the global endoscopy for G

interacts with the Jb(Qp)-representations in Hc(Igb,Lξ), which encode certain

information about bad reduction. The main body of argument is given in

Sections 6 and 7. We mainly consider (Case ST) and (Case END), which are

introduced in the beginning of Section 6.1. (See Remark 6.11 for a comment

on other cases.) The stable trace formula and the twisted trace formula are

combined in the proof of Theorem 6.1, which is a key result of our paper. It is

pleasant to see that Theorem 6.4 is derived from Theorem 6.1. Although this

may not be very surprising in (Case ST), the computation is more curious in

(Case END). In Section 6.2, we deduce several consequences from Theorem 6.1,

Mantovan’s formula and the known facts about the functor Mantb,µ.

In the proof of Corollaries 6.5, 6.7, 6.8 and 6.10 we borrow important

ideas from Harris and Taylor. The last two corollaries yield the desired Galois

representation by removing an unwanted multiplicity (and multiplying an ob-

vious character), under the technical assumptions made in Sections 5 and 6. In

Sections 7.1 and 7.2, we prove the main results on Rl(Π). In the case of even-

dimensional Galois representations, it is crucial to make a good choice of an

auxiliary Hecke character (Lemma 7.3). This relies on our computation of Sec-

tion 3.6. Another important idea is to remove all extra technical assumptions

by using patching argument for many quadratic extensions, due to [BR89] and

[HT01]. In Corollary 7.9 we prove relevant cases of the Ramanujan-Petersson

conjecture. Finally in Section 7.3, we imitate the argument of [TY07] to prove

a stronger result on the local-global compatibility and the last assertion of

Theorem 1.2.
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1.1. Notation and Convention. Suppose that F is a number field or a local

field. By this we mean that F is a finite extension of Q or Qv for some place v

of Q. (We allow v = ∞.) The Weil group WF of F is defined in [Tat79]. Let

G be a connected reductive group over F . Denote by “G the dual group of G,

which is a complex Lie group. Define the L-group LG := “G oWF of G via a

semi-product. (See [Bor79] for precise definition.) If F is a finite extension of

K, then RF/KG denotes the Weil restriction of scalars (whose set of K-points

is the same as G(F )). Let H1(F,G) := H1(Gal(F/F ), G(F )). When F is

a number field, write ker1(F,G) for the kernel of H1(F,G) → ∏
vH

1(Fv, G)

where v runs over all places of F . Similarly define ker1(F,H) for any complex

Lie group H equipped with the action of Gal(F/F ) factoring through a finite

quotient.

Let F be a number field and y be a place of F . Write k(y) for the

residue field of Fy. Let IFy denote the inertia group of WFy . Denote by Froby
the geometric Frobenius element of WFy/IFy , namely the element inducing

x 7→ x−|k(y)| in Gal(k(y)/k(y)).
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When L is a finite extension of a number field F , we denote by RamL/F

(resp. UnrL/F , SplL/F ) the set of finite places of F which are ramified (resp.

unramified, completely split) in L. When Π ∈ Irr(G(A)), let RamQ(Π) denote

the set of primes p of Q such that there exists a place v dividing p where Πv

is ramified.

Suppose that F is a local non-archimedean field. Denote by DF,λ the

central division algebra over F with Hasse invariant λ ∈ Q/Z. Let ArtF :

F×
∼→ W ab

F be the local Artin map normalized so that a uniformizer of F×

maps to a lift of a geometric Frobenius element. Let | · |F : F× → R×>0 denote

the character which is trivial on O×F and maps the inverse of any uniformizer

to the cardinality of the residue field. Set | · |WF
:= | · |F ◦ Art−1

F . There is a

unique way to choose | · |1/2F : F× → R×>0. When ιl : Ql
∼→ C is fixed, we often

write | · |1/2F for ι−1
l | · |

1/2
F by abuse of notation.

Keep assuming that F is a local non-archimedean field. We denote by

Irr(G(F )) (resp. Irrl(G(F ))) the set of all isomorphism classes, irreducible ad-

missible representations of G(F ) on vector spaces over C (resp. Ql). When π is

an irreducible unitary representation of G(F ) (modulo split component in the

center), π may also be viewed as an irreducible admissible representation by

taking smooth vectors; so we may say π ∈ Irr(G(F )). The subset Irr2(G(F ))

of Irr(G(F )) is the one consisting of (essentially) square-integrable represen-

tations. Let C∞c (G(F )) denote the space of smooth and compactly supported

C-valued functions on G(F ). Let P be an F -rational parabolic subgroup of

G with a Levi subgroup M . For each πM ∈ Irr(M(F )) and π ∈ Irr(G(F )),

we can define the normalized Jacquet module JGP (π) and the normalized para-

bolic induction n-indGP (πM ) so that JGP (π) (resp. n-indGP (πM )) is an admissible

representation of M(F ) (resp. G(F )). The induced representation n-indGP (πM )

will often be written as n-indGM (πM ) when working inside of Groth(G(F )) or

computing traces, since different choices of P give the same result. Define a

function DG/M on M(F ) by DG/M (m) = det(1 − ad(m))|Lie (G)/Lie (M) and a

character δP : M(F ) → R×>0 by δP (m) = |det(ad(m))|Lie (P )/Lie (M)|F . In case

G = GLn and M =
∏
i GLni (

∑
i ni = n), consider πi ∈ Irr(GLni(F )). De-

note by �iπi the Langlands subquotient of n-indGP (⊗iπi) (cf. [BW00, Ch. IV],

[Sil78]), which is independent of the choice of P . For any s ∈ Z>0 and a super-

cuspidal π ∈ Irr(GLn(F )), let Sps(π) ∈ Irr2(GLsn(F )) denote the generalized

Steinberg representation ([HT01, p. 32]). Let e(G) ∈ {±1} denote the Kot-

twitz sign defined in [Kot83]. When F = Qv, we often write ev(G) for e(G).

The definitions in this paragraph make sense for F = R (except Sps(π)) with

the usual absolute value | · | on R and the infinitesimal equivalence between

representations of G(R).

Assume that G is an unramified group over a non-archimedean field F .

Choose a hyperspecial group K ⊂ G(F ). Define a Haar measure on G(F ) so
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that K has volume 1. Define H ur(G(F )) to be the C-subspace of C∞c (G(F ))

consisting of bi-K-invariant functions. The convolution equips H ur(G(F ))

with C-algebra structure with charK the multiplicative identity. Let Irrur(G(F ))

denote the subset of Irr(G(F )) consisting of unramified representations of

G(F ). For each π ∈ Irrur(G(F )), define χπ : H ur(G(F ))→ C by f 7→ trπ(f).

The association π 7→ χπ gives a natural bijection from Irrur(G(F )) onto the

set of C-algebra morphisms H ur(G(F ))→ C. (To see that the inverse exists,

use [Bor79, 7.1, 9.5].)

For a number field F and a finite set S consisting of places of F , we denote

by ASF the restricted product of Fv for v /∈ S. In case F = Q, write AS for

ASQ and AS for
∏
v∈S Qv. Define Irr(G(ASF )), C∞c (G(ASF )) and H ur(G(ASF ))

via restricted product, where the last one makes sense under the assumption

that GFv is unramified for all v /∈ S. The normalized induction is defined in

this adelic context. Let ArtF : A×F /F×
∼→ W ab

F denote the global Artin map,

which is compatible with the local Artin map defined above.

Let G be a connected reductive group over Q. Write AG for the maximal

Q-split torus in the center of G and define AG,∞ := AG(R)0. Let K∞ be a

maximal compact subgroup of G(R). Let ξ be an irreducible finite dimensional

representation of G(C). Then the restriction of ξ to AG,∞ gives a character

χξ : AG,∞ → C×. Define C∞c (G(R), χξ) to be the space of smooth C-valued bi-

K∞-finite functions f on G(R) which are compactly supported modulo AG,∞
and such that f(ag) = χξ(a)f(g) for all a ∈ AG,∞ and g ∈ G(R).

We frequently confuse an isomorphism class or an equivalence class with

its member. For instance, when we write π ∈ Irrl(G(Qp)), it means that π is

an irreducible admissible representation of G(Qp) on a Ql-vector space.

Finally let us agree that (z/z)N/2 (N ∈ Z) denotes eiNθ for z = reiθ ∈ C×
with r ∈ R>0 and θ ∈ R/2πiZ.

2. Rapoport-Zink spaces of EL-type

Let p and l be prime numbers such that p 6= l. The aim of Section 2

is to recollect the description of the cohomology of certain Rapoport-Zink

spaces, which will be incorporated into various versions of “Mant” functors

defined below. We describe these functors in terms of the local Langlands

correspondence and study their properties in the cases which are relevant to the

Shimura varieties of Section 5. We will freely adopt notation from Section 3.1

such as In, Pn−h,h, GLn−h,h, and so on.

2.1. B(G) and isocrystals. Let G be a connected reductive group over Qp.
Let L := FracW (Fp). Denote by σ the Frobenius on L which induces the p-

th power map on the residue field. Define B(G) to be the set of equivalence

classes in G(L) where x, y ∈ G(L) are equivalent if there exists g ∈ G(L)
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such that x = g−1ygσ. The set B(G) classifies the isomorphism classes of

isocrystals (over Fp) with G-structure in the sense of Rapoport and Richartz

([RR96, 3.3, 3.4(i)]). For a Qp-morphism µ : Gm → G, Kottwitz defined a

finite subset B(G,µ) of B(G). The set B(G,µ) often provides parameters

for the Newton polygon stratification in the context of Shimura varieties (cf.

[Har01, §4], [Man05], [Shi09a, §5]).

Let T be a maximal torus of G defined over Qp. Let Ω = Ω(G,T ) be the

Weyl group over Qp. Put N(G) := ((X∗(T ) ⊗Z Q)/Ω)Gal(Qp/Qp). There is a

Newton map ([Kot85, §4], [RR96, 1.7–1.9])

ν̄G : B(G)→ N(G)

which is useful in describing the set B(G).

Suppose that G is a finite product of connected reductive Qp-groups Gi.

Write µ =
∏
i µi for µi : Gm → Gi. Then we have a natural identification

B(G,µ) =
∏
i

B(Gi, µi).

2.2. Mantb,µ functor. Let n ∈ Z>0 and Φp(F ) := HomQp(F,Qp). Consider

a quadruple (F, V, µ, b), where

(i) F is a finite extension of Qp. (We do not assume that F is unramified

over Qp.)
(ii) V = Fn is an F -vector space. Let G := ResF/QpGLF (V ).

(iii) µ : Gm → G is a homomorphism over Qp (up to G(Qp)-conjugacy)

which induces a weight decomposition V ⊗F F = V0⊕V1, defined over

a finite extension of Qp, where µ(z) acts on Vi by zi for i = 0, 1.

(iv) b ∈ B(G,−µ).

Giving µ is equivalent to giving a pair of nonnegative integers (pσ, qσ) for

each σ ∈ Φp(F ) such that pσ + qσ = n. Given such data, the corresponding µ

is represented by the homomorphism Q×p →
∏
σ∈Φp(F ) GLn(Qp) given by

z 7→
∏
σ

diag(z, . . . , z︸ ︷︷ ︸
pσ

, 1, . . . , 1︸ ︷︷ ︸
qσ

).

Roughly speaking, B(G,−µ) classifies isocrystals with F -action up to isomor-

phism (or Barsotti-Tate groups with OF -action up to isogeny, via covariant

Dieudonné theory) whose Hodge polygons are determined by µ. Note that

N(G) may be identified with the set of unordered n-tuples of rational num-

bers. In fact ν̄G is injective; thus each b ∈ B(G) is uniquely characterized by

its image under the Newton map

ν̄G(b) = (λ1, . . . , λ1︸ ︷︷ ︸
m1

, λ2, . . . , λ2︸ ︷︷ ︸
m2

, . . . , λr, . . . , λr︸ ︷︷ ︸
mr

),
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where r ∈ Z>0, λi ∈ Q, and mi ∈ Z>0 for 1 ≤ i ≤ r. We may and will assume

λ1 < · · · < λr. See [Shi09a, Ex. 4.3] for the explicit condition on r, {λi} and

{mi} in order that b ∈ B(G,−µ).

The reflex field E is by definition the fixed field in Qp of the stabilizer in

Gal(Qp/Qp) of the pairs {(pσ, qσ)}σ∈Φp(F ). We will be only concerned with the

case
∑
σ pσ ≤ 1. If pσ = 0 for all σ, then E = Qp. If pσ = 1 for a unique σ,

then E is identified with σ(F ) ⊂ Qp.
The datum (F, V, µ, b) gives rise to a formal scheme Mb,µ over Spf O

F̂ur

representing a moduli problem for Barsotti-Tate groups with OF -action. In

fact Mb,µ is noncanonically isomorphic to Z-copies of the Lubin-Tate defor-

mation space for formal OF -modules of dimension 1 and height n (the latter

is studied in [Car90], [HG94] and [HT01, Ch. 2]). (See [RZ96, 3.78–3.79] for

details. In the description of Mb,µ in Proposition 3.79, replace Spf W (Fp)
with Spf O

F̂ur . Although Rapoport and Zink discuss the same moduli space

as in our case, there is a difference in the choice of b. See (1.47) there. The

source of the difference is that Barsotti-Tate groups of OF -slope λ correspond

to isocrystals of slope −λ in our convention but to isocrystals of slope 1−λ in

that book.)

There is a standard construction to obtain a tower of rigid analytic spaces

Mrig
b,µ,U over “F ur for open compact subgroups U of GLn(OF ) ([RZ96, Ch. 5]),

where Mrig
b,µ,GLn(OF ) coincides with the rigid analytic space attached to Mb,µ.

(Here GLn(OF ) is regarded as the stabilizer of the standard lattice OnF in-

side V .) We consider the étale cohomology of Rapoport-Zink spaces in the

sense of Berkovich ([Ber93]), for which we use the following abbreviated nota-

tion:

Hj
c (Mrig

b,µ,U ) := Hj
c (Mrig

b,µ,U ×”Eur
‘Eur,Ql).

This Ql-vector space has the structure of a smooth representation of Jb(Qp)×
WE . The last action commutes with the action of G(Qp) on the tower of

Mrig
b,µ,U via Hecke correspondences. Details about these actions can be found

in [RR96, Ch. 5], [Far04, Ch. 4] and [Man04].

Define1 the functor Mantb,µ : Groth(Jb(Qp))→ Groth(G(Qp)×WE) by

(2.1) Mantb,µ(ρ) :=
∑
i,j≥0

(−1)i+j lim−→
U

ExtiJb(Qp)-smooth(Hj
c (Mrig

b,µ,U ), ρ))(−D)

in the notation of [Man05] and [Man]. (Our Jb(Qp) is denoted by Tb in [Man05].

Our Mantb,µ is Eb in [Man].) Here D is the dimension ofMrig
b,µ,U and (−D) is the

Tate twist. The Ext-groups are taken in the category of smooth representations

1Although we named this functor after Mantovan’s work clarifying its relationship with

the cohomology of Shimura varieties, it should be noted that (variants of) Mantb,µ were

considered previously by several authors, as in [Rap95], [Har01], [Far04].
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of Jb(Qp) and the limit is over open compact subgroups U as above. Since the

Ext-groups in (2.1) vanish beyond a certain degree and yield finite length

representations for each U ([Far04, §4.4]), Mantb,µ is well-defined.

2.3. Local Langlands correspondence. Let F be a finite extension of Qp.
Harris-Taylor ([HT01]) and Henniart ([Hen00]) proved that there is a natural

bijection

recn,F : Irr(GLn(F ))→WD-Repn(WF )

where WD-Repn(WF ) is the set of isomorphism classes of Frobenius semisimple

n-dimensional Weil-Deligne representations of WF on C-vector spaces. See

[HT01, p. 2] for the characterizing properties of recn,F . We will often use the

following normalization:

Ln,F (π) := recn,F (π∨)⊗ | · |−(n−1)/2
WF

.

2.4. The case of dimension 0 and 1. Let n ∈ Z>0. Fix a finite extension

F over Qp, an embedding τ0 : F ↪→ Qp and an isomorphism ιl : Ql
∼→ C. By

abuse of notation, ι−1
l | · |

1/2
F : F× → Q×l will be denoted by | · |1/2F or | · |1/2.

Write Gn := RF/QpGLn. Let µn,τ0 : Gm → Gn×QpQp '
∏
σ∈Φp(F )(GLn)Qp

be the Qp-morphism given by

z 7→
ÇÇ

z 0

0 In−1

å
σ=τ0

, (In)σ 6=τ0

å
.

Let µn,ét : Gm → Gn ×Qp Qp denote the trivial map. Define bn,0, b0,n ∈ B(Gn)

so that νGn(bn,0) = (−1/n, . . . ,−1/n) and b0,n = 1. Observe that bn,0 ∈
B(Gn,−µn,τ0) and b0,n ∈ B(Gn,−µn,ét). For 1 ≤ h ≤ n − 1, define bn−h,h ∈
B(Gn) to be the image of (bn−h,0, b0,h) under the block diagonal embedding

Gn−h × Gh ↪→ Gn. Then bn−h,h ∈ B(Gn,−µn,τ0). For any 0 ≤ h ≤ n − 1,

define an F -group Jn−h,h := D×F,1/(n−h) × GLh, where D×F,1/(n−h) is an inner

form of GLn−h coming from a division algebra with invariant 1/(n − h). Set

J0,n := GLn. We see that RF/QpJn−h,h is isomorphic to Jb for b = bn−h,h
(0 ≤ h ≤ n). Let Pn−h,h be the parabolic subgroup of GLn whose (i, j)-

component is zero exactly when i > n− h and j ≤ n− h. Define a character

δ̄
1/2
Pn−h,h

: Jn−h,h(F )→ Q×l

by the relation δ̄
1/2
Pn−h,h

(g) = δ
1/2
Pn−h,h

(g∗), where g∗ ∈ GLn−h,h(F ) is any element

whose conjugacy class is transferred from that of g.

Let us write Mantn−h,h (0 ≤ h ≤ n − 1) and Mant0,n for Mantb,µ when

(b, µ)=(bn−h,h, µn,τ0) and (b, µ)=(b0,n, µn,ét), respectively. For each 0≤h≤n,

define n-Mantn−h,h by the relation

(2.2) n-Mantn−h,h(ρ) := e(Jn−h,h) ·Mantn−h,h(ρ⊗ δ̄1/2
Pn−h,h

)
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for every ρ ∈ Groth(Jn−h,h(F )). Note that the Kottwitz sign e(Jn−h,h) equals

(−1)n−h−1 if 0 ≤ h ≤ n− 1 and 1 if h = n.

Lemma 2.1. For each π ∈ Irrl(GLn(F )), Mant0,n(π) = [π][1] where 1 is

the trivial character of WQ.

Proof. This follows from [Far04, Ex. 4.4.8]. �

Recall that there exists a natural bijection

JLn : Irr2(D×F,1/n)
∼→ Irr2(GLn(F ))

uniquely characterized by a character identity ([DKV84]).

Proposition 2.2. (i) If π ∈ Irrl(GLn(F )) is supercuspidal,

n-Mantn,0(JL−1
n (π)) = [π][Ln,F (π)].

(ii) For s ∈ Z>0, g = n/s ∈ Z>0 and a supercuspidal π ∈ Irrl(GLg(F )),

n-Mantn,0(JL−1
n (Sps(π))) equals

s∑
j=1

Ä
[Spj(π)� π| det |j � · · ·� π| det |s−1]⊗ [Lg,F (π|det |j−1)⊗ | · |g(1−s)/2]

ä
.

(iii) For each ρ1 ∈ Irrl(Jn−h,0(F )) and ρ2 ∈ Irrl(J0,h(F )),

n-Mantn−h,h(ρ1 ⊗ ρ2)

= n-ind
GLn(F )
Pn−h,h(F )(n-Mantn−h,0(ρ1)⊗ n-Mant0,h(ρ2))⊗ | · |−h/2WF

in Groth(GLn(F )×WF ).

Proof. Both (i) and (ii) follow from a reinterpretation of [HT01, Th.VII.1.3,

VII.1.5] in our language. We elaborate on this point.

Let J := D×F,1/n. According to [Har05, Th. 4.3.11], in his notation,

Ψn(ρ) :=
∑
i

(−1)iHomJ(Ψi
c,n, ρ)

coincides with [π][Ln,F (π)] if ρ = JL−1
n (π) for a supercuspidal representation π.

On the other hand, Ψn(ρ) is identified with Mantn,0(ρ) for any ρ ∈ Irrl(J) by

adapting [Man04, Th. 8.7] to our case. Indeed, in the identity of that theorem,

the right-hand side is nothing but Mantn,0(ρ) whereas the left-hand side is

easily seen to be the same as Ψn(ρ) since the special fibers of the relevant

Rapoport-Zink spaces are zero dimensional. Let us compare

ΨF,l,n(ρ) =
∑
i

(−1)n−1−iΨi
F,l,n(ρ)

of [HT01, pp. 87–88] with Ψn(ρ) above. Note that ΨF,l,n(ρ) (resp. Ψn(ρ))

is defined via the Lubin-Tate deformation spaces (resp. the Rapoport-Zink
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spaces). Note that the Rapoport-Zink space of each fixed level is noncanon-

ically isomorphic to Z-copies of the Lubin-Tate space of the same level and

that one of the copies is canonically isomorphic to the Lubin-Tate space.

([Str05, 2.3], cf. [Har05, p. 49].) From this fact, it is not difficult to prove

that Ψi
F,l,n(ρ)

∼→ HomJ(Ψi
c,n, ρ). In other words,

ΨF,l,n(ρ) = (−1)n−1Ψn(ρ) = (−1)n−1Mantn,0(ρ) = n-Mantn,0(ρ)

in Groth(GLn(F ) ×WF ). Therefore [HT01, Th. VII.1.3, VII.1.5] imply our

first two assertions. Note that rl(π) in their notation is isomorphic to Ln,F (π)

in view of the relation of rl with recn,F on page 237 of [HT01].

It remains to prove the third assertion. This result can be derived from

[Har05, Props. 4.3.14, 4.3.17] (where p is allowed to ramify in F ), which is

already implicit in [HT01]. For simplicity of notation, we derive it from [Man08,

Cor. 5] (in case p is unramified in F ), which implies in our case that

Mantn−h,h(ρ1 ⊗ ρ2) = Ind
GLn(F )
Pn−h,h(F )(Mantn−h,0(ρ1)⊗Mant0,h(ρ2)).

Here Ind is the nonnormalized parabolic induction. From the above formula it

is straightforward to deduce the assertion (iii) in view of Lemma 2.1 and the

fact that (cf. [HT01, Lemma II.2.9])

n-Mantn−h,0(ρ1 ⊗ |Nm|1/2) = n-Mantn−h,0(ρ1)⊗ | det |1/2 ⊗ | · |−1/2
WF

,

where Nm : D×F,1/(n−h) → F× denotes the reduced norm map. �

We define a morphism Redn−h,h as the composition

Groth(GLn(F ))

JGLn
P

op
n−h,h

⊗δ1/2
Pn−h,h

−−−−−−−−−−−→ Groth(GLn−h,h(F ))
LJn−h⊗id−−−−−−→ Groth(Jn−h,h(F )),

where JGLn
P op
n−h,h

is the normalized Jacquet module and LJn−h : Groth(GLn−h(F )

→ Groth(Jn−h,0(F )) is the map defined by Badulescu ([Bad07]), which extends

the inverse of the usual Jacquet-Langlands correspondence JLn−h. Define

n-Redn−h,h := Redn−h,h ⊗ δ̄−1/2
Pn−h,h

.

Equivalently, n-Redn−h,h = (LJn−h ⊗ id) ◦ JGLn
P op
n−h,h

. It is easy to see that

Mantn−h,h ◦ Redn−h,h = e(Jn−h,h) · n-Mantn−h,h ◦ n-Redn−h,h for 0 ≤ h ≤ n.

Proposition 2.3. For any π ∈ Irrl(GLn(F )), the following holds in

Groth(GLn(F )×WF ):

(2.3)
n−1∑
h=0

n-Mantn−h,h(n-Redn−h,h(π)) = [π][Ln,F (π)].
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Proof. It is enough to check the proposition when π is the full para-

bolic induction from (essentially) square integrable representations of Levi

subgroups (including GLn(F ) itself), since such representations π generate

Groth(GLn(F )) as a Z-module ([Zel80, Cor. 7.5]). By using Lemma 2.1 and

Proposition 2.2, the left-hand side of (2.3) can be computed in terms of

the Jacquet module and parabolic induction with the help of the Bernstein-

Zelevinsky classification. The computational detail is essentially the same as

in the proof of [HT01, Th. VII.1.7]. �

3. Endoscopy of unitary similitude groups

3.1. Setting. We use the following notation.

• ~n = (ni)i∈[1,r] where ni, r ∈ Z>0 and [1, r] := {1, 2, . . . , r}.
• GL~n :=

∏
i∈[1,r] GLni and i~n : GL~n ↪→ GLN (N =

∑
i ni) is the em-

bedding

(A1, . . . , Ar) 7→

à
A1 0 · · · 0

0 A2 · · · 0
... · · · · · ·

...

0 · · · 0 Ar

í
.

Define det : GL~n → GL1 by det(g) := det(i~n(g)).

• Φn and In are the matrices in GLn with entries (Φn)ij =(−1)i+1δi,n+1−j
and (In)ij = δi,j . Put Φ~n := i~n(Φn1 , . . . ,Φnr).

• tg denotes the transpose when g is a matrix.

• P~n is the upper triangular parabolic subgroup of GLn containing

i~n(GL~n) as a Levi subgroup.

• ε : Z→ {0, 1} is the unique map such that ε(n) ≡ n mod 2.

• F = EF+ where F+ (resp. E) is a totally real (resp. imaginary qua-

dratic) extension of Q.

• SplF/F+,Q is the set of all rational primes p such that every place of

F+ above p splits in F .

• UnrF/Q (resp. RamF/Q) is the set of all primes p which are unramified

(resp. ramified) in F .

• τ : F ↪→ C is a Q-algebra embedding and τE := τ |E .

• c denotes the complex conjugation on C or any CM field.

• ΦC := HomQ(F,C), Φ+
C := HomE,τE (F,C) and Φ−C := cΦ+

C .

• w? is a fixed element in WQ\WE .

• $ : A×E/E× → C× is any Hecke character such that $|A×/Q× equals

the composite of ArtQ and the natural surjective character WQ �
Gal(E/Q)

∼→ {±1}. Using the Artin map ArtE , we view $ also as a

character WE → C×.
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• RamQ($) is the set of all primes p such that $ is ramified at some

place above p.

Define a Q-group G~n by

(3.1) G~n(R) := {(λ, g) ∈ GL1(R)×GL~n(F ⊗Q R) : gΦ~n
tgc = λΦ~n}

for any Q-algebra R, where gi ∈ GL~n(F ⊗Q R). Note that G~n is quasi-split

over Q. Also define

G~n := RE/Q(G~n ×Q E)

and let θ denote the action on G~n induced by (id, c) on G~n ×Q E. We can

identify the dual groups as follows.

(3.2) “G~n ' C× × ∏
σ∈Φ+

C

GL~n(C) and “G~n ' C× × C× × ∏
σ∈ΦC

GL~n(C).

The L-group LG~n := “G~n oWQ is defined by the relation that w(λ, gσ)w−1 =

(λ′, g′σ), where

(λ′, g′σ) = (λ, gw−1σ) or

Ö
λ
∏
σ∈Φ+

C

det gσ, Φ~n
tg−1
cw−1σΦ−1

~n

è
according as w ∈ WE or w /∈ WE , respectively. Similarly, LG~n := “G~n oWQ
requires that w(λ+, λ−, gσ)w−1 equal

(λ+, λ−, gw−1σ) or

Ö
λ−

∏
σ∈Φ−C

det gσ, λ+

∏
σ∈Φ+

C

det gσ, Φ~n
tg−1
cw−1σΦ−1

~n

è
according to whether w ∈ WE or w /∈ WE , respectively. Consider the map

BC~n : LG~n → LG~n given by

(λ, (gσ,i)σ∈Φ+
C

)o w 7→ (λ, λ, (gσ,i)σ∈Φ+
C
, (gcσ,i)σ∈Φ−C

)o w.

Note that (G~n,
LG~n, 1,BC~n) is an endoscopic datum for (G~n, θ, 1) in the con-

text of twisted endoscopy ([KS99, §2.1]).

Note that (3.1) may be used to equip G~n with a Z-scheme structure by

allowing R to be a Z-algebra, and the same is true for G~n. For each prime p, put

K~n
p := G~n(Zp) and K~np := G~n(OE⊗ZZp) = G~n(Zp). If p ∈ SplF/F+,Q, then K~n

p

(resp. K~np ) is a special subgroup of G~n(Qp) (resp. G~n(Qp)). In case p ∈ UnrF/Q,

K~n
p (resp. K~np ) is a hyperspecial subgroup of G~n(Qp) (resp. G~n(Qp)). In that

case we define unramified Hecke algebras H ur(G~n(Qp)) and H ur(G~n(Qp))
using K~n

p and K~np (§1.1).

Let us fix Haar measures. For every prime p, choose measures µG~n,p on

G~n(Qp) and µG,p on G~n(Qp) such that µG~n,p(K
~n
p ) = 1 and µG~n,p(K~np ) = 1.

Choose Haar measures µAG~n,∞ on AG~n,∞ ' R×>0 and µAG~n,∞
on AG~n,∞ '



1664 SUG WOO SHIN

(R×>0)r+1 using the standard measure dx/x on R×>0. Finally choose Haar mea-

sures µG~n,∞ and µG~n,∞ such that the quotient measures (
∏
v µG~n,v)/µAG~n,∞ and

(
∏
v µG~n,v)/µAG~n,∞

are the Tamagawa measures ([Ono66, §2]) on G~n(A)/AG~n,∞
and G~n(A)/AG~n,∞, respectively.

Lemma 3.1. Let r be the number of components in ~n. Then

τ(G~n) = 2r or 2r−1 and τ(G~n) = 1.

Proof. For any reductive group G0 over Q,

(3.3) τ(G0) = |π0(Z(“G0)Gal(Q/Q))|/| ker1(Q, G0)|

([Kot88, p. 629]). It is easy to see that τ(G~n) = 1. Indeed, Z(“G~n)Gal(Q/Q) is

a product of copies of C× and ker1(Q,G~n) is trivial by Shapiro’s lemma and

Hilbert 90.

Recall from [Kot84, (4.2.2)] that | ker1(Q, G~n)| = | ker1(Q, Z(“G~n))|. Using

the description of “G~n in (3.2) we identify Z(“G~n) with C××∏σ,iC× where σ runs

over Φ+
C and i over {1, . . . , r}. It is easy to see that Z(“G~n)Gal(Q/Q) is identified

with the set of (λ, (gi)) where λ ∈ C×, gi ∈ {±1} and λ(
∏
i g
ni
i )[F+:Q] = 1.

Therefore

|π0(Z(“G~n)Gal(Q/Q))| =
®

2r, 2|[F+ : Q] or ∀i, 2|ni,
2r−1, otherwise.

On the other hand, ker1(E,G~n) is trivial by Shapiro’s lemma and Hilbert 90,

which implies that ker1(E,Z(“G~n)) is also trivial. So we have an injection

ker1(Q, Z(“G~n)) ↪→ H1(E/Q, Z(“G~n)Gal(Q/E))

via the inverse of the inflation map for H1. Note that Z(“G~n)Gal(Q/E) is iso-

morphic to C× × (C×)r. The group Z1 of 1-cocycles consists of those (λ, (gi))

which satisfy λ2(
∏
i g
ni
i )[F+:Q] = 1. The group B1 of 1-coundaries precisely

contains (λ, (gi)) which has the form λ = (
∏
i a
ni
i )[F+:Q] and gi = a−2

i for some

ai ∈ C× (1 ≤ i ≤ r). Both Z1 and B1 surject onto (C×)r via projection maps.

Comparing the numbers of fibers for these projection maps, we obtain

|H1(E/Q, Z(“G~n)Gal(Q/E))| =
®

2, 2|[F+ : Q] or ∀i, 2|ni,
1, otherwise.

Therefore τ(G~n) equals 2r or 2r−1. �

Remark 3.2. Although we have not pursued the precise value of τ(G~n),

it can be easily determined in some cases. If 2|ni for all i, we can prove that

ker1(Q, G~n) = 1 using the argument in the second paragraph of [Kot92b, §7].

So τ(G~n) = 2r if every ni is even. In case [F+ : Q] is odd and some ni is odd,

the above proof shows that ker1(Q, G~n) = 1 and τ(G~n) = 2r−1.
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3.2. Endoscopic triples and L-morphisms. Let Eell(Gn) be a set of repre-

sentatives for isomorphism classes of endoscopic triples for Gn over Q ([Kot84,

§7]). We can identify Eell(Gn) with the set of triples

{(Gn, sn, ηn)} ∪ {(Gn1,n2 , sn1,n2 , ηn1,n2 : n1 + n2 = n, n1 ≥ n2 > 0},

where (n1, n2) may be excluded in some cases if both n1 and n2 are odd num-

bers. (This is to satisfy the condition (7.4.3) of [Kot84]. As we will mainly

work with odd n, we will not be concerned with the possible exclusion of

such (n1, n2).) Here sn = 1 ∈ “Gn, sn1,n2 = (1, (In1 ,−In2)) ∈ “Gn1,n2 and

ηn : “Gn → “Gn is the identity map whereas ηn1,n2 is the embedding

(λ, (gσ,1, gσ,2)) 7→
Ç
λ,

Ç
gσ,1 0

0 gσ,2

åå
.

The above description of Eell(Gn) can be verified as Proposition 4.6.1 of [Rog90],

which deals with the case of unitary groups.

We can extend ηn1,n2 to an L-morphism η̃n1,n2 by2

w ∈WE 7→
Ç
$(w)−N(n1,n2),

Ç
$(w)ε(n−n1) · In1 0

0 $(w)ε(n−n2) · In2

åå
o w,

w? 7→
Ä
an1,n2 ,Φn1,n2Φ−1

n

ä
o w?,

where N(n1, n2) := [F+ : Q](n1ε(n− n1) + n2ε(n− n2))/2 ∈ Z. The constant

an1,n2 is chosen to be a square root of the number (−1)−N(n1,n2) det(Φn1,n2Φn).

It is readily checked that η̃n1,n2 is indeed an L-morphism.

Let ζ̃n1,n2 : LGn1,n2 → LGn, be the map defined on “Gn1,n2 by

(λ+, λ−, (gσ,1, gσ,2)) 7→
Ç
λ+, λ−,

Ç
gσ,1 0

0 gσ,2

åå
and sending w ∈WE and w? respectively toÇ
$(w)−N(n1,n2), $(w)−N(n1,n2),

Ç
$(w)ε(n−n1) · In1 0

0 $(w)ε(n−n2) · In2

åå
o w,(

an1,n2 , an1,n2 ,Φn1,n2Φ−1
n

)
o w?

2We chose to write n− n1 and n− n2 rather than n2 and n1 so that the formula readily

generalizes when one defines η̃~n for arbitrary ~n = (n1, . . . , nr) such that
∑r

i=1 ni = n. Cf.

[Rog92, §1].



1666 SUG WOO SHIN

We have the following commutative diagram of L-morphisms:

(3.4) LGn1,n2

η̃n1,n2 //

BCn1,n2

��

LGn

BCn
��

LGn1,n2
ζ̃n1,n2

// LGn.

3.3. Constant terms for GL~n. We record a well-known lemma, which will

be applied later to explicit endoscopic transfer. For simplicity we state the

lemma only for general linear groups. In Section 3.3 only, we use the following

notation. Let L be a nonarchimedean field of characteristic 0. For r > 1,

fix ~n = (n1, . . . , nr) such that
∑
i ni = n. Let G := GLn and M := GL~n.

(Later we will also consider a group G which is a finite product of general

linear groups. The lemma below obviously extends to this case.) Let P be any

conjugate of P~n containing M . Denote by N the unipotent radical of P . For

each f ∈ C∞c (G(L)), define the constant term along P by

(3.5) fP (m) := δ
1/2
P (m)

∫
N(L)

∫
G(OL)

f(kmnk−1) dk dn, m ∈M(L).

Let ĩ~n : LM ↪→ LG be the L-morphism which trivially extends i~n : M̂ ↪→ “G.

Lemma 3.3. The following are true.

(i) For any semisimple m ∈M(L) which is regular in G(L),

(3.6) OM(L)
m (fP ) = DG/M (m)1/2OG(L)

m (f).

(ii) For any π ∈ Irr(M(L)), trπ(fP ) = tr n-indGM (π)(f).

(iii) If f ∈H ur(G(L)), then fP is the image of f under the map H ur(G(L))

→H ur(M(L)) which is dual to ĩ~n.

Proof. The first assertion is Lemma 9 of [vD72] and the second assertion is

the first formula on page 237 thereof. The last assertion is an easy consequence

of the Satake transform for general linear groups (cf. [AC89, pp. 32–33]). �

This lemma is a special case of the Langlands-Shelstad transfer, with

respect to the L-morphism ĩ~n. Indeed, it is easy to verify that DG/M (m)1/2

coincides with the transfer factor of [LS87] up to a constant.

3.4. Explicit transfer at finite places. We begin with a brief reminder of

the Langlands-Shelstad transfer in general. Let (H, s, η) be an endoscopic triple

for a connected reductive Q-group G. Suppose that there is an L-morphism

η̃ : LH → LG. Langlands and Shelstad ([LS87], [LS90]) defined a complex-

valued function ∆v(·, ·)GH , called the (local) transfer factor, on a pair (γH , γ)

where γH ∈ G~n(Qv) is a semisimple (Gn, G~n)-regular element and γ ∈ G(Qv)
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is such that the stable conjugacy classes of γH and γ are matching. Such a

pair (γH , γ) will be called a matching pair for convenience. The local transfer

factor is well-defined up to constant. Moreover, it depends not only on (H, s, η)

but also on η̃. Langlands and Shelstad conjectured that for each function

φv ∈ C∞c (G(Qv)), there exists φHv ∈ C∞c (H(Qv)) satisfying an identity about

the transfer of orbital integrals ([LS90, 2.1], [Kot86, Conj. 5.5]). We will refer

to φHv as a ∆v-matching function for φv or simply a ∆v-transfer of φv. In

the unramified situation, Langlands ([Lan83, III.3]) proposed a more precise

conjecture about the transfer, called the fundamental lemma. (See also [Hal95,

§2], which states the fundamental lemma for unramified Hecke algebras and

reduces its proof to the case of unit elements.)

Before going further, we point out that the Langlands-Shelstad conjecture

on the existence of ∆v-transfer is proved as well as the fundamental lemma (for

unit elements) in all cases, due to Waldspurger, Laumon-Ngô and Ngô ([LN08],

[Wal97], [Wal06], [Ngô10]).

Remark 3.4. Actually Walspurger and Ngô prove the fundamental lemma

(for any Qp-group G0) over Qp only if p is large enough (with respect to the

rank of G0). But the results of Hales (in particular, [Hal95, Th. 6.1]) can be

used to prove the fundamental lemma for all primes p, by induction on the

rank of G0. Although the paper of Hales is somewhat sketchy, its main results

are reproved by Section 9 of [Mor10] which is more detailed.

However, one can avoid the use of the fundamental lemma for small primes

p, if one wishes, without weakening our main results. Let PN be the set of

all primes p < N for a sufficiently large N . Impose an additional assumption

that PN ⊂ SplF/F+,Q throughout Sections 5 and 6. The point is that if p ∈
SplF/F+,Q, the fundamental lemma for G(Qp) is known without appeal to

Hales, as G(Qp) is a product of general linear groups. In Section 7 we can

remove the additional assumption, by adding a condition on E ∈ E(F ) in the

proof of Theorem 7.5 that every p ∈ PN splits in E.

Let us return to the situation of Sections 3.1 and 3.2. Let G~n ∈ Eell(G).

Let v be a finite place of Q. Below we will give a particular normalization of the

transfer factor ∆v(·, ·)GnG~n , which is a complex-valued function on a pair (γH , γ)

where γH ∈ G~n(Qv) is a semisimple (Gn, G~n)-regular element and γ ∈ G(Qv)
is such that the stable conjugacy classes of γH and γ are matching. We will

also define a map η̃∗n1,n2
, which gives the ∆v(·, ·)GnG~n-transfer (or simply ∆v-

transfer). Moreover, we present an explicit representation-theoretic transfer

η̃n1,n2,∗, which is tied to η̃∗n1,n2
via character identity.

For later use in Cases 2 and 3, we record a natural isomorphism for v ∈
SplF/F+,Q. Fix an isomorphism ιv : Qv ' C. Let V+

v be the set of places x

of F such that the composite map F
x
↪→ Qv

ιv' C belongs to Φ+
C . (This is the
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same definition as in the paragraph below (4.1).) Suppose either ~n = (n) or

~n = (n1, n2). The group G~n(Qv) is a subgroup of Q×v ×GL~n(F ⊗QQv) and the

projection map onto Q×v ×
∏
x∈V+

v
GL~n(Fx) induces an isomorphism

G~n(Qv)'Q×v ×
∏
x∈V+

v

GL~n(Fx).(3.7)

Using the above isomorphism, fix an embedding Gn1,n2 ↪→ Gn via in1,n2 . Set

Qn1,n2 := Q×v ×
∏
x∈V+

v
Pn1,n2 the parabolic subgroup of Gn, containing Gn1,n2

as a Levi subgroup.

Case 1: v ∈ UnrF/Q and v /∈ Ram($). In this case, η̃n1,n2 induces a

C-algebra map of unramified Hecke algebras

η̃∗ : H ur(Gn(Qv))→H ur(Gn1,n2(Qv))

and a transfer of unramified representations

η̃∗ : Irrur(Gn1,n2(Qv))→ Irrur(Gn(Qv)).

By the proof of the fundamental lemma ([Ngô10]) and an earlier work of Hales

([Hal95]), ∆v(·, ·) can be normalized so that

φn1,n2
v := η̃∗(φv)

is a ∆v-transfer of φv for any φv ∈ H ur(G(Qv)). Denote this normalization

by ∆0
v(·, ·). Then for every π ∈ Irrur(Gn1,n2(Qv)), we have

(3.8) trπ(η̃∗(φv)) = tr η̃∗(π)(φv).

Case 2: v ∈ SplE/Q. Let φv ∈ C∞c (Gn(Qv)). Let u := x|E for any x ∈ V+
v .

Define a character χ+
$,u : Gn1,n2(Qv)→ C× by

χ+
$,u(λ, (gx,1, gx,2)) := $u

Ñ
λ−N(n1,n2)

∏
x∈V+

v

∏
1≤i≤2

NFx/Eu(det(gx,i))
ε(n−ni)

é
.

(We view λ as an element of E×u via Q×v ' E×u .) Denote by φ
Qn1,n2
v the constant

term along Qn1,n2 (§3.3). Define

φn1,n2
v := φ

Qn1,n2
v · χ+

$,u.

For any (Gn, Gn1,n2)-regular semisimple g ∈ Gn1,n2(Qv), define

∆0
v(g, g) := |DGn/Gn1,n2

(g)|1/2 · χ+
$,u(g).

(Recall that we fix an embedding of Gn1,n2 into Gn as a Levi subgroup.) Note

that the above formula pins down the value of ∆0
v(·, ·) on every matching

pair. It is not hard to show that ∆0
v(·, ·) is equal, up to a constant, to the

Langlands-Shelstad transfer factor with respect to η̃. We sketch the argument.
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Let η̃′ : LGn1,n2 ↪→ LGn be an L-morphism (canonical up to “Gn-conjugacy) cor-

responding to the fixed Levi embedding Gn1,n2 ↪→ Gn via [Bor79, §3]. We may

arrange that η̃′ and η̃ are identical on “Gn1,n2 by conjugating η̃′ by an element

of “Gn, so that η̃ = aη̃′ for a ∈ H1(WQv , Z(“Gn1,n2)). Let χa : Gn1,n2(Qv)→ C×

denote the character corresponding to a. (As Z(“Gn1,n2) is the dual torus of the

maximal abelian quotient of Gn1,n2 , the cohomology class a determines χa via

[Bor79, §9].) Let ∆′v(g, g) denote the transfer factor with respect to η̃′. The fol-

lowing facts (which are true after normalization up to a constant) are standard

and deduced directly3 from the definition of transfer factors ([LS87, §3]):

• ∆′v(g, g) = |DGn/Gn1,n2
(g)|1/2.

• ∆0
v(g, g) = ∆′v(g, g) · χa(g).

Finally, one checks that χa = χ+
$,u by explicitly working out the duality for

the torus Z(“Gn1,n2).

For any πv ∈ Irr(Gn1,n2), define

η̃∗(πv) := n-indGnQn1,n2

Ä
πv ⊗ χ+

$,u

ä
.

It is easily deduced from Lemma 3.3 that the following identities hold for any

g and πv as above. In particular φn1,n2
v is a ∆0

v-transfer of φv.

Og(φ
n1,n2
v ) = ∆v(g, g) ·Og(φv),(3.9)

trπv(φ
n1,n2
v ) = tr η̃∗(πv)(φv).(3.10)

Case 3: v ∈ SplF/F+,Q and v /∈ SplE/Q We retain the same notation as in

Case 2, but write v for the unique place of E above v by abuse of notation.

Things are very similar to Case 2 except that the character χ+
$,v, defined below,

is slightly different from χ+
$,u of Case 2.

χ+
$,v(λ, (gx,1, gx,2)) :=$v

Ñ ∏
x∈V+

v

∏
1≤i≤2

NFx/Ev(det(gx,i))
ε(n−ni)

é
,

φn1,n2
v (g) := φ

Qn1,n2
v (g) · χ+

$,v(g),

∆0
v(g, g) := |DGn/Gn1,n2

(g)|1/2 · χ+
$,v(g),

η̃∗(πv) := n-indGnQn1,n2

Ä
πv ⊗ χ+

$,v

ä
.

The same argument as in Case 2 shows that ∆0
v(·, ·) is the Langlands-Shelstad

transfer factor with respect to η̃n1,n2 (up to a constant). As in Case 2, it is

3The value |DGn/Gn1,n2
(g)|1/2 (resp. χa(g)) comes from the factor ∆IV (resp. ∆III2) of

[LS87]. In the unramified situation, we remark that the first identity in the bullet list is

a special case of [Hal93, Lemma 9.2] and that the second identity appears in the proof of

[Hal95, Lemma 3.3].
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easy to check that the same identities as in (3.9) and (3.10) hold. So φn1,n2
v is

a ∆0
v-transfer of φv.

Remark 3.5. There are overlaps between Cases 1 and 2 and between

Cases 1 and 3, namely when v ∈ UnrF/Q ∩ SplF/F+,Q, v /∈ RamQ($), φv ∈
H ur(Gn(Qv)) and πv ∈ Irrur(Gn(Qv)). However it is not hard to see that the

definitions are consistent: Consider such v, φv and πv. Then φn1,n2
v in Case 2

or Case 3 is the same as in Case 1. This follows from the fact that constant

terms are compatible with Satake transform (cf. [AC89, p. 33]). By the same

fact we check the consistency of the definition of ∆0
v(g, g) and η̃∗(πv).

3.5. Transfer of pseudo-coefficients at infinity. Here we review Shelstad’s

results on real endoscopy ([She82]) for discrete series representations, based

on the summary of Kottwitz ([Kot90, §7]). We will freely use the Langlands

correspondence for real reductive groups ([Lan89]). Let G be an R-inner form

of Gn. Set (H, s, η) := (G~n, s~n, η~n) ∈ Eell(Gn), which is also an endoscopic

triple for G.

Let ξ be an irreducible algebraic representation ofGC. Define χξ : AG,∞ →
C× to be the character obtained by restricting ξ toAG,∞. Define Irr(G(R), χ−1

ξ )

to be the set of π ∈ Irr(G(R)) whose restriction to AG,∞ is χ−1
ξ .

Let Πunit(G(R), ξ∨) denote the set of π ∈ Irr(G(R)) which are unitary

(modulo AG,∞) and have the same infinitesimal character and central char-

acter as ξ∨. Denote by Irrtemp(G(R), χ−1
ξ ) (resp. Πdisc(G(R), ξ∨)) the subset

of Irr(G(R), χ−1
ξ ) (resp. Πunit(G(R), ξ∨)) consisting of those representations

which are tempered (resp. square-integrable) modulo AG,∞. Choose any max-

imal compact subgroups K∞ ⊂ G(R) and K∞ ⊂ G(R) which are admissible in

the sense of [Art88b, §1]. Define an integer

(3.11) q(G) :=
1

2
dim(G(R)/K∞AG,∞).

Fix real elliptic maximal tori T ⊂ G and TH ⊂ H along with an R-

isomorphism j : TH
∼→ T . Also fix a Borel subgroup B of G over C such

that B ⊃ TC. Let ϕξ : WR → LG be the discrete L-parameter for ξ which

corresponds to the L-packet Πdisc(G(R), ξ∨). Let Ω (resp. ΩH) denote the

complex Weyl group for T in G (resp. TH in H) and ΩR the real Weyl group

for T .

For each π ∈ Πdisc(G(R), ξ∨), there exists φπ ∈ C∞c (G(R), χξ) such that

for any π′ ∈ Irrtemp(G(R), χ−1
ξ ),

trπ′(φπ) =

®
1, if π′ ' π,
0, otherwise.
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Such a function φπ is called a pseudo-coefficient for π. Whenever we write the

expression φπ in the future, let us agree that choice of a pseudo-coefficient for

π is implicit.

The members π of Πdisc(G(R), ξ∨) are parametrized by ωπ ∈ Ω/ΩR so that

each π = π(ϕξ, ω
−1
π B) is characterized by the character formula of [Kot90,

p. 183], which is due to Harish-Chandra. We want to describe the transfer

of φπ to H(R) as a linear combination of pseudo-coefficients for discrete se-

ries of H(R). Shelstad defined the transfer factor ∆j,B (depending on η̃) on

elliptic regular elements, which is enough for our purpose. (Note that pseudo-

coefficients have trivial orbital integrals on nonelliptic semisimple elements and

that the case of elliptic singular elements is covered by [LS90, 2.4].)

Remark 3.6. (A similar remark appears in [Shi09b, Rem. 5.5].) In princi-

ple, we have to be careful about the different conventions for transfer factors

when we refer to [Kot90] and work of Langlands and Shelstad at the same

time. The convention in [Kot90] differs from that of Langlands and Shelstad

by s 7→ s−1, as explained on page 178 of that article. Fortunately there is

no danger for us to confuse the two conventions, as s = s−1 holds for every

endoscopic triple in Eell(Gn).

For any discrete L-parameter ϕH for H(R) and its associated L-packet

Π(ϕH), let

(3.12) φϕH :=
1

|Π(ϕH)|
∑

πH∈Π(ϕH)

φπH .

(In [Kot90, §7], φϕH was denoted by h(ϕH).) Define

(3.13) φHπ := (−1)q(G)
∑

η̃ϕH∼ϕξ

〈aω∗(ϕH)ωπ , s〉det(ω∗(ϕH)) · φϕH ,

where the sum runs over equivalence classes of ϕH such that η̃ϕH is equivalent

to ϕξ. We remind the reader that we adopted notations of [Kot90]. (In that

article, see page 185 for ω∗(ϕH) and page 175 for aω∗(ϕH)ωπ .)

Lemma 3.7. Let π = π(ϕξ, ω
−1
π B).

(i) For any discrete L-parameter ϕH for H(R),∑
πH∈Π(ϕH)

trπH(φHπ ) =

®
(−1)q(G)〈aω∗(ϕH)ωπ , s〉 det(ω∗(ϕH)), if η̃ϕH ∼ ϕξ,

0, otherwise.

(ii) φHπ is a ∆j,B-transfer of φπ .

Remark 3.8. Compare with [Clo, Th. 3.4], which proves a similar result

with a somewhat different approach. It seems that our proof is general enough

to work for other groups with little change.
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Proof. Note that (i) follows immediately from the definition of φHπ .

Let us prove (ii). It suffices to prove that for any elliptic regular γH ∈
H(R) and γ := j(γH),

(3.14) SOγH (φHπ ) = ∆j,B(γH , γ0)
∑

γ∼stγ0

〈inv(γ0, γ), s〉 ·Oγ(φπ),

where inv(γ0, γ) is defined in [Kot86, 6.7] and the sum runs over the set of

γ ∈ G(R) (up to G(R)-conjugacy) which are stably conjugate to γ0. We

import notation and facts from pages 183-186 of [Kot90]. By the third formula

of page 186 and the formula for ∆j,B of page 184,

SOγH (φϕH ) = (−1)q(H)vol−1
∑

ωH∈ΩH

χωH(BH)(γ
−1
H ) ·∆ωH(BH)(γ

−1
H )−1

= (−1)q(G)vol−1
∑

ωH∈ΩH

∆j,ωHω∗(B)(γH , γ0)

· χωHω∗(B)(γ
−1
0 ) ·∆ωHω∗(B)(γ

−1
0 )−1,

where we wrote ω∗ for ω∗(ϕH). Since ∆j,ωHω∗(B) = det(ω∗)∆j,B, we see that

SOγH (φHπ ) equals (recalling from [Kot90, p. 185] that there is a bijection be-

tween Ω∗ and the set of ϕH)

(−1)q(G)vol−1
∑

ω∗∈Ω∗

∑
ωH∈ΩH

〈aω∗ωπ , s〉

·∆j,B(γH , γ0) · χωHω∗(B)(γ
−1
0 ) ·∆ωHω∗(B)(γ

−1
0 )−1.

Using the equality 〈aω∗ωπ , s〉 = 〈aωHω∗ωπ , s〉 and the bijection ΩH × Ω∗ → Ω

mapping (ωH , ω∗) to ωHω∗, we can simplify the above expression as

(−1)q(G)vol−1∆j,B(γH , γ0)
∑
ω∈Ω

〈aωωπ , s〉 · χω(B)(γ
−1
0 ) ·∆ω(B)(γ

−1
0 )−1.

On the other hand, using the computation of orbital integrals in [Kot92a,

p. 659], ∑
γ∼stγ0

〈inv(γ0, γ), s〉Oγ(φπ) =
∑

ω∈Ω/ΩR

〈aω, s〉Oωγ0(φπ)

=
∑

ω∈Ω/ΩR

〈aω, s〉vol−1 · trπ((ωγ0)−1).

Using the formula of [Kot90, p. 183] for trπ((ωγ0)−1), the last expression can

be written as

(3.15)

(−1)q(G)vol−1
∑

ω∈Ω/ΩR

〈aω, s〉
∑

w0∈ΩR

χω0ω
−1
π (B)(ω

−1γ−1
0 ) ·∆ω0ω

−1
π (B)(ω

−1γ−1
0 )−1.
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Since 〈aω, s〉 = 〈aωω0 , s〉 and the last summand is equal to χωω0ω
−1
π (B)(γ

−1
0 ) ·

∆ωω0ω
−1
π (B)(γ

−1
0 )−1, (3.15) is the same as

(−1)q(G)vol−1
∑
ω∈Ω

〈aωωπ , s〉 · χω(B)(γ
−1
0 ) ·∆ω(B)(γ

−1
0 )−1.

Hence (3.14) is proved. �

Remark 3.9. Note that each ϕH such that η̃ϕH ∼ ϕξ corresponds to an

L-packet of the form Πdisc(H(R), ξ(ϕH)∨) where ξ(ϕH) is a suitable irreducible

algebraic representation of H. The function φϕH is often called an Euler-

Poincaré function in the following sense: for each πH ∈ Π(H(R), χ−1
ξ(ϕH)), the

trace trπH(φϕH ) computes the Euler-Poincare characteristic of the relative

Lie algebra cohomology of πH ⊗ ξ(ϕH). The existence of an Euler-Poincaré

function was proved by Clozel-Delorme ([CD90]). Its explicit realization as

(3.12) was used by several authors ([Kot92a, Lemma 3.2]; cf. [Art89, (3.1)]).

The twisted analogue was obtained by Labesse ([Lab91]) (cf. §4.3.)

In view of Remark 3.9, we will sometimes write φH,ξ(ϕH) for φϕH .

3.6. Explicit computation of real endoscopic signs. We wish to make the

discussion of the last subsection explicit in case G = G(U(1, n− 1)×U(0, n)×
· · ·U(0, n)), which is an inner form of Gn ×Q R. A precise definition of G is

given below. As in Section 3.5, we use the notation of [Kot90, §7] without

recalling it here. Note that a similar computation to ours was obtained earlier

by Clozel ([Clo]).

For each σ ∈ Φ+
C let

Jσ :=

Ç
1 0

0 −In−1

å
if σ = τ and Jσ = In if σ 6= τ

and define an R-group G and its maximal R-elliptic torus T (via the obvious

diagonal embedding) by

G(A) := {(λ, (gσ)) ∈ A× ×Mn(C⊗R A)Φ+
C | ∀σ, gσJσ

tgcσ = λJσ},(3.16)

T (A) := {(λ, (tσ,i)) ∈ A× × ((C⊗R A)n)Φ+
C | ∀σ, i, tσ,it

c
σ,i = λ}

for any R-algebra A, where σ ∈ Φ+
C and 1 ≤ i ≤ n.

Let n1, n2 ∈ Z>0 be such that n1 > n2 and n1 + n2 = n. The group

(H, s, η) := (Gn1,n2 , sn1,n2 , ηn1,n2) (defined in §3.2) is an endoscopic triple for

G, equipped with η̃n1,n2 : LH → LG. For our purpose, we may identify H with

the R-group given by

H(A) := {(λ, (hσ)) ∈ A× ×Mn1,n2(C⊗R A)Φ+
C | ∀σ, hσJ ′σthcσ = λJ ′σ}

for R-algebras A, where J ′σ is a suitable diagonal matrix with entries +1 and

−1 such that H is quasi-split. Let TH := T , which obviously embeds into
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H diagonally. Take j : TH
∼→ T to be the identity. There is an obvious

isomorphism (induced by the map z1 ⊗ z2 7→ z1z2 from C ⊗R C to C, in view

of (3.16))

(3.17) G(C) ' GL1(C)×GLn(C)Φ+
C

and similarly for H, with GLn replaced by GLn1,n2 . Let B ⊂ GC and BH ⊂ HC
be the Borel subgroups consisting of upper triangular matrices. Note that

B ⊃ TC and BH ⊃ (TH)C.

Let SN denote the symmetric group in N variables. There are natural

identifications

Ω = SΦ+
C

n , ΩH = (Sn1 × Sn2)Φ+
C , ΩR = Sn−1 × S

Φ+
C \{τ}

n

so that any ω = (ωσ) ∈ Ω acts on T as (λ, (tσ,i)) ∈ T 7→ (λ, (tσ,ωσ(i))), and

similarly for ΩH acting on TH . Of course ΩH is identified with a subgroup of

Ω via j. The component Sn−1 of ΩR is viewed as the group which permutes

the sub-indices for (tτ,2, tτ,3, . . . , tτ,n). The set Ω∗ is a subset of (ωσ) ∈ Ω such

that ωσ(1) < · · · < ωσ(n1) and ωσ(n1 + 1) < · · · < ωσ(n) for every σ ∈ Φ+
C .

The multiplication induces a bijection ΩH × Ω∗ → Ω.

Let ξ be an irreducible algebraic representation of GC. To ξ there is a

way to attach a0(ξ) ∈ Z and ~a(ξ)σ ∈ (Z)n for each σ ∈ Φ+
C by the following

condition: ξ|GL1 is x 7→ xa0(ξ) and ~a(ξ)σ = (a(ξ)σ,1, . . . , a(ξ)σ,n) is the highest

weight for the restriction of ξ to the σ-component GLn, with respect to (3.17),

where a(ξ)σ,1 ≥ · · · ≥ a(ξ)σ,n. (This is different from the convention of [HT01,

pp. 97–98] in that the inequalities are reversed.) Define w(ξ) ∈ Z and α(ξ)σ,i ∈
1
2Z by

(3.18) w(ξ) := −2a0(ξ)−
∑
σ,i

a(ξ)σ,i, α(ξ)σ,i = −a(ξ)σ,n+1−i+
n+ 1− 2i

2
.

View $∞ as a character C× → C× by identifying E ⊗Q R ' C via τE .

Note that $∞(z) = (z/z)δ/2 for an odd number δ ∈ Z, as $∞ extends the sign

character on R×. Let (γ(ξ)σ,i) be any permutation of (α(ξ)σ,i) by an element

of Ω such that

γ(ξ)σ,1 > · · · > γ(ξ)σ,n1 , γ(ξ)σ,n1+1 > · · · > γ(ξ)σ,n

and put

β(ξ)σ,i =

®
γ(ξ)σ,i − ε(n− n1) · δ2 , if 1 ≤ i ≤ n1,

γ(ξ)σ,i − ε(n− n2) · δ2 , if n1 < i ≤ n.

Consider a discrete L-parameter ϕH : WR → LH sending z ∈WC toÅ
(zz)−w(ξ)/2(z/z)(N(n1,n2)δ−

∑
σ,i a(ξ)σ,i)/2,

Ä
(z/z)β(ξ)σ,i

ä
σ∈Φ+

C ,1≤i≤n

ã
o z,



GALOIS REPRESENTATIONS 1675

where ((z/z)β(ξ)σ,i)1≤i≤n for each σ embeds into the diagonal of GLn1,n2(C) in

an obvious way. So ϕξ := η̃ ◦ ϕH sends z ∈WC to(zz)−w(ξ)/2(z/z)−
∑

σ,i a(ξ)σ,i/2,

â
(z/z)γ(ξ)σ,1 0 · · · 0

0 (z/z)γ(ξ)σ,2 0
...

... 0
. . . 0

0 · · · 0 (z/z)γ(ξ)σ,n

ì
σ∈Φ+

C

 o z.

It is not hard to check that ϕξ is (up to equivalence) the discrete L-parameter

for Πdisc(G(R), ξ∨), which justifies our notation for ϕξ. (Use the characterizing

properties of ϕξ in §4.3.)

The element ω∗ = ω∗(ϕH) ∈ Ω∗ is easy to describe in terms of γ(ξ)σ,i’s.

It is the unique element of Ω∗ such that

(3.19) γ(ξ)σ,ω∗(1) > · · · > γ(ξ)σ,ω∗(n), ∀σ ∈ Φ+
C .

This description of ω∗ easily follows from the discussion of [Kot90, pp. 184–

185].

Recall that π ∈ Πdisc(G(R), ξ∨) are parametrized by ωπ ∈ Ω/ΩR. (We will

confuse ωπ with any of its representatives in Ω.) Note that |Ω/ΩR| = n. We

may write

Πdisc(G(R), ξ∨) = {π1, . . . , πn},

where πi is characterized as follows: if we write ωπi = (ωπi,σ)σ∈Φ+
C

, then ωπi,τ is

an element of the permutation group Sn that takes 1 to i. (The last condition

determines ωπi as an element of Ω/ΩR.)

We will consider h : RC/RGm → G factoring through T . Suppose that on

R-points h : C× → T (R) is given by (compare with (5.1))

z 7→ (z, (z, z, . . . , z︸ ︷︷ ︸
n−1

)σ=τ , (z, . . . , z︸ ︷︷ ︸
n

)σ 6=τ ).

We have a natural identification “TGal(C/R) = C× × ({±1}n)Φ+
C so that µh ∈

X∗(“TGal(C/R)) (defined on page 167 of [Kot90]) sends each element (λ, (tσ,i))

of “T to λtτ,1. In particular,

(3.20) 〈µh, sn1,n2〉 = 1.
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Recall from [Kot90, p. 175] that for each ω∈Ω, the character aω∈X∗(“TGal(C/R))

is defined by aω := ωµh − µh. Hence

aω(λ, (tσ,i)) = t−1
τ,1tτ,ω(1).

The following computation is immediate.

(3.21) 〈aω∗ωπi , sn1,n2〉 =

®
1, if 1 ≤ i ≤ n1,

−1, if n1 < i ≤ n.

4. Twisted trace formula and base change

In this section we review the twisted trace formula and the base change

for the groups G~n and G~n. The twisted trace formula is due to Arthur and

various results on base change are due to Clozel and Labesse, who also studied

the case of unitary groups in more detail. Our strategy basically follows theirs

with minor differences for unitary similitude groups. Throughout Section 4 we

assume that

(4.1) RamF/Q ∪ RamQ($) ⊂ SplF/F+,Q.

For each prime p, fix a field isomorphism ιp : Qp
∼→ C. Also fix an

embedding ι : Q ↪→ C, which gives an embedding ι−1
p ι : Q ↪→ Qp for each p.

Choose τ : F ↪→ C and define Φ+
C and Φ−C as in the last section. For each

prime p ∈ SplF/F+,Q, define Φp := HomQ(F,Qp), Φ+
p := ι−1

p Φ+
C , Φ−p := ι−1

p Φ−C .

Let Vp be the set of places of F above p. Let V+
p be the image of Φ+

p under

the natural map Φp → Vp. Then Vp = V+
p
∐
cV+

p .

Let # : RF/QGL~n 7→ RF/QGL~n denote the map g 7→ Φ~n
tg−cΦ−1

~n . Define

(4.2) G+
~n := (RE/QGL1 ×RF/QGL~n)o {1, θ},

where θ(λ, g)θ−1 = (λc, λcg#). Denote by G0
~n and G0

~nθ the cosets of {1} and

{θ} in G+
~n so that G+

~n = G0
~n

∐G0
~nθ. Recall that G~n was defined in the last

section. There is a natural Q-isomorphism G~n
∼→ G0

~n which may be described

on the R-points (for any Q-algebra R) of the underlying groups as

(4.3) (E ⊗Q R)× ×GL~n(F ⊗Q E ⊗Q R)→ (E ⊗Q R)× ×GL~n(F ⊗Q R)

induced by the linear map f ⊗ e 7→ fe from F ⊗Q E to F . The isomorphism

G~n
∼→ G0

~n extends to G~n o Gal(E/Q)
∼→ G+

~n so that c ∈ Gal(E/Q) maps

to θ, where Gal(E/Q) acts on G~n in the obvious way. So we will use G~n, G~nθ
interchangeably with G0

~n, G0
~nθ by abuse of notation.

From now on, we often write G for G~n, G for G~n, Φ for Φ~n and BC for

BC~n until the end of this section, unless we specify otherwise. We caution the

reader that from Section 5, the symbol G denotes an inner form of Gn.
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4.1. θ-stable representations. Let v be a place of Q. We say that (Πv, V ) ∈
Irr(G(Qv)) is θ-stable if (Πv, V ) ' (Πv ◦ θ, V ) as representations of G(Qv). In

that case an easy application of Schur’s lemma enables us to chooseAΠv : V
∼→V

which induces Πv
∼→ Πv ◦ θ and satisfies A2

Πv
= id. The last condition pins

down AΠv up to sign. We will say that such AΠv is normalized. In Sections 4.2

and 4.3, a specific normalization A0
Πv

will be introduced.

Let S be a finite set of places of Q. Similarly ΠS ∈ Irr(G(AS)) is called

θ-stable if ΠS ' ΠS ◦ θ, in which case we denote by AΠS an intertwining oper-

ator such that A2
ΠS

= id. Denote by Irrθ-st(G(Qv)) (resp. Irrθ-st(G(AS))) the

subset of Irr(G(Qv)) (resp. Irr(G(AS))) consisting of θ-stable representations.

Given a θ-stable representation (Πv, V ) and AΠv : Πv
∼→ Πv ◦ θ, we can

produce a representation (Π+
v , V ) of G+(Qv) by setting Π+

v (g) := Πv(g) and

Π+
v (θ) := AΠv . Conversely, a representation Π+

v of G+(Qv) yields Πv :=

Π+
v |G(Qv) ∈ Irrθ-st(G(Qv)) and a normalized operator AΠv := Π+

v (θ).

We may write Π ∈ Irr(G(A)) as Π = ψ ⊗ Π1 for a continuous character

ψ : A×E/E× → C× and Π1 ∈ Irr(GL~n(AF )), corresponding to the isomorphism

G(A) ' GL1(AE) × GL~n(AF ). Denote by ψΠ1 the central character of Π1.

Corresponding to ~n = (n1, . . . , nr), write ψΠ1 = ψ1 ⊗ · · · ⊗ ψr. It is easy to

verify that Π is θ-stable if and only if

• (Π1)∨ ' Π1 ◦ c and

• ∏r
i=1 ψi|A×E = ψc/ψ.

4.2. Local base change and BC-matching functions at finite places. For

each finite place v, we say that fv ∈ C∞c (G~n(Qv)) and φv ∈ C∞c (G~n(Qv)) are

BC-matching functions, or φv is a BC-transfer of fv, if they are “associée” in

the sense of [Lab99, 3.2]. (This is nonstandard terminology.) Similarly we will

define in Section 4.3 the notion of BC-matching for a pair of functions f∞ on

G~n(R) and φ∞ on G~n(R) which are compactly supported modulo AG,∞. The

notion of BC-matching functions obviously extends to the adelic case.

We are going to explain case-by-case how to find a BC-transfer φv of each

fv and how to define the local base change map BC~n. The BC-transfer and

BC~n are closely related via character identities. We will define normalized

intertwining operators A0
Πv

for θ-stable representations Πv in each case.

Case 1: v ∈ UnrF/Q and v /∈ RamQ($). Let BC∗~n : H ur(G(Qv)) →
H ur(G(Qv)) be the dual map of the L-morphism BC~n defined in Section 3.1.

Define a map BC~n : Irrur(G(Qv)) → Irrur,θ-st(G(Qv)) which is uniquely char-

acterized by the following identity: for each πv ∈ Irrur(G(Qv)) and fv ∈
H ur(G(Qv)),

(4.4) χBC~n(πv)(fv) = χπv(BC∗~n(fv)).
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It is routine that BC~n(πv) is θ-stable, but it is not always true that BC~n is sur-

jective onto Irrur,θ-st(G(Qv)). (The reason for the latter is essentially the same

as in [Min, Rem. 4.3], which treats unitary groups.) If v ∈ UnrF/Q ∩ SplE/Q,

the injectivity of BC~n is easily checked. (For instance, use formula (4.8) for

BC~n.) However BC~n is not injective in general.4 When Πv ∈ Irrur,θ-st(G(Qv)),
we define A0

Πv
: Πv

∼→ Πv ◦ θ as the one acting on ΠKvv as +1 (rather than

−1). (The hyperspecial subgroup Kv defined in §3.1 is clearly θ-stable.) If

Πv = BC(πv), then (4.4) implies

tr (Πv(fv)A
0
Πv) = χΠv(fv) = χπv(BC∗~n(fv)).

Suppose a finite set of places S contains RamF/Q ∪ RamQ($) ∪ {∞}.
For each ΠS ∈ Irrur,θ-st(G(AS)), denote by A0

ΠS
: ΠS ∼→ ΠS ◦ θ the unique

intertwining operator which acts on (ΠS)K
S

as +1. If ΠS = BC~n(πS), then

(4.4) implies that

(4.5) tr (ΠS(fS)A0
ΠS ) = χπS (BC∗~n(fS)).

Case 2: v ∈ SplF/F+,Q (v ∈ SplE/Q or v /∈ SplE/Q). There are natural

isomorphisms

G(Qv)'Q×v ×
∏
x∈V+

v

GL~n(Fx),(4.6)

G(Qv)'E×v ×
∏
x∈V+

v

GL~n(Fx)×
∏
x∈V−v

GL~n(Fx).(4.7)

If v /∈ SplE/Q, then θ acts on G(Qv) as (λ, g+, g−) 7→ (λc, λcg#
− , λ

cg#
+ ). If

v ∈ SplE/Q, then write λ = (λ+, λ−) under E×v ' E×u ×E×uc where u = x|E for

any x ∈ V+
v . Then θ sends (λ+, λ−, g+, g−) to (λ−, λ+, λ−g

#
− , λ+g

#
+ ).

We define BC~n : Irr(G(Qv)) → Irrθ-st(G(Qv)). Write πv ∈ Irr(G(Qv))
as πv,0 ⊗ πv,+ on the underlying vector space W0 ⊗W . Define BC~n(πv) on

W0 ⊗W ⊗W by

πv,0 ⊗ πv,0ψπv,+ ⊗ πv,+ ⊗ π
#
v,+, if v ∈ SplE/Q,(4.8)

(πv,0 ◦NEv/Qv)ψ
c
πv,+ ⊗ πv,+ ⊗ π

#
v,+, if v /∈ SplE/Q,(4.9)

where π#
v,+(g) := πv,+(g#). In particular π#

v,+ ' π∨v,+ ◦ c. Define A0
BC(πv) :

BC(πv)
∼→ BC(πv) ◦ θ by w0 ⊗ w+ ⊗ w− 7→ w0 ⊗ w− ⊗ w+.

More generally consider Πv = Πv,0⊗Πv,+⊗Πv,− ∈ Irr(G(Qv)), according

to (4.7). If v ∈ SplE/Q, write Πv,0 = Πv,0,+⊗Πv,0,− in view of E×v ' E×u ×E×uc .

4Suppose that v is not split in E and that the multiplier map G(Qv)→ Q×v is surjective.

Then π � π ⊗ χEv/Qv but BC~n(π) ' BC~n(π ⊗ χEv/Qv ), where χEv/Qv is the quadratic

character of Q×v with kernel E×v , viewed as a character of G(Qv) via the multiplier map.
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We see that Πv is θ-stable if and only if

Πv,0,+ = Πv,0,−ψΠv,− , Πv,+ ' Π#
v,−, if v ∈ SplE/Q,(4.10)

Πv,0 = Πc
v,0ψ

c
Πv,+ψΠv,− , Πv,+ ' Π#

v,−, if v /∈ SplE/Q.(4.11)

For a θ-stable Πv, choose β : Πv,+
∼→ Π#

v,−. The same map on the underlying

vector spaces induces β# : Π#
v,+

∼→ Πv,−. Define A0
Πv

by w0 ⊗ w+ ⊗ w− 7→
w0 ⊗ (β#)−1(w−) ⊗ β(w+). It is easy to check that A0

Πv
is an isomorphism

from Πv to Πv ◦ θ and that (A0
Πv

)2 = id.

Consider fv ∈ C∞c (G~n(Qv)) of the form fv = fv,0 · fv,+ · fv,− with respect

to the decomposition (4.7). If v /∈ SplE/Q, define φv = BC∗(fv) by

φv(λλ
c, g)

=

∫
E×v /Q×v ×

∏
x∈V+

v
GL~n(Fx)

fv,0(αc−1λ)fv,+(αc−1λ−cgh−1)fv,−(h#) dαdh

and φv(λ0, g) = 0 if λ0 /∈ NEv/Qv(E
×
v ). If v splits in E, define φv by the same

formula except that the integrand is replaced by

fv,0(αc−1λ)fv,+(αc−1λ−1
− gh−1)fv,−(h#).

The Haar measure used above is chosen to be compatible with the Haar mea-

sures on G(Qv) and G(Qv) fixed in Section 3.1. More concretely, the quotient

measure on E×v /Q×v is given by the Haar measures on E×v and Q×v for which

O×Ev and Z×v have volume 1, respectively. The measure on each GL~n(Fx) is

such that GL~n(OFx) has volume 1.

It is shown by an elementary calculation exactly analogous to the proof of

[Rog90, Prop. 4.13.2(a)] (but our case is a little more tedious as it is necessary

to take care of similitude), that φv and fv are BC-matching functions and that

(4.12) trπv(φv) = trπv(BC∗(fv)) = tr (BC(πv)(fv)A
0
BC(πv))

for every πv ∈ Irr(G(Qv)). If v splits in E, it is straightforward to check that

BC is injective and that BC∗ is surjective.

Remark 4.1. The above discussion is consistent in the following sense.

Suppose v∈UnrF/Q∩SplF/F+,Q and v /∈RamQ($). For every πv∈ Irrur(G(Qv)),
BC~n(πv) is isomorphic in Cases 1 and 2. If Πv ∈ Irrur(G(Qv)) is θ-stable, it is

easily verified that the two definitions of A0
Πv

coincide. Furthermore, for each

fv ∈ H ur(G(Qv)) there is no ambiguity about φv since the two definitions of

φv in Cases 1 and 2 coincide.

4.3. Base change of discrete series at infinity. Recall that throughout

Section 4 our convention is to write G = G~n and G = G~n unless stated

otherwise. Let ξ be an irreducible algebraic representation of GC. Consider

the natural isomorphism G(C) = G(C ⊗Q E) ' G(C) × G(C), induced by
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C⊗Q E
∼→ C× C mapping z ⊗ e to (zτ(e), zτ c(e)). Define a representation Ξ

of GC by Ξ := ξ ⊗ ξ. We can extend Ξ to a representation Ξ+ of G+(C) by

defining Ξ+(θ) as v1 ⊗ v2 7→ v2 ⊗ v1 on the underlying vector space for ξ ⊗ ξ.
We say that Π∞ ∈ Irrθ-st(G(R)) is θ-discrete (cf. [AC89, p. 17]) if Π∞

is tempered and not a subquotient of any parabolic induction from a θ-stable

tempered representation of a proper θ-stable Levi subgroup of G(R). For a

maximal torus T of G contained in K∞, define d(GR) := D(T,G;R) in the

notation of [Lab99, 1.8]. The value of d(GR) is independent of the choice of T.

Denote by AGθ the split component of the centralizer of θ in AG. So AGθ is

a Q-torus contained in AG. Set AGθ,∞ := AGθ(R)0. Note that AGθ,∞ = AG,∞
via the inclusion G(R) ↪→ G(R). Let C∞c (G(R), χξ) denote the space of smooth

functions G(R) → C which are bi-K∞-finite, compactly supported modulo

AG,∞ and transforms under AG,∞ by χξ. Let Irr(G(R), χ−1
ξ ) denote the subset

of Irr(G(R)) whose central character is the same as χ−1
ξ on AG,∞.

There exists a function fLef
Ξ ∈ C∞c (G(R), χξ) ([Lab91, Prop. 12], cf. [CL99,

Th. A.1.1]), which is a twisted analogue of the Euler-Poincaré function in Re-

mark 3.9, characterized by the following property: for each Π+
∞ ∈ Irr(G+(R))

whose restriction to AG,∞ is χ−1
ξ ,

(4.13) tr Π+
∞(fLef

Ξ ) =
∑
k

(−1)ktr (θ|Hk(Lie (G(R)/AG,∞),K∞,Π+
∞ ⊗ Ξ+),

where Π+
∞(fLef

Ξ ) :=
∫
G(R)/AG,∞

fLef
Ξ (g)Π+

∞(gθ)dg. If the infinitesimal characters

of Π∞ and Ξ do not coincide, then the right-hand side of (4.13) is zero since

the cohomology vanishes in all degrees (cf. [Wal88, Prop. 9.4.6]). Computing

the right-hand side of (4.13) as in [Lab, Lemma 4.10], we can prove that

there exists a unique irreducible θ-stable generic unitary representation ΠΞ ∈
Irr(G(R), χ−1

ξ ) such that tr Π+
Ξ (fLef

Ξ ) 6= 0 for any extension Π+
Ξ of ΠΞ. We

remark that an alternative proof of the existence of the function fLef
Ξ may be

given by the results of Delorme and Mezo ([DM08, Th. 3]). By the computation

as in the proof of [Clo91, Prop. 3.5], we have

(4.14) tr Π+
Ξ (fLef

Ξ ) = ±2n[F+:Q],

where the sign depends on the choice of an extension Π+
Ξ of ΠΞ. Let A0

ΠΞ
:

ΠΞ
∼→ ΠΞ ◦ θ denote the operator Π+

Ξ (θ), where Π+
Ξ is chosen so that the sign

in (4.14) is positive. Set

fG,Ξ := fLef
Ξ /d(GR) = fLef

Ξ /2n[F+:Q]−1.

(A direct computation with Galois cohomology shows d(GR) = 2n[F+:Q]−1.)

The function fG,Ξ is a stabilizing function in the sense of [Lab99, Def. 3.8.2]

and a cuspidal function in the sense of [Art88b, p. 538] by [CL99, Th. A.1.1].
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Remark 4.2. There is a direct product decomposition G(A) = G(A)1 ×
AGθ,∞ ([Art86, §1]). Put G(R)1 := G(R)∩G(A)1 and f1

G,Ξ := fG,Ξ|G(R)1 . Note

that the inclusion induces G(R)1 ∼→ G(R)/AG,∞ and that Π+
∞(fLef

Ξ ) in (4.13)

is the same as Π+
∞(fLef

Ξ |G(R)1) :=
∫
G(R)1 fLef

Ξ (g)Π+
∞(gθ)dg. Hence

(4.15) tr (ΠΞ(f1
G,Ξ) ◦A0

ΠΞ
) = 2,

where the trace is computed with respect to the action of G(R)1. We also see

that tr (Π+
∞(f1

G,Ξ)) = 0 for any Π+
∞ ∈ Irr(G+(R)) such that Π∞ is generic and

nonisomorphic to ΠΞ as a representation of G(R)1. (Here we need not assume

that Π∞ ∈ Irr(G(R), χ−1
ξ ).)

We claim that ΠΞ is the base change of the L-packet Πdisc(G(R), ξ∨) in

the following sense. Let ϕξ : WR → LG be the L-parameter (unique up to

equivalence) corresponding to Πdisc(G(R), ξ∨) ([Lan89, §3]). Let ϕΞ := ϕξ|WC .

Then it is easy to see that ΠΞ is the unique generic representation correspond-

ing to ϕΞ via the local Langlands classification for G(C) (cf. [Kna94]). The fact

that ϕξ is a discrete L-parameter implies that ΠΞ is θ-discrete. Conversely, ϕξ
is uniquely characterized by ΠΞ and χξ in the sense that there is a unique ϕξ
(up to equivalence) such that

• ϕξ|WC corresponds to ΠΞ by the local Langlands correspondence and

• WR
ϕξ→ LG→ LAG corresponds to a character of AG(R) which restricts

to χ−1
ξ on AG,∞. (The L-morphism LG → LAG is induced by the

canonical injection AG ↪→ G.)

Recall the notation φG,ξ = φϕξ from Section 3.5. We are about to ex-

plain that fG,Ξ and φG,ξ are BC-matching functions. Let δ ∈ G(R) be any

θ-semisimple element (i.e. δθ is semisimple in G+(R)) and γ ∈ G(R) be the

norm of δ ([Lab99, 2.4]). For such δ and γ, a direct computation shows that

(4.16) tr Ξ+(δθ) = tr ξ(γ).

Indeed, write δ = (δ1, δ2) ∈ G(C) ' G(C) × G(C) so that γ = δ1δ2. Let

A1 := Ξ(δ1), A2 := Ξ(δ2) and C := Ξ+(θ) so that A1, A2 ∈ End(ξ) and

C ∈ End(ξ ⊗ ξ). Recall that C is given by v1 ⊗ v2 7→ v2 ⊗ v1. Then (4.16)

boils down to the identity tr (A1 ⊗A2) ◦ C = trA1A2, which is an elementary

exercise in linear algebra.

Let Iδθ (resp. Iγ) denote the neutral component of the centralizer of δθ

in G(R) (resp. γ in G(R)). The R-groups Iδθ and Iγ are inner forms of each

other ([Lab99, Lemma 2.4.4]). Let Iδθ (resp. Iγ) denote an inner form of

Iδθ (resp. Iγ) which is compact modulo the center. Then Iδθ ' Iγ . Choose

compatible measures µIδθ , µIγ , µIδθ and µIγ on Iδθ, Iγ , Iδθ and Iγ , respectively.

We fixed a Haar measure µAG,∞ on AG,∞ in Section 3.1. Thus we obtain

quotient measures µIδθ/µAG,∞ and µIγ/µAG,∞ . We can compute stable orbital
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integrals as in [CL99, Th. A.1.1]. (They consider analogues of d(GR)φG,ξ and

d(GR)fG,Ξ, in case ξ and Ξ are trivial. For the computation of SO
G(R)
γ (φG,ξ),

one may also use [Kot92a, Lemma 3.1].) Since our normalization of Haar

measures is different from that of [CL99], we need to include the volume factors

in the values of stable orbital integrals:

SOG(R)
γ (φG,ξ) = µIγ/µAG,∞(Iγ(R)/AG,∞)−1tr ξ(γ),

SO
G(R)
δθ (fG,Ξ) = µIδθ/µAG,∞(Iδθ(R)/AG,∞)−1tr Ξ+(δθ).

We wrote SO
G(R)
γ (φG,ξ) and SO

G(R)
δθ (fG,Ξ) for Φ1

G(R)(γ, φG,ξ) and Φ1
G(R)(δ, fG,Ξθ),

respectively, in the notation of [CL99]. Observe that for any δ and γ as above,

SO
G(R)
δθ (fG,Ξ) and SO

G(R)
γ (φG,ξ) have the same value. Hence the functions fG,Ξ

and φG,ξ are BC-matching in the sense of Section 4.2.

4.4. Transfer for ζ̃n1,n2 and compatibility of transfers. Fix n1 and n2 with

n1 + n2 = n, n1 ≥ n2 > 0. Recall that ζ̃n1,n2 : LGn1,n2 → LGn was defined

in Section 3.2. Often ζ̃n1,n2 will be written as ζ̃ in this subsection. We would

like to give an explicit recipe for the transfer of functions and representations

with respect to ζ̃n1,n2 . Since Gn1,n2 and Gn are essentially products of general

linear groups, it is easy to work explicitly. Recall that we have given a Q-iso-

morphism G~n ' RE/QGL1 ×RF/QGL~n for ~n = (n) and ~n = (n1, n2). For each

place v of Q,

G~n(Qv) ' E×v ×GL~n(Fv).

Let Qn1,n2 := RE/QGL1 × RF/QPn1,n2 , a parabolic subgroup of Gn. Let χ$ :

Gn1,n2(A)→ C× be a character such that

(λ, g1, g2) ∈ A×E ×GLn1(AF )×GLn2(AF )

7→ $

(
λ−N(n1,n2)

2∏
i=1

NF/E(det(gi))
ε(n−ni)

)
.

For each fv ∈ C∞c (Gn(Qv)) and ΠM,v ∈ Irr(Gn1,n2(Qv)), define ζ̃∗(fv) ∈
C∞c (Gn1,n2(Qv)) and ζ̃∗(ΠM,v) ∈ Irr(Gn(Qv)) by

ζ̃∗(fv) := f
Qn1,n2
v · χ$,v, ζ̃∗(ΠM,v) := n-indGnQn1,n2

(ΠM,v ⊗ χ$,v).

(Here det is the product of the component for E×v with the determinant of the

component for GLn1,n2(Fv).) If fv ∈ H ur(Gn(Qv)), then ζ̃∗(fv) is no other

than the image of the unramified Hecke algebra morphism which is dual to ζ̃.

Lemma 3.3 implies that for every v,

(4.17) tr ΠM,v

Ä
ζ̃∗(fv)

ä
= tr

Ä
ζ̃∗(ΠM,v)

ä
(fv).

Now we check whether the transfers for η̃n1,n2 , ζ̃n1,n2 , BCn1,n2 and BCn

are compatible, case by case.
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Case 1: v ∈ UnrF/Q and v /∈ RamQ($). We have two commutative
diagrams as follows. The first one is the dual of the diagram (3.4), thus com-
mutative. Then the commutativity of the second one is easy to deduce from
the character relation (3.8), (4.5) and (4.17).
(4.18)

H ur(Gn(Qv))
ζ̃∗ //

BC∗
n

��

H ur(Gn1,n2
(Qv))

BC∗
n1,n2

��

Irrur(Gn(Qv)) Irrur(Gn1,n2
(Qv))

ζ̃∗oo

H ur(Gn(Qv))
η̃∗
// H ur(Gn1,n2(Qv)) Irrur(Gn(Qv))

BCn

OO

Irrur(Gn1,n2(Qv)).
η̃∗

oo

BCn1,n2

OO

Case 2: v ∈ SplF/F+,Q (v ∈ SplE/Q or v /∈ SplE/Q). Here we have similar
diagrams as in Case 1. All the maps are previously defined and we are inter-
ested in the commutativity. Note that we prefer to use Grothendieck groups
rather than the sets of isomorphism classes since parabolic induction (involved

in ζ̃∗ and η̃∗) can be reducible.
(4.19)

C∞c (Gn(Qv))
ζ̃∗ //

BC∗
n

��

C∞c (Gn1,n2
(Qv))

BC∗
n1,n2

��

Groth(Gn(Qv)) Groth(Gn1,n2
(Qv))

ζ̃∗oo

C∞c (Gn(Qv))
η̃∗
// C∞c (Gn1,n2(Qv)) Groth(Gn(Qv))

BCn

OO

Groth(Gn1,n2(Qv)).
η̃∗

oo

BCn1,n2

OO

It follows without difficulty from the definition of maps that the second

diagram is commutative. We claim that the first diagram is commutative (not

as functions but) as invariant distributions, in the following sense: for every

fv ∈ C∞c (Gn(Qv)) and πv ∈ Irr(Gn1,n2(Qv)),

(4.20) trπv
Ä
BC∗n1,n2

(ζ̃∗(fv))
ä

= trπv (η̃∗(BC∗n(fv))) .

To prove this, using earlier character identities, we may instead show that

tr
Ä
BC(πv)(ζ̃

∗(fv)) ◦A0
BC(πv)

ä
= tr

(
BC(η̃∗(πv))(fv) ◦A0

BC(η̃∗(πv))

)
.

This follows from Theorem 2 of [Clo84], when we note that A0
BC(πv) gives

rise to A0
BC(η̃∗(πv))

as in Section 6.2 of that article.

Remark 4.3. Again, Cases 1 and 2 are compatible if v∈UnrF/Q∩SplF/F+,Q,

v /∈ RamQ($) and representations are unramified.

Remark 4.4. When v = ∞, there is the following analogue of (4.18) and

(4.19) on the representation side. Let ϕH,∞ be a discrete L-parameter of

Gn1,n2(R) and ϕ∞ be the L-parameter of Gn(R) given by ϕ∞ = η̃ϕH,∞. Write

BC(ϕH,∞) (resp. BC(ϕ∞)) for the image of base change, namely the represen-

tation of Gn1,n2(C) (resp. Gn(C)) corresponding to ϕH,∞|WC (resp. ϕ∞|WC).

Then we have ζ̃∗(BC(ϕH,∞)) = BC(ϕ∞). This is a simple consequence of the
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fact that (3.4) is commutative. As for test functions, we do not need an exact

analogue of (4.18) or (4.19). (We have a loose analogue.) The discussion of

Remark 4.4 remains valid if Gn is replaced with any inner form.

4.5. Simplification of the twisted trace formula. The twisted trace formula

by Arthur ([Art88a], [Art88b]) is unconditional thanks to work of Kottwitz and

Rogawski ([KR00]) and recent work of Delorme and Mezo ([DM08]). (The two

issues were the trace Paley-Wiener theorem over archimedean fields for non-

connected groups and whether the distributions in the invariant trace formula

are supported on characters; cf. [Art88a, p. 330].) Let f ∈ C∞c (G(A), χξ). The

function fθ on Gθ(A) is simply defined as the right translation of f by θ. The

twisted trace formula for Gθ is an equality between

(4.21) IGθspec(fθ) = IGθgeom(fθ),

where each side is as defined in Sections 3 and 4 of [Art88b]. Recall from

Remark 4.2 that there is a natural isomorphism G(A) ' G(A)1 × AGθ,∞. Let

f1 denote the restriction of f to G(A)1. Actually both sides of (4.21) can be

evaluated in terms of f1, as remarked in [Art88b, p. 504].

Let ξ and Ξ be as in Section 4.3. Define STG
e (φ) for φ ∈ C∞c (G(A), χξ) by

(4.22) STG
e (φ) :=

∑
γ

τ(G) · SOG(A)
γ (φ),

where γ runs over a set of representatives for Q-elliptic semisimple stable con-

jugacy classes in G(Q).

Fix a finite set S ⊂ SplF/F+,Q containing RamF/Q∪RamQ($). (See (4.1).)

From here until the end of Section 4, we assume that φS ∈H ur(G(AS)) (resp.

φSfin
∈ C∞c (G(ASfin

))) is a BC-transfer of fS (resp. fSfin
) according to Case 1

(resp. Case 2) of Section 4.2. The functions

φ := φS · φSfin
· φG,ξ and f := fS · fSfin

· fG,Ξ
are BC-matching functions.

Proposition 4.5. Suppose that [F+ : Q] ≥ 2. Then

IGθgeom(fθ) =
∑
δ

vol(Iδθ(Q)AGθ,∞\Iδθ(A))O
G(A)
δθ (f),

where δ runs over a set of representatives for θ-elliptic θ-conjugacy classes in

G(Q). (Here Iδθ := ZG(δθ)0.)

Remark 4.6. In case F+ = Q, the right-hand side has to include more

terms. See [Mor10, Prop. 8.2.3].

Proof. We know that f is cuspidal at ∞ and that O
G(A)
δθ (f) = 0 if δ is not

θ-elliptic in G(R) by [CL99, Th. A.1.1]. This is a twisted analogue of the first

condition of [Art88b, Cor. 7.4].
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To prove the proposition, it suffices to show that IGθM (δθ, fθ) = 0 for every

proper Levi subset M ⊂ Gθ and semisimple element δ ∈ M(Q). Once we

have done this, we can use the argument in the proof of Theorem 7.1(b) and

Corollary 7.4 of [Art88b] to finish the proof, even though f is not necessarily

cuspidal at any other place than ∞. (The assumption that f is cuspidal at

two places was imposed by Arthur to guarantee that IGθM (δθ, fθ) = 0.)

Since fG,Ξ is a cuspidal function, the splitting formula ([Art88a, Prop. 9.1])

implies that

IGθM (δθ, fθ) =
∑
L

dGθM (L,G)ÎLM(δθ, (f∞θ)L)IGθM (δθ, fG,Ξθ)

in Arthur’s notation, where the sum is taken over the Levi subsets L of Gθ con-

taining M. (Note that IGθM (δθ, fG,Ξθ) = ÎGθM (δθ, fG,Ξθ); cf. [Art88a, Cor. 8.3].)

The point is that IGθM (δθ, fG,Ξθ) = 0 unless M is a cuspidal Levi subset of

Gθ, as shown in the proof of [Mor10, Prop. 8.2.3]. So it suffices to prove that

Gθ does not have any proper cuspidal Levi subset. By the very definition of

proper cuspidal Levi subsets ([Mor10, §8.2]), we can reduce the proof to show-

ing that G has no proper cuspidal Q-Levi subgroups in the sense of [Mor10,

Def. 3.1.1]. Recall that a Levi subgroup M ⊂ G is cuspidal if MR has no

maximal tori which are anisotropic modulo (AM )R. Suppose that M  G.

Let G1 denote the kernel of the multiplier map G → Gm. Consider the Levi

subgroup M1 := M ∩G1 of G1. For notational convenience we prove that M1

is not cuspidal, as the same proof will show M is not cuspidal. The fact that

M1  G1 implies that M1 contains a direct factor of the form D = RF/QGLa
for some a ∈ Z>0. But the center of D ×Q R contains a split torus of rank

[F+ : Q] > 1 whereas AD is a rank 1 torus. So M1 cannot be cuspidal. �

Corollary 4.7 ([Lab, Th. 4.13]; cf. [Lab99, Th. 4.3.4]). Let τ(G) be the

Tamagawa number of G (cf. Lemma 3.1). Suppose that [F+ : Q] ≥ 2. Then

IGθgeom(fθ) = τ(G)−1 · STG
e (φ).

Proof. We use the notation of [Lab99]. (The only unfortunate difference

is that his use of the symbols f and φ is opposite to ours.) By Théorème 4.3.4

of Labesse,

TGθe (fθ) =
τ(G)JZ(θ)

τ(G)d(G,G)
· STG

e (φ).

Comparing the definition of TGθe ([Lab99, §4.1]) with the formula of Proposi-

tion 4.5, we see that TGθe (fθ) equals JZ(θ)·IGθgeom(fθ). By Lemma 3.1, τ(G) = 1.

Since H1(R,G) is trivial, d(G,G) = 1 (which is defined on [Lab99, p. 45]). So

the proof is complete. �



1686 SUG WOO SHIN

In view of (4.2), fix a minimal Levi subgroup

M0 := RE/QGL1 ×RF/Q(i(1,...,1)(GL1 × · · · ×GL1︸ ︷︷ ︸∑
i
ni

))

of G = G~n. Let M be a Q-Levi subgroup of G containing M0. (We do not

assume that M is θ-stable.) Choose a parabolic subgroup Q containing M as

a Levi subgroup. The group WGθ(aM )reg defined on [Art88b, p. 517] acts on

the set of parabolic subgroups which have M as a Levi component. For each

s ∈WGθ(aM )reg, let Qs denote s(Q). Choose a representative w ∈ Gθ(Q) of s.

Note that Φ−1θ acts on G by (λ, g) 7→ (λc, λc tg−c). So Φ−1θ preserves any

M containing M0. In particular, Φ−1θ defines an element of WGθ(aM )reg for

each M .

Consider the regular representation RM,disc of M(A) on

L2
disc(M(Q)AM,∞\M(A)).

Noting that s acts on M , let RM,disc(s) denote the action φ 7→ φ ◦ s on the

underlying space for RM,disc. Let x 7→ ρQ(s, 0, x) denote the representation

n-indGQ(RM,disc) of G(A). Arthur defined the operators ρQ(s, 0, xθ) (for x ∈
G(A)) and

ρQ(s, 0, f1θ) : n-indGQ(RM,disc)→ n-indGQs(RM,disc)

on page 516 of [Art88b]. These operators are G(A)1-equivariant if the G(A)1-

action on the target is twisted by θ. The decomposition RM,disc = ⊕ΠMΠM

into irreducible subrepresentations yields a decomposition of operators

ρQ(s, 0, f1θ) = ⊕ΠMρQ(s, 0, f1θ; ΠM ).

If ΠM is such that ΠM ' Πs
M , then ρQ(s, 0, f1θ; ΠM ) can be seen as a compo-

sition of the following operations

(4.23)

n-indGQ(ΠM )
ρQ(s,0,θ;ΠM )

// n-indGQs(ΠM )θ
n-indG

Qs (ΠM )(f1)
// n-indGQs(ΠM )θ ,

where the first arrow is described as follows. Let V (ΠM ) be the underlying

vector space for ΠM . Then ρQ(s, 0, θ; ΠM ) is an isomorphism sending ψ :

G(A)→ V (ΠM ) to ψ′ which is defined by ψ′(g) = RM,disc(s)(ψ(w−1gθ)). This

map does not depend on the choice of w. Here n-indGQs(ΠM )θ denotes the

representation n-indGQs(ΠM ) ◦ θ. It is easy to see from Arthur’s description of

ρQ(s, 0, f1θ) that the following also holds:

(4.24) ρQ(s, 0, f1θ; ΠM ) = ρQ(s, 0, θ; ΠM ) ◦ n-indGQ(ΠM )θ(f1).

The intertwining operator MQ|Qs(0) sends

(4.25) n-indGQs(ΠM )θ → n-indGQ(ΠM )θ.
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As ΠM is unitary, n-indGQ(ΠM )θ is irreducible for any choice of Q ⊃ M and

MQ|Qs(0) is an isomorphism (cf. [MW89, p. 607 (3)]).

Proposition 4.8.

IGθspec(fθ)

=
∑
M

|WM |
|WG|

|det(Φ−1θ − 1)aGθM
|−1

∑
ΠM

tr
(
M
Q|QΦ−1θ(0)ρQ(Φ−1θ, 0, f1θ; ΠM )

)
,

where M runs over the Levi subgroups of G containing M0 and ΠM runs over

the irreducible Φ−1θ-stable subrepresentations of RM,disc. (By the multiplicity-

one theorem for general linear groups, each isomorphism class of ΠM con-

tributes to RM,disc only once.)

Remark 4.9. It is easy to check that n-indGQ(ΠM ) is θ-stable if ΠM is

Φ−1θ-stable.

Remark 4.10. Let r be the number of (nonzero) components in ~n, where

G = G~n. If M = G, the term |det(Φ−1θ − 1)aGθM
| in Proposition 4.8 is equal

to 2r. The same term equals 2r+1 if M is a maximal proper Levi subgroup

of G.

Proof. By Theorem 7.1(a) of [Art88b] (cf. pp. 516–517),

IGθspec(fθ) =
∑
M

|WM |
|WG|

∑
s

|det(s− 1)aGθM
|−1

∑
ΠM

tr
Ä
MQ|Qs(0)ρQ(s, 0, f1θ; ΠM )

ä
,

whereM is as above, s runs overWGθ(aM )reg, and ΠM runs over the irreducible

subrepresentations of RM,disc. The Weyl set WGθ(aM )reg is defined on page

517 of [Art88b] by the condition

(4.26) | det(s− 1)aGθM
| 6= 0

and a description of its elements will be recalled as the proof proceeds. It is

easy to see from Arthur’s description of ρQ(s, 0, f1θ) that only those ΠM such

that ΠM ' Πs
M contribute to the sum. The proof is complete if we show that

(4.27) tr (MQ|Qs(0)ρQ(s, 0, f1
G,Ξθ; ΠM,∞)) = 0

for any s 6= Φ−1θ (which may occur only when M 6= G). By (4.24), the left

side may be rewritten as

tr (MQ|Qs(0) ◦ ρQ(s, 0, θ; ΠM,∞) ◦ (n-indG~nQ (ΠM,∞))θ(f1
G,Ξ)).

Put Π := n-indG~nQ (ΠM,∞). Let A : Π→ Πθ denote the operator

MQ|Qs(0)ρQ(s, 0, θ; ΠM,∞).
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As noted earlier, Π is irreducible and A is an isomorphism. Hence A ◦ A is a

scalar operator on Π. Let AΠθ : Πθ ∼→ Π be a normalized intertwining operator

(which can also be viewed as Π
∼→ Πθ). To prove (4.27), we may instead show

(4.28) tr (Πθ(f1
G,Ξ)AΠθ) = 0.

We claim that if ΠM ' Πs
M for s 6= Φ−1θ, then the infinitesimal character

of Π is not regular. For convenience of notation, we prove the claim when

G = Gn as the proof is identical in the more general case G = G~n. In this

case M is isomorphic to Gm1,...,mr with
∑r
i=1mi = n (mi > 0). There is an

R-vector space

aGθM ' R⊕ R⊕ · · · ⊕ R︸ ︷︷ ︸
r

which is a quotient of Hom(X∗(AM ),R) by Hom(X∗(AGθ),R). An element

s ∈ WGθ(aM )reg can be represented by s = w(Φ−1θ), where Φ−1θ acts as

multiplication by −1 on aGθM and w acts as an element of the symmetric group

Sr which naturally acts on aGθM by permutation. By the assumption s 6= Φ−1θ,

we see that w is nontrivial. Write

ΠM,∞ =
⊗
σ∈ΦC

(ΠM,σ,1 ⊗ · · · ⊗ΠM,σ,r)

and w = c1 · · · ck (k ≥ 1), where ci are mutually disjoint nontrivial cycles in

Sr. The condition (4.26) implies that every ci is an odd cycle. By rearranging

mi’s if necessary, let c1 be the cycle 1→ 2→ · · · → a→ 1 for an odd number

a ≥ 3. Then ΠM ' Πs
M implies that

ΠM,1,σ ' Πθ
M,2,σc ' ΠM,3,σ ' Πθ

M,4,σc · · · .

This proves the claim since the isomorphism ΠM,1,σ ' ΠM,3,σ indicates that

the infinitesimal character of Π is not regular.

By the claim, if s 6= Φ−1θ and ΠM ' Πs
M , then the infinitesimal character

of Πθ is not equal to that of any irreducible finite-dimensional representation

of G~n. In view of Remark 4.2 and the remark below (4.13), we conclude that

(4.28) holds. �

Lemma 4.11. Suppose that M and ΠM are as in Proposition 4.8. Set

A′
n-indG

Q(ΠM )
:= M

Q|QΦ−1θ(0) ◦ ρQ(Φ−1θ, 0, θ; ΠM ),

which is an operator from n-indGQ(ΠM ) to n-indGQ(ΠM )θ (cf. Remark 4.9). Then

A′
n-indG

Q(ΠM )
is normalized, i.e. A′

n-indG
Q(ΠM )

◦A′
n-indG

Q(ΠM )
= id.

Remark 4.12. If M=G, things are simpler. Let us write Π for n-indGQ(ΠM )

= ΠM . It is easy to see that A′Π is given by RM,disc(Φ
−1θ), from the paragraph

between (4.23) and (4.24).
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Remark 4.13. The sign of an analogous intertwining operator in the case of

unitary groups is precisely computed in [CHLb] (especially §4.4) by a different

method where we rely on the so-called Whittaker normalization.

Proof. For simplicity we write s = Φ−1θ and Π = n-indGQ(ΠM ). We know

A′Π is an isomorphism since ρQ(s, 0, θ; ΠM )2 = id and MQ|Qs(0) is an isomor-

phism. (See the paragraph above Proposition 4.8.)

For ease of reference, we use [Art05] and its notation. Recall thatMQ|Qs(λ)

for λ ∈ a∗Q,C is defined by a precise global analogue of the first displayed for-

mula of page 135. (Also see page 128 of that article.) If λ lies in a certain

chamber, then the integral formula for MQ|Qs(λ) absolutely converges ([Art05,

Lemma 7.1]), and MQ|Qs(λ) is defined by analytic continuation in general. It

is a standard fact that the functional equation MQ|Qs(λ)MQs|Q(−λ) = id holds

for any λ ∈ a∗Q,C (page 129). So the lemma is proved if we show

MQ|Qs(λ) ◦ ρQ(s, 0, θ; ΠM ) = ρQ(s, 0, θ; ΠM ) ◦MQs|Q(−λ)

for λ = 0. It suffices to check this equality in the range of absolute conver-

gence. Now this is an easy exercise using our earlier explicit description of

ρQ(s, 0, θ; ΠM ) and the integral formula for MQ|Qs(λ). �

Recall that AG,∞ = AGθ,∞ ⊂ AG,∞. Let aG,∞ : G(A)� AG,∞ denote the

natural surjection. Define χ̃ξ : G(A)→ C× by χ̃ξ := χξ ◦aG,∞. In the notation

of the above lemma, set

(4.29) n-indGQ(ΠM )ξ := n-indGQ(ΠM )⊗ χ̃−1
ξ .

If ΠM is Φ−1θ-stable, then n-indGQ(ΠM )ξ is θ-stable. Observe that A′
n-indG

Q(ΠM )ξ

:= A′
n-indG

Q(ΠM )
serves as a normalized intertwining operator for n-indGQ(ΠM )ξ.

The following is easily deduced from Lemma 4.11.

Corollary 4.14. The second summand in Proposition 4.8 is computed as

tr
(
M
Q|QΦ−1θ(0)ρQ(Φ−1θ, 0, f1θ; ΠM )

)
=tr

Å
n-indGQ(ΠM )ξ(f) ◦A′

n-indG
Q(ΠM )ξ

ã
.

5. Shimura varieties and Igusa varieties

Throughout Sections 5 and 6, we fix a prime l and an isomorphism ιl :

Ql
∼→ C.

5.1.PEL datum for Shimura varieties. Consider a quintuple(F,∗,V, 〈·, ·〉, h),

called a PEL datum, given as follows:

• F is a CM field with an involution ∗ = c.

• V = Fn is an F -vector space.

• 〈·, ·〉 : V × V → Q is a nondegenerate Hermitian pairing such that

〈fv1, v2〉 = 〈v1, f
cv2〉 for all f ∈ F , v1, v2 ∈ V .



1690 SUG WOO SHIN

• h : C → EndF (V ) ⊗Q R is an R-algebra homomorphism such that

the bilinear pairing (v1, v2) 7→ 〈v1, h(i)v2〉 is symmetric and positive

definite.

Define a Q-group G by

G(R) = {(λ, g) ∈ R× × EndF⊗QR(V ⊗Q R) | 〈gv1, gv2〉
= λ(g)〈v1, v2〉 for all v1, v2 ∈ V ⊗Q R}

for any Q-algebra R. We see that the group Gn defined in Section 3 is a

quasi-split Q-inner form of G.

Fix an embedding τ : F ↪→ C. Suppose that F contains an imaginary

quadratic field E so that F = EF+, where F+ := F c=1. Define Φ+
C as in

Section 3.1. Until the end of Section 6 we further assume that

(i) n ∈ Z≥3 is odd,

(ii) [F+ : Q] ≥ 2,

(iii) RamF/Q ⊂ SplF/F+,Q (cf. (4.1)),

(iv) GQv is quasi-split at every finite place v, and

(v) for σ ∈ Φ+
C , (pσ, qσ) is (1, n − 1) if σ = τ and (0, n) otherwise. (See

§3.1 for Φ+
C .)

We list a few (but not all) implications of the above assumptions to guide

readers. The assumptions (ii) and (v) imply that G is anisotropic modulo the

center over Q and the reflex field for the PEL datum is F (viewed as a subfield

of C via τ). The assumption (iii) ensures that the local (quadratic) base change

is unconditional at every finite place, if ramification is suitably controlled, as

it may be defined in an elementary manner as in Section 4.2. (In general the

local base change should involve local L-packets and has not been established

yet.) By (iv) there is an isomorphism G×Q A∞ ' Gn ×Q A∞, which we fix.

The following lemma is standard. (cf. [HT01, Lemma I.7.1].) All the nec-

essary results in Galois cohomology that go into its proof are found in [Clo91,

§2]. The point is that when n is odd, there is no cohomological obstruction for

finding a global unitary (similitude) group with prescribed local isomorphism

classes.

Lemma 5.1. As above, let F = EF+ be a CM field. For any τ : F ↪→ C,

there exists a PEL datum (F, ∗, V, 〈, ·, ·, 〉, h) such that the associated group G

satisfies (iv) and (v) above.

More explicitly, we will choose h such that under the natural R-algebra

isomorphism EndF (V )R '
∏
σ∈Φ+

C
Mn(C), the map h sends

(5.1) z 7→

ÑÇ
zIpσ 0

0 z̄Iqσ

å
σ∈Φ+

C

é
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for some pσ, qσ ∈ Z≥0 such that pσ + qσ = n. There is a standard way to

associate a C-morphism µh : Gm → G ([Kot92b, Lemma 4.1(2)]). Under the

natural isomorphism GC ' GL1 ×
∏
σ∈Φ+

C
GLn, we may describe µh as

z 7→
Ç
z,

Ç
zIpσ 0

0 Iqσ

åå
.

Fix a prime p ∈ SplE/Q such that p 6= l. Also fix a place w of F above p. (In

fact the case p = l is considered once, only in establishing Proposition 5.3(v),

where we refer to Harris-Taylor for the proof.) Choose ιp : Qp
∼→ C such that

ι−1
p τ : F ↪→ Qp induces w. We will keep τ , p, w and ιp fixed until the end of

Section 6.1. Define V+
p as in the beginning of Section 4. For convenience, write

V+
p = {w1, . . . , wr}, where w1 = w. Define Φwi := HomQp(Fwi ,Qp). Using

ι−1
p ι : Q ↪→ Qp we get

WFw ↪→ Gal(Qp/Fw) ↪→ Gal(Q/F ).

Write µ = µιp for the Qp-morphism µh ×C,ι−1
p
Qp. Let µ0 : Gm → Gm

denote the identity map. For each wi define µwi : Gm → (RFwi/QpGLn) ×Qp
Qp '

∏
σ∈Φwi

(GLn)Qp
by

z 7→

Ñ
z,

Ç
zIpσ 0

0 Iqσ

å
σ∈Φwi

é
so that µ = (µ0, (µwi)1≤i≤r). We have pσ = 1 if σ is induced by ι−1

p τ and

pσ = 0 otherwise.

Let us describe the finite set B(GQp ,−µ). Using the isomorphism

(5.2) GQp ' GL1 ×
∏

1≤i≤r
RFwi/QpGLn,

we identify

B(GQp ,−µ) = B(GL1,−µp,0)×
∏

1≤i≤r
B(RFwi/QpGLn,−µwi)

and write b ∈ B(GQp ,−µ) as (b0, (bwi)). In view of [Shi09a, Ex. 4.3], there is

a bijection

(5.3) {h ∈ Z : 0 ≤ h ≤ n− 1} 1−1←→ B(GQp ,−µ),

where h corresponds to b(h) = (b0, (bwi)) which is given by b0 = b1,0, bw =

bn−h,h and bwi = b0,n for i > 1 in the notation of Section 2.4. When b = b(h),

(5.4) Jb(Qp) ' Q×p × (D×Fw,1/(n−h) ×GLh(Fw))×
∏
i>1

GLn(Fwi).

Recall from Section 3.1 that we defined the groups Kv ⊂ Gn(Qv) (v 6=∞)

and the measures µGn,v on Gn(Qv) for every v as well as µAGn,∞ on AGn,∞ =
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AG,∞. For each v ∈ UnrF/Q, define a hyperspecial subgroup Uhs
v of G(Qv) to

be the image of Kv under the isomorphism G(Qv) ' G~n(Qv) which was fixed

earlier. We transport µGn,v to a Haar measure µG,v on G(Qv) for each v 6=∞
via the last isomorphism. To fix a Haar measure on Jb(Qp), denote by Mb

(cf. §5.5) the quasi-split inner form of Jb over Qp. We may identify Mb(Qp)
with Q×p ×GLn−h,h(Fw)×∏i>1 GLn(Fwi). Choose a Haar measure on Mb(Qp)
so that Z×p × GLn−h,h(OFw) × ∏i>1 GLn(OFwi ) has volume 1. The measure

on Jb(Qp) is chosen to be compatible with the one on Mb(Qp) in the sense of

[Kot88, p. 631]. Also choose a Haar measure µG,∞ so that
∏
v µG,v/µAG,∞ is

the Tamagawa measure.

5.2. Shimura varieties and Igusa varieties. For each open compact sub-

group U ⊂ G(A∞), consider the following moduli problem:Ö
connected locally noetherian

F -schemes

with a geometric point

è
−→ (Sets)

(S, s) 7→ {(A, λ, i, η̄)}/ ∼,

where the quadruples on the right consist of

• A is an abelian scheme over S.

• λ : A→ A∨ is a polarization.

• i : F ↪→ End(A)⊗Z Q such that λ ◦ i(f) = i(f c)∨ ◦ λ, for all f ∈ F .

• η̄ is a π1(S, s)-invariant U -orbit of isomorphisms of F ⊗QA∞-modules

η : V ⊗QA∞
∼→ V As which take the pairing 〈·, ·〉 to the λ-Weil pairing

up to (A∞)×-multiples. (See [Kot92b, §5] for more explanation.)

• An equality of polynomials detOS (f |LieA) = detE(f |V 1) holds for

all f ∈ F , in the sense of [Kot92b, §5].

• Two quadruples (A1, λ1, i1, η̄1) and (A2, λ2, i2, η̄2) are equivalent if

there is an isogeny A1 → A2 taking λ1, i1, η̄1 to γλ2, i2, η̄2 for some

γ ∈ Q×.

Note that for each S and two geometric points s and s′ of S, the values of

(S, s) and (S, s′) under the above functor are canonically identified. So we can

remove the reference to geometric points. And then the above functor can be

extended to a functor on the category of all F -schemes in an obvious way. If U

is sufficiently small, this functor is representable by a quasi-projective variety

over F ([Kot92b, p. 391]), which we denote by ShU .

Recall that we fixed p and w in Section 5.1 such that p ∈ SplE/Q and

w|p. For each i (including i = 1), let Λi be a Uhs
p -stabilized OFwi -lattice in

V ⊗F Fwi . It can be assumed that Λi is self-dual with respect to 〈·, ·〉. For
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~m = (m1, . . . ,mr), define

Up(~m) := Up × Z×p ×
∏
i

ker(GLOFwi
(Λi)→ GLOFwi

(Λi/m
mi
Fwi

Λi)) ⊂ G(A∞),

where mFwi
is the maximal ideal of OFwi . We can construct an integral model

of ShUp(~m) over OFw , via the following analogue of the moduli problem in

[HT01, pp. 108–109]. (The (A, i)-compatibility condition there corresponds to

our determinant condition.)Ö
connected locally noetherian

OFw -schemes

with a geometric point

è
−→ (Sets)

(S, s) 7→ {(A, λ, i, η̄p, {αi}ri=1)}/ ∼,

where the tuples on the right consist of

• A is an abelian scheme over S.

• λ : A→ A∨ is a prime-to-p polarization.

• i : OF ↪→ End(A)⊗Z Z(p) such that λ ◦ i(f) = i(f c)∨ ◦ λ, ∀f ∈ OF .

• η̄ is a π1(S, s)-invariant Up-orbit of isomorphisms of F ⊗Q A∞,p-modules,

η : V ⊗Q A∞,p
∼→ V pAs which take the pairing 〈·, ·〉 to the λ-Weil pairing

up to (A∞,p)×-multiples.

• (Determinant condition) An equality of polynomials detOS (f |LieA) =

detE(f |V 1) holds for all f ∈ OF , in the sense of [Kot92b, §5].

• α1 : w−m1Λ1/Λ1 → A[wm1 ] is a Drinfeld wm1-structure.

• For i > 1, αi : (w−mii Λi/Λi)
∼→ A[wmii ] is an isomorphism of S-schemes

with OFwi -actions.

• Two tuples (A1, λ1, i1, η̄
p
1 , {αi,1}ri=1) and (A2, λ2, i2, η̄

p
2 , {αi,2}ri=1) are equiv-

alent if there is a prime-to-p isogeny A1 → A2 taking λ1, i1, η̄
p
1 , αi,1 to

γλ2, i2, η̄
p
2 , αi,2 for some γ ∈ Z×(p).

Because of our assumption on (pτ , qτ ) and the determinant condition, if p

is locally nilpotent in S then A[w∞] (resp. A[w∞i ] for i > 1) is a Barsotti-Tate

group of dimension 1 (resp. 0) if A is as above. (cf. [HT01, p. 108].) This

moduli problem is representable by a quasi-projective scheme over OFw (by

the argument of [Kot92b, p. 391]), which will be denoted by ShUp, ~m. In fact,

ShUp, ~m is projective and flat over OF,w for all ~m and smooth if m1 = 0. The

smoothness and flatness are proved exactly as in [HT01, Lem III.4.1]. The

projectivity follows from [Lan08, Th. 5.3.3.1, Rem 5.3.3.2].

The special fiber ShUp,~0 := ShUp,~0 ×OFw k(w) admits a Newton-polygon

stratification into k(w)-varieties Sh
(h)

Up,~0
, where the integer h runs over 0 ≤ h ≤

n − 1. The stratification can be described as in [HT01, p. 111] or [Man05,

p. 580]. (Roughly speaking, Sh
(h)

Up,~0
is the locus where the Barsotti-Tate OFw -

module A[w∞] has étale height h in the sense of [HT01, p. 59].) To compare
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the index sets for strata in two different references, note that each 0 ≤ h ≤
n−1 bijectively corresponds to an element b ∈ B(GQp ,−µ) under the bijection

described in (5.3). When b corresponds to h, we write Sh
(b)

Up,~0
for Sh

(h)

Up,~0
.

We may consider Igusa varieties in the sense of [Man05]. On page 576 of

that paper the so-called unramified hypothesis was imposed, which is equiva-

lent to assuming that p is unramified in F in our situation. The unramified

hypothesis ensures that Shimura varieties have smooth integral models over

OFw when no level structure is imposed at p. However the results of that

paper carry over to our case (where p may be ramified in F ): we substitute

ShUp,~0 and ShUp,~0 for XUp(0) and XUp(0) in Mantovan’s paper. (The same

applies to the Newton-polygon strata.) As remarked above, ShUp,~0 is smooth

over OFw . We use the results of Drinfeld as in [HT01, Ch. II] instead of the

Grothendieck-Messing theory. It is worth emphasizing that we can work with-

out the unramified hypothesis since we are in the special case where p splits in

E and the condition (v) of Section 5.1 is satisfied.

Let us briefly recall the definition of Igusa varieties. Choose any Barsotti-

Tate group Σb over Fp whose associated isocrystal with G-structure corre-

sponds to b in the sense of [Shi09a, §4] (cf. [RR96, 3.3–3.5]). Since any two

isogenous one-dimensional Barsotti-Tate groups over Fp with OFw -actions are

isomorphic, for each b there is a unique choice of Σb up to isomorphism (with

additional structure). As a consequence, each central leaf CΣb = CΣb,Up de-

fined in [Man05, §3] coincides with the corresponding stratum Sh
(b)

Up,~0
. We write

Igb,Up,m for the Igusa variety Jb,m (which depends on Up) defined in [Man05,

§4]. In general Igusa varieties depend on the choice of Σb, but Igb,Up,m only

depends on b in our case (up to isomorphism) since Σb is unique up to isomor-

phism. By [Man05, Prop. 4], Igb,Up,m are finite étale Galois coverings of Sh
(b)

Up,~0

and smooth over Fp.
An important point for us is that Theorem 22 of [Man05] (also [Man,

Th. 1]), stated as Proposition 5.2 below, works in our case. (We need to make

a small change: the Rapoport-Zink spaces should be viewed over the base O
F̂ur
w

rather than Ẑur
p .) This should not be surprising since Proposition 5.2 is a close

analogue (but formulated in a different language) of [HT01, Th. IV.2.9] which

works even when p is ramified in F .5

Even though the unramified hypothesis mentioned above is imposed in

[Shi09a] and [Shi09b], the results of those papers also carry over to our situation

without the hypothesis. Again, this is possible as the conditions (iii) and

5In our case, it is appropriate to say that Proposition 5.2 is essentially due to Harris and

Taylor. The beauty of Mantovan’s work lies in its nice reformulation and generalization of

their result.
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(v) in Section 5.1 are satisfied. In fact, the only place where the unramified

hypothesis is necessary is the proof of [Shi09a, Lemma 11.1]. In that proof, in

our setting without the unramified hypothesis, we know that dim(LieA[w∞i ])

is 1 if i = 1 and 0 if i > 1. Then we can argue as in the proof of [HT01, Lemma

V.4.1] (in which p may be ramified in F ) to prove Lemma 11.1 of [Shi09a]. (If

the dimensions of the Lie algebras were arbitrary, the argument would not

work.) Careful readers may check that the rest of the arguments in [Shi09a]

and [Shi09b] go through and the results of those papers remain true in our

situation.

Let ξ be an irreducible algebraic representation of G over Ql. Such a ξ

gives rise to a lisse l-adic sheaf on each ShU as well as on each Igb,Up,m. Let

Lξ denote those l-adic sheaves by abuse of notation. We write Igb and Sh for

the projective systems of varieties {Igb,Up,m} and {ShU}, respectively, where m

runs over Z>0 and Up (resp. U) over sufficiently small open compact subgroups

of G(A∞,p) (resp. G(A∞)). Define

Hk(Sh,Lξ) := lim−→
U

Hk(ShU×F F ,Lξ), Hk
c (Igb,Lξ) := lim−→

Up,m

Hk
c (Igb,Up,m,Lξ),

which are admissible representations of G(A∞) × Gal(F/F ) and G(A∞,p) ×
Jb(Qp), respectively. Define

H(Sh,Lξ) :=
∑
k

(−1)kHk(Sh,Lξ), Hc(Igb,Lξ) :=
∑
k

(−1)kHk
c (Igb,Lξ),

which belong to Groth(G(A∞) × Gal(F/F )) and Groth(G(A∞,p) × Jb(Qp)),
respectively. The space Hk(Sh,Lξ) is a semisimple G(A∞)-module and admits

a decomposition (cf. [HT01, p. 103])

(5.5) Hk(Sh,Lξ) =
⊕
π∞

π∞ ⊗Rkξ,l(π∞),

where π∞ runs over Irr(G(A∞)) and Rkξ,l(π
∞) is a continuous finite dimensional

representation of Gal(F/F ). Define Rξ,l(π
∞) :=

∑
k(−1)kRkξ,l(π

∞), viewed in

Groth(Gal(F/F )).

Let S be a finite set of places of Q containing p and∞. Set Sfin := S\{∞}.
Let R ∈ Groth(G(AS) × G′), where G′ is a topological group. A typical

situation is R = H(Sh,Lξ) with G′ = G(ASfin
)×Gal(F/F ) or R = H(Igb,Lξ)

with G′ = G(ASfin\{p}) × Jb(Qp). Write R =
∑
πS⊗ρ n(πS ⊗ ρ) · [πS ][ρ] where

n(πS ⊗ ρ) ∈ Z, and πS and ρ run over Irrl(G(AS)) and Irrl(G
′), respectively.

For a given πS , define R[πS ] ∈ Groth(G(AS)×G′) and R{πS} ∈ Groth(G′) by

R[πS ] :=
∑
ρ

n(πS ⊗ ρ) · [πS ][ρ], R{πS} :=
∑
ρ

n(πS ⊗ ρ) · [ρ],

where ρ runs over Irrl(G
′). This way we define H(Sh,Lξ)[π

S ], H(Sh,Lξ){πS},
H(Igb,Lξ)[π

S ] and H(Igb,Lξ){πS}.



1696 SUG WOO SHIN

Define a functor Mantb,µ : Groth(Jb(Qp)) → Groth(G(Qp) ×WFw) using

the notation of [Man05] by (cf. §2.2)

Mantb,µ(ρ) :=
∑
i,j≥0

(−1)i+j lim−→
Up⊂G(Qp)

ExtiJb(Qp)-smooth(Hj
c (Mrig

b,µ,Up
), ρ))(−D).

Here D is the dimension of Mrig
b,µ,Up

, (−D) denotes a Tate twist, and the limit

is taken over open compact subgroups Up of G(Qp). The following proposition

is Theorem 22 of [Man05] ([Man, Th. 1]), which holds in our case as explained

above.

Proposition 5.2. With the notation as above, there is an equality in

Groth(G(A∞)×WFw):

H(Sh,Lξ) =
∑

b∈B(GQp ,−µ)

Mantb,µ(Hc(Igb,Lξ)).

The Rapoport-Zink spaces Mrig
b,µ,Up

admit product decompositions into

Rapoport-Zink spaces of EL-types, corresponding to the decompositions (5.2),

b = (b0, (bwi)) and µ = (µ0, (µwi)) (cf. [Far04, 2.3.7.1, Ex. 2.3.21]). This

induces a corresponding decomposition of Mantb,µ. Namely, if we write each

ρ ∈ Irr(Jb(Qp)) as ρ0 ⊗ (⊗iρwi) according to (5.4), then

(5.6) Mantb,µ(ρ) = Mantb0,µ0(ρ0)⊗
Ä
⊗i Mantbwi ,µwi (ρwi)

ä
.

To the irreducible representation ξ, there is a way to attach a0(ξ) ∈ Z,

~a(ξ)σ ∈ Zn and w(ξ) ∈ Z for each σ ∈ Φ+
C as in (3.18) and the paragraph pre-

ceding (3.18). The following proposition is an analogue of [HT01, Prop. III.2.1],

except the last assertion comes from [HT01, Lemma III.4.2] (for which we allow

p = l). The proof of Harris and Taylor works in our case and will be omitted.

Proposition 5.3. Recall that τ : F ↪→ C and ιl : Ql
∼→ C. Let U∞ be the

centralizer of h in G(R).

(i) The following holds where π∞ runs over Πunit(G(R), ιlξ
∨). We denote

the (discrete) automorphic multiplicity by m(·).

dimRkξ,l(π
∞)

= | ker1(Q, G)|
∑
π

m(ιl(π
∞)⊗ π∞) dimHk(LieG(R), U∞, π∞ ⊗ ιlξ)

(ii) Let y be a prime of F not dividing l. For any σ ∈ WFy , each eigen-

value α of Rkξ,l(π
∞)(σ) satisfies α ∈ Q and |α|2 ∈ |k(y)|Z under any

embedding Q ↪→ C.

(iii) For almost all primes y of F , for all eigenvalues α of Rkξ,l and for all

embeddings Q ↪→ C, we have |α|2 = |k(y)|k+w(ξ).

(iv) Rkξ,l(π
∞) is potentially semistable at every y|l.
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(v) Suppose that a prime q splits in E and that q ∈ {p, l}. Write πq =

πq,0 ⊗ (⊗v∈V+
q
πv) and let y ∈ V+

q be the place determined by ι−1
q τ :

F ↪→ Qq . If πq,0 and πy are unramified, then Rkξ,l(π
∞) is crystalline

at y if q = l and unramified at y if q = p.

5.3. Stable trace formula for Igusa varieties. Recall that the Haar mea-

sures on G(A∞), Jb(Qp) and G~n(A)/AG~n,∞ are fixed (§§3.1 and 5.1), where

G~n denotes elliptic endoscopic groups for G. The goal of this subsection is to

state the stable trace formula for Igusa varieties, which was the main result

of [Shi09b].

We need to pin down transfer factors. For each G~n, fix ∆0
v(·, ·)

Gn
G~n

as in

Section 3.4 at each v 6=∞, where we take ∆0
v ≡ 1 for every v 6=∞ if ~n = (n).

Choose the transfer factor ∆v(·, ·)GG~n (v 6=∞) so that

(5.7) ∆v(·, ·)GG~n = ∆0
v(·, ·)GnG~n

via the isomorphism G×Q A∞ ' Gn×Q A∞ that was fixed in Section 5.2. We

choose the unique ∆∞(·, ·)GG~n such that the product formula∏
v

∆v(γH , γ)GG~n = 1

holds ([LS87, (6.4)]) for any matching pair (γH , γ) with γ ∈ G(Q), i.e., for any

semisimple γ ∈ G(Q) and any (G,H)-regular semisimple γH ∈ G~n(A) with

matching stable conjugacy classes.

Fix (j, B) as in Section 4.3, once and for all. Recall that ∆j,B was defined

in Section 3.5. Let e~n(∆∞) ∈ C× denote the constant such that

(5.8) ∆∞(γH , γ)GG~n = e~n(∆∞)∆j,B(γH , γ)

for any matching pair (γH , γ) ∈ G~n(R) × G(R). Note that e~n(∆∞) = 1 for

~n = (n). We claim that for each ~n = (n1, n2),

(5.9) e~n(∆∞) ∈ (C×)1,

namely that |e~n(∆∞)| = 1. The argument is as follows. It is not hard to

see from the definition (§3.4) that for every v 6= ∞, ∆v(γH , γ)GG~n is equal to

∆IV,v(γH , γ) up to (C×)1, the latter being the ratio of Weyl discriminants at

v defined in [LS87, §3.6]. By the product formula (5.7), the same is true for

v = ∞. On the other hand, ∆j,B(γH , γ) is also equal to ∆IV,∞(γH , γ) up to

(C×)1, as can be seen from the definition of [Kot90, p. 184]. (Note that χG,H
in that article is a unitary character in our case.) Hence the claim is proved.

Remark 5.4. Although a more careful analysis of transfer factors would

show that e~n(∆∞) ∈ {±1}, we have not attempted to show it here. Instead, we

prove the same fact with an ad hoc argument later in the proof of Theorem 6.1.
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There e~n(∆∞) shows up in the coefficient of a spectral identity, which must be

a real number, hence +1 or −1.

Let φ∞,p · φ′p ∈ C∞c (G(A∞,p) × Jb(Qp)) be a complex-valued function.

Assume that φ∞,p · φ′p is an acceptable function ([Shi09a, Def. 6.2]). For each

elliptic endoscopic group G~n for G, we recall the construction of the function

φ~nIg on G~n(A). We may assume that φ∞,p has the form φ∞,p =
∏
v 6=p,∞ φv as

the general case follows via finite linear combination.

For each place v 6= p,∞, let φ~nIg,v ∈ C∞c (G~n(Qv)) be a ∆v(·, ·)GG~n-transfer

of φv (§3.4). Set H := G~n in order to make the notation compatible with some

references. Put

(5.10) φ~nIg,p := hHp ,

where hHp is the function constructed from φ′p in Section 6.3 of [Shi09b], with

the convention of Section 8.1 of that paper. (The construction of hHp is briefly

recalled in (5.32).) Set

(5.11) φ~nIg,∞ := e~n(∆∞) · (−1)q(G)〈µh, s〉
∑
ϕH

det(ω∗(ϕH)) · φϕH

in the notation of Section 3.5, where ϕH runs over the equivalence classes of

L-parameters such that η̃ϕH ∼ φξ. Observe that φ~nIg,∞ is the function h∞ of

[Kot90, p. 186] multiplied by e~n(∆∞).

The latter constant is multiplied to make up for the difference between

∆∞ and ∆j,B.

The following stable trace formula is proved in [Shi09b, Th. 7.2]. It is

worth noting that the proof uses the fundamental lemma in an essential way.

Proposition 5.5. If φ∞,p · φ′p ∈ C∞c (G(A∞,p)× Jb(Qp)) is acceptable,

(5.12) tr (φ∞,p × φ′p|ιlHc(Igb,Lξ)) = | ker1(Q, G)|
∑
G~n

ι(G,G~n)STG~n
e (φ~nIg),

where the sum runs over the set Eell(G)of elliptic endoscopic triples (G~n, s~n, η~n).

Let us explain the constants ι(G,G~n). By definition,

ι(G,G~n) = τ(G)τ(G~n)−1|Out(G~n, s~n, η~n)|−1.

Recalling that n is odd, |Out(G~n, s~n, η~n)| equals 1 for any ~n = (n) or (n1, n2).

(It equals 2 if n is even and ~n = (n/2, n/2); cf. [Rog90, Prop. 4.6.1] in the case

of unitary groups.) Now it is easy to compute, by (3.3),

ι(G,G~n) =

®
1, if ~n = (n),

1/2, if ~n = (n1, n2).
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5.4. Stable trace formula for L2-automorphic spectrum of G~n(A). Keep

the convention from the last subsection. In particular we use the same Haar

measures and the same transfer factors as in Section 5.3.

By RG,ιlξ, we denote the regular representation of G(A) on the space

L2(G(Q)\G(A), χ−1
ιlξ

) consisting of those functions G(Q)\G(A) → C which

transform under AG,∞ by χ−1
ιlξ

and are square integrable modulo AG,∞. Let

π0
∞ ∈ Πdisc(G(R), ξ∨). For any φ∞ ∈ C∞c (G(A∞)), let (φ~n)∞ be a ∆(·, ·)GG~n-

transfer of φ∞. Denote by φ~nπ0
∞

the product of e~n(∆∞) with φ~nπ0
∞

given by

(3.13). Then φ~nπ0
∞

is a ∆(·, ·)GG~n-transfer of φπ0
∞

. (We have to multiply e~n(∆∞)

due to the difference of transfer factors. See formula (5.8).) The following

proposition is an analogue of Proposition 5.5, which is derived from the trace

formula for compact quotients by stabilizing geometric terms after Langlands

and Kottwitz ([Lan83], [Kot86]; especially Theorem 9.6 of the latter). Note

that Proposition 5.6 is unconditional, as is Proposition 5.5. Although the

stabilization of Langlands and Kottwitz relies on the fundamental lemma and

the transfer conjecture, these were settled by a recent proof of Ngô ([Ngô10]),

building on work of Waldspurger and others.

Proposition 5.6. The following equality holds, where the first sum is

taken over the set of isomorphism classes of π ∈ Irr(G(A)) and the second is

over the set Eell(G) of elliptic endoscopic triples (G~n, s~n, η~n):

trRG,ιlξ
Ä
φ∞ · φπ0

∞

ä
=
∑
π

m(π) · trπ(φ∞ · φπ0
∞

)(5.13)

=
∑
G~n

ι(G,G~n)STG~n
e ((φ~n)∞ · φ~nπ0

∞
).

Remark 5.7. The number | ker1(Q, G)| shows up in the formula (5.12) but

not in (5.13). This comes from the fact that our moduli varieties ShU over F

are | ker1(Q, G)|-copies of the usual canonical models of Shimura varieties. See

[Kot92b, §8] for explanation.

Remark 5.8. Proposition 5.6 will not be used in this paper until the proof

of Corollary 6.5.

5.5. Definition of n-Redb~n. In Section 5.5 we will freely use notation and

terminology from [Shi09b], especially Section 6 there.

For each (H, s, η) = (G~n, s~n, η~n) in Eell(G), recall that there is a finite set

Eeff
p (Jb, G;H) consisting of (isomorphism classes of) triples (MH , sH , ηH). Such

an (MH , sH , ηH) is a G-endoscopic triple for Jb. The Qp-group MH is equipped

with a Qp-morphism νMH
: D → MH and a finite set I(MH , H) consisting of

certain Qp-embeddings MH ↪→ H whose images are Levi subgroups of H. We

will use the normalization of transfer factors ∆(·, ·)Mb
MH

and ∆(·, ·)JbMH
as in
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[Shi09b, Eq. (8.6)]. The constant cMH
∈ {±1}, assigned to each (MH , sH , ηH),

may be evaluated as in Section 8.1 of the same paper. As the numbers cMH

intervene in the definition (5.32) of φ~nIg,p, they will be included in the definition

of n-Redb~n (thus also Redb~n), which is motivated by Lemma 5.10 below.

Define n-Redb~n to be the composition of the following maps:

Groth(H(Qp)) −→
⊕

(MH ,sH ,ηH)

Groth(MH(Qp))
⊕η̃H,∗−−−−→ Groth(Mb(Qp))(5.14)

LJ
Mb
Jb−−−→ Groth(Jb(Qp)).

The first map is the direct sum of Groth(H(Qp)) → Groth(MH(Qp)) for all

(MH , sH , ηH) ∈ Eeff
p (Jb, G;H), where the map for each (MH , sH , ηH) is given

by ⊕i cMH
· JHP (iνMH )op as i runs over I(MH , H). In fact, I(MH , H) is always

a singleton in our case; so we will simply write PMH
for P (iνMH

). (See Cases

1 and 2 below.) As for η̃H,∗, an explicit definition is given below case by case.

This map η̃H,∗ should be seen as the functorial transfer with respect to the

L-morphism η̃H . Noting that Mb(Qp) is a product of general linear groups,

LJMb
Jb

is the “Jacquet-Langlands” map on Grothendieck groups defined by

[Bad07] (cf. §2.4).

Define Redb~n by

Redb~n(πH,p) := n-Redb~n(πH,p)⊗ δ̄1/2
P (νb)

.

Case 1: ~n = (n), i.e. (H, s, η) = (Gn, 1, id). In this case Eeff
p (Jb, G;H) has

a unique isomorphism class represented by (MH , sH , ηH) = (Mb, 1, id). So we

may take η̃H = id and η̃H,∗ = id. In that case cMH
= ep(Jb) ([Shi09b, Rem.

6.4]). There are isomorphisms

(5.15)
G(Qp) ' Q×p × GLn(Fw) × ∏

i>1 GLn(Fwi),

Mb(Qp) ' Q×p × GLn−h(Fw)×GLh(Fw) × ∏
i>1 GLn(Fwi).

An analogous decomposition for Jb(Qp) was given in (5.4). The set I(MH , H)

contains a unique element, which may be represented by the Levi embedding

iMb
: Mb ↪→ G which is the obvious block diagonal embedding on the Fw-

component with respect to (5.15). (The G(Qp)-conjugacy class of iMb
is canon-

ical.) Let h ∈ [0, n − 1] be the integer corresponding to b as in (5.3). We see

that ep(Jb) = (−1)n−h−1 in view of (5.4). If πp = πp,0⊗ (⊗iπwi) ∈ Irrl(G(Qp)),
then it is clear that

(5.16) n-Redbn(πp) = (−1)n−h−1πp,0 ⊗ n-Redn−h,h(πw)⊗ (⊗i>1πwi),

where n-Redn−h,h is as defined in Section 2.4. An analogue of (5.16) holds for

Redbn(πp) if n-Redn−h,h is replaced by Redn−h,h on the right-hand side.
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Case 2: ~n = (n1, n2); i.e., (H, s, η) = (Gn1,n2 , sn1,n2 , ηn1,n2). In this case

we have the following isomorphisms over Qp:
(5.17)

G ' GL1 × ∏
i≥1RFwi/QpGLn,

H ' GL1 × ∏
i≥1RFwi/QpGLn1,n2 ,

Mb ' GL1 × RFw/QpGLn−h,h × ∏
i>1RFwi/QpGLn,

Jb ' GL1 × RFw/Qp

(
D×Fw,1/(n−h) ×GLh

)
× ∏

i>1RFwi/QpGLn.

Consider the following two groups which will be viewed as Levi subgroups of H

via the natural block diagonal embeddings, which are to be denoted by iMH,1

and iMH,2
.

(5.18)
MH,1 = GL1 × RFw/QpGLn−h,h−n2,n2 ×

∏
i>1RFwi/QpGLn1,n2 (if h ≥ n2),

MH,2 = GL1 × RFw/QpGLn−h,h−n1,n1 ×
∏
i>1RFwi/QpGLn1,n2 (if h ≥ n1).

The dual groups are described as follows. The L-groups are given by an obvious

action of WQp on the dual groups. Namely WQp permutes the index sets

Hom(Fwi ,Qp).
(5.19)“G = C× × ∏i≥1 GLn(C)Hom(Fwi ,Qp),“H = C× × ∏i≥1 GLn1,n2(C)Hom(Fwi ,Qp),

M̂b = C× × GLn−h,h(C)Hom(Fw,Qp) × ∏i>1 GLn(C)Hom(Fwi ,Qp),

M̂H,1 = C× × GLn−h,h−n2,n2(C)Hom(Fw,Qp) × ∏i>1 GLn1,n2(C)Hom(Fwi ,Qp),

M̂H,2 = C× × GLn−h,h−n1,n1(C)Hom(Fw,Qp) × ∏i>1 GLn1,n2(C)Hom(Fwi ,Qp).

We give the maps ηH,j : M̂H,j → M̂b (j = 1, 2) so that ηH,j is the iden-

tity on C× and the obvious block diagonal embedding on the Fwi-component

(i ≥ 1). Extend ηH,1 to η̃H,1 : LMH,1 → LMb by sending z ∈WQp to(
$(z)−N(n1,n2), ($(z)ε(n−n1), $(z)ε(n−n1), $(z)ε(n−n2)),

($(z)ε(n−n1), $(z)ε(n−n2))
)
o z.

Similarly define η̃H,2 : LMH,2 → LMb, which maps z ∈WQp to(
$(z)−N(n1,n2), ($(z)ε(n−n2), $(z)ε(n−n2), $(z)ε(n−n1)),

($(z)ε(n−n1), $(z)ε(n−n2))
)
o z.

With respect to (5.19), let

sMH,1
:= (1, (1, 1,−1), (1, 1)) ∈ Z(M̂H,1),

sMH,2
:= (1, (−1,−1, 1), (1, 1)) ∈ Z(M̂H,2).
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Recall that the sets Eef(Mb, G;H) and Eeff(Jb, G;H) are defined in [Shi09b,

§6.2]. Certainly (MH,j , sMH,j
, ηH,j) (j = 1, 2) belong to Eef(Mb, G;H). (In

general Eef(Mb, G;H) has other elements, but they do not concern us since they

are not contained in Eeff(Jb, G;H).) Using the fact that Jb has D×Fw,1/(n−h) ×
GLh(Fw) in its product decomposition, we see easily that

(5.20) Eeff(Jb, G;H) =


∅, if h < n2,

{(MH,1, sMH,1
, ηH,1)}, if n2 ≤ h < n1,

{(MH,j , sMH,j
, ηH,j), j = 1, 2}, if h ≥ n1.

(In order that (MH , sMH
, ηH) lies in Eeff(Jb, G;H), the element sMH

should

transfer to Ĵb = M̂b via ηH so that it is either +1 or −1 in the GLn−h(C)

block of the Fw-component, since DFw,1/(n−h) is a division algebra.) From now

on, whenever we consider (MH,j , sMH,j
, ηH,j), we assume the condition on h of

(5.20) so that the triple belongs to Eeff(Jb, G;H).

Let l̃MH,j
: LMH,j → LH (j = 1, 2) be the obvious embedding, except that

l̃MH,2
on the Fw-component is given by

(A1, A2, A3) ∈ GLn−h,h−n1,n1 7→
Ç
A3,

Ç
A1 0

0 A2

åå
∈ GLn1,n2 .

Then one can directly check that l̃Mb
: LMb → LG can be chosen to be a“G-conjugate of the obvious embedding so that the following commutes:

(5.21) LMb

l̃Mb // LG

LMH,j

η̃H

OO

l̃MH,j // LH.

η̃

OO

For each j ∈ {1, 2}, the set I(MH,j , H) has a single element, which may

be represented by the Levi embedding iMH,j
: MH,j ↪→ H. The parabolic

subgroup PMH,j
⊂ H is generated by MH,j and upper triangular matrices of

GLn1,n2 at the Fw-component.

We are about to define η̃H,j,∗ : Groth(MH,j(Qp)) → Groth(Mb(Qp)) and

give a relevant trace identity, in a way similar to Case 2 of Section 3.4. Let

u := w|E . Define a unitary character χ+
u,j : MH,j(Qp)→ C× such that

(5.22)
χ+
u,j(λ) = $u(λ)−N(n1,n2),

χ+
u,j(gw,1, gw,2, gw,3) =

{
$u

Ä
NFw/Eu

Ä
det((gw,1gw,2)ε(n−n1)g

ε(n−n2)
w,3 )

ää
, j = 1,

$u

Ä
NFw/Eu

Ä
det((gw,1gw,2)ε(n−n2)g

ε(n−n1)
w,2 )

ää
, j = 2,

χ+
u,j(gwi,1, gwi,2) = 1,

where (λ, (gw,1, gw,2, gw,3), (gwi,1, gwi,2)) denotes an element of MH,j(Qp) with

respect to (5.18). For each φ∗p ∈ C∞c (Mb(Qp)) and πMH,j
∈ Irrl(MH,j(Qp)),
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define

(5.23) φ
MH,j
p := (φ∗p)

Qj · χ+
u,j and η̃H,j,∗(πMH,j

) := n-indMb
Qj

(πMH,j
⊗ χ+

u,j),

where Qj is any parabolic subgroup of Mb which has MH,j as a Levi subgroup.

As in Section 3.4, we can normalize ∆p(·, ·)Mb
MH,j

with respect to η̃H,j so that

φ
MH,j
p is a ∆p(·, ·)Mb

MH,j
-transfer of φ∗p. Note that η̃H,j,∗ is independent of the

choice of Qj . We have the following identity analogous to (3.10). The first

equality holds by definition and the second by Lemma 3.3(ii).

(5.24)

trπMH,j

(
φ
MH,j
p

)
= tr (πMH ,j ⊗ χ

+
u,j)((φ

∗
p)
Qj ) = tr

Ä
η̃H,j,∗(πMH,j

)
ä Ä
φ∗p
ä
.

The next job is to compute cMH,j
∈ {±1}. We use the result and notation

from [Shi09b, §8.1]. Note that our sn1,n2 is the element s ∈ Z(“H) of that

article. We may take the decomposition s = s1s2 with s1 ∈ Z(“H)Gal(Qp/Qp)

and s2 = 1. It is easy to compute νb as in [Shi09a, Ex. 4.3]. From this we see

that ν̂
MH,j

b : Z(M̂H,j)
Gal(Qp/Qp) → C× can be described as

(5.25)

C×× ((C×)3)Hom(Fw,Qp)× ∏i>1((C×)2)Hom(Fwi ,Qp) −→ C×,

(z, (zw,1, zw,2, zw,3), (zwi,1, zwi,2)) 7→
®
zzw,1, if j = 1,

zzw,2, if j = 2.

(Note that the number of copies of C× may be smaller in (5.25). Namely in

case h = n−nj for j ∈ {1, 2}, (5.25) is correct after we erase the corresponding

copy of C× from the Fw-component.) Now [Shi09b, Eq. (8.7)] tells us that

(5.26) cMH,j
= ep(Jb)µ1(s2)〈ν̂MH,j

b , s1〉−1 =

®
ep(Jb), if j = 1,

−ep(Jb), if j = 2.

Of course we know that ep(Jb) = (−1)n−h−1.

Recall the definition of n-Redbn1,n2
from (5.14). In the current case, we see

from (5.20) and (5.26) that n-Redbn1,n2
is equal to

(5.27)


0, h < n2,

ep(Jb) · LJMb
Jb
◦ η̃MH,1,∗ ◦ JHP op

MH,1

, n2 ≤ h < n1,

ep(Jb)
∑2
j=1(−1)j−1LJMb

Jb
◦ η̃MH,j ,∗ ◦ JHP op

MH,j

, h ≥ n1.

We set up notation for Lemma 5.9. Let πH,p be any representation of

Irrl(H(Qp)) and set πM,p := πH,p⊗χ+
$,u, where χ+

$,u is as defined in Case 2 of
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Section 3.4.6 Put πp := η̃∗(πH,p), or equivalently

πp := n-indGH(πM,p).

Here H is viewed as a Levi subgroup of G (over Qp). Write

πM,p = πp,0 ⊗
⊗
i≥1

(πM,wi,1 ⊗ πM,wi,2) , πp = πp,0 ⊗
⊗
i≥1

πwi ,

where πp,0 ∈ Irrl(Q×p ), πM,wi,j ∈ Irrl(GLnj (Fwi)) and πwi ∈ Groth(GLn(Fwi)).

(As a parabolic induction, πwi may be reducible.) Let us write the following

Jacquet modules as finite sums of irreducible representations.

(5.28)

J
GLn1

P op
n−h,h−n2

(πM,w,1) =
∑
k

αk,1 ⊗ αk,2, J
GLn2

P op
n−h,h−n1

(πM,w,2) =
∑
k

βk,1 ⊗ βk,2.

Define X1(h, πH,p), X2(h, πH,p) ∈ Groth(D×Fw,1/(n−h) ×GLh(Fw)) as follows.

X1(h, πH,p) =

®∑
k LJn−h(αk,1)⊗ n-ind(αk,2 ⊗ πM,w,2), if h ≥ n2,

0, if h < n2,

X2(h, πH,p) =

®∑
k LJn−h(βk,1)⊗ n-ind(βk,2 ⊗ πM,w,1), if h ≥ n1,

0, if h < n1.

It is immediately checked that (5.29) below provides an equivalent defini-

tion for X1(h, πH,p) when h ≥ n2 and X2(h, πH,p) when h ≥ n1.

X1(h, πH,p) = n-indGLh
GLh−n2,n2

Ä
n-Redn−h,h−n2(πM,w,1)⊗ πM,w,2

ä
,(5.29)

X2(h, πH,p) = n-indGLh
GLh−n1,n1

Ä
n-Redn−h,h−n1(πM,w,2)⊗ πM,w,1

ä
.

Lemma 5.9. Put ourselves in Case 2 as above. The following hold in

Groth(Jb(Qp)):
(i) n-Redbn(πp) = ep(Jb) · πp,0 ⊗ (X1(h, πH,p) +X2(h, πH,p))⊗ (⊗i>1πwi).

(ii) n-Redbn1,n2
(πH,p) = ep(Jb) · πp,0 ⊗ (X1(h, πH,p)−X2(h, πH,p))⊗ (⊗i>1πwi).

Proof. We will present a proof when h ≥ n1. The same proof works in

the other cases if the terms involving h − n1 (resp. h − n1 and h − n2) are

disregarded in case n2 ≤ h < n1 (resp. h < n2).

The proof of (i) goes as follows. Recall from (5.16) that

n-Redbn(πp) = ep(Jb) · πp,0 ⊗X ⊗ (⊗i>1πwi),

6There is no Levi subgroup M in this subsection. The notation πM,p is justified by the

fact that BC(πM,p) should appear as the p-component of ΠM of Section 6.1. (The same holds

for BC(πH,p) and ΠH .) The use of M in the subscript is intended to reflect the fact that πp
is parabolically induced from πM,p. (In contrast, πp is viewed as an endoscopic transfer of

πH,p.)
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where X ∈ Groth(D×Fw,1/(n−h) ×GLh(Fw)) is described as

X = n-Redn−h,h(πw) = LJn−h

Å
JGLn
P op
n−h,h

(n-ind(πM,w,1 ⊗ πM,w,2))

ã
= LJn−h

Å
n-indGLh

GLh−n2,n2

Å
J

GLn1

P op
n−h,h−n2

(πM,w,1)

ã
+ n-indGLh

GLh−n1,n1

Å
J

GLn2

P op
n−h,h−n1

(πM,w,2)

ã
+ Y

ã
.

The last identity is implied by the geometrical lemma ([BZ77, p. 448]), where Y

is a certain linear combination of irreducible representations of GLn−h(Fw)×
GLh(Fw) of which each GLn−h(Fw)-component is a full parabolic induction

from a proper Levi subgroup. It follows from [Bad07, Prop. 3.3] that LJn−h(Y )

= 0. Therefore X = X1(h, πH,p) +X2(h, πH,p) and the proof of (i) is complete.

To demonstrate (ii), we use the identity

(5.30) η̃MH,j ,∗ ◦ J
H
P op
MH,j

(πH,p) = n-indMb
MH
◦ JHP op

MH,j

(πM,p)

which is verified from the definition of η̃MH,j ,∗. By (5.27) and (5.30),

n-Redbn1,n2
(πH,p) = ep(Jb)

2∑
j=1

(−1)j−1LJMb
Jb
◦ n-indMb

MH
◦ JHP op

H
(πM,p)

= ep(Jb) · πp,0 ⊗X ⊗
(⊗
i>1

(n-ind(πM,wi,1 ⊗ πM,wi,2))

)
,

where X ∈ Groth(D×Fw,1/(n−h) ×GLh(Fw)) is given by

LJn−h ◦
Å

n-indhh−n2,n2
◦ JGLn1,n2

P op
n−h,h−n2,n2

(5.31)

−n-indhn1,h−n1
◦ JGLn1,n2

P op
n1,n−h,h−n1

ã
(πM,w,1 ⊗ πM,w,2).

Plugging in (5.28), we obtain

X =
∑
k

LJ(αk,1)⊗ n-ind(αk,2⊗ πM,w,2))−
∑
k

LJ(βk,1)⊗ n-ind(πM,w,1⊗ βk,2)

which is nothing but X1(h, πH,p)−X2(h, πH,p). �

5.6. n-Redb~n and φ~nIg,p. The following lemma shows that the construction

of φ~nIg,p is “dual” to the representation-theoretic operation Redb~n. Lemma 5.10

is a key input in the analysis of the p-part of representations in the proof of

Theorem 6.1.

Lemma 5.10. Let (H, s, η) = (G~n, s~n, η~n) ∈ Eell(G). For any πH,p ∈
Groth(H(Qp)),

trπH,p(φ
~n
Ig,p) = tr (Redb~n(πH,p))(φ

′
p).

(Here test functions are Ql-valued.)
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Proof. We freely use the results and notation of [Shi09b, §6.3]. Recall that

by definition (see the formula above Lemma 6.6 of [Shi09b])

(5.32) φ~nIg,p =
∑

(MH ,sH ,ηH)

cMH
· φ̃MH

p

as functions on H(Qp), where the sum is taken over Eeff
p (Jb, G;H). As noted

earlier, I(MH , H) is a singleton, so we chose to write φ̃MH
p rather than φ̃MH ,i

p

with i ∈ I(MH , H). By [Shi09b, Lemma 3.8],

(5.33) trπH,p(φ̃
MH
p ) = tr

Å
JHP op

MH

(πH,p)

ã
(φMH
p ).

Here φMH
p ∈ C∞c (MH(Qp)) is a ∆p(·, ·)JbMH

-transfer of φ0
p := φ′p · δ̄

1/2
P (νb)

∈
C∞c (Jb(Qp)). The normalization of [Shi09b, (8.6)] is adopted for transfer fac-

tors, namely

(5.34) ∆p(γMH
, δ)JbMH

= ep(Jb) ·∆p(γMH
, γ0)Mb

MH

if δ and γ0 are transfers of γMH
∈MH(Qp).

We claim that the transfer from φ0
p to φMH

p factors through as

φ0
p ∈ C∞c (Jb(Qp))  φ∗p ∈ C∞c (Mb(Qp))  φMH

p ∈ C∞c (MH(Qp))

in the sense that if φ∗p is a transfer of φ0
p via ∆p(·, ·)JbMb

≡ ep(Jb), then φMH
p is a

∆p(·, ·)Mb
MH

-transfer of φ∗p. To prove the claim, we check the transfer identity for

orbital integrals on regular semisimple elements. Since φMH
p is a ∆p(·, ·)JbMH

-

transfer of φ0
p,

(5.35) OMH(Qp)
γMH

(φMH
p ) = ∆p(γMH

, δ)JbMH
·OJb(Qp)

δ (φ0
p)

for any (Jb,MH)-regular γMH
and its transfer δ. (Recall that a stable conjugacy

class is the same as a conjugacy class in the groups Jb(Qp) and MH(Qp) as

well as Mb(Qp).) On the other hand, as φ∗p is a transfer of φ0
p, Lemma 2.18(i)

of [Shi09b] tells us that O
Mb(Qp)
γ0 (φ∗p) = ep(Jb) · O

Jb(Qp)
δ (φ0

p) if there exists δ ∈
Jb(Qp) matching γ0 and O

Mb(Qp)
γ0 (φ∗p) = 0 if otherwise. Together with (5.34)

and (5.35), the last fact implies that φMH
p is a ∆p(·, ·)Mb

MH
-transfer of φ∗p as

claimed.

It follows from (5.24), Lemma 3.3 and [Shi09b, Lemma 2.18(ii)] that for

πMH ,p ∈ Irr(MH(Qp)),

trπMH ,p(φ
MH
p ) = tr (η̃H,∗(πMH ,p)) (φ∗p) = tr (LJ (η̃H,∗(πMH ,p))) (φ0

p)(5.36)

= tr
(
LJ(η̃H,∗(πMH ,p))⊗ δ̄

1/2
P (νb)

)
(φ′p).

(When H = Gn, the first identity holds trivially since η̃H,∗ = id and we

may take φMH
p = φ∗p.) The identities (5.32), (5.33) and (5.36) complete the

proof. �
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6. Computation of cohomology

We keep the notation and assumptions from Section 5. The prime p,

the place w of F and the isomorphism ιp are fixed in Section 6.1 (they were

fixed soon after Lemma 5.1), but allowed to vary in Section 6.2 under certain

constraints.

6.1. Cohomology of Igusa varieties. The main goal of this subsection is to

compute part of the cohomology of Igusa varieties after quadratic base change.

The main ingredients are the stable trace formula for Igusa varieties and the

twisted trace formula.

Choose the character $ : WE → C× (introduced in §3.1) such that

RamQ($) ⊂ SplF/F+,Q. (This is possible by Lemma 7.1 which will be proved

later but which does not depend on this section. Recall that the last condition

on$ is assumed throughout §4.) Let Ξ be the algebraic representation of (Gn)C
given by ιlξ as in Section 4.3. (Put ιlξ in place of ξ there.) Let Π = ψ ⊗ Π1

be an automorphic representation of Gn(A) ' GL1(AE)×GLn(AF ). Assume

that

• Π ' Π ◦ θ,
• Π∞ is generic and Ξ-cohomological (in particular, the central charac-

ters of Π and Ξ∨ coincide on AGnθ,∞),

• RamQ(Π) ⊂ SplF/F+,Q,

where RamQ(Π) denotes the set of finite primes p where Π is ramified. By

Ξ-cohomological we mean that there exists k such that Hk(LieGn(R),K′∞,Π∞
⊗ Ξ) 6= 0, where K′∞ is as in Section 4.3. In particular Π∞ is isomorphic to

ΠΞ as in Section 4.3.

Recall that RamF/Q is contained in SplF/F+,Q by our previous assumption

in Section 5.1. Let Sfin be a finite set of places of Q such that

(6.1) RamF/Q ∪ RamQ(Π) ∪ RamQ($) ∪ {p} ⊂ Sfin ⊂ SplF/F+,Q

and put S := Sfin ∪ {∞}.
We will consider two cases for Π.

Case ST (“stable”). Assume that Π is cuspidal.

Case END (“endoscopic”). Let m1,m2 ∈ Z>0 be such that m1 > m2 and

m1 + m2 = n. (Recall that n ∈ Z≥3 is odd.) Let Πi (i = 1, 2) be a cuspidal

automorphic representation of GLmi(AF ) and Ξi be an irreducible algebraic

representation of GLmi(F ⊗Q C). We will set ψH := ψ ⊗$N(m1,m2) and

ΠH := ψH ⊗Π1 ⊗Π2, Π := ζ̃m1,m2,∗(ΠH),

ΠM,i := Πi ⊗ ($ ◦NF/E ◦ det)ε(n−mi), ΠM :=ψ ⊗ΠM,1 ⊗ΠM,2.

In addition to the previous assumptions on Π, suppose that (for i = 1, 2)
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(i) Π∨i ' Πi ◦ c,
(ii) ψΠ1ψΠ2 = ψcH/ψH ,

(iii) Πi,∞ is cohomological for an irreducible algebraic representation Ξi.

By (i) and (ii), ΠH is a θ-stable cuspidal representation of Gm1,m2(A). De-

note by πH,p ∈ Irrl(Gm1,m2(Qp)) the unique representation (up to isomor-

phism) such that BC(ιlπH,p) ' ΠH,p. Denote by ϕH the discrete parameter

for Gm1,m2(R) such that BC(ϕH) ' ΠH,∞ (with the notation BC(ϕH) as in

Remark 4.4).

Observe that Π ' n-indGnGm1,m2
(ΠM ). (The last parabolic induction is

irreducible; for general linear groups, any parabolic induction of a unitary

representation is irreducible.) Let Π0
M denote the twist of ΠM by a character

of AGm1,m2 ,∞ (via the canonical surjection Gm1,m2(A)→ AGm1,m2 ,∞) such that

Π0
M is trivial on AGm1,m2 ,∞. Then it is easy to see that

(6.2) Π ' n-indGnGm1,m2
(Π0

M )⊗ χ̃−1
ιlξ
.

Let us define certain parameters in (Case END). For i ∈ {1, 2}, let biσ,1 ≥
· · · ≥ biσ,mi (σ ∈ HomQ(F,C)) be the integers parametrizing the highest weight

attached to Ξi and put

(6.3) βiσ,j := −biσ,mi+1−j +
mi + 1− 2j

2
, γiσ,j := βiσ,j + ε(n−mi) ·

δ

2
,

where δ is the odd integer such that $∞(z) = (z/z)δ/2. (The numbers γiσ,j
should be thought of as parameters for ΠM,i.) Recall that we defined α(ιlξ)σ,j
(σ ∈ Φ+

C , 1 ≤ j ≤ n) from ιlξ in (3.18). For any σ and j < n, we have

α(ιlξ)σ,j > α(ιlξ)σ,j+1. Since Π∞ ' n-ind(ΠM,∞), it is easy to see that for

each σ ∈ Φ+
C ,

{α(ιlξ)σ,j : 1 ≤ j ≤ n} = {γ1
σ,j : 1 ≤ j ≤ m1}

∐
{γ2

σ,j : 1 ≤ j ≤ m2}.

Thus there is a unique partition {1, . . . , n} = W 1
σ
∐
W 2
σ with the following

property for each i ∈ {1, 2}: α(ιlξ)σ,k = γiσ,j for some j ∈ [1,mi] if and only if

k ∈W i
σ.

We are through with describing the two cases for Π. Let us set up

more notations before stating the main result of Section 6.1. For any R ∈
Groth(G(AS) × G′) (over Ql), where G′ = G(ASfin

) × Gal(F/F ) or G′ =

G(ASfin\{p})× Jb(Qp), define

(6.4) R{ΠS} :=
∑
πS

R{πS} and R[ΠS ] :=
∑
πS

R[πS ],

where each sum runs over πS ∈ Irrur
l (G(AS)) such that BC(ιlπ

S) ' ΠS . (The

right-hand sides of (6.4) are defined as in §5.2.) An easy observation is that

H(Sh,Lξ){ΠS} and Hc(Igb,Lξ){ΠS} are virtual admissible representations of

the corresponding G′. Let BCT : Groth(G(AT ))→ Groth(Gn(AT )) denote the
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Z-linear extension of the base change map defined in Section 4.2, where T ⊂
SplF/F+,Q is a finite set. (A priori, BCT is defined on virtual C-representations

but also defined on virtual Ql-representations via ιl : Ql ' C.)

Theorem 6.1. Define an integer CG := | ker1(Q, G)| · τ(G). Denote by

πp ∈ Irrl(G(Qp)) a representation such that BC(ιlπp) ' Πp. (Such a πp is

unique up to isomorphism as p splits in E; cf. §4.2.) For each b ∈ B(GQp ,−µ),

the following equalities hold in Groth(Gn(ASfin\{p})× Jb(Qp)).
(i) (Case ST) There is a constant e0 ∈ {±1}, independent of b, such that

(6.5) BCSfin\{p}(Hc(Igb,Lξ){ΠS}) = CG · e0 · [ι−1
l ΠSfin\{p}][Redbn(πp)].

(ii) (Case END) There are constants e1, e2 ∈ {±1}, independent of b, such

that

BCSfin\{p}(Hc(Igb,Lξ){ΠS})(6.6)

= CG

Å
[ι−1
l ΠSfin\{p}]

ï
1

2
(e1Redbn(πp) + e2Redbm1,m2

(πH,p))

òã
.

Remark 6.2. A priori the sign e0 depends on Π. The signs e1 and e2

depend not only on Π but also on ΠH and other data, at least a priori. However

it turns out that e0 and e1 always have the same value, as we will see later in

Corollary 6.5(ii). As for e2, refer to Remark 6.3 in case m2 = 1.

Proof. In the first three paragraphs, we explain the choice of test functions

to be used in the trace formula. Choose (fn)S and fnSfin\{p} as any functions

in H ur(Gn(AS)) and C∞c (Gn(ASfin\{p})), respectively. Let φS := BC∗n((fn)S)

(resp. φSfin\{p} := BC∗n(fnSfin\{p})) as in Case 1 (resp. Case 2) of Section 4.2.

Set φ∞,p := φSφSfin\{p}. Choose any φ′p ∈ C∞c (Jb(Qp)) such that φ∞,pφ′p is an

acceptable function. We construct other test functions from these.

For each elliptic endoscopic group G~n for G, let (φ~nIg)S (resp. φ~nIg,Sfin\{p})

be the ∆(·, ·)GG~n-transfer of φS (resp. φSfin\{p}) defined in Section 3.4. Define

(fn1,n2)S := ζ̃∗((fn)S) and fn1,n2

Sfin\{p} = ζ̃∗(fnSfin\{p}) as in Cases 1 and 2 of

Section 4.4. Recall from (4.18) and (4.19) that BC∗n1,n2
((fn1,n2)S) = (φn1,n2)S

and that BC∗n1,n2
(fn1,n2

Sfin\{p}) and φn1,n2

Ig,Sfin\{p} have the same trace against every

admissible representation of Gn1,n2(ASfin\{p}).

Let φ~nIg,p (resp. φ~nIg,∞) be the function arising from φ′p (resp. ξ) in (5.10)

(resp. (5.11)). Choose f~np so that BC∗n(f~np ) = φ~nIg,p. (This is possible because

BC∗n is surjective at p. See §4.2.) Define

(6.7) f~n∞ := e~n(∆∞) · (−1)q(G)〈µh, s〉
∑
ϕ~n

det(ω∗(ϕ~n)) · fG~n,Ξ(ϕ~n),

where the sum runs over ϕ~n : WR → LG~n (up to equivalence) such that

η̃ϕ~n ∼ ϕξ. Observe that q(G) = n − 1 (cf. (3.11)). Here Ξ(ϕ~n) denotes the
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algebraic representation of G~n arising from ξ(ϕ~n) (defined in Remark 3.9) as in

the beginning of Section 4.3. Recall that fG~n,Ξ(ϕ~n) was defined there. Again,

by Section 4.3 and the comparison of (5.11) and (6.7), it is verified that f~n∞
and φ~nIg,∞ are BC-matching functions. Put f~n := (f~n)S · f~nSfin\{p} · f

~n
p · f~n∞.

Consider the formula of Proposition 5.5. By Corollary 4.7, the formula

(4.21), Proposition 4.8 and Corollary 4.14, we see that (recalling the notation

A′(·) from Lemma 4.11)

tr (φ∞,pφ′p|ιlH(Igb,Lξ))(6.8)

= CG

(
1

2

∑
Π′

tr (Π′ξ(f
n)A′Π′

ξ
) +

1

2

∑
Gn1,n2

I
Gn1,n2θ
spec (fn1,n2)

+
∑

M(Gn

|WM |
|WGn |

| det(Φ−1θ − 1)
aGnθM
|−1

×
∑
Π′M

tr

Å
n-indGnM (Π′M )ξ(f

n) ◦A′
n-indGn

M (Π′M )ξ

ã)
,

where the first sum runs over θ-stable (equivalently, Φ−1θ-stable) subrepresen-

tations Π′ of RGn,disc, the second over the groups Gn1,n2 coming from elliptic

endoscopic groups Gn1,n2 for G (with n1 > n2 > 0), the third over proper

Levi subgroups M of Gn containing M0 and the fourth over Φ−1θ-stable sub-

representations Π′M of RM,disc. Keep in mind that Proposition 5.5 works on

the condition that φ∞,pφ′p is acceptable. So the same condition is imposed on

(6.8). However, we claim that (6.8) holds without such a condition.

Let us prove the claim. Fix test functions outside the p-component.

Fix any φ′p, without assuming φ∞,pφ′p is acceptable. As shown in [Shi09a,

Lemma 6.3], there is a certain element frs in the center of Jb(Qp) such that

φ∞,p(φ′p)
(N) is acceptable for any N � 0, where (φ′p)

(N)(g) = φ′p(g(frs)N ).

So (6.8) is true if φ′p is replaced by (φ′p)
(N) (and if at the same time f~np and

φ~nIg,p are constructed from (φ′p)
(N) rather than φ′p), for any N � 0. In other

words, by (4.12), Corollary 4.14 and Lemma 5.10, both sides of (6.8) are finite

linear combinations of the terms which have the form tr ρ((φ′p)
(N)) for some

ρ ∈ Irr(Jb(Qp)). Now the argument in the proof of [Shi09a, Lemma 6.4] shows

that the equality (6.8) holds for φ∞,p(φ′p)
(N) for every integer N , in particular

for N = 0. Hence the claim is proved.

Now that (6.8) is known to be true without acceptability assumption, we

may work with arbitrary test functions φ∞,pφ′p. To proceed, we divide into

two cases.
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(Case ST). Choose a decomposition A′Π = A′
(Π)S

A′ΠSfin
A′Π∞ as a product

of normalized intertwining operators. Set

(6.9)
A′Π
A0

Π

:=
A′

ΠS

A0
ΠS
·
A′ΠSfin

A0
ΠSfin

·
A′Π∞
A0

Π∞

∈ {±1}.

(For the definition of the denominators on the right side, see §§4.2 and 4.3.

By definition A0
ΠSfin

=
∏
v∈Sfin

A0
Πv

.) In the formula (4.14), any term in-

volving fn1,n2 may be rewritten as the trace of an induced representation

against fn, by using (4.17). This fact together with Corollary 4.14 guaran-

tees that tr ΠS((fn)S) appears only in the first sum of (6.8), according to the

multiplicity-one result of Jacquet and Shalika ([JS81b], [JS81a]; see [AC89,

p. 200] for summary), which implies that the string of Satake parameters

outside a finite set S of a cuspidal automorphic representation of GLn(AF )

unramified outside S does not occur as that of automorphic representations of

GLn(AF ) which are subquotients of induced representations from proper Levi

subgroups of GLn(AF ). Thus the right side of (6.8) has the following form:

CG

(
1

2

A′Π
A0

Π

χΠS ((fn)S)tr (ΠS(fnS )A0
ΠS

)(6.10)

+
∑

(Π′)S�ΠS

χ(Π′)S ((fn)S)×
Ç

expression in

terms of f~nS

å)
,

where (Π′)S runs over a set of unramified representations of G(AS) not isomor-

phic to ΠS . (Note that (Π′)S = ΠS implies that Π′ξ = Π′⊗χ̃−1
ιlξ

is isomorphic to

Π by the strong multiplicity-one and the fact that Π′ξ and Π transform by the

same character on AGn,∞. Hence the first summand in (6.8) for (Π′)S = ΠS

equals tr (Π(fn)AΠ), which is the first term in (6.10).)

On the other hand, we can write tr (φ∞,pφ′p|ιlH(Igb,Lξ)) in the following

form using (4.5).

tr ΠS((fn)S) tr
Ä
φSfin\{p}φ

′
p|ιlH(Igb,Lξ){ΠS}

ä
(6.11)

+
∑

(π′)S

tr BC((π′)S)((fn)S) tr
Ä
φSfin\{p}φ

′
p|ιlH(Igb,Lξ){(π′)S}

ä
.

The above sum runs over (π′)S ∈ Irrur(G(AS)) such that BC((π′)S) � ΠS .

If the test functions on S are fixed, both (6.10) and (6.11) are finite sums

(as (fn)S varies in H ur(Gn(AS))). We deduce from linear independence of

characters that

(6.12) tr
Ä
φSfin\{p}φ

′
p|ιlH(Igb,Lξ){ΠS}

ä
=
CG
2

A′Π
A0

Π

· tr (ΠS(fnS )AΠ0
S
).
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Recall that Π∞ ' ΠΞ. In view of (4.15), the construction of fn∞ implies that

(6.13) tr (Π∞(fn∞)A0
Π∞) = 2(−1)q(G).

On the other hand, by Lemma 5.10 and (4.12),

(6.14) tr (Πp(f
n
p )A0

Πp) = tr ιlπp(φ
n
Ig,p) = tr ιlRedbn(πp)(φ

′
p).

Therefore if we set e0 :=(−1)q(G)A′Π/A
0
Π, then tr

Ä
φSfin\{p}φ

′
p|ιlH(Igb,Lξ){ΠS}

ä
equals

(6.15) CG · e0 · tr
(
ΠSfin\{p}(f

n
Sfin\{p})A

0
ΠSfin\{p}

)
· tr ιlRedbn(πp)(φ

′
p).

Applying (4.12) to the places in Sfin\{p}, we finish the proof of the assertion (i).

(Use the fact that the twisted characters of nonisomorphic θ-stable represen-

tations are linearly independent; cf. [AC89, Lemma 6.3, p. 52].) Obviously e0

is independent of b.

(Case END). We imitate the previous argument for (Case ST). By the

multiplicity one principle for Satake parameters by Jacquet and Shalika, (6.8)

may be rewritten as

(6.16) tr
Ä
φ∞,pφ′p|ιlH(Igb,Lξ)

ä
=
CG
4

(X1 +X2 +X3),

where

X1 = tr

Ç
n-indGnGm1,m2

(Π0
M )ξ(f

n) ◦A′
n-indGn

Gm1,m2
(Π0
M )ξ

å
,

X2 = tr
Ä
ΠH(fm1,m2) ◦A′ΠH

ä
and X3 is a linear combination of evaluation against fS of unramified Hecke

characters of H ur(Gn(AS)) different from χΠS . Note that X1 comes from the

last term in (6.8) in the case where the standard Levi subgroups M of Gn
are conjugate to Gm1,m2 . (There are |WGn |/|WM | such Levi subgroups.) The

term X2 appears in the second summation on the right side of (6.8), namely

those terms in the expansion of I
Gm1,m2θ
spec (fm1,m2) where the Levi subgroup of

Gm1,m2 is Gm1,m2 itself. As there is no danger of confusion, let us agree to

write n-ind(Π0
M ) instead of n-indGnGm1,m2

(Π0
M ). Define the signs (+1 or −1)

A′n-ind(Π0
M )ξ

/A0
n-ind(Π0

M )ξ
and A′ΠH/A

0
ΠH

as in (6.9). Define e1 := (−1)q(G)A′
n-ind(Π0

M )ξ
/A0

n-ind(Π0
M )ξ

. Recall from (6.2)

and (4.29) that there is an isomorphism Π ' n-ind(Π0
M )ξ, under which we

transport A′
n-ind(Π0

M )ξ
to A′Π. So we may rewrite X1 as

(6.17)

X1 = e1(−1)q(G) · tr (Π(fn)A0
Π) = e1(−1)q(G) · χΠS ((fn)S) · tr (ΠS(fnS )A0

ΠS
),
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whereas (4.17) implies that

X2 =
A′ΠH
A0

ΠH

· χΠS ((fn)S) · tr (ΠSfin\{p}(f
n
Sfin\{p})A

0
ΠSfin\{p}

)(6.18)

× tr (ΠH,p(f
m1,m2
p )A0

ΠH,p
) · tr (ΠH,∞(fm1,m2

∞ )A0
ΠH,∞).

By Lemma 5.10 and (4.12), we have the following analogue of (6.14):

(6.19) tr (Πp(f
m1,m2
p )A0

Πp) = tr
Ä
ιlRedbm1,m2

(πH,p)
ä

(φ′p).

Moreover the expression (6.7) along with (4.15) implies that, since only

ϕ~n = ϕH in the sum of (6.7) contributes nontrivially (where ϕH was defined

in §6.1),

(6.20) tr (Π∞(fm1,m2
∞ )A0

Π∞) = 2e2 · (A′ΠH/A
0
ΠH

)

if we set

(6.21) e2 := (−1)q(G)em1,m2(∆∞)〈µh, s〉det(ω∗(ϕH)) · (A′ΠH/A
0
ΠH

).

By linear independence of unramified Hecke characters outside S, the

identity (6.16) becomes, in view of (6.13)–(6.21),

(6.22) tr
Ä
φSfin\{p}φ

′
p|ιlH(Igb,Lξ){ΠS}

ä
=
CG
2

(Y1 + Y2),

where

Y1 = e1 · tr
Å

ΠSfin\{p}(f
n
Sfin\{p})AΠ0

Sfin\{p}

ã
· tr
Ä
ιlRedbn(πp)

ä
(φ′p),

Y2 = e2 · tr
(
ΠSfin\{p}(f

n
Sfin\{p})A

0
ΠSfin\{p}

)
· tr
Ä
ιlRedbm1,m2

(πH,p)
ä

(φ′p).

In view of (4.12), the above identities imply the assertion (ii).

Clearly e1 belongs to {±1} by definition but we only know e2 ∈ (C×)1

a priori. The fact that e2 ∈ {±1} can be proved as follows. Observe that the

definition of e2 (as well as e1) does not depend on b. If Redbm1,m2
(πH,p) = 0

for all b ∈ B(GQp ,−µ), then (6.6) remains valid for all b with any choice of e2;

in particular we may choose e2 in {±1}. Otherwise there exists b such that

Redbm1,m2
(πH,p) is not trivial. We see from (6.6), which was proved a priori

with C-coefficients, that e2 ∈ {±1} since the multiplicities of representations

on the left side of (6.6) are certainly integers. �

Remark 6.3. Recall that the sign e2 is defined in (6.21). We note the

dependence of e2 on the Φ−1θ-stable representation ΠH ∈ Irr(Gm1,m2(A)) when

m2 = 1. Note that em1,m2(∆∞) depends only on the choice of transfer factors

and not on ΠH . The same is true for 〈µh, s〉. In fact, according to (3.20),

〈µh, s〉 = 1 with the convention of Section 3.6. Recall that ΠH = ψH⊗Π1⊗Π2.

Using the fact that both ψH and Π2 are one-dimensional characters, we easily

prove that AΠH/A
0
ΠH

depends only on Π1, and not on ψH and Π2. Therefore
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if Π1 remains the same, it is only det(ω∗(ϕH)), a factor coming from real

endoscopy, which may vary on the right side of (6.21).

6.2. Galois representations in the cohomology of Shimura varieties. We

remind the reader that we keep assuming (i)–(v) of Section 5.1 and that Π is

as in the beginning of Section 6.1. All results of this subsection rely on these

assumptions. (Some of them can be strengthened by the results of §7.)

In the last subsection we fixed p, w and S. Here we want to allow p,

w and S to vary. (For each p ∈ SplE/Q\{l}, we freely change the choice of

ιp : Qp ' C to consider all the places w above p. Recall from Section 5.1 how

ιp was chosen.) Define Rl(Π) to be the set of π∞ = πS ⊗ πSfin
∈ Irrl(G(A∞))

such that

• Rkξ,l(π∞) 6= 0 for some k,

• πS is unramified,

• BC(ιlπ
S) ' ΠS , and

• BC(ιlπSfin
) ' ΠSfin

.

Note that the definition of Rl(Π) does not involve the choice of the prime p.

It is easy to see that the definition of Rl(Π) is independent of S, as long as S

satisfies (6.1). (We use the following fact about πv ∈ Irrl(G(Qv)): Suppose Πv

is unramified. If v ∈ UnrF/Q ∩ SplF/F+,Q, then BC(ιlπv) ' Πv implies that πv
is also unramified.)

Define a representation ‹Rkl (Π) of Gal(F/F ) and ‹Rl(Π)∈Groth(Gal(F/F ))

by

(6.23) ‹Rkl (Π) :=
∑

π∞∈Rl(Π)

Rkξ,l(π
∞), ‹Rl(Π) :=

∑
k

(−1)k‹Rkl (Π).

Theorem 6.4. Let p ∈ SplE/Q be a prime different from l and w be any

place dividing p. Let πp be as in Theorem 6.1 and write πp = π0 ⊗ (⊗iπwi) as

usual. Then the following holds in Groth(WFw).

(i) (Case ST)‹Rl(Π)|WFw
= CG · e0 ·

î
(π−1
p,0 ◦Art−1

Qp )|WFw
⊗ ι−1

l LFw,n(Π1
w)
ó
.

(ii) (Case END)‹Rl(Π)|WFw

=

CG · e1 ·
[
(π−1
p,0 ◦Art−1

Qp )|WFw
⊗ι−1

l LFw,m1(ΠM,1,w)| · |−m2/2
WFw

]
, if e1 =e2,

CG · e1 ·
[
(π−1
p,0 ◦Art−1

Qp )|WFw
⊗ι−1

l LFw,m2(ΠM,2,w)| · |−m1/2
WFw

]
, if e1 =−e2.

Proof. For the proof we may fix p and w|p as in the theorem. Choose

ιp : Qp ' C such that ι−1
p τ induces w. (Note that ‹Rkl (Π) for each k is defined

independently of ιp.)
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Consider (Case ST). Let us take the {ΠS}-parts of the identity in Propo-

sition 5.2 and apply BCSfin\{p}. In view of Theorem 6.1 the following holds in

Groth(Gn(ASfin\{p})×G(Qp)×WFw):∑
(π′)∞

[BC(π′Sfin\{p})][π
′
p][Rξ,l((π

′)∞)] =(6.24)

= CG · [ι−1
l ΠSfin\{p}]

Ö ∑
b∈B(GQp ,−µ)

[Mantb,µ(Redbn(πp))]

è
,

where the first sum runs over (π′)∞ ∈ Irrl(G(A∞)) such that (π′)S is unramified

and BC(ιl(π
′)S) ' ΠS . Of course we are using the same πp as in Theorem 6.1.

Observe that [Mantb,µ(Redbn(πp))] equals

n-Mant1,0(πp,0)⊗ n-Mantn−h,h(n-Redn−h,h(πw))⊗ (⊗i>1n-Mant0,n(πwi))

by (2.2) and (5.6), if h = h(b). Proposition 2.3 implies that the right-hand

side of (6.24) is

(6.25) CG · [ι−1
l ΠSfin\{p}][πp]

î
(π−1
p,0 ◦Art−1

Qp )|WFw
⊗ ι−1

l LFw,n(Π1
w)
ó
.

By comparing the left side of (6.24) with (6.25), we see that the summands in

the left side of (6.24) which do not satisfy BC(π′Sfin\{p}) ' ι−1
l ΠSfin\{p} must

be canceled out. Hence the first sum in (6.24) can be replaced by a sum over

(π′)∞ ∈ Rl(Π) without disturbing the equality.

In (Case END) a similar argument works, so we only indicate changes.

The same identity as (6.24) holds if we replace [Mantb,µ(Redbn(πp))] by

(6.26)

ï
1

2
Mantb,µ(e1Redbn(πp) + e2Redbm1,m2

(πH,p))

ò
.

Consider the case e1 = e2. By Lemma 5.9, the formula (6.26) equals

e1 · n-Mant1,0(πp,0)⊗ n-Mantn−h,h(X1(h, πH,p))⊗ (⊗i>1n-Mant0,n(πwi))

for h = h(b). By (5.29), n-Mantn−h,h(X1(h, πH,p)) vanishes if h < m2. If

h ≥ m2, it equals

n-indGLh
GLh−m2,m2

Ä
(n-Mantn−h,h−m2(n-Redn−h,h−m2(ΠM,1,w))⊗ΠM,2,w)

ä
⊗|·|−m2/2

WFw

by Proposition 2.2(iii). Proposition 2.3 implies that∑
0≤h≤n−1

n-Mantn−h,h(X1(h, πH,p)) = [ι−1
l Πw][ι−1

l LFw,n(ΠM,1,w)]⊗ | · |−m2/2
WFw

.

From this the conclusion easily follows in (Case END) with e1 = e2. The case

e1 = −e2 is proved in the same way. �

Corollary 6.5 (cf. [HT01, Cor. VI.2.7]). Recall the assumptions made

at the start of Section 6.2. For each π∞ ∈ Rl(Π) the following are true:



1716 SUG WOO SHIN

(i) Rkξ,l(π
∞) 6= 0 if and only if k = n − 1. Similarly ‹Rkl (Π) 6= 0 if and

only if k = n− 1.

(ii) e0 = (−1)n−1 in (Case ST) and e1 = (−1)n−1 in (Case END).

(iii) Every π∞ ∈ Πunit(G(R), ιlξ
∨) is ιlξ-cohomological. If such a π∞ sat-

isfies m(ιl(π
∞)⊗ π)∞) > 0, then π∞ ∈ Πdisc(G(R), ιlξ

∨).

(iv) Write Πdisc(G(R), ιlξ
∨) = {π1

∞, . . . , π
n
∞} as in Section 3.6. Then

∑
π∞∈Rl(Π)

m(ιl(π
∞)⊗ πi∞)

=


τ(G), for all i, in (Case ST),

τ(G), if i ≤ m1, e1 = e2, or i > m1, e1 = −e2, in (Case END),

0, if i > m1, e1 = e2, or i ≤ m1, e1 = −e2, in (Case END).

(Recall that τ(G) = τ(Gn) equals 1 or 2 by Lemma 3.1. In some cases

we computed this number in Remark 3.2.)

Remark 6.6. In the proofs of Corollaries 6.5 and 6.7 we largely borrow

argument from Harris and Taylor, who attribute their result to Clozel. (Es-

pecially the second assertion of (iii) is due to Clozel.) In doing so, it is worth

remarking that the two conditions in [HT01, Cor. VI.2.7, Cor VI.2.8] are not

necessary in our situation. For instance we do not assume that π∞ is generic

at a finite prime split in E. In the setting of Clozel and Harris-Taylor, the

base change of π∞ is an automorphic representation of a nonquasi-split inner

form of Gn and the genericity condition ensures that the image of the base

change transfers to a cuspidal automorphic representation of Gn. However, we

work directly with Gn and a cuspidal representation Π is given at the outset

in (Case ST), so no such assumption is necessary. (In (Case END), use the

cuspidality of Πi.) We also note that we use the strength of the stable trace

formula and the twisted trace formula in order to prove (iv) of Corollary 6.5.

The proof of its counterpart in corollary VI.2.7 of Harris-Taylor was simpler.

Proof. The first assertion of (i) follows from the second at once. To prove

the second assertion of (i), we argue exactly as in [HT01, p. 207], appealing to

our Theorem 6.4 instead of their corollary V.6.3. (Part (iii) of Proposition 5.3

is also used.)

Note that (ii) is an immediate consequence of (i). Let us prove (iii). The

first part of (iii) follows from [SR99, Th. 1.8] (which identifies every π∞ ∈
Πunit(G(R), ιlξ

∨) with a unitary representation studied in [VZ84]) and the

computation of the Lie algebra cohomology in [VZ84]. Observe that (i) and

Proposition 5.3 imply that if m(ιl(π
∞)⊗ π∞) > 0, then

Hk(LieG(R), U∞, π∞ ⊗ ιl(ξ)) 6= 0
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if and only if k = n− 1. The second part of (iii) can be deduced from this and

the results of [VZ84]. (See [HT01, pp. 207–208] for detailed argument.)

Finally we prove (iv). The argument goes in a way similar to the proof

of Theorem 6.1. Let (fn)∞ = (fn)S · fnSfin
∈ C∞c (Gn(A∞)) be any function

such that (fn)S ∈ H ur(Gn(AS)). Obtain (fn1,n2)S , (φn)S , (φn1,n2)S , fn1,n2

Sfin
,

φnSfin
and φn1,n2

Sfin
from (fn)∞, as in the beginning of the proof of Theorem 6.1,

except that Sfin\{p} should now be replaced by Sfin. Define

(6.27) f~nπi∞ := e~n(∆∞) · (−1)q(G)
∑
ϕ~n

〈aω∗(ϕH)ω
πi∞
, s〉det(ω∗(ϕ~n)) · fG~n,Ξ(ϕ~n),

where the sum runs over ϕ~n such that η̃ϕ~n is equivalent to ϕιlξ. Then f~nπi∞
and

φ~nπi∞
are BC-matching. (See (3.13) and the last paragraph of §4.3. Refer to the

paragraph above Proposition 5.6 for the definition of φ~nπi∞
and for the reason

why e~n(∆∞) appears.) Applying the results of Section 4.5 to Proposition 5.6,

we see that

(6.28)

trRG,ιlξ
Ä
φ∞ · φπi∞

ä
=
∑
π

m(π)·trπ(φ∞·φπi∞) =
∑
G~n

ι(G,G~n)IG~nθspec((f~n)∞·f~nπi∞).

By construction of fnπi∞
,

tr (Π∞(fnπi∞)A0
Π∞) = 2(−1)q(G),

whereas

tr (Π∞(fn1,n2

πi∞
)A0

Π∞) = (−1)q(G)en1,n2(∆∞)〈aω∗(ϕH)ω
πi∞
, s〉 det(ω∗(ϕH)).

Let

e(i) :=
tr (Π∞(fm1,m2

πi∞
)A0

Π∞)

tr (Π∞(fm1,m2
∞ )A0

Π∞
)

=
〈aω∗(ϕH)ω

πi∞
, s〉

〈µh, s〉
,

where fm1,m2
∞ is as in Section 6.1. Using the convention of Section 3.6 we can

compute that e(i) = 1 if i ≤ m1 and e(i) = −1 if i > m1. (See (3.20) and

(3.21).)

Arguing as in the proof of Theorem 6.1, we obtain in (Case ST)

(6.29) trRG,ιlξ{Π
S}(φSfin

· φπ0
∞

) = τ(G) · e0 · tr (ΠSfin
(fnSfin

)A0
ΠSfin

).

In (Case END),

(6.30) trRG,ιlξ{Π
S}(φSfin

·φπ0
∞

) = τ(G) · (e1 +e(i) ·e2) · tr (ΠSfin
(fnSfin

)A0
ΠSfin

).

Formula (6.29) along with (iii) of the corollary implies that∑
π∞

m(ιl(π
∞)⊗ π∞) = τ(G),
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where the sum runs over π∞∈ Irrl(G(A∞)) such that BC(ιlπ
S)'ΠS, BC(ιlπSfin

)

' ΠSfin
and Rξ,l(π

∞) 6= (0). This proves (iv) in (Case ST). Similarly, assertion

(iv) in (Case END) easily follows from (6.30). �

Recall that we defined integers a0(ιlξ) and a(ιlξ)σ,i for σ ∈ Φ+
C and 1 ≤

i ≤ n in the paragraph preceding (3.18). Let κ : F ↪→ Ql be a Q-algebra

embedding. For each integer k ∈ [1, n], set

jκ(k) := k − 1− a(ιlξ)ιlκ,k − a0(ιlξ).

(Note that jκ(k1) 6= jκ(k2) if k1 6= k2.) Let Wκ (resp. W0
κ) be the set of jκ(k)

(resp. k − 1− a(ιlξ)ιlκ,k) for those k ∈ [1, n] such that

• (Case ST) any k is allowed.

• (Case END) k ∈W 1
ιlκ

if e1 = e2; k ∈W 2
ιlκ

if e1 = −e2. (The sets W 1
ιlκ

and W 2
ιlκ

were defined in §6.1.)

Corollary 6.7 ([HT01, Cor. VI.2.8]). Let κ = ι−1
l τ . Then

dim grwDDR,κ(‹Rn−1
l (Π)) =

®
CG, if w ∈ Wκ,

0, if w /∈ Wκ.

Proof. The proof of [HT01, Cor. VI.2.8] works almost verbatim in our

case, if we use the results of Corollary 6.5 instead of [HT01, Cor. VI.2.7]. We

only need to work consistently with the sum over all π∞ ∈ Rl(Π), rather than

with a single π∞. For instance, the last two identities of [HT01, p. 209] become

in our case

dim grjκ(k)DDR,σ(‹Rn−1
l (Π)) = | ker1(Q, G)|

∑
π∞∈Rl(Π)

m(ιl(π
∞)⊗ πk∞) = CG.

In the course of the proof, we use an analogue of part 6 of [HT01, Prop III.2.1],

which is also true in our case. Note that our jκ(k) is different from jk of Harris-

Taylor since we have put {a(ιlξ)σ,i}1≤i≤n in decreasing order. �

Corollary 6.8. There exists a (true) continuous semisimple represen-

tation R′l(Π) of Gal(F/F ) on a Ql-vector space which is

• (Case ST) n-dimensional,

• (Case END) m1-dimensional if e1 = e2; m2-dimensional if e1 = −e2,

such that for any place w of F satisfying w|Q ∈ SplE/Q and w|Q 6= l,

(6.31)

R′l(Π)|WFw
=


ι−1
l Ln,Fw(Π1

w), (Case ST),

ι−1
l (Lm1,Fw(ΠM,1,w)⊗ | · |−m2/2

WFw
), e1 = e2, (Case END),

ι−1
l (Lm2,Fw(ΠM,2,w)⊗ | · |−m1/2

WFw
), e1 = −e2, (Case END)
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in Groth(WFw). In particular, R′l(Π) is independent of τ and ψ. Moreover,

for every κ : F ↪→ Ql,

(6.32) dim grwDDR,κ(R′l(Π)) =

®
1, if w ∈ W0

κ,

0, if w /∈ W0
κ.

Proof. Consider the semisimplification ‹R of (−1)n−1‹Rn−1
l (Π). Then ‹R is

a true representation of Gal(F/F ) whose dimension is CG times the expected

dimension of R′l(Π) in the corollary. We deduce from Theorem 6.4 and the

Cebotarev density theorem that ‹R is independent of the choice of τ . (A priori

the construction of ‹Rn−1
l (Π) depends on τ as the PEL datum does.) Thus an

obvious analogue of (6.32) for ‹R is true for every κ : F ↪→ Ql by Corollary 6.7.

The proof of [HT01, Prop. VII.1.8] (see Remark 6.9 below) shows that there

exists a semisimple representation ‹R′l(Π) such that‹R = CG · ‹R′l(Π).

Define

R′l(Π) := ‹R′l(Π)⊗ recl,ιl(ψ)|Gal(F/F ),

where recl,ιl(ψ
c) denotes the continuous l-adic character Gal(E/E)→ GL1(Ql)

corresponding to ψc via class field theory. (See [HT01, p. 20].) The identity

(6.31) for each w follows from Theorem 6.4. The last two assertions are easy

to see. �

Remark 6.9. When importing argument from the proof of [HT01, Prop.

VII.1.8], the two conditions in that proposition are not necessary for the same

reason as in Remark 6.6. In the proof of proposition VII.1.8, the use of Corol-

laries VI.2.7 and VI.2.8 of Harris-Taylor can simply be replaced by the use of

their counterparts, namely Corollaries 6.5 and 6.7.

In (Case END), define

W i
κ := {k − 1− biιlκ,k : 1 ≤ k ≤ mi}.

Corollary 6.10. In (Case END), there exists a continuous semisimple

representation

R′′l (Π) : Gal(F/F )→ GLmi(Ql),
where i = 1 if e1 = e2 and i = 2 if e1 = −e2, such that for any place w of F

satisfying w|Q ∈ SplE/Q and w|Q 6= l,

[R′′l (Π)|WFw
] = [ι−1

l Lmi,Fw(Πi,w)]

and for every κ : F ↪→ Ql,

dim grwDDR,κ(R′′l (Π)) =

®
1, if w ∈ W i

κ,

0, if w /∈ W i
κ.
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Proof. Define R′′l (Π) := R′l(Π)⊗ recl,ιl
Ä
($ ◦NF/E)ε(n−mi) ⊗ | · |(n−mi)/2

ä
,

where | · | : A×F /F× → R×>0 is the modulus character. With this definition, the

current corollary is easily deduced from the previous one. As for the Hodge-

Tate numbers, we use the fact that

W i
κ = {w +

ε(n−mi) · δ − (n−mi)

2
: w ∈ W0

κ},

which is easily seen from the discussion in the paragraph preceding (6.2). �

Remark 6.11. We end this section with a remark on generalization. Re-

garding the results of this section, it is natural to ask whether one can work

with more general Π than those considered in (Case ST) or (Case END). (We

restricted ourselves to these two cases since they are enough for the purpose

of proving our main results in Section 7. We have not discovered a promising

way to strengthen the results in Section 7 by considering more general Π.)

The method of this paper mostly works if Π is induced from a cuspidal

automorphic representation ψ⊗ (⊗ri=1Πi) of G~n(A) for ~n of any length r where

each Πi is θ-stable. For instance, we can define ‹Rl(Π) in the same manner

and prove analogues of most results of Section 6.2, including Theorem 6.4. A

drawback is that we have less control over the sign factors such as e0, e1 and e2,

which show up in the twisted trace formula. (Compare with Corollary 6.5(ii)

and Lemma 7.3. It is expected that the sign factors would be precisely com-

puted by means of the Whittaker normalization of intertwining operators as in

[CHLb]. For instance, one would be able to compute the sign of the intertwin-

ing operator of our Lemma 4.11.) Apart from that, there is no new difficulty

other than complication in book-keeping. We have pursued only the case r ≤ 2

mainly because that is enough for our application to the construction of Galois

representations.

We have not tried to deal with the case where Π is induced from a discrete

but not cuspidal representation of G~n(A). This case may present new difficul-

ties and the computation would be more complicated. We merely remark that

Corollary 6.5(i) is not expected to be true in that case.

7. Construction of Galois representations

In this section we establish some instances of the global Langlands cor-

respondence and prove the local-global compatibility as an application of our

computation of the cohomology of Shimura varieties in Section 6.2.

Let L be a number field, L′ a finite soluble extension over L and Π1 an

automorphic representation of GLn(AL). We frequently write BCL′/L(Π1) for

the base change lifting of Π1 in the sense of [AC89, Ch. 3].
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7.1. Constructing Galois representations under technical assumptions. Let

E be an imaginary quadratic field, F be a CM field, and F+ be the maximal

totally real subfield of F . Let m ∈ Z≥2. Let Π0 be a cuspidal automorphic

representation of GLm(AF ). Consider the following assumptions on (E,F,Π0):

• F = EF+,

• [F+ : Q] ≥ 2,

• RamF/Q ∪ RamQ(Π0) ⊂ SplF/F+,Q,

• (Π0)∨ ' Π0 ◦ c,
• Π0

∞ is cohomological for an irreducible algebraic representation Ξ0 of

GLm(F ⊗Q C).

Let us associate highest weight integers (aσ,1 ≥ · · · ≥ aσ,m) to Ξ0, where

σ runs over HomQ(F,C). For 1 ≤ k ≤ m, let

(7.1) jσ(k) := k − 1− aσ,k.

If m is even, assume in addition that

• there exist σ0 ∈ HomQ(F,C) and an odd number k such that aσ0,k >

aσ0,k+1.

If the above assumption is satisfied, we will say that Ξ0 is slightly regular

(at σ0). If Ξ0 is slightly regular at σ0, then it is also slightly regular at σc0 since

(Π0)∨ ' Π0 ◦ c.
If m is odd, set

n := m, Π1 := Π0 and Ξ1 := Ξ0.

If m is even, set

n := m+ 1, Π1 := Π0 and ΠM,1 := Π0 ⊗ ($ ◦NF/E ◦ det)

and choose any algebraic Hecke character Π2 = ΠM,2 : A×F /F× → C× which

satisfies the following:

• RamQ(ΠM,2) ⊂ SplF/F+,Q,

• ΠM,2Πc
M,2 = 1, and

• Π1 := n-ind(ΠM,1 ⊗ ΠM,2) is such that Π1
∞ is cohomological for an

irreducible algebraic representation Ξ1.

Allow m to be odd or even, fixing an embedding τ : F ↪→ C. Choose a PEL

datum (F, ∗, V, 〈·, ·〉, h) as in Lemma 5.1 (in particular dimF V = n) and write

G for the associated group. Observe that the assumptions (i)–(v) in Section 5.1

are verified. Choose a character $ : A×E/E× → C× as in Section 3.1, namely

$ has the property that $|A× is the quadratic character for E/Q coming from

class field theory. Let δ denote the odd integer such that $∞(z) = (z/z)δ/2

(using the identification (E ⊗Q R)× ' C× via τ |E). In fact we choose $ as in

the following lemma.
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Lemma 7.1. The Hecke character $ : A×E/E× → C× can be chosen so

that

• $|A× is as described above,

• δ is sufficiently large,7 and

• RamQ($) ⊂ SplF/F+,Q.

Proof. It is standard that $ can be chosen to satisfy the first two condi-

tions. If RamQ($) * SplF/F+,Q, let R be the set of primes q ∈ RamQ($) which

are not contained in SplF/F+,Q. By our initial assumption, such q must be inert

in E. Suppose that there exists a continuous character $0 : A×E/E× → C×
such that

• $0 is unramified outside SplF/F+,Q ∪R ∪ {∞},
• $0

q |O×Eq
= $q|O×Eq

and $0
q(q) = 1 for each q ∈ R,

• $0
∞ = 1 and $0|A× = 1.

Then $/$0 is the desired character of the lemma.

It remains to prove that $0 as above exists. Let T (resp. S) denote the

set of places v of E such that v|Q ∈ SplF/F+,Q ∪ R (resp. v|Q ∈ R). De-

fine UT∪{∞} :=
∏
v/∈T, v-∞O×Ev and US :=

∏
v∈S O×Ev . Choose a sufficiently

small open compact subgroup UT\S ⊂ A×E,T\S so that (UT∪{∞}UT\SUS) ∩
E× = (1). (This is possible since |O×E | < ∞.) Define a finite character

$′ on (UT∪{∞}UT\SUSE
×)/E× so that $′|US = $|US and $′ is trivial on

UT∪{∞}UT\S . It is elementary to check that $′ extends (uniquely) to a finite

continuous character on

(UT∪{∞}UT\SA×E,SE
×
∞A×E×)/E×,

which is an open subgroup of A×E/E×, so that $′|E×∞A× = 1 and $′q(q) = 1 for

every prime q ∈ R. Finally we extend this character to A×E/E× to obtain a

desired $0. �

The following lemma is an exact analogue of [HT01, Lemma VI.2.10] ex-

cept that the condition (iv) is new. This additional condition is guaranteed by

an argument which is very similar to the proof of Lemma 7.1. Thus we omit

the proof of Lemma 7.2.

Lemma 7.2. Let Π1 and Ξ1 be as above. (Allow m to be either odd or

even.) We can find a character ψ : A×E/E× → C× and an algebraic represen-

tation ξC of G over C satisfying (i), (ii), (iii), and (iv) below.

(i) ψΠ1 = ψc/ψ;

7We included this condition on δ just in case, but later realized that it was not used in

the later argument.
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(ii) Ξ1 is isomorphic to the restriction of Ξ to (RF/QGLn)×Q C, where Ξ

is constructed from ξC as in Section 4.3;

(iii) ξC|−1
E×∞

= ψc∞; and

(iv) RamQ(ψ) ⊂ SplF/F+,Q.

Moreover if l splits in E, then (for any choice of ιl) we may require that ψ

satisfy the following as well as (i)–(iv):

(v) ψO×Eu
= 1, where u is the place above l induced by ι−1

l τ |E .

Suppose that a prime l and ιl : Ql
∼→ C are fixed. Choose ξC and ψ

as in Lemma 7.2 and put ourselves in the situation of (Case ST) or (Case

END) of Section 6.1, according as m is odd or even, by setting ξ := ι−1
l ξC and

Π := ψ ⊗Π1. These data prepare us to run the argument of Sections 5 and 6.

We need another lemma before stating results on Galois representations.

If m is even, consider the numbers b1σ,j and γ1
σ,j defined in Section 6.1. Thus the

numbers {b1σ,j} correspond to the highest weight for Ξ1 = Ξ0 and aσ,j = b1σ,j
for all σ ∈ HomQ(F,C) and 1 ≤ j ≤ m. Moreover,

γ1
σ,j − γ1

σ,j+1 = (b1σ,j − b1σ,j+1) + 1 = (aσ,j − aσ,j+1) + 1,

where the first equality follows from (6.3). As Ξ0 is slightly regular, there exist

σ0 : F ↪→ C and an odd k such that aσ0,k − aσ0,k+1 ≥ 1, which implies

γ1
σ0,k − γ

1
σ0,k+1 ≥ 2.

Since Ξ0 is also slightly regular at σc0 as we observed before, it may be assumed

that σ0 ∈ Φ+
C without loss of generality. (Recall that σ0 ∈ Φ+

C is equivalent

to σ0|E = τ |E .) Let χ and χ′ be algebraic Hecke characters of GL1(AF ) such

that χχc = 1 and χ′(χ′)c = 1. Denote by cσ, c
′
σ ∈ Z the integers such that

χσ(z) = (z/z)cσ and χ′σ(z) = (z/z)c
′
σ for each σ ∈ HomQ(F,C). We are always

able to choose χ and χ′ such that

γ1
σ0,m > cσ0 , γ1

σ0,m−k > c′σ0
> γ1

σ0,m−k+1

and for all σ ∈ Φ+
C different from σ0,

γ1
σ,m > cσ, γ1

σ,m > c′σ.

Lemma 7.3. If m is even, suppose that χ and χ′ are chosen as above.

Then in Theorem 6.1, we have e2 = e1 for either Π2 = χ or Π2 = χ′. This is

independent of the choice of τ : F ↪→ C (which was fixed in §5.1 and remained

to be fixed in §§5 and 6) whether Π2 = χ or Π2 = χ′ works.

Proof. By Corollary 6.5(i), e1 = (−1)n−1. By Remark 6.3, the sign e2

depends only on the factor det(ω∗(ϕH)) ∈ {±1}, where ϕH is by definition the

discrete L-parameter such that

BC(ϕH) ' ψH,∞ ⊗Π1,∞ ⊗Π2,∞.
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To prove the first assertion, it suffices to show that det(ω∗(ϕH)) has different

signs for Π2 = χ and Π2 = χ′. Let us compute det(ω∗(ϕH)) using the explicit

description of ω∗(ϕH) in (3.19). We adopt the notation of Section 3.6 so that

for each σ ∈ Φ+
C , γ1

σ,j = γ(ξ)σ,j for 1 ≤ j ≤ m and γ(ξ)σ,m+1 = γ2
σ,1.

If Π2 = χ, then for every σ ∈ Φ+
C ,

(7.2) γ(ξ)σ,1 > · · · > γ(ξ)σ,m > γ(ξ)σ,m+1 = cσ;

hence ω∗(ϕH) = 1 and det(ω∗(ϕH)) = 1. Now suppose Π2 = χ′. For every

σ ∈ Φ+
C\{σ0}, (7.2) still holds if cσ is replaced with c′σ. On the other hand,

γ(ξ)σ0,1 > · · · > γ(ξ)σ0,m−k > γ(ξ)σ0,m+1

= c′σ0
> γ(ξ)σ0,m−k+1 > · · · > γ(ξ)σ0,m.

Thus ω∗(ϕH) is represented by an element of (Sm+1)Φ+
C whose σ-component is

trivial if σ 6= σ0 and

(1, . . . ,m+ 1) 7→ (1, . . . ,m− k,m+ 1,m− k + 1, . . . ,m)

if σ = σ0. In particular, det(ω∗(ϕH)) = −1 since k is odd and m is even. This

completes the proof of the first assertion of the lemma.

As for the independence of the choice of τ , it is enough to show that the

above computation of det(ω∗(ϕH)) does not depend on the choice of τ . The

above argument depends only on τ |E in that τ |E determines the subset Φ+
C of

ΦC. So we are done if we get the same value of det(ω∗(ϕH)) for τ and τ c. This

follows from the evenness of m and the fact that every parameter flips sign if

τ is changed to τ c (and σ to σc) by conjugate self-duality. �

Proposition 7.4. Let m ≥ 2 be any integer. Keep the assumptions on

(E,F,Π0) as in the beginning of Section 7.1. For each prime l and an iso-

morphism ιl : Ql
∼→ C, there exists a continuous semisimple representation

Rl(Π
0) : Gal(F/F )→ GLm(Ql) such that

(i) At every place y of F such that y - l and y|Q /∈ RamE/Q,

(7.3) [Rl(Π
0)|WFy

] = [ι−1
l Lm,Fy(Π

0
y)]

in Groth(WFy).

(ii) Suppose y - l. For any σ ∈ WFy , each eigenvalue α of Rl(Π
0)(σ)

satisfies α ∈ Q and |α|2 ∈ |k(y)|Z under any embedding Q ↪→ C.

(iii) Let y be a prime of F not dividing l, where Π0
y is unramified. Then

Rl(Π
0) is unramified at y, and for all eigenvalues α of Rl(Π

0)(Froby)

and for all embeddings Q ↪→ C we have |α|2 = |k(y)|m−1.

(iv) For every y|l, Rl(Π0) is potentially semistable at y.

(v) If l splits in E, then for every y|l such that Π0
y is unramified, Rl(Π

0)

is crystalline at y.
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(vi) For each σ : F ↪→ Ql (recall the definition of jιlσ(·) from (7.1)),

dim grjDDR,σ(Rl(Π
0)) =

®
1, if j = jιlσ(k) for some k ∈ [0,m− 1],

0, otherwise.

Proof. Fix l and ιl : Ql
∼→ C throughout the proof. Given (E,F,Π0),

define Π1, Ξ1 and n depending on the parity of m. In particular, choose ΠM,2

if m is even. Let ψ be a character satisfying (i)–(iv) of Lemma 7.2. Let ξC and

Ξ be as in that lemma. Set ξ := ι−1
l ξC and Π := ψ⊗Π1. With these definitions

and the notation, we have put ourselves in (Case ST) (resp. (Case END)) of

Section 6.1 when m is odd (resp. even). The assumptions of Section 6.1 in

each case are easily verified.

Now we can run the argument of Section 6 to obtain R′l(Π) as in Corol-

lary 6.8 if m is odd and R′′l (Π) as in Corollary 6.10 if m is even. If m is even,

we may freely change the choice of ΠM,2 using Lemma 7.3, if necessary, to

ensure that the case e1 = e2 occurs. With the definitions

(7.4) Rl(Π
0) := R′l(Π) (m : odd) and Rl(Π

0) := R′′l (Π) (m : even),

the condition (7.3) is already verified at every y - l such that y|Q splits in E.

The properties (ii)–(v) of Rl(Π
0) follow from Proposition 5.3 and (vi) from

Corollaries 6.8 and 6.10. We remark that the proof of (v), in which we suppose

that l splits in E, requires that choices be made such that

• ψ satisfies all (i)–(v) of Lemma 7.2,

• $ satisfies an exact analogue of (v) of Lemma 7.2, and

• if m is even, Π2 is unramified at places of F dividing u (where u is as

in Lemma 7.2).

(Obviously there exists $ which satisfies the above condition as well as the

conditions in Lemma 7.1.)

It remains to prove (7.3) for y such that y|Q is inert in E and y - l. Set

p := y|Q. We can find infinitely many real quadratic fields A not contained in

F such that p is inert in A and RamA/Q ⊂ SplE/Q. (So RamA/Q ⊂ SplF/F+,Q.)

Choose one such A. Let E′ be the quadratic subfield of AE different from A

and E. Then E′ is an imaginary quadratic field where p splits. Let F ′ := AF

and (F ′)+ := AF+. We claim that A can be chosen so that BCF ′/F (Π0) is

cuspidal. To prove the claim, assume to the contrary that BCF ′/F (Π0) is not

cuspidal for some F ′ = AF . Then by [AC89, Th. 4.2, p.202], it must be the

case that m is even and that Π0 is an automorphic induction from a cuspidal

automorphic representation of GLm/2(AF ′). This can happen for only finitely

many quadratic extensions F ′ of F . Hence there exists a choice of A (satisfying

the previous conditions on A) such that BCAF/F (Π0) is cuspidal.

By strong multiplicity-one, we deduce that BCF ′/F (Π0)∨'BCF ′/F (Π0)◦c.
It is easy to verify that (E′, F ′,BCF ′/F (Π0)) satisfies the assumptions in the
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beginning of Section 7.1. So there exists Rl(BCF ′/F (Π0)), defined as previously

in the current proof, with the property that for any place z of F ′ such that z|Q
splits in E′ and z - l,

(7.5) [Rl(BCF ′/F (Π0))|Wz ] = [ι−1
l Lm,F ′z(Π

0
z)].

The Cebotarev density theorem implies that Rl(BCF ′/F (Π0)) is isomorphic to

the restriction of Rl(Π
0) to Gal(F/F ′). We know that y splits in F ′ since p

splits in E′. Let y′ be a place of F ′ above y. Applying (7.5) to z = y′, we

deduce that

[Rl(Π
0)|Wy ] = [ι−1

l Lm,Fy(Π
0
y)]. �

7.2. Removing assumptions from Section 7.1. We are going to improve

Proposition 7.4 by removing the first three assumptions in the beginning of

Section 7.1.

Theorem 7.5. Let m ∈ Z≥2 be an integer and F be any CM field. Let

Π0 be a cuspidal automorphic representation of GLm(AF ) satisfying

• (Π0)∨ ' Π0 ◦ c,
• Π0

∞ is cohomological for some irreducible algebraic representation Ξ0

and

• in addition, Ξ0 is slightly regular (§7.1) if m is even.

For each prime l and an isomorphism ιl : Ql
∼→ C, there exists a continuous

semisimple representation Rl(Π
0) : Gal(F/F ) → GLm(Ql) such that for any

place y of F not dividing l,

(7.6) [Rl(Π
0)|WFy

] = [ι−1
l Lm,Fy(Π

0
y)]

holds in Groth(WFy). Moreover (ii)–(vi) of Proposition 7.4 are verified, with

(v) replaced by

(v)′ For every y|l such that Π0
y is unramified, Rl(Π

0) is crystalline at y.

Remark 7.6. Let m ∈ Z≥2. Let F be any totally real field and Π0 a cus-

pidal automorphic representation of GLm(AF ) such that Π0
∞ is cohomological

and Π0 ' Π0 ⊗ (ψ ◦ det) for some character ψ : A×F /F× → C×. Suppose that

Π0
∞ is cohomological for a slightly regular representation if m is even. (Slight

regularity is defined analogously as in the case when F is a CM field.) Then a

precise analogue of Theorem 7.5 (along with Theorem 7.11 and Corollary 7.13)

for F and Π0 can be proved in the same way Theorem 3.6 of [Tay04] (which

considers the case F = Q for simplicity) was deduced from [HT01, Th. VII.1.9].

See [Tay04] for more detail.

Remark 7.7. One may compare the theorem with [Clo91, Th. 5.7], [HT01,

Th. VII.1.9] and [Mor10, Cor. 8.4.9]. See also [CHLa]. Refer to Section 1 for

more details.
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Remark 7.8. The method of proof is to construct Galois representations

of Gal(F/F ′) for many quadratic extensions F ′ of F (for which technical as-

sumptions are satisfied) by using Proposition 7.4, and then to “patch” them

to produce a representation of Gal(F/F ). This type of argument was used in

[BR89] and [HT01], and generalized to soluble extensions ([Sor]).

Proof. We may fix l and ιl : Ql
∼→ C throughout the proof. Let Π0 be

as in the theorem. In what we call Step (I), we prove the theorem under the

following assumptions on (E,F,Π0), with an exception that (7.6) is established

only at y|Q /∈ RamE/Q (We get rid of the conditions on (E,F,Π0) and y in

Step (II).):

• E is an imaginary quadratic field.

• F = EF+.

• l splits in E.

• RamQ(Π0) ⊂ SplE/Q.

• RamF/Q ⊂ RamE/Q
∐

SplE/Q.

• Any finite place y of F+ is unramified in F if y|Q is ramified in E.

Let F (F ) be the set of all imaginary quadratic extensions F ′ over F+

such that

• Any finite place y of F+ splits in F ′ if y|Q is ramified in E.

• If y ∈ RamF ′/F+ , then any place y′ of F+ such that y′|Q = y|Q splits

in F .

• BCFF ′/F (Π0) is cuspidal.

Note that the last condition excludes finitely many F ′. (See the proof of

Proposition 7.4 where the cuspidality of a quadratic base change is discussed.)

For each F ′ ∈ F (F ), it is verified that (E,FF ′,BCFF ′/F (Π0)) satisfies the

assumptions in the beginning of Section 7.1. So there exists Rl(BCFF ′/F (Π0))

as in Proposition 7.4. Moreover, for any finite extension M over F , it is clearly

possible to find F ′ ∈ F (F ) such that F ′ is linearly disjoint from M over F . In

this situation we may use the argument of [HT01, pp. 230–231] to construct

a representation Rl(Π
0) : Gal(F/F ) → GLn(Ql). Moreover, there is a certain

finite extension M0 over F (which depends on a choice made in the course of

constructing Rl(Π
0)) such that for any F ′ ∈ F (F ) which is linearly disjoint

from M0 over F , we have

(7.7) [Rl(Π
0)|Gal(F/FF ′)] = [Rl(BCFF ′/F (Π0))].

(Note that our F , FF ′ and M0 play the roles of L, FA and MA1 in the notation

of [HT01, pp. 230–231], respectively.) The properties (ii), (iii), (iv) and (vi)

of Rl(Π
0) are inherited from those of Rl(BCFF ′/F (Π0)). To verify (7.6) for

Rl(Π
0), let us fix a finite place y - l of F such that y|Q does not ramify in E.

Choose F ′ ∈ F (F ) such that
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• F ′ is linearly disjoint from M0 over F ,

• y|F+ splits in F ′.

Then y splits as y′y′′ in FF ′. We deduce (7.6) from

[Rl(BCFF ′/F (Π0))|WFF ′
y′

] = [ι−1
l Ln,FF ′

y′
(BCFF ′/F (Π0))]

and the restriction of (7.7) to WFF ′
y′

= WFy . To show (v)′ for Rl(Π
0), let y be

a place of F above l. Choose F ′ ∈ F (F ) which satisfies the two conditions in

the above bullet list so that y = y′y′′ in FF ′. By (7.7) we have that [Rl(Π
0)|Wy ]

is the same as [Rl(BCFF ′/F (Π0))|WFy′
] where the latter is crystalline by (v) of

Proposition 7.4. This finishes Step (I).

Step (II) is to prove the theorem in general. Let F and Π0 be as in the

theorem. Let E (F ) be the set of all imaginary quadratic fields E not contained

in F such that

• l splits in E.

• RamF/Q ∪ RamQ(Π0) ⊂ SplE/Q.

• If a finite place y of F+ is such that y|Q ∈ RamE/Q, then y ∈ UnrF/F+ .

• BCEF/F (Π0) is cuspidal.

As before, the last condition excludes only finitely many E. For each E ∈
E (F ), it is verified that (E,EF,BCEF/F (Π0)) satisfies the assumptions in Step

(I) of the current proof. So there exists Rl(BCEF/F (Π0)) satisfying (i)–(vi)

of Proposition 7.4. For any finite extension M over F , we can find E ∈
E (F ) such that EF is linearly disjoint from M over F . As before we use the

argument of [HT01, pp. 230–231] to construct Rl(Π
0). A similar argument as

in Step (I) shows that (7.6) and the assertions (ii)–(vi) of Proposition 7.4 (with

(v) replaced by (v)′) hold for Rl(Π
0), by reducing to the case considered in

Step (I). (To verify (7.6) for Rl(Π
0)|WFz

at an arbitrary place z of F , we choose

E ∈ E (F ) such that z|Q splits in E and imitate the argument in Step (I), with

EF in place of FF ′.) �

The Ramanujan-Petersson conjecture for GLn states that every non-archi-

medean local component of a cuspidal automorphic representation of GLn(AF )

for a number field F is (essentially) tempered.

Corollary 7.9. Let m, F , Π0 be as in Theorem 7.5. Then Π0
w is tem-

pered at every finite place w of F .

Remark 7.10. Compare the corollary with [Clo91, Cor. 5.8], [HT01, Cor.

VII.1.11] and [Mor10, Cor. 8.4.10] (cf. Remark 7.7).

Proof. This follows from (ii) of Theorem 7.5 and [HT01, Cor. VII.2.18].

�
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7.3. Strengthening of the local-global compatibility. The aim of this last

subsection is to improve the identity (7.6) of Theorem 7.5 as in the following

theorem. It is worth pointing out that we make use of Corollary 7.9 in the

proof, among others. Fix a prime l and an isomorphism ιl : Ql
∼→ C throughout

Section 7.3.

Theorem 7.11. In the setting of Theorem 7.5, we have the following

isomorphism of Weil-Deligne representations at every y - l.

(7.8) WD(Rl(Π
0)|Gal(F y/Fy))

F−ss ' ι−1
l Ln,Fy(Π

0
y).

Taylor and Yoshida proved the above result ([TY07, Th. 1.2]) in the setting

of [HT01]. Boyer ([Pas09]) proved the weight monodromy conjecture for the

vanishing cycle complexes arising from Shimura varieties in the same setting,

providing an alternative approach to work of Taylor and Yoshida.) To prove

Theorem 7.11, it suffices to prove an analogue of [TY07, Th. 1.5] in our setting,

namely that WD(Rl(Π
0)|Gal(F y/Fy)) is pure for every y - l, by the remark above

the cited theorem. For this, we basically repeat the argument of Sections 3 and

4 of Taylor-Yoshida’s paper with only minor changes. Note that we only need

to consider the case “l 6= p” in that paper (except a temporary digression to

the case l = p in Lemma 7.12 and Corollary 7.13). We devote this subsection

to sketch the proof of Theorem 7.11, which amounts to explaining how their

argument should be modified. Obviously we claim no originality.

First of all, we briefly recall the Shimura varieties were used earlier. This

replaces the beginning of Section 2 of [TY07]. (We do not need the later part

of that section.) We put ourselves in the situation of Section 7.1. So we begin

with a triple (E,F,Π0) satisfying the assumptions there and choose a PEL

datum and other data. Recall that we consider (Case ST) with n = m if m is

odd and (Case END) with n = m + 1 if m is even. In the latter case, choose

ΠM,2 so that R′′l (Π) has dimension m (rather than 1) in Corollary 6.10. Such

a choice is possible by Lemma 7.3.

For each sufficiently small open compact subgroup K of G(A∞), let XK

denote the Shimura variety ShK constructed from the above PEL datum (§5.2).

We list the modifications to be made in Section 3 of [TY07] so that things

make sense in our setting. The notation B, OB, Bop and Oop
B there should

be replaced by F , OF , Mn(F ) and Mn(OF ), respectively. Fix a prime p ∈
SplE/Q and a place w of F above p. Choose ιp : Qp

∼→ C such that ι−1
p τ

induces the place w. We also fix ιl : Ql
∼→ C. The groups Uwp (m), Ma(m)

and Iw(m) can be defined as obvious analogues, as well as U0 := Up ×Ma(m)

and U := Up × Iw(m). Set GA := A[w∞] for abelian schemes A in the moduli

problem of our Shimura variety (without multiplying the idempotent ε as in

Taylor-Yoshida). Let G denote the Barsotti-Tate OFw -module associated to
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the universal abelian scheme for XU0 . We explained in Section 5.2 that XU0

has a smooth projective integral model over OFw . Recall that the special fiber

XU0 over Spec k(w) admits a stratification into X
(h)
U0

for 0 ≤ h ≤ n− 1. Note

that X
(0)
U0

is nonempty of dimension 0 as we can exhibit an Fp-point in the

corresponding Igusa variety which is a covering of X
(0)
U0

, as was done in [HT01,

Lemma III.4.3, Cor V.4.5]. By analogues of [HT01, Lemma III.4.1.2] and

[TY07, Lemma 3.1] in our setting (which are proved in the same way), X
(h)
U0

are of pure dimension h for 0 ≤ h ≤ n−1. The integral model for XU over OFw
and the schemes YU,i, YU,S and Y 0

U,S over Spec k(w) are defined as in [TY07].

Notice that m and S in their paper are denoted by m and S , respectively,

in order to avoid conflict with our notation. Apart from the changes already

mentioned, the material in Section 3 of Taylor-Yoshida’s paper goes through

without further modification.

This is a good place to record a useful fact, which will not be needed

in the proof of Theorem 7.11. Only in this paragraph, assume that w|l and

l = p. We know that XU is a proper scheme over OFw with semistable re-

duction ([TY07, Prop. 3.4]), so the universal abelian scheme AU over XU

also has semistable reduction over OFw . Since Hk(XU ×OFw Fw,Lξ) is a di-

rect summand of Hk+mξ(AU ×OFw Fw,Ql) up to a Tate twist for an integer

mξ ([TY07, p. 477]), we deduce that Hk(XU ×OFw Fw,Lξ) is a semistable

representation of Gal(Fw/Fw) ([Tsu99]). Write each πl ∈ Irrl(G(Ql)) as

πl = πl,0 ⊗ πw ⊗ (⊗i>1πwi), following our previous convention.

Lemma 7.12. Let π∞ ∈ Irrl(G(A∞)) and assume that π
Z×
l

l,0 6= 0. If

π
Iwn,w
w 6= 0 and Rkξ,l(π

∞) 6= 0 for some k, then Rkξ,l(π
∞) is a semistable repre-

sentation of Gal(Fw/Fw).

Proof. Recall U = Up × (Iwn,w × Uwp (m) × Z×p ). We can arrange that

(π∞)U 6= 0 by choosing sufficiently small Up and Uwp (m). Then Rkξ,l(π
∞) is

semistable since it appears with nonzero multiplicity as a subrepresentation of

Hk(XU ×OFw Fw,Lξ). �

Corollary 7.13. In the setting of Theorem 7.5, if Π0
y has a nonzero

Iwahori fixed vector at y|l, then Rl(Π
0) is semistable at y.

Proof. The proof is the same as in the crystalline case. Namely, the corol-

lary is derived from Lemma 7.12 in the same way as the assertion (v)′ of

Theorem 7.5 was deduced from Proposition 5.3(v). �

We return to the case l 6= p. Now we adapt section 4 of Taylor-Yoshida to

our situation. We work under the setting of Section 6 of our paper, in either

(Case ST) or (Case END), depending on the parity of m. Choose a finite
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set S under the assumptions in the beginning of Section 6. (In addition, we

already assumed that the conditions (i)–(v) above Lemma 5.1 are satisfied.)

All additional assumptions will be removed at the end. In fact, let us consider

only (Case ST) for now. In particular Π = ψ⊗Π0 is cuspidal. (The argument

is essentially the same in (Case END), which will be briefly discussed in Re-

mark 7.16.) Let πp ∈ Irrl(G(Qp)) be such that BC(ιlπp) ' Πp as before. Write

πp = πp,0 ⊗ πw ⊗ (⊗i>1πwi) so that ιlπp,0 = ψu for u := w|E and ιlπwi ' Π1
wi

for all i.

Let I
(h)
Up,m be the Igusa variety of the first kind defined in [HT01, p. 121].

(Substitute our Shimura varieties in the definition.) The Iwahori-Igusa variety

I
(h)
U over X

(h)
U0

is defined as on page 487 of [TY07]. The results of page 487

carry over without change. If 0 ≤ h ≤ n − 1 corresponds to b as in (5.3), we

will write Ig(h) for Igb and J (h)(Qp) for Jb(Qp).
At this point we need to mention that we will follow the sign conven-

tion of [TY07] in order to minimize confusion. This means that the signs of

Hc(I
(h),Lξ) (and its variants) and H(X,Lξ) differ from the usual convention

by (−1)h and (−1)n−1, respectively. Accordingly, we change the definition of

Hc(Ig
(h),Lξ) by multiplying (−1)h.

One major change occurs in the middle of page 488, where Theorem V.5.4

of [HT01] is cited. Let us elaborate on this point. Put D := DFw,1/(n−h). Write

OD for the maximal order in D. It follows from the definition of Hc(I
(h),Lξ)

that
Hc(I

(h),Lξ) = Hc(Ig
(h),Lξ)

Z×p ×O×D ,

where Z×p ×O×D is viewed as the subgroup Z×p ×(O×D×(1))×∏i>1(1) of J (h)(Qp)
via the expression (5.4). Applying Theorem 6.1, we have (cf. (5.16))

BCp(Hc(I
(h),Lξ)[Π

S ])

= (−1)n−1CG[ι−1
l Π∞,p][π

Z×p
p,0 ⊗ Redn−h,h(πw)O

×
D ⊗ (⊗i>1πwi)]

in Groth(G(A∞,p)×J (h)(Qp)), where BCp denotes the local base change at the

places away from p and ∞ (§4.2). We remark that ep(J
(h)) does not show up

in the formula as we are following the sign convention of [TY07]. According

to page 488, Frobw acts on Hc(I
(h),Lξ) as

(1, p−[k(w):Fp], $−1
D , 1, 1)

∈ G(A∞,p)× (Q×p /Z×p )× (D×/O×D)×GLh(Fw)×
(∏
i>1

GLn(Fwi)

)
,

where $D is any uniformizer of D. It is easy to check that

BCp(Hc(I
(h)
Iw(m),Lξ)[Π

S ]) = BCp(Hc(I
(h),Lξ)[Π

S ])U
w
p (m)×Iwh,w

= (−1)n−1CG[ι−1
l Π∞,p][Red(h)(πw ⊗ πp,0)] · dim[(⊗i>1πwi)

Uwp (m)]

in Groth(G(A∞,p)× FrobZw), where Red(h) is as defined on page 488.
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It is easy to deduce the following analogue of [TY07, Lemma 4.3].

BCp(H(YIw(m),S ,Lξ)[Π
S ]) = (−1)n−1CG[ι−1

l Π∞,p] dim[(⊗i>1πwi)
Uwp (m)]

(7.9)

×

Ñ
n−#S∑
h=0

(−1)n−#S−h
Ç
n−#S

h

å
ι−1
l [Red(h)(Π1

w ⊗ ψu)]

é
.

We proceed to prove the following analogue of [TY07, Prop. 4.4] by imitating

the original argument.

Proposition 7.14. Keep the previous notation. Suppose that π
Iw(m)
p 6= 0.

Then

BCp(Hj(YIw(m),S ,Lξ)[Π
S ]) = 0

for j 6= n−#S .

Proof. Let D(Π):=(−1)n−1CG ·dim(⊗i>1Πw,i)
Uwp (m) for each π∞∈Rl(Π).

(Note that our D(Π) differs from D of [TY07] by the dimension of the Iwahori

invariants at w.) The assumption implies that D(Π) 6= 0. By (7.9),

BCp(H(YIw(m),S ,Lξ)){Π∞,p}

= D(Π)
n−#S∑
h=0

(−1)n−#S−h
Ç
n−#S

h

å
ι−1
l [Red(h)(Π1

w ⊗ ψu)]

in Groth(FrobZw). We will be done if the above expression is shown to be zero.

The initial assumption says that Π1
w has a nonzero Iwahori fixed vector.

Moreover Π1
w is tempered by Corollary 7.9. So Π1

w has the form

n-ind
GLn(Fw)
P (Fw) (Sps1(π1)⊗ · · · ⊗ Spst(πt))

for unramified characters πi : F×w → C× and
∑
i si = n. Then Red(h)(Π1

w⊗ψu)

can be computed as in [TY07]. We obtain

(7.10) BCp(H(YIw(m),S ,Lξ)){Π∞,p} = D(Π)
∑

si=#S

(n−#S )!∏
j 6=i sj !

[Vi],

where Vi is as defined on page 490 of [TY07]. Since Vi are strictly pure of

weight mξ−2tξ + (n−#S ) (mξ and tξ are defined in [HT01, p. 98]), the Weil

conjecture implies that

BCp(H(YIw(m),S ,Lξ)){Π∞,p} = 0

for j 6= n−#S . �
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So far we have considered BCp on the level of Grothendieck groups. Now

we work with genuine admissible representations. For each k ≥ 0, define (cf.

(5.5))

BCp(Hk(XIw(m),Lξ)[Π
S ]) :=

⊕
π∞

dim(πIw(m)
p ) · BC(π∞,p)⊗Rkξ,l(π∞),

where the sum runs over π∞ ∈ Irrl(G(A∞)) such that πS is unramified and

BC(ιlπ
S) ' ΠS . Theorem 6.4 and its proof show that

(7.11) BCp(Hn−1(XIw(m),Lξ)[Π
S ]) ' (dimπIw(m)

p ) · ι−1
l Π∞,p ⊗ ‹Rn−1

l (Π)

as admissible representations of G(A∞,p)×Gal(F/F ).

Corollary 7.15. In the setting of Proposition 7.14, the representation

WD(‹Rn−1
l (Π)|Gal(Fw/Fw)) is pure of weight mξ − 2tξ + n− 1.

Proof. In view of [TY07, Lemmas 1.4(1) and 1.7], it suffices to show that

WD(‹Rn−1
l (Π)ss|Gal(Fw/Fw))

F−ss is pure and of the designated weight. Here the

superscript “ss” means the semisimplification of the Gal(F/F )-action.

We use a slightly different form of the spectral sequence of [TY07, Prop.

3.5], which can be derived from its proof. With the notation of that proposition,

consider the spectral sequence

(7.12)

BCp(Ei,j1 (Iw(m), ξ)[ΠS ])⇒ BCp(WD(H i+j(XIw(m),Lξ)
ss|Gal(Fw/Fw))

F−ss).

Here each side is viewed as a semisimple representation of G(A∞,p) × Frobw
(after semisimplifying the action of G(A∞,p) × Frobw on the left-hand side)

with a nilpotent operator N . The above spectral sequence can be obtained in

the following way. First, we semisimplify the action of G(A∞,p)×Frobw in the

Rapoport-Zink weight spectral sequence, which is the second last formula of

[TY07, p. 485]. Next, separate the [ΠS ]-part and apply BCp to the spectral

sequence.

Proposition 7.14 tells us that BCp(Ei,j1 (Iw(m), ξ)[ΠS ]) vanishes unless i+

j = n − 1. So the semisimplified spectral sequence (7.12) degenerates at E1

and

(7.13) WD(BCp(Hn−1(XIw(m),Lξ)[Π
S ])ss|Gal(Fw/Fw))

F−ss

is pure of the desired weight. This concludes the proof in view of (7.11). �

Remark 7.16. So far we have been dealing with (Case ST) and odd m.

In (Case END) with even m, Proposition 7.14 and Corollary 7.15 are still

valid. In (7.9) and the proof of Proposition 7.14, we apply (ii) of Theorem 6.1

to compute BCp(H(YIw(m),S ,Lξ)[Π
S ]). The proof of Proposition 7.14 mostly

goes through except that one of the Vi’s will be missing on the right side of

(7.10). Corollary 7.15 in (Case END) is proved similarly as in (Case ST).
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We are ready to complete the proof of Theorem 7.11. Allow m to be either

odd or even. Let us forget the additional assumptions of Sections 5 and 6 and

put ourselves in the situation of Section 7.2, but let L denote the CM field

to begin with, instead of F . So Π0 is a cuspidal automorphic representation

of GLm(AL). (Of course, unlike [TY07], we do not assume that Π0 is square

integrable at a finite place.) Let Rl(Π
0) : Gal(L/L) → GLm(Ql) be given by

Theorem 7.5. Our plan is to imitate page 492 of [TY07] to find a certain finite

soluble extension F over L so that the proof for L and Π0 can be reduced to

the proof for F and BCF/L(Π0).

Fix a place v of L above p where p 6= l. Recall the remark below the

statement of Theorem 7.11 that it suffices to prove WD(Rl(Π
0)|Gal(F v/Fv)) is

pure. Find a CM field F such that (as usual F+ := F c=1)

• [F+ : Q] is even,

• F = EF+ for an imaginary quadratic field E in which p splits,

• F is soluble and Galois over L,

• RamF/Q ∪ RamQ(Π0) ⊂ SplF/F+,Q,

• Π0
F := BCF/L(Π0) is a cuspidal automorphic representation of GLm(AF ),

and

• there is a place w of F above v such that Π0
F,w has an Iwahori fixed vector.

We show that it is possible to choose F as above. As a first step, we find

a CM field F0 which is soluble and Galois over L and a place w0 of F0 above v

such that the last two conditions in the list are satisfied for F0 and w0 in place

of F and w. Next we find F from F0 by taking quadratic extensions of F0 twice

as in the proof of Theorem 7.5. We elaborate on this point. Choose E ∈ E (F0)

such that p splits in E and E ( F0. Since EF0 verifies the assumptions of

Step (I) in that proof, we may choose F ′ ∈ F (EF0) different from EF0 and

take F := F ′EF0. Let w be any place of F above w0. It is easy to see that F

satisfies every condition in the above list.

With (E,F,Π0
F ) in hand, consider the setting of Section 7.1. Let ΠF

denote the representation Π of Section 7.1 obtained by substituting Π0
F for Π0

in that section. The proofs of Corollaries 6.8 and 6.10 tell us that

CG ·Rl(Π0)|Gal(F/F ) ' CG ·Rl(Π
0
F ) ' ‹Rn−1

l (ΠF )ss ⊗Rl(ψ)−1.

Corollary 7.15 and [TY07, Lemma 1.7] imply that WD(Rl(Π
0)|Gal(Lv/Lv)) is

pure. The proof of Theorem 7.11 is concluded.
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Paris 11.

[Mor08] , Complexes pondérés sur les compactifications de Baily-Borel: le cas

des variétés de Siegel, J. Amer. Math. Soc. 21 (2008), 23–61. MR 2350050.

Zbl 05207715. doi: 10.1090/S0894-0347-06-00538-8.

[Mor10] , On the Cohomology of Certain Non-Compact Shimura Varieties,

Ann. of Math. Stud. 173, Princeton Univ. Press, Princeton, NJ, 2010, with

an appendix by Robert Kottwitz. MR 2567740. Zbl pre05666024.
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