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Heisenberg uniqueness pairs and
the Klein-Gordon equation

By Haakan Hedenmalm and Alfonso Montes-Rodŕıguez

Abstract

A Heisenberg uniqueness pair (HUP) is a pair (Γ,Λ), where Γ is a curve

in the plane and Λ is a set in the plane, with the following property: any

finite Borel measure µ in the plane supported on Γ, which is absolutely

continuous with respect to arc length, and whose Fourier transform µ̂ van-

ishes on Λ, must automatically be the zero measure. We prove that when

Γ is the hyperbola x1x2 = 1 and Λ is the lattice-cross

Λ = (αZ× {0}) ∪ ({0} × βZ),

where α, β are positive reals, then (Γ,Λ) is an HUP if and only if αβ ≤ 1;

in this situation, the Fourier transform µ̂ of the measure solves the one-

dimensional Klein-Gordon equation. Phrased differently, we show that

eπiαnt, eπiβn/t, n ∈ Z,

span a weak-star dense subspace in L∞(R) if and only if αβ ≤ 1. In order

to prove this theorem, some elements of linear fractional theory and ergodic

theory are needed, such as the Birkhoff Ergodic Theorem. An idea parallel

to the one exploited by Makarov and Poltoratski (in the context of model

subspaces) is also needed. As a consequence, we solve a problem on the

density of algebras generated by two inner functions raised by Matheson

and Stessin.

1. Introduction

Heisenberg uniqueness pairs. Let µ be a finite complex-valued Borel mea-

sure in the plane R2. Associate to it the Fourier transform

µ̂(ξ) =

∫
R2

eπi〈x,ξ〉dµ(x),

where x = (x1, x2) and ξ = (ξ1, ξ2), with inner product

〈x, ξ〉 = x1ξ1 + x2ξ2.
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The Heisenberg uncertainty principle states that µ and µ̂ cannot both be too

concentrated to a point (see [6] for the original paper of Heisenberg, and [5]

for a more general treatment); in particular, they cannot both have compact

support (unless µ = 0). Here, we shall study a variation on that theme. Let Γ

be a smooth curve in R2, or, more generally, a finite disjoint union of smooth

curves. Suppose that suppµ ⊂ Γ and that µ is absolutely continuous with

respect to arc length measure on Γ. Which sets Λ ⊂ R2 have the property that

µ̂|Λ = 0 =⇒ µ = 0?

If this is the case, we say that (Γ,Λ) is a Heisenberg uniqueness pair. A dual

formulation is that (Γ,Λ) is a Heisenberg uniqueness pair if and only if the

functions
eξ(x) = eπi〈x,ξ〉, ξ ∈ Λ

span a weak-star dense subspace in L∞(Γ). This concept of Heisenberg unique-

ness pairs has many features in common with the notion of (weakly) mutually

annihilating pairs of Borel measurable sets having positive area measure, which

appears, for instance, in the book by Havin and Jöricke [5].

The properties of the Fourier transform with respect to translation and

multiplication by complex exponentials show that for all points x∗, ξ∗ ∈ R2,

we have

(inv-1) (Γ + {x∗},Λ + {ξ∗}) is an HUP ⇐⇒ (Γ,Λ) is an HUP,

where HUP is short for “Heisenberg uniqueness pair”. Likewise, it is also

straightforward to see that if T : R2 → R2 is an invertible linear transformation

with adjoint T ∗, then

(inv-2) (T−1(Γ), T ∗(Λ)) is an HUP ⇐⇒ (Γ,Λ) is an HUP.

Algebraic curves and partial differential equations. Algebraic curves Γ are

of particular interest because of their connection to partial differential equa-

tions. That connection follows from the observation that for polynomials p of

two variables,

p

Ç
∂1

πi
,
∂2

πi

å
µ̂(ξ) =

∫
R2

eπi〈x,ξ〉 p(x1, x2) dµ(x),

so that if p is real-valued and Γ is the locus of the equation

p(x1, x2) = 0,

then
p(x1, x2) dµ(x1, x2) = 0

identically. Therefore µ̂ solves the partial differential equation (PDE)

(1.1) p

Ç
∂1

πi
,
∂2

πi

å
µ̂(ξ) = 0

in the plane. In fact, equation (1.1) encodes the requirement that suppµ ⊂ Γ.
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Conic sections. We shall consider the case when Γ is a conic section, that

is, the locus of a quadratic equation

ax2
1 + bx2

2 + cx1x2 + dx1 + ex2 + f = 0,

where a, b, c, d, e, f are real constants. As we only consider the case when Γ

is a curve, this leaves us with the following cases: a straight line, two parallel

straight lines, a cross, an ellipse, a parabola, or a hyperbola.

The line. Let us look at the line first, as a model example. By the in-

variance properties (inv-1) and (inv-2), we may assume that Γ = R× {0}, the

x1-axis. In this case, µ̂(ξ) depends only on ξ1, and it is easy to see that (Γ,Λ)

is a Heisenberg uniqueness pair if and only if π1(Λ), the orthogonal projection

of Λ to the ξ1-axis, is dense.

Two parallel lines. If Γ is the union of two parallel lines, we may without

loss of generality assume that

Γ = R× {0, 1}.

In this case, we see from the example of the line that in order for (Γ,Λ) to

be a Heisenberg uniqueness pair, it is necessary that π1(Λ) be dense. But

something more is needed. An absolutely continuous measure µ (with respect

to arc length) on Γ may be written in the form

dµ(x) = f(x1)dx1dδ0(x2) + g(x1)dx1dδ1(x2),

where f, g ∈ L1(R) (δy denotes the unit point mass at the point y), so that

µ̂(ξ) = f̂(ξ1) + eπiξ2 ĝ(ξ1).

Next, we split

π1(Λ) = πa1(Λ) ∪ πb1(Λ),

where the two sets are disjoint: t ∈ πa1(Λ) if there are two lifted points ξ =

(ξ1, ξ2) and η = (η1, η2) in Λ, with ξ1 = η1 = t and ξ2 − η2 /∈ 2Z, whereas

t ∈ πb1(Λ) if the latter does not happen. We quickly find that

(1.2) f̂(t) = ĝ(t) = 0, t ∈ πa1(Λ).

On the other hand, for t ∈ πb1(Λ), the expression eπiξ2 is a well-defined function

of ξ1 = t, where ξ2 stands for any of the points with (ξ1, ξ2) ∈ Λ; we write

χ(t) for this unimodular function. If E is a closed subset of R and t0 ∈ E, we

say that a function ϕ : E → C is locally the Fourier transform of an L1(R)

function around t0 provided that there exists a small open interval I around

t0 and a function ψ which is the Fourier transform of an L1(R) function, such

that ψ = ϕ on E ∩ I. Let πc1(Λ) consist of those points t0 ∈ πb1(Λ) where

χ : πb1(Λ)→ C is locally the Fourier transform of an L1(R) function around t0.
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Theorem 1.1. (Γ,Λ) is a Heisenberg uniqueness pair if and only if πa1(Λ)

∪ (πb1(Λ) \ πc1(Λ)) is dense in R.

Proof. We observe that

(1.3) f̂(t) = −χ(t)ĝ(t), t ∈ πb1(Λ).

If t ∈ πb1(Λ) \ πc1(Λ), this is only possible if ĝ(t) = 0, so that

(1.4) f̂(t) = ĝ(t) = 0, t ∈ πb1(Λ) \ πc1(Λ).

A combination of (1.2) and (1.4) shows that f = g = 0 (so that µ = 0) if the

set πa1(Λ) ∪ (πb1(Λ) \ πc1(Λ)) is dense in R.

As for the other direction, suppose that π1(Λ) is dense in R, while πa1(Λ)∪
(πb1(Λ) \ πc1(Λ)) fails to be dense in R. We then pick a point t0 ∈ R such that

an open interval J around it has empty intersection with

πa1(Λ) ∪ (πb1(Λ) \ πc1(Λ)).

But then πc1(Λ) ∩ J is dense in J , and χ is locally the Fourier transform of an

L1(R) function around t0. We thus find a function χ1 which coincides with χ

on some open interval I ⊂ J with t0 ∈ I, while χ1 is the Fourier transform

of an L1(R) function. Next, we pick g ∈ L1(R) with ĝ(t0) 6= 0, such that

supp ĝ b I, and define f ∈ L1(R) via f̂ = −χ1ĝ, so that (1.3) holds. This gives

us a nontrivial measure µ with the required properties, and so (Γ,Λ) cannot

be a Heisenberg uniqueness pair. �

The cross. If Γ is a cross, the PDE (1.1) expresses the wave equation. By

the invariance properties (inv-1) and (inv-2), we may restrict our attention to

the case when

Γ = (R× {0}) ∪ ({0} × R)

is the union of the two axes. Here, it appears that the characterization of

uniqueness pairs (Γ,Λ) may get quite complicated. Obviously, it is a necessary

condition that π1(Λ) and π2(Λ) be dense (π2(Λ) is the orthogonal projection to

the ξ2-axis). This is far from sufficient, because if Λ is contained in a smooth

graph, we may run into trouble. For instance, if Λ is contained in the diagonal

ξ1 = ξ2, then we may choose

dµ(x1, x2) = f(x1) dx1dδ0(x2)− f(x2) dx2dδ0(x1),

where f ∈ L1(R), which is supported on Γ and nontrivial generically, while

µ̂(ξ1, ξ2) = 0 for ξ1 = ξ2.

The ellipse. If Γ is an ellipse, the invariances (inv-1) and (inv-2) allow us

to focus on the circle

Γ = {x = (x1, x2) ∈ R2 : x2
1 + x2

2 = 1}.
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The corresponding PDE (1.1) is the Helmholtz equation (the eigenvalue equa-

tion for the Laplacian). Here, the fact that Γ is compact entails that µ̂(ξ)

extends to an entire function of exponential type in C2. It would seem that

reasonable criteria on Λ may be found that are at least close to being necessary

and sufficient for (Γ,Λ) to be a Heisenberg uniqueness pair.

The parabola. If Γ is a parabola, the invariances (inv-1) and (inv-2) allow

us to focus on the parabola

Γ = {x = (x1, x2) ∈ R2 : x2 = x2
1}.

The corresponding PDE (1.1) is the one-dimensional Schrödinger equation

without potential. Here, the problem of characterizing the Heisenberg unique-

ness pairs (Γ,Λ) appears quite challenging.

The hyperbola. We shall focus most of our attention to the case when Γ

is a hyperbola. The corresponding PDE (1.1) is the one-dimensional Klein-

Gordon equation. We will see that the situation with Heisenberg uniqueness

pairs is dramatically different from that of the cross. By the invariances (inv-1)

and (inv-2), we may assume that the hyperbola is given by

x1x2 = 1.

Theorem 1.2. Suppose Γ is the hyperbola x1x2 = 1 and that Λ is the

lattice-cross

Λ = (αZ× {0}) ∪ ({0} × βZ),

where α, β are positive reals. Then (Γ,Λ) is a Heisenberg uniqueness pair if

and only if αβ ≤ 1.

The remainder of this work is devoted to proving this assertion. But

before we turn to the proof, let us consider a generalization which is more or

less immediate.

Corollary 1.3. Suppose Γε is the hyperbola x1x2 = ε, where ε 6= 0 is

real, and that Λ is the lattice-cross

Λ = (αZ× {0}) ∪ ({0} × βZ),

where α, β are positive reals. Then (Γε,Λ) is a Heisenberg uniqueness pair if

and only if αβ ≤ 1/|ε|.

The eccentricity of the hyperbola Γε is
√

2 independently of ε. The con-

dition of the corollary (αβ ≤ 1/|ε|) gets weaker as |ε| decreases. However, in

the limit situation ε = 0 — the cross — the situation changes dramatically: if

Λ is contained in the dual cross (R × {0}) ∪ ({0} × R), then Λ must actually

be dense in the cross for (Γ0,Λ) to be a Heisenberg uniqueness pair.
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Remark 1.4. Consider for a moment the sets

Λ′ = ([θ,+∞[×]−∞, 0]) ∪ (]−∞, 0]× [0,+∞[)

and

Λ′′ =
¶

(ξ1, ξ2) ∈ R2 : a1ξ1 + a2ξ2 = 0
©
,

where θ, a1, a2 are all real parameters, subject to θ > 0 and a1a2 > 0. The set

Λ′ is arguably more massive than the lattice-cross Λ of Corollary 1.3. Never-

theless, if Γε is as in Corollary 1.3, with ε positive, it can be shown that (Γε,Λ
′)

fails to be a Heisenberg uniqueness pair, no matter what positive values ε and θ

assume. Analogously, (Γε,Λ
′′) also fails to be a Heisenberg uniqueness pair, for

all ε > 0 and a1a2 > 0 (however, it can be shown that (Γε,Λ
′∪Λ′′) is a Heisen-

berg uniqueness pair). This suggests that it is crucial that the points of the

lattice-cross Λ of Corollary 1.3 are located along the characteristic directions

for the Klein-Gordon equation (the two axes).

We need a result of algebraic nature.

Lemma 1.5. Let z1, z2 ∈ C be two points such that

z1 − z2 = am ∈ aZ, 1

z1
− 1

z2
= bn ∈ bZ,

for some positive reals a, b. Then, unless z1 = z2,

z1 =
am

2

Ç
1±
 

1− 4

abmn

å
, z2 = z1 − am.

The proof is a simple exercise, and therefore omitted.

Remark 1.6. Let us consider the singular measure µ = δu − δv, where

u = (u1, 1/u1) ∈ Γ, v = (v1, 1/v1) ∈ Γ.

Then

µ̂(ξ) = eπi(ξ1u1+ξ2/u1) − eπi(ξ1v1+ξ2/v1),

so that

µ̂(ξ1, 0) = eπiξ1u1 − eπiξ1v1 , µ̂(0, ξ2) = eπiξ2/u1 − eπiξ2/v1 .

Suppose we try to achieve that

(1.5) µ̂(αj, 0) = µ̂(0, βk) = 0, j, k ∈ Z,

for some positive reals α, β. We see that this amounts to

eπiαu1 = eπiαv1 , eπiβ/u1 = eπiβ/v1 ,

which we rewrite in the form

u1 − v1 ∈
2

α
Z,

1

u1
− 1

v1
∈ 2

β
Z.
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In view of Lemma 1.5, there are plenty of such points u1, v1 ∈ R with u1 6= v1,

for any given α, β. This shows that the requirement that the measure µ be

absolutely continuous with respect to arc length measure on Γ is essential;

without it, Theorem 1.2 would simply not be true.

2. Dynamics of a Gauss-type map

A Gauss-type map. In order to prove our main theorem (Theorem 1.2),

we will need to study the invariant measures of a particular map. We shall

consider a map on the interval ]−1, 1], which we think of as R/2Z (topologically

as well). The map in question is defined by U(0) = 0 and

U(x) =

®
− 1

x

´
2

, x 6= 0,

where for real t, the expression {t}2 ∈]− 1, 1] is the unique number such that

t − {t}2 ∈ 2Z. The function U is locally strictly increasing and continuous,

except for being interrupted by jumps. The map U :] − 1, 1] →] − 1, 1] is

associated with continued fractions with even partial quotients (see [10], [11],

[7], [3]). We see that, for j = ±1,±2,±3, . . . ,

U(x) = −1

x
+ 2j,

1

2j + 1
< x ≤ 1

2j − 1
,

and hence U maps the interval ] 1
2j+1 ,

1
2j−1 ] onto ]−1, 1] in a one-to-one fashion.

The derivative of U is locally

U ′(x) =
1

x2
, x ∈]− 1, 1] \ 1

2Z + 1
.

The point 1 is a fixed point for U , and U ′(1−) = U ′(−1+) = 1, which makes

1 a weakly repelling fixed point. This means that when we iterate U , once we

are close to 1 (which is the same point as −1 in R/2Z), the successive iterates

will remain near 1 for a long time. If x ∈] − 1, 1] is rational, then after a

finite number of steps, the U -iterate of x is either 0 or 1 (see, for instance [7]).

This illuminates why irrational numbers tend to spend a large portion of their

U -orbits near 1.

Invariant measures. If ϕ is a continuous function on R/2Z and ν is a finite

complex Borel measure on ]− 1, 1], then the integral

(2.1)

∫
]−1,1]

ϕ(x) dν(x)

is well-defined. However, the integral (2.1) makes sense under weaker assump-

tions on ϕ. Suppose E is an open subset of ]− 1, 1] such that the complement

]−1, 1]\E is countable and that ϕ is bounded on ]−1, 1] and continuous on E.

Then (2.1) makes sense for ϕ and we call the function ϕ pseudo-continuous.
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We recall the familiar notion that a finite complex Borel measure ν on ]− 1, 1]

is U -invariant provided that

(2.2)

∫
]−1,1]

ϕ(U(x)) dν(x) =

∫
]−1,1]

ϕ(x) dν(x)

holds for all pseudo-continuous test functions ϕ; it is easy to see that ϕ ◦ U
is pseudo-continuous if ϕ is pseudo-continuous, so that (2.2) makes sense. We

shall reformulate this criterion in more concrete terms. First, we note that∫
]−1,1]\{0}

ϕ(U(x)) dν(x) =
∑
j∈Z∗

∫
] 1
2j+1

, 1
2j−1

]
ϕ(U(x)) dν(x)

=
∑
j∈Z∗

∫
] 1
2j+1

, 1
2j−1

]
ϕ

Ç
− 1

x
+ 2j

å
dν(x),

where Z∗ = Z \ {0}, and that∫
] 1
2j+1

, 1
2j−1

]
ϕ

Ç
− 1

x
+ 2j

å
dν(x) =

∫
]−1,1]

ϕ(t) dνj(t),

where

(2.3) dνj(t) = dν

Ç
1

2j − t

å
, −1 < t ≤ 1,

so that we have∫
]−1,1]\{0}

ϕ(U(x)) dν(x) =
∑
j∈Z∗

∫
]−1,1]

ϕ(t) dνj(t).

It follows that ν is U -invariant if and only if

(2.4) ν = ν({0})δ0 +
∑
j∈Z∗

νj .

More generally, given λ ∈ C, we want to talk about (U, λ)-invariant mea-

sures, defined by the requirement that

(2.5)

∫
]−1,1]

ϕ(U(x)) dν(x) = λ

∫
]−1,1]

ϕ(x) dν(x)

holds for all test functions ϕ; specifically, this means that

(2.6) λν = ν({0})δ0 +
∑
j∈Z∗

νj .

It is easy to see that for |λ| > 1, there are no (U, λ)-invariant measures except

for the zero measure.

Proposition 2.1. Suppose that ν is a finite (U, λ)-invariant measure on

]− 1, 1] and write ν = νa + νs, where νa is absolutely continuous, while νs is

singular. Then νa and νs are also (U, λ)-invariant. Moreover, if |λ| = 1, then

|ν|, |νa|, and |νs| are all U -invariant measures.
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Proof. The relation (2.6) splits:

(2.7) νa = λ
∑
j∈Z∗

(νj)a, νs = λ

Ç
ν({0})δ0 +

∑
j∈Z∗

(νj)s

å
,

where the subscripts a and s indicate the absolutely continuous and singu-

lar parts, respectively, of the measure in question. We easily realize that

(νj)a = (νa)j and (νj)s = (νs)j , so that (2.7) expresses that νa and νs are both

U -invariant.

Next, we suppose |λ| = 1, and turn to the assertion that |ν| is U -invariant.

Taking absolute values, we have

(2.8) |dν(t)| ≤ |ν({0})|dδ0(t) +
∑
j∈Z∗
|dνj(t)|,

and so ∫
]−1,1]

|dν(t)| ≤ |ν({0})|+
∑
j∈Z∗

∫
]−1,1]

|dνj(t)|

= |ν({0})|+
∑
j∈Z∗

∫
] 1
2j+1

, 1
2j−1

]
|dν(t)|

= |ν({0})|+
∫

]−1,1]\{0}
|dν(t)| =

∫
]−1,1]

|dν(t)|.

This is only possible if we have in fact equality in (2.8):

|dν(t)| = |ν({0})|dδ0(t) +
∑
j∈Z∗
|dνj(t)|.

This relation expresses that |ν| is U -invariant; that |νa| and |νs| are U -invariant

is a simple consequence of this fact. �

A smooth invariant measure of infinite mass. We now consider the posi-

tive σ-finite smooth positive measure

dω(x) =
dx

1− x2
,

which has infinite mass. The criterion (2.4) makes sense although ω is not

finite. The following assertion was essentially found by Schweiger [10].

Proposition 2.2. The measure ω is U -invariant.

Proof. We supply the simple proof, checking that

dωj(t) = dω

Ç
1

2j − t

å
=

dt

(2j − t)2 − 1
.
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Since ∑
j∈Z∗

1

(2j − t)2 − 1
=

1

2

∑
j∈Z∗

Ç
1

2j − t− 1
− 1

2j − t+ 1

å
=

1

2

Ç
1

1 + t
+

1

1− t

å
=

1

1− t2
,

we find from (2.4) that ω is U -invariant. �

Schweiger [10] actually focused on the related map |U | : [0, 1] → [0, 1]

given by |U |(x) = |U(x)|. He obtained the following basic result.

Proposition 2.3. The measure ω is invariant also with respect to |U |.
Moreover, |U | is ergodic; that is, if E ⊂ [0, 1] is a |U |-invariant set, then either

ω(E) = 0 or ω([0, 1] \ E) = 0.

Consequences of ergodic theory. The Birkhoff Ergodic Theorem — in this

setting of an infinite invariant ergodic measure [1] — states that if ϕ is Borel

measurable and even with ∫ 1

−1

|ϕ(t)|
1− t2

dt < +∞,

then

1

N

N−1∑
k=0

ϕ(U 〈k〉(t))→ 0 as N → +∞

almost everywhere on ]− 1, 1]. Here, U 〈k〉 stands for the k-th iterate of U . We

observe that we do not need to know whether U is ergodic, just that |U | is, if

we use that |U(−x)| = |U(x)|. We pick ϕ(t) = 1− t2 and get:

(2.9)
1

N

N−1∑
k=0

Ä
1− |U 〈k〉(t)|2

ä
→ 0 as N → +∞

almost everywhere on ] − 1, 1]. Suppose ν is a positive, finite, and absolutely

continuous U -invariant measure on ]− 1, 1]. By the U -invariance,

(2.10)

∫
]−1,1]

Ä
1− |U 〈k〉(t)|2

ä
dν(t) =

∫
]−1,1]

(1− t2) dν(t)

and so ∫
]−1,1]

1

N

N−1∑
k=0

Ä
1− |U 〈k〉(t)|2

ä
dν(t) =

∫
]−1,1]

(1− t2) dν(t).

By the Lebesgue dominated convergence theorem, it follows from (2.9) that∫
]−1,1]

1

N

N−1∑
k=0

Ä
1− |U 〈k〉(t)|2

ä
dν(t)→ 0, as N → +∞,
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which combined with (2.10) leads to∫
]−1,1]

(1− t2) dν(t) = 0.

This is only possible if ν = 0.

We formalize this in a proposition.

Proposition 2.4. Suppose λ ∈ C has |λ| = 1 and that ν is an absolutely

continuous finite complex (U, λ)-invariant Borel measure on ] − 1, 1]. Then

ν = 0.

Proof. By Proposition 2.1, |ν| is a U -invariant measure. In view of the

above argument, |ν| = 0 and so ν = 0. �

3. Extension of the trigonometric system

The trigonometric system. The trigonometric system {en(x)}n∈Z, with

en(x) = eπinx, is very successful in describing 2-periodic functions on the line.

Harald Bohr — the brother of Niels Bohr, the physicist — developed, over a

number of years in the 1920’s and 1930’s, the theory of almost periodic func-

tions based on more general real frequencies rather than the integer frequencies

of the trigonometric system.

An extension of the trigonometric system. Here, we consider another ex-

tension of the trigonometric system, connected with the theory of composition

operators. Let β be a positive real parameter. We introduce, for integers n,

e〈β〉n (x) = en

Ç
β

x

å
= eπiβn/x

and note that these functions are bounded on the real line.

After a dilation of the line, Theorem 1.2 is equivalent to the following

statement.

Theorem 3.1. As n ranges over the integers, the functions en(x) and

e
〈β〉
n (x) form a weak-star-spanning system in L∞(R) if and only if 0 < β ≤ 1.

If µ is a positive finite absolutely continuous Borel measure on R, then a

bounded function in L∞(R) is automatically in Lp(R, µ) for 1 < p < +∞, and

the weak-star closure of a subspace in L∞(R) is contained in the norm closure

in Lp(R, µ). We then have the following consequence of Theorem 3.1. The

necessity part just requires mimicking the corresponding argument involving

harmonic extensions in Section 4 below.
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Corollary 3.2. Suppose 1 < p < +∞ and that dµ(x) = M(x)dx, where

M(x) ≥ 0 is Borel measurable, with

0 <

∫ +∞

−∞
M(x) dx < +∞.

Then, as n ranges over the integers, the functions en(x) and e
〈β〉
n (x) form a

spanning system in Lp(R, µ) provided that 0 < β ≤ 1. If, in addition,∫ +∞

−∞

dx

(1 + x2)p/(p−1)M(x)1/(p−1)
< +∞,

the condition 0 < β ≤ 1 is also necessary in order to have a spanning system.

4. Necessity of the condition 0 < β ≤ 1

Harmonic extension. We extend the functions en harmonically and bound-

edly to the upper half-plane C+ = {z ∈ C : Im z > 0}:

en(z) = eπinz, Im z ≥ 0, n ≥ 0,

while

en(z) = eπinz̄, Im z ≥ 0, n < 0.

Likewise, the harmonic extension of e
〈β〉
n is

e〈β〉n (z) = eπiβn/z̄, Im z ≥ 0, n ≥ 0,

and

e〈β〉n (z) = eπiβn/z, Im z ≥ 0, n < 0.

Point separation. A general L∞(R) function is extended harmonically and

boundedly to C+ via the Poisson kernel; for each z0 = x0 +iy0 ∈ C+, the point

evaluation functional f 7→ f(z0) is given by

f(z0) =
1

π

∫ +∞

−∞
P (t, z0) f(t) dt, P (t, z0) =

y0

(x0 − t)2 + y2
0

,

where t 7→ P (t, z0) is in L1(R). The functional is therefore weak-star contin-

uous on L∞(R). As we harmonically extend all the functions in L∞(R), we

get the space of all bounded harmonic functions in C+. The bounded har-

monic functions in C+ separate the points of C+, so if we can find two points

z1, z2 ∈ C+ with z1 6= z2, such that

(4.1) en(z1) = en(z2), e〈β〉n (z1) = e〈β〉n (z2),

for all n ∈ Z, then the linear span of en, e
〈β〉
n cannot be weak-star dense in

L∞(R). The condition (4.1) boils down to

z1 − z2 ∈ 2Z,
1

z1
− 1

z2
∈ 2

β
Z,
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where we may apply Lemma 1.5, with m = n = 1, a = 2, and b = 2/β.

Assuming that 1 < β < +∞, we get that

z1 = 1 + i
√
β − 1, z2 = −1 + i

√
β − 1,

are points in C+ satisfying (4.1). It follows that the requirement 0 < β ≤ 1 is

necessary in Theorem 3.1.

5. Periodic and inverted-periodic functions

Periodic and inverted-periodic functions. The weak-star closure in L∞(R)

of the linear span of the functions en(x) = eπinx, n ∈ Z, equals L∞2 (R), the

subspace of 2-periodic functions. Similarly, the weak-star closure of the linear

span of the functions e〈β〉(x) = en(β/x), n ∈ Z, equals the subspace L∞〈β〉(R)

of all functions f ∈ L∞(R) with x 7→ f(β/x) being 2-periodic. Let us tacitly

extend all functions in L∞(R) harmonically to C+ using the Poisson kernel.

The intersection space. Let us, for a moment, consider the intersection

L∞2 (R) ∩ L∞〈β〉(R).

We introduce G(β) as the group of Möbius transformations preserving C+ gen-

erated by the translation z 7→ z + 2 and the mapping z 7→ βz/(β − 2z); then

the elements of L∞2 (R) ∩ L∞〈β〉(R) are precisely the functions in L∞(R) that

are invariant under f 7→ f ◦ γ, for γ ∈ G(β). This situation is investigated

in Section 11.4 of Beardon’s book [2]. For 0 < β ≤ 1, the group G(β) is dis-

crete and free (see, e.g., Gilman and Maskit [4]), and the fundamental domain

(hyperbolic polygon) associated with C+/G(β) is given by

(5.1) D(β) =

®
z ∈ C+ : |Re z| < 1,

∣∣∣∣∣z − β

2

∣∣∣∣∣ > β

2
,

∣∣∣∣∣z +
β

2

∣∣∣∣∣ > β

2

´
.

The domain D(β) has a cusp at infinity and at the origin. In addition, it has

cusp(s) at ±1 for β = 1. For 0 < β < 1, the fundamental domain has two

boundary line segments ]− 1,−β[ and ]β, 1[, which is enough for C+/G(β) to

carry plenty of bounded harmonic (holomorphic as well) functions. A cusp is

a removable singularity for a bounded harmonic function on C+/G(β) (it is

just an isolated removed point on the Riemann surface), which means that only

constants are bounded and harmonic on C+/G(β) for β = 1. For 1 < β < +∞,

the group G(β) is discrete if and only if

(5.2) β =
1

cos2(pπ/(2q))

for some coprime positive integers p, q with p < q and p ∈ {1, 2}. In case p = 1,

the fundamental domain is still given by (5.1), while for p = 2 it is smaller,

but retains two of the cusps. Anyway, under (5.2), only cusps (two or three)

occur in C+/G(β) and all bounded harmonic functions are constant. In the
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remaining case, when (5.2) fails, the group G(β) is nondiscrete, and then every

harmonic function which is invariant under G(β) is necessarily constant.

We gather some of the above observations in a proposition.

Proposition 5.1. L∞2 (R)∩L∞〈β〉(R) = {constants} if and only if 1 ≤ β <
+∞. Moreover, for 0 < β < 1, L∞2 (R) ∩ L∞〈β〉(R) is infinite-dimensional.

The sum space. Next, we turn to the study of the sum space. In order to

obtain Theorem 3.1, we show that

L∞2 (R) + L∞〈β〉(R)

is weak-star dense in L∞(R) if and only if 0 < β ≤ 1. In Section 4, we saw

that the sum fails to be weak-star dense for 1 < β < +∞. In the sequel, we

therefore assume that 0 < β ≤ 1. We now make a basic observation. Functions

in L∞2 (R) may be prescribed freely on ] − 1, 1], but then they are uniquely

determined everywhere else, due to periodicity. Likewise, functions in L∞〈β〉(R)

are free on R\]−β, β] and extend by “periodicity” everywhere else. This allows

us to define operators S, Tβ as follows. The first operator

S : L∞(]− 1, 1])→ L∞(R\]− 1, 1])

is obtained by extending the function to be 2-periodic on R and then restricting

the extended function to R\]− 1, 1]. The second operator

Tβ : L∞(R\]− β, β])→ L∞(]− β, β])

is the analogous extension associated with the “periodicity” in L∞〈β〉(R); in

symbols, we may express it as

Tβ[f ] = (S[f ◦ Iβ]) ◦ Iβ,

where Iβ(x) = −β/x.

Next, we agree on a useful convention. For a Lebesgue measurable subset

X of the real line of positive linear measure, we identify L∞(X) with a weak-

star closed subspace of L∞(R) by extending the functions to vanish on the

complement R \X.

Lemma 5.2. If I is the identity operator and if the operator

I−TβS : L∞(]− 1, 1])→ L∞(]− 1, 1])

has weak-star dense range, then the sum space L∞2 (R) + L∞〈β〉(R) is weak-star

dense in L∞(R).

Proof. We writeR for the range of the operator I−TβS. Pick an arbitrary

F2 ∈ L∞(R\] − 1, 1]), and ask of F1 ∈ L∞(] − 1, 1]) that F1 = Tβ[F2] + R,

where R ∈ R. The set of all sums F = F1 + F2 ∈ L∞(R) obtained in this
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fashion is denoted by F . The following straightforward argument shows that

F is weak-star dense in L∞(R), provided that R is. Suppose K ∈ L1(R) has

〈F,K〉R = 0

for all F ∈ F . We decompose K = K1 +K2 ∈ L1(R), where

K1 ∈ L1(]− 1, 1]) and K2 ∈ L1(R\]− 1, 1]).

Then

0 = 〈F,K〉R = 〈F1,K1〉R + 〈F2,K2〉R = 〈Tβ[F2],K1〉R + 〈R,K1〉R + 〈F2,K2〉R.

We rewrite this in the form

〈R,K1〉R = −〈F2,K2〉R − 〈Tβ[F2],K1〉R.

Only the left-hand side depends on R ∈ R; by linearity, the only way this is

possible is if 〈R,K1〉R = 0 for all R ∈ R. But as R is dense, we get that

K1 = 0. The remaining relationship now reads

〈F2,K2〉R = 0.

As F2 was arbitrary, we conclude that K2 = 0 as well.

To finish the proof, we show that

F ⊂ L∞2 (R) + L∞〈β〉(R).

For F = F1 +F2 ∈ F as above, the fact that F1−Tβ[F2] = R ∈ R means that

there exists a g ∈ L∞(]− 1, 1]) such that

(5.3) g −TβS[g] = (I−TβS)[g] = F1 −Tβ[F2].

Also, let h ∈ L∞(R\]− 1, 1]) be given by

(5.4) h = F2 − S[g].

Then, by (5.4),

(5.5) F2 = h+ S[g],

so that

Tβ[F2] = Tβ[h] + TβS[g].

If we combine this with (5.3), we get

(5.6) F1 = Tβ[F2] + g −TβS[g] = Tβ[h] + TβS[g] + g −TβS[g] = g + Tβ[h].

It follows from (5.5) and (5.6) that

F = F1 + F2 = (g + Tβ[h]) + (h+ S[g])

= (g + S[g]) + (h+ Tβ[h]) ∈ L∞2 (R) + L∞〈β〉(R).

The proof is complete. �
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The operator TβS. For x ∈ R, let {x}2 denote the number with −1 <

{x}2 ≤ 1 and x− {x} ∈ 2Z. Then, since for ϕ ∈ L∞(]− 1, 1]),

S[ϕ](x) = ϕ({x}2) 1R\]−1,1](x), x ∈ R,

where 1E denotes the characteristic function of the set E ⊂ R, we find that for

ψ ∈ L∞(R\]− β, β]),

Tβ[ψ](x) = ψ

Ç
β

{β/x}2

å
1]−β,β](x), x ∈ R.

It follows that

(5.7) TβS[ϕ](x) = ϕ

Ç®
β

{β/x}2

´
2

å
1Eβ (x), x ∈ R,

where

Eβ =

®
x ∈]− β, β] \ {0} :

β

{β/x}2
∈ R\]− 1, 1]

´
.

6. Analysis of a related composition operator

The Gauss-type map. Let Uβ be the mapping

Uβ(x) = {−β/x}2, x 6= 0,

with Uβ(0) = 0. We consider the associated compressed composition operator

Cβ : L∞(]− 1, 1])→ L∞(]− 1, 1])

given by

Cβ[f ](x) = f(Uβ(x)) 1]−β,β](x).

We quickly realize from (5.7) that

TβS = C2
β

and turn to analyzing Cβ. The identity

I−TβS = I−C2
β = (I+Cβ)(I−Cβ)

shows that if I+Cβ and I−Cβ both have weak-star dense range, then I−C2
β

has weak-star dense range as well. By elementary Functional Analysis, the

operators I+Cβ and I−Cβ both have weak-star dense range if and only if

for λ = ±1, the (predual) adjoint

λ I−C∗β : L1(]− 1, 1])→ L1(]− 1, 1])

has null kernel, that is, if the points ±1 both fail to be eigenvalues of C∗β. The

following result shows that this is the case for 0 < β ≤ 1, making I−TβS have

weak-star dense range, and thus, in view of Lemma 5.2,

L∞2 (R) + L∞〈β〉(R)
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is weak-star dense in L∞(R). Given that we have verified the necessity of the

condition 0 < β ≤ 1 in the context of Theorem 3.1, the rest of the assertion of

Theorem 3.1 follows.

Proposition 6.1. For 0 < β ≤ 1, the point spectrum σp(C
∗
β) of C∗β :

L1(]− 1, 1])→ L1(]− 1, 1]) is contained in the open unit disk D. In particular,

±1 are not eigenvalues of C∗β .

Proof. It is clear that

σp(C
∗
β) ⊂ σ(C∗β) ⊂ D̄,

where D̄ is the closed unit disk, so we just need to show that a λ ∈ C with

|λ| = 1 cannot be an eigenvalue.

The treatment of the cases β = 1 and 0 < β < 1 will be different.

The case β = 1. For β = 1, Uβ = U1 = U (the map we studied in §2) and

C1 is

C1[f ](x) = f(U(x)) 1]−1,1](x).

The defining relation for the (predual) adjoint C∗1 : L1(]− 1, 1])→ L1(]− 1, 1])

is∫
]−1,1]

f(x)C∗1[g](x) dx = 〈C∗1[g], f〉R = 〈g,C1[f ]〉R =

∫
]−1,1]

f(U(x)) g(x) dx.

If g is a nontrivial eigenfunction for C∗1 with eigenvalue λ, then C∗1[g] = λg

and so

λ

∫
]−1,1]

f(x) g(x) dx =

∫
]−1,1]

f(U(x)) g(x) dx;

this expresses that the absolutely continuous finite measure dν(x) = g(x)dx

is a (U, λ)-invariant measure. By Proposition 2.4, there are no finite (U, λ)-

invariant measures except the null measure, for |λ| = 1. Consequently, λ ∈ C
is not an eigenvalue of C∗1 for |λ| = 1.

The case 0 < β < 1. The same analysis reduces the problem to studying

the absolutely continuous finite measures ν on ]− 1, 1] with

(6.1) λ

∫
]−1,1]

f(t) dν(t) =

∫
]−1,1]

Cβ[f ](t) dν(t) =

∫
]−β,β]

f(Uβ(t)) dν(t)

for all f ∈ L∞(] − 1, 1]), where λ ∈ C is fixed with |λ| = 1. In more concrete

terms, this amounts to

λ dν(t) =
∑
j∈Z∗

dνj(t), t ∈]− 1, 1],

where

dνj(t) = dν

Ç
β

2j − t

å
, t ∈]− 1, 1].
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Taking absolute values, we have, for |λ| = 1,

|dν(t)| ≤
∑
j∈Z∗
|dνj(t)|, t ∈]− 1, 1].

Integrating over ]− 1, 1], we find that∫
]−1,1]

|dν(t)| ≤
∑
j∈Z∗

∫
]−1,1]

|dνj(t)| =
∫

[−β,β]
|dν(t)|, t ∈]− 1, 1],

which is only possible if we have the equality

|dν(t)| =
∑
j∈Z∗
|dνj(t)|, t ∈]− 1, 1],

as well as

dν(t) = 0, t ∈]− 1, 1] \ [−β, β].

If we iterate the relation (6.1), we get

(6.2) λn
∫

]−1,1]
f(t) dν(t) =

∫
]−1,1]

Cn
β[f ](t) dν(t) =

∫
Eβ(n)

f(U
〈n〉
β (t)) dν(t),

where set Eβ(n) is given by

Eβ(n) =
¶
t ∈]− 1, 1] : U

〈k〉
β (t) ∈ [−β, β] for k = 0, . . . , n− 1

©
.

A repetition of the above argument involving U
〈n〉
β in place of Uβ shows that

if |λ| = 1, then

dν(t) = 0, t ∈]− 1, 1] \ Eβ(n).

As n→ +∞, the set Eβ(n) shrinks down to

Eβ(∞) =
¶
t ∈]− 1, 1] : U

〈k〉
β (t) ∈ [−β, β] for k = 0, 1, 2, 3, . . .

©
.

This final set Eβ(∞) is Uβ-invariant, and it is not hard to show that it must

have zero length. But the measure ν vanishes everywhere else, and being

absolutely continuous, it must be the zero measure. In particular, λ ∈ C with

|λ| = 1 cannot be eigenvalues of C∗β. The proof is complete. �

A remark on model subspaces. Given an inner function Θ in the upper half-

plane C+, one considers the model subspaces KΘ(C+) = H2(C+)	ΘH2(C+).

Uniqueness sets for model subspaces have been studied recently by Makarov

and Poltoratski [8], and the injectivity of the Toeplitz operator with symbol

Θ̄BΛ is equivalent to Λ ⊂ C+ being a uniqueness set. In our setting, we use

mainly that the operators λ I−C∗β are injective for λ = ±1, so that appar-

ently, these operators are analogous to the Toeplitz operators from the model

subspace case.



HEISENBERG UNIQUENESS PAIRS AND THE KLEIN-GORDON EQUATION 1525

7. Applications and open problems

An application to BMO. Let BMOA(C+) be the (weak-star closed) sub-

space of the space BMO(R) consisting of functions whose Poisson extensions

to C+ are holomorphic in C+. We recall that BMO(R) denotes the space of

functions with bounded mean oscillation. The Cauchy-Szegö (analytic) pro-

jection

P : L∞(R)→ BMOA(C+)

is bounded and surjective. Here, we think of BMOA(C+) as the dual ofH1(C+)

with respect to the sesquilinear form of L2(R); in particular, BMOA(C+) is

a space of functions modulo the constants. We observe that if X is a linear

subspace of L∞(R) which is weak-star dense, then P(X ) is is weak-star dense

in BMOA(C+). Moreover, let BMOA2(C+) be the subspace of BMOA(C+) of

functions invariant under z 7→ z+ 2, and let BMOA〈β〉(C+) be the subspace of

BMOA(C+) of functions invariant under z 7→ βz/(β − 2z). We quickly check

that P maps L∞2 (R)→ BMOA2(C+) and L∞〈β〉(R)→ BMOA〈β〉(C+).

In view of our main theorem (Theorem 3.1), we have the following.

Corollary 7.1. The sum BMOA2(C+) + BMOA〈β〉(C+) is weak-star

dense in BMOA(C+) if and only if 0 < β ≤ 1. In other words, the functions

en(x) = eπinx, e
〈β〉
−n(x) = e−πβin/x, n = 0, 1, 2, 3, . . .

span a weak-star dense subspace of BMOA(C+) if and only if 0 < β ≤ 1.

By the Möbius invariance of BMO, we may transfer this result to the

setting of the unit disk and answer Problem 2 of Matheson and Stessin [9] in

the affirmative.

Four open problems. (a) Suppose that in the context of Theorem 1.2 we

consider a lattice-cross

Λ = ((αZ + {θ})× {0}) ∪ ({0} × βZ),

where θ ∈ R is fixed. It seems that Theorem 1.2 should remain true with this

new Λ, with only moderate modifications in the proof. But what happens if

the lattice-cross is less regular, that is, if the two spacings α and β are allowed

to fluctuate a bit along the cross?

(b) In the context of Corollary 3.2, as n ranges over the integers, do

the functions en(x) and e
〈β〉
n (x) form a spanning system in Lp(R, µ) for all

0 < β < +∞ provided that∫ +∞

−∞

dx

(1 + x2)p/(p−1)M(x)1/(p−1)
= +∞?
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(c) Let H∞2 (C+) denote the (weak-star closed) subspace of L∞2 (R) con-

sisting of those functions whose Poisson extensions to the upper half-plane C+

are analytic. Analogously, let H∞〈β〉(C+) be the (weak-star closed) subspace of

L∞〈β〉(R) consisting of those functions whose Poisson extensions to the upper

half-plane C+ are analytic. Is the sum

H∞2 (C+) +H∞〈β〉(C+)

weak-star dense in H∞(C+) for 0 < β ≤ 1? This does not seem to follow from

our Theorem 3.1, and, if answered in the affirmative (for 0 < β < 1), it would

solve Problem 1 of [9].

(d) In the context of Corollary 1.3, let the finite Borel measure µ be sup-

ported on the hyperbola x1x2 = ε and let Λ be the lattice-cross given by the

positive parameters α, β. If µ is absolutely continuous with respect to arc

length measure on the hyperbola, an argument involving curvature considera-

tions shows that

µ̂(ξ)→ 0 as |ξ| → +∞.

In a sense, this expresses the absence of point masses in µ. Moreover, µ̂ solves

the Klein-Gordon equation ∂1∂2µ̂+επ2µ̂ = 0. It would be desirable to remove,

to the extent possible, the Fourier analysis ingredient in Corollary 1.3. Let

u be a bounded continuous complex-valued function on R2 with u(ξ) → 0 as

|ξ| → +∞. Suppose, in addition, that ∂1∂2u+ επ2u = 0 holds in the sense of

distribution theory. The problem: is the lattice-cross Λ, with αβ ≤ 1/|ε|, a

uniqueness set for u (that is, u|Λ = 0 =⇒ u = 0)?
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[5] V. Havin and B. Jöricke, The Uncertainty Principle in Harmonic Analy-

sis, Ergeb. Math. Grenzgeb. 28, Springer-Verlag, New York, 1994. MR 1303780.

Zbl 0827.42001.
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