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The conjugacy problem in ergodic theory

By Matthew Foreman, Daniel J. Rudolph, and Benjamin Weiss

Abstract

All common probability preserving transformations can be represented

as elements of MPT, the group of measure preserving transformations of

the unit interval with Lebesgue measure. This group has a natural Polish

topology and the induced topology on the set of ergodic transformations is

also Polish. Our main result is that the set of ergodic elements T in MPT

that are isomorphic to their inverse is a complete analytic set. This has

as a consequence the fact that the isomorphism relation is also a complete

analytic set and in particular is not Borel. This is in stark contrast to the

situation of unitary operators where the spectral theorem can be used to

show that conjugacy relation in the unitary group is Borel.

This result explains, perhaps, why the problem of determining whether

ergodic transformations are isomorphic or not has proven to be so in-

tractable. The construction that we use is general enough to show that

the set of ergodic T ’s with nontrivial centralizer is also complete analytic.

On the positive side we show that the isomorphism relation is Borel

when restricted to the rank one transformations, which form a generic

subset of MPT. It remains an open problem to find a good explicit method

of checking when two rank one transformations are isomorphic.

In Memoriam : Prior to the final proofs of our paper our dear friend, Dan

Rudolph, died just short of his 60th birthday, after a long and valiant struggle

with ALS. He took an active part in this work to the very end despite his

illness. This is not the place to describe in detail his lasting contributions to

the modern theory of measurable dynamics; suffice it to say that his loss will be

deeply felt not only by his close collaborators but by all who have an interest

in this field. We want to dedicate our part of this paper to his memory.

1. Introduction

The isomorphism problem has been the focus of much of the work in

ergodic theory ever since it was formulated in 1932 by von Neumann in his

pioneering paper [21]. Following Koopman’s definition of the unitary operator

M. Foreman was supported in part by NSF grant DMS-0701030. D.J. Rudolph was sup-

ported in part by NSF grant DMS-0618030. M. Foreman and B. Weiss were partially sup-

ported by the US-Israel BSF grant BSF-2006312.

1529

http://annals.math.princeton.edu/annals/about/cover/cover.html
http://dx.doi.org/10.4007/annals.2011.173.3.7


1530 M. FOREMAN, D. J. RUDOLPH, and B. WEISS

associated to a measure preserving transformation, von Neumann first used

the newly developed spectral theory to prove the ergodic theorem and then

showed that for ergodic measure preserving transformations with pure point

spectrum the spectrum is a complete isomorphism invariant. The property

of pure point spectrum corresponds to mechanical systems with very regular

behavior. It was quickly realized that von Neumann’s hope that spectrum

would be a complete invariant turned out to be too optimistic.

The next significant advance came with the introduction of the Kolmo-

gorov-Sinai entropy as an invariant capable of distinguishing between different

chaotic systems, such as geodesic flows on surfaces of negative curvature or

independent processes. Later Ornstein showed that, in fact, this entropy was

sufficient to classify a large class of these highly random systems.

In the framework of this program many properties of transformations such

as mixing of various types, or finite rank have been studied and characterized.

In spite of all of this work, no new invariants as powerful as entropy have been

found.

Of particular interest is the class of ergodic transformations, as these are

the irreducible objects in this category and the Ergodic Decomposition Theo-

rem says that every measure preserving transformation can be written as an

integral of ergodic transformations.

Despite the fact that complete invariants have been discovered for some

classes of ergodic transformations, such as the measure distal transformations

of a particular height, the general problem remained intractable. Recent de-

velopments have established some anticlassification results that demonstrate

in a rigorous way that classification is not possible. Our main result is exactly

in this direction.

The key notion in the anticlassification results is the Borel/non-Borel dis-

tinction. Behind this distinction is the idea that saying a set X (or function) is

Borel is a very liberal way of saying that membership in X can be determined

(or f computed) using a countable protocol whose basic input is membership

in open sets. Saying that a set (or function) is not Borel is saying that no

amount of countable resources can be applied to decide membership in that

set (or be used to compute the function); i.e., the issue of membership is highly

intractable.

Hjorth ([10]) introduced the notion of turbulence and used it in [11] to

show that there is no Borel way of attaching algebraic invariants to ergodic

transformations that completely determine isomorphism. Foreman and Weiss

[6] improved this result to show that the action of the group of measure pre-

serving transformations on the ergodic transformations is turbulent. A conse-

quence of this is that no generic class can have a complete collection of algebraic

invariants.
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Passing from a single transformation to pairs (S, T ) of measure preserving

transformations and asking whether the equivalence relation defined by isomor-

phism is a Borel set, Hjorth gave a negative answer. His proof used nonergodic

transformations in an essential way, the complexity being due to the ergodic

decomposition.1 The main result of this paper is that the isomorphism relation

for ergodic transformations is not Borel.

This can be interpreted as saying that there is no method or protocol that

involves a countable amount of information and countable number of steps

that reliably distinguishes between nonisomorphic ergodic measure preserving

transformations. We view this as a rigorous way of saying that the classification

problem for ergodic measure preserving transformations is intractable.

We also note the contrast between the situation for the ergodic measure

preserving transformations and that of the unitary operators, where the Spec-

tral Theorem can be used to show that the isomorphism relation is Borel.

On the other hand we point out that there is a well-studied generic set

of transformations — the rank one transformations — where the isomorphism

relation is Borel.

For these results to make sense we must find a natural model or space

in which to put the measure preserving transformations. This is discussed

further in Section 2.2. We give only the basic model here. As far as is known,

all models are equivalent in the sense of the Borel/non-Borel distinction and

in which collections of transformations are generic.

A result of von Neumann that every nonatomic separable probability space

is measure theoretically isomorphic to Lebesgue measure on the unit interval

[0, 1] shows that every measure preserving transformation has an isomorph that

maps from the unit interval to itself.

After identifying two invertible measure preserving transformations on

the unit interval, if they agree on a set of full measure, we call the resulting

group MPT. The classification problem can now be rephrased as a conjugacy

problem, as two measure preserving transformations on the unit interval are

isomorphic just in case they are conjugate in this group.

The strong operator topology on MPT is compatible with a complete

separable metric space. This topology can be described by saying that two

transformations are close if and only if they send a very fine partition of the

unit interval to very similar places.

The topology endows the space with a natural Borel structure and al-

lows us to give qualitative information about classes of measure preserving

transformations. Natural classes of transformations, such as the Bernoulli

transformations or translations on a compact group, form Borel sets in MPT.

1The ergodic components of Hjorth’s transformations are irrational rotations of the circle.
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Others, such as the measure distal transformations form co-analytic, non-Borel

sets ([3]).

The topology also allows discussion of generic classes, i.e. classes which

contain a dense Gδ sets in the topology. The collection E of ergodic transfor-

mations form a dense Gδ set as do the rank one transformations. Thus the

induced topology on E is Polish; i.e. compatible with a complete separable

metric; hence the product space E×E is also a Polish space. The main result,

Theorem 7, has as a corollary:

Theorem. The collection

{(S, T ) : S and T are ergodic and conjugate} ⊆ E × E

is not Borel.

In fact we prove more. A continuous image of a Borel set is called analytic

(or Σ1
1). The collection of analytic sets is strictly larger than the collection of

Borel sets [20]. There is a natural notion of complexity among analytic sets

and our result shows that the set of pairs of conjugate, ergodic transformations

is an analytic set of maximal complexity.

This is done by showing that the collection of transformations that are

isomorphic to their inverse is a maximally complicated analytic set. For this

to happen there must exist some transformations that are not isomorphic to

their inverses. Such examples were first constructed by Anzai ([1]) refuting a

conjecture of Halmos and von Neumann ([9]) that they could not exist.

A closely related result shows that the collection of ergodic transforma-

tions that have nontrivial centralizer is also a maximally complicated analytic

set and hence not Borel. This perhaps explains why transformations with

trivial centralizer were originally difficult to construct ([16]).

Abstract considerations of Polish group actions imply that there is a

generic class on which the orbit equivalence relation is Borel. In this case

we use a theorem of King [14] to identify the generic class, the space of rank

one transformations:

Theorem. The collection of pairs (S, T ) such that S and T are ergodic

and rank one and are conjugate is Borel subset of E × E.

1.1. Outline of the paper. To show that a set C ⊂ Y is not Borel it

suffices to take an existing example of a non-Borel set A ⊂ X and define a

Borel function f : X → Y such that C = f [A]. The function f will be called

a reduction. A canonical example of such a pair (A,X) can be described as

follows. We consider the space Trees consisting of trees of finite sequences of

elements of a countable set. Among the trees, some have infinite branches and

we let A be be this collection.
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The crux of the paper is to continuously associate to each tree T a trans-

formation T = F (T ) such that T ∼= T−1 just in case T has an infinite branch.

We do so by constructing a shift invariant closed subset K(T ) of {0, 1}Z
that has a unique invariant measure (which is then automatically ergodic).

The shift invariant subset is constructed by describing in succession collections

of finite blocks W1,W2, . . . ,Wn · · · in the basic alphabet {0, 1}. The words in

Wn all have the same length ln, and the words in Wn+1 are concatenations of

words from Wn. The tree T controls exactly how Wn+1 is formed from Wn.

Paralleling the construction of the words Wn, we construct groups of in-

volutions Gns , n ≥ s, with the Gns having a direct limit Gs as n tends to infinity.

There are also surjective homomorphisms ρns+1 : Gns+1 → Gns which converge

to a surjective homomorphism ρs+1 : Gs+1 → Gs. The system (Gs, ρs) has an

inverse limit denoted by G, and it is nontrivial if and only if T has an infinite

branch.

As s goes to infinity, the elements of the Gs’s give more and more precise

information about an isomorphism of T with T−1 or a nontrivial isomorphism

of T with itself. It will be relatively easy to see that an element of the inverse

limit of the Gs’s are isomorphisms between T and T∓1. The difficult part is

showing that there are no other isomorphisms.

This is done by giving a complete analysis of the joinings between T and

T∓1. We find a canonical sequence of factors Ks of K(T ) corresponding to some

equivalence relationsQs. These factors have K as their inverse limit. In passing

from Ws to Ws+1 we will have randomly concatenated words from Ws. This

will allow us to show that any joining of T with T∓1 is either an independent

joining over an isomorphism of Ks with K∓1
s arising from an element of Gs or

comes from some element of the inverse limit of the Gs’s.

Here is how the paper is organized. The second part of this section es-

tablishes our notational conventions. Section 2 develops the tools necessary

to give a precise statement of our theorem and gives pointers to elements of

ergodic theory and descriptive set theory that we use in the proof. Section 3

introduces the groups associated with a tree and describes the relationship

between ill-founded trees and nontrivial inverse limits of these groups.

In Section 4, we begin specifying the properties of our reduction. The ba-

sic specifications describe how we get transformations by building collections

of words and give some sufficient conditions for our transformations to be er-

godic. The group specifications establish the relationships between the groups

associated to a tree and the equivalence relations on words.

The first nine specifications suffice to allow us to define a tower of factors

that exhaust the σ-algebras associated with our transformations. Section 5 is

where this is done. In Section 6 we first show that branches through a tree give

appropriate isomorphisms. Then we introduce the final two specifications and
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use them to establish the relationships between the canonical factors. Along

the way we show that the odometer factor is the Kronecker factor.

Having shown that the existence of a continuous function from Trees into

collections of words satisfying our specifications suffices to prove our theorem,

it still remains to construct the words. In Section 7, we collect and simplify

the specifications with the aim of showing how to accomplish this. The ac-

tual construction is done by probabilistic arguments and is given in Section 8.

Section 9 makes some remarks about the consequences of Theorem 7.

In Section 10 we explain why isomorphism of rank one transformations is

Borel.

1.2. Notation. We finish this section by giving some notational conven-

tions for the paper. These are given here primarily for later reference. We will

let N = {0, 1, 2, . . . } and identify each n ∈ N with {0, 1, . . . , n − 1}. We will

write Xn for the n-fold Cartesian product of X with itself. We identify Xn

with sequences of elements of X of length n. The notation X<N will denote

all finite sequences of elements of X.2 Clearly X<N =
⋃
n∈NX

n. We will write

Zn for the abelian group Z/nZ.

We will often discuss “words” in an alphabet Σ. These are simply strings

of symbols from Σ. If w is a finite or infinite word, we will write rev(w) for

the reverse word of w. If W is a collection of words, we write rev(W) for the

collection of reverse words from W. We will write ΣZ for the doubly infinite

sequences of elements of Σ. If x ∈ ΣZ, then we will write x−1 for the reverse

of x, i.e. the sequence defined by setting x−1(n) = x(−n). If K ⊆ ΣZ we will

write K−1 for the collection of reverses of elements of K. Analogously, if B is

a Σ-algebra on K, then B−1 is the image of B under the homeomorphism of K
with K−1 defined by x 7→ x−1.

In some contexts we will want to compare finite shifts of finite words u

and v. In these cases we will view u : n → Σ and v : m → Σ. The shift of v

by k is viewed as a function shk(v) : [−k,m − k − 1] → Σ. The comparison

will be done on the overlap of u and shk(v), i.e. u � [0,min(n,m− k − 1)] and

shk(v) � [0,min(n,m−k−1)]. This allows us to talk about relative occurrences

of words (u′, v′) as subwords of (u, shk(v))–meaning the occurrences on the

overlap.

A Polish space is a topological space whose topology is compatible with

a complete separable metric.

When we discuss subsets of the domain of a measure we will be implicitly

assuming they are measurable. The sets constructed in this paper are all

measurable.

2The empty sequence is a member of X<N.
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2. Background information and precise statements

In this section we present the barest outline of the background necessary

for the proof of the main theorem. In explanation we can do no better than

to quote the historian of science, George Sarton ([19]):

“As far as scientific matters are concerned, I try to say enough

to refresh the reader’s memory but do not attempt to provide

complete explanations, which would be equally unbearable to

those who know and to those who do not.”

2.1. Trees and their topologies. A tree on a setX is a subset T ⊆ X<N that

is closed under initial segments.3 In this paper we will primarily be considering

trees T ⊆ N<N. Level s of T is defined to be the collection elements of T that

have length s. We will write lh(τ) for the length of τ . If σ is an initial segment

of τ then σ is a predecessor of τ and τ is a successor of σ.

A branch through T is a function b into T having domain either some

n ∈ N or N itself such that lh(b(s)) = s, and if s+ 1 is in the domain of b, then

b(s+ 1) is an immediate successor of b(s).

We will occasionally abuse our conventions by writing “successor” to mean

“immediate successor” and “branch” to mean “infinite branch”.

If T does not have an infinite branch, then we will say that T is well-

founded. If it has an infinite branch, then T is ill-founded.

In many places in the paper we will refer to a fixed enumeration 〈σn : n∈N〉
of N<N with the property that every proper predecessor of σn is some σm for

m < n. We identify subsets A of N<N with their characteristic functions

χA : N<N → {0, 1}. The collection of such χA can be viewed as the mem-

bers of an infinite product space {0, 1}N
<N

homeomorphic to the Cantor space.

Each function a : {σm : m < n} → {0, 1} determines a basic open set

〈a〉 = {χ : χ � {σm : m < n} = a} ⊆ {0, 1}N<N
.

The collection of all such 〈a〉 form a basis for the topology. In this topology

the collection of trees is a closed (hence compact) subset of {0, 1}N<N
. The

collection of trees containing arbitrarily long finite sequences is a dense Gδ
subset of {0, 1}N<N

. In particular it is a Polish space. We will refer to the

space of trees with arbitrarily long finite sequences as Trees.
We can understand this topology by viewing the basic open sets as giving

us a finite amount of information about the trees in it, namely which among

the first n finite sequences belong to the trees. This allows us to adopt the

heuristic of building continuous (or Borel) functions f from the space Trees to

3Explicitly: if σ = (x0, . . . , xn) ∈ T and s ≤ n, then τ = (x0, . . . , xs) ∈ T . All of our trees

are rooted in the sense that they all contain the empty sequence.
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an arbitrary topological space X using constructions that associate an element

of X to each tree T by taking more and more finite information about which

σn belong to T and building a decreasing sequence of open (or Borel) sets

whose intersection is a point x ∈ X .

Definition 1. We will say that σm and σn are consecutive elements of T
if σm, σn ∈ T and there is no j between m and n with σj ∈ T .

We need an artifact for later use in the construction.

Definition 2. Define a map

M : Trees→ NN

by setting M(T )(s) = n if and only if n is the least number such that σn ∈ T
and lh(σn) = s. If T is clear from context we will frequently write M(s),

instead of M(T )(s). Dually we define a function

s : Trees→ NN

by setting s(T )(n) to be the length of the longest sequence σm such that

σm ∈ T and m ≤ n. When T is clear from context we write s(n) instead of

s(T )(n).

Note that s(n) ≤ n.

Lemma 3. Endowing N with the discrete topology and NN with the product

topology, M and s are continuous functions.

2.2. Transformations and their topologies. We now describe some topolo-

gies on the space of measure preserving transformations. There are several

models for the space of measure preserving transformations. These are dis-

cussed in more detail in the forthcoming paper [5]. Perhaps the two most

prominent are

1. The group MPT of measure preserving transformations of [0, 1] with

the Halmos metric.

2. The space of shift invariant measures on ΣZ with the weak* topology,

where Σ is any countable set.4

The difference between the two models is that in the first we fix the measure

and look at transformations that preserve the measure; in the second we fix

the transformations and look at the measure preserved by the transformation.

4This second model captures all ergodic transformations and all free actions. It is not a

suitable model for periodic transformations on a nonatomic measure space. It is adequate

for our purposes since we are concerned with ergodic transformations in this paper.
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In the second model, we will refer to measures as ergodic if the shift transfor-

mation is ergodic relative to the measure.

In both of the models the ergodic transformations form a dense Gδ set.

In [5] a stronger property is shown: there is a Borel bijection ψ between the

aperiodic transformations on [0, 1] and nonatomic measures on ΣZ with the

property that

([0, 1],B, λ, T ) ∼= (ΣZ, C, ψ(T ), sh).

and, moreover, ψ takes comeager sets to comeager sets. From the point of view

of the Borel/analytic distinction the choice of model is not important.

In the proof of Theorem 7 we will be building transformations as subshifts

of some ΣZ it is natural to adopt the second model, although we could easily

work with the other model by viewing our transformations as being built by

“cut and stack” methods on the unit interval. This alternative would build

continuous reductions into the space of measure preserving transformations

and its square. In Theorem 51 it is easier to adopt the the first model.

Basic open sets in the space of invariant measures can be specified by

taking finitely many functions a : [0, n − 1] → Σ and specifying the measures

of

〈a〉 = {x ∈ ΣZ : x � [0, . . . , n− 1] = a}

within some ε > 0. For ergodic measures, this is equivalent to specifying the

frequency the translates of a occur in a typical x within ε.

Notation. We will denote the Polish space of ergodic measures on ΣZ as E .

2.3. A precise statement of the theorem. If X is a topological space, then

the collection of Borel sets is the smallest σ-algebra containing the open sets.

A set is analytic if and only if it is the continuous image of a Borel set.5

Central to our arguments is the idea of a reduction. If X and Y are Polish

spaces, A ⊆ X,B ⊆ Y and f : X → Y is a function, then f reduces A to B if

f−1(B) = A. Informally: the question of an arbitrary x ∈ X belonging to A

can be reduced to whether f(x) belongs to B.6

We will choose our functions to be either continuous (a continuous re-

duction) or Borel (a Borel reduction). In either category we get a transitive

relation on the class of subsets of Polish spaces.

For sufficiently complex sets we interpret A being reducible to B as saying

that B contains all of the complexity that A has. For example, if f is a Borel

function and B is a Borel set, then f−1(B) is Borel. In particular, if f is

5For Polish spaces, this is equivalent to being the Borel image of an Borel set, and also

equivalent of being the projection to X of a Borel set B ⊂ X × Y for some Polish Y .
6There is a related, but distinct, notion of reduction for equivalence relations. See [12].
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a Borel function and A is not Borel, then B is not Borel. Similarly, if f is

continuous and B is a Gδ, then A must be a Gδ.
Among the analytic sets there are some that are maximally complex under

the notion of reducibility. These are the sets to which any analytic set can

be reduced by a Borel function and are called complete analytic. By the

transitivity of reduction, if A is complete analytic and can be reduced to an

analytic set B, then B is complete analytic.

We will use the following classical result (see e.g. [12]).

Theorem 4. As a subset of the Polish space of infinite trees, the collection

of ill-founded trees is a complete analytic set. In particular it is not Borel.

It follows easily that:

Corollary 5. The collection of trees with at least two infinite branches

is a complete analytic set.

We remind the reader of a standard definition:

Definition 6. Suppose that (X,B, µ) is a measure space and T : X → X

is an invertible measure preserving transformation. Then the centralizer of T

is defined as the collection of S : X → X such that S is an invertible measure

preserving transformation and ST = TS. We will denote it by C(T ).

The powers T k belong to C(T ) for k ∈ Z. If C(T ) 6= {T k : k ∈ Z}, then

we say that T has nontrivial centralizer.

We are now in a position to state our main theorem, which has as a

corollary the fact that, as a subset of MPT×MPT, the collection of pairs

(S, T ) such that S is conjugate to T is a complete analytic set. Before we give

a precise statement we note that there is a canonical map ν 7→ ν−1 with the

property that (ΣZ, C, ν, sh−1) ∼= (ΣZ, C−1, ν−1, sh). We will equate these two

systems.

The main theorem is that the collection of ill-founded trees is Borel re-

ducible to {ν ∈ E : (ΣZ, C, ν, sh) ∼= (ΣZ, C, ν, sh−1)} by a continuous map F . If

we define D : E → E ×E by setting D(ν) = (ν, ν−1) (where ν−1 is the measure

on ΣZ taking a set X to ν(X−1)) then

D ◦ F : Trees→ E × E
is a continuous reduction of the ill-founded trees to

{(ν, µ) : (ΣZ, C, ν, sh) ∼= (ΣZ, C, µ, sh)} ⊆ E × E .

Theorem 7 (Main result). There is a continuous one-to-one map

F : Trees→ E
that

A. reduces the collection of ill-founded trees to the collection of ergodic mea-

sures ν such that (ΣZ, C, ν, sh) ∼= (ΣZ, C, ν, sh−1), and
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B. reduces the collection of trees with at least two infinite branches to the

collection of ergodic measures ν such that (ΣZ, C, ν, sh) has nontrivial

centralizer.

In our theorem the reduction F will be strongly one-to-one in that it takes

distinct trees to measures yielding nonisomorphic transformations.

Corollary 8. As a subset of E × E , the collection of pairs (ν, µ) such

that (ΣZ, C, ν, sh) is conjugate to (ΣZ,D, µ, sh) is a complete analytic set.

Corollary 9. As a subset of E , {ν : (ΣZ, C, ν, sh) has nontrivial central-

izer} is a complete analytic set.

Proof. Granting the theorem, all that is required to prove Corollaries 8

and 9 is to show that both the set of isomorphic pairs (ν, µ) and the set of ν

with nontrivial centralizer are analytic.

This follows immediately by noting that the set of triples (ν, µ, φ) such

that ν is ergodic and φ : ΣZ → ΣZ is an invertible measure preserving map

from (ΣZ, C, ν) to (ΣZ,D, µ) is a Polish space P and the collection of triples

where φ commutes with the shift map is a closed subset of P. The set of

isomorphic pairs (ν, µ) is the projection to the first two coordinates of this

closed subset.

The second corollary follows similarly: we consider the collection of (ν,ν, φ)

∈ P such that φ differs from shk for all k and φ commutes with the shift. �

By virtue of the equivalence of the two universal models for measure pre-

serving systems we can immediately restate Theorem 7 as saying:

Theorem. There is a continuous one-to-one map

F : Trees→ {T : [0, 1]→ [0, 1]|T is invertible and ergodic}
that

A. reduces the collection of ill-founded trees to the collection of ergodic T

such that T ∼= T−1, and

B. reduces the collection of trees with at least two infinite branches to the

collection of invertible ergodic T that have nontrivial centralizer.

This theorem has corollaries analogous to Corollaries 8 and 9. For future

reference we now make explicit what we have to show to prove Theorem 7.

We will build a continuous function F : Trees→ E such that

Claim 10. 1. If T has an infinite branch, then

(ΣZ, C, F (T ), sh) ∼= (ΣZ, C, F (T ), sh−1).

2. If T has at least two infinite branches, then there is an element of the

centralizer of (ΣZ, C, ν, sh) that is not of the form shj for any j ∈ Z.
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The other claim that must be proved is:

Claim 11. 1. If (ΣZ, C, F (T ), sh) ∼= (ΣZ, C, F (T ), sh−1), then T has an

infinite branch.

2. If there is an element of the centralizer of (ΣZ, C, ν, sh) that is not of the

form shj for any j ∈ Z, then T has at least two infinite branches.

2.4. Odometer maps. A particular class of transformations will be impor-

tant for our arguments. Let 〈qi : i ∈ N〉 be an infinite sequence of integers with

qi ≥ 2. Then the sequence qi determines an odometer transformation with

domain the compact space

O =def

∏
i

Zqi .

The space O is naturally a monothetic compact abelian group, which, in

order to avoid confusion, we denote by O with the operation of addition and

“carrying right”. We will denote the group element (1, 0, 0, 0, . . .) by 1̄, and the

result of adding 1̄ to itself j times by j̄. The collection of j̄ for j ∈ N coincides

with those elements of
∏
i Zqi that are eventually 0. For negative j, the j̄’s

correspond to those group elements that eventually agree with the sequence

〈qi − 1 : i ∈ N〉. In particular, {j̄ : j ∈ Z} is dense in
∏
i Zqi .

The Haar measure on this group can be defined explicitly. Define a mea-

sure νi on each Zqi that gives each point measure 1/qi. Then Haar measure µ

is the product measure of the νi.

The odometer transformation O : O → O is defined by taking an x ∈∏
i Zqi and adding the group element 1̄, More explicitly, O(x)(0) = x(0) + 1

mod (q0) and O(x)(1) = x(1) unless x(0) = q0 − 1, in which case we “carry

one” and set O(x)(1) = x(1) + 1 mod (q1), etc.

The mapO : O → O is a topologically minimal, uniquely ergodic invertible

homeomorphism that preserves the measure µ.

As with any abelian group the map x 7→ −x is an automorphism of O of

order 2. In particular it is an isomorphism between the measure preserving

transformations O and O−1.

The characters χ ∈ Ô are eigenfunctions for the odometer since

χ(x+ 1̄) = χ(1̄)χ(x).

Since the characters form a basis for L2(O), the odometer map has discrete

spectrum. It is instructive for our purposes to describe these eigenfunctions

explicitly.

Fix n and let ln =
∏
i≤n qi. Let A0 ⊂

∏
i Zqi be the collection of points

whose first n + 1 coordinates are zero, and for 0 ≤ k < ln set Ak = Ok(A).
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Define

Rn =
ln−1∑
k=0

(e2πi/ln)kχAk
.

Define UO : L2(O)→ L2(O) by setting UO(f) = f ◦ O. Then

1. UO is the canonical unitary operator associated with O;

2. Rn is an eigenvector of UO with eigenvalue e2πi/ln ;

3. (Rn)qn = Rn−1;

4. {(Rn)k : k ≤ ln, n ∈ N} form a basis for L2(
∏
i Zqi).

2.5. Factors. For measure preserving systems (X,B, µ, T ) and (Y, C, ν, S),

a factor map is a measure preserving map π : X → Y such that π ◦ T = S ◦ π
with π−1(C) ⊆ B. There are several equivalent ways of viewing a factor Y . We

will alternate between the following without further comment:

1. As an invariant complete sub-σ-algebra of B.

2. As a closed subspace of L2(X) containing the constant functions that

is closed under multiplication of bounded functions, truncation and the

map f 7→ f̄ , its complex conjugate.

2.6. Joinings. In this section we summarize some basic facts about join-

ings. Proofs of these facts can be found in [18].

We start with measure preserving systems X = (X,B, µ, T ) and Y =

(Y, C, ν, S). A joining of X and Y is a T ×S invariant measure η on X ×Y for

which

1. all sets of the form B × C are measurable when B ∈ B and C ∈ C and

is such that

2. for all B ∈ B, η(B × Y ) = µ(B) and for all C ∈ C, η(X × C) = ν(C).7

We will let J (X,Y) be the space of joinings under the weak*-topology.8

The space is nonempty since it always contains the product measure µ ⊗ ν.

Then J (X,Y) is a compact, convex Polish space. If X and Y are ergodic, then

the extremal points of J (X,Y) are the ergodic joinings.

A factor map φ : X → Y gives rise to a joining defined by setting η(B ×
C) = µ(B ∩φ−1(C)). This joining is supported on the graph of φ. Conversely,

any joining that is supported on the graph of a measurable function corresponds

to a factor map. If this map is invertible, then it is a conjugacy. Thus,

understanding the joinings gives a complete understanding of factor maps and

conjugacies between X and Y. Joinings supported on graphs of functions from

X to Y we will call graph joinings.

7i.e. η has marginals µ and ν.
8The weak* topology can be defined independently of any particular topologies on X and

Y. See [7], [8] or [18] for more information.
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Let φ : X → Y be a factor map. For A ⊂ X and y ∈ Y , let Ay = {x :

φ(x) = y}. We can define the disintegration of X over Y. This is a family of

measures 〈νy : y ∈ Y 〉, such that

1. νy is a standard probability measure on Xy;

2. For A ∈ B, and r ∈ [0, 1] and ε > 0, {y : Ay is νy measurable and

|νy(Ay)− r| < ε} is ν-measurable; and

3. µ(A) =
∫
νy(A

y)dν(y).

If η is a graph joining corresponding to a function φ, then η concentrates

on {(x, y) : φ(x) = y} and we can identify it with the disintegration of µ over ν.

Suppose that X and Y are ergodic and we have factor maps φ1 : X→ Z and

φ2 : Y→ Z, where Z = (Z,D, ρ,W ). Then we get disintegrations 〈µz : z ∈ Z〉
of µ and 〈νz : z ∈ Z〉 of ν over ρ.

Definition 12. The relatively independent joining of X and Y over Z is the

unique measure η on X × Y such that for all A ∈ B and B ∈ C,

η(A×B) =

∫
µz(A

z)νz(B
z)dρ(z).

The measure η concentrates on {(x, y) : φ1(x) = φ2(y)}. If Z is trivial,

then ρ is the product measure and we will refer to ρ simply as the independent

joining.

Note that a relatively independent joining over some common factors will

come from a conjugacy if and only if the two factors are the full algebras to

begin with. Thus if we verify a joining is a relatively independent joining over

some nontrivial factors then it does not come from a conjugacy.

In later sections will be working in a situation where there are ψ1 : X→ Z1

and φ2 : Y → Z2 and an isomorphism φ : Z1 → Z2. Using Definition 12 with

φ1 = φ ◦ ψ1 we are able to extend the invertible joining of Z1 and Z2 via φ to

a joining of X and Y.

We will use the following standard fact about self-joinings of monothetic

groups that can be proved combining results of [8] and Corollary 2 of [9]:

Theorem 13. Let Γ be a compact group and g∈ Γ be such that {gn : n∈ Z}
is dense in Γ.9 Let Tg be the Haar measure preserving transformation given by

translating by g. If η is an ergodic self-joining of Tg , then η is supported on

the graph of the translation by some h ∈ Γ; i.e., is of the form

η(A×B) = µ(A ∩ h−1B),

where µ is the Haar measure. Moreover, each h ∈ Γ determines an invertible

self-joining.

We will sometimes identify h with the self-joining determined by h.

9i.e., g is a witness that Γ is monothetic.
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2.7. Kronecker factors. All ergodic measure preserving transformations

have a maximal factor K isomorphic to a translation on a compact abelian

group, in the sense that every other compact group factor is a factor of K.

We now give a brief description of this factor, called the Kronecker factor.

(See [7] or [23] for more information.) The Kronecker factor is trivial just in

case the transformation is weakly mixing.

Given a standard probability space (X,B, µ) and an invertible measure

preserving transformation T , one can associate a unitary operator UT : L2(X)

→ L2(X). The collection of eigenvalues for UT form a countable subgroup G

of the unit circle. It is possible to choose eigenfunctions {gλ : λ ∈ G} so that

gλ1λ2 = gλ1gλ2 .

The dual of G, “G is a compact monothetic subgroup. The powers of

the inclusion character i : G → T are dense in “G. Letting ν be the Haar

measure on “G, the map Ti defined by g 7→ [i]g is an ergodic measure preserving

transformation of (“G, C, ν). Each λ ∈ G gives an eigenfunction fλ for “G defined

by setting fλ(χ) = χ(λ). The {fλ : λ ∈ G} span L2(“G) and the embedding e

defined by sending fλ 7→ gλ gives a linear, multiplicative injection of L2(“G) into

L2(X) of norm 1. In particular there is a factor map π : X → “G corresponding

to this embedding.

The Kronecker factor of X is this K = (“G, C, ν, Ti). Clearly if φ : X → Y is

an isomorphism between transformations T and S, then φ induces a canonical

isomorphism between the Kronecker factors of Y and X.

More generally, if (K,D, η, Tk) is an ergodic translation on a compact

group K and π : X → K is a factor map, then the map f 7→ f ◦ π : L2(K)→
L2(X) is an isometry into L2(X) that sends eigenfunctions to eigenfunctions.

Since K is a compact group we can choose a spanning set {kλ : λ ∈ G′} for

L2(K) consisting of eigenvectors such that kλ1λ2 = kλ1kλ2 . Then the map

kλ 7→ fλ determines a multiplicative isometry of L2(K) into L2(“G), and hence

a factor map of “G to K.

2.8. Generic sequences. We will use some facts about symbolic shifts that

are corollaries of the ergodic theorem. (See [17] for more details.) We recall

that for a finite sequence s ∈ Σ<N the frequency of occurrences of s in x ∈ ΣZ

is defined as

lim
n→∞

1

n
|{0 ≤ i < n : s occurs in x starting at i}|.

An equivalent formulation of this is:

lim
n→∞

1

n
Σn−1

0 χ〈s〉sh
i(x),

where χ〈s〉 is the characteristic function of the basic open set 〈s〉. Not all

sequences s have a frequency in an arbitrary x.
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Lemma 14. Suppose that (ΣZ,B, ν, sh) is a measure preserving system.

Then for ν-almost all x, and all finite sequences s ∈ Σ<N the frequency of the

occurrences of s in x exists. Moreover, ν is ergodic if and only if for ν-almost

all x, for all finite sequences s ∈ Σ<N, the frequency of s in x is ν(〈s〉).

We will use the following generalization:

Lemma 15. Let (ΣZ,B, ν, sh) be a measure preserving system.Then there

is a set G of ν measure one such that for all finite sequences s ∈ Σ<N and

all sequences an ≤ 0 ≤ bn with bn − an → ∞ as n → ∞, and all x ∈ G the

frequency of the occurrences of s in x exists and is equal to

lim
n→∞

Å
1

bn − an + 1

ã
|{i : an ≤ i ≤ bn : s occurs in x starting at i}|.

Moreover, ν is ergodic iff for ν-almost all x, and all s this limit is equal to

ν(〈s〉).

We will call an x with the properties of the lemma generic for ν.

3. Trees, groups and equivalence relations

In this section we introduce the groups we will use to approximate conju-

gacies and state some lemmas relating them to trees and equivalence relations.

3.1. Groups of involutions and trees. The groups we build in our construc-

tion will be direct sums of Z2. We will call such a group a group of involutions.

If G =
∑
i∈I(Z2)i and we have a distinguished basis B = {ri : i ∈ I} for

G, then there is a well-defined notion of parity : a g ∈ G is even if it can be

written as a sum of an even number of elements of B and odd otherwise.

Parity is preserved under homomorphisms in the sense that if G has dis-

tinguished basis B and H has distinguished basis C and φ : H → G is a

homomorphism sending C to B, then φ sends even elements to even elements

and odd elements to odd elements.

As a consequence, if we are given an inverse limit system of groups of

involutions {Gs : s ∈ S} over a linearly ordered set (S,<S) with maps {ρt,s :

s <S t}, where each Gs is a group of involutions with a distinguished set of

generators and G = lim
←

Gs is the inverse limit, then the elements of G have a

well-defined parity.

If T ⊂ N<N is a tree, either finite or infinite, then to each level s of T we

can associate a group of involutions Gs(T ) by taking the sum of copies of Z2

indexed by the nodes on T at level s. We will view the nodes of T at level s as

the distinguished generators of Gs(T ) =
∑
τ∈T , lh(τ)=s(Z2)τ . If s < t are levels

of T , then we get a canonical homomorphism ρt,s : Gt(T )→ Gs(T ) that sends

a generator τ of Gt(T ) at level t to the unique generator σ of Gs(T ) that is an

initial segment of τ .
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Definition 16. G∞(T ) is the inverse limit of 〈Gs(T ), ρt,s : s < t < ∞〉.
Let ρs : G∞(T )→ Gs(T ) be the projection map to Gs(T ).

The following lemma is immediate as there is a one-to-one correspondence

between the infinite branches of T and infinite sequences of canonical genera-

tors gs ∈ Gs(T ) such that ρt,s(gt) = gs for t > s.

Lemma 17. 10 Let T ⊂ N<N be a tree. Then

1. G∞(T ) has a nonidentity element of odd parity if and only if T is ill-

founded.

2. G∞(T ) has a nonidentity element of even parity if and only if T has at

least two infinite branches.

3.2. Group actions. Let X be a set and Q an equivalence relation on X.

We will consider group actions on quotient spaces X/Q, or equivalently group

actions on the partition associated with Q. During the construction we will

need to control systems of such group actions on finer and finer equivalence

relations. We now develop some definitions for this purpose.11

Definition 18. Suppose:

1. Q and R are equivalence relations on a set X with R refining Q.

2. G and H are groups with G acting on X/Q and H acting on X/R.

3. ρ : H → G is a homomorphism.

Then we will say that the H action is subordinate to the G action if for all

x ∈ X, whenever [x]R ⊂ [x]Q we have h · [x]R ⊆ ρ(h) · [x]Q.

If X is a set we will write nX for the n-fold concatenations x0x1 · · ·xn−1 of

elements from X. While nX can be identified with the Cartesian product Xn,

it is convenient in some contexts to distinguish the two objects. For example,

if X is a set of words W in a language Σ, then nX is a natural way of creating

another collection of words, namely the n-fold concatenations of elements of X.

If G acts on X, then there is a canonical diagonal action of G on nX defined

by g(x0x1 · · ·xn−1) = gx0 gx1 · · · gxn−1.

If G is a group of involutions with a distinguished collection of free gen-

erators, then we define the skew diagonal action on nX by setting

g(x0x1x2 · · ·xn−1) = gxn−1 gxn−2 · · · gx0

10This lemma can obviously be rephrased as saying certain sets are complete analytic. As

this is not essential to the development of the theorem we do not do it here.
11If Q and R are equivalence relations with R refining Q, then, considered as a set of

ordered pairs, R ⊆ Q. Hence we write R ⊆ Q to mean that R refines Q.
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for g a canonical generator. Note that the skew diagonal actions of elements of

G with odd parity reverse the orders of the xi’s, while elements of even parity

preserve the order.

If we have an equivalence relation Q on X, then we can define the product

equivalence relation nQ on nX by setting

x0x1 · · ·xn−1 ∼ x′0x′1 · · ·x′n−1

if and only if for all i, xi ∼ x′i.
Using the obvious identification of nX/nQ with n(X/Q), we can extend an

action of G on X/Q to the diagonal and skew diagonal actions on nX/nQ.

4. General facts about our transformations

To prove Theorem 7, we will build a continuous, one-to-one function

F : Trees→ E

that reduces the collection of ill-founded trees to the set of ergodic ν isomorphic

to ν−1 and the collection of trees with at least two infinite branches to the set

of ergodic transformations with nontrivial centralizer.

One heuristic view of our construction is that we are being given infor-

mation about a particular tree T by specifying which σn belong to T . As

we learn more about which σn belong to T we give a decreasing sequence of

open sets in E by giving information about the measures of the basic open sets

determined by longer and longer finite words in Σ<N. These numbers give a

complete description of the measure F (T ).

An equivalent alternative point of view is that we are simultaneously con-

structing F (T ) for all trees T by specifying, for all possible tree-like subsets T

of {σm : m ≤ n}, a collection of words in Σ<N in a coherent way.

In the first part of our exposition we gradually develop a collection of

specifications on the sets of words that we build, verifying their sufficiency for

the necessary claims as we present them. In the second part of the exposition,

we collect these specifications and prove that we can construct sets of words

that satisfy them.

All of our words will be in a basic language Σ = {0, 1}. We fix in advance

a fast growing sequence of odd prime numbers 〈pn : n ∈ N〉.12 For each n with

σn ∈ T we will construct a set of words Wn = Wn(T ). To construct Wn(T )

we need only have knowledge of T ∩ {σm : m ≤ n}. By this we mean that if:

(1) T ∩ {σm : m ≤ n} = T ′ ∩ {σm : m ≤ n},

12The only point of the prime numbers is to make sure that our function takes distinct

trees to transformations with nonisomorphic Kronecker factors. This is not strictly necessary

for the proof of the theorem.
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then for all m ≤ n

(2) Wm(T ) =Wm(T ′).

This allows us to view this as a construction of F (T ) for all T ∈ Trees simul-

taneously.

We will let W(T ) =
⋃
σn∈T Wn(T ). Having described W(T ) we will get a

dynamical system as a subshift K ⊆ ΣZ by taking as its domain those doubly

infinite sequences of words in Σ all of whose finite subwords occur somewhere

in some w ∈ W(T ). Clearly K is shift invariant, and we show that it is a

uniquely ergodic and topologically minimal system. The measure F (T ) we

associate with T is the unique shift invariant measure on K.

4.1. Basic specifications. To start off we let W0 = Σ and l0 = 1. We

constructWn(T ) just in case σn ∈ T and the construction will depend only on

T ∩ {σm : m ≤ n}. For simplicity we write Wn and W for Wn(T ) and W(T ).

E1. Any pair w1, w2 of words inWn have the same length ln. The number ln
will be a product of powers of {pi : σi ∈ T , i ≤ n}∪{2}. The cardinality

Wn of Wn will be a power of 2 and Wn+1 > Wn.

E2. If σm and σn are consecutive elements of T , then every word in Wn is

built by concatenating words in Wm. There is an integer fm such that

every word in Wm occurs in each word of Wn exactly fm times. The

number fm will be a power of pn

If fm = p2
n we see that ln = lmp

2
nWm. The next specification allows us to parse

our sequences precisely.

E3. (Unique readability) If σm and σn are consecutive elements of T and

w ∈ Wn and

w = bw1 · · ·wke,
where b or e have length less than lm and each wi ∈ Wm, then both

b and e are the empty word. If w,w′ ∈ Wn and w = w1w2 · · ·wln/lm
and w′ = w′1w

′
2 · · ·w′ln/lm with wi, w

′
i ∈ Wm, and k = [ln/2lm] + 1, then

wkwk+1 · · ·wln/lm 6= w′1w
′
2 · · ·wln/lm−[k]−1; i.e., the first half of w′ is not

equal to the second half of w.

We now sketch the following elementary lemma:

Proposition 19. Let Σ be a finite language, and W =
⋃
σn∈T Wn, where

the sequence 〈Wn : σn ∈ T 〉 satisfies the specification E1–E3. Suppose that

K ⊆ ΣZ is the set of doubly infinite sequences all of whose finite subwords

occur somewhere in some w ∈ W . Then K is a shift invariant closed subset of

ΣZ that is topologically minimal and uniquely ergodic.

Proof. That K is closed and shift invariant is immediate. We first show

that K is topologically minimal. Since {shk〈w〉 : k ∈ Z and w ∈ Wn, for some
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n with σn ∈ T } form a subbase for the topology of K, it suffices to show that

if w ∈ Wn for some n and x ∈ K there is an k ∈ Z such that x � [k, k+ ln) = w.

Suppose that m > n with σm ∈ T . The sequence x � [0, 2lm) must contain

some word w′ ∈ Wm. By E2, w must occur at least once in w′. Hence there is

such a k and, moreover, 0 < k < k + ln < 2lm.

The existence of at least one invariant measure follows from the compact-

ness of K. Suppose that µ is an arbitrary invariant measure. Then by the

Ergodic Theorem and specification E2, for each w ∈ Wm, µ(〈w〉) = fm/ln,

where n > m is least such that σn ∈ T . Since the elements of
⋃
nWn deter-

mine a subbase for the open sets this implies that µ is the unique invariant

measure. �

We now show that our specifications imply that the function F is contin-

uous.

Proposition 20. The function F : Trees → E sending a tree T to the

unique shift invariant measure on K is continuous.

Proof. Each function r : Σl → [0, 1] and ε > 0 determines a basic open set

Nr,ε = {ν : for all w ∈ Σl, |ν(〈w〉)− r(w)| < ε}

in the weak* topology relative to the shift invariant measures on ΣZ. Let

C ⊆ N be an arbitrary fixed infinite set. Then the collection of Nr,ε, where

r has domain Σl and l ∈ C forms a subbase for the weak* topology on the

invariant measures.

Fix such an r and ε. Let T be such that F (T ) ∈ Nr,ε. We can assume

that the domain of r consists of words of length ln for some n with σn ∈ T .

Let N > n be such that σN ∈ T . The set of sequences that belong to some

Wm(T ) with m ≤ N as well as the set of numbers fm and lm with m < N

are determined by T ∩ {σm : m ≤ N}. Since these determine the values

of F (T ) on the basic open sets in {〈w〉 ⊆ ΣZ : w ∈ Σln}, we see that if

T ′ ∩ {σm : m ≤ N} = T ∩ {σm : m ≤ N}, then F (T ′) ∈ Nr,ε. If follows that

F−1(Nr,ε) is an open set in Trees. �

4.2. Specifications for the group actions. In order to make the elements of

G∞(T ) correspond to conjugacies we build symmetries into our construction

using finite approximations to G∞(T ). Towards this end we let Gn0 be the

trivial group and for s > 0,13

Gns =
∑
{(Z2)τ : τ ∈ T ∩ {σm : m ≤ n}, lh(τ) = s}.

13Since the Gn
s ’s depend on T , perhaps we should write Gn

s (T ) instead of Gn
s .
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Clearly, the Gns ’s vary continuously with T and Gn+1
s factors naturally as

Gn+1
s = Gns ⊕H where H is either trivial or Z2. Moreover, the direct limit of

the Gns ’s via these embeddings is Gs(T ). Since the enumeration of N<N has the

property that every initial segment of a given σ ∈ N<N is enumerated before

σ, the restrictions of the canonical homomorphisms ρs,s−1 : Gs → Gs−1 map

Gns to Gns−1. We will use the observation that |⋃sGms | ≤ 2m.

Recall from Definition 2 that the continuous function s : Trees → NN is

defined by setting s(T )(n) = s if and only if s is the length of the longest

sequence in T ∩ {σm : m ≤ n} and write s(n) for s(T )(n) if T is fixed in

context. For those s ≤ s(n), there will be equivalence relations Qns on Wn.

The Qns will naturally induce an equivalence relation on rev(Wn) which we

will also call Qns . We will write Qns for the number of equivalence classes in

Qns . Each class of Qns will have the same number of elements which we will

write Cns .

Some numerics. We will have a decreasing sequence of numbers εn and δs
that go to zero rapidly. We will have the following numerical relations.

If T = 〈σni : i ∈ N〉, then

(3) 2εniW
2
ni
< εni−1

and

(4) εni(lni/lni−1)W−2
ni−1
→∞ as n→∞.

We want our εn’s to go to zero fast enough:

(5)
∏
n∈N

(1− εn) > 0.

We note that all of our numerical requirements can be satisfied by deciding on

Wn, taking εn small enough and ln large enough.

Some specifications. The groups and equivalence relations will satisfy the

following specifications. The first two describe the diameter and separation

of the Qs classes. To start we let Q0
0 be the equivalence relation on W0 = Σ

which has one equivalence class; i.e., any two elements of Σ are equivalent.

Q4. Suppose that n = M(s). Then any two words in the same Qns equiva-

lence class agree on an initial segment of length at least (1− εn)ln.

Q5. For n ≥ M(s) + 1, Qns is the product equivalence relation of QM(s)
s .14

Hence we can view Wn/Qns as sequences of elements of WM(s)/Q
M(s)
s

and similarly for rev(Wn)/Qns .

It follows that Qn0 is the equivalence relation on Wn which has one

equivalence class.

14This makes sense since the members of Wn are made by concatenating members of Ws.



1550 M. FOREMAN, D. J. RUDOLPH, and B. WEISS

Specification Q5 links Qns directly to QM(s)
s . When the exponent is not

relevant we will refer to the Qns as Qs. For u ∈ Wn we will write [u]s for its

Qns class.

Q6. Qns+1 refines Qns and each Qns class contains 2k(n) many Qns+1 classes for

some number k(n)→∞ as n→∞.

We introduce another numerical requirement: If σm and σn are con-

secutive elements of T , then

(6) 2−k(n)+m < εm.

This can be satisfied by making the k(n) grow fast enough.

A7. Gns acts freely onWn/Qns∪rev(Wn/Qns ) and the Gns action is subordinate

to the Gns−1 action via the natural homomorphism ρs,s−1 from Gns to

Gns−1.

A8. The canonical generators of G
M(s)
s send elements of WM(s)/Q

M(s)
s to

elements of rev(WM(s))/Q
M(s)
s ) and vice versa by reversing the words.

A9. If M(s) < n, σm and σn are consecutive elements of T and we view

Gns = Gms ⊕ H, then the action of Gms on Wm/Qms ∪ rev(Wm/Qms ) is

extended to an action on Wn/Qns ∪ rev(Wn/Qns ) by the skew diagonal

action. If H is nontrivial, then its canonical generator maps Wn/Qns to

rev(Wn/Qns ).

We will refer to the words in some Wn as having even parity and the words in

some rev(Wn) as having odd parity.

These specifications suffice to verify directly that if T has an infinite

branch, then F (T ) is conjugate to F (T )−1, and if there are at least two

branches then F (T ) has nontrivial centralizer. For a more unified presentation

we wait to show these properties until we discuss the canonical factors.

We will prove a lemma that we will use for later calculations.

Proposition 21. Let g ∈ Gis for i < n and suppose that σm and σn are

consecutive elements of T . Let W ′n =Wn or rev(Wn), according to whether g

has even or odd parity. Among the pairs (u, v) ∈ Wn ×W ′n for which g[u]s =

[v]s, the proportion for which there is an h ∈ Gms+1 with h[u]s+1 = [v]s+1 is at

most

(7)
|Gms+1|
2k(n)

.

Proof. Fix a Qms class C. Then C × gC =
⋃{C1 × C2 : C1 ⊂ C,C2 ⊂ gC

and C1, C2 are Qms+1-classes}. The number of pairs (C1, C2) with C1 × C2 ⊆
C × gC for which there is some h ∈ Gms+1 with hC1 = C2 is |Gms+1|2k(n). This

has proportion |Gms+1|2−k(n) in C × gC. Since C was arbitrary, the lemma is

proved. �



THE CONJUGACY PROBLEM IN ERGODIC THEORY 1551

5. The canonical factors

In this section we describe a canonical tower of factors we will use to

understand the joinings between the transformations we build. Specifications

E1–E3 determine an odometer factor of our transformations. It will turn out

that this odometer factor is the Kronecker factor of each the transformations.

The odometer factor will determine a “blocking” of the elements of our space

and the equivalence classes that appear in the blocking give the canonical

factors.

For the moment we will assume that we are working with a fixed arbitrary

measure ν of the form F (T ), where T ∈ Trees. We let K ⊆ ΣZ be the space

corresponding to ν.

5.1. The odometer factor. Let x ∈ K. Suppose that σm and σn are con-

secutive members of T . Then by specification E3 there are unique w,w′ ∈ Wn

and k ∈ [0, ln − 1] such that x � [−k,−k + 2ln − 1] = ww′. We will call the

interval of integers [−k,−k + ln − 1] the n-block of x containing 0.

If the m-block of x containing 0 is [−k′,−k′ + lm − 1], then there is a

unique π(x, n) such that k′ = −k + π(x, n)lm. Less formally, if u is the word

in Wm sitting on the m-block in x containing 0, then u is the π(x, n)th word

occurring in the word in Wn sitting on the n-block of x containing 0.

We can view π(x, n) ∈ Zln/lm = Zp2nWm
and view π(x, n) as a function

of x:

π : K→
∏
{Zp2nWm

: σm and σn are succesive elements of T }.

When we look at π(sh(x), ·) we see that the element π(x, ·) has been changed

by adding 1̄ in the odometer.

Let OT be the odometer transformation on OT =def
∏{Zp2nWm

: σm and

σn are successive elements of T }. We will use the following facts. The second

assertion follows easily from the results of Section 2.4:

Lemma 22. The map π : K→ ∏
σn∈T Zp2nWm

is a factor map from F (T )

to OT . If p > 2 is a prime number, then e2πi/p is an eigenvalue of the unitary

operator associated with OT if and only if p = pn for some n with σn ∈ T .

We can associate the same odometer transformation OT to K−1 with the

analogous procedure, Let π∗ : K−1 → ∏
σn∈T Zp2nWm

be the analogous map. If

i is the involution of OT given by x 7→ −x, then π∗(x−1) = i(π(x)).

Since π is the initial element in a sequence of projections about to be

defined we will refer to it from now on as π0.

5.2. The canonical factors. In this section we define a canonical sequence

of invariant sub-σ-algebras of the algebra B(K) of measurable subsets of K.
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Let K0 be OT . For each s, QM(s)
s is an equivalence relation on WM(s). Enu-

merate the classes {cj : j < Q
M(s)
s }. A typical x ∈ K gives a well-defined

bi-infinite sequence of such classes. This gives a shift invariant map from K to

{0, 1, . . . , QM(s)
s − 1}Z.

More formally: define a map

π−s : K→ {0, 1, . . . , QM(s)
s − 1}

as follows. For x ∈ K consider the word w ∈ WM(s) on the M(s)-block of x

containing 0. If [w]s = cj , let π−s (x) = j.

Let Ks be the space {0, 1, . . . , QM(s)
s −1}Z×OT . The map π−s determines

a continuous shift invariant map

πs : K→ Ks

defined by letting the first coordinate of πs(x) be the Z-sequence 〈π−s (x)(k) :

k ∈ Z〉 and the second coordinate be π0(x).15

We can describe a nice base for the topology on Ks. For n ≥M(s), w ∈ Wn

and k < ln, we let 〈[w]s, k〉 be the collection of (x, y) ∈ Ks such that 0 is at the

kth place in the n-block B of x containing it, and if v ∈ {0, 1, . . . , QM(s)
s − 1}ln

is the word in x at B, then v is the sequence of QM(s)
s classes given by [w]s.

The collection of 〈[w]s, k〉 for σn ∈ T , w ∈ Wn and k ≤ ln form a basis for the

topology of Ks consisting of clopen sets.

Define a measure νs =def π
∗
s(ν), where ν is the measure on K given by

F (T ). The measure νs can be described explicitly using specifications Q6 and

E2: if A and B are sets from our basis arising from two words in Wn, then

νs(A) = νs(B) = 1/Qns .

Let H0 be the shift invariant sub-σ-algebra of B(K) generated by the

collection of π−1
0 (B), where B is a basic open set in OT . Let Hs be the shift

invariant sub-σ-algebra of B(K) generated by {π−1
s (B) : B is a basic open set

in {0, 1, . . . , QM(s)
s − 1}Z ×OT }. Then Hs is the sub-σ-algebra determined by

the factor map πs.

If l = lM(s+1)/lM(s), then the equivalence relation QM(s+1)
s+1 refines lQM(s)

s .

Consequently the algebra Hs+1 ⊇ Hs. The factor map πs+1,s : Ks+1 → Ks

can be computed explicitly by noting that each QM(s+1)
s+1 class is contained in a

QM(s+1)
s class, which in turn is an lM(s+1)/lM(s)-tuple of QM(s)

s -classes. Hence

a Z-sequence of QM(s+1)
s+1 classes determines a Z sequence of QM(s)

s -classes. The

factor map is continuous.

15It will follow from later specifications that K0 is a factor of the projection of K to

{0, 1, . . . , QM(s)
s − 1}Z, making the second term of Ks redundant. However we do not need

this for the argument.
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The disintegration 〈νx : x ∈ Ks〉 of the measure νs+1 over νs are similarly

approximated: v ∈ Wn and k ∈ Z determine a basic open set 〈[v]s, k〉 in

Ks. The inverse image of 〈[v]s, k〉 in Ks+1 is a finite union of basic open sets

〈[w]s+1, k〉. Each of these has the same νs+1 measure and the same measure

by νx for each x ∈ 〈[v]s, k〉.

Proposition 23. B(K) is the smallest invariant σ-algebra that includes⋃
s∈NHs.

Proof. It suffices to show that if u ∈ Wm, then the basic open set 〈u〉 ⊆ K
is arbitrarily well-approximated in measure by elements of

⋃
s∈NHs. We will

use specification Q4.

Fix ε > 0. Choose an n > m such that n = M(s) for some s and large

enough that εn + lm
ln
< ε.

Let G ⊂ K be the collection of x such that x(0) is not among the last

(εn + lm
ln

)ln letters of the word in Wn sitting at the n-block of x containing 0.

By the ergodic theorem, the measure of G is at least 1− ε.
Let x ∈ G ∩ 〈u〉 and w ∈ Wn sit at the n-block B = [−k, ln − k) of x

containing 0. If cj is the QM(s)
s class of w, then by specification Q4, sh−k(x) ∈

π−1
s (〈cj , 0〉) ⊆ sh−k〈u〉. Hence G ∩ 〈u〉 is a union of shifts of sets of the form

π−1
s (〈cj , 0〉). �

By the Ergodic Theorem if n = M(s), then the set of x such that x(0) is

in the last εnln segment of the n-block containing x(0) has measure εn. Let L

be the collection of x ∈ K such that for all large s, if n = M(s) then x(0) is

not in the last εnln segment of the n-block containing x(0). By equation (5)

and the Borel-Cantelli Lemma, L has measure one.

An argument similar to the one for Proposition 23 shows:

Proposition 24. For all x 6= y belonging to L, there is an open set

S ∈ ⋃s∈NHs such that x ∈ S and y /∈ S.

We note that there is a set L0 ⊂ K0 such that L = π−1
0 (L0).

Proposition 25. For all s ≥ 1,Hs is a strict subalgebra of Hs+1. More-

over, if 〈νx : x ∈ Ks〉 is the disintegration of νs+1 over νs, then for νs-a.e. x,

νx is nonatomic.

Proof. View νs+1 as a measure on {(x, y) : x ∈ Ks, y ∈ Ks+1 and πs+1,s(y)

= x}. Let A = {(x, y) : y is in the nonatomic part of νx}. Then A is invariant

and hence of νs+1-measure zero or one. We claim it is measure one. If not,

then we have that Aα,β = {(x, y) : y is an atom of νx with measure between α

and β}. Then Aα,β is invariant and, intersecting countably many, we see that

there is some γ ∈ (0, 1) for almost all (x, y), y is an atom of νx with measure γ.
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It follows that for some k, for νs-almost all x, there are exactly k atoms and

each atom has measure 1/k.

Thus we can assume that A is a Borel set of νs+1-measure one such that

for νs almost all x ∈ Ks, |{y : (x, y) ∈ A}| = k and νx({y : (x, y) ∈ A}) = 1.

Choose an n such that 2−k(n)k < 1/2. We can find a basic open set O in

Ks and {u1, . . . , uk} ⊆ Wn and such that for all x ∈ O, the n-block B of x

containing 0 starts at t and for νs measure 9/10’s of the x ∈ O,

(8) {y : (x, y) ∈ A} ⊆ {x} ×
⋃
i≤k
〈[ui]s+1, t〉.

For each x ∈ O, there are 2k(n) many Qns+1 classes inside [x � B]s. All

basic open sets 〈[u]s+1, t〉 with [u]s+1 ⊆ [x � B]s have the same νx-measure.

This implies that the union on the right-hand side of equation (8) has measure

less than 1/2, a contradiction. �

6. An analysis of joinings

In this section we give a complete analysis of the self-joinings of F (T ) and

the joinings of between F (T ) and F (T )−1. Theorem 7 will be an immediate

consequence of this analysis.

6.1. Branches give graph joinings. Let K′ be K or K−1, and K′s the cor-

responding factor. Let 〈ηs : s ∈ N〉 be a sequence with each ηs a joining of Ks

with K′s. We will say that the sequence is coherent if ηs is the projection of

ηs+1 to a joining of Ks with K′s via πs+1,s × πs+1,s.

Lemma 26. Suppose that 〈ηs : s ∈ N〉 is a coherent sequence of invertible

graph joinings. Then there is a unique invertible graph joining η of K with K′
such that for all s, ηs is the projection of η to a joining on Ks with K′s.

Proof. For each s, let gs : Ks → K′s be the invertible measure preserv-

ing transformation from ηs. Since the gs cohere, their inverse limit defines a

measure preserving isomorphism between the sub-algebra of B(K) generated

by
⋃
sHs and the subalgebra of B(K′) generated by

⋃
sH′s. By Proposition 23,

this extends uniquely to a measure preserving isomorphism ι between B(K)

and B(K′). Proposition 24 implies that we can find a set D ⊂ K of ν measure

zero such that that ι determines a shift invariant spatial isomorphism I of K\D
with K′\D′. The graph joining η determined by I projects to each ηs. �

The proof of Lemma 26 gives more information. Let L be the set of

measure one defined in Proposition 24, on which B(K) separates points. Then

without loss of generality we can assume that L ⊇ K\D and L′ ⊇ K′\D′. On L,

the Qs classes of x on the blocks containing 0 determine x and similarly for L′.
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Each of the maps gs is continuous; hence their inverse limit is a continuous

shift invariant conjugacy I defined pointwise on a set of measure one.

Lemma 27. Let s ∈ N and g ∈ Gns . Let K′ be K if g has even parity and

K−1 otherwise. Then there is a unique invertible graph joining ηg of Ks with

K′s such that for all m ≥ n

(9) {(x, y) : for all w ∈ Wm if x ∈ 〈[w]s, 0〉 then y ∈ 〈g[w]s, 0〉}

has ηg measure one. The projection of this joining to K0×K′0 concentrates on

the diagonal. Moreover, if s′ ≥ s, g ∈ Gns and g′ ∈ Gns′ with ρs′,s(g
′) = g, then

the projection of ηg′ to Hs ×H′s is ηg .

We note that ηg concentrates on a homeomorphism between Ks and Ks.

Proof. Specifications A7, A8 and A9 show that the map sending the basic

open interval 〈[w]s, 0〉 ⊆ Ks to 〈g[w]s, 0〉 ⊆ K′s determines a measure preserving

homeomorphism G from Ks to K′s. We set ηg to be this graph joining.

If we are given g ∈ Gms and g′ ∈ Gms′ with ρs,s′(g
′) = g, then specification

A7 tells us that the action of g′ is subordinate to the action of g. This translates

to the fact that if G and G′ are the graphs of the joinings ηg and ηg′ ,

(10) πs′,s(G
′(x)) = G(πs′,s(x)).

It follows that the projection of ηg′ is ηg. �

We note that Lemma 27 tells us that a g ∈ G∞(T ) yields a coherent

sequence of invertible graph joinings of Hs × H±1
s . By Lemma 26, such a g

gives a graph joining of K with K′, where K′ is K if g has even parity and K′ is

K−1 otherwise. We will call this the graph joining determined by g and denote

it as ηg.

Corollary 28. Suppose that T has an infinite branch. Then

(ΣZ, C, F (T ), sh) ∼= (ΣZ, C, F (T ), sh−1).

If T has at least two infinite branches, then there is an automorphism G be-

tween (ΣZ, C, F (T ), sh) that is not a power of the shift map.

Proof. If T has an infinite branch then, by Lemma 17, G∞(T ) has an

element g of odd parity. The sequence ηρs(g) gives a coherent sequence of

invertible graph joinings between Ks and K−1
s and hence an invertible graph

joining of K with K−1.

If T has at least two infinite branches, then there is a nonidentity g ∈
G∞(T ) with even parity. This gives a nontrivial element S of the centralizer

of F (T ) that projects to the identity on K0. Hence S must be different from

the shift map. �

This proves Claim 10, and half of what we need to see that F is a reduction.
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6.2. The joining specifications. To finish the proof of the theorem we need

to prove Claim 11, namely that joinings give branches through trees. We will

need two more specifications about our words to do this. The specifications Q4

to A9 build certain symmetries into our words in a manner that allows nodes

in the tree T to give increasingly precise information about invertible graph

joinings.

The intent of the joinings specifications J10 and J11 is to give a mechanism

for showing that any joining not arising from branches through our trees are

independent joinings over a canonical factor.

Our approach to characterizing joinings η will be to calculate the measures

of basic open sets 〈a, b〉 ⊆ K×K′ by determining the density of appearances of

the finite sequences (a, b) in η-generic pairs (x, y) ∈ K×K′. For m, where lm is

much larger than the lengths of a and b, this density can be well-approximated

by counting the appearances of pairs (u′, v′) from Wm × W ′m in (x, y). In

the cases we are concerned with, joining specifications will say that each pair

(u′, v′) occurs with essentially the same frequency in (x, y), and hence (a, b)

occurs with essentially the same frequency in each generic (x, y).

A complication to this outline is that the elements of the odometer associ-

ated to x and y may not be the same. If this happens, then the block structures

of x and y are not synchronized. In this case a given m-block of x may overlap

two m-blocks of y. The joining specifications imply that these overlaps are

either insignificant or each pair (u′, v′) occurs overlapped essentially the same

number of times with the same overlap. Again for large m this suffices to show

that the occurrences of (a, b) are independent of the choice of x and y.

We will achieve the desired frequencies by randomizing the words as much

as possible, subject to the restrictions imposed by Q4–A9.

Our first joining specification, J10, is aimed at the latter situation where

the odometer factors are not synchronized. We consider m and n with σm and

σn consecutive elements of T . We take arbitrary words u, v in Wn ∪ rev(Wn)

and shift one of them by a multiple k of the lengths of m words. Then on

the overlap both words are concatenations of strings of (ln/lm) − k many m

words. For a given pair (u′, v′) of appropriate m words we can count their

simultaneous occurrence in the overlap. The assertion is that as long as k is

nontrivial and the overlap is nontrivial, then the occurrence is close to random.

The first joining specification. Fix a T ∈ Trees and letWi denoteWi(T ).

J10. Suppose that σm and σn are consecutive elements of T . Let u and v be

elements of Wn ∪ rev(Wn). Let 1 ≤ k < (1− εn)(ln/lm). Then for each

pair u′, v′ ∈ Wm ∪ rev(Wm) such that u′ has the same parity as u and

v′ has the same parity as v, let r(u′, v′) be the number of occurrences of

(u′, v′) in (shklm(u), v) on their overlap. Then
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(11)

∣∣∣∣∣ r(u′, v′)

(ln/lm)− k
− 1

W 2
m

∣∣∣∣∣ < εn.

In view of equation (3), we can assume that εn is much less than W−2
m .

If we set d = ln/lm− k, then d is the number of Wm words in the overlap.

This is at least εm(ln/lm). By equation (4), for large m and n, this is much

larger than W 2
m. We can rewrite equation (11) as∣∣∣∣∣r(u′, v′)− d

W 2
m

∣∣∣∣∣ < dεn.

Proposition 29. Let u and v be as in specification J 10. Then we can

remove a portion of the overlap of shklm(u) and v of proportion at most 2εnW
2
m

consisting of pairs of words from Wm ∪ rev(Wm), so that each pair (u′, v′) of

elements from Wm ∪ rev(Wm) with the correct parity occurs the same number

of times in what remains. In particular, each occurs in what remains with

density exactly W 2
m.

The second joining specification. Our final specification, J11, is directed

at joinings that preserve the odometer factor. It will imply that the only graph

joinings preserving the odometer factor are those we built into the construction

by Q4–A9.

Let σm and σn be consecutive members of T . Suppose that u ∈ Wn and

v ∈ Wn ∪ rev(Wn). We let s = s(u, v) be the maximal i such that there is a

g ∈ Gmi such that g[u]i = [v]i. Then there is a unique such g ∈ Gms with this

property, which we will call g(u, v).

The action of g(u, v) introduces a common pattern between u and v. Spec-

ification J11 will say that relative to this pattern all occurrences of pairs (u′, v′)

occur randomly.

The words in Wn are concatenations of length ln/lm of words in Wm. We

can write u = u0u1 · · ·u(ln/lm−1) with ui ∈ Wm and v = v0v1 · · · v(ln/lm−1)

with vi ∈ W ′m, where W ′m is either Wm or rev(Wm) depending on the parity

of g. Since g[u]s = vs, we know that g[ui]s = [vi]s if g has even parity and

g[ui]s = [vln/lm−i−1]s if g has odd parity.

Given a particular Qms class C, a portion of approximately 1/Qms of the

ui’s in u come from C. At the same locations in v we have occurrences of vi’s

from gC. Specification J11 says that in these locations all pairs from C × gC
occur with about the same frequency, |C|−2.

J11. Let σm and σn be successive members of T . Suppose that u ∈ Wn and

v ∈ Wn ∪ rev(Wn). Let (u′, v′) ∈ Wm ×W ′m be such that g[u′]s = [v′]s.

Let r(u′, v′) be the cardinality of {i : (ui, vi) = (u′, v′)}. Then∣∣∣∣∣r(u′, v′)− ln
lm

1

Qms

Ç
1

Cms

å2
∣∣∣∣∣ < εn(ln/lm).
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Since Cms Q
m
s = Wm it follows from equation (3), that for large m, εn is much

less than 1
Qm

s
( 1
Cm

s
)2. Setting l = ln/lm to be the number of m words occurring

in an n word, we see that alternate form of specification J11 is∣∣∣∣∣r(u′, v′)l
− 1

Qms

Ç
1

Cms

å2
∣∣∣∣∣ < εn.

This has the corollary analogous to Proposition 29:

Proposition 30. Let (u, v) be as in the hypothesis of J11. Then we

can delete a portion of (u, v) made up of some (ui, vi)’s of proportion at most

2εnQ
m
s (Cms )2 so that in what remains each (u′, v′) ∈ Wm ×W ′m with g[u′]s =

[v′]s occurs the same number of times. In particular, each such (u′, v′) occurs

with proportion exactly 1/Qms (Cms )2.

The next consequence of specification J11 is a strengthening of Proposi-

tion 30. It says that for each m < n after we delete a relatively small number

of pairs in Wm×W ′m that occur in a pair (u, v) ∈ Wn×W ′n, every permissible

pair from Wm ×W ′m occurs the same number of times in what is left.

Proposition 31. Suppose that T is 〈σnk
: k ∈ N〉. Let n = nl. Sup-

pose that u ∈ Wn and v ∈ W ′n, where W ′n = Wn or W ′n = rev(Wn). Let

s = s(u, v) and g = g(u, v). Suppose that g ∈ G
nj
s , where nj < n. Let

k ∈ [j, l) and m = nk. Then we can remove pairs (u′, v′) ∈ Wm × W ′m oc-

curring in (u, v) leaving a subsequence of such pairs of proportion at least

(1 − εnl−1
)
∏
k≤i<l−1(1 − εni)

2 in which every pair (u′, v′) ∈ Wm × W ′m with

g[u′]s = [v′]s occurs the same number of times.

Proof. We go by induction on l for a fixed k. Suppose that l=k+1. In this

case σm and σn are consecutive elements of T . It follows from Proposition 30

that we can remove 2εnQ
m
s (Cms )2 portion from (u, v) and have each appropriate

(u′, v′) occur the same number of times. Since Qms (Cms )2 < W 2
m < W 2

n , equa-

tion (3) implies that we have removed a portion of size less than εm = εnl−1
.

Suppose now that it is true for l. We show it for n = nl+1. We perform

two deletion operations and apply induction. Let (u, v) ∈ Wn × W ′n. By

Proposition 30 and equation (3) we can remove a portion of (u, v) consisting

of pairs of words from Wnl
×W ′nl

so that:

1. the portion of (u, v) remaining has proportion (1− εnl
) and

2. every pair (u′, v′) ∈ Wnl
× W ′nl

with g[u′]s = [v′]s occurs the same

number of times.

By Proposition 21, we can remove a portion of the remainder that consists

of pairs of (u†, v†) ∈ Wnl
×W ′nl

of proportion at most |Gnl−1

s+1 |2−k(nl) so that

for the remaining pairs (u†, v†) there is no h ∈ Gnl−1

s+1 with h[u†]s+1 = [v†]s+1.



THE CONJUGACY PROBLEM IN ERGODIC THEORY 1559

Since |Gnl−1

s+1 | ≤ 2nl−1 we can use equation (6) to see that what is removed in

the second deletion operation has proportion less than εnl−1
.

After these two deletions we are left with at least (1 − εnl−1
)(1 − εnl

)

proportion of (u, v) and for each remaining pair (u†, v†) ∈ Wnl
×W ′nl

we have

s = s(u†, v†) and g = g(u†, v†). Hence we can apply induction to delete portions

of each such (u†, v†) keeping at least proportion (1− εnl−1
)
∏
k≤i<l−1(1− εni)

2

so that every pair (u′, v′) ∈ Wm×W ′m occurs the same number of times in the

remaining portion of (u†, v†).

What is left after these deletions is a portion of the original pair (u, v) hav-

ing proportion at least (1−εnl
)
∏
k≤i<l(1−εni)

2 and in which each appropriate

pair (u′, v′) ∈ Wm ×W ′m occurs the same number of times. �

Again we remark that if each appropriate pair (u′, v′) appears the same

number of times in the remainder after the deletions, each appropriate pair

occurs with proportion 1
Qm

s

(
1
Cm

s

)2
.

6.3. The Kronecker factor. For the next few sections we will be consid-

ering one tree T at a time. For notational simplicity, if {nj : j ∈ N} is an

enumeration of {n : σn ∈ T } in increasing order, then we will write “σj” in-

stead of “σnj”, “Wj” instead of “Wnj”, “lj” instead of “lnj” and “M(i) = j”

instead of “M(T )(i) = σnj”.

The new notation has the effect that σj and σj+1 denote consecutive

elements of the tree T . Moreover the odometer factor of F (T ) is now written∏
j Zlj+1/lj .

Suppose that η is an ergodic joining of K with K′ for K′ = K±1. Since

OT ×OT is a factor of K×K′, η projects to a joining of the odometer factor

with itself. By Theorem 13, there is a g ∈ OT such that the projection of η to

OT × OT is given by the graph joining determined by g. We can describe g

explicitly.

For each ~a ∈ ∏j<J Zlj+1/lj , the collection of pairs (x, y) ∈ K × K′ such

that the element of
∏
j Zlj+1/lj given by π0(x)− π0(y) starts with ~a either has

η measure zero or measure one and for each J there is a unique ~aJ which gives

a set of measure one. If g ∈ ∏j Zlj+1/lj is such that for all J , g � J = ~aJ , then

the projection of η to OT ×OT is the graph joining given by g.

Proposition 32. Suppose that T ∈ Trees and η is an ergodic joining

between X = (ΣZ, C, F (T ), sh) and Y = (ΣZ, C±1, F (T )±1, sh). Suppose that

η � H0 × H0 is supported on the graph of some g 6= j̄ for any j ∈ Z. Then η

must be the relatively independent joining of X and Y over the graph joining

given by g.

Remark As the set of (x, y) ∈ K×K′ which projects to a pair of elements

of OT whose difference is g is a closed set, the proposition proves the unique
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ergodicity of sh × sh restricted to this closed set. In particular, this implies

that there is a unique ergodic joining η that lifts the joining on the graph of g

and η must be the relatively independent joining over g.

Proof of Proposition 32. Let K′ be either K or K−1 depending on whether

Y comes from F (T ) or from F (T )−1 and similarly we let W ′j be either Wj or

rev(Wj).

Suppose g ∈ OT with g 6= j̄ for any j ∈ Z. Let s and t be arbitrary

elements of OT such that s − t = g. Let x and y be arbitrary elements of K
and K′ such that π0(x) = s and π0(y) = t.

Claim. If 〈a〉 × 〈b〉 is a cylinder set in K × K′, then the density of the

occurrences of (a, b) in (x, y) does not depend on the choice of x, y, s or t.

To see that the claim suffices for Proposition 32, we note that if η is an

ergodic joining then η(〈a〉 × 〈b〉) is given by the frequency of occurrences of

(a, b) in a generic (x, y). Since this frequency is independent of the choice

of (x, y) there is a unique such η, which must be the relatively independent

joining.

Proof of claim. For each j, s partitions Z into “j-blocks” of length lj
corresponding to where the words from Wj lie in x and similarly t gives a

partition of Z corresponding to the occurrence of words inWj or rev(Wj) in y.

Each j-block of x overlaps two j-blocks of y that have lengths gj and

lj−gj respectively for some numbers gj . We will call these the “first overlaps”

and the “second overlaps” respectively. Note that for each j the lengths of the

overlaps of all j-blocks are the same and this length is determined by g. It is

thus independent of x, y, s and t.

If g ∈ ∏j∈N Zlj+1/lj = OT is given by some sequence 〈kj : j ∈ N〉, then we

can compute the values gj recursively by setting g0 = k0 and gj = gj−1+kjlj−1.

Since g 6= q̄ for any q ∈ Z, there is an infinite set J of values j where

lj/lj−1 − 1 > kj > 0. Moreover, the lengths of the overlaps grow to infinity as

j goes to infinity.

Our strategy is to focus on an arbitrary j-block of x and count instances

of the occurrence of (a, b) in the corresponding section of (x, y). As j gets large

this will be increasingly independent of the choices of x, y, s, t and the choice

of j-block.

This suffices since occurrences of (a, b) in (x, y) are either inside a j-block

or overlap two j-blocks of x. Let k be a natural number bigger than the lengths

of a and b. As j goes to infinity, the portion of the j-block that is covered by

an overlapping occurrence of (a, b) is bounded by 2k/lj , which goes to zero

as j gets large. Hence the density of occurrences (a, b) in (x, y) is given by

averaging the densities of occurrences of (a, b) along j-blocks and letting j go

to infinity.
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We start by choosing a j with kj 6= 0 that is so large that lj−1 is very

large relative to the lengths of a and b, i.e. k/lj−1 is very small and, moreover,

lj−1/lj is very small. We also assume that εj(lj/lj−1) is much larger than W 2
j−1

and that εjW
2
j−1 is very small.

We show that for each pair of j − 1-words (u′, v′) ∈ Wj−1 × W ′j−1, the

number of times where u′ and v′ occur overlapped as first or second overlaps of

j−1-words in this arbitrary j-block is approximately 1
|Wj−1|2 , and hence nearly

independent of the choices of x, y, s and t. Since the number and extent of the

overlaps of pairs of j − 1-words closely determines the density of occurrences

of (a, b), this will suffice.

Let u be the Wj word occurring in x at an arbitrary j-block B, and vl
and vr be the W ′j words occurring in y as the first and second overlaps. Each

occurrence in B of a u′ ∈ Wj−1 overlaps either one or two words in W ′j−1.

An occurrence of (a, b) along B can occur in the following ways:

1. completely contained in both a j − 1 word in u and a j − 1 word in vl
or vr,

2. properly overlapping two j − 1 words occurring in u,

3. properly overlapping two j − 1 words occurring in vl or vr,

4. in the first or last lj−1 letters of u or

5. in the last lj−1 letters of vl or the first lj−1 letters of vr.

The section of B in which (a, b) can occur in ways 2–5 has size bounded

by

(12) 2(k/lj−1)(lj/lj−1) + 2(k/lj−1)(lj/lj−1) + 2lj−1 + 2lj−1

which has proportion of B at most:

(13) 4k/l2j−1 + 4(lj−1/lj).

An occurrence of (a, b) of type one can occur in two ways:

L) in a portion of B corresponding the first overlap,

R) in a portion of B corresponding to the second overlap.

If either the first overlap or the second overlap has size less than εjlj + lj−1,

then we neglect it, as it contributes a proportion of size

(14) εj + lj−1/lj

of the block B. Otherwise we can treat the two overlaps separately.

Consider the overlap of u with vr. This section Br of x has various j − 1-

blocks that may or may not be synchronous with j− 1-blocks of y. If they are

not synchronous; then the j−1-blocks of u also have first and second overlaps.

We deal with the case that they are not synchronous; the synchronous case is

similar and easier.
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By shifting x right by gj−1 or left by lj−1− gj−1, the j− 1-blocks of x line

up with the j− 1-blocks of y. Depending on whether we shift right or left, the

first or last j − 1-blocks on Br are lost.

Either way we shift to make the j − 1 words line up, we can apply

Proposition 29 to find a portion of the shifted overlap of proportion at least

1 − 2εjW
2
j−1 > 1 − εj−1 so that every pair (u′, v′) ∈ Wj−1 × W ′j−1 occurs

with density W−2
j−1. Taking into account the blocks that might be lost, we can

find a portion of Br of proportion at least 1 − εj−1 − 2lj−1/|Br|, where each

pair (u′, v′) ∈ Wj ×W ′j occurs in both first overlaps and second overlaps with

proportion exactly W−2
j−1.

We now do the same thing on the section Bl where B overlaps with vl. The

result of deleting these portions of Br and Bl is a section of B of proportion

at least

(15) 1− εj−1 − 4(lj−1/lj)

on which each pair (u′, v′) ∈ Wj ×W ′j occurs in both first overlaps and second

overlaps with proportion exactly W−2
j−1.

Thus neglecting occurrences of (a, b) in portions of B corresponding to

equations (13), (14) and (15) we are neglecting a portion of B of density at

most

ε = 4k/l2j−1 + 9(lj−1/lj) + εj + εj−1.

The remaining “typical” occurrences reside in the interior of overlaps of

pairs of words (u′, v′) ∈ Wj−1 × W ′j−1 as either right or left overlaps in the

portion of B not discarded in equation (15). The density of these typical occur-

rences is determined by the amount of shift and the density of the occurrences

of the pairs (u′, v′). The amount of shift is given by g as a right shift of gj−1

and a left shift of lj−1 − gj−1. The density of occurrences of each (u′, v′) is

W−2
j−1. Since these numbers are independent of x, y, s and t we see that up to

an error of ε, the density of occurrences of (a, b) in j-blocks is also independent

of x, y, s and t. Since ε goes to 0 as j goes to ∞, the density of occurrences of

(a, b) is independent of the choice of x, y, s and t. �

Corollary 33. OT is the Kronecker factor of K.

Proof. If not, then OT is a proper factor of the Kronecker factor K. Let

t ∈ K be such that the factor transformation on the group K is given by

translation by t. If π′0 : K → OT is the factor map, then π′0(t) = 1̄.

Choose an element t′ ∈ K such that π′0(t′) = g 6= 1̄. Then t′ determines

a graph joining of K with K that can be lifted to the relatively independent

joining η′ of K with K. This joining concentrates on {(x, y) ∈ K×K′ : π0(x)−
π0(y) = g}. Since sh × sh is uniquely ergodic on this set, η′ must be the
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relatively independent joining over the graph joining of OT with OT by g. But

this implies that K is a trivial extension of OT . �

If T 6= T ′, then {pn : a pth
n root of unity is an eigenvalue of the unitary

operator associated with F (T )} is different from {pn : a pth
n root of unity is an

eigenvalue of the unitary operator associated with F (T ′)}. In particular:

Corollary 34. If T 6= T ′, then F (T ) is not conjugate to F (T ′)±1.

Remark. With slightly more effort, we could reorganize our argument so

that the odometer factor of each F (T ) was the same and arrange that for

T 6= T ′ any joining between F (T ) and F (T ′)±1 is the relatively independent

joining over this common Kronecker factor.

6.4. Arbitrary joinings. We begin by separating the various joinings.

For g ∈ Gs, let

Ig = {(x, y) : gπs(x) = π′s(y)} ⊆ K×K′,
Tg = Ig ∩ {(x, y) : for no g∗ ∈ Gs+1 is g∗πs+1(x) = π′s+1(y)}.

The next two lemmas are routine to verify.

Lemma 35. Let s, t ∈ N and g ∈ Gs, h ∈ Gt be different. Then :

1. Each Ig is a closed set, as is
⋃
g∈Gs

Ig ,

2. Tg is a Gδ set,

3. Tg ∩ Th = ∅,
4. If η is the relatively independent joining of K with K′ over the graph

joining ηg of Ks with K′s, then η(Tg) = 1,

5. If g∞ ∈ G∞(T ), η is the graph joining of K with K′ determined by g∞
and gs = ρs(g∞), then

⋂
s∈N Igs is measure one for η.

Lemma 36. Let I be the collection of joinings of K with K′ of the following

form :

1. the relatively independent joining of K with K′ over the graph joining ηg
of Ks with K′s for some g ∈ Gs,

2. the graph joining of K with K′ determined by some g ∈ G∞(T ).

Then any two distinct members of I are mutually singular measures.

Given a measure preserving transformation φ : K′ → K′ that commutes

with the shift map and a joining η of K × K′, we get another joining we will

denote η ◦ (1, φ) defined by setting

η ◦ (1, φ)(X) = η({(k, k′) : (k, φ(k′)) ∈ X}).

If η is ergodic, then so is η ◦ (1, φ).
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We can now finish verifying that F is a reduction by proving Claim 11.

The following proposition suffices.

Proposition 37. Let η be an ergodic joining of K with K′. Then exactly

one of the following holds :

1. For some s, some j ∈ Z and some g ∈ Gs, η is the relatively independent

joining of K with K′ over the graph joining ηg ◦ (1, sh−j) of Ks ×K′s.
2. There is a g ∈ G∞(T ) and a j ∈ Z such that η ◦ (1, sh−j) is the graph

joining of K with K′ determined by g.

Proof. Fix such an ergodic η. By Theorem 13 it induces a graph joining

on OT . By Proposition 32, if η is not a relatively independent joining of K×K′
over a graph joining of OT ×OT , then there is a j ∈ Z such that the projection

of η to a joining of OT ×OT is the graph joining given by some j̄. In particular

if we set η′ = η ◦ (1, sh−j) we get another ergodic joining of K×K′, where the

induced joining on OT × OT is the graph joining coming from the identity

map. Moreover, if η is not a relatively independent joining over Hs×H′s, then

η′ is not.

Hence without loss of generality we can assume that the projection of η

to a joining of OT ×OT is the graph joining induced by the identity.

Let (x, y) be generic for η. Assume that we are not in case 2. Then there

is a maximal s such that for some g ∈ Gs such that gπs(x) = πs(y). This g

is unique and η concentrates on the set Tg. We show that η is the relatively

independent joining over ηg.

For each j let Bj = [aj , bj ] be the interval of integers on which the j-block

of x containing 0 lies.

Claim. There is an infinite set J of j such that for all g′ ∈ Gjs+1

(16) g′(πs+1(x) � Bj+1) 6= πs+1(y) � Bj+1.

To see the claim suppose that g ∈ Gi0s . For each g′ ∈ Gis+1\Gi−1
s+1 with

i ≥ i0, if there is a j such that g′(πs+1(x) � Bj) = πs+1(y) � Bj , then we

have ρs+1,s(g
′) = g and the collection of such j is a finite interval of the form

[i, jmax]. Moreover, if g′1 6= g′2 then the corresponding intervals are disjoint. We

must show that there are infinitely many j not appearing in any such interval.

Fix such a g′ and let j = jmax. Then for all g∗ ∈ Gjs+1 different than g′,

g∗(πs+1(x) � Bj) 6= g′(πs+1(x) � Bj) = πs+1(y) � Bj .

Hence, g∗(πs+1(x) � Bj+1) 6= πs+1(y) � Bj+1. Since g′(πs+1(x) � Bj+1) 6=
πs+1(y) � Bj+1, we see that j ∈ J . This proves equation (16).

Continuing the proof of Proposition 37, we follow the same strategy as

in Proposition 32: we show that all generic pairs (x, y) for any ergodic η
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concentrating on Tg have the same frequencies of occurrence of finite sequences

(a, b). Hence the shift map on Tg is uniquely ergodic and thus any joining is

the relatively independent joining.16

Fix (x, y) and (x′, y′) that are generic for η and η′ concentrating on Tg,

and let J and J ′ be the sets corresponding to equation (16) for each pair and

Bj and B′j′ the corresponding blocks in x and x′.

Fix a pair (a, b) of finite sequences from Σ. Without loss of generality, we

can assume that (a, b) occurs somewhere in K×K′ (in particular they have the

right relative parity) and that they have length bounded by some k. We show

that the density of occurrences of (a, b) is the same in (x, y) as it is in (x′, y′).

Since each pair is generic for its respective measure it suffices to show:

Claim. For each δ > 0 for arbitrarily large j ∈ J and j′ ∈ J ′ the density

of occurrences of (a, b) in (x, y) � Bj is within δ of the density of occurrences

of (a, b) in (x′, y′) � B′j′ .

Fix such a δ and let j < j′ be elements of J and J ′ so large that

(17)
∏

j−1≤q≤j′
(1− εq)2 − 2k/lj−1 > 1− δ.

By Proposition 31 we can delete j−1-blocks in (x, y) � Bj and (x′, y′) � B′j′
to get D and D′ so that a proportion of at least

∏
j−1≤q≤j′(1 − εq)2 remains

in each and every pair (u′, v′) ∈ Wj−1 ×W ′j−1 with g[u′]s = [v′]s occurs with

proportion 1
Qm

s

(
1
Cm

s

)2
.

In the remaining sections (a, b) can occur

a) overlapping two j − 1-blocks,

b) in the interior of j − 1-blocks.

The proportion of a j or j′-block that is within k of the end or beginning of a

j − 1-block is less than 2k/lj−1. We delete these sections from D and D′ and

are left with remainders with proportion at least 1 − δ of the original blocks

in which all occurrences of (a, b) occur in the interiors of appropriate (u′, v′).

Since each appropriate (u′, v′) occurs with the same proportion in D and D′,

we see that density of occurrences of (a, b) is the same in the two remainders.

Hence the density in (x, y) � Bj and (x′, y′) � B′j′ are within δ. �

Corollary 38. Suppose that K′ is K±1. Suppose that φ is an isomor-

phism between K and K′. Then there is a j ∈ Z such that the joining associated

with φ is a graph joining of the form ηg ◦ (1, shj) for some g ∈ G∞(T ). More-

over, if g has odd parity, then K′ = K−1 and if g has even parity, then K′ = K.

16We remind the reader that for a generic pair (x, y) for η the block structure of x exactly

synchronized with the block structure of y.
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While the following is not strictly necessary for our theorem it seems worth

noting.

Proposition 39. Each relatively independent joining of K with K′ over

a graph joining of Ks with K′s determined by g ∈ Gs is ergodic. In particular,

the collection of joinings of K with K′ is the closed convex hull of

1. the relatively independent joinings of K with K′ over some graph joining

ηg of Ks with K′s for some g ∈ Gs,
2. the graph joinings of K with K′ determined by some g ∈ G∞(T ).

Lemma 17, together with Corollary 38 finish the proof of Claim 11 and

thus Theorem 7. For if there is a conjugacy between F (T ) and F (T )−1 it must

correspond to some g ∈ G∞(T ), in particular G∞(T ) is not the trivial group.

By Lemma 17, we see T has an infinite branch.

If there is a nontrivial element of the centralizer of F (T ), then there must

be a graph joining of F (T ) with F (T ) that is not of the form (1, shj) for

any j ∈ Z. By Corollary 38, there must be a nontrivial element G∞(T ) with

even parity. Again by Lemma 17, this implies that T has at least two infinite

branches.

Finally, from Proposition 39 we get more information:

Corollary 40. Suppose that φ is an invertible measure preserving trans-

formation and φF (T )φ−1 = F (T )±1. Then there is a j ∈ Z and a g ∈ G∞(T )

such that ηg ◦ (1, shj) is supported on the graph of φ. If φF (T )φ−1 = F (T )−1,

then g has odd parity ; otherwise g has even parity.

7. A recapitulation of the specifications

For the reader’s convenience we now collect the various specifications

about the words and numerical assumptions we made in order to prove Theo-

rem 7. Collecting these here will make it easier to verify that the construction

given in the next section works. We also take the chance to simplify the spec-

ifications a bit by making them stronger.

As earlier in the text we will writeWn forWn(T ) with the understanding

that Wn is determined by T ∩ {σm : m ≤ n}.

7.1. The numerical parameters. We have various numerical parameters:

1. Wm the number of elements of Wm. Qms and Cms , the number of classes

and sizes of each class of Qms respectively.

2. 2k(n) the number of Qms+1 classes inside each Qms class. The numbers

k(n) will be chosen to grow fast enough that

(18) 2m2−k(n) < εm.
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If s is the maximal length of an element of T ∩ {σm : m ≤ n}, then we

set Cns = 2k(n) as well. This makes Wm, Q
m
s and Cms be powers of 2.

3. Numbers εn and ln. The first goes to zero rapidly and the last is an

integer going to infinity rapidly. They will satisfy the following numerical

relations:

(a) If T = 〈σni : i ∈ N〉, then

(19) 2εniW
2
ni
< εni−1

and

(20) εni(lni/lni−1)W−2
ni−1
→∞ as n→∞.

(b)

(21)
∏
n∈N

(1− εn) > 0.

(c) There will be prime numbers pni such that lni = p2
ni
Wni−1 lni−1 .

The pn’s will satisfy some fast growth conditions specified during

the word construction itself.

7.2. The specifications. The words in Wn are sequences of elements of

Σ = {0, 1}. We construct Wn just in case σn ∈ T . Which words are in

Wn depends only on T ∩ {σm : m ≤ n}. W0 = {0, 1} and Q0
0 is the trivial

equivalence relation with one class.

E1. Any pair w1, w2 of words in Wn have the same length ln.

E2. If σm and σn are consecutive elements of T , then every word in Wn is

built by concatenating words in Wm. Every word in Wm occurs in each

word of Wn exactly p2
n times.

E3. (Unique readability). If σm and σn are consecutive elements of T and

w ∈ Wn and

w = bw1 · · ·wke
where b or e have length less than lm and each wi ∈ Wm, then both

b and e are the empty word. If w,w′ ∈ Wn and w = w1w2 · · ·wln/lm
and w′ = w′1w

′
2 · · ·w′ln/lm with wi, w

′
i ∈ Wm, and k = [ln/2lm] + 1, then

wkwk+1 · · ·wln/lm 6= w′1w
′
2 · · ·wln/lm−[k]−1; i.e., the first half of w′ is not

equal to the second half of w.

The equivalence relations Qns are defined for all s ≤ s(n).

Q4. Suppose that n = M(s). Then any two words in the same Qns equiva-

lence class agree on an initial segment of length at least (1− εn)ln.

Q5. For n ≥ M(s) + 1, Qns is the product equivalence relation of QM(s)
s .

Hence we can view Wn/Qns as sequences of elements of WM(s)/Q
M(s)
s

and similarly for rev(Wn)/Qns .

Q6. Qns+1 refines Qns and each Qns class contains 2k(n) many Qns+1 classes.
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A7. Gns acts freely onWn/Qns∪rev(Wn/Qns ) and the Gns action is subordinate

to the Gns−1 action via the natural homomorphism ρs,s−1 from Gns to

Gns−1.

A8. The canonical generators of G
M(s)
s send elements of WM(s)/Q

M(s)
s to

elements of rev(WM(s))/Q
M(s)
s and vice versa.

A9. If M(s) < n, σm and σn are consecutive elements of T and we view

Gns = Gms ⊕ H, then the action of Gms on Wm/Qms ∪ rev(Wm/Qms ) is

extended to an action on Wn/Qns ∪ rev(Wn/Qns ) by the skew diagonal

action. If H is nontrivial, then its canonical generator maps Wn/Qns to

rev(Wn/Qns ).

For specifications J10 and J11, σm and σn are consecutive elements of T .

J10. Let u and v be elements of Wn ∪ rev(Wn). Let 1 ≤ k < (1− εn)(ln/lm).

Then for each pair u′, v′ ∈ Wm ∪ rev(Wm) such that u′ has the same

parity as u and v′ has the same parity as v, let r(u′, v′) be the number

of occurrences of (u′, v′) in (shklm(u), v) on their overlap. Then

(22)

∣∣∣∣∣ r(u′, v′)

(ln/lm)− k
− 1

W 2
m

∣∣∣∣∣ < εn.

J11. Suppose that u ∈ Wn and v ∈ Wn ∪ rev(Wn). We let s = s(u, v) be

the maximal i such that there is a g ∈ Gmi such that g[u]i = [v]i. Let

g = g(u, v) be the unique g with this property and (u′, v′) ∈ Wm ×W ′m
be such that g[u′]s = [v′]s. Let r(u′, v′) be the number of occurrences of

(u′, v′) in (u, v). Then∣∣∣∣∣r(u′, v′)− ln
lm

1

Qms

Ç
1

Cms

å2
∣∣∣∣∣ < εn(ln/lm).

8. The word construction

To finish the proof of Theorem 7, for each tree T ∈ Trees, we must

build a sequence of collections of words {Wn(T ) : σn ∈ T } satisfying the

specifications E1–J11. This must be done so that the members of Wn(T ) are

entirely determined by T ∩{σm : m ≤ n}. We organize our construction so that

for each n and for each subtree S ⊆ {σm : m ≤ n} and each σm ∈ S we build

Wm(S). To pass from stage n − 1 to stage n we inductively assume that we

have constructed {Wm(S) : σm ∈ S} for each subtree S ⊆ {σm : m ≤ n − 1}.
Our task is to construct the sequences of words for subtrees of {σm : m ≤ n}.
For those trees S with σn /∈ S, there is nothing to do.

This leaves finitely many trees S with σn ∈ S. List these trees in any

order as {S0, . . . ,SE}. Let T be the eth tree on this list and suppose that we

have constructed the words Wn for {S0, . . . ,Se−1}. Let P be the collection of
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prime numbers occurring in the prime factorization of any of the lengths of

any of the words that we have constructed so far.

Let m be the largest number less than n such that σm ∈ T . Our induction

assumption tells us that we have the collection of words, equivalence relations

and groups Wm(T ), Qms (T ), Gms (T ) that satisfy the specifications for m′ ≤ m
and we need to constructWn(T ),Qns (T ) and Gns (T ). For notational simplicity,

we will write Wn for Wn(T ), Gns for GnS(T ) etc.

Some of the specifications are redundant and some require no explicit

efforts to satisfy. For example specification E3 is follows from specification

J10. To see this note that the first part of the statement follows from the

second part: if we write w ∈ Wn as

w = bw1 · · ·wke

where wi ∈ Wm and it is also written as

w = u1u2 · · ·uln/lm ,

then one of w1 or wk must overlap u1 or uln/lm by at least half of the length of a

word. Specification J10 implies that no significant end segment of u1 can agree

with an initial segment of w1 and no significant initial segment of uln/lm can

agree with a tail segment of wk. Hence we do not need to separately verify E3.

Here is what we need to do:

1. Specifications E1 and E2 give some ground rules for constructing our

words. Specification E1 will hold because we build the words by con-

catenating words in previous stages.

2. We build our words by iteratively randomly substituting Qns+1 classes

into strings of Qns classes. Specification Q6 will hold automatically from

the form of our “Substitution Lemma”. At each stage in the iteration

we will use a “Finishing Lemma” to modify words that satisfy an ap-

proximation to E2 to make E2 hold precisely at that stage.

3. If n = M(s), then we need to define the equivalence relation Qns . After

this is done the equivalence relations Qms are determined by specification

Q5.

4. Specifications A7, A8 and A9 describe how the groups act on the words.

If m ≥ M(s), and Gms acts freely on Wm/Qms ∪ rev(Wm/Qms ), and the

Gms action is subordinate to the Gms−1 action, and we extend the Gms
action to Wn/Qns ∪ rev(Wn/Qns ) by the skew symmetric action, then we

automatically get a free subordinate action.

One of two possible requirements must be addressed at stage n:

(a) If σn has length s and m ≥ M(s), then Gns = Gms ⊕ Z2 where the

additional generator corresponds to σn. This requires extending
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the skew symmetric action of Gms on the n-words to an action of

all of Gns .

(b) In the other case σn has a length s(n) longer than any of the se-

quences occurring in T ∩ {σm : m < n}. In this case Gns(n) = Z2

and the action of Gns(n) must be defined. Note that for s < s(n) we

have Gns = Gms so the Gns action is already defined.

5. Our main task is to satisfy the joining specifications J10 and J11. This

is done by creating sequence of Wm/Qm1 words (and their reverses),

substituting Wm/Qm2 words into the Qm1 classes, Wm/Qm3 words into

the Qm2 classes, and so on until we get a sequence of Wm words. The

iterative process uses the Substitution and Finishing Lemmas at each

stage.

If w ∈ lX is a word in X and x ∈ X, then we will write r(x,w) for the

number of times that x occurs in w and freq(x,w) for r(x,w)/l. Similarly, if

(w,w′) ∈ lX× lX and (x, y) ∈ X×X, we will write r(x, y, w,w′) for the number

of i < l such that x is the ith member of w and y is the ith member of w′; i.e. the

number of occurrences of (x, y) in (w,w′). We let freq(x, y, w,w′) = r(x, y)/l.

8.1. The basic lemmas. We begin with three lemmas. The first lemma

says that if we can build a collection of words that roughly satisfies our speci-

fications, then we can “finish” them to exactly satisfy the specifications. The

second is an application of the law of large numbers that says that we can

iteratively substitute into equivalence relations to satisfy approximations to

specifications J10 and J11. The third lemma gives our mechanism for extend-

ing group actions.

Here is our finishing lemma.

Lemma 41 (Finishing). Suppose that w ∈ lX where l = k|X|, and for each

x ∈ X

|r(x,w)− k| < δl,

then there is a w′ that differs from w in at most 2δ|X|l places such that for all

x ∈ X, r(x,w′) = k.

Proof. We argue as in Proposition 29. We can remove at most 2δ|X|l
many places in w and be left with a word w∗ in which each element of X

occurs exactly the same number of times. Then each element of X can be

filled back into the empty slots the same number of times. The result is the

word w′. �

We note that the proportion of w′ that differs from w is 2δ|X|.
Our next lemma uses the following version of the Law of Large Numbers:
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Law of Large Numbers. Suppose that {Xi : i ∈ N} is a sequence

of independent identically distributed 2-value random variables defined on a

measure space (X ,B, µ) taking value 1 with probability p and 0 with probability

1− p. Let δ > 0. Then

(23) P

(∣∣∣∣ 1n
n−1∑
i=0

Xi − p
∣∣∣∣ ≥ δ

)
< e−nδ

2/4.

We use this to show that randomly substituting element of an equivalence

relation preserves the estimates of specifications J10 and J11.

The substitution will have the following initial data:

• An alphabet X and an equivalence relation Q on X with Q classes each

class having cardinality C.

• Groups of involutions G and H with distinguished generators.

• A homomorphism ρ : H → G that preserves the distinguished genera-

tors. The kernel of ρ is H0 and the range of ρ is G′.

• a free G action on X/Q and a free H action on X such that the H action

is subordinate to the G action via ρ. In particular, for each l the skew

diagonal actions of G on lX/Q and H on lX are defined.

• εb < εa.

The Substitution Lemma says that for a collection of words of large enough

length in the alphabet X/Q, by relaxing εb to εa it is possible to substitute

elements of X into the equivalence classes of Q in such a manner that preserves

the statistics comparing words except as required by the H action.

Definition 42. Let w ∈ l(X/Q) and w′ ∈ lX. We will say that w′ is a

substitution instance of w if and only if

w′ = x0x1 · · ·xl−1 and w = [x0]Q[x1]Q · · · [xl−1]Q.

If W ⊆ lX/Q is a collection of words, then we will say that W is symmetric if

rev(W) =W.

Proposition 43 (Substitution Lemma). There is a number l0 depending

on (εb, εa, Q,C,W,K · |H0|) such that for all numbers l ≥ l0 and all symmetric

W ⊆ l(X/Q) with cardinality W that are closed under the skew diagonal action

of G, if for all k with 1 ≤ k ≤ (1− εb)l, u, v ∈ X/Q and w,w′ ∈ W :

(24)

∣∣∣∣∣r(u, v, shk(w), w′)

(l − k)
− 1

Q2

∣∣∣∣∣ < εb

and each u ∈ X/Q occurs with frequency 1/Q in each w ∈ W ,

then there is a collection of words S ⊆ lX consisting of substitution in-

stances of W such that if W ′ = HS ∪ rev(HS) we have:
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1. every element of W ′ is a substitution instance of an element of W and

each element of W has exactly K · |H0| many substitution instances in

W ′;
2. for each x ∈ X and each w ∈ W ′

(25)

∣∣∣∣∣r(x,w)

l
− 1

|X|

∣∣∣∣∣ < εa,

i.e. the frequency of x in w is within εa of 1/|X|;
3. If w1, w2 ∈ S ∪ rev(S) are different, x, y ∈ X,h ∈ H0 and [w1]Q = [w2]Q

and then

(26)

∣∣∣∣∣r(x, y, w1, hw2)

l
− 1

C2

∣∣∣∣∣ < εa;

4. for all k with 1 ≤ k ≤ (1− εa)l, x, y ∈ X , w1, w2 ∈ W ′

(27)

∣∣∣∣∣r(x, y, shk(w1), w2)

l − k
− 1

|X|2

∣∣∣∣∣ < εa;

and

5. for all x, y ∈ X and all w1, w2 ∈ W ′ with different H orbits,

(28)

∣∣∣∣∣r([x]Q, [y]Q, [w1]Q, [w2]Q)

l
− c
∣∣∣∣∣ < εb

implies that

(29)

∣∣∣∣∣r(x, y, w1, w2)

l
− c

C2

∣∣∣∣∣ < εa.

Proof. Consider “rev” as a function on words, we start by choosing a set

R ⊂ W that intersects each G′ ∪ {rev} orbit exactly once. If {Sr : r ∈ R} is

such that Sr ⊆ X l and Sr is a collection of K substitution instances of r, then⋃
r∈R

HSr ∪ rev
( ⋃
r∈R

HSr
)

is a candidate for W ′.
If S satisfies conclusion 3, then distinct elements of S have distinct H

orbits. Since the H action is subordinate to the G action and H acts freely on

HSr, the number of substitution instances of r in HSr is |H0|K. We will use

the law of large numbers to show that for large l and for most choices of Sr,

W ′ = ⋃
r∈RHSr ∪ rev(

⋃
r∈RHSr) satisfies equations (25), (26), (27) and (29).

For counting purposes we let Xl be the collection of all ordered sets S of

the form
⋃
r∈R Sr. We put the counting measure on Xl. We can identify Xl

with a large product space:

(30) Xl =
∏
r∈R

K−1∏
q=0

S(r, q)
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where, if r = [x0]Q[x1]Q · · · [xl−1]Q then S(r, q) =
∏l−1
j=0[xj ]Q. With this defi-

nition elements of S(r, q) consist of all substitution instances of r.

Thus we can view S(r, q) as the product probability space of the finite

space with C elements, giving equal weight to each element. Substituting

particular x’s into equivalence classes in different coordinates of the product

give independent events of probability 1/C.

Equation (25) is the most straightforward. Each instance is determined

by fixing r ∈ R, q<K, h ∈ H and x ∈ X. For ~w ∈ Xl, let w be its component

in S(r, q) For i < l, Xi be the random variable defined on Xl that takes

value 1 if x occurs in the ith place in hw and 0 otherwise. Then the Xi are

independent and identically distributed. By the law of large numbers, there is

an l(δ, C) and a γ < 1 so that for l ≥ l(δ, C), all but (1− γl) portion of Xl has

|1l
∑l−1
i=0Xi − 1

|X| | < δ. Since the number of requirements is |R|K|H||X| (i.e.

fixed) we can find an l′ depending on εa, Q,C,W,K such that for l ≥ l′ the

collection N0 of elements of Xl that satisfy equation (25) is the vast majority

of members of Xl.
Equation (26) follows similarly. Depending on whether w1 and w2 are in

S or rev(S) we have three different requirements. They are handled identically

so we assume we are dealing with the case that w1 and w2 both belong to

S. Here each requirement is determined by r ∈ R, q1, q2 < K, h ∈ H0 and

(x, y) ∈ X ×X. For each class u ∈ X/Q we let Ou be those j < l such that

u is in the jth place of r. By assumption |Ou| = l/Q. For ~w ∈ Xl, let w1 be

its component in S(r, q1) and w2 its component in S(r, q2). For j ∈ Ou, let Xj

be the random variable which takes value 1 if (x, y) occur in the jth place in

(w1, hw2) and zero otherwise. Then the Xj ’s for j ∈ Ou are independent and

identically distributed with mean 1/C2. Since Ou contains a fixed proportion

of l, the law of large numbers can again be applied to calculate a particular

l(εa, C) for all l ≥ l(εa, C),

∣∣∣∣∣r(x, y, w1, hw2)

l
− 1

C2

∣∣∣∣∣ < εa

for all but a portion of Xl shrinking exponentially in l. Since the number

of requirements is fixed as |R|K2|H0| we can calculate an l′ determined by

the numbers εa, Q,C,K|H0| such that for all l ≥ l′ the collection N1 of those

~w ∈ Xl that satisfy conclusion 3 is the vast majority of Xl.
Each of the requirements of equation (27) is determined by fixing a r1, r2 ∈

R, q1, q2<K, h1, h2 ∈ H, x, y ∈ X and a k between 1 and (1 − εa)l and

considering w1 ∈ S(r1, q1), w2 ∈ S(r2, q2) or their reverses. For notational

simplicity we neglect the reverses — they add three more cases that are handled

in exactly the same manner.
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Let g1 = ρ(h1) and g2 = ρ(h2). Let O be the collection of i such that

([x]Q, [y]Q) occur at the ith place in the overlap of shk(g1r1) and g2r2. By

equation (24), O/(l− k) is within εb of 1/Q2. For i ∈ O, let Xi be the random

variable that takes value 1 if the pair (x, y) occurs in the ith place in the overlap

of skk(h1w1) and h2w2, and 0 otherwise.

Since the Xi are independent and identically distributed and k < (1 −
εb)l, for any particular δ we can apply the law of large numbers to find an

l(δ, k,Q,C, εb) and a γ < 1 such that if l ≥ l(δ, k,Q,C, εb) all but 1 − γl−k
portion of the elements of Xl have | 1

|O|
∑
Xi − 1/C2| < δ. Noting that |X| =

CQ, we see that we can take δ very small and use equation (24) to see that

for a 1− γl−k portion of the elements of Xl satisfy

(31)

∣∣∣∣∣r(x, y, shk(h1w1), h2w2)

l − k
− 1

|X|2

∣∣∣∣∣ < εa.

Keeping x, y, r1, r2, q1, q2, h1, h2 fixed, letting δ′ > 0 and summing over k we see

that for each δ′ we can find an l(δ′, Q,C, εb) such that for all l ≥ l(δ,Q,C, εb),
a portion of Xl of proportion at least 1 − δ′, we have that for all k with

1 < k < (1−εb)l equation (31) holds. By taking δ′ small enough we can arrange

that for all but εa portion of Xl for all x, y, r1, r2, q1, q2, h1, h2 equation (31)

holds. Let N2 be this portion of Xl.
To see that there is a choice of w ∈ Xl such that

⋃
rHSr ∪ rev(

⋃
rHSr)

satisfies conclusion 5 as well, we use a similar law of large numbers argument.

In this case we are given u, v ∈ X, h1, h2 ∈ H and w1 ∈ S(r1, k1), w2 ∈ S(r2, k2)

(or their reverses — which we again neglect) in different H orbits for which

r(u, v, [w1]Q, [w2]) is very close to cl, and we count how many times the pair

(x, y) is substituted into occurrences of (u, v) in (ρ(h1)[w1], ρ(h2)[w2]) to get

(h1w1, h2w2).

For particular r1, r2, k1, k2, h1, h2, x, y these substitutions again give us a

collection of independent random variables, and the law of large numbers gives

us an l(δ, εb, C) so that for all l ≥ l(δ, εb, C)

(32)

∣∣∣∣∣r(x, y, w1, w2)

l
− c

C2

∣∣∣∣∣ < δ

for the vast majority of w ∈ Xl.
By choosing δ small enough we get an l(εb, εa, Q,C) such that for l ≥

l(εb, εa, Q,C) there is a set N3 containing the vast majority of Xl for which

conclusion 5 holds.

Since N0, N1, N2 and N3 have the vast majority of Xl for large l the inter-

section is nonempty. Any element w of the intersection yields a collection W ′
satisfying the conclusions of the lemma. �
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In the next lemma we take l0 to be as in Proposition 43 for the constants

(εb, ε
2
a/10|X|, Q,C,W,K · |H0|).

Proposition 44. Suppose εb < ε2a/5|X| and l ≥ l0 is a multiple of |X|.
Then there is a collection S satisfying the conclusions of Proposition 43 such

that every x ∈ X occurs with frequency 1/|X| in each w ∈ HS ∪ rev(HS).

Proof. Since the action of H on X is free it suffices to find an S such that

every x ∈ X occurs with frequency 1/|X| in S and the conclusions hold for

HS∪rev(HS). Apply Proposition 43 for some δ = ε2a/10|X| to get a collection

of words S0 satisfying the conclusions of the lemma for ε′a = δ.

For each w ∈ S0 and each u ∈ X/Q we can apply the finishing lemma

to change w on the places where u occurs in [w]Q so that each x ∈ u occurs

exactly C times. The result is a word w∗ in which each x occurs exactly 1/|X|
times, w∗ is still a substitution instance of [w]Q and for which w and w∗ agree

on a set of places of proportion at least 1− 2δ|X|.
We check that the conclusions hold for S = {w∗ : w ∈ S0} and εa. Since

H acts freely and subordinately to G, conclusion 1 follows as before.

For h ∈ H and w ∈ S0 the difference between hw and hw∗ is a fraction

of at most 2δ|X|. It follows easily that conclusions 2, 3 and 5 hold with εa
replacing δ.

We must verify equation (27). Suppose that w∗1, w
∗
2 ∈ HS ∪ rev(HS),

1 ≤ k ≤ (1 − εa)l, and x, y ∈ X. Then there are words s1, s2 ∈ S0 ∪ rev(S0)

and h1, h2 ∈ H such that w∗1 = h1s
∗
1, w

∗
2 = h2s

∗
2. Let wi = hisi. The wi ∈

HS0 ∪ rev(HS0) and wi and w∗i differ on at most 2δ|X|l places. Hence

|r(x, y, shk(w1), w2)− r(x, y, shk(w∗1), w∗2)| < 4δ|X|l.

As a consequence∣∣∣∣∣r(x, y, shk(w1), w2)

k − l
− r(x, y, shk(w∗1), w∗2)

k − l

∣∣∣∣∣ < 4δ|X|
εa

< (4/5)εa.

Equation (27) follows by the triangle inequality and the fact that (4/5)εa +

δ < εa. �

An argument similar, but simpler than that of Proposition 43 gives the

minimal orbit structure coming from the system of groups 〈Gms : s ≤ s(m)〉.
For s < s(m), let Hs+1 be the kernel of ρs+1,s � Gms+1. Define κ1 = |Gm1 | and

κi+1 = κi|Hi+1|.

Lemma 45. Let M be such that 2M ≥ Ks. Then for all large multiples of

Wm l, there is a collection of words W ⊆ lWm such that :

1. |W| = 2M ,

2. |W/Qms | = κs for all s ≤ s(m),
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3. Gms acts freely on each W/Qms ,

4. each u ∈ Wm occurs in each w ∈ W the same number of times.

We will use the following extension lemma to build our group actions:

Lemma 46. Let X be a set and R ⊆ Q equivalence relations on X . Sup-

pose that

1. ρ : H → G× Z2 is a homomorphism.

2. G× Z2 acts on X/Q.

3. H acts on X/R by an action subordinate to the G× Z2 action.

4. If H0 = {h ∈ H : ρ(h) = (0, i), i ∈ {0, 1}}, then every orbit of the Z2

factor of G× Z2 contains an even number of H0 orbits.

Then there is a free action of H×Z2 on X/R subordinate to the G×Z2 action

via the map ρ′(h, i) = ρ(h) + (0, i).17

8.2. The initial data. We recall from Definition 2 the notation s(m) for

the maximum length of a sequence in {σ′m : m′ ≤ m} ∩ T . In our inductive

construction we are assuming that we are given Wm, G
m
s ,Qms for s ≤ s(m),

together with the appropriate group actions. We are also given some numerical

parameters Wm, Q
m
s , C

m
s , k(m), εm and lm.

The numbers Wn, Q
n
s , C

n
s are determined by k(n). We start by choosing

k(n) large enough that 2m2−k(n) < εm. Next we choose εn < 2−n−1 small

enough that 2εnW
2
n < εm. Finally we will choose a prime number pn > 2k(n)

larger than the maximum of P and so large that if we set ln = p2
nWmlm then

εn(ln/lm)W−2
m > n. Exactly how large we must choose pn to be is determined

in the next section by the substitution lemma. Any choices made this way

satisfy our “numerical requirements”.

8.3. Rolling the dice. We break our word construction into two cases, ac-

cording to whether s(n) = s(m) or s(n) = s(m) + 1. In both cases we apply

the substitution and finishing lemmas s(n)+1 -times inductively to build col-

lections of words, with the ith collection a subset of (Wm/Qmi ).

Choose δ0, δ1 · · · δs(n) so that δi < δ2
i+1/10Wm and δs(n) < ε2n/100Wm and

let δs(n)+1 = εn/100. For i ≤ s(n), let C = 2k(n) and Qi = (2k(n))i, Xi =

Wm/Qmi , Xs(m)+1 = Wm, Gi = Gmi and Gs(m)+1 be the trivial group acting

trivially onWm. ChooseKi so thatKi|ker(ρi,i−1)| = 2k(n) andKs(n)+1 = 2k(n).

The substitution lemma gives us numbers

li = l(δi, δ
2
i+1/10|Xi|, Qi, C,Wm, 2

k(n))

for each i.

17This lemma is easy to prove because the groups in question are Abelian. Analogous

extension results for arbitrary groups are shown in the forthcoming paper [4].
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Choose a prime number pn large enough to satisfy the numerical require-

ments and larger than any element of P so that

100/pn < ε2n and pnWm > l(δi, δi+1, Qi, C,Wm, 2
k(n))

for all i. Let ln = p2
nWmlm.

Case 1: s(n) = s(m). We apply Proposition 44 and substitute s(m) + 1-

times. The result is a collection of wordsWn that satisfy E1–E3, specifications

Q4–A9 hold relative to the groups Gms and the equivalence relations Qns for

s ≤ s(m). The specifications J10 and J11 hold with εn replaced by εn/100.

To finish we need only define the group actions Gns for s ≤ s(n). The groups

Gns = Gms for all s except s0 = lh(σn). Here Gns0 = Gms0 ⊕ Z2. By lemma 46,

we can extend the Gms0 action to a Gns0 action subordinate to the Gns0−1-action.

This finishes the construction in this case.

Case 2: s(n) = s(m)+1. In this case σn is the only sequence in T ∩{σm′ :

m′ ≤ n} of length s(n). The group Gns(n) = Z2. In addition to building Wn we

need to define Qs(n) and the action of Z2 on Wn/Qs(n).

We will build two collections of collections of words W† and W††. We

will define Wn = {w_0 w1 : w0 ∈ W†, w1 ∈ W††} and take Qns(n) to be the

equivalence relation that partitionsWn into pieces of the form Pw0 = {w_0 w1 :

w1 ∈ W††}.
Let W†† ⊆ pnWmWm be a collection of words of length pnWmlm of cardi-

nality 2k(n) built by Lemma 45, with each word in Wm occurring pn times.

Let W† be the result of applying Proposition 44 s(n)-times with Ki taken

so that Kiκi|H0| = 2k(n) and l = (p2
n − pn)Wmlm. The result is that W†

is a collection of words of length (p2
n − pn)Wmlm satisfying the specifications

E1–J11 with respect to the groups Gns for s < s(n).

We need to check that the specifications continue to hold for Wn. The

specifications E1–A9 are easy to verify. We need to check that the tiny modi-

fications made at the end of words in W† do not affect the specifications J10

and J11.

We verify J10. Let u and v be elements of Wn ∪ rev(Wn) and 1 ≤ k <

(1 − εn)(ln/lm). Let u′, v′ ∈ Wm ∪ rev(Wm) have the correct parities. Write

u = u_0 u1 and v = v_0 v1. Let r†(u′, v′) be the number of occurrences of (u′, v′)

in the overlap of shklm(u0) and v1. Then∣∣∣r†(u′, v′)− r(u, v)
∣∣∣ ≤ pnWm.

So,

(33)

∣∣∣∣∣ r(u′, v′)k(ln/lm)
− r†(u′, v′)

k(ln/lm)

∣∣∣∣∣ ≤ 1

εnpn
< εn/100.
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Moreover,

(34)

∣∣∣∣∣r†(u′, v′)εnp2
nWm

− r†(u′, v′)

εn(p2
n − pn)Wm

∣∣∣∣∣ < εn/50

and finally by the substitution construction

(35)

∣∣∣∣∣ r†(u′, v′)

εn(p2
n − pn)Wm

− 1

W 2
m

∣∣∣∣∣ < εn/100.

Putting equations (33), (34) and (35) together the triangle inequality gives us:∣∣∣∣∣ r(u′, v′)k(ln/lm)
− 1

W 2
m

∣∣∣∣∣ < εn

as needed.

The verification of J11 is similar and easier.

What remains is to define the Gns(n) action. But it follows from Lemma 46

that there is an action of Z2 on the {Cw : w ∈ Vn} subordinate to the action

of Gms(m). We take the Gns(n) action to be this action.

This completes the construction of the words and hence the proof of The-

orem 7.

9. Marginalia

In this section we tie up some loose ends.

9.1. Positive entropy and continuous conjugacies. We begin with two re-

marks dealing with obvious questions: what can you say about positive entropy

transformations, and what happens if you ask that the conjugacies be contin-

uous.

9.1.1. Positive entropy. The transformations we build are easily seen to

be zero entropy, as the number of words of length n grows slowly. However,

if B is a Bernoulli shift, T ∈ Trees and we take the product transformation

C = F(T )×B, then F (T ) is the Pinsker algebra of C. It follows that C ∼= C−1

if and only if F (T ) ∼= F (T )−1. Thus for any fixed entropy h, the collection of

pairs of ergodic transformations (S, T ) that have entropy h and are isomorphic

is a complete analytic set.

9.1.2. Continuous conjugacies. As remarked after Lemma 26, we have

proved something stronger. Either:

1. F (T ) is not congruent to F (T )−1

or

2. There is a Gδ set of measure one L = LT on which F (T ) is continuous

and a continuous isomorphism between F (T ) � L and F (T )−1 � L−1.

The set LT had an explicit description, making it easily computable from T .
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This strengthens our result to the setting of measure preserving homeo-

morphism of Gδ subsets of K, with the equivalence relation arising by restricting

to measure preserving conjugacies that are homeomorphisms.

9.2. Bijective Borel reduction. It follows from theorems of Kechris ([13])

and Louveau-St. Raymond ([15, Th. 4]) that:

Fact. If A ⊆ X is a complete analytic set and B ⊆ Y is an arbitrary

analytic set there is a one-to-one, continuous function f : Y → X reducing B

to A.

Thus if we have two complete analytic sets A ⊆ X and B ⊆ Y we can find

one-to-one, continuous f : X → Y and g : Y → X reducing A to B and B to

A respectively. Doing the usual Cantor-Bernstein argument (see, for example,

[22]) we define

Y0 = Y \f(X) and X ′ = X\
∞⋃
n=0

(gf)ngY0.

If we define h : X → Y by

h(x) =

®
f(x) if x ∈ X ′
g−1(x) otherwise,

then h is a (low level) Borel bijection between X and Y sending A to B.

The main theorem of this paper is that the collection of pairs (µ, ν) of

ergodic measure preserving transformations such that

(ΣZ,B, µ, sh) ∼= (ΣZ, C, ν, sh)

is a complete analytic subset of E × E . As a consequence we get:

Proposition 47. There is a Borel bijection F from Trees to E × E
such that T is ill-founded if and only if F (T ) = (µ, ν) and (ΣZ,B, µ, sh) ∼=
(ΣZ, C, ν, sh).

In the concrete context of this paper, it is possible to explicitly exhibit

the continuous injections between Trees and E ×E , and this gives some insight

into the reason the two sets are equivalent. We now describe these injections.

For the rest of this section we will abuse notation to some extent by

identifying a shift invariant measure µ on ΣZ with the corresponding measure

preserving system (ΣZ,B, µ, sh). We will also assume that Σ has an ordering

in type N so that for each natural number N , we can define Σ � N to be the

first N elements of Σ.

In the proof of Theorem 7 we built a continuous F0 : Trees→ E such that:

1. T is ill-founded if and only if F0(T ) ∼= F0(T )−1

and

2. if T 6= T ′ then F0(T ) 6∼= F0(T ′).
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The second item is clear from the construction since the eigenvalues of

the system corresponding to T are different from the eigenvalues of the system

corresponding to T ′. (This is noted explicitly in Corollary 34.)

The map I : E → E × E defined by µ 7→ (µ, µ−1) is continuous; hence

F =def I ◦ F0 : Trees → E × E is a continuous, one-to-one reduction of the

ill-founded trees to {(µ, ν) : µ ∼= ν}.
To use the Cantor-Bernstein theorem to find a bijection, we must now

define a continuous injection G from the set of pairs (µ, ν) of ergodic measures

into Trees so that µ ∼= ν if and only if G(µ, ν) is ill-founded.

The idea behind building G is that any conjugacy between µ and ν can

be well approximated by a finite “stationary code”. The collection of finite

stationary codes naturally form a tree, and a branch through this tree gives

a coherent collection of finite approximations that converge to a conjugacy

between µ and ν.

To uniformize notation and terminology, we will give a brief overview of the

theory of codes. We begin by defining a code to be a function φ : Σ[−N,N ] → Σ

for some N ∈ N. Such a code induces a uniformly continuous function φ∗ :

ΣZ → ΣZ by setting

φ∗(x)(k) = φ(x � [k −N, k +N ]).

Suppose µ is a shift invariant measure on ΣZ and that ψ : ΣZ → ΣZ is

a measurable function that commutes with the shift map. By approximating

with continuous function we see that for each positive ε there is an N and a

code φ : Σ[−N,N ] → Σ such that {x : φ(x � [−N,N ]) 6= ψ(x)(0)} has measure

less than ε.

To reduce our collection of approximations to a countable set we will

want to use partial codes of length N . We begin by choosing Nµ large enough

that if R is the collection of basic open intervals determined by functions

s : [−N,N ]→ Σ � Nµ, then

µ
(⋃
{〈s〉 : s ∈ R}

)
> 1− 2−N .

A partial code is a function φ : (Σ � Nµ)[−N.N ] → Σ.

We will say a partial code φ0 : (Σ�Nµ)[−N,N ] → Σ has a property if

and only if every code φ : Σ[−N,N ] → Σ extending φ0 has the property. For

example, given an partial code φ0 : (Σ � Nµ)[−N,N ] → Σ, let us s say that φ0

(ε, n)-approximates the pair (µ, ν) if and only if for all basic open intervals 〈s〉
of length n, and all codes φ : Σ[−N,N ] → Σ extending φ0 we have φ∗(〈s〉) has

ν-measure within ε of µ(〈s〉).
We observe that to determine whether φ0 (ε, n)-approximates (µ, ν) we

need only know the µ and ν measures of a finite number of basic open in-

tervals in ΣZ. Moreover, if ψ is a measure preserving transformation and
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φ : Σ[−N,N ] → Σ is a code such that {x : φ(x � [−N,N ]) 6= ψ(x)(0)} has mea-

sure less than ε and N is large enough relative to ε, then any code φ′ extending

the restriction φ0 of φ to (Σ�Nµ)[−N,N ] has the same property.

There is a natural partition metric on codes. Given codes φ, ψ we can

take

d(φ, ψ) =
∑
v∈Σ

µ((φ)−1(v)∆(ψ)−1(v)).

Following our convention we will say that a sequence of partial codes

φi0 : (Σ � (Ni)µ)[−Ni,Ni] → Σ is Cauchy if and only if for each sequence of

codes φi with φi extending φi0 is Cauchy in this metric.

A sequence of partial codes 〈φi0〉 with Ni → ∞ that are Cauchy in this

metric such that φi0 (1/i, i)-approximates (µ, ν) determines a unique shift in-

variant, measure preserving map φ : ΣZ → ΣZ such that for all s : n→ Σ

µ(φ−1(〈s〉)∆(φi)
−1(〈s〉))→i 0.

This map φ must be a factor map from (ΣZ,B, µ, sh) to (ΣZ, C, ν, sh). To

approximate a conjugacy we need also approximate φ−1.

Suppose that φ0 and ψ0 are partial codes. We will say that φ0 and ψ0 are

(ε, n)-approximate inverses if and only if for all φ extending φ0 and ψ extending

ψ0 and all basic open intervals 〈s〉 of length less than or equal to n,

µ((ψ∗ ◦ φ∗)(〈s〉)∆〈s〉) < ε.

We again note that one is able to determine whether φ0 and ψ0 are (ε, n)-

approximate inverses from knowledge of a finite part of µ.

We now summarize our observations:

Lemma 48. Let µ, ν be ergodic measures on ΣZ. Then (ΣZ,B, µ, sh) ∼=
(ΣZ, C, ν, sh) if and only if there is a sequence 〈(φi, ψi) : i ∈ N〉 of partial codes

of length Ni →∞ such that

1. d(φi, φi+1) < 1/i and d(ψi, ψi+1) < 1/i,

2. φi (1/i, i)-approximates (µ, ν) and ψi (1/i, i)-approximates (ν, µ), and

3. (φi, ψi) are (1/i, i) approximate inverses.

We can now describe a tree S(µ, ν) we associate with (µ, ν). A node in our

tree will consist of a finite sequence (t0, . . . , tn) of 4-tuples ti = (µ∗, ν∗, φi, ψi)

where:

1. µ∗ (respectively ν∗) is a list of rational numbers qs indexed by functions

s : m → Σ�i for m ≤ i such that qs is within 1/i of the µ-measures

(respectively ν-measures) of basic open interval 〈s〉,
2. φi (1/i, i)-approximates (µ, ν) and ψi (1/i, i)-approximates (ν, µ),

3. (φi, ψi) are (1/i, i) approximate inverses, and

4. both d(φi, φi+1) and d(ψi, ψi+1) are less than 1/i.
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By including the µ∗ and ν∗ we explicitly arrange that the map sending

(µ, ν) to S(µ, ν) is one-to-one. Moreover to determine whether (t0, . . . , tn)

belongs to S(µ, ν) one only needs to know the µ and ν values of a finite number

of basic open sets with sufficient accuracy. In particular, the collection of pairs

(µ, ν) of ergodic measures such that (t0, . . . , tn) ∈ S(µ, ν) is a weak*-open set.

Now take an arbitrary bijection b between the natural numbers and the

set of 4-tuples (µ∗, ν∗, φ, ψ) that satisfy items 1–3. Define T0(µ, ν) to be the

collection of (x0, . . . , xn) ∈ N<N with the property that (b(x0), . . . , b(xn)) ∈
S(µ, ν). By the remarks in the previous paragraph, the map (µ, ν) 7→ T0(µ, ν)

is a continuous, one-to-one map from the space of ergodic measures on ΣZ with

the weak* topology to the collection of trees with the induced topology from

{0, 1}N<N
with the property that µ is isomorphic to ν if and only if T0(µ, ν)

has an infinite branch.

It could happen that T0(µ, ν) is not in Trees, because it does not have

nodes of arbitrarily long length. To remedy this we fix a tree

T ∗ ⊆ {odd numbers}<N

that belongs to Trees and has no infinite branch. Given an arbitrary tree

T0 ⊆ N<N, define

T1 = {(2x0, 2x1, . . . , 2xn) : (x0, x1, . . . , xn) ∈ T0}

and

T2 = T1 ∪ T ∗.
The map T0 7→ T2 is a continuous injection from the collection of trees to Trees.
It follows that the map G(µ, ν) = T2(µ, ν) is the desired injection.

Summarizing: Theorem 7 gives an injection from Trees to pairs of ergodic

measures (µ, ν) that reduces the ill-founded trees to the collection of conjugate

pairs. We have just described a method for building a continuous injection

from the pairs of ergodic measures into Trees that reduces conjugate pairs to

ill-founded trees. An application of the Cantor-Bernstein theorem finishes the

alternate proof of Proposition 47.

9.3. Flows. Given a standard measure space (X,B, µ) there is a natural

topology on the space of measure preserving R-flows. One can ask whether the

isomorphism relation on ergodic flows is Borel.

Remark 49. There is a continuous map S from the ergodic transformations

on [0, 1] to the ergodic measure preserving R-flows on [0, 1] × [0, 1] such that

for all ergodic transformations S, T we have

S ∼= T if and only if S(S) ∼=R S(T ),

where ∼=R is isomorphism of R-flows.
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This remark immediately implies that the isomorphism relation of measure

preserving R-flows is complete analytic, and hence not Borel.

The map S is the standard “suspension” map. We briefly describe it.

Given an invertible measure preserving transformation T : [0, 1] → [0, 1] we

consider the equivalence relation on [0, 1] × R generated by setting (x, s) ∼
(Tn(x), s− n) for each n. We can take [0, 1]× [0, 1) as a fundamental domain

for ([0, 1] × R)/∼. Then the transformation S(T )(t, [(x, s)]∼) = [(x, s + t)]∼
defines a measure preserving flow on [0, 1] × [0, 1) with the product Lebesgue

measure.

It is a standard fact that the map S is continuous and that it takes er-

godic transformations to ergodic flows. Suppose now that S(S) ∼=R S(T ).

Define the “time one” measure preserving transformations of [0, 1] × [0, 1) by

setting S∗([(x, s)]∼) = [(x, s + 1)]∼. Equivalently, S∗([(x, s)]∼) = [(Sx), s)]∼.

We define T ∗ similarly. Then S∗ and T ∗ are not ergodic, but each ergodic

component of S∗ is isomorphic to S and each ergodic component of T ∗ is

isomorphic to T . Consequently S ∼= T .

10. Rank one transformations

In this section we use a theorem of King to show that the collection of

pairs (S, T ) of rank one transformations with S conjugate to T is a Borel set.

This gives a dense Gδ class of transformations on which the conjugacy relation

is Borel. The proof is quite easy but unfortunately does not give a useful

structure theorem for rank one transformations.

To prove this theorem, it is convenient to use the group of measure pre-

serving transformations of the unit interval, MPT, as our model.

The main tool is the following theorem of King [14]:

Theorem: Suppose that T is an ergodic rank one transformation. Then the

centralizer of T is the closure of {Tn : n ∈ Z} in MPT.

The Effros-Borel space of a Polish space is the collection F(X) of closed

subsets of X with the σ-algebra generated by basic sets of the form:

{F ∈ F(X) : F ∩ U 6= ∅},

where U ⊂ X is open. It is a standard Borel space in the sense that there is

a Polish topology (the Fell topology) on F(X) for which it is the collection of

Borel sets.

We will use the following facts whose proofs can be found in [2] and [12]

respectively:

1. (Dixmier) If G is a Polish group, then there is a Borel T ⊂ G × F(G)

such that

(a) {x : T(x,H)} 6= ∅ if and only if H is a closed subgroup of G, and
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(b) if TH = {x : T(x,H)} and H is a closed subgroup of G, then TH is

a transversal for G/H, the space of left cosets of H in G.

2. Suppose that X and Y are Polish spaces and B ⊂ X × Y is a Borel set

such that for all x ∈ X there is at most one y ∈ Y with (x, y) ∈ B.

Then {x : (∃y)(x, y) ∈ B} is Borel.

We now follow [2, Lemma 7.1.2]. Let R be the collection of ergodic rank one

transformations.

Lemma 50. Define C : R→ F(MPT) by T 7→ C(T ). Then C is a Borel

map.

Proof. It suffices to see that the C-inverse of a basic set is Borel. Suppose

that O = {F ∈ F(MPT) : F ∩ U 6= ∅} for some open set U in MPT. Then

C−1(O) = {T : C(T ) ∩ U 6= ∅}. By King’s theorem,

C(T ) ∩ U 6= ∅ if and only if (∃n)Tn ∈ U.

The collection of T such that for some n, Tn ∈ U is an open set in MPT;

hence C−1(O) is open. �

Theorem 51. The collection of pairs (S, T ) of rank one ergodic transfor-

mations that are conjugate is a Borel subset of MPT×MPT.

Proof. Let TC(T ) be the Borel transversal MPT/C(T ). Define

B = {(S, T, g) : gTg−1 = S and g ∈ TC(T )} ⊆ (R×R)×MPT.

Then for each (S, T ) ∈ R×R there is at most one g with (S, T, g) ∈ B. Hence

{(S, T ) : for some g ∈MPT, (S, T, g) ∈ B} is Borel. �
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